WorldWideScience

Sample records for chromosome number variation

  1. Industrial relevance of chromosomal copy number variation in Saccharomyces yeasts

    NARCIS (Netherlands)

    Gorter de Vries, A.R.; Pronk, J.T.; Daran, J.G.

    2017-01-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have

  2. Chromosome Numbers and Genome Size Variation in Indian Species of Curcuma (Zingiberaceae)

    Science.gov (United States)

    Leong-Škorničková, Jana; Šída, Otakar; Jarolímová, Vlasta; Sabu, Mamyil; Fér, Tomáš; Trávníček, Pavel; Suda, Jan

    2007-01-01

    Background and Aims Genome size and chromosome numbers are important cytological characters that significantly influence various organismal traits. However, geographical representation of these data is seriously unbalanced, with tropical and subtropical regions being largely neglected. In the present study, an investigation was made of chromosomal and genome size variation in the majority of Curcuma species from the Indian subcontinent, and an assessment was made of the value of these data for taxonomic purposes. Methods Genome size of 161 homogeneously cultivated plant samples classified into 51 taxonomic entities was determined by propidium iodide flow cytometry. Chromosome numbers were counted in actively growing root tips using conventional rapid squash techniques. Key Results Six different chromosome counts (2n = 22, 42, 63, >70, 77 and 105) were found, the last two representing new generic records. The 2C-values varied from 1·66 pg in C. vamana to 4·76 pg in C. oligantha, representing a 2·87-fold range. Three groups of taxa with significantly different homoploid genome sizes (Cx-values) and distinct geographical distribution were identified. Five species exhibited intraspecific variation in nuclear DNA content, reaching up to 15·1 % in cultivated C. longa. Chromosome counts and genome sizes of three Curcuma-like species (Hitchenia caulina, Kaempferia scaposa and Paracautleya bhatii) corresponded well with typical hexaploid (2n = 6x = 42) Curcuma spp. Conclusions The basic chromosome number in the majority of Indian taxa (belonging to subgenus Curcuma) is x = 7; published counts correspond to 6x, 9x, 11x, 12x and 15x ploidy levels. Only a few species-specific C-values were found, but karyological and/or flow cytometric data may support taxonomic decisions in some species alliances with morphological similarities. Close evolutionary relationships among some cytotypes are suggested based on the similarity in homoploid genome sizes and geographical grouping

  3. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts

    Science.gov (United States)

    Gorter de Vries, Arthur R.; Pronk, Jack T.

    2017-01-01

    ABSTRACT Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. PMID:28341679

  4. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts.

    Science.gov (United States)

    Gorter de Vries, Arthur R; Pronk, Jack T; Daran, Jean-Marc G

    2017-06-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyce s strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. Copyright © 2017 Gorter de Vries et al.

  5. Intraspecific chromosome number variation: a neglected threat to the conservation of rare plants.

    Science.gov (United States)

    Severns, Paul M; Liston, Aaron

    2008-12-01

    The effectiveness of rare plant conservation will increase when life history, demographic, and genetic data are considered simultaneously. Inbreeding depression is a widely recognized genetic concern in rare plant conservation, and the mixing of genetically diverse populations in restoration efforts is a common remedy. Nevertheless, if populations with unrecognized intraspecific chromosome variation are crossed, progeny fitness losses will range from partial to complete sterility, and reintroductions and population augmentation of rare plants may fail. To assess the current state of cytological knowledge of threatened and endangered plants in the continental United States, we searched available resources for chromosome counts. We also reviewed recovery plans to discern whether recovery criteria potentially place listed species at risk by requiring reintroductions or population augmentation in the absence of cytological information. Over half the plants lacked a chromosome count, and when a taxon did have a count it generally originated from a sampling intensity too limited to detect intraspecific chromosome variation. Despite limited past cytological sampling, we found 11 plants with documented intraspecific cytological variation, while 8 others were ambiguous for intraspecific chromosome variation. Nevertheless, only one recovery plan addressed the chromosome differences. Inadequate within-species cytological characterization, incomplete sampling among listed taxa, and the prevalence of interspecific and intraspecific chromosome variation in listed genera, suggests that other rare plants are likely to have intraspecific chromosome variation. Nearly 90% of all recovery plans called for reintroductions or population augmentation as part of recovery criteria despite the dearth of cytological knowledge. We recommend screening rare plants for intraspecific chromosome variation before reintroductions or population augmentation projects are undertaken to safeguard

  6. Dynamics of chromosome number and genome size variation in a cytogenetically variable sedge (Carex scoparia var. scoparia, Cyperaceae).

    Science.gov (United States)

    Chung, Kyong-Sook; Weber, Jaime A; Hipp, Andrew L

    2011-01-01

    High intraspecific cytogenetic variation in the sedge genus Carex (Cyperaceae) is hypothesized to be due to the "diffuse" or non-localized centromeres, which facilitate chromosome fission and fusion. If chromosome number changes are dominated by fission and fusion, then chromosome evolution will result primarily in changes in the potential for recombination among populations. Chromosome duplications, on the other hand, entail consequent opportunities for divergent evolution of paralogs. In this study, we evaluate whether genome size and chromosome number covary within species. We used flow cytometry to estimate genome sizes in Carex scoparia var. scoparia, sampling 99 plants (23 populations) in the Chicago region, and we used meiotic chromosome observations to document chromosome numbers and chromosome pairing relations. Chromosome numbers range from 2n = 62 to 2n = 68, and nuclear DNA 1C content from 0.342 to 0.361 pg DNA. Regressions of DNA content on chromosome number are nonsignificant for data analyzed by individual or population, and a regression model that excludes slope is favored over a model in which chromosome number predicts genome size. Chromosome rearrangements within cytogenetically variable Carex species are more likely a consequence of fission and fusion than of duplication and deletion. Moreover, neither genome size nor chromosome number is spatially autocorrelated, which suggests the potential for rapid chromosome evolution by fission and fusion at a relatively fine geographic scale (<350 km). These findings have important implications for ecological restoration and speciation within the largest angiosperm genus of the temperate zone.

  7. Chromosomal aneuploidies and copy number variations in posterior fossa abnormalities diagnosed by prenatal ultrasonography.

    Science.gov (United States)

    Lei, Ting; Feng, Jie-Ling; Xie, Ying-Jun; Xie, Hong-Ning; Zheng, Ju; Lin, Mei-Fang

    2017-11-01

    To explore the genetic aetiology of fetal posterior fossa abnormalities (PFAs). This study involved cases of PFAs that were identified by prenatal ultrasonographic screening and confirmed postnatally between January 2012 and January 2016. Conventional cytogenetic analyses and chromosomal microarray analysis were performed, and chromosomal aneuploidies and copy number variations (CNVs) were identified. Among 74 cases included in this study, 8 were of Blake's pouch cyst; 7, Dandy-Walker malformation; 11, vermian hypoplasia; 32, enlarged cisterna magna; and 16, cerebellar hypoplasia. The rates of nonbenign chromosomal aberrations (including chromosomal aneuploidies, pathogenic CNVs, and variants of unknown significance) were 2/8 (25.0%), 2/7 (28.5%), 8/11 (72.7%), 7/32 (21.9%), and 6/16 (37.5%), respectively. Cases were also classified as isolated PFAs (30/74), PFAs with other central nervous system (CNS) abnormalities (13/74), or PFAs with extra-CNS structural abnormalities (31/74). No fetuses with isolated PFAs or PFAs accompanied by other CNS abnormalities exhibited chromosomal aneuploidies or pathogenic CNVs. The rate of pathogenic chromosomal aberrations in the remaining fetuses was 17/31 (22.9%). The combined use of chromosomal microarray analysis and karyotype analysis might assist the prenatal diagnosis and management of PFAs, with extra-CNS structural abnormalities being detected by ultrasonography. © 2017 John Wiley & Sons, Ltd.

  8. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains.

    Science.gov (United States)

    van den Broek, M; Bolat, I; Nijkamp, J F; Ramos, E; Luttik, M A H; Koopman, F; Geertman, J M; de Ridder, D; Pronk, J T; Daran, J-M

    2015-09-01

    Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes. Copyright © 2015, van den Broek et al.

  9. Human Y chromosome copy number variation in the next generation sequencing era and beyond.

    Science.gov (United States)

    Massaia, Andrea; Xue, Yali

    2017-05-01

    The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.

  10. Variation in chromosome number and breeding systems: implications for diversification in Pachycereus pringlei (Cactaceae

    Directory of Open Access Journals (Sweden)

    Carina Gutiérrez-Flores

    2018-02-01

    Full Text Available Polyploidy, the possession of more than two sets of chromosomes, is a major biological process affecting plant evolution and diversification. In the Cactaceae, genome doubling has also been associated with reproductive isolation, changes in breeding systems, colonization ability, and speciation. Pachycereus pringlei (S. Watson, 1885 Britton & Rose, 1909, is a columnar cactus that has long drawn the attention of ecologists, geneticists, and systematists due to its wide distribution range and remarkable assortment of breeding systems in the Mexican Sonoran Desert and the Baja California Peninsula (BCP. However, several important evolutionary questions, such as the distribution of chromosome numbers and whether the diploid condition is dominant over a potential polyploid condition driving the evolution and diversity in floral morphology and breeding systems in this cactus, are still unclear. In this study, we determined chromosome numbers in 11 localities encompassing virtually the entire geographic range of distribution of P. pringlei. Our data revealed the first diploid (2n = 22 count in this species restricted to the hermaphroditic populations of Catalana (ICA and Cerralvo (ICE Islands, whereas the tetraploid (2n = 44 condition is consistently distributed throughout the BCP and mainland Sonora populations distinguished by a non-hermaphroditic breeding system. These results validate a wider distribution of polyploid relative to diploid individuals and a shift in breeding systems coupled with polyploidisation. Considering that the diploid base number and hermaphroditism are the proposed ancestral conditions in Cactaceae, we suggest that ICE and ICA populations represent the relicts of a southern diploid ancestor from which both polyploidy and unisexuality evolved in mainland BCP, facilitating the northward expansion of this species. This cytogeographic distribution in conjunction with differences in floral attributes suggests the distinction of

  11. Variation in chromosome number and breeding systems: implications for diversification in Pachycereus pringlei (Cactaceae).

    Science.gov (United States)

    Gutiérrez-Flores, Carina; la Luz, José L León-de; León, Francisco J García-De; Cota-Sánchez, J Hugo

    2018-01-01

    Polyploidy, the possession of more than two sets of chromosomes, is a major biological process affecting plant evolution and diversification. In the Cactaceae, genome doubling has also been associated with reproductive isolation, changes in breeding systems, colonization ability, and speciation. Pachycereus pringlei (S. Watson, 1885) Britton & Rose, 1909, is a columnar cactus that has long drawn the attention of ecologists, geneticists, and systematists due to its wide distribution range and remarkable assortment of breeding systems in the Mexican Sonoran Desert and the Baja California Peninsula (BCP). However, several important evolutionary questions, such as the distribution of chromosome numbers and whether the diploid condition is dominant over a potential polyploid condition driving the evolution and diversity in floral morphology and breeding systems in this cactus, are still unclear. In this study, we determined chromosome numbers in 11 localities encompassing virtually the entire geographic range of distribution of P. pringlei . Our data revealed the first diploid (2n = 22) count in this species restricted to the hermaphroditic populations of Catalana (ICA) and Cerralvo (ICE) Islands, whereas the tetraploid (2n = 44) condition is consistently distributed throughout the BCP and mainland Sonora populations distinguished by a non-hermaphroditic breeding system. These results validate a wider distribution of polyploid relative to diploid individuals and a shift in breeding systems coupled with polyploidisation. Considering that the diploid base number and hermaphroditism are the proposed ancestral conditions in Cactaceae, we suggest that ICE and ICA populations represent the relicts of a southern diploid ancestor from which both polyploidy and unisexuality evolved in mainland BCP, facilitating the northward expansion of this species. This cytogeographic distribution in conjunction with differences in floral attributes suggests the distinction of the diploid

  12. Y-Chromosome variation in hominids: intraspecific variation is limited to the polygamous chimpanzee.

    Directory of Open Access Journals (Sweden)

    Gabriele Greve

    Full Text Available BACKGROUND: We have previously demonstrated that the Y-specific ampliconic fertility genes DAZ (deleted in azoospermia and CDY (chromodomain protein Y varied with respect to copy number and position among chimpanzees (Pan troglodytes. In comparison, seven Y-chromosomal lineages of the bonobo (Pan paniscus, the chimpanzee's closest living relative, showed no variation. We extend our earlier comparative investigation to include an analysis of the intraspecific variation of these genes in gorillas (Gorilla gorilla and orangutans (Pongo pygmaeus, and examine the resulting patterns in the light of the species' markedly different social and mating behaviors. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescence in situ hybridization analysis (FISH of DAZ and CDY in 12 Y-chromosomal lineages of western lowland gorilla (G. gorilla gorilla and a single lineage of the eastern lowland gorilla (G. beringei graueri showed no variation among lineages. Similar findings were noted for the 10 Y-chromosomal lineages examined in the Bornean orangutan (Pongo pygmaeus, and 11 Y-chromosomal lineages of the Sumatran orangutan (P. abelii. We validated the contrasting DAZ and CDY patterns using quantitative real-time polymerase chain reaction (qPCR in chimpanzee and bonobo. CONCLUSION/SIGNIFICANCE: High intraspecific variation in copy number and position of the DAZ and CDY genes is seen only in the chimpanzee. We hypothesize that this is best explained by sperm competition that results in the variant DAZ and CDY haplotypes detected in this species. In contrast, bonobos, gorillas and orangutans-species that are not subject to sperm competition-showed no intraspecific variation in DAZ and CDY suggesting that monoandry in gorillas, and preferential female mate choice in bonobos and orangutans, probably permitted the fixation of a single Y variant in each taxon. These data support the notion that the evolutionary history of a primate Y chromosome is not simply encrypted in its DNA

  13. The study of human Y chromosome variation through ancient DNA.

    Science.gov (United States)

    Kivisild, Toomas

    2017-05-01

    High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.

  14. Instability of chromosome number and DNA methylation variation induced by hybridization and amphidiploid formation between Raphanus sativus L. and Brassica alboglabra Bailey

    Directory of Open Access Journals (Sweden)

    Wang Yanjie

    2010-09-01

    Full Text Available Abstract Background Distant hybridization can result genome duplication and allopolyploid formation which may play a significant role in the origin and evolution of many plant species. It is unclear how the two or more divergent genomes coordinate in one nucleus with a single parental cytoplasm within allopolyploids. We used cytological and molecular methods to investigate the genetic and epigenetic instabilities associated with the process of distant hybridization and allopolyploid formation, measuring changes in chromosome number and DNA methylation across multiple generations. Results F1 plants from intergeneric hybridization between Raphanus sativus L. (2n = 18, RR and Brassica alboglabra Bailey (2n = 18, CC were obtained by hand crosses and subsequent embryo rescue. Random amplification of polymorphic DNA (RAPD markers were used to identify the F1 hybrid plants. The RAPD data indicated that the hybrids produced specific bands similar to those of parents and new bands that were not present in either parent. Chromosome number variation of somatic cells from allotetraploids in the F4 to F10 generations showed that intensive genetic changes occurred in the early generations of distant hybridization, leading to the formation of mixopolyploids with different chromosome numbers. DNA methylation variation was revealed using MSAP (methylation-sensitive amplification polymorphism, which showed that cytosine methylation patterns changed markedly in the process of hybridization and amphidiploid formation. Differences in cytosine methylation levels demonstrated an epigenetic instability of the allopolyploid of Raphanobrassica between the genetically stable and unstable generations. Conclusions Our results showed that chromosome instability occurred in the early generations of allopolyploidy and then the plants were reverted to largely euploidy in later generations. During this process, DNA methylation changed markedly. These results suggest that

  15. Chromosomal abnormalities and copy number variations in fetal left-sided congenital heart defects.

    Science.gov (United States)

    Jansen, Fenna A R; Hoffer, Mariette J V; van Velzen, Christine L; Plati, Stephani Klingeman; Rijlaarsdam, Marry E B; Clur, Sally-Ann B; Blom, Nico A; Pajkrt, Eva; Bhola, Shama L; Knegt, Alida C; de Boer, Marion A; Haak, Monique C

    2016-02-01

    To demonstrate the spectrum of copy number variants (CNVs) in fetuses with isolated left-sided congenital heart defects (CHDs), and analyse genetic content. Between 2003 and 2012, 200 fetuses were identified with left-sided CHD. Exclusion criteria were chromosomal rearrangements, 22q11.2 microdeletion and/or extra-cardiac malformations (n = 64). We included cases with additional minor anomalies (n = 39), such as single umbilical artery. In 54 of 136 eligible cases, stored material was available for array analysis. CNVs were categorized as either (likely) benign, (likely) pathogenic or of unknown significance. In 18 of the 54 isolated left-sided CHDs we found 28 rare CNVs (prevalence 33%, average 1.6 CNV per person, size 10.6 kb-2.2 Mb). Our interpretation yielded clinically significant CNVs in two of 54 cases (4%) and variants of unknown significance in three other cases (6%). In left-sided CHDs that appear isolated, with normal chromosome analysis and 22q11.2 FISH analysis, array analysis detects clinically significant CNVs. When counselling parents of a fetus with a left-sided CHD it must be taken into consideration that aside from the cardiac characteristics, the presence of extra-cardiac malformations and chromosomal abnormalities influence the treatment plan and prognosis. © 2015 John Wiley & Sons, Ltd.

  16. New chromosome numbers in the genus Trigonella L. ( Fabaceae ...

    African Journals Online (AJOL)

    Somatic chromosome numbers of 45 Trigonella L. (Fabaceae), collected from different localities in Turkey was examined. Chromosome numbers were determined as 2n = 14, 16, 30 and 46. B chromosome was also observed in somatic cells of some taxa (Trigonella arcuata C.A. Meyer and Trigonella procumbens (Besser) ...

  17. Inferring Variation in Copy Number Using High Throughput Sequencing Data in R.

    Science.gov (United States)

    Knaus, Brian J; Grünwald, Niklaus J

    2018-01-01

    Inference of copy number variation presents a technical challenge because variant callers typically require the copy number of a genome or genomic region to be known a priori . Here we present a method to infer copy number that uses variant call format (VCF) data as input and is implemented in the R package vcfR . This method is based on the relative frequency of each allele (in both genic and non-genic regions) sequenced at heterozygous positions throughout a genome. These heterozygous positions are summarized by using arbitrarily sized windows of heterozygous positions, binning the allele frequencies, and selecting the bin with the greatest abundance of positions. This provides a non-parametric summary of the frequency that alleles were sequenced at. The method is applicable to organisms that have reference genomes that consist of full chromosomes or sub-chromosomal contigs. In contrast to other software designed to detect copy number variation, our method does not rely on an assumption of base ploidy, but instead infers it. We validated these approaches with the model system of Saccharomyces cerevisiae and applied it to the oomycete Phytophthora infestans , both known to vary in copy number. This functionality has been incorporated into the current release of the R package vcfR to provide modular and flexible methods to investigate copy number variation in genomic projects.

  18. Assessment of copy number variations in 120 patients with Poland syndrome.

    Science.gov (United States)

    Vaccari, Carlotta Maria; Tassano, Elisa; Torre, Michele; Gimelli, Stefania; Divizia, Maria Teresa; Romanini, Maria Victoria; Bossi, Simone; Musante, Ilaria; Valle, Maura; Senes, Filippo; Catena, Nunzio; Bedeschi, Maria Francesca; Baban, Anwar; Calevo, Maria Grazia; Acquaviva, Massimo; Lerone, Margherita; Ravazzolo, Roberto; Puliti, Aldamaria

    2016-11-25

    Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown. To investigate the prevalence of chromosomal imbalances in PS, standard cytogenetic and array-CGH analyses were performed in 120 PS patients. Following the application of stringent filter criteria, 14 rare copy number variations (CNVs) were identified in 14 PS patients in different regions outside known common copy number variations: seven genomic duplications and seven genomic deletions, enclosing the two previously reported PS associated chromosomal deletions. These CNVs ranged from 0.04 to 4.71 Mb in size. Bioinformatic analysis of array-CGH data indicated gene enrichment in pathways involved in cell-cell adhesion, DNA binding and apoptosis processes. The analysis also provided a number of candidate genes possibly causing the developmental defects observed in PS patients, among others REV3L, a gene coding for an error-prone DNA polymerase previously associated with Möbius Syndrome with variable phenotypes including pectoralis muscle agenesis. A number of rare CNVs were identified in PS patients, and these involve genes that represent candidates for further evaluation. Rare inherited CNVs may contribute to, or represent risk factors of PS

  19. Variation in chromosome numbers and nuclear DNA contents in genetic resources of Lactuca L. species (Asteraceae)

    Czech Academy of Sciences Publication Activity Database

    Doležalová, I.; Lebeda, A.; Janeček, J.; Čihalíková, Jarmila; Křístková, E.; Vránová, O.

    2002-01-01

    Roč. 49, č. 4 (2002), s. 385-397 ISSN 0925-9864 R&D Projects: GA AV ČR IAA6038204; GA AV ČR IBS5038104 Institutional research plan: CEZ:AV0Z5038910 Keywords : Asteraceae * Chromosome number * Flow cytometry Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.579, year: 2002

  20. Stability in chromosome number and DNA content in synthetic tetraploids of Lolium multiflorum after two generations of selection

    Directory of Open Access Journals (Sweden)

    Roselaine Cristina Pereira

    Full Text Available ABSTRACT: Chromosome doubling of Italian ryegrass genotypes ( Lolium multiflorum Lam. adapted to the brazilian edaphoclimatic conditions is an important strategy used by breeders and aims to obtain more vigorous genotypes with better forage quality and disease resistance. The effectiveness of chromosome doubling can be measured by genetic stability and fertility rates of plants over generations. However, a common problem in the polyploidization process is the regeneration of mixoploid plants that have impaired fertility and genetic stability. The objective of this study was to verify if progenies of recently tetraploidized plants remain stable regarding DNA content and chromosome number, over two generations. Progenies of L. multiflorum plants artificially tetraploidized with colchicine treatment were evaluated. Chromosome counting and estimates of the DNA content were used to evaluate the genetic stability. The percentage of tetraploid plants (4X increased over generations (18%, 34% and 91% in cycle 0, 1 and 2, respectively. All progenies identified as tetraploid by flow citometry showed variation in chromosome number (mixoploidy, but produced viable seeds. Results showed that stabilization in chromosome number and DNA content in tetraploidized plant progenies requires time and that the success of this procedure depends on a continuous and accurate screening and selection.

  1. Phenotypic manifestations of copy number variation in chromosome 16p13.11

    NARCIS (Netherlands)

    Nagamani, Sandesh C. Sreenath; Erez, Ayelet; Bader, Patricia; Lalani, Seema R.; Scott, Daryl A.; Scaglia, Fernando; Plon, Sharon E.; Tsai, Chun-Hui; Reimschisel, Tyler; Roeder, Elizabeth; Malphrus, Amy D.; Eng, Patricia A.; Hixson, Patricia M.; Kang, Sung-Hae L.; Stankiewicz, Pawel; Patel, Ankita; Cheung, Sau Wai

    The widespread clinical utilization of array comparative genome hybridization, has led to the unraveling of many new copy number variations (CNVs). Although some of these CNVs are clearly pathogenic, the phenotypic consequences of others, such as those in 16p13.11 remain unclear. Whereas deletions

  2. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    2013-05-01

    Full Text Available In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae. The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome or both sex chromosomes (X and Y chromosomes. This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

  3. Karyotype characterization of Trigona fulviventris Guérin, 1835 (Hymenoptera, Meliponini by C banding and fluorochrome staining: report of a new chromosome number in the genus

    Directory of Open Access Journals (Sweden)

    Domingues Alayne Magalhães Trindade

    2005-01-01

    Full Text Available Although many species of the genus Trigona have been taxonomically described, cytogenetic studies of these species are still rare. The aim of the present study was to obtain cytogenetic data by conventional staining, C banding and fluorochrome staining for the karyotype characterization of the species Trigona fulviventris. Cytogenetic analysis revealed that this species possesses a diploid chromosome number of 2n = 32, different from most other species of this genus studied so far. This variation was probably due to the centric fusion in a higher numbered ancestral karyotype, this fusion producing the large metacentric chromosome pair and the lower chromosome number observed in Trigona fulviventris. Heterochromatin was detected in the pericentromeric region of the first chromosome pair and in one of the arms of the remaining pairs. Base-specific fluorochrome staining with 4'-6-diamidino-2-phenylindole (DAPI showed that the heterochromatin was rich in AT base pairs (DAPI+ except for pair 13, which was chromomycin A3 (CMA3 positive indicating an excess of GC base pairs. Our data also suggests that there was variation in heterochromatin base composition.

  4. The importance of copy number variation in congenital heart disease

    Science.gov (United States)

    Costain, Gregory; Silversides, Candice K; Bassett, Anne S

    2016-01-01

    Congenital heart disease (CHD) is the most common class of major malformations in humans. The historical association with large chromosomal abnormalities foreshadowed the role of submicroscopic rare copy number variations (CNVs) as important genetic causes of CHD. Recent studies have provided robust evidence for these structural variants as genome-wide contributors to all forms of CHD, including CHD that appears isolated without extra-cardiac features. Overall, a CNV-related molecular diagnosis can be made in up to one in eight patients with CHD. These include de novo and inherited variants at established (chromosome 22q11.2), emerging (chromosome 1q21.1), and novel loci across the genome. Variable expression of rare CNVs provides support for the notion of a genetic spectrum of CHD that crosses traditional anatomic classification boundaries. Clinical genetic testing using genome-wide technologies (e.g., chromosomal microarray analysis) is increasingly employed in prenatal, paediatric and adult settings. CNV discoveries in CHD have translated to changes to clinical management, prognostication and genetic counselling. The convergence of findings at individual gene and at pathway levels is shedding light on the mechanisms that govern human cardiac morphogenesis. These clinical and research advances are helping to inform whole-genome sequencing, the next logical step in delineating the genetic architecture of CHD. PMID:28706735

  5. Chromosome numbers and karyotype evolution in holoparasitic Orobanche (Orobanchaceae) and related genera

    Science.gov (United States)

    Schneeweiss, G.M.; Palomeque, T.; Colwell, A.E.; Weiss-Schneeweiss, H.

    2004-01-01

    Chromosome numbers and karyotypes of species of Orobanche, Cistanche, and Diphelypaea (Orobanchaceae) were investigated, and 108 chromosome counts of 53 taxa, 19 counted for the first time, are presented with a thorough compilation of previously published data. Additionally, karyotypes of representatives of these genera, including Orobanche sects. Orobanche and Trionychon, are reported. Cistanche (x = 20) has large meta- to submetacentric chromosomes, while those of Diphelypaea (x = 19) are medium-sized submeta-to acrocentrics. Within three analyzed sections of Orobanche, sects. Myzorrhiza (x = 24) and Trionychon (x = 12) possess medium-sized submeta- to acrocentrics, while sect. Orobanche (x = 19) has small, mostly meta- to submetacentric, chromosomes. Polyploidy is unevenly distributed in Orobanche and restricted to a few lineages, e.g., O. sect. Myzorrhiza or Orobanche gracilis and its relatives (sect. Orobanche). The distribution of basic chromosome numbers supports the groups found by molecular phylogenetic analyses: Cistanche has x = 20, the Orobanche-group (Orobanche sect. Orobanche, Diphelypaea) has x = 19, and the Phelipanche-group (Orobanche sects. Gymnocaulis, Myzorrhiza, Trionychon) has x = 12, 24. A model of chromosome number evolution in Orobanche and related genera is presented: from two ancestral base numbers, xh = 5 and xh = 6, independent polyploidizations led to x = 20 (Cistanche) and (after dysploidization) x = 19 (Orobanche-group) and to x = 12 and x = 24 (Phelipanche-group), respectively.

  6. Copy number variation of human AMY1 is a minor contributor to variation in salivary amylase expression and activity.

    Science.gov (United States)

    Carpenter, Danielle; Mitchell, Laura M; Armour, John A L

    2017-02-20

    Salivary amylase in humans is encoded by the copy variable gene AMY1 in the amylase gene cluster on chromosome 1. Although the role of salivary amylase is well established, the consequences of the copy number variation (CNV) at AMY1 on salivary amylase protein production are less well understood. The amylase gene cluster is highly structured with a fundamental difference between odd and even AMY1 copy number haplotypes. In this study, we aimed to explore, in samples from 119 unrelated individuals, not only the effects of AMY1 CNV on salivary amylase protein expression and amylase enzyme activity but also whether there is any evidence for underlying difference between the common haplotypes containing odd numbers of AMY1 and even copy number haplotypes. AMY1 copy number was significantly correlated with the variation observed in salivary amylase production (11.7% of variance, P structure may affect expression, but this was not significant in our data.

  7. The influence of chromosome density variations on the increase in nuclear disorder strength in carcinogenesis

    International Nuclear Information System (INIS)

    Kim, Jun Soo; Pradhan, Prabhakar; Backman, Vadim; Szleifer, Igal

    2011-01-01

    Microscopic structural changes have long been observed in cancer cells and used as a marker in cancer diagnosis. Recent development of an optical technique, partial-wave spectroscopy (PWS), enabled more sensitive detection of nanoscale structural changes in early carcinogenesis in terms of the disorder strength related to density variations. These nanoscale alterations precede the well-known microscopic morphological changes. We investigate the influence of nuclear density variations due to chromosome condensation on changes of disorder strength by computer simulations of model chromosomes. Nuclear configurations with different degrees of chromosome condensation are realized from simulations of decondensing chromosomes and the disorder strength is calculated for these nuclear configurations. We found that the disorder strength increases significantly for configurations with slightly more condensed chromosomes. Coupled with PWS measurements, the simulation results suggest that the chromosome condensation and the resulting spatial density inhomogeneity may represent one of the earliest events in carcinogenesis

  8. A case-control study identifying chromosomal polymorphic variations as forms of epigenetic alterations associated with the infertility phenotype

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Athalye, Arundhati S; Madon, Prochi F

    2009-01-01

    To study the association of chromosomal polymorphic variations with infertility and subfertility.......To study the association of chromosomal polymorphic variations with infertility and subfertility....

  9. Gene copy number variation throughout the Plasmodium falciparum genome

    Directory of Open Access Journals (Sweden)

    Stewart Lindsay B

    2009-08-01

    Full Text Available Abstract Background Gene copy number variation (CNV is responsible for several important phenotypes of the malaria parasite Plasmodium falciparum, including drug resistance, loss of infected erythrocyte cytoadherence and alteration of receptor usage for erythrocyte invasion. Despite the known effects of CNV, little is known about its extent throughout the genome. Results We performed a whole-genome survey of CNV genes in P. falciparum using comparative genome hybridisation of a diverse set of 16 laboratory culture-adapted isolates to a custom designed high density Affymetrix GeneChip array. Overall, 186 genes showed hybridisation signals consistent with deletion or amplification in one or more isolate. There is a strong association of CNV with gene length, genomic location, and low orthology to genes in other Plasmodium species. Sub-telomeric regions of all chromosomes are strongly associated with CNV genes independent from members of previously described multigene families. However, ~40% of CNV genes were located in more central regions of the chromosomes. Among the previously undescribed CNV genes, several that are of potential phenotypic relevance are identified. Conclusion CNV represents a major form of genetic variation within the P. falciparum genome; the distribution of gene features indicates the involvement of highly non-random mutational and selective processes. Additional studies should be directed at examining CNV in natural parasite populations to extend conclusions to clinical settings.

  10. Chromosome copy number variation in telomerized human bone marrow stromal cells; insights for monitoring safe ex-vivo expansion of adult stem cells.

    Science.gov (United States)

    Burns, Jorge S; Harkness, Linda; Aldahmash, Abdullah; Gautier, Laurent; Kassem, Moustapha

    2017-12-01

    Adult human bone marrow stromal cells (hBMSC) cultured for cell therapy require evaluation of potency and stability for safe use. Chromosomal aberrations upsetting genomic integrity in such cells have been contrastingly described as "Limited" or "Significant". Previously reported stepwise acquisition of a spontaneous neoplastic phenotype during three-year continuous culture of telomerized cells (hBMSC-TERT20) didn't alter a diploid karyotype measured by spectral karyotype analysis (SKY). Such screening may not adequately monitor abnormal and potentially tumorigenic hBMSC in clinical scenarios. We here used array comparative genomic hybridization (aCGH) to more stringently compare non-tumorigenic parental hBMSC-TERT strains with their tumorigenic subcloned populations. Confirmation of a known chromosome 9p21 microdeletion at locus CDKN2A/B, showed it also impinged upon the adjacent MTAP gene. Compared to reference diploid human fibroblast genomic DNA, the non-tumorigenic hBMSC-TERT4 cells had a copy number variation (CNV) in at least 14 independent loci. The pre-tumorigenic hBMSC-TERT20 cell strain had further CNV including 1q44 gain enhancing SMYD3 expression and 11q13.1 loss downregulating MUS81 expression. Bioinformatic analysis of gene products reflecting 11p15.5 CNV gain in tumorigenic hBMSC-TERT20 cells highlighted networks implicated in tumorigenic progression involving cell cycle control and mis-match repair. We provide novel biomarkers for prospective risk assessment of expanded stem cell cultures. Copyright © 2017. Published by Elsevier B.V.

  11. Variation of autosomes and X chromosome STR in breast cancer and gynecological cancer tissues

    Directory of Open Access Journals (Sweden)

    Hou Youxiang

    2017-04-01

    Full Text Available This study analyses 1000 cases of patients with breast cancer and 2000 cases of patients with gynecological cancer (1000 cases of malignant tumor, 1000 cases of benign tumors, where breast cancer and malignant tumor patients comprise the observation group, while patients with benign tumors comprise the control group. Through DNA extraction, STR genotyping and variation verification, microdissection, individual STR mutation rate and loci STR mutation rate of the two groups of patients were calculated. Results show that there are no significant (P > 0.05 differences in the STR variation of autosomes and X chromosome between patients in the observation group and those in the reference group. However, significant (P < 0.05 intergroup differences were found for STR variation typing between patients with malignant and benign tumors. Using STR genotyping for autosomes and X chromosomes, gynecological cancer patients were found to be more likely to mutate, with a clear relationship between STR variation and tumor differentiation degrees. The study on the variation analysis of autosomes and X chromosome STR in breast and gynecological cancer tissues is expected to have a high application value when applied to medical research and identification processes.

  12. Insights into the genome structure and copy-number variation of Eimeria tenella

    Directory of Open Access Journals (Sweden)

    Lim Lik-Sin

    2012-08-01

    Full Text Available Abstract Background Eimeria is a genus of parasites in the same phylum (Apicomplexa as human parasites such as Toxoplasma, Cryptosporidium and the malaria parasite Plasmodium. As an apicomplexan whose life-cycle involves a single host, Eimeria is a convenient model for understanding this group of organisms. Although the genomes of the Apicomplexa are diverse, that of Eimeria is unique in being composed of large alternating blocks of sequence with very different characteristics - an arrangement seen in no other organism. This arrangement has impeded efforts to fully sequence the genome of Eimeria, which remains the last of the major apicomplexans to be fully analyzed. In order to increase the value of the genome sequence data and aid in the effort to gain a better understanding of the Eimeria tenella genome, we constructed a whole genome map for the parasite. Results A total of 1245 contigs representing 70.0% of the whole genome assembly sequences (Wellcome Trust Sanger Institute were selected and subjected to marker selection. Subsequently, 2482 HAPPY markers were developed and typed. Of these, 795 were considered as usable markers, and utilized in the construction of a HAPPY map. Markers developed from chromosomally-assigned genes were then integrated into the HAPPY map and this aided the assignment of a number of linkage groups to their respective chromosomes. BAC-end sequences and contigs from whole genome sequencing were also integrated to improve and validate the HAPPY map. This resulted in an integrated HAPPY map consisting of 60 linkage groups that covers approximately half of the estimated 60 Mb genome. Further analysis suggests that the segmental organization first seen in Chromosome 1 is present throughout the genome, with repeat-poor (P regions alternating with repeat-rich (R regions. Evidence of copy-number variation between strains was also uncovered. Conclusions This paper describes the application of a whole genome mapping

  13. Basic chromosome numbers and polyploid levels in some South African and Australian grasses (Poaceae

    Directory of Open Access Journals (Sweden)

    J. J. Spies

    1991-10-01

    Full Text Available Chromosome numbers of 46 specimens of grasses, involving 24 taxa from South Africa and Australia, have been determined during the present study. For the first time chromosome numbers are given for Eragrostis sarmentosa (Thunb. Trin. (n = 20. Panicum aequinerve Nees (n = 18,  Digitaria argyrograpta (Nees Stapf (n = 9 and D. maitlandii Stapf & C.E. Hubb. (n = 9. Additional polyploid levels are described for Diplachne fusca (L. Beauv. ex Roem. & Schult. (n = 10 and Digitaria diagonalis (Nees Stapf var.  diagonalis (n = 9. B-chromosomes were observed in several different specimens. The presence of B-chromosomes often results in abnormal chromosomal behaviour during meiosis.

  14. Inter-chromosomal variation in the pattern of human population genetic structure

    Directory of Open Access Journals (Sweden)

    Baye Tesfaye M

    2011-05-01

    Full Text Available Abstract Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals, across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7 million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five complementary statistical and genetic network procedures: principal component (PC, cluster, discriminant, fixation index (FST and network/pathway analyses. At the global level, the first two PC scores were sufficient to account for major population structure; however, chromosomal level analysis detected subtle forms of population structure within continental populations, and as many as 31 PCs were required to classify individuals into homogeneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes encoding oculocutaneous albinism II (OCA2, hect domain and RLD 2 (HERC2, ectodysplasin A receptor (EDAR and solute carrier family 45, member 2 (SLC45A2. These genes are associated with melanin production, which is involved in the development of skin and hair colour, skin cancer and eye pigmentation. We also identified the genes encoding interferon-γ (IFNG and death-associated protein kinase 1 (DAPK1, which are associated with cell death, inflammatory and immunological diseases. An in-depth understanding of these genomic regions may help to explain variations in adaptation to different environments. Our approach offers a comprehensive strategy for analysing chromosome-based population structure and differentiation, and demonstrates the

  15. Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution.

    Science.gov (United States)

    Razumova, Olga V; Alexandrov, Oleg S; Divashuk, Mikhail G; Sukhorada, Tatiana I; Karlov, Gennady I

    2016-05-01

    Hemp (Cannabis sativa L., 2n = 20) is a dioecious plant. Sex expression is controlled by an X-to-autosome balance system consisting of the heteromorphic sex chromosomes XY for males and XX for females. Genetically monoecious hemp offers several agronomic advantages compared to the dioecious cultivars that are widely used in hemp cultivation. The male or female origin of monoecious maternal plants is unknown. Additionally, the sex chromosome composition of monoecious hemp forms remains unknown. In this study, we examine the sex chromosome makeup in monoecious hemp using a cytogenetic approach. Eight monoecious and two dioecious cultivars were used. The DNA of 210 monoecious plants was used for PCR analysis with the male-associated markers MADC2 and SCAR323. All monoecious plants showed female amplification patterns. Fluorescence in situ hybridization (FISH) with the subtelomeric CS-1 probe to chromosomes plates and karyotyping revealed a lack of Y chromosome and presence of XX sex chromosomes in monoecious cultivars with the chromosome number 2n = 20. There was a high level of intra- and intercultivar karyotype variation detected. The results of this study can be used for further analysis of the genetic basis of sex expression in plants.

  16. Asymmetric Centriole Numbers at Spindle Poles Cause Chromosome Missegregation in Cancer

    Directory of Open Access Journals (Sweden)

    Marco R. Cosenza

    2017-08-01

    Full Text Available Chromosomal instability is a hallmark of cancer and correlates with the presence of extra centrosomes, which originate from centriole overduplication. Overduplicated centrioles lead to the formation of centriole rosettes, which mature into supernumerary centrosomes in the subsequent cell cycle. While extra centrosomes promote chromosome missegregation by clustering into pseudo-bipolar spindles, the contribution of centriole rosettes to chromosome missegregation is unknown. We used multi-modal imaging of cells with conditional centriole overduplication to show that mitotic rosettes in bipolar spindles frequently harbor unequal centriole numbers, leading to biased chromosome capture that favors binding to the prominent pole. This results in chromosome missegregation and aneuploidy. Rosette mitoses lead to viable offspring and significantly contribute to progeny production. We further show that centrosome abnormalities in primary human malignancies frequently consist of centriole rosettes. As asymmetric centriole rosettes generate mitotic errors that can be propagated, rosette mitoses are sufficient to cause chromosome missegregation in cancer.

  17. Variational coupling between q-number and c-number dynamics

    International Nuclear Information System (INIS)

    Amaral, C.M. do; Joffily, S.

    1984-01-01

    The time-dependent quantum variational principle is generalized for the case of hamiltonian operators having real parameters and their time derivates. The obtained variational system is formed by a Schroedinger equation coupled to a Lagrange equation system, where the lagrangian is the average value of the parametrized hamiltonian operator. The consequent dynamics of the variational principle, describes the interaction between a q-number sub-dynamics with a c-number sub-dynamics. In the ((h/2π)) 0 -order W.K.B. approximation, the variational system reduces to a Hamilton-Jacobi-like equation, coupled to a Lagrange equation family. The formal features of the obtained variational system are appropriated for the description of, adiabatics and non-adiabatics, time-dependent q-number c-number interactions. (L.C.) [pt

  18. Copy number variation and autism: New insights and clinical implications

    Directory of Open Access Journals (Sweden)

    Brian Hon-Yin Chung

    2014-07-01

    Full Text Available Genomic research can lead to discoveries of copy number variations (CNVs which can be a susceptibility factor for autism spectrum disorder (ASD. The clinical translation is that this can improve the care of children with ASD. Chromosome microarray is now the first-tiered genetic investigation for ASD, with a detection rate exceeding conventional cytogenetics and any single gene testing. However, interpretation of the results is challenging and there is no consensus on “what” and “how much” to disclose. In this article, we will review how CNV studies have improved our understanding of ASD, the clinical applications, and related counseling issues. Future direction of autism genetic research is also discussed.

  19. Phenotypic variation within European carriers of the Y-chromosomal gr/gr deletion is independent of Y-chromosomal background

    DEFF Research Database (Denmark)

    Krausz, C; Giachini, C; Xue, Y

    2008-01-01

    of duplications and the Y-chromosomal haplogroup were characterised. Although the study had good power to detect factors that accounted for >or=5.5% of the variation in sperm concentration, no such factor was found. A negative effect of gr/gr deletions followed by b2/b4 duplication was found within...

  20. Interspecific Y chromosome variation is sufficient to rescue hybrid male sterility and is influenced by the grandparental origin of the chromosomes.

    Science.gov (United States)

    Araripe, L O; Tao, Y; Lemos, B

    2016-06-01

    Y chromosomes display population variation within and between species. Co-evolution within populations is expected to produce adaptive interactions between Y chromosomes and the rest of the genome. One consequence is that Y chromosomes from disparate populations could disrupt harmonious interactions between co-evolved genetic elements and result in reduced male fertility, sterility or inviability. Here we address the contribution of 'heterospecific Y chromosomes' to fertility in hybrid males carrying a homozygous region of Drosophila mauritiana introgressed in the Drosophila simulans background. In order to detect Y chromosome-autosome interactions, which may go unnoticed in a single-species background of autosomes, we constructed hybrid genotypes involving three sister species: Drosophila simulans, D. mauritiana, and D. sechellia. These engineered strains varied due to: (i) species origin of the Y chromosome (D. simulans or D. sechellia); (ii) location of the introgressed D. mauritiana segment on the D. simulans third chromosome, and (iii) grandparental genomic background (three genotypes of D. simulans). We find complex interactions between the species origin of the Y chromosome, the identity of the D. mauritiana segment and the grandparental genetic background donating the chromosomes. Unexpectedly, the interaction of the Y chromosome and one segment of D. mauritiana drastically reduced fertility in the presence of Ysim, whereas the fertility is partially rescued by the Y chromosome of D. sechellia when it descends from a specific grandparental genotype. The restoration of fertility occurs in spite of an autosomal and X-linked genome that is mostly of D. simulans origin. These results illustrate the multifactorial basis of genetic interactions involving the Y chromosome. Our study supports the hypothesis that the Y chromosome can contribute significantly to the evolution of reproductive isolation and highlights the conditional manifestation of infertility in

  1. Chromosome numbers and other karyological data of four Stemona species (Stemonaceae) from Thailand

    NARCIS (Netherlands)

    Hartl, M.; Kiehn, M.

    2004-01-01

    Chromosome numbers and other karyological data of four Stemona spp. (Stemonaceae) from Thailand are reported. Three taxa (S. collinsae Craib, S. kerrii Craib and an unidentified species) exhibit 2n = 14 chromosomes, for S. curtisii Hook.f. a range of 2n = 13–16 was established. Based on the counts

  2. Identification of Local Melon (Cucumis melo L. var. Bartek Based on Chromosomal Characters

    Directory of Open Access Journals (Sweden)

    BUDI SETIADI DARYONO

    2011-12-01

    Full Text Available Bartek is one of local melon varieties mainly cultivated in Pemalang, Central Java. Bartek has three variations of fruits; Long-Green, Ellips-Green, and Yellow. Chromosome characterization of the Bartek was investigated to determine the genetic variation. The main purpose of this research was to determine the genetic characters of Bartek including chromosome number, mitosis, cell cycle, and karyotype. Squash method was used for chromosome preparation. The results showed that all of Bartek observed in this study have similar diploid (2n chromosome number = 24. According to the total number of chromosome, Bartek is closer to melon than cucumber. The mitotic analysis exhibited that the Bartek has similar karyotype formula, 2n = 2x = 24m. Based on the R value of the three kinds of Bartek (R < 0.27, it indicated that three kinds of Bartek were considered to be originated from similar species and one of melon varieties (Cucumis melo L. var. Bartek.

  3. cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate.

    Science.gov (United States)

    Klambauer, Günter; Schwarzbauer, Karin; Mayr, Andreas; Clevert, Djork-Arné; Mitterecker, Andreas; Bodenhofer, Ulrich; Hochreiter, Sepp

    2012-05-01

    Quantitative analyses of next-generation sequencing (NGS) data, such as the detection of copy number variations (CNVs), remain challenging. Current methods detect CNVs as changes in the depth of coverage along chromosomes. Technological or genomic variations in the depth of coverage thus lead to a high false discovery rate (FDR), even upon correction for GC content. In the context of association studies between CNVs and disease, a high FDR means many false CNVs, thereby decreasing the discovery power of the study after correction for multiple testing. We propose 'Copy Number estimation by a Mixture Of PoissonS' (cn.MOPS), a data processing pipeline for CNV detection in NGS data. In contrast to previous approaches, cn.MOPS incorporates modeling of depths of coverage across samples at each genomic position. Therefore, cn.MOPS is not affected by read count variations along chromosomes. Using a Bayesian approach, cn.MOPS decomposes variations in the depth of coverage across samples into integer copy numbers and noise by means of its mixture components and Poisson distributions, respectively. The noise estimate allows for reducing the FDR by filtering out detections having high noise that are likely to be false detections. We compared cn.MOPS with the five most popular methods for CNV detection in NGS data using four benchmark datasets: (i) simulated data, (ii) NGS data from a male HapMap individual with implanted CNVs from the X chromosome, (iii) data from HapMap individuals with known CNVs, (iv) high coverage data from the 1000 Genomes Project. cn.MOPS outperformed its five competitors in terms of precision (1-FDR) and recall for both gains and losses in all benchmark data sets. The software cn.MOPS is publicly available as an R package at http://www.bioinf.jku.at/software/cnmops/ and at Bioconductor.

  4. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance [version 1; referees: 5 approved

    Directory of Open Access Journals (Sweden)

    Marie-Claude N. Laffitte

    2016-09-01

    Full Text Available Leishmania has a plastic genome, and drug pressure can select for gene copy number variation (CNV. CNVs can apply either to whole chromosomes, leading to aneuploidy, or to specific genomic regions. For the latter, the amplification of chromosomal regions occurs at the level of homologous direct or inverted repeated sequences leading to extrachromosomal circular or linear amplified DNAs. This ability of Leishmania to respond to drug pressure by CNVs has led to the development of genomic screens such as Cos-Seq, which has the potential of expediting the discovery of drug targets for novel promising drug candidates.

  5. The Grandest Genetic Experiment Ever Performed on Man? - A Y-Chromosomal Perspective on Genetic Variation in India.

    Science.gov (United States)

    Carvalho-Silva, Denise R; Tyler-Smith, Chris

    2008-05-01

    We have analysed Y-chromosomal data from Indian caste, Indian tribal and East Asian populations in order to investigate the impact of the caste system on male genetic variation. We find that variation within populations is lower in India than in East Asia, while variation between populations is overall higher. This observation can be explained by greater subdivision within the Indian population, leading to more genetic drift. However, the effect is most marked in the tribal populations, and the level of variation between caste populations is similar to the level between Chinese populations. The caste system has therefore had a detectable impact on Y-chromosomal variation, but this has been less strong than the influence of the tribal system, perhaps because of larger population sizes in the castes, more gene flow or a shorter period of time.

  6. Philadelphia chromosome-positive adult acute leukemia with monosomy of chromosome number seven: a subgroup with poor response to therapy.

    Science.gov (United States)

    Maddox, A M; Keating, M J; Trujillo, J; Cork, A; Youness, E; Ahearn, M J; McCredie, K B; Freireich, E J

    1983-01-01

    Thirty-four adult patients were seen at the University of Texas M. D. Anderson Hospital and Tumor Institute at Houston, Texas between 1969 and 1980 with acute leukemia (AL) and a deleted G-group chromosome that was shown by Giemsa banding to be a Philadelphia (Ph1) chromosome t(9;22) in 21 patients. Fourteen had the Ph1 chromosome as the sole abnormality, 12 had the Ph1 chromosome and loss of one chromosome of the C-group (identified by Giemsa banding analysis as number 7 in eight patients), while eight had the Ph1 chromosome and other changes. These three groups were similar in sex, age distribution and hematologic parameters. The median age of 40 was lower than usually seen in AL. The distribution of the morphologic subtypes was similar to that seen at this institution, with 50% being acute myeloblastic, 12% acute myelomonocytic, 20% lymphoblastic and 18% acute undifferentiated. The complete remission rate with chemotherapy was low: 25% in the Ph1 +/- 7, 50% in the Ph1 +/other group and 43% in the Ph1 +/other group. Median survival time was 8 months for the Ph1 +/- 7 group, 5.5 months for the Ph1 +/other group and 9.0 months for the Ph1 +/alone group. These patients with Ph1 + AL had higher white blood cell counts, increased extramedullary disease and poorer responses to therapy than usual for patients with AL. The deletion of chromosome 7 and the acquisition of the Ph1 chromosome identifies a group of patients with characteristics similar to all the patients with Ph1 + AL but a poor response to therapy and short remission duration.

  7. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae).

    Science.gov (United States)

    McCann, Jamie; Schneeweiss, Gerald M; Stuessy, Tod F; Villaseñor, Jose L; Weiss-Schneeweiss, Hanna

    2016-01-01

    Chromosome number change (polyploidy and dysploidy) plays an important role in plant diversification and speciation. Investigating chromosome number evolution commonly entails ancestral state reconstruction performed within a phylogenetic framework, which is, however, prone to uncertainty, whose effects on evolutionary inferences are insufficiently understood. Using the chromosomally diverse plant genus Melampodium (Asteraceae) as model group, we assess the impact of reconstruction method (maximum parsimony, maximum likelihood, Bayesian methods), branch length model (phylograms versus chronograms) and phylogenetic uncertainty (topological and branch length uncertainty) on the inference of chromosome number evolution. We also address the suitability of the maximum clade credibility (MCC) tree as single representative topology for chromosome number reconstruction. Each of the listed factors causes considerable incongruence among chromosome number reconstructions. Discrepancies between inferences on the MCC tree from those made by integrating over a set of trees are moderate for ancestral chromosome numbers, but severe for the difference of chromosome gains and losses, a measure of the directionality of dysploidy. Therefore, reliance on single trees, such as the MCC tree, is strongly discouraged and model averaging, taking both phylogenetic and model uncertainty into account, is recommended. For studying chromosome number evolution, dedicated models implemented in the program ChromEvol and ordered maximum parsimony may be most appropriate. Chromosome number evolution in Melampodium follows a pattern of bidirectional dysploidy (starting from x = 11 to x = 9 and x = 14, respectively) with no prevailing direction.

  8. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae.

    Directory of Open Access Journals (Sweden)

    Jamie McCann

    Full Text Available Chromosome number change (polyploidy and dysploidy plays an important role in plant diversification and speciation. Investigating chromosome number evolution commonly entails ancestral state reconstruction performed within a phylogenetic framework, which is, however, prone to uncertainty, whose effects on evolutionary inferences are insufficiently understood. Using the chromosomally diverse plant genus Melampodium (Asteraceae as model group, we assess the impact of reconstruction method (maximum parsimony, maximum likelihood, Bayesian methods, branch length model (phylograms versus chronograms and phylogenetic uncertainty (topological and branch length uncertainty on the inference of chromosome number evolution. We also address the suitability of the maximum clade credibility (MCC tree as single representative topology for chromosome number reconstruction. Each of the listed factors causes considerable incongruence among chromosome number reconstructions. Discrepancies between inferences on the MCC tree from those made by integrating over a set of trees are moderate for ancestral chromosome numbers, but severe for the difference of chromosome gains and losses, a measure of the directionality of dysploidy. Therefore, reliance on single trees, such as the MCC tree, is strongly discouraged and model averaging, taking both phylogenetic and model uncertainty into account, is recommended. For studying chromosome number evolution, dedicated models implemented in the program ChromEvol and ordered maximum parsimony may be most appropriate. Chromosome number evolution in Melampodium follows a pattern of bidirectional dysploidy (starting from x = 11 to x = 9 and x = 14, respectively with no prevailing direction.

  9. Etude quantitative des variations structurelles des chromosomes chez Saccharomyces cerevisiae

    OpenAIRE

    Gillet-Markowska , Alexandre

    2015-01-01

    The accumulation of chromosomal rearrangements also called Structural Variations (SV) is a major contributor to the transformation of tumoral cells and to the constitution of intratumoral heterogeneity. We have developed a bio-informatic tool that can now provide a sharp image of SV that occur in the human genome. We have demonstrated the existence of SV present in low proportions in different supposedly clonal cell populations showing that the rates of SV formation could be greatly underesti...

  10. Cytogenetic analysis of the Amazon stingless bee Melipona seminigra merrillae reveals different chromosome number for the genus

    Directory of Open Access Journals (Sweden)

    Izaura Bezerra Francini

    2011-10-01

    Full Text Available Cytogenetic analysis of the Amazon stingless bee Melipona seminigra merrillae, by conventional Giemsa staining and C-banding, revealed a different chromosome number for Melipona: 2n = 22 for females and diploid drones while the haploid drones present n = 11. There is no evidence of B chromosomes. This result contrasts with previous studies, in which the chromosome number of 19 Melipona species was determined as 2n = 18 for females and n = 9 for haploid males. Based on cytogenetic information available for other Melipona species, we propose that M. s. merrillae has a more derived diploid number. This indicates that chromosome number is not a conservative characteristic within the genus as previously thought. Cytogenetic data for stingless bees are scarce, especially in Amazon region. Additional studies will be very important in order to promote Melipona karyoevolution discussion and consequently a taxonomy review.

  11. Demarcation of informative chromosomes in tropical sweet corn inbred lines using microsatellite DNA markers

    Directory of Open Access Journals (Sweden)

    Pedram Kashiani

    2012-01-01

    Full Text Available A study of genetic variation among 10 pairs of chromosomes extracted from 13 tropical sweet corn inbred lines, using 99 microsatellite markers, revealed a wide range of genetic diversity. Allelic richness and the number of effective alleles per chromosome ranged from 2.78 to 4.33 and 1.96 to 3.47, respectively, with respective mean values of 3.62 and 2.73. According to the Shannon's information index (I and Nei's gene diversity coefficient (Nei, Chromosome 10 was the most informative chromosome (I = 1.311 and Nei = 0.703, while Chromosome 2 possessed the least (I = 0.762 and Nei = 0.456. Based on linkage disequilibrium (LD measurements for loci less than 50 cM apart on the same chromosome, all loci on Chromosomes 1, 6 and 7 were in equilibrium. Even so, there was a high proportion of genetic variation in Chromosomes 4, 5, 8, 9 and 10, thereby revealing their appropriateness for use in the genetic diversity investigations among tropical sweet corn lines. Chromosome 4, with the highest number of loci in linkage disequilibrium, was considered the best for marker-phenotype association and QTL mapping, followed by Chromosomes 5, 8, 9 and 10.

  12. VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism

    Directory of Open Access Journals (Sweden)

    HyoYoung Kim

    2014-12-01

    Full Text Available Copy number variation (CNV or single nucleotide phlyorphism (SNP is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i the enrichment of genome contents in CNV; ii the physical distribution of CNV or SNP on chromosomes; iii the distribution of log2 ratio of CNVs with criteria of interested; iv the number of CNV or SNP per binning unit; v the distribution of homozygosity of SNP genotype; and vi cytomap of genes within CNV or SNP region.

  13. Detection of copy number variations and their effects in Chinese bulls

    KAUST Repository

    Zhang, Liangzhi

    2014-06-17

    Background: Copy number variations (CNVs) are a main source of genomic structural variations underlying animal evolution and production traits. Here, with one pure-blooded Angus bull as reference, we describe a genome-wide analysis of CNVs based on comparative genomic hybridization arrays in 29 Chinese domesticated bulls and examined their effects on gene expression and cattle growth traits.Results: We identified 486 copy number variable regions (CNVRs), covering 2.45% of the bovine genome, in 24 taurine (Bos taurus), together with 161 ones in 2 yaks (Bos grunniens) and 163 ones in 3 buffaloes (Bubalus bubalis). Totally, we discovered 605 integrated CNVRs, with more " loss" events than both " gain" and " both" ones, and clearly clustered them into three cattle groups. Interestingly, we confirmed their uneven distributions across chromosomes, and the differences of mitochondrion DNA copy number (gain: taurine, loss: yak & buffalo). Furthermore, we confirmed approximately 41.8% (253/605) and 70.6% (427/605) CNVRs span cattle genes and quantitative trait loci (QTLs), respectively. Finally, we confirmed 6 CNVRs in 9 chosen ones by using quantitative PCR, and further demonstrated that CNVR22 had significantly negative effects on expression of PLA2G2D gene, and both CNVR22 and CNVR310 were associated with body measurements in Chinese cattle, suggesting their key effects on gene expression and cattle traits.Conclusions: The results advanced our understanding of CNV as an important genomic structural variation in taurine, yak and buffalo. This study provides a highly valuable resource for Chinese cattle\\'s evolution and breeding researches. 2014 Zhang et al.; licensee BioMed Central Ltd.

  14. Extensive fragmentation of the X chromosome in the bed bug Cimex lectularius Linnaeus, 1758 (Heteroptera, Cimicidae: a survey across Europe

    Directory of Open Access Journals (Sweden)

    David Sadílek

    2013-10-01

    Full Text Available Variation in the number of chromosomes was revealed in 61 samples of Cimex lectularius Linnaeus, 1758 from the Czech Republic and other European countries, hosted on Myotis Kaup, 1829 (4 and Homo sapiens Linnaeus, 1758 (57. The karyotype of all the specimens of C. lectularius analysed contained 26 autosomes and a varying number of the sex chromosomes. The number of sex chromosomes showed extensive variation, and up to 20 fragments were recorded. Altogether, 12 distinct karyotypes were distinguished. The male karyotypes consisted of 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 42 and 47 chromosomes. The females usually exhibited the number of chromosomes which was complementary to the number established in the males from the same sample. However, 11 polymorphic samples were revealed in which the karyotypes of females and males were not complementary each other. The complement with 2n = 26+X1X2Y was found in 44% of the specimens and 57,4% samples of bed bugs studied. The karyotypes with higher chromosome numbers as well as individuals with chromosomal mosaics were usually found within the samples exhibiting particularly extensive variation between individuals, and such complements were not found within samples contaning a few or single specimen. The occurrence of chromosomal mosaics with the karyotype constitution varying between cells of single individual was observed in five specimens (4.3% from five samples. We assume that polymorphism caused by fragmentation of the X chromosome may result in meiotic problems and non-disjunction can produce unbalanced gametes and result in lowered fitness of individuals carrying higher numbers of the X chromosome fragments. This effect should be apparently enhanced with the increasing number of the fragments and this may be the reason for the observed distribution pattern of individual karyotypes in the studied samples and the rarity of individuals with extremely high chromosome numbers. The assumed lowering of the

  15. Structural variations of chromosome 1 R from rye cultivar Jingzhouheimai induced by irradiation

    International Nuclear Information System (INIS)

    Wang Conglei; Zhuang Lifang; Qi Zengjun

    2012-01-01

    Irradiated with 60 Co γ-rays (12 Gy), the pollen of wheat landrace Huixianhong-Secale cereal cv. Jingzhouheimai DA1R was pollinated to the emasculated spikes of Huixianhong. Analyzed with genomic in situ hybridization GISH using gDNA of rye cv. Jingzhouheimai as a probe, four plants with reciprocal translocation, four plants with large segmental translocation and one plant with distal segmental translocation, one plant with one telocentric chromosome were identified from 33 M 1 seeds. The results showed that the translocation frequency was 30.30% and of the total 11 breakage-fusion events, 1 involved centric regions and 10 involved interstitial regions. The experiment showed that pollen irradiation was an effective method to induce wheat alien chromosomal structural variations which could effectively by used in deletion mapping, chromosomal location of important agronomic genes and development of small segmental translocations with target genes. (authors)

  16. Chromosome numbers and meiotic behavior of some Paspalum accessions

    Directory of Open Access Journals (Sweden)

    Eleniza de Victor Adamowski

    2005-12-01

    Full Text Available Chromosome number and meiotic behavior were evaluated in 36 Brazilian accessions of the grass Paspalum (which had never previously been analyzed to determinate which accessions might be useful in interspecific hybridizations. The analysis showed that one accession of Paspalum coryphaeum was diploid (2n = 2x = 20 and one accession of Paspalum conspersum hexaploid (2n = 6x = 60, the remaining 34 accessions being tetraploid (2n = 4x = 40. The pairing configuration was typical for the ploidy level i.e. in the diploid, chromosomes paired as 10 bivalents, in tetraploids as bi-, tri- and quadrivalents, and in hexaploid as 30 bivalents. A low frequency of meiotic abnormalities (less than 10% was observed in the diploid, hexaploid and some tetraploid accessions, although the majority of tetraploid accessions showed a high frequency of meiotic irregularities. The use of accessions with a low frequency of meiotic abnormalities in breeding programs is discussed.

  17. Y-chromosomal variation of local goat breeds of Turkey close to the domestication centre

    NARCIS (Netherlands)

    Cinar Kul, B; Bilgen, N; Lenstra, J A|info:eu-repo/dai/nl/067852335; Korkmaz Agaoglu, O; Akyuz, B; Ertugrul, O

    2015-01-01

    Genetic variations in chromosome Y are enabling researchers to identify paternal lineages, which are informative for introgressions and migrations. In this study, the male-specific region markers, sex-determining region-Y (SRY), amelogenin (AMELY) and zinc finger (ZFY) were analysed in seven Turkish

  18. Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy

    DEFF Research Database (Denmark)

    Ottesen, Anne-Marie; Aksglaede, Lise; Garn, Inger

    2010-01-01

    Tall stature and eunuchoid body proportions characterize patients with 47,XXY Klinefelter syndrome, whereas patients with 45,X Turner syndrome are characterized by impaired growth. Growth is relatively well characterized in these two syndromes, while few studies describe the growth of patients wi......,XXXX (n = 13), and -1.0 (-3.5 to -0.8) in 49,XXXXX (n = 3). Height increased with an increasing number of extra X or Y chromosomes, except in males with five, and in females with four or five sex chromosomes, consistent with a nonlinear effect on height....

  19. Copy number variations in Saudi family with intellectual disability and epilepsy.

    Science.gov (United States)

    Naseer, Muhammad I; Chaudhary, Adeel G; Rasool, Mahmood; Kalamegam, Gauthaman; Ashgan, Fai T; Assidi, Mourad; Ahmed, Farid; Ansari, Shakeel A; Zaidi, Syed Kashif; Jan, Mohammed M; Al-Qahtani, Mohammad H

    2016-10-17

    Epilepsy is genetically complex but common brain disorder of the world affecting millions of people with almost of all age groups. Novel Copy number variations (CNVs) are considered as important reason for the numerous neurodevelopmental disorders along with intellectual disability and epilepsy. DNA array based studies contribute to explain a more severe clinical presentation of the disease but interoperation of many detected CNVs are still challenging. In order to study novel CNVs with epilepsy related genes in Saudi family with six affected and two normal individuals with several forms of epileptic seizures, intellectual disability (ID), and minor dysmorphism, we performed the high density whole genome Agilent sure print G3 Hmn CGH 2x 400 K array-CGH chips analysis. Our results showed de novo deletions, duplications and deletion plus duplication on differential chromosomal regions in the affected individuals that were not shown in the normal fathe and normal kids by using Agilent CytoGenomics 3.0.6.6 softwear. Copy number gain were observed in the chromosome 1, 16 and 22 with LCE3C, HPR, GSTT2, GSTTP2, DDT and DDTL genes respectively whereas the deletions observed in the chromosomal regions 8p23-p21 (4303127-4337759) and the potential gene in this region is CSMD1 (OMIM: 612279). Moreover, the array CGH results deletions and duplication were also validated by using primer design of deleted regions utilizing the flanked SNPs using simple PCR and also by using quantitative real time PCR. We found some of the de novo deletions and duplication in our study in Saudi family with intellectual disability and epilepsy. Our results suggest that array-CGH should be used as a first line of genetic test for epilepsy except there is a strong indication for a monogenic syndrome. The advanced high through put array-CGH technique used in this study aim to collect the data base and to identify new mechanisms describing epileptic disorder, may help to improve the clinical

  20. Variation, Evolution, and Correlation Analysis of C+G Content and Genome or Chromosome Size in Different Kingdoms and Phyla

    Science.gov (United States)

    Li, Xiu-Qing; Du, Donglei

    2014-01-01

    C+G content (GC content or G+C content) is known to be correlated with genome/chromosome size in bacteria but the relationship for other kingdoms remains unclear. This study analyzed genome size, chromosome size, and base composition in most of the available sequenced genomes in various kingdoms. Genome size tends to increase during evolution in plants and animals, and the same is likely true for bacteria. The genomic C+G contents were found to vary greatly in microorganisms but were quite similar within each animal or plant subkingdom. In animals and plants, the C+G contents are ranked as follows: monocot plants>mammals>non-mammalian animals>dicot plants. The variation in C+G content between chromosomes within species is greater in animals than in plants. The correlation between average chromosome C+G content and chromosome length was found to be positive in Proteobacteria, Actinobacteria (but not in other analyzed bacterial phyla), Ascomycota fungi, and likely also in some plants; negative in some animals, insignificant in two protist phyla, and likely very weak in Archaea. Clearly, correlations between C+G content and chromosome size can be positive, negative, or not significant depending on the kingdoms/groups or species. Different phyla or species exhibit different patterns of correlation between chromosome-size and C+G content. Most chromosomes within a species have a similar pattern of variation in C+G content but outliers are common. The data presented in this study suggest that the C+G content is under genetic control by both trans- and cis- factors and that the correlation between C+G content and chromosome length can be positive, negative, or not significant in different phyla. PMID:24551092

  1. Chromosomal geometry in the interface from the frequency of the radiation induced chromosome aberrations

    International Nuclear Information System (INIS)

    Nasazzi, N.; Otero, D.; Di Giorgio, M.

    1996-01-01

    Ionizing radiation induces DNA double-strand breaks (DSBs) and their interaction and illegitimate recombination produces chromosomal aberrations. Stable chromosomal aberrations comprise inter-chromosomal events (translocations) and intra-chromosomal events (inversions). When DSBs induction and interaction is done at random, and the proximity effects are neglected, the expected relation between translocations and inversions is F=86, based on chromosome arm length. The number of translocations and inversions is analyzed by using G-banding in 16 lymphocytes cultures from blood samples acutely irradiated with γ-rays (dose range: 0,5 Gy - 3 Gy). The result obtained was: F=13,5, significantly smaller than F=86. Literature data show similar small F values, but strongly spread. The excess of inversions could be explained by a 'proximity effect', it means that more proximate DSBs have more interaction probability. Therefore, it is possible to postulate a special chromosome arrangement during irradiation and the subsequent interval. We propose a model where individual chromosomes show spherical confinement with some degree of overlapping and DSBs induction proportional to cross section. A DSBs interaction probability function with cut-off length= 1μ is assumed. According to our results, the confinement volume is ≅ 6.4% of the nuclear volume. Nevertheless, we presume that large spread in F data could be due to temporal variation in overlapping and spatial chromosomal confinement. (authors). 14 refs

  2. Mitochondrial, Y-chromosomal and autosomal variation in Mbenzele Pygmies from the Central African Republic.

    Science.gov (United States)

    Anagnostou, Paolo; Coia, Valentina; Spedini, Gabriella; Destro-Bisol, Giovanni

    2010-06-01

    In this paper, we carry out a combined analysis of autosomal (ten microsatellites and an Alu insertion), mitochondrial (HVR-1 sequence, 360 nucleotides) and Y-chromosomal (seven microsatellites) variation in the Mbenzele Pygmies from the Central African Republic. This study focuses on two important questions concerning the admixture and origin of African Pygmies. Ethnographic observations suggest a sex-biased gene flow between the Bantus and Pygmies, an issue which could be clarified through genetic analyses may shed light. A study of intrapopulational variation of mtDNA and Y-chromosome produces results in accordance with the hypothesized matrimonial behaviour. In fact, while shared mitochondrial haplotypes belonging to the L1c5 (or L1c1a1 clade) sub-haplogroup provides evidence of a Pygmy-to-Bantu female biased gene flow, a male biased gene flow from Bantu to Pygmies is supported by the distribution of the Y-chromosomes bearing M2 mutation. The second part of our study regards the question of the genetic relationships between Western and Eastern Pygmies. Our results favour the pre-Bantu hypothesis which suggests that the two Pygmy groups separated in ancient times (at least 18,000 years ago), whereas they do not support the recent divergence and differential admixture hypothesis which posits their separation as a consequence of the Bantu expansion (2,000-3,000 years ago).

  3. Identification of copy number variations and translocations in cancer cells from Hi-C data.

    Science.gov (United States)

    Chakraborty, Abhijit; Ay, Ferhat

    2017-10-18

    Eukaryotic chromosomes adapt a complex and highly dynamic three-dimensional (3D) structure, which profoundly affects different cellular functions and outcomes including changes in epigenetic landscape and in gene expression. Making the scenario even more complex, cancer cells harbor chromosomal abnormalities (e.g., copy number variations (CNVs) and translocations) altering their genomes both at the sequence level and at the level of 3D organization. High-throughput chromosome conformation capture techniques (e.g., Hi-C), which are originally developed for decoding the 3D structure of the chromatin, provide a great opportunity to simultaneously identify the locations of genomic rearrangements and to investigate the 3D genome organization in cancer cells. Even though Hi-C data has been used for validating known rearrangements, computational methods that can distinguish rearrangement signals from the inherent biases of Hi-C data and from the actual 3D conformation of chromatin, and can precisely detect rearrangement locations de novo have been missing. In this work, we characterize how intra and inter-chromosomal Hi-C contacts are distributed for normal and rearranged chromosomes to devise a new set of algorithms (i) to identify genomic segments that correspond to CNV regions such as amplifications and deletions (HiCnv), (Nurtdinov et al.) to call inter-chromosomal translocations and their boundaries (HiCtrans) from Hi-C experiments, and (iii) to simulate Hi-C data from genomes with desired rearrangements and abnormalities (AveSim) in order to select optimal parameters for and to benchmark the accuracy of our methods. Our results on 10 different cancer cell lines with Hi-C data show that we identify a total number of 105 amplifications and 45 deletions together with 90 translocations, whereas we identify virtually no such events for two karyotypically normal cell lines. Our CNV predictions correlate very well with whole genome sequencing (WGS) data among chromosomes

  4. Role of Chromosome Changes in Evolution and Diversity

    Directory of Open Access Journals (Sweden)

    Kornsorn Srikulnath

    2015-12-01

    Full Text Available The karyotypes of most species of crocodilians were studied using conventional and molecular cytogenetics. These provided an important contribution of chromosomal rearrangements for the evolutionary processes of Crocodylia and Sauropsida (birds and reptiles. The karyotypic features of crocodilians contain small diploid chromosome numbers (30~42, with little interspecific variation of the chromosome arm number (fundamental number among crocodiles (56~60. This suggested that centric fusion and/or fission events occurred in the lineage, leading to crocodilian evolution and diversity. The chromosome numbers of Alligator, Caiman, Melanosuchus, Paleosuchus, Gavialis, Tomistoma, Mecistops, and Osteolaemus were stable within each genus, whereas those of Crocodylus (crocodylians varied within the taxa. This agreed with molecular phylogeny that suggested a highly recent radiation of Crocodylus species. Karyotype analysis also suggests the direction of molecular phylogenetic placement among Crocodylus species and their migration from the Indo-Pacific to Africa and The New World. Crocodylus species originated from an ancestor in the Indo-Pacific around 9~16 million years ago (MYA in the mid-Miocene, with a rapid radiation and dispersion into Africa 8~12 MYA. This was followed by a trans-Atlantic dispersion to the New World between 4~8 MYA in the Pliocene. The chromosomes provided a better understanding of crocodilian evolution and diversity, which will be useful for further study of the genome evolution in Crocodylia.

  5. Y-chromosome and mtDNA variation confirms independent domestications and directional hybridization in South American camelids.

    Science.gov (United States)

    Marín, J C; Romero, K; Rivera, R; Johnson, W E; González, B A

    2017-10-01

    Investigations of genetic diversity and domestication in South American camelids (SAC) have relied on autosomal microsatellite and maternally-inherited mitochondrial data. We present the first integrated analysis of domestic and wild SAC combining male and female sex-specific markers (male specific Y-chromosome and female-specific mtDNA sequence variation) to assess: (i) hypotheses about the origin of domestic camelids, (ii) directionality of introgression among domestic and/or wild taxa as evidence of hybridization and (iii) currently recognized subspecies patterns. Three male-specific Y-chromosome markers and control region sequences of mitochondrial DNA are studied here. Although no sequence variation was found in SRY and ZFY, there were seven variable sites in DBY generating five haplotypes on the Y-chromosome. The haplotype network showed clear separation between haplogroups of guanaco-llama and vicuña-alpaca, indicating two genetically distinct patrilineages with near absence of shared haplotypes between guanacos and vicuñas. Although we document some examples of directional hybridization, the patterns strongly support the hypothesis that llama (Lama glama) is derived from guanaco (Lama guanicoe) and the alpaca (Vicugna pacos) from vicuña (Vicugna vicugna). Within male guanacos we identified a haplogroup formed by three haplotypes with different geographical distributions, the northernmost of which (Peru and northern Chile) was also observed in llamas, supporting the commonly held hypothesis that llamas were domesticated from the northernmost populations of guanacos (L. g. cacilensis). Southern guanacos shared the other two haplotypes. A second haplogroup, consisting of two haplotypes, was mostly present in vicuñas and alpacas. However, Y-chromosome variation did not distinguish the two subspecies of vicuñas. © 2017 Stichting International Foundation for Animal Genetics.

  6. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease

    Science.gov (United States)

    Aldhous, Marian C.; Abu Bakar, Suhaili; Prescott, Natalie J.; Palla, Raquel; Soo, Kimberley; Mansfield, John C.; Mathew, Christopher G.; Satsangi, Jack; Armour, John A.L.

    2010-01-01

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case–control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case–control studies. PMID:20858604

  7. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease.

    Science.gov (United States)

    Aldhous, Marian C; Abu Bakar, Suhaili; Prescott, Natalie J; Palla, Raquel; Soo, Kimberley; Mansfield, John C; Mathew, Christopher G; Satsangi, Jack; Armour, John A L

    2010-12-15

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case-control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case-control studies.

  8. New insights into sex chromosome evolution in anole lizards (Reptilia, Dactyloidae).

    Science.gov (United States)

    Giovannotti, M; Trifonov, V A; Paoletti, A; Kichigin, I G; O'Brien, P C M; Kasai, F; Giovagnoli, G; Ng, B L; Ruggeri, P; Cerioni, P Nisi; Splendiani, A; Pereira, J C; Olmo, E; Rens, W; Caputo Barucchi, V; Ferguson-Smith, M A

    2017-03-01

    Anoles are a clade of iguanian lizards that underwent an extensive radiation between 125 and 65 million years ago. Their karyotypes show wide variation in diploid number spanning from 26 (Anolis evermanni) to 44 (A. insolitus). This chromosomal variation involves their sex chromosomes, ranging from simple systems (XX/XY), with heterochromosomes represented by either micro- or macrochromosomes, to multiple systems (X 1 X 1 X 2 X 2 /X 1 X 2 Y). Here, for the first time, the homology relationships of sex chromosomes have been investigated in nine anole lizards at the whole chromosome level. Cross-species chromosome painting using sex chromosome paints from A. carolinensis, Ctenonotus pogus and Norops sagrei and gene mapping of X-linked genes demonstrated that the anole ancestral sex chromosome system constituted by microchromosomes is retained in all the species with the ancestral karyotype (2n = 36, 12 macro- and 24 microchromosomes). On the contrary, species with a derived karyotype, namely those belonging to genera Ctenonotus and Norops, show a series of rearrangements (fusions/fissions) involving autosomes/microchromosomes that led to the formation of their current sex chromosome systems. These results demonstrate that different autosomes were involved in translocations with sex chromosomes in closely related lineages of anole lizards and that several sequential microautosome/sex chromosome fusions lead to a remarkable increase in size of Norops sagrei sex chromosomes.

  9. Copy number variations in Saudi family with intellectual disability and epilepsy

    Directory of Open Access Journals (Sweden)

    Muhammad I. Naseer

    2016-10-01

    Full Text Available Abstract Background Epilepsy is genetically complex but common brain disorder of the world affecting millions of people with almost of all age groups. Novel Copy number variations (CNVs are considered as important reason for the numerous neurodevelopmental disorders along with intellectual disability and epilepsy. DNA array based studies contribute to explain a more severe clinical presentation of the disease but interoperation of many detected CNVs are still challenging. Results In order to study novel CNVs with epilepsy related genes in Saudi family with six affected and two normal individuals with several forms of epileptic seizures, intellectual disability (ID, and minor dysmorphism, we performed the high density whole genome Agilent sure print G3 Hmn CGH 2x 400 K array-CGH chips analysis. Our results showed de novo deletions, duplications and deletion plus duplication on differential chromosomal regions in the affected individuals that were not shown in the normal fathe and normal kids by using Agilent CytoGenomics 3.0.6.6 softwear. Copy number gain were observed in the chromosome 1, 16 and 22 with LCE3C, HPR, GSTT2, GSTTP2, DDT and DDTL genes respectively whereas the deletions observed in the chromosomal regions 8p23-p21 (4303127–4337759 and the potential gene in this region is CSMD1 (OMIM: 612279. Moreover, the array CGH results deletions and duplication were also validated by using primer design of deleted regions utilizing the flanked SNPs using simple PCR and also by using quantitative real time PCR. Conclusions We found some of the de novo deletions and duplication in our study in Saudi family with intellectual disability and epilepsy. Our results suggest that array-CGH should be used as a first line of genetic test for epilepsy except there is a strong indication for a monogenic syndrome. The advanced high through put array-CGH technique used in this study aim to collect the data base and to identify new mechanisms describing

  10. Condition dependence and the nature of genetic variation for male sex comb bristle number in Drosophila melanogaster.

    Science.gov (United States)

    Ahuja, Abha; De Vito, Scott; Singh, Rama S

    2011-04-01

    Genetic architecture of variation underlying male sex comb bristle number, a rapidly evolving secondary sexual character of Drosophila, was examined. First, in order to test for condition dependence, diet was manipulated in a set of ten Drosophila melanogaster full-sib families. We confirmed heightened condition dependent expression of sex comb bristle number and its female homologue (distal transverse row bristles) as compared to non-sex sternopleural bristles. Significant genotype by environment effects were detected for the sex traits indicating a genetic basis for condition dependence. Next we measured sex comb bristle number and sternopleural bristle number, as well as residual mass, a commonly used condition index, in a set of thirty half-sib families. Sire effect was not significant for sex comb and sternopleural bristle number, and we detected a strong dominance and/or maternal effect or X chromosome effect for both traits. A strong sire effect was detected for condition and its heritability was the highest as compared to sex comb and sternopleural bristles. We discuss our results in light of the rapid response to divergent artificial selection for sex comb bristle number reported previously. The nature of genetic variation for male sex traits continues to be an important unresolved issue in evolutionary biology.

  11. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae)

    OpenAIRE

    McCann, Jamie; Schneeweiss, Gerald M.; Stuessy, Tod F.; Villase?or, Jose L.; Weiss-Schneeweiss, Hanna

    2016-01-01

    Chromosome number change (polyploidy and dysploidy) plays an important role in plant diversification and speciation. Investigating chromosome number evolution commonly entails ancestral state reconstruction performed within a phylogenetic framework, which is, however, prone to uncertainty, whose effects on evolutionary inferences are insufficiently understood. Using the chromosomally diverse plant genus Melampodium (Asteraceae) as model group, we assess the impact of reconstruction method (ma...

  12. Molecular phylogenetics, historical biogeography, and chromosome number evolution of Portulaca (Portulacaceae).

    Science.gov (United States)

    Ocampo, Gilberto; Columbus, J Travis

    2012-04-01

    Portulaca is the only genus in Portulacaceae and has ca. 100 species distributed worldwide, mainly in the tropics and subtropics. Molecular data place the genus as one of the closest relatives of Cactaceae, but phylogenetic relationships within Portulaca are barely known. This study samples 59 species of Portulaca, 10 infraspecific taxa, and three cultivars, including multiple samples of widespread species. The sampled taxa represent all subgenera in the classifications of von Poellnitz (1934), Legrand (1958), and Geesink (1969) and come from around the world. Nuclear ITS and chloroplast ndhF, trnT-psbD intergenic spacer, and ndhA intron DNA sequences were analyzed using maximum likelihood and Bayesian methods to produce a hypothesis of relationships within Portulaca. Divergence times were estimated using Hawaiian endemics for calibration, and biogeographical patterns were examined using a Bayes-DIVA approach. In addition, the evolution of chromosome numbers in the genus was investigated using probabilistic models. The analyses strongly support the monophyly of Portulaca, with an age of the most recent common ancestor (MRCA) of 23 Myr. Within Portulaca are two major lineages: the OL clade (comprising opposite-leaved species) distributed in Africa, Asia, and Australia, and the AL clade (comprising alternate to subopposite-leaved species), which is more widespread and originated in the New World. Sedopsis, a genus sometimes recognized as distinct from Portulaca based on a long corolla tube, is nested within the OL clade and does not merit taxonomic recognition. Samples of Portulaca grandiflora, Portulaca halimoides, and Portulaca oleracea were found to be non-monophyletic. It is hypothesized that the ancestral distribution area of Portulaca included southern hemisphere continents and Asia. The OL clade remained restricted to the Old World (except Portulaca quadrifida, a pantropical weed), while the AL clade, with a South American origin, was able to disperse multiple

  13. Chromosome and genome size variation in Luzula (Juncaceae), a genus with holocentric chromosomes

    Czech Academy of Sciences Publication Activity Database

    Bozek, M.; Leitch, A. R.; Leitch, I. J.; Záveská Drábková, Lenka; Kuta, E.

    2012-01-01

    Roč. 170, č. 4 (2012), s. 529-541 ISSN 0024-4074 R&D Projects: GA ČR GP206/07/P147 Institutional support: RVO:67985939 Keywords : chromosomal evolution * endopolyploidy * holokinetic chromosome * karyotype evolution * tetraploides * centromeres * TRNF intergenic spacer Subject RIV: EF - Botanics Impact factor: 2.589, year: 2012

  14. Chromosome aberration analysis based on a beta-binomial distribution

    International Nuclear Information System (INIS)

    Otake, Masanori; Prentice, R.L.

    1983-10-01

    Analyses carried out here generalized on earlier studies of chromosomal aberrations in the populations of Hiroshima and Nagasaki, by allowing extra-binomial variation in aberrant cell counts corresponding to within-subject correlations in cell aberrations. Strong within-subject correlations were detected with corresponding standard errors for the average number of aberrant cells that were often substantially larger than was previously assumed. The extra-binomial variation is accomodated in the analysis in the present report, as described in the section on dose-response models, by using a beta-binomial (B-B) variance structure. It is emphasized that we have generally satisfactory agreement between the observed and the B-B fitted frequencies by city-dose category. The chromosomal aberration data considered here are not extensive enough to allow a precise discrimination between competing dose-response models. A quadratic gamma ray and linear neutron model, however, most closely fits the chromosome data. (author)

  15. Chromosomal localization of microsatellite loci in Drosophila mediopunctata

    Directory of Open Access Journals (Sweden)

    Renato Cavasini

    2015-03-01

    Full Text Available Drosophila mediopunctata has been used as a model organism for genetics and evolutionary studies in the last three decades. A linkage map with 48 microsatellite loci recently published for this species showed five syntenic groups, which had their homology determined to Drosophila melanogaster chromosomes. Then, by inference, each of the groups was associated with one of the five major chromosomes of D. mediopunctata. Our objective was to carry out a genetic (chromosomal analysis to increase the number of available loci with known chromosomal location. We made a simultaneous analysis of visible mutant phenotypes and microsatellite genotypes in a backcross of a standard strain and a mutant strain, which had each major autosome marked. Hence, we could establish the chromosomal location of seventeen loci; including one from each of the five major linkage groups previously published, and twelve new loci. Our results were congruent with the previous location and they open new possibilities to future work integrating microsatellites, chromosomal inversions, and genetic determinants of physiological and morphological variation.

  16. A large-scale survey of genetic copy number variations among Han Chinese residing in Taiwan

    Directory of Open Access Journals (Sweden)

    Wu Jer-Yuarn

    2008-12-01

    Full Text Available Abstract Background Copy number variations (CNVs have recently been recognized as important structural variations in the human genome. CNVs can affect gene expression and thus may contribute to phenotypic differences. The copy number inferring tool (CNIT is an effective hidden Markov model-based algorithm for estimating allele-specific copy number and predicting chromosomal alterations from single nucleotide polymorphism microarrays. The CNIT algorithm, which was constructed using data from 270 HapMap multi-ethnic individuals, was applied to identify CNVs from 300 unrelated Han Chinese individuals in Taiwan. Results Using stringent selection criteria, 230 regions with variable copy numbers were identified in the Han Chinese population; 133 (57.83% had been reported previously, 64 displayed greater than 1% CNV allele frequency. The average size of the CNV regions was 322 kb (ranging from 1.48 kb to 5.68 Mb and covered a total of 2.47% of the human genome. A total of 196 of the CNV regions were simple deletions and 27 were simple amplifications. There were 449 genes and 5 microRNAs within these CNV regions; some of these genes are known to be associated with diseases. Conclusion The identified CNVs are characteristic of the Han Chinese population and should be considered when genetic studies are conducted. The CNV distribution in the human genome is still poorly characterized, and there is much diversity among different ethnic populations.

  17. Study of radiation-induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Wolfring, E.

    2004-06-01

    A method for determining chromosomal aberrations was established for the purpose of examining the relative biological effectiveness (RBE) of photon radiation with respect to mammary epithelium cells. Cells were exposed to 25 kV X-radiation and to 200 kV X-radiation for comparison and the resulting concentrations of chromosomal aberrations were compared. The RBE M value for radiation-induced fragmentation was found to be 4.2 ± 2.4, while the RBE M value for radiation-induced generation of dicentric chromosomes was found to be 0.5 ± 0.5. In addition to the evaluation of chromosomal aberrations the number of cell cycles undergone by the cells was monitored by means of BrDU staining. As expected, the proportion of cells which underwent more than one cell cycle following exposure to 5 Gy was very low in both cases, amounting to 1.9% (25 kV) and 3.2 (200 kV). Non-radiated cells yielded control values of 26.0% and 12.6%, suggesting variations in external conditions from day to day

  18. Radiation induced chromosome aberrations and interphase DNA geometry

    International Nuclear Information System (INIS)

    Nasazzi, N.; Di Giorgio, M.; Otero, D.

    1995-01-01

    Ionizing radiation induces DNA double strand breaks (DSBs) and their interaction and illegitimate recombination produces chromosome aberrations. Stable chromosome aberrations comprise inter-chromosomal events (translocations) and intra-chromosomal events (inversions). Assuming DSBs induction and interaction is completely random and neglecting proximity effects, the expected ratio of translocations to inversions is F=86, based on chromosome arm lengths. We analyzed the number of translocations and inversions using G-banding, in 16 lymphocyte cultures from blood samples acutely irradiated with γ-rays (dose range: 0.5Gy-3Gy). Our results give F=13.5, significantly smaller than F=86. Literature data show similar small F values but strongly spread. The excess of inversions could be explained by a 'proximity effect', it means that more proximate DSBs have an extra probability of interaction. Therefore, it is possible to postulate a special chromosome arrangement during irradiation and the subsequent interval. We propose a model where individual chromosomes show spherical confinement with some degree of overlapping and DSBs induction proportional to cross section. We assume a DSBs interaction probability function with cut-off length = 1 μ. We propose that large spread in F data could be due to temporal variation in overlapping and spatial chromosome confinement. (author). 14 refs

  19. Sequencing of individual chromosomes of plant pathogenic Fusarium oxysporum.

    Science.gov (United States)

    Kashiwa, Takeshi; Kozaki, Toshinori; Ishii, Kazuo; Turgeon, B Gillian; Teraoka, Tohru; Komatsu, Ken; Arie, Tsutomu

    2017-01-01

    A small chromosome in reference isolate 4287 of F. oxysporum f. sp. lycopersici (Fol) has been designated as a 'pathogenicity chromosome' because it carries several pathogenicity related genes such as the Secreted In Xylem (SIX) genes. Sequence assembly of small chromosomes in other isolates, based on a reference genome template, is difficult because of karyotype variation among isolates and a high number of sequences associated with transposable elements. These factors often result in misassembly of sequences, making it unclear whether other isolates possess the same pathogenicity chromosome harboring SIX genes as in the reference isolate. To overcome this difficulty, single chromosome sequencing after Contour-clamped Homogeneous Electric Field (CHEF) separation of chromosomes was performed, followed by de novo assembly of sequences. The assembled sequences of individual chromosomes were consistent with results of probing gels of CHEF separated chromosomes with SIX genes. Individual chromosome sequencing revealed that several SIX genes are located on a single small chromosome in two pathogenic forms of F. oxysporum, beyond the reference isolate 4287, and in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. The particular combination of SIX genes on each small chromosome varied. Moreover, not all SIX genes were found on small chromosomes; depending on the isolate, some were on big chromosomes. This suggests that recombination of chromosomes and/or translocation of SIX genes may occur frequently. Our method improves sequence comparison of small chromosomes among isolates. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. GeneBreak: detection of recurrent DNA copy number aberration-associated chromosomal breakpoints within genes [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Evert van den Broek

    2017-07-01

    Full Text Available Development of cancer is driven by somatic alterations, including numerical and structural chromosomal aberrations. Currently, several computational methods are available and are widely applied to detect numerical copy number aberrations (CNAs of chromosomal segments in tumor genomes. However, there is lack of computational methods that systematically detect structural chromosomal aberrations by virtue of the genomic location of CNA-associated chromosomal breaks and identify genes that appear non-randomly affected by chromosomal breakpoints across (large series of tumor samples. ‘GeneBreak’ is developed to systematically identify genes recurrently affected by the genomic location of chromosomal CNA-associated breaks by a genome-wide approach, which can be applied to DNA copy number data obtained by array-Comparative Genomic Hybridization (CGH or by (low-pass whole genome sequencing (WGS. First, ‘GeneBreak’ collects the genomic locations of chromosomal CNA-associated breaks that were previously pinpointed by the segmentation algorithm that was applied to obtain CNA profiles. Next, a tailored annotation approach for breakpoint-to-gene mapping is implemented. Finally, dedicated cohort-based statistics is incorporated with correction for covariates that influence the probability to be a breakpoint gene. In addition, multiple testing correction is integrated to reveal recurrent breakpoint events. This easy-to-use algorithm, ‘GeneBreak’, is implemented in R (www.cran.r-project.org and is available from Bioconductor (www.bioconductor.org/packages/release/bioc/html/GeneBreak.html.

  1. Chromosome mapping of repetitive sequences in four Serrasalmidae species (Characiformes

    Directory of Open Access Journals (Sweden)

    Leila Braga Ribeiro

    2014-01-01

    Full Text Available The Serrasalmidae family is composed of a number of commercially interesting species, mainly in the Amazon region where most of these fishes occur. In the present study, we investigated the genomic organization of the 18S and 5S rDNA and telomeric sequences in mitotic chromosomes of four species from the basal clade of the Serrasalmidae family: Colossoma macropomum, Mylossoma aureum, M. duriventre, and Piaractus mesopotamicus, in order to understand the chromosomal evolution in the family. All the species studied had diploid numbers 2n = 54 and exclusively biarmed chromosomes, but variations of the karyotypic formulas were observed. C-banding resulted in similar patterns among the analyzed species, with heterochromatic blocks mainly present in centromeric regions. The 18S rDNA mapping of C. macropomum and P. mesopotamicus revealed multiple sites of this gene; 5S rDNA sites were detected in two chromosome pairs in all species, although not all of them were homeologs. Hybridization with a telomeric probe revealed signals in the terminal portions of chromosomes in all the species and an interstitial signal was observed in one pair of C. macropomum.

  2. Chromosome number, microsporogenesis, microgametogenesis, and pollen viability in the Brazilian native grass Mesosetum chaseae (Poaceae).

    Science.gov (United States)

    Silva, L A C; Pagliarini, M S; Santos, S A; Silva, N; Souza, V F

    2012-11-28

    The genus Mesosetum is a primarily South American genus with 42 species. Mesosetum chaseae, regionally known as 'grama-do-cerrado', is abundant in the Pantanal Matogrossense (Brazil); it is a valuable resource for livestock and for environmental conservation. We collected specimens from the Nhecolandia sub-region of the Brazilian Pantanal, located in Corumbá, Mato Grosso do Sul, Brazil. We examined chromosome number, ploidy level, meiotic behavior, microgametogenesis, and pollen viability of 10 accessions. All the accessions were diploid, derived from x = 8, presenting 2n = 2x = 16 chromosomes. Chromosomes paired as bivalents showing, predominantly, two terminal chiasmata. Interstitial chiasmata were rare. Meiosis was quite normal producing only a few abnormal tetrads in some accessions. Microgametogenesis, after two mitotic divisions, produced three-celled pollen grains. Pollen viability was variable among plant and accessions and was not correlated with meiotic abnormalities.

  3. Pediatric primary central nervous system germ cell tumors of different prognosis groups show characteristic miRNome traits and chromosome copy number variations

    Directory of Open Access Journals (Sweden)

    Liang Muh-Lii

    2010-02-01

    Full Text Available Abstract Background Intracranial pediatric germ cell tumors (GCTs are rare and heterogeneous neoplasms and vary in histological differentiation, prognosis and clinical behavior. Germinoma and mature teratoma are GCTs that have a good prognosis, while other types of GCTs, termed nongerminomatous malignant germ cell tumors (NGMGCTs, are tumors with an intermediate or poor prognosis. The second group of tumors requires more extensive drug and irradiation treatment regimens. The mechanisms underlying the differences in incidence and prognosis of the various GCT subgroups are unclear. Results We identified a distinct mRNA profile correlating with GCT histological differentiation and prognosis, and also present in this study the first miRNA profile of pediatric primary intracranial GCTs. Most of the differentially expressed miRNAs were downregulated in germinomas, but miR-142-5p and miR-146a were upregulated. Genes responsible for self-renewal (such as POU5F1 (OCT4, NANOG and KLF4 and the immune response were abundant in germinomas, while genes associated with neuron differentiation, Wnt/β-catenin pathway, invasiveness and epithelial-mesenchymal transition (including SNAI2 (SLUG and TWIST2 were abundant in NGMGCTs. Clear transcriptome segregation based on patient survival was observed, with malignant NGMGCTs being closest to embryonic stem cells. Chromosome copy number variations (CNVs at cytobands 4q13.3-4q28.3 and 9p11.2-9q13 correlated with GCT malignancy and clinical risk. Six genes (BANK1, CXCL9, CXCL11, DDIT4L, ELOVL6 and HERC5 within 4q13.3-4q28.3 were more abundant in germinomas. Conclusions Our results integrate molecular profiles with clinical observations and provide insights into the underlying mechanisms causing GCT malignancy. The genes, pathways and microRNAs identified have the potential to be novel therapeutic targets.

  4. Chromosome numbers and DNA content in some species of Mecardonia (Gratiolae, Plantaginaceae)

    Science.gov (United States)

    Sosa, María M.; Angulo, María B.; Greppi, Julián A.; Bugallo, Verónica

    2016-01-01

    Abstract Cytogenetic characterization and determination of DNA content by flow cytometry of five species of Mecardonia Ruiz et Pavon, 1798 (Gratiolae, Plantaginaceae) was performed. This is the first study of nuclear DNA content carried out in the genus. Mitotic analysis revealed a base chromosome number x = 11 for all entities and different ploidy levels, ranging from diploid (2n = 2x = 22) to hexaploid (2n = 6x = 66). The results include the first report of the chromosome numbers for Mecardonia flagellaris (Chamisso & Schlechtendal, 1827) (2n = 22), Mecardonia grandiflora (Bentham) Pennell, 1946 (2n = 22), Mecardonia kamogawae Greppi & Hagiwara, 2011 (2n = 66), and Mecardonia sp. (2n = 44). The three ploidy levels here reported suggest that polyploidy is common in Mecardonia and appear to be an important factor in the evolution of this genus. The 2C- and 1Cx-values were also estimated in all the species. The 2C-values ranged from 1.91 to 5.29 pg. The 1Cx-values ranged from 0.88 to 1.03 pg. The general tendency indicated a decrease in the 1Cx-value with increasing ploidy level. The significance of the results is discussed in relation to taxonomy of the genus. PMID:28123693

  5. Genetic variation in South Indian castes: evidence from Y-chromosome, mitochondrial, and autosomal polymorphisms

    Directory of Open Access Journals (Sweden)

    Tirupati S

    2008-12-01

    Full Text Available Abstract Background Major population movements, social structure, and caste endogamy have influenced the genetic structure of Indian populations. An understanding of these influences is increasingly important as gene mapping and case-control studies are initiated in South Indian populations. Results We report new data on 155 individuals from four Tamil caste populations of South India and perform comparative analyses with caste populations from the neighboring state of Andhra Pradesh. Genetic differentiation among Tamil castes is low (RST = 0.96% for 45 autosomal short tandem repeat (STR markers, reflecting a largely common origin. Nonetheless, caste- and continent-specific patterns are evident. For 32 lineage-defining Y-chromosome SNPs, Tamil castes show higher affinity to Europeans than to eastern Asians, and genetic distance estimates to the Europeans are ordered by caste rank. For 32 lineage-defining mitochondrial SNPs and hypervariable sequence (HVS 1, Tamil castes have higher affinity to eastern Asians than to Europeans. For 45 autosomal STRs, upper and middle rank castes show higher affinity to Europeans than do lower rank castes from either Tamil Nadu or Andhra Pradesh. Local between-caste variation (Tamil Nadu RST = 0.96%, Andhra Pradesh RST = 0.77% exceeds the estimate of variation between these geographically separated groups (RST = 0.12%. Low, but statistically significant, correlations between caste rank distance and genetic distance are demonstrated for Tamil castes using Y-chromosome, mtDNA, and autosomal data. Conclusion Genetic data from Y-chromosome, mtDNA, and autosomal STRs are in accord with historical accounts of northwest to southeast population movements in India. The influence of ancient and historical population movements and caste social structure can be detected and replicated in South Indian caste populations from two different geographic regions.

  6. Linking numbers and variational method

    International Nuclear Information System (INIS)

    Oda, I.; Yahikozawa, S.

    1989-09-01

    The ordinary and generalized linking numbers for two surfaces of dimension p and n-p-1 in an n dimensional manifold are derived. We use a variational method based on the properties of topological quantum field theory in order to derive them. (author). 13 refs, 2 figs

  7. On the edge of Bantu expansions: mtDNA, Y chromosome and lactase persistence genetic variation in southwestern Angola

    Directory of Open Access Journals (Sweden)

    Beleza Sandra

    2009-04-01

    Full Text Available Abstract Background Current information about the expansion of Bantu-speaking peoples is hampered by the scarcity of genetic data from well identified populations from southern Africa. Here, we fill an important gap in the analysis of the western edge of the Bantu migrations by studying for the first time the patterns of Y-chromosome, mtDNA and lactase persistence genetic variation in four representative groups living around the Namib Desert in southwestern Angola (Ovimbundu, Ganguela, Nyaneka-Nkumbi and Kuvale. We assessed the differentiation between these populations and their levels of admixture with Khoe-San groups, and examined their relationship with other sub-Saharan populations. We further combined our dataset with previously published data on Y-chromosome and mtDNA variation to explore a general isolation with migration model and infer the demographic parameters underlying current genetic diversity in Bantu populations. Results Correspondence analysis, lineage sharing patterns and admixture estimates indicate that the gene pool from southwestern Angola is predominantly derived from West-Central Africa. The pastoralist Herero-speaking Kuvale people were additionally characterized by relatively high frequencies of Y-chromosome (12% and mtDNA (22% Khoe-San lineages, as well as by the presence of the -14010C lactase persistence mutation (6%, which likely originated in non-Bantu pastoralists from East Africa. Inferred demographic parameters show that both male and female populations underwent significant size growth after the split between the western and eastern branches of Bantu expansions occurring 4000 years ago. However, males had lower population sizes and migration rates than females throughout the Bantu dispersals. Conclusion Genetic variation in southwestern Angola essentially results from the encounter of an offshoot of West-Central Africa with autochthonous Khoisan-speaking peoples from the south. Interactions between the Bantus

  8. Sequencing Chromosomal Abnormalities Reveals Neurodevelopmental Loci that Confer Risk across Diagnostic Boundaries

    DEFF Research Database (Denmark)

    Talkowski, Michael E.; Rosenfeld, Jill A.; Blumenthal, Ian

    2012-01-01

    Sequencing of balanced chromosomal abnormalities, combined with convergent genomic studies of gene expression, copy-number variation, and genome-wide association, identifies 22 new loci that contribute to autism and related neurodevelopmental disorders. These data support a polygenic risk model...

  9. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  10. Chromosomal characteristics and distribution of rDNA sequences in the brook trout Salvelinus fontinalis (Mitchill, 1814).

    Science.gov (United States)

    Śliwińska-Jewsiewicka, A; Kuciński, M; Kirtiklis, L; Dobosz, S; Ocalewicz, K; Jankun, Malgorzata

    2015-08-01

    Brook trout Salvelinus fontinalis (Mitchill, 1814) chromosomes have been analyzed using conventional and molecular cytogenetic techniques enabling characteristics and chromosomal location of heterochromatin, nucleolus organizer regions (NORs), ribosomal RNA-encoding genes and telomeric DNA sequences. The C-banding and chromosome digestion with the restriction endonucleases demonstrated distribution and heterogeneity of the heterochromatin in the brook trout genome. DNA sequences of the ribosomal RNA genes, namely the nucleolus-forming 28S (major) and non-nucleolus-forming 5S (minor) rDNAs, were physically mapped using fluorescence in situ hybridization (FISH) and primed in situ labelling. The minor rDNA locus was located on the subtelo-acrocentric chromosome pair No. 9, whereas the major rDNA loci were dispersed on 14 chromosome pairs, showing a considerable inter-individual variation in the number and location. The major and minor rDNA loci were located at different chromosomes. Multichromosomal location (3-6 sites) of the NORs was demonstrated by silver nitrate (AgNO3) impregnation. All Ag-positive i.e. active NORs corresponded to the GC-rich blocks of heterochromatin. FISH with telomeric probe showed the presence of the interstitial telomeric site (ITS) adjacent to the NOR/28S rDNA site on the chromosome 11. This ITS was presumably remnant of the chromosome rearrangement(s) leading to the genomic redistribution of the rDNA sequences. Comparative analysis of the cytogenetic data among several related salmonid species confirmed huge variation in the number and the chromosomal location of rRNA gene clusters in the Salvelinus genome.

  11. Fine Physical Bin Mapping of the Powdery Mildew Resistance Gene Pm21 Based on Chromosomal Structural Variations in Wheat

    Directory of Open Access Journals (Sweden)

    Shanying Zhu

    2018-02-01

    Full Text Available Pm21, derived from wheat wild relative Dasypyrum villosum, is one of the most effective powdery mildew resistance genes and has been widely applied in wheat breeding in China. Mapping and cloning Pm21 are of importance for understanding its resistance mechanism. In the present study, physical mapping was performed using different genetic stocks involving in structural variations of chromosome 6VS carrying Pm21. The data showed that 6VS could be divided into eight distinguishable chromosomal bins, and Pm21 was mapped to the bin FLb4–b5/b6 closely flanked by the markers 6VS-08.6 and 6VS-10.2. Comparative genomic mapping indicated that the orthologous regions of FLb4–b5/b6 carrying Pm21 were narrowed to a 117.7 kb genomic region harboring 19 genes in Brachypodium and a 37.7 kb region harboring 5 genes in rice, respectively. The result was consistent with that given by recent genetic mapping in diploid D. villosum. In conclusion, this study demonstrated that physical mapping based on chromosomal structural variations is an efficient method for locating alien genes in wheat background.

  12. [Analysis of genomic copy number variations in two sisters with primary amenorrhea and hyperandrogenism].

    Science.gov (United States)

    Zhang, Yanliang; Xu, Qiuyue; Cai, Xuemei; Li, Yixun; Song, Guibo; Wang, Juan; Zhang, Rongchen; Dai, Yong; Duan, Yong

    2015-12-01

    To analyze genomic copy number variations (CNVs) in two sisters with primary amenorrhea and hyperandrogenism. G-banding was performed for karyotype analysis. The whole genome of the two sisters were scanned and analyzed by array-based comparative genomic hybridization (array-CGH). The results were confirmed with real-time quantitative PCR (RT-qPCR). No abnormality was found by conventional G-banded chromosome analysis. Array-CGH has identified 11 identical CNVs from the sisters which, however, overlapped with CNVs reported by the Database of Genomic Variants (http://projects.tcag.ca/variation/). Therefore, they are likely to be benign. In addition, a -8.44 Mb 9p11.1-p13.1 duplication (38,561,587-47,002,387 bp, hg18) and a -80.9 kb 4q13.2 deletion (70,183,990-70,264,889 bp, hg18) were also detected in the elder and younger sister, respectively. The relationship between such CNVs and primary amenorrhea and hyperandrogenism was however uncertain. RT-qPCR results were in accordance with array-CGH. Two CNVs were detected in two sisters by array-CGH, for which further studies are needed to clarify their correlation with primary amenorrhea and hyperandrogenism.

  13. Updating the maize karyotype by chromosome DNA sizing

    Science.gov (United States)

    2018-01-01

    The karyotype is a basic concept regarding the genome, fundamentally described by the number and morphological features of all chromosomes. Chromosome class, centromeric index, intra- and interchromosomal asymmetry index, and constriction localization are important in clinical, systematic and evolutionary approaches. In spite of the advances in karyotype characterization made over the last years, new data about the chromosomes can be generated from quantitative methods, such as image cytometry. Therefore, using Zea mays L., this study aimed to update the species’ karyotype by supplementing information on chromosome DNA sizing. After adjustment of the procedures, chromosome morphometry and class as well as knob localization enabled describing the Z. mays karyotype. In addition, applying image cytometry, DNA sizing was unprecedentedly measured for the arms and satellite of all chromosomes. This way, unambiguous identification of the chromosome pairs, and hence the assembly of 51 karyograms, were only possible after the DNA sizing of each chromosome, their arms and satellite portions. These accurate, quantitative and reproducible data also enabled determining the distribution and variation of DNA content in each chromosome. From this, a correlation between DNA amount and total chromosome length evidenced that the mean DNA content of chromosome 9 was higher than that of chromosome 8. The chromosomal DNA sizing updated the Z. mays karyotype, providing insights into its dynamic genome with regards to the organization of the ten chromosomes and their respective portions. Considering the results and the relevance of cytogenetics in the current scenario of comparative sequencing and genomics, chromosomal DNA sizing should be incorporated as an additional parameter for karyotype definition. Based on this study, it can be affirmed that cytogenetic approaches go beyond the simple morphological description of chromosomes. PMID:29293613

  14. Genetic recombination variation in wild Robertsonian mice: on the role of chromosomal fusions and Prdm9 allelic background.

    Science.gov (United States)

    Capilla, Laia; Medarde, Nuria; Alemany-Schmidt, Alexandra; Oliver-Bonet, Maria; Ventura, Jacint; Ruiz-Herrera, Aurora

    2014-07-07

    Despite the existence of formal models to explain how chromosomal rearrangements can be fixed in a population in the presence of gene flow, few empirical data are available regarding the mechanisms by which genome shuffling contributes to speciation, especially in mammals. In order to shed light on this intriguing evolutionary process, here we present a detailed empirical study that shows how Robertsonian (Rb) fusions alter the chromosomal distribution of recombination events during the formation of the germline in a Rb system of the western house mouse (Mus musculus domesticus). Our results indicate that both the total number of meiotic crossovers and the chromosomal distribution of recombination events are reduced in mice with Rb fusions and that this can be related to alterations in epigenetic signatures for heterochromatinization. Furthermore, we detected novel house mouse Prdm9 allelic variants in the Rb system. Remarkably, mean recombination rates were positively correlated with a decrease in the number of ZnF domains in the Prdm9 gene. The suggestion that recombination can be modulated by both chromosomal reorganizations and genetic determinants that control the formation of double-stranded breaks during meiosis opens new avenues for understanding the role of recombination in chromosomal speciation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Chromosomal evolution of the Canidae. I. Species with high diploid numbers.

    Science.gov (United States)

    Wayne, R K; Nash, W G; O'Brien, S J

    1987-01-01

    The Giemsa banding patterns of seven canid species, including the grey wolf (Canis lupus), the maned wolf (Chrysocyon brachyurus), the bush dog (Speothos venaticus), the crab-eating fox (Cerdocyon thous), the grey fox (Urocyon cinereoargenteus), the bat-eared fox (Otocyon megalotis), and the fennec (Fennecus zerda), are presented and compared. Relative to other members of Canidae, these species have high diploid complements (2n greater than 64) consisting of largely acrocentric chromosomes. They show a considerable degree of chromosome homoeology, but relative to the grey wolf, each species is either missing chromosomes or has unique chromosomal additions and rearrangements. Differences in chromosome morphology among the seven species were used to reconstruct their phylogenetic history. The results suggest that the South American canids are closely related to each other and are derived from a wolf-like progenitor. The fennec and the bat-eared fox seem to be recent derivatives of a lineage that branched early from the wolf-like canids and which also includes the grey fox.

  16. Chromosome numbers and meiotic analysis in the pre-breeding of ...

    Indian Academy of Sciences (India)

    Among the diploid accessions, the rate of meiotic abnormalities was low, ranging from 0.82% to 7.93%. In the 27 tetraploid accessions, the rate of meiotic abnormalities ranged from 18.41% to 65.83%. The most common meiotic abnormalities were related to irregular chromosome segregation, but chromosome stickiness ...

  17. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis.

    Science.gov (United States)

    Suga, Koushirou; Mark Welch, David B; Tanaka, Yukari; Sakakura, Yoshitaka; Hagiwara, Atsushi

    2008-06-01

    The monogonont rotifer Brachionus plicatilis is an emerging model system for a diverse array of questions in limnological ecosystem dynamics, the evolution of sexual recombination, cryptic speciation, and the phylogeny of basal metazoans. We sequenced the complete mitochondrial genome of B. plicatilis sensu strictu NH1L and found that it is composed of 2 circular chromosomes, designated mtDNA-I (11,153 bp) and mtDNA-II (12,672 bp). Hybridization to DNA isolated from mitochondria demonstrated that mtDNA-I is present at 4 times the copy number of mtDNA-II. The only nucleotide similarity between the 2 chromosomes is a 4.9-kbp region of 99.5% identity including a transfer RNA (tRNA) gene and an extensive noncoding region that contains putative D-loop and control sequence. The mtDNA-I chromosome encodes 4 proteins (ATP6, COB, NAD1, and NAD2), 13 tRNAs, and the large and small subunit ribosomal RNAs; mtDNA-II encodes 8 proteins (COX1-3, NAD3-6, and NAD4L) and 9 tRNAs. Gene order is not conserved between B. plicatilis and its closest relative with a sequenced mitochondrial genome, the acanthocephalan Leptorhynchoides thecatus, or other sequenced mitochondrial genomes. Polymerase chain reaction assays and Southern hybridization to DNA from 18 strains of Brachionus suggest that the 2-chromosome structure has been stable for millions of years. The novel organization of the B. plicatilis mitochondrial genome into 2 nearly equal chromosomes of 4-fold different copy number may provide insight into the evolution of metazoan mitochondria and the phylogenetics of rotifers and other basal animal phyla.

  18. The first cytogenetic data on Strumigenys louisianae Roger, 1863 (Formicidae: Myrmicinae: Dacetini: the lowest chromosome number in the Hymenoptera of the neotropical region.

    Directory of Open Access Journals (Sweden)

    Ana Paula Alves-Silva

    Full Text Available In the present study, the first cytogenetic data was obtained for the ant species Strumigenys louisianae, from a genus possessing no previous cytogenetic data for the Neotropical region. The chromosome number observed was 2n = 4, all possessing metacentric morphology. Blocks rich in GC base pairs were observed in the interstitial region of the short arm of the largest chromosome pair, which may indicate that this region corresponds to the NORs. The referred species presented the lowest chromosome number observed for the subfamily Myrmicinae and for the Hymenoptera found in the Neotropical region. Observation of a low chromosome number karyotype has been described in Myrmecia croslandi, in which the occurrence of tandem fusions accounts for the most probable rearrangement for its formation. The accumulation of cytogenetic data may carry crucial information to ensure deeper understanding of the systematics of the tribe Dacetini.

  19. [Chromosome variability in the tissue culture of rare Gentiana species].

    Science.gov (United States)

    Tvardovs'ka, M O; Strashniuk, N M; Mel'nyk, V M; Adonin, V I; Kunakh, V A

    2008-01-01

    Cytogenetic analysis of plants and tissue culture of Gentiana lutea, G. punctata, G. acaulis has been carried out. Culturing in vitro was found to result in the changes of chromosome number in the calluses of the species involved. Species specificity for variation of the cultured cell genomes was shown. Contribution of the original plant genotypes to the cytogenetic structure of the tissue culture was established. Gentiana callus tissues (except for in vitro culture of G. punctata, derived from plant of Breskul'ska population) were found to exhibit modal class with the cells of diploid and nearly diploid chromosome sets.

  20. Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae).

    Science.gov (United States)

    Krahulcová, Anna; Trávnícek, Pavel; Krahulec, František; Rejmánek, Marcel

    2017-04-01

    Aesculus L. (horse chestnut, buckeye) is a genus of 12-19 extant woody species native to the temperate Northern Hemisphere. This genus is known for unusually large seeds among angiosperms. While chromosome counts are available for many Aesculus species, only one has had its genome size measured. The aim of this study is to provide more genome size data and analyse the relationship between genome size and seed mass in this genus. Chromosome numbers in root tip cuttings were confirmed for four species and reported for the first time for three additional species. Flow cytometric measurements of 2C nuclear DNA values were conducted on eight species, and mean seed mass values were estimated for the same taxa. The same chromosome number, 2 n = 40, was determined in all investigated taxa. Original measurements of 2C values for seven Aesculus species (eight taxa), added to just one reliable datum for A. hippocastanum , confirmed the notion that the genome size in this genus with relatively large seeds is surprisingly low, ranging from 0·955 pg 2C -1 in A. parviflora to 1·275 pg 2C -1 in A. glabra var. glabra. The chromosome number of 2 n = 40 seems to be conclusively the universal 2 n number for non-hybrid species in this genus. Aesculus genome sizes are relatively small, not only within its own family, Sapindaceae, but also within woody angiosperms. The genome sizes seem to be distinct and non-overlapping among the four major Aesculus clades. These results provide an extra support for the most recent reconstruction of Aesculus phylogeny. The correlation between the 2C values and seed masses in examined Aesculus species is slightly negative and not significant. However, when the four major clades are treated separately, there is consistent positive association between larger genome size and larger seed mass within individual lineages. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For

  1. Chromosome number in Brazilian germplasm accessions of Paspalum hydrophilum, P. modestum and P. palustre (Gramineae; Paniceae

    Directory of Open Access Journals (Sweden)

    Pozzobon Marisa T.

    2003-01-01

    Full Text Available This paper compiles results of chromosome counts of Paspalum hydrophilum, P. modestum and P. palustre. Four Brazilian accessions of P. modestum have shown 2n = 2x = 20 chromosomes, a number already found in one accession from Argentina and in two from Brazil. Three other Brazilian accessions showed tetraploid level (2n = 4x = 40, which was previously unknown in this species. In P. hydrophilum, only one of the accessions analyzed presented tetraploid level, initially established for the species from plants collected in Argentina. Five additional accessions from Brazil showed the diploid number, previously detected in a single Brazilian population. A tetraploid cytotype was found in P. palustre, previously known as a diploid species. In addition to confirming the occurrence of distinct ploidy levels for all three species, the results establish the predominance of the diploid level in P. hydrophilum and P. modestum accessions collected in Brazil.

  2. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations.

    Directory of Open Access Journals (Sweden)

    Victor Renault

    Full Text Available Copy number variations (CNV include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher gene expression. On the other hand, loss of heterozygosity (LOH and cn-LOH are common events in cancer and may be associated with the loss of a functional tumor suppressor gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they may highlight common biological components and give insights into the development or mechanisms of a disease. However, no currently available tools allow a comprehensive whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing absolute quantification of the aberrations leading to the loss of potentially important information.To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer, a visualization tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes three graphical representations: dendrograms, bi-dimensional heatmaps showing chromosomal regions sharing similar abnormality patterns, and quantitative stacked histograms facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCNViewer using publically available hepatocellular carcinomas (HCCs Affymetrix SNP Array data (Fig 1A. Regions 1q and 8q present a similar percentage of total gains but significantly different copy number gain categories (p-value of 0.0103 with a Fisher exact test, validated by another cohort of HCCs (p-value of 5.6e-7 (Fig 2B.aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on GitHub https://github.com/FJD-CEPH/aCNViewer and Docker https://hub.docker.com/r/fjdceph/acnviewer/.aCNViewer@cephb.fr.

  3. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations.

    Science.gov (United States)

    Renault, Victor; Tost, Jörg; Pichon, Fabien; Wang-Renault, Shu-Fang; Letouzé, Eric; Imbeaud, Sandrine; Zucman-Rossi, Jessica; Deleuze, Jean-François; How-Kit, Alexandre

    2017-01-01

    Copy number variations (CNV) include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH) events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher gene expression. On the other hand, loss of heterozygosity (LOH) and cn-LOH are common events in cancer and may be associated with the loss of a functional tumor suppressor gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they may highlight common biological components and give insights into the development or mechanisms of a disease. However, no currently available tools allow a comprehensive whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing absolute quantification of the aberrations leading to the loss of potentially important information. To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer), a visualization tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes three graphical representations: dendrograms, bi-dimensional heatmaps showing chromosomal regions sharing similar abnormality patterns, and quantitative stacked histograms facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCNViewer using publically available hepatocellular carcinomas (HCCs) Affymetrix SNP Array data (Fig 1A). Regions 1q and 8q present a similar percentage of total gains but significantly different copy number gain categories (p-value of 0.0103 with a Fisher exact test), validated by another cohort of HCCs (p-value of 5.6e-7) (Fig 2B). aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on GitHub https://github.com/FJD-CEPH/aCNViewer and Docker https

  4. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Directory of Open Access Journals (Sweden)

    McGuire Patrick E

    2010-12-01

    chromosomal regions. The net effect of these factors in T. aestivum is large variation in diversity among genomes and chromosomes, which impacts the development of SNP markers and their practical utility. Accumulation of new mutations in older polyploid species, such as wild emmer, results in increased diversity and its more uniform distribution across the genome.

  5. Copy Number Variations Found in Patients with a Corpus Callosum Abnormality and Intellectual Disability.

    Science.gov (United States)

    Heide, Solveig; Keren, Boris; Billette de Villemeur, Thierry; Chantot-Bastaraud, Sandra; Depienne, Christel; Nava, Caroline; Mignot, Cyril; Jacquette, Aurélia; Fonteneau, Eric; Lejeune, Elodie; Mach, Corinne; Marey, Isabelle; Whalen, Sandra; Lacombe, Didier; Naudion, Sophie; Rooryck, Caroline; Toutain, Annick; Caignec, Cédric Le; Haye, Damien; Olivier-Faivre, Laurence; Masurel-Paulet, Alice; Thauvin-Robinet, Christel; Lesne, Fabien; Faudet, Anne; Ville, Dorothée; des Portes, Vincent; Sanlaville, Damien; Siffroi, Jean-Pierre; Moutard, Marie-Laure; Héron, Delphine

    2017-06-01

    To evaluate the role that chromosomal micro-rearrangements play in patients with both corpus callosum abnormality and intellectual disability, we analyzed copy number variations (CNVs) in patients with corpus callosum abnormality/intellectual disability STUDY DESIGN: We screened 149 patients with corpus callosum abnormality/intellectual disability using Illumina SNP arrays. In 20 patients (13%), we have identified at least 1 CNV that likely contributes to corpus callosum abnormality/intellectual disability phenotype. We confirmed that the most common rearrangement in corpus callosum abnormality/intellectual disability is inverted duplication with terminal deletion of the 8p chromosome (3.2%). In addition to the identification of known recurrent CNVs, such as deletions 6qter, 18q21 (including TCF4), 1q43q44, 17p13.3, 14q12, 3q13, 3p26, and 3q26 (including SOX2), our analysis allowed us to refine the 2 known critical regions associated with 8q21.1 deletion and 19p13.1 duplication relevant for corpus callosum abnormality; report a novel 10p12 deletion including ZEB1 recently implicated in corpus callosum abnormality with corneal dystrophy; and) report a novel pathogenic 7q36 duplication encompassing SHH. In addition, 66 variants of unknown significance were identified in 57 patients encompassed candidate genes. Our results confirm the relevance of using microarray analysis as first line test in patients with corpus callosum abnormality/intellectual disability. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Chromosome number and microsporogenesis in Paspalum maritimum (caespitosa group; gramineae

    Directory of Open Access Journals (Sweden)

    Eleniza de Victor Adamowski

    2000-01-01

    Full Text Available Despite of economic importance of the genus Paspalum, little or no cytologic information is available for many species. This is the first report about chromosome number and meiotic behavior for P. maritimum. The three accessions collected in Amapá State (North Region of Brazil were tetraploid (2n=4x=40 with the chromosomes associating predominantly as bivalents. The low frequency of multivalents suggested that they were segmental allotetraploids. All accessions showed a low rate of meiotic irregularities, and as a consequence the pollen fertility was high. The results suggested that these accessions presented potential for use in a hybridization program.Apesar da importância econômica do gênero Paspalum, pouca ou nenhuma informação citológica é encontrada para a maioria das espécies. Esta é a primeira descrição sobre número de cromossomos e comportamento meiótico para P. maritimum. Os três acessos coletados no Estado do Amapá mostraram-se tetraplóides (2n=4x=40 com os cromossomos associando-se predominantemente como bivalentes. A baixa ocorrência de associações multivalentes sugere que estes acessos sejam alotetraplóides segmentais. Todos os acessos mostraram uma baixa frequência de anormalidades meióticas e, como consequência, uma alta fertilidade de pólen, mostrando potencial para serem utilizados em programas de hibridização.

  7. A first glimpse of wild lupin karyotype variation as revealed by comparative cytogenetic mapping

    Directory of Open Access Journals (Sweden)

    Karolina Susek

    2016-07-01

    Full Text Available Insight into plant genomes at the cytomolecular level provides useful information about their karyotype structure, enabling inferences about taxonomic relationships and evolutionary origins. The Old World lupins demonstrate a high level of genomic diversification involving variation in chromosome numbers (2n=32-52, basic chromosome numbers (x=5-7, 9, 13 and in nuclear genome size (2C DNA=0.97-2.68 pg. Lupins comprise both crop and wild species and provide an intriguing system to study karyotype evolution.In order to investigate lupin chromosome structure, heterologous FISH was used. Sixteen BACs that had been generated as chromosome markers for the reference species, Lupinus angustifolius, were used to identify chromosomes in the wild species and explore karyotype variation. While all ‘single-locus’ in L. angustifolius, in the wild lupins these clones proved to be ‘single-locus’, ‘single-locus’ with additional signals, ‘repetitive’ or had no detectable BAC-FISH signal. The diverse distribution of the clones in the targeted genomes suggests a complex evolution history, which possibly involved multiple chromosomal changes such as fusions/fissions and repetitive sequence amplification. Twelve BACs were sequenced and we found numerous transposable elements including DNA transposons as well as LTR and non-LTR retrotransposons with varying quantity and composition among the different lupin species. However, at this preliminary stage, no correlation was observed between the pattern of BAC-FISH signals and the repeat content in particular BACs. Here, we describe the first BAC-based chromosome-specific markers for the wild species: L. cosentinii, L. cryptanthus, L. pilosus, L. micranthus and one New World lupin, L. multiflorus. These BACs could constitute the basis for an assignment of the chromosomal and genetic maps of other lupins, e.g. L. albus and L. luteus. Moreover, we identified karyotype variation that helps illustrate the

  8. CHROMOSOMES OF WOODY SPECIES

    Directory of Open Access Journals (Sweden)

    Julio R Daviña

    2000-01-01

    Full Text Available Chromosome numbers of nine subtropical woody species collected in Argentina and Paraguay are reported. The counts tor Coutarea hexandra (2n=52, Inga vera subsp. affinis 2n=26 (Fabaceae and Chorisia speciosa 2n=86 (Bombacaceae are reported for the first time. The chromosome number given for Inga semialata 2n=52 is a new cytotype different from the previously reported. Somatic chromosome numbers of the other taxa studied are: Sesbania punicea 2n=12, S. virgata 2n=12 and Pilocarpus pennatifolius 2n=44 from Argentina

  9. Extensive polymorphism and chromosomal characteristics of ribosomal DNA in the characid fish Triportheus venezuelensis (Characiformes, Characidae

    Directory of Open Access Journals (Sweden)

    Mauro Nirchio

    2007-01-01

    Full Text Available The karyotype and chromosomal characteristics of the characid fish Triportheus venezuelensis were investigated using differential staining techniques (C-banding, Ag-NOR staining and fluorescent in situ hybridization (FISH with an 18S rDNA probe. The diploid chromosome number (2n = 52, karyotype composition and sex chromosome determination system of the ZZ/ZW type were the same as previously described in other species of the genus Triportheus. However, extensive variation regarding nucleolus organizer regions (NOR different from other species was observed. 18S rDNA sequences were distributed on nine chromosome pairs, but the number of chromosomes with Ag-NORs was usually lower, reaching a maximum of four chromosomes. When sequential staining experiments were performed, it was demonstrated that: 1. active NORs usually corresponded to segments with 18S rDNA genes identified in FISH experiments; 2. several 18S rDNA sequences were not silver-stained, suggesting that they do not correspond to active NORs; and 3. some chromosomes with silver-stained regions did not display any 18S rDNA signals. These findings characterize an extensive polymorphism associated with the NOR-bearing chromosomes of T. venezuelensis and emphasize the importance of combining traditional and molecular techniques in chromosome studies.

  10. Chromosome number in the barnacle Chthamalus malayensis from Goa waters, India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, U.

    stream_size 3 stream_content_type text/plain stream_name Chromosome_Inf_Ser_1992_53_10.pdf.txt stream_source_info Chromosome_Inf_Ser_1992_53_10.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  11. Chromosomal variation in the house mouse

    Czech Academy of Sciences Publication Activity Database

    Piálek, Jaroslav; Hauffe, H. C.; Searle, J. B.

    2005-01-01

    Roč. 84, č. 3 (2005), s. 535-563 ISSN 0024-4066. [The genus Mus as a model for evolutionary studies - a symposium in honour of Louis Thaler. Brno, 28.07.2003-30.07.2003] R&D Projects: GA AV ČR IAA6045601 Institutional research plan: CEZ:AV0Z6093917 Keywords : chromosomal evolution * hybrid zone * Robertsonian fusions Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.261, year: 2005

  12. Paternal isodisomy of chromosome 6 in association with a maternal supernumerary marker chromosome (6)

    Energy Technology Data Exchange (ETDEWEB)

    James, R.S.; Crolla, J.A.; Sitch, F.L. [Salisbury District Hospital, Wiltshire (United Kingdom)] [and others

    1994-09-01

    Uniparental disomy may arise by a number of different mechanisms of aneuploidy correction. A population that has been identified as being at increased risk of aneuploidy are those individuals bearing supernumerary marker chromosomes (SMCs). There have been a number of cases reported of trisomy 21 in association with bi-satellited marker chromosomes have described two individuals with small inv dup (15) markers. One had paternal isodisomy of chromosome 15 and Angelman syndrome. The other had maternal heterodisomy (15) and Prader-Willi syndrome. At the Wessex Regional Genetics Laboratory we have conducted a search for uniparental disomy of the normal homologues of the chromosomes from which SMCs originated. Our study population consists of 39 probands with SMCs originating from a number of different autosomes, including 17 with SMCs of chromosome 15 origin. Using PCR amplification of microsatellite repeat sequences located distal to the regions included in the SMCs we have determined the parental origin of the two normal homologues in each case. We have identified paternal isodisomy of chromosome 6 in a female child with a supernumerary marker ring chromosome 6 in approximately 70% of peripheral blood lymphocytes. The marker was found to be of maternal origin. This is the second case of paternal isodisomy of chromosome 6 to be reported, and the first in association with a SMC resulting in a partial trisomy for a portion of the short arm of chromosome 6. In spite of this, the patient appears to be functioning appropriately for her age.

  13. Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae)

    Czech Academy of Sciences Publication Activity Database

    Krahulcová, Anna; Trávníček, Pavel; Krahulec, František; Rejmánek, M.

    2017-01-01

    Roč. 119, č. 6 (2017), s. 957-964 ISSN 0305-7364 Institutional support: RVO:67985939 Keywords : Aesculus * chromosome number * genome size * phylogeny * seed mass Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  14. Clinical array-based karyotyping of breast cancer with equivocal HER2 status resolves gene copy number and reveals chromosome 17 complexity

    International Nuclear Information System (INIS)

    Gunn, Shelly; Gorre, Mercedes; Mohammed, Mansoor; Yeh, I-Tien; Lytvak, Irina; Tirtorahardjo, Budi; Dzidic, Natasha; Zadeh, Soheila; Kim, Jaeweon; McCaskill, Chris; Lim, Lony

    2010-01-01

    HER2 gene copy status, and concomitant administration of trastuzumab (Herceptin), remains one of the best examples of targeted cancer therapy based on understanding the genomic etiology of disease. However, newly diagnosed breast cancer cases with equivocal HER2 results present a challenge for the oncologist who must make treatment decisions despite the patient's unresolved HER2 status. In some cases both immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are reported as equivocal, whereas in other cases IHC results and FISH are discordant for positive versus negative results. The recent validation of array-based, molecular karyotyping for clinical oncology testing provides an alternative method for determination of HER2 gene copy number status in cases remaining unresolved by traditional methods. In the current study, DNA extracted from 20 formalin fixed paraffin embedded (FFPE) tissue samples from newly diagnosed cases of invasive ductal carcinoma referred to our laboratory with unresolved HER2 status, were analyzed using a clinically validated genomic array containing 127 probes covering the HER2 amplicon, the pericentromeric regions, and both chromosome 17 arms. Array-based comparative genomic hybridization (array CGH) analysis of chromosome 17 resolved HER2 gene status in [20/20] (100%) of cases and revealed additional chromosome 17 copy number changes in [18/20] (90%) of cases. Array CGH analysis also revealed two false positives and one false negative by FISH due to 'ratio skewing' caused by chromosomal gains and losses in the centromeric region. All cases with complex rearrangements of chromosome 17 showed genome-wide chromosomal instability. These results illustrate the analytical power of array-based genomic analysis as a clinical laboratory technique for resolution of HER2 status in breast cancer cases with equivocal results. The frequency of complex chromosome 17 abnormalities in these cases suggests that the two

  15. [Chromosomal variation in Chironomus plumosus L. (Diptera, Chironomidae) from populations of Bryansk region, Saratov region (Russia), and Gomel region (Belarus)].

    Science.gov (United States)

    Belyanina, S I

    2015-02-01

    Cytogenetic analysis was performed on samples of Chironomus plumosus L. (Diptera, Chironomidae) taken from waterbodies of various types in Bryansk region (Russia) and Gomel region (Belarus). Karyotypes of specimens taken from stream pools of the Volga were used as reference samples. The populations of Bryansk and Gomel regions (except for a population of Lake Strativa in Starodubskii district, Bryansk region) exhibit broad structural variation, including somatic mosaicism for morphotypes of the salivary gland chromosome set, decondensation of telomeric sites, and the presence of small structural changes, as opposed to populations of Saratov region. As compared with Saratov and Bryansk regions, the Balbiani ring in the B-arm of chromosome I is repressed in populations of Gomel region. It is concluded that the chromosome set of Ch. plumosus in a range of waterbodies of Bryansk and Gomel regions is unstable.

  16. Chromosomal homologies among vampire bats revealed by chromosome painting (phyllostomidae, chiroptera).

    Science.gov (United States)

    Sotero-Caio, C G; Pieczarka, J C; Nagamachi, C Y; Gomes, A J B; Lira, T C; O'Brien, P C M; Ferguson-Smith, M A; Souza, M J; Santos, N

    2011-01-01

    Substantial effort has been made to elucidate karyotypic evolution of phyllostomid bats, mostly through comparisons of G-banding patterns. However, due to the limited number of G-bands in respective karyotypes and to the similarity of non-homologous bands, an accurate evolutionary history of chromosome segments remains questionable. This is the case for vampire bats (Desmodontinae). Despite several proposed homologies, banding data have not yet provided a detailed understanding of the chromosomal changes within vampire genera. We examined karyotype differentiation of the 3 species within this subfamily using whole chromosomal probes from Phyllostomus hastatus (Phyllostominae) and Carollia brevicauda (Carolliinae). Painting probes of P. hastatus respectively detected 22, 21 and 23 conserved segments in Diphylla ecaudata, Diaemus youngi, and Desmodus rotundus karyotypes, whereas 27, 27 and 28 were respectively detectedwith C. brevicauda paints. Based on the evolutionary relationships proposed by morphological and molecular data, we present probable chromosomal synapomorphies for vampire bats and propose chromosomes that were present in the common ancestor of the 5 genera analyzed. Karyotype comparisons allowed us to relate a number of conserved chromosomal segments among the 5 species, providing a broader database for understanding karyotype evolution in the family. 2010 S. Karger AG, Basel.

  17. Chromosome reduction in Eleocharis maculosa (Cyperaceae).

    Science.gov (United States)

    da Silva, C R M; González-Elizondo, M S; Laforga Vanzela, A L

    2008-01-01

    Chromosome numbers in Cyperaceae lower than the typical basic number x = 5 have been described for only three species: Rhynchospora tenuis (n = 2), Fimbristylis umbellaris (n = 3) and Eleocharis subarticulata (n = 3). Eleocharis maculosa is recorded here as the fourth species of Cyperaceae that has a chromosome number lower than 2n = 10, with 2n = 8, 7 and 6. The karyotype differentiation in E. maculosa was studied using conventional staining (mitosis and meiosis), FISH with 45S and 5S rDNA and telomere probes. The results allow us to determine which chromosomes of the chromosome race with 2n = 10 fused to form the remaining reduced numbers, as well as to understand how the symploidy and translocation mechanisms were important in karyotype differentiation and the formation of chromosome races in Eleocharis. Copyright 2008 S. Karger AG, Basel.

  18. Genome size and chromosome number of Micromeria acropolitana (Lamiaceae), a steno-endemic of Greece

    DEFF Research Database (Denmark)

    Siljak-Yakovlev, Sonia; Tan, Kit; Tsounis, Gregory

    2011-01-01

    The chromosome number 2n = 30, and nuclear DNA amount 2C = 0.79 pg, are determined for the first time for Micromeria acropolitana, a rare and endangered species from the Acropolis in Athens, Greece. The plant was considered extinct but rediscovered in 2006, a hundred years later. Its current status...

  19. Non-disjunction of chromosome 13

    DEFF Research Database (Denmark)

    Bugge, Merete; Collins, Andrew; Hertz, Jens Michael

    2007-01-01

    We performed a molecular study with 21 microsatellites on a sample of 82 trisomy 13 conceptuses, the largest number of cases studied to date. The parental origin was determined in every case and in 89% the extra chromosome 13 was of maternal origin with an almost equal number of maternal MI and MII...... recombination in both maternal MI and MII errors and the former is associated with a significant number of tetrads (33%) that are nullichiasmate, which do not appear to be a feature of normal chromosome 13 meiosis. This study supports the evidence for subtle chromosome-specific influences on the mechanisms...... that determine non-disjunction of human chromosomes, consistent with the diversity of findings for other trisomies. Udgivelsesdato: 2007-Aug-15...

  20. Complex Copy Number Variation of AMY1 does not Associate with Obesity in two East Asian Cohorts.

    Science.gov (United States)

    Yong, Rita Y Y; Mustaffa, Su'Aidah B; Wasan, Pavandip S; Sheng, Liang; Marshall, Christian R; Scherer, Stephen W; Teo, Yik-Ying; Yap, Eric P H

    2016-07-01

    The human amylase gene locus at chromosome 1p21.1 is structurally complex. This region contains two pancreatic amylase genes, AMY2B, AMY2A, and a salivary gene AMY1. The AMY1 gene harbors extensive copy number variation (CNV), and recent studies have implicated this variation in adaptation to starch-rich diets and in association to obesity for European and Asian populations. In this study, we showed that by combining quantitative PCR and digital PCR, coupled with careful experimental design and calibration, we can improve the resolution of genotyping CNV with high copy numbers (CNs). In two East Asian populations of Chinese and Malay ethnicity studied, we observed a unique non-normal distribution of AMY1 diploid CN genotypes with even:odd CNs ratio of 4.5 (3.3-4.7), and an association between the common AMY2A CN = 2 genotype and odd CNs of AMY1, that could be explained by the underlying haplotypic structure. In two further case-control cohorts (n = 932 and 145, for Chinese and Malays, respectively), we did not observe the previously reported association between AMY1 and obesity or body mass index. Improved methods for accurately genotyping multiallelic CNV loci and understanding the haplotype complexity at the AMY1 locus are necessary for population genetics and association studies. © 2016 WILEY PERIODICALS, INC.

  1. Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum

    NARCIS (Netherlands)

    Vlaardingerbroek, I.; Beerens, B.; Rose, L.; Fokkens, L.; Cornelissen, B.J.C.; Rep, M.

    2016-01-01

    Horizontal transfer of supernumerary or lineage-specific (LS) chromosomes has been described in a number of plant pathogenic filamentous fungi. So far it was not known whether transfer is restricted to chromosomes of certain size or properties, or whether 'core' chromosomes can also undergo

  2. Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing

    DEFF Research Database (Denmark)

    Skovgaard, Ole; Bak, Mads; Løbner-Olesen, Anders

    2011-01-01

    a combination of WGS and genome copy number analysis, for the identification of mutations that suppress the growth deficiency imposed by excessive initiations from the Escherichia coli origin of replication, oriC. The E. coli chromosome, like the majority of bacterial chromosomes, is circular, and DNA...... replication is initiated by assembling two replication complexes at the origin, oriC. These complexes then replicate the chromosome bidirectionally toward the terminus, ter. In a population of growing cells, this results in a copy number gradient, so that origin-proximal sequences are more frequent than...... origin-distal sequences. Major rearrangements in the chromosome are, therefore, readily identified by changes in copy number, i.e., certain sequences become over- or under-represented. Of the eight mutations analyzed in detail here, six were found to affect a single gene only, one was a large chromosomal...

  3. Ectopic KIT copy number variation underlies impaired migration of primordial germ cells associated with gonadal hypoplasia in cattle (Bos taurus.

    Directory of Open Access Journals (Sweden)

    Heli Venhoranta

    Full Text Available Impaired migration of primordial germ cells during embryonic development causes hereditary gonadal hypoplasia in both sexes of Northern Finncattle and Swedish Mountain cattle. The affected gonads exhibit a lack of or, in rare cases, a reduced number of germ cells. Most affected animals present left-sided gonadal hypoplasia. However, right-sided and bilateral cases are also found. This type of gonadal hypoplasia prevails in animals with white coat colour. Previous studies indicated that gonadal hypoplasia is inherited in an autosomal recessive fashion with incomplete penetrance. In order to identify genetic regions underlying gonadal hypoplasia, a genome-wide association study (GWAS and a copy number variation (CNV analysis were performed with 94 animals, including 21 affected animals, using bovine 777,962 SNP arrays. The GWAS and CNV results revealed two significantly associated regions on bovine chromosomes (BTA 29 and 6, respectively (P=2.19 x 10(-13 and P=5.65 x 10(-6. Subsequent cytogenetic and PCR analyses demonstrated that homozygosity of a ~500 kb chromosomal segment translocated from BTA6 to BTA29 (Cs29 allele is the underlying genetic mechanism responsible for gonadal hypoplasia. The duplicated segment includes the KIT gene that is known to regulate the migration of germ cells and precursors of melanocytes. This duplication is also one of the two translocations associated with colour sidedness in various cattle breeds.

  4. Genome-wide variation in recombination rate in Eucalyptus.

    Science.gov (United States)

    Gion, Jean-Marc; Hudson, Corey J; Lesur, Isabelle; Vaillancourt, René E; Potts, Brad M; Freeman, Jules S

    2016-08-09

    Meiotic recombination is a fundamental evolutionary process. It not only generates diversity, but influences the efficacy of natural selection and genome evolution. There can be significant heterogeneity in recombination rates within and between species, however this variation is not well understood outside of a few model taxa, particularly in forest trees. Eucalypts are forest trees of global economic importance, and dominate many Australian ecosystems. We studied recombination rate in Eucalyptus globulus using genetic linkage maps constructed in 10 unrelated individuals, and markers anchored to the Eucalyptus reference genome. This experimental design provided the replication to study whether recombination rate varied between individuals and chromosomes, and allowed us to study the genomic attributes and population genetic parameters correlated with this variation. Recombination rate varied significantly between individuals (range = 2.71 to 3.51 centimorgans/megabase [cM/Mb]), but was not significantly influenced by sex or cross type (F1 vs. F2). Significant differences in recombination rate between chromosomes were also evident (range = 1.98 to 3.81 cM/Mb), beyond those which were due to variation in chromosome size. Variation in chromosomal recombination rate was significantly correlated with gene density (r = 0.94), GC content (r = 0.90), and the number of tandem duplicated genes (r = -0.72) per chromosome. Notably, chromosome level recombination rate was also negatively correlated with the average genetic diversity across six species from an independent set of samples (r = -0.75). The correlations with genomic attributes are consistent with findings in other taxa, however, the direction of the correlation between diversity and recombination rate is opposite to that commonly observed. We argue this is likely to reflect the interaction of selection and specific genome architecture of Eucalyptus. Interestingly, the differences amongst

  5. Genomic copy number analysis of a spectrum of blue nevi identifies recurrent aberrations of entire chromosomal arms in melanoma ex blue nevus.

    Science.gov (United States)

    Chan, May P; Andea, Aleodor A; Harms, Paul W; Durham, Alison B; Patel, Rajiv M; Wang, Min; Robichaud, Patrick; Fisher, Gary J; Johnson, Timothy M; Fullen, Douglas R

    2016-03-01

    Blue nevi may display significant atypia or undergo malignant transformation. Morphologic diagnosis of this spectrum of lesions is notoriously difficult, and molecular tools are increasingly used to improve diagnostic accuracy. We studied copy number aberrations in a cohort of cellular blue nevi, atypical cellular blue nevi, and melanomas ex blue nevi using Affymetrix's OncoScan platform. Cases with sufficient DNA were analyzed for GNAQ, GNA11, and HRAS mutations. Copy number aberrations were detected in 0 of 5 (0%) cellular blue nevi, 3 of 12 (25%) atypical cellular blue nevi, and 6 of 9 (67%) melanomas ex blue nevi. None of the atypical cellular blue nevi displayed more than one aberration, whereas complex aberrations involving four or more regions were seen exclusively in melanomas ex blue nevi. Gains and losses of entire chromosomal arms were identified in four of five melanomas ex blue nevi with copy number aberrations. In particular, gains of 1q, 4p, 6p, and 8q, and losses of 1p and 4q were each found in at least two melanomas. Whole chromosome aberrations were also common, and represented the sole finding in one atypical cellular blue nevus. When seen in melanomas, however, whole chromosome aberrations were invariably accompanied by partial aberrations of other chromosomes. Three melanomas ex blue nevi harbored aberrations, which were absent or negligible in their precursor components, suggesting progression in tumor biology. Gene mutations involving GNAQ and GNA11 were each detected in two of eight melanomas ex blue nevi. In conclusion, copy number aberrations are more common and often complex in melanomas ex blue nevi compared with cellular and atypical cellular blue nevi. Identification of recurrent gains and losses of entire chromosomal arms in melanomas ex blue nevi suggests that development of new probes targeting these regions may improve detection and risk stratification of these lesions.

  6. Targeting Chromosomal Instability and Tumour Heterogeneity in HER2-Positive Breast Cancer

    DEFF Research Database (Denmark)

    Burrell, Rebecca A.; Birkbak, Nicolai Juul; Johnston, Stephen R.

    2010-01-01

    Chromosomal instability (CIN) is a common cause of tumour heterogeneity and poor prognosis in solid tumours and describes cell-cell variation in chromosome structure or number across a tumour population. In this article we consider evidence suggesting that CIN may be targeted and may influence...... response to distinct chemotherapy regimens, using HER2-positive breast cancer as an example. Pre-clinical models have indicated a role for HER2 signalling in initiating CIN and defective cell-cycle control, and evidence suggests that HER2-targeting may attenuate this process. Anthracyclines and platinum...... agents may target tumours with distinct patterns of karyotypic complexity, whereas taxanes may have preferential activity in tumours with relative chromosomal stability. A greater understanding of karyotypic complexity and identification of methods to directly examine and target CIN may support novel...

  7. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica.

    Directory of Open Access Journals (Sweden)

    Nicolas Mary

    Full Text Available For the first time in the domestic pig, meiotic recombination along the 18 porcine autosomes was directly studied by immunolocalization of MLH1 protein. In total, 7,848 synaptonemal complexes from 436 spermatocytes were analyzed, and 13,969 recombination sites were mapped. Individual chromosomes for 113 of the 436 cells (representing 2,034 synaptonemal complexes were identified by immunostaining and fluorescence in situ hybridization (FISH. The average total length of autosomal synaptonemal complexes per cell was 190.3 µm, with 32.0 recombination sites (crossovers, on average, per cell. The number of crossovers and the lengths of the autosomal synaptonemal complexes showed significant intra- (i.e. between cells and inter-individual variations. The distributions of recombination sites within each chromosomal category were similar: crossovers in metacentric and submetacentric chromosomes were concentrated in the telomeric regions of the p- and q-arms, whereas two hotspots were located near the centromere and in the telomeric region of acrocentrics. Lack of MLH1 foci was mainly observed in the smaller chromosomes, particularly chromosome 18 (SSC18 and the sex chromosomes. All autosomes displayed positive interference, with a large variability between the chromosomes.

  8. Copy number variation plays an important role in clinical epilepsy

    Science.gov (United States)

    Olson, Heather; Shen, Yiping; Avallone, Jennifer; Sheidley, Beth R.; Pinsky, Rebecca; Bergin, Ann M.; Berry, Gerard T.; Duffy, Frank H.; Eksioglu, Yaman; Harris, David J.; Hisama, Fuki M.; Ho, Eugenia; Irons, Mira; Jacobsen, Christina M.; James, Philip; Kothare, Sanjeev; Khwaja, Omar; Lipton, Jonathan; Loddenkemper, Tobias; Markowitz, Jennifer; Maski, Kiran; Megerian, J. Thomas; Neilan, Edward; Raffalli, Peter C.; Robbins, Michael; Roberts, Amy; Roe, Eugene; Rollins, Caitlin; Sahin, Mustafa; Sarco, Dean; Schonwald, Alison; Smith, Sharon E.; Soul, Janet; Stoler, Joan M.; Takeoka, Masanori; Tan, Wen-Han; Torres, Alcy R.; Tsai, Peter; Urion, David K.; Weissman, Laura; Wolff, Robert; Wu, Bai-Lin; Miller, David T.; Poduri, Annapurna

    2015-01-01

    Objective To evaluate the role of copy number abnormalities detectable by chromosomal microarray (CMA) testing in patients with epilepsy at a tertiary care center. Methods We identified patients with ICD-9 codes for epilepsy or seizures and clinical CMA testing performed between October 2006 and February 2011 at Boston Children’s Hospital. We reviewed medical records and included patients meeting criteria for epilepsy. We phenotypically characterized patients with epilepsy-associated abnormalities on CMA. Results Of 973 patients who had CMA and ICD-9 codes for epilepsy or seizures, 805 patients satisfied criteria for epilepsy. We observed 437 copy number variants (CNVs) in 323 patients (1–4 per patient), including 185 (42%) deletions and 252 (58%) duplications. Forty (9%) were confirmed de novo, 186 (43%) were inherited, and parental data were unavailable for 211 (48%). Excluding full chromosome trisomies, CNV size ranged from 18 kb to 142 Mb, and 34% were over 500 kb. In at least 40 cases (5%), the epilepsy phenotype was explained by a CNV, including 29 patients with epilepsy-associated syndromes and 11 with likely disease-associated CNVs involving epilepsy genes or “hotspots.” We observed numerous recurrent CNVs including 10 involving loss or gain of Xp22.31, a region described in patients with and without epilepsy. Interpretation Copy number abnormalities play an important role in patients with epilepsy. Given that the diagnostic yield of CMA for epilepsy patients is similar to the yield in autism spectrum disorders and in prenatal diagnosis, for which published guidelines recommend testing with CMA, we recommend the implementation of CMA in the evaluation of unexplained epilepsy. PMID:24811917

  9. Analysis of Chromosome Number in Some Allium and Silene Wild Species with Ornamental Use

    OpenAIRE

    Lucia DRAGHIA; Elena Liliana CHELARIU; Culiţă SÎRBU; Maria BRÂNZĂ; Cristina SANDU MICULSCHI

    2013-01-01

    The present study analyses the number of somatic chromosomes in plant species with ornamental value, in Romanian indigenous flora, Allium (A. flavum L., A. saxatile Bieb.) and Silene (S. compacta Fischer., S. supina M.Bieb.). The biological material was identified and harvested in the South-Eastern part of Dobrogea (Tulcea and Constanţa counties), area in the South-Eastern part of Romania, situated between the Danube and the Black Sea. Individuals from two populations of Allium flavum and All...

  10. Analysis of 62 hybrid assembled human Y chromosomes exposes rapid structural changes and high rates of gene conversion.

    Directory of Open Access Journals (Sweden)

    Laurits Skov

    2017-08-01

    Full Text Available The human Y-chromosome does not recombine across its male-specific part and is therefore an excellent marker of human migrations. It also plays an important role in male fertility. However, its evolution is difficult to fully understand because of repetitive sequences, inverted repeats and the potentially large role of gene conversion. Here we perform an evolutionary analysis of 62 Y-chromosomes of Danish descent sequenced using a wide range of library insert sizes and high coverage, thus allowing large regions of these chromosomes to be well assembled. These include 17 father-son pairs, which we use to validate variation calling. Using a recent method that can integrate variants based on both mapping and de novo assembly, we genotype 10898 SNVs and 2903 indels (max length of 27241 bp in our sample and show by father-son concordance and experimental validation that the non-recurrent SNP and indel variation on the Y chromosome tree is called very accurately. This includes variation called in a 0.9 Mb centromeric heterochromatic region, which is by far the most variable in the Y chromosome. Among the variation is also longer sequence-stretches not present in the reference genome but shared with the chimpanzee Y chromosome. We analyzed 2.7 Mb of large inverted repeats (palindromes for variation patterns among the two palindrome arms and identified 603 mutation and 416 gene conversions events. We find clear evidence for GC-biased gene conversion in the palindromes (and a balancing AT mutation bias, but irrespective of this, also a strong bias towards gene conversion towards the ancestral state, suggesting that palindromic gene conversion may alleviate Muller's ratchet. Finally, we also find a large number of large-scale gene duplications and deletions in the palindromic regions (at least 24 and find that such events can consist of complex combinations of simultaneous insertions and deletions of long stretches of the Y chromosome.

  11. An algorithm for automatic detection of chromosome aberrations induced by radiation using features of gray level profile across the main axis of chromosome image

    International Nuclear Information System (INIS)

    Kawashima, Hironao; Imai, Katsuhiro; Fukuoka, Hideya; Yamamoto, Mikio; Hayata, Isamu.

    1990-01-01

    A simple algorithm for detecting chromosome aberrations induced by radiation is developed. Microscopic images of conventional Giemsa stained chromosomes of rearranged chromosomes (abnormal chromosomes) including dicentric chromosomes, ordinary acentric fragments, small acentric fragments, and acentric rings are used as samples. Variation of width along the main axis and gray level profile across the main axis of the chromosome image are used as features for classification. In 7 microscopic images which include 257 single chromosomes, 90.0% (231 chromosomes) are correctly classified into 6 categories and 23 of 26 abnormal chromosomes are correctly identified. As a result of discrimination between a normal and an abnormal chromosome, 95.3% of abnormal chromosomes are detected. (author)

  12. High Chromosome Number in hematological cancer cell lines is a Negative Predictor of Response to the inhibition of Aurora B and C by GSK1070916

    Directory of Open Access Journals (Sweden)

    Hardwicke Mary

    2011-07-01

    Full Text Available Abstract Background Aurora kinases play critical roles in mitosis and are being evaluated as therapeutic targets in cancer. GSK1070916 is a potent, selective, ATP competitive inhibitor of Aurora kinase B and C. Translation of predictive biomarkers to the clinic can benefit patients by identifying the tumors that are more likely to respond to therapies, especially novel inhibitors such as GSK1070916. Methods 59 Hematological cancer-derived cell lines were used as models for response where in vitro sensitivity to GSK1070916 was based on both time and degree of cell death. The response data was analyzed along with karyotype, transcriptomics and somatic mutation profiles to determine predictors of response. Results 20 cell lines were sensitive and 39 were resistant to treatment with GSK1070916. High chromosome number was more prevalent in resistant cell lines (p-value = 0.0098, Fisher Exact Test. Greater resistance was also found in cell lines harboring polyploid subpopulations (p-value = 0.00014, Unpaired t-test. A review of NOTCH1 mutations in T-ALL cell lines showed an association between NOTCH1 mutation status and chromosome number (p-value = 0.0066, Fisher Exact Test. Conclusions High chromosome number associated with resistance to the inhibition of Aurora B and C suggests cells with a mechanism to bypass the high ploidy checkpoint are resistant to GSK1070916. High chromosome number, a hallmark trait of many late stage hematological malignancies, varies in prevalence among hematological malignancy subtypes. The high frequency and relative ease of measurement make high chromosome number a viable negative predictive marker for GSK1070916.

  13. Stabilization of chromosomes by DNA intercalators for flow karyotyping and identification by banding of isolated chromosomes

    NARCIS (Netherlands)

    Aten, J. A.; Buys, C. H.; van der Veen, A. Y.; Mesa, J. R.; Yu, L. C.; Gray, J. W.; Osinga, J.; Stap, J.

    1987-01-01

    A number of structurally unrelated DNA intercalators have been studied as stabilizers of mitotic chromosomes during isolation from rodent and human metaphase cells. Seven out of the nine intercalators tested were found to be useful as chromosome stabilizing agents. Chromosome suspensions prepared in

  14. Cytogenetics of Mimosa bimucronata (DC.) O. Kuntze (Mimosoideae, Leguminosae): chromosome number, polysomaty and meiosis

    OpenAIRE

    Olkoski, Denise; Wittmann, Maria Teresa Schifino

    2011-01-01

    Chromosome numbers (somatic and/or gametic) were determined in 50 populations of M. bimucronata (DC.) O. Kuntze collected in the species area of distribution in Rio Grande do Sul, south Brazil. All populations were diploid (2n = 2x = 26, n = 13). Polysomatic (mostly tetraploid) cells were detected in the seedlings root-tip cells in 39 out of the 41 populations examined, ranging from 3.0 to 28.2 % among populations, but were absent in the root-tips of grown plants. Polysomaty was as well absen...

  15. Chromosomal radiosensitivity: a study of the chromosomal G2 assay in human blood lymphocytes indicating significant inter-individual variability

    International Nuclear Information System (INIS)

    Smart, V.; Curwen, G.B.; Whitehouse, C.A.; Edwards, A.; Tawn, E.J.

    2003-01-01

    The G 2 chromosomal radiosensitivity assay is a technically demanding assay. To ensure that it is reproducible in our laboratory, we have examined the effects of storage and culture conditions by applying the assay to a group of healthy controls and determined the extent of intra- and inter-individual variations. Nineteen different individuals provided one or more blood samples resulting in a total of 57 successful tests. Multiple cultures from a single blood sample showed no statistically significant difference in the number of chromatid type aberrations between cultures. A 24 h delay prior to culturing the lymphocytes did not significantly affect the induced G 2 score. Intra-individual variation was not statistically significant in seven out of nine individuals. Inter-individual variation was highly statistically significant (P<0.001), indicating that there is a real difference between individuals in the response to radiation using this assay

  16. Density-independent population projection trajectories of chromosome-substituted lines resistant and susceptible to organophosphate insecticides in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Miyo Takahiro

    2004-11-01

    Full Text Available Abstract Background Seasonal fluctuations in susceptibility to organophosphate insecticides were observed in the Katsunuma population of Drosophila melanogaster for two consecutive years; susceptibility to three organophosphates tended to increase in the fall. To examine the hypothesis that variation in fitness among resistant and susceptible genotypes could trigger the change of genetic constitution within the fall population, we investigated density-independent population projection trajectories starting from single adult females with characteristics of chromosome-substituted lines resistant and susceptible to the three organophosphates. Results Density-independent population projection trajectories, expressed as the ratios of the number of each chromosome-substituted line to that of line SSS, for which all chromosomes were derived from the susceptible line, showed significant declines in numbers with time for all the resistant chromosome-substituted lines. Conclusion The declining tendency in the density-independent population projection trajectories of the resistant chromosome-substituted lines could explain the simultaneous decline in the levels of resistance to the three organophosphates, observed in the Katsunuma population in the fall.

  17. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat--Thinopyrum intermedium.

    Science.gov (United States)

    Deng, Chuanliang; Bai, Lili; Fu, Shulan; Yin, Weibo; Zhang, Yingxin; Chen, Yuhong; Wang, Richard R-C; Zhang, Xiangqi; Han, Fangpu; Hu, Zanmin

    2013-01-01

    In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat--Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th. intermedium. Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th. intermedium, 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th. intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a J(s) genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (J(s) , J and St) in Th. intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th. bessarabicum. Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the J(s) genome, within a single chromosome, and among different genomes in Th. intermedium. Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different

  18. Microdissection and Chromosome Painting of the Alien Chromosome in an Addition Line of Wheat - Thinopyrum intermedium

    Science.gov (United States)

    Yin, Weibo; Zhang, Yingxin; Chen, Yuhong; Wang, Richard R.-C.; Zhang, Xiangqi; Han, Fangpu; Hu, Zanmin

    2013-01-01

    In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat - Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th . intermedium . Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th . intermedium , 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th . intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a Js genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (Js, J and St) in Th . intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th . bessarabicum . Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the Js genome, within a single chromosome, and among different genomes in Th . intermedium . Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different

  19. Filipino DNA variation at 12 X-chromosome short tandem repeat markers.

    Science.gov (United States)

    Salvador, Jazelyn M; Apaga, Dame Loveliness T; Delfin, Frederick C; Calacal, Gayvelline C; Dennis, Sheila Estacio; De Ungria, Maria Corazon A

    2018-06-08

    Demands for solving complex kinship scenarios where only distant relatives are available for testing have risen in the past years. In these instances, other genetic markers such as X-chromosome short tandem repeat (X-STR) markers are employed to supplement autosomal and Y-chromosomal STR DNA typing. However, prior to use, the degree of STR polymorphism in the population requires evaluation through generation of an allele or haplotype frequency population database. This population database is also used for statistical evaluation of DNA typing results. Here, we report X-STR data from 143 unrelated Filipino male individuals who were genotyped via conventional polymerase chain reaction-capillary electrophoresis (PCR-CE) using the 12 X-STR loci included in the Investigator ® Argus X-12 kit (Qiagen) and via massively parallel sequencing (MPS) of seven X-STR loci included in the ForenSeq ™ DNA Signature Prep kit of the MiSeq ® FGx ™ Forensic Genomics System (Illumina). Allele calls between PCR-CE and MPS systems were consistent (100% concordance) across seven overlapping X-STRs. Allele and haplotype frequencies and other parameters of forensic interest were calculated based on length (PCR-CE, 12 X-STRs) and sequence (MPS, seven X-STRs) variations observed in the population. Results of our study indicate that the 12 X-STRs in the PCR-CE system are highly informative for the Filipino population. MPS of seven X-STR loci identified 73 X-STR alleles compared with 55 X-STR alleles that were identified solely by length via PCR-CE. Of the 73 sequence-based alleles observed, six alleles have not been reported in the literature. The population data presented here may serve as a reference Philippine frequency database of X-STRs for forensic casework applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Contrasting patterns of Y-chromosome variation in South Siberian populations from Baikal and Altai-Sayan regions.

    Science.gov (United States)

    Derenko, Miroslava; Malyarchuk, Boris; Denisova, Galina A; Wozniak, Marcin; Dambueva, Irina; Dorzhu, Choduraa; Luzina, Faina; Miścicka-Sliwka, Danuta; Zakharov, Ilia

    2006-01-01

    In order to investigate the genetic history of autochthonous South Siberian populations and to estimate the contribution of distinct patrilineages to their gene pools, we have analyzed 17 Y-chromosomal binary markers (YAP, RPS4Y(711), SRY-8299, M89, M201, M52, M170, 12f2, M9, M20, 92R7, SRY-1532, DYS199, M173, M17, Tat, and LLY22 g) in a total sample of 1,358 males from 14 ethnic groups of Siberia (Altaians-Kizhi, Teleuts, Shors, Tuvinians, Todjins, Tofalars, Sojots, Khakassians, Buryats, Evenks), Central/Eastern Asia (Mongolians and Koreans) and Eastern Europe (Kalmyks and Russians). Based on both, the distribution pattern of Y-chromosomal haplogroups and results on AMOVA analysis we observed the statistically significant genetic differentiation between the populations of Baikal and Altai-Sayan regions. We suggest that these regional differences can be best explained by different contribution of Central/Eastern Asian and Eastern European paternal lineages into gene pools of modern South Siberians. The population of the Baikal region demonstrates the prevalence of Central/Eastern Asian lineages, whereas in the populations of Altai and Sayan regions the highest paternal contribution resulted from Eastern European descent is revealed. Yet, our data on Y-chromosome STRs variation demonstrate the clear differences between the South Siberian and Eastern European R1a1-lineages with the evolutionary ages compatible with divergence time between these two regional groups.

  1. B chromosomes are associated with redistribution of genetic recombination towards lower recombination chromosomal regions in perennial ryegrass.

    Science.gov (United States)

    Harper, John; Phillips, Dylan; Thomas, Ann; Gasior, Dagmara; Evans, Caron; Powell, Wayne; King, Julie; King, Ian; Jenkins, Glyn; Armstead, Ian

    2018-04-09

    Supernumerary 'B' chromosomes are non-essential components of the genome present in a range of plant and animal species-including many grasses. Within diploid and polyploid ryegrass and fescue species, including the forage grass perennial ryegrass (Lolium perenne L.), the presence of B chromosomes has been reported as influencing both chromosome pairing and chiasma frequencies. In this study, the effects of the presence/absence of B chromosomes on genetic recombination has been investigated through generating DArT (Diversity Arrays Technology) marker genetic maps for six perennial ryegrass diploid populations, the pollen parents of which contained either two B or zero B chromosomes. Through genetic and cytological analyses of these progeny and their parents, we have identified that, while overall cytological estimates of chiasma frequencies were significantly lower in pollen mother cells with two B chromosomes as compared with zero B chromosomes, the recombination frequencies within some marker intervals were actually increased, particularly for marker intervals in lower recombination regions of chromosomes, namely pericentromeric regions. Thus, in perennial ryegrass, the presence of two B chromosomes redistributed patterns of meiotic recombination in pollen mother cells in ways which could increase the range of allelic variation available to plant breeders.

  2. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome evolution between two wheat cultivars

    KAUST Repository

    Thind, Anupriya Kaur

    2018-02-08

    Background: Recent improvements in DNA sequencing and genome scaffolding have paved the way to generate high-quality de novo assemblies of pseudomolecules representing complete chromosomes of wheat and its wild relatives. These assemblies form the basis to compare the evolutionary dynamics of wheat genomes on a megabase-scale. Results: Here, we provide a comparative sequence analysis of the 700-megabase chromosome 2D between two bread wheat genotypes, the old landrace Chinese Spring and the elite Swiss spring wheat line CH Campala Lr22a. There was a high degree of sequence conservation between the two chromosomes. Analysis of large structural variations revealed four large insertions/deletions (InDels) of >100 kb. Based on the molecular signatures at the breakpoints, unequal crossing over and double-strand break repair were identified as the evolutionary mechanisms that caused these InDels. Three of the large InDels affected copy number of NLRs, a gene family involved in plant immunity. Analysis of single nucleotide polymorphism (SNP) density revealed three haploblocks of 8 Mb, 9 Mb and 48 Mb with a 35-fold increased SNP density compared to the rest of the chromosome. Conclusions: This comparative analysis of two high-quality chromosome assemblies enabled a comprehensive assessment of large structural variations. The insight obtained from this analysis will form the basis of future wheat pan-genome studies.

  3. A microhomology-mediated break-induced replication model for the origin of human copy number variation.

    Directory of Open Access Journals (Sweden)

    P J Hastings

    2009-01-01

    Full Text Available Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV. A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2-5 base pairs (bp. Third, endpoints occur near pre-existing low copy repeats (LCRs. Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR. Under these circumstances, single-strand 3' tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.

  4. SSR allelic variation of rice variety Hangxiangnuo bred by space mutation

    International Nuclear Information System (INIS)

    Yang Tifeng; Liu Chuanguang; Pan Dajian; Fan Zhilan; Li Chen; Chen Jianyou; Liu Bin; Jiang Yijun; Gao Yun; Zhou Hanqin

    2011-01-01

    Hangxiangnuo, an indica fragrant glutinous rice mutant, was induced by space environment. Comparing with its wild type Nanfengnuo, the yield and blast resistance of Hangxiangnuo are improved significantly and the grain shape became slender and with fragrance. To understand the mechanisms of space mutation and identify the changes at molecular level associated with phenotypic variations, SSR allelic variation analysis were performed on Hangxiangnuo and Nanfengnuo in this study. The results showed that 45 loci were polymorphic among the 156 SSR loci tested throughout the genome, the frequency of variation was 28.85%. Among the polymorphic loci, 42 loci only showed variations in the molecular weight of the amplified bands, only on locus increased the number of amplification bands in Hangxiangnuo and two loci were differed by heterozygous loci (with two amplification bands at one locus) detected in Nanfengnuo and homozygous loci in Hangxiangnuo. It suggests that the change of some loci in mutants was due to the normal segregation and recombination of heterozygous loci of the wild type. The variation frequencies among different chromosomes were quite different, with the highest one at 50.00% detected on chromosomes 7, 8 and 12, and the lowest at 6.25% on chromosome 6. The polymorphic loci were clustered on chromosomes throughout the genome indicating that large DNA segments mutation is one of the major variation patterns induced by space environment. Some of reported QTLs involved in grain shape, yield, fragrance and blast resistance were found to be located exactly in the mutated regions. Therefore, further study is needed to confirm that these QTLs are responsible for the trait variations. (authors)

  5. Cytogenetic evaluation of human glial tumors: correlation of overexpression of epidermal growth factor receptor (EGFB) with abnormalities of chromosome 7

    International Nuclear Information System (INIS)

    Bell, C.W.

    1987-01-01

    Chromosome banding analysis of human glial tumors were performed using G- and Q-banding techniques in an attempt to establish recurring sites of chromosome change. Results revealed a nonrandom karyotypic profile including aneuploidy and considerable variation in chromosome number (range 40 → 200). All tumors examined displayed numerical abnormalities, with the most common numeric change being a gain of chromosome 7. An attempt was then made to correlate the observed chromosome 7 changes with activation of the cellular proto-oncogene c-erb-B, whose produce is the epidermal growth factor receptor (EGFR). Six human glial tumors were analyzed for 125 I-EGF binding, EGFR gene copy number, EGFR gene rearrangement, mRNA expression, and karyotypic profile. Saturation analysis at 4 0 C revealed significant numbers of EGFR's in all 6 tumors. Southern blotting analysis utilizing cDNA probes for the EGFR failed to demonstrate significant amplification or structural rearrangement of the EFGR gene. The results suggest that overexpression of the EGFR may be related to an alternative mechanism, other than gene amplification and elevated mRNA levels, such as the regulation of receptor biosynthesis and degradation. In summary, findings indicate that alterations of chromosome 7 are the most prevalent chromosomal change in human glial tumors, and that these alterations may lead to overexpression of the protooncogene c-erb-B

  6. The Relationship between the (In-)Stability of NORs and Their Chromosomal Location: The Example of Cercopithecidae and a Short Review of Other Primates.

    Science.gov (United States)

    Gerbault-Seureau, Michèle; Cacheux, Lauriane; Dutrillaux, Bernard

    2017-01-01

    Amongst Cercopithecidae, the species of the Cercopithecini tribe underwent a very active chromosome evolution, principally by fissions, which increased their chromosome number up to 72. In contrast, all the species of Papionini have fairly similar karyotypes with 42 chromosomes. In animals, nucleolus organizer regions (NORs) are generally considered as instable structures, which frequently vary in size, number, and location at both infra- and interspecific levels. Although in Cercopithecinae the NORs, involved in breaks, exchanges, and translocations, behave like fragile sites in somatic cells, their number and location appear to be very stable between species. Fluorescence in situ hybridization of a 28S rDNA probe on metaphase chromosomes displayed a unique interstitial location in either an acrocentric pair (in 12 species of Cercopithecini) or a metacentric pair (in 6 species of Papionini). A non-exhaustive survey of literature data on NOR location in other primates shows that numerical variations of the NORs principally depend on their location: most multiple NORs are in terminal positions, while almost all unique NORs are in interstitial positions. We propose that this correlation is the consequence of the selection against gametic imbalances involving the chromosomal material distal to the NORs, which is effective when they are interstitially, but not terminally, located. Thus, the consequences of the interstitial NOR instability for reproduction are essentially limited to their size variations, as observed in Cercopithecidae. © 2018 S. Karger AG, Basel.

  7. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes

    Science.gov (United States)

    Voss, Stephen R.; Kump, D. Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J.; Basa, Saritha; Walker, John A.; Smith, Jeramiah J.

    2011-01-01

    Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12–17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution. PMID:21482624

  8. Mechanisms of chromosomal evolution and its possible relation to natural history characteristics in Ancistrus catfishes (Siluriformes: Loricariidae).

    Science.gov (United States)

    de Oliveira, R R; Feldberg, E; Dos Anjos, M B; Zuanon, J

    2009-12-01

    Ancistrus is the most speciose genus of the tribe Ancistrini, with 58 valid species and many yet to be described. Cytogenetic studies were conducted on five apparently undescribed species from the Amazon basin, which showed different diploid numbers: Ancistrus sp. Purus (2n = 34); Ancistrus sp. Macoari (2n = 46); Ancistrus sp. Dimona (2n = 52); Ancistrus sp. Vermelho (2n = 42) and Ancistrus sp. Trombetas (2n = 38). All species possessed only one pair of NOR-carrying chromosomes, but with extensive variation in both the location on the chromosome as well as in the position of the ribosomal sites on the karyotype. The karyotypic evolution of Ancistrus species seems to be based on chromosomal rearrangements, with a tendency to a reduction of the diploid number. Two new instances of XX/XY sex chromosomes for Ancistrus species, based on the heteromorphism in the male karyotype, were also recorded. The large karyotypic diversity among Ancistrus species may be related to biological and behavioural characteristics of these fish that include microhabitat preferences, territoriality and specialized reproductive tactics. These characteristics may lead to a fast rate of fixation of chromosomal mutations and eventually speciation across the basin.

  9. Chromosomal Replication Complexity: A Novel DNA Metrics and Genome Instability Factor.

    Directory of Open Access Journals (Sweden)

    Andrei Kuzminov

    2016-10-01

    Full Text Available As the ratio of the copy number of the most replicated to the unreplicated regions in the same chromosome, the definition of chromosomal replication complexity (CRC appears to leave little room for variation, being either two during S-phase or one otherwise. However, bacteria dividing faster than they replicate their chromosome spike CRC to four and even eight. A recent experimental inquiry about the limits of CRC in Escherichia coli revealed two major reasons to avoid elevating it further: (i increased chromosomal fragmentation and (ii complications with subsequent double-strand break repair. Remarkably, examples of stable elevated CRC in eukaryotic chromosomes are well known under various terms like "differential replication," "underreplication," "DNA puffs," "onion-skin replication," or "re-replication" and highlight the phenomenon of static replication fork (sRF. To accurately describe the resulting "amplification by overinitiation," I propose a new term: "replification" (subchromosomal overreplication. In both prokaryotes and eukaryotes, replification, via sRF processing, causes double-strand DNA breaks and, with their repair elevating chromosomal rearrangements, represents a novel genome instability factor. I suggest how static replication bubbles could be stabilized and speculate that some tandem duplications represent such persistent static bubbles. Moreover, I propose how static replication bubbles could be transformed into tandem duplications, double minutes, or inverted triplications. Possible experimental tests of these models are discussed.

  10. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity.

    Science.gov (United States)

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A; Bradford, William D; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S; Li, Rong

    2015-03-30

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. Copyright © 2015 Zhu et al.

  11. MECHANISMS IN ENDOCRINOLOGY: Aberrations of the X chromosome as cause of male infertility.

    Science.gov (United States)

    Röpke, Albrecht; Tüttelmann, Frank

    2017-11-01

    Male infertility is most commonly caused by spermatogenetic failure, clinically noted as oligo- or a-zoospermia. Today, in approximately 20% of azoospermic patients, a causal genetic defect can be identified. The most frequent genetic causes of azoospermia (or severe oligozoospermia) are Klinefelter syndrome (47,XXY), structural chromosomal abnormalities and Y-chromosomal microdeletions. Consistent with Ohno's law, the human X chromosome is the most stable of all the chromosomes, but contrary to Ohno's law, the X chromosome is loaded with regions of acquired, rapidly evolving genes, which are of special interest because they are predominantly expressed in the testis. Therefore, it is not surprising that the X chromosome, considered as the female counterpart of the male-associated Y chromosome, may actually play an essential role in male infertility and sperm production. This is supported by the recent description of a significantly increased copy number variation (CNV) burden on both sex chromosomes in infertile men and point mutations in X-chromosomal genes responsible for male infertility. Thus, the X chromosome seems to be frequently affected in infertile male patients. Four principal X-chromosomal aberrations have been identified so far: (1) aneuploidy of the X chromosome as found in Klinefelter syndrome (47,XXY or mosaicism for additional X chromosomes). (2) Translocations involving the X chromosome, e.g. nonsyndromic 46,XX testicular disorders of sex development (XX-male syndrome) or X-autosome translocations. (3) CNVs affecting the X chromosome. (4) Point mutations disrupting X-chromosomal genes. All these are reviewed herein and assessed concerning their importance for the clinical routine diagnostic workup of the infertile male as well as their potential to shape research on spermatogenic failure in the next years. © 2017 European Society of Endocrinology.

  12. Taiwan Y-chromosomal DNA variation and its relationship with Island Southeast Asia

    Science.gov (United States)

    2014-01-01

    Background Much of the data resolution of the haploid non-recombining Y chromosome (NRY) haplogroup O in East Asia are still rudimentary and could be an explanatory factor for current debates on the settlement history of Island Southeast Asia (ISEA). Here, 81 slowly evolving markers (mostly SNPs) and 17 Y-chromosomal short tandem repeats were used to achieve higher level molecular resolution. Our aim is to investigate if the distribution of NRY DNA variation in Taiwan and ISEA is consistent with a single pre-Neolithic expansion scenario from Southeast China to all ISEA, or if it better fits an expansion model from Taiwan (the OOT model), or whether a more complex history of settlement and dispersals throughout ISEA should be envisioned. Results We examined DNA samples from 1658 individuals from Vietnam, Thailand, Fujian, Taiwan (Han, plain tribes and 14 indigenous groups), the Philippines and Indonesia. While haplogroups O1a*-M119, O1a1*-P203, O1a2-M50 and O3a2-P201 follow a decreasing cline from Taiwan towards Western Indonesia, O2a1-M95/M88, O3a*-M324, O3a1c-IMS-JST002611 and O3a2c1a-M133 decline northward from Western Indonesia towards Taiwan. Compared to the Taiwan plain tribe minority groups the Taiwanese Austronesian speaking groups show little genetic paternal contribution from Han. They are also characterized by low Y-chromosome diversity, thus testifying for fast drift in these populations. However, in contrast to data provided from other regions of the genome, Y-chromosome gene diversity in Taiwan mountain tribes significantly increases from North to South. Conclusion The geographic distribution and the diversity accumulated in the O1a*-M119, O1a1*-P203, O1a2-M50 and O3a2-P201 haplogroups on one hand, and in the O2a1-M95/M88, O3a*-M324, O3a1c-IMS-JST002611 and O3a2c1a-M133 haplogroups on the other, support a pincer model of dispersals and gene flow from the mainland to the islands which likely started during the late upper Paleolithic, 18,000 to 15

  13. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat--Thinopyrum intermedium.

    Directory of Open Access Journals (Sweden)

    Chuanliang Deng

    Full Text Available In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat--Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th. intermedium. Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th. intermedium, 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th. intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome and pDbH12 (a J(s genome specific probe as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (J(s , J and St in Th. intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th. bessarabicum. Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the J(s genome, within a single chromosome, and among different genomes in Th. intermedium. Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of

  14. Evidence of Chromosomal Instability in Prostate Cancer Determined by Spectral Karyotyping (SKY and Interphase FISH Analysis

    Directory of Open Access Journals (Sweden)

    Ben Beheshti

    2001-01-01

    Full Text Available The way in which cytogenetic aberrations develop in prostate cancer (Cap is poorly understood. Spectral karyotype (SKY analysis of Cap cell lines has shown that they have unstable karyotypes and also have features associated with chromosomal instability (CIN. To accurately determine the incidence of de novo structural and numerical aberrations in vitro in Cap, we performed SKY analysis of three independent clones derived from one representative cell line, DU145. The frequent generation of new chromosomal rearrangements and a wide variation in the number of structural aberrations within two to five passages suggested that this cell line exhibited some of the features associated with a CIN phenotype. To study numerical cell-to-cell variation, chromosome 8 aneusomy was assessed in the LNCaP, DU145, and PC-3 cell lines and a patient cohort of 15 Cap primary tumors by interphase fluorescence in situ hybridization (FISH. This analysis showed that a high frequency of numerical alteration affecting chromosome 8 was present in both in vitro and in Cap tissues. In comparison to normal controls, the patient cohort had a statistically significant (P<.05, greater frequency of cells with one and three centromere 8 copies. These data suggest that a CIN-like process may be contributing towards the generation of de novo numerical and structural chromosome abnormalities in Cap.

  15. Interphase Chromosome Profiling: A Method for Conventional Banded Chromosome Analysis Using Interphase Nuclei.

    Science.gov (United States)

    Babu, Ramesh; Van Dyke, Daniel L; Dev, Vaithilingam G; Koduru, Prasad; Rao, Nagesh; Mitter, Navnit S; Liu, Mingya; Fuentes, Ernesto; Fuentes, Sarah; Papa, Stephen

    2018-02-01

    - Chromosome analysis on bone marrow or peripheral blood samples fails in a small proportion of attempts. A method that is more reliable, with similar or better resolution, would be a welcome addition to the armamentarium of the cytogenetics laboratory. - To develop a method similar to banded metaphase chromosome analysis that relies only on interphase nuclei. - To label multiple targets in an equidistant fashion along the entire length of each chromosome, including landmark subtelomere and centromere regions. Each label so generated by using cloned bacterial artificial chromosome probes is molecularly distinct with unique spectral characteristics, so the number and position of the labels can be tracked to identify chromosome abnormalities. - Interphase chromosome profiling (ICP) demonstrated results similar to conventional chromosome analysis and fluorescence in situ hybridization in 55 previously studied cases and obtained useful ICP chromosome analysis results on another 29 cases in which conventional methods failed. - ICP is a new and powerful method to karyotype peripheral blood and bone marrow aspirate preparations without reliance on metaphase chromosome preparations. It will be of particular value for cases with a failed conventional analysis or when a fast turnaround time is required.

  16. Performance of Savonius Blade Waterwheel with Variation of Blade Number

    Science.gov (United States)

    Sule, L.; Rompas, P. T. D.

    2018-02-01

    The utilization of water energy source is mainly used as a provider of electrical energy through hydroelectric power. The potential utilization of water flow energy is relatively small. The objective of this study is to know the best blade of Savonius waterwheel with various variables such as water discharge, blade number, and loading. The data used the efficiency of waterwheel, variation of blade number, variable water discharge, and loading in the shaft. The test results have shown that the performances of a top-water mill with the semicircular curve where the variation in the number of blades are 4, 6, and 8 at discharge and loading of 0.01587 m3/s and 1000 grams respectively were 9.945%, 13.929%, and 17.056% respectively. The blades number of 8 obtained the greatest performance. The more number of blades the greater the efficiency of the waterwheel Savonius.

  17. B Chromosome Variants of the Grasshopper Xyleus discoideus angulatus Are Potentially Derived from Pericentromeric DNA.

    Science.gov (United States)

    Bernardino, Andrezza C S; Cabral-de-Mello, Diogo C; Machado, Carolina B; Palacios-Gimenez, Octavio M; Santos, Neide; Loreto, Vilma

    2017-01-01

    B chromosomes, extra elements present in the karyotypes of some eukaryote species, have been described in the grasshopper Xyleus discoideus angulatus. Although some studies have proposed an autosomal origin of the B chromosome in X. d. angulatus, little is known about its repetitive DNA composition and evolutionary dynamics. The aim of the present work was to shed light on the B chromosome evolution in X. d. angulatus by cytogenetic analysis of 27 populations from Pernambuco and Ceará states (Brazil). The frequency of B chromosomes in the different populations was determined, and chromosome measurements and fluorescence in situ hybridization (FISH) with C0t-DNA and telomeric and B chromosome sequences were performed in cells from B-carrying individuals. The results revealed variations in B chromosome prevalence among the populations and showed that some B chromosomes were smaller in certain populations. FISH produced similar patterns for the C0t-DNA probe in all hybridized individuals, whereas telomeric and B chromosome probes, obtained by microdissection, exhibited variations in their distribution. These results indicate the presence of 3 morphotypes of B chromosomes in X. d. angulatus, with variation in repetitive DNA composition during their evolution. In this species, B chromosomes have an intraspecific origin and probably arose from the pericentromeric region of A chromosomes. © 2017 S. Karger AG, Basel.

  18. Flow cytometry measurements of human chromosome kinetochore labeling

    International Nuclear Information System (INIS)

    Fantes, J.A.; Green, D.K.; Malloy, P.; Sumner, A.T.

    1989-01-01

    A method for the preparation and measurement of immunofluorescent human chromosome centromeres in suspension is described using CREST antibodies, which bind to the centromeric region of chromosomes. Fluorescein isothiocyanate (FITC)-conjugated antihuman antibodies provide the fluorescent label. Labeled chromosomes are examined on microscope slides and by flow cytometry. In both cases a dye which binds to DNA is added to provide identification of the chromosome groups. Sera from different CREST patients vary in their ability to bind to chromosome arms in addition to the centromeric region. Flow cytometry and microfluorimetry measurements have shown that with a given CREST serum the differences in kinetochore fluorescence between chromosomes are only minor. Flow cytometry experiments to relate the number of dicentric chromosomes, induced by in vitro radiation of peripheral blood cells to the slightly increased number of chromosomes with above-average kinetochore fluorescence did not produce decisive radiation dosimetry results

  19. Variation in vertebral number and its morphological implication in Galaxias platei.

    Science.gov (United States)

    Barriga, J P; Milano, D; Cussac, V E

    2013-11-01

    Variation in the vertebral number of the puyen grande Galaxias platei was examined for specimens from 22 localities that span the entire distribution range of the species (from 40° to 55° S). The mean vertebral number (NMW ) increases towards high latitudes, i.e. Jordan's rule is applicable to this species. Owing to the wide geographic variation of the species, not only in latitude but also in altitude, the most explicative variable for NMW was mean winter air temperature, showing negative dependence. Morphological data suggest that the increment in vertebral number lies in the pre-pelvic region of the trunk and in the caudal region, but not in the segment between pelvic-fin insertion and the origin of the anal fin. As these alterations in body shape have important consequences for hydrodynamics and swimming performance, vertebral number variation in G. platei also holds implications for both individual and population fitness. © 2013 The Fisheries Society of the British Isles.

  20. The association of reduced folate carrier 80G>A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number

    DEFF Research Database (Denmark)

    Gregers, Jannie; Christensen, Ib Jarle; Dalhoff, Kim

    2010-01-01

    with chromosome 21 copy number in the leukemic clone. A total of 500 children with acute lymphoblastic leukemia treated according to the common Nordic treatment protocols were included, and we found that the RFC AA variant was associated with a 50% better chance of staying in remission compared with GG or GA......The reduced folate carrier (RFC) is involved in the transport of methotrexate (MTX) across the cell membrane. The RFC gene (SLC19A1) is located on chromosome 21, and we hypothesized that the RFC80 G>A polymorphism would affect outcome and toxicity in childhood leukemia and that this could interact...... variants (P = .046). Increased copy numbers of chromosome 21 appear to improve outcome also in children with GA or GG variant. In a subset of 182 children receiving 608 high-dose MTX courses, we observed higher degree of bone marrow toxicity in patients with the RFC AA variant compared with GA/GG variants...

  1. Chromosomal radiosensitivity of human leucocytes in relation to sampling time

    International Nuclear Information System (INIS)

    Buul, P.P.W. van; Natarajan, A.T.

    1980-01-01

    Frequencies of chromosomal aberrations after irradiation with X-rays of peripheral blood lymphocytes in vitro were determined at different times after initiation of cultures. In each culture, the kinetics of cell multiplication was followed by using BrdU labelling and differential staining of chromosomes. The results indicate that the mixing up of first and second cell cycle cells at later sampling times cannot explain the observed variation in the frequencies of chromosomal aberrations but that donor-to-donor variation is a predominant factor influencing yields of aberrations. The condition of a donor seems to be most important because repeats on the same donor also showed marked variability. (orig.)

  2. Interclonal variations in the molecular karyotype of Trypanosoma cruzi: chromosome rearrangements in a single cell-derived clone of the G strain.

    Science.gov (United States)

    Lima, Fabio Mitsuo; Souza, Renata Torres; Santori, Fábio Rinaldo; Santos, Michele Fernandes; Cortez, Danielle Rodrigues; Barros, Roberto Moraes; Cano, Maria Isabel; Valadares, Helder Magno Silva; Macedo, Andréa Mara; Mortara, Renato Arruda; da Silveira, José Franco

    2013-01-01

    Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure.

  3. Chromosome break points of T-lymphocytes from atomic bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Kamada, Nanao; Kuramoto, Atsushi; Ohkita, Takeshi

    1980-01-01

    Chromosome break points of T-lymphocytes were investigated for 9 atomic bomb survivors estimated to be irradiated with 100 - 630 red. Chromosome aberration was found in 199 cells out of 678 cells investigated, with non-random distribution. The types of the chromosome aberration were, transfer: 56%, deficit: 38%, additional abnormality 3%, and reverse: 2%. High and low incidence of chromosome aberrations were observed at the chromosome numbers of 22, 21, and 13, and 11, 12, and 4, respectively. The aberration numbers per arm were high in 22q, 21q, and 18p and low in 11q, 5p, and 12q. For the distribution of aberration number within a chromosome, 50.7% was observed at the terminal portion and 73% was at the pale band appeared by Q-partial-stain method, suggesting the non-random distribution. The incidence of aberration number in 22q was statistically significant (P 1 chromosome in chronic myelocytic leukemia. The non-random distribution of chromosome break points seemed to reflect the selection effect since irradiation. (Nakanishi, T.)

  4. High and uneven levels of 45S rDNA site-number variation across wild populations of a diploid plant genus (Anacyclus, Asteraceae).

    Science.gov (United States)

    Rosato, Marcela; Álvarez, Inés; Nieto Feliner, Gonzalo; Rosselló, Josep A

    2017-01-01

    The nuclear genome harbours hundreds to several thousand copies of ribosomal DNA. Despite their essential role in cellular ribogenesis few studies have addressed intrapopulation, interpopulation and interspecific levels of rDNA variability in wild plants. Some studies have assessed the extent of rDNA variation at the sequence and copy-number level with large sampling in several species. However, comparable studies on rDNA site number variation in plants, assessed with extensive hierarchical sampling at several levels (individuals, populations, species) are lacking. In exploring the possible causes for ribosomal loci dynamism, we have used the diploid genus Anacyclus (Asteraceae) as a suitable system to examine the evolution of ribosomal loci. To this end, the number and chromosomal position of 45S rDNA sites have been determined in 196 individuals from 47 populations in all Anacyclus species using FISH. The 45S rDNA site-number has been assessed in a significant sample of seed plants, which usually exhibit rather consistent features, except for polyploid plants. In contrast, the level of rDNA site-number variation detected in Anacyclus is outstanding in the context of angiosperms particularly regarding populations of the same species. The number of 45S rDNA sites ranged from four to 11, accounting for 14 karyological ribosomal phenotypes. Our results are not even across species and geographical areas, and show that there is no clear association between the number of 45S rDNA loci and the life cycle in Anacyclus. A single rDNA phenotype was detected in several species, but a more complex pattern that included intra-specific and intra-population polymorphisms was recorded in A. homogamos, A. clavatus and A. valentinus, three weedy species showing large and overlapping distribution ranges. It is likely that part of the cytogenetic changes and inferred dynamism found in these species have been triggered by genomic rearrangements resulting from contemporary

  5. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  6. Investigation of Copy Number Variation in Children with Conotruncal Heart Defects

    International Nuclear Information System (INIS)

    Campos, Carla Marques Rondon; Zanardo, Evelin Aline; Dutra, Roberta Lelis; Kulikowski, Leslie Domenici; Kim, Chong Ae

    2015-01-01

    Congenital heart defects (CHD) are the most prevalent group of structural abnormalities at birth and one of the main causes of infant morbidity and mortality. Studies have shown a contribution of the copy number variation in the genesis of cardiac malformations. Investigate gene copy number variation (CNV) in children with conotruncal heart defect. Multiplex ligation-dependent probe amplification (MLPA) was performed in 39 patients with conotruncal heart defect. Clinical and laboratory assessments were conducted in all patients. The parents of the probands who presented abnormal findings were also investigated. Gene copy number variation was detected in 7/39 patients: 22q11.2 deletion, 22q11.2 duplication, 15q11.2 duplication, 20p12.2 duplication, 19p deletion, 15q and 8p23.2 duplication with 10p12.31 duplication. The clinical characteristics were consistent with those reported in the literature associated with the encountered microdeletion/microduplication. None of these changes was inherited from the parents. Our results demonstrate that the technique of MLPA is useful in the investigation of microdeletions and microduplications in conotruncal congenital heart defects. Early diagnosis of the copy number variation in patients with congenital heart defect assists in the prevention of morbidity and decreased mortality in these patients

  7. Investigation of Copy Number Variation in Children with Conotruncal Heart Defects

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Carla Marques Rondon, E-mail: carlamcampos@uol.com.br [Universidade Federal de Mato Grosso, Cuiabá, MT (Brazil); Zanardo, Evelin Aline; Dutra, Roberta Lelis [Departamento de Patologia - Laboratório de Citogenômica - LIM 03 - Universidade de São Paulo, São Paulo, SP (Brazil); Kulikowski, Leslie Domenici [Universidade de São Paulo, São Paulo, SP (Brazil); Departamento de Patologia - Laboratório de Citogenômica - LIM 03 - Universidade de São Paulo, São Paulo, SP (Brazil); Kim, Chong Ae [Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-01-15

    Congenital heart defects (CHD) are the most prevalent group of structural abnormalities at birth and one of the main causes of infant morbidity and mortality. Studies have shown a contribution of the copy number variation in the genesis of cardiac malformations. Investigate gene copy number variation (CNV) in children with conotruncal heart defect. Multiplex ligation-dependent probe amplification (MLPA) was performed in 39 patients with conotruncal heart defect. Clinical and laboratory assessments were conducted in all patients. The parents of the probands who presented abnormal findings were also investigated. Gene copy number variation was detected in 7/39 patients: 22q11.2 deletion, 22q11.2 duplication, 15q11.2 duplication, 20p12.2 duplication, 19p deletion, 15q and 8p23.2 duplication with 10p12.31 duplication. The clinical characteristics were consistent with those reported in the literature associated with the encountered microdeletion/microduplication. None of these changes was inherited from the parents. Our results demonstrate that the technique of MLPA is useful in the investigation of microdeletions and microduplications in conotruncal congenital heart defects. Early diagnosis of the copy number variation in patients with congenital heart defect assists in the prevention of morbidity and decreased mortality in these patients.

  8. Microarray Analysis of Copy Number Variants on the Human Y Chromosome Reveals Novel and Frequent Duplications Overrepresented in Specific Haplogroups.

    Directory of Open Access Journals (Sweden)

    Martin M Johansson

    Full Text Available The human Y chromosome is almost always excluded from genome-wide investigations of copy number variants (CNVs due to its highly repetitive structure. This chromosome should not be forgotten, not only for its well-known relevance in male fertility, but also for its involvement in clinical phenotypes such as cancers, heart failure and sex specific effects on brain and behaviour.We analysed Y chromosome data from Affymetrix 6.0 SNP arrays and found that the signal intensities for most of 8179 SNP/CN probes in the male specific region (MSY discriminated between a male, background signals in a female and an isodicentric male containing a large deletion of the q-arm and a duplication of the p-arm of the Y chromosome. Therefore, this SNP/CN platform is suitable for identification of gain and loss of Y chromosome sequences. In a set of 1718 males, we found 25 different CNV patterns, many of which are novel. We confirmed some of these variants by PCR or qPCR. The total frequency of individuals with CNVs was 14.7%, including 9.5% with duplications, 4.5% with deletions and 0.7% exhibiting both. Hence, a novel observation is that the frequency of duplications was more than twice the frequency of deletions. Another striking result was that 10 of the 25 detected variants were significantly overrepresented in one or more haplogroups, demonstrating the importance to control for haplogroups in genome-wide investigations to avoid stratification. NO-M214(xM175 individuals presented the highest percentage (95% of CNVs. If they were not counted, 12.4% of the rest included CNVs, and the difference between duplications (8.9% and deletions (2.8% was even larger.Our results demonstrate that currently available genome-wide SNP platforms can be used to identify duplications and deletions in the human Y chromosome. Future association studies of the full spectrum of Y chromosome variants will demonstrate the potential involvement of gain or loss of Y chromosome sequence in

  9. The DNA sequence of the human X chromosome

    Science.gov (United States)

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.; Hillier, LaDeana W.; Willard, Huntington F.; Wilson, Richard K.; Waterston, Robert H.; Rice, Catherine M.; Vaudin, Mark; Coulson, Alan; Nelson, David L.; Weinstock, George; Sulston, John E.; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A.; Beck, Stephan; Rogers, Jane; Bentley, David R.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  10. The first cytogenetic description of Euleptes europaea (Gené, 1839 from Northern Sardinia reveals the highest diploid chromosome number among sphaerodactylid geckos (Sphaerodactylidae, Squamata

    Directory of Open Access Journals (Sweden)

    Ekaterina Gornung

    2013-06-01

    Full Text Available The karyotype of a sphaerodactylid gecko Euleptes europaea (Gené, 1839 was assembled for the first time in this species. It is made of 2n = 42 gradually decreasing in size chromosomes, the highest chromosome number so far acknowledged in the family Sphaerodactylidae. The second chromosome pair of the karyotype appears slightly heteromorphic in the male individual. Accordingly, FISH with a telomeric probe revealed an uneven distribution of telomeric repeats on the two homologues of this pair, which may be indicative of an XY sex-determination system in the species, to be further investigated.

  11. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady's slipper orchid

    Directory of Open Access Journals (Sweden)

    Albert Victor A

    2011-09-01

    Full Text Available Abstract Background Paphiopedilum is a horticulturally and ecologically important genus of ca. 80 species of lady's slipper orchids native to Southeast Asia. These plants have long been of interest regarding their chromosomal evolution, which involves a progressive aneuploid series based on either fission or fusion of centromeres. Chromosome number is positively correlated with genome size, so rearrangement processes must include either insertion or deletion of DNA segments. We have conducted Fluorescence In Situ Hybridization (FISH studies using 5S and 25S ribosomal DNA (rDNA probes to survey for rearrangements, duplications, and phylogenetically-correlated variation within Paphiopedilum. We further studied sequence variation of the non-transcribed spacers of 5S rDNA (5S-NTS to examine their complex duplication history, including the possibility that concerted evolutionary forces may homogenize diversity. Results 5S and 25S rDNA loci among Paphiopedilum species, representing all key phylogenetic lineages, exhibit a considerable diversity that correlates well with recognized evolutionary groups. 25S rDNA signals range from 2 (representing 1 locus to 9, the latter representing hemizygosity. 5S loci display extensive structural variation, and show from 2 specific signals to many, both major and minor and highly dispersed. The dispersed signals mainly occur at centromeric and subtelomeric positions, which are hotspots for chromosomal breakpoints. Phylogenetic analysis of cloned 5S rDNA non-transcribed spacer (5S-NTS sequences showed evidence for both ancient and recent post-speciation duplication events, as well as interlocus and intralocus diversity. Conclusions Paphiopedilum species display many chromosomal rearrangements - for example, duplications, translocations, and inversions - but only weak concerted evolutionary forces among highly duplicated 5S arrays, which suggests that double-strand break repair processes are dynamic and ongoing. These

  12. Occurrence of B chromosomes in Tetragonisca Latreille, 1811 (Hymenoptera, Apidae, Meliponini: a new contribution to the cytotaxonomy of the genus

    Directory of Open Access Journals (Sweden)

    Adriane Barth

    2011-01-01

    Full Text Available Tetragonisca angustula and Tetragonisca fiebrigi have recently been listed as valid species. This study aimed to cytogenetically investigate both species, emphasizing the new registry of B chromosomes in the tribe Meliponini. We analyzed colonies of T. angustula and T. fiebrigi collected at Tangará da Serra, Mato Grosso, Brazil, through conventional Giemsa staining, C-banding, and base-specific fluorochrome staining (CMA3/DAPI. T. angustula showed 2n = 34 chromosomes in females and n = 17 in males, with karyotype formula 2K = 34A M. T. fiebrigi showed numeric variation, with chromosome number varying from 2n = 34 to 2n = 36 in females and from n = 17 to n=18in males, with karyotype formula 2K = 32A M+2A Mc and 2K = 32A M+2A Mc + 1 or 2 B-chromosomes. The B chromosomes are heterochromatic. In T. fiebrigi, the CMA3/DAPI staining revealed four chromosomes with a CMA3 positive band. All individuals from the same colony showed the same number of B chromosomes. T. angustula and T. fiebrigi showed karyotype divergence, principally due to the presence of B chromosomes, which are found only in T. fiebrigi. Our data corroborate the status of valid species for both T. angustula and T. fiebrigi, as recently proposed.

  13. Tumor-specific chromosome mis-segregation controls cancer plasticity by maintaining tumor heterogeneity.

    Directory of Open Access Journals (Sweden)

    Yuanjie Hu

    Full Text Available Aneuploidy with chromosome instability is a cancer hallmark. We studied chromosome 7 (Chr7 copy number variation (CNV in gliomas and in primary cultures derived from them. We found tumor heterogeneity with cells having Chr7-CNV commonly occurs in gliomas, with a higher percentage of cells in high-grade gliomas carrying more than 2 copies of Chr7, as compared to low-grade gliomas. Interestingly, all Chr7-aneuploid cell types in the parental culture of established glioma cell lines reappeared in single-cell-derived subcultures. We then characterized the biology of three syngeneic glioma cultures dominated by different Chr7-aneuploid cell types. We found phenotypic divergence for cells following Chr7 mis-segregation, which benefited overall tumor growth in vitro and in vivo. Mathematical modeling suggested the involvement of chromosome instability and interactions among cell subpopulations in restoring the optimal equilibrium of tumor cell types. Both our experimental data and mathematical modeling demonstrated that the complexity of tumor heterogeneity could be enhanced by the existence of chromosomes with structural abnormality, in addition to their mis-segregations. Overall, our findings show, for the first time, the involvement of chromosome instability in maintaining tumor heterogeneity, which underlies the enhanced growth, persistence and treatment resistance of cancers.

  14. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. II. Cloning of resistance gene analogs from single chromosomes.

    Science.gov (United States)

    Huang, D; Wu, W; Lu, L

    2004-05-01

    Amplification of resistance gene analogs (RGAs) is both a useful method for acquiring DNA markers closely linked to disease resistance (R) genes and a potential approach for the rapid cloning of R genes in plants. However, the screening of target sequences from among the numerous amplified RGAs can be very laborious. The amplification of RGAs from specific chromosomes could greatly reduce the number of RGAs to be screened and, consequently, speed up the identification of target RGAs. We have developed two methods for amplifying RGAs from single chromosomes. Method 1 uses products of Sau3A linker adaptor-mediated PCR (LAM-PCR) from a single chromosome as the templates for RGA amplification, while Method 2 directly uses a single chromosomal DNA molecule as the template. Using a pair of degenerate primers designed on the basis of the conserved nucleotide-binding-site motifs in many R genes, RGAs were successfully amplified from single chromosomes of pomelo using both these methods. Sequencing and cluster analysis of RGA clones obtained from single chromosomes revealed the number, type and organization of R-gene clusters on the chromosomes. We suggest that Method 1 is suitable for analyzing chromosomes that are unidentifiable under a microscope, while Method 2 is more appropriate when chromosomes can be clearly identified.

  15. Male Mutation Bias Is the Main Force Shaping Chromosomal Substitution Rates in Monotreme Mammals.

    Science.gov (United States)

    Link, Vivian; Aguilar-Gómez, Diana; Ramírez-Suástegui, Ciro; Hurst, Laurence D; Cortez, Diego

    2017-09-01

    In many species, spermatogenesis involves more cell divisions than oogenesis, and the male germline, therefore, accumulates more DNA replication errors, a phenomenon known as male mutation bias. The extent of male mutation bias (α) is estimated by comparing substitution rates of the X, Y, and autosomal chromosomes, as these chromosomes spend different proportions of their time in the germlines of the two sexes. Male mutation bias has been characterized in placental and marsupial mammals as well as birds, but analyses in monotremes failed to detect any such bias. Monotremes are an ancient lineage of egg-laying mammals with distinct biological properties, which include unique germline features. Here, we sought to assess the presence and potential characteristics of male mutation bias in platypus and the short-beaked echidna based on substitution rate analyses of X, Y, and autosomes. We established the presence of moderate male mutation bias in monotremes, corresponding to an α value of 2.12-3.69. Given that it has been unclear what proportion of the variation in substitution rates on the different chromosomal classes is really due to differential number of replications, we analyzed the influence of other confounding forces (selection, replication-timing, etc.) and found that male mutation bias is the main force explaining the between-chromosome classes differences in substitution rates. Finally, we estimated the proportion of variation at the gene level in substitution rates that is owing to replication effects and found that this phenomenon can explain >68% of these variations in monotremes, and in control species, rodents, and primates. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Spo0A regulates chromosome copy number during sporulation by directly binding to the origin of replication in Bacillus subtilis

    NARCIS (Netherlands)

    Boonstra, Mirjam; de Jong, Imke G.; Scholefield, Graham; Murray, Heath; Kuipers, Oscar P.; Veening, Jan-Willem

    When starved, Bacillus subtilis cells can enter the developmental programme of endospore formation by activation of the master transcriptional regulator Spo0A. Correct chromosome copy number is crucial for the production of mature and fully resistant spores. The production and maintenance of one

  17. An improved method for chromosome counting in maize.

    Science.gov (United States)

    Kato, A

    1997-09-01

    An improved method for counting chromosomes in maize (Zea mays L.) is presented. Application of cold treatment (5C, 24 hr), heat treatment (42 C, 5 min) and a second cold treatment (5C, 24 hr) to root tips before fixation increased the number of condensed and dispersed countable metaphase chromosome figures. Fixed root tips were prepared by the enzymatic maceration-air drying method and preparations were stained with acetic orcein. Under favorable conditions, one preparation with 50-100 countable chromosome figures could be obtained in diploid maize using this method. Conditions affecting the dispersion of the chromosomes are described. This technique is especially useful for determining the somatic chromosome number in triploid and tetraploid maize lines.

  18. Copy Number Variations in Tilapia Genomes.

    Science.gov (United States)

    Li, Bi Jun; Li, Hong Lian; Meng, Zining; Zhang, Yong; Lin, Haoran; Yue, Gen Hua; Xia, Jun Hong

    2017-02-01

    Discovering the nature and pattern of genome variation is fundamental in understanding phenotypic diversity among populations. Although several millions of single nucleotide polymorphisms (SNPs) have been discovered in tilapia, the genome-wide characterization of larger structural variants, such as copy number variation (CNV) regions has not been carried out yet. We conducted a genome-wide scan for CNVs in 47 individuals from three tilapia populations. Based on 254 Gb of high-quality paired-end sequencing reads, we identified 4642 distinct high-confidence CNVs. These CNVs account for 1.9% (12.411 Mb) of the used Nile tilapia reference genome. A total of 1100 predicted CNVs were found overlapping with exon regions of protein genes. Further association analysis based on linear model regression found 85 CNVs ranging between 300 and 27,000 base pairs significantly associated to population types (R 2  > 0.9 and P > 0.001). Our study sheds first insights on genome-wide CNVs in tilapia. These CNVs among and within tilapia populations may have functional effects on phenotypes and specific adaptation to particular environments.

  19. The association of reduced folate carrier 80G>A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number

    DEFF Research Database (Denmark)

    Gregers, Jannie; Christensen, Ib Jarle; Dalhoff, Kim

    2010-01-01

    with chromosome 21 copy number in the leukemic clone. A total of 500 children with acute lymphoblastic leukemia treated according to the common Nordic treatment protocols were included, and we found that the RFC AA variant was associated with a 50% better chance of staying in remission compared with GG or GA...... (platelet 73 vs 99/105 x 10(9)/L, P = .004, hemoglobin 5.6 vs 5.9/6.0 mmol/L, P = .004) and a higher degree of liver toxicity in patients with RFC GG variant (alanine aminotransferase 167 vs 127/124 U/L, P = .05). In conclusion, the RFC 80G>A polymorphism interacts with chromosome 21 copy numbers...

  20. Investigation of Copy Number Variation in Children with Conotruncal Heart Defects

    Directory of Open Access Journals (Sweden)

    Carla Marques Rondon Campos

    2015-01-01

    Full Text Available Background: Congenital heart defects (CHD are the most prevalent group of structural abnormalities at birth and one of the main causes of infant morbidity and mortality. Studies have shown a contribution of the copy number variation in the genesis of cardiac malformations. Objectives: Investigate gene copy number variation (CNV in children with conotruncal heart defect. Methods: Multiplex ligation-dependent probe amplification (MLPA was performed in 39 patients with conotruncal heart defect. Clinical and laboratory assessments were conducted in all patients. The parents of the probands who presented abnormal findings were also investigated. Results: Gene copy number variation was detected in 7/39 patients: 22q11.2 deletion, 22q11.2 duplication, 15q11.2 duplication, 20p12.2 duplication, 19p deletion, 15q and 8p23.2 duplication with 10p12.31 duplication. The clinical characteristics were consistent with those reported in the literature associated with the encountered microdeletion/microduplication. None of these changes was inherited from the parents. Conclusions: Our results demonstrate that the technique of MLPA is useful in the investigation of microdeletions and microduplications in conotruncal congenital heart defects. Early diagnosis of the copy number variation in patients with congenital heart defect assists in the prevention of morbidity and decreased mortality in these patients.

  1. Sequencing of a patient with balanced chromosome abnormalities and neurodevelopmental disease identifies disruption of multiple high risk loci by structural variation.

    Directory of Open Access Journals (Sweden)

    Jonathon Blake

    Full Text Available Balanced chromosome abnormalities (BCAs occur at a high frequency in healthy and diseased individuals, but cost-efficient strategies to identify BCAs and evaluate whether they contribute to a phenotype have not yet become widespread. Here we apply genome-wide mate-pair library sequencing to characterize structural variation in a patient with unclear neurodevelopmental disease (NDD and complex de novo BCAs at the karyotype level. Nucleotide-level characterization of the clinically described BCA breakpoints revealed disruption of at least three NDD candidate genes (LINC00299, NUP205, PSMD14 that gave rise to abnormal mRNAs and could be assumed as disease-causing. However, unbiased genome-wide analysis of the sequencing data for cryptic structural variation was key to reveal an additional submicroscopic inversion that truncates the schizophrenia- and bipolar disorder-associated brain transcription factor ZNF804A as an equally likely NDD-driving gene. Deep sequencing of fluorescent-sorted wild-type and derivative chromosomes confirmed the clinically undetected BCA. Moreover, deep sequencing further validated a high accuracy of mate-pair library sequencing to detect structural variants larger than 10 kB, proposing that this approach is powerful for clinical-grade genome-wide structural variant detection. Our study supports previous evidence for a role of ZNF804A in NDD and highlights the need for a more comprehensive assessment of structural variation in karyotypically abnormal individuals and patients with neurocognitive disease to avoid diagnostic deception.

  2. Sequencing of a Patient with Balanced Chromosome Abnormalities and Neurodevelopmental Disease Identifies Disruption of Multiple High Risk Loci by Structural Variation

    Science.gov (United States)

    Blake, Jonathon; Riddell, Andrew; Theiss, Susanne; Gonzalez, Alexis Perez; Haase, Bettina; Jauch, Anna; Janssen, Johannes W. G.; Ibberson, David; Pavlinic, Dinko; Moog, Ute; Benes, Vladimir; Runz, Heiko

    2014-01-01

    Balanced chromosome abnormalities (BCAs) occur at a high frequency in healthy and diseased individuals, but cost-efficient strategies to identify BCAs and evaluate whether they contribute to a phenotype have not yet become widespread. Here we apply genome-wide mate-pair library sequencing to characterize structural variation in a patient with unclear neurodevelopmental disease (NDD) and complex de novo BCAs at the karyotype level. Nucleotide-level characterization of the clinically described BCA breakpoints revealed disruption of at least three NDD candidate genes (LINC00299, NUP205, PSMD14) that gave rise to abnormal mRNAs and could be assumed as disease-causing. However, unbiased genome-wide analysis of the sequencing data for cryptic structural variation was key to reveal an additional submicroscopic inversion that truncates the schizophrenia- and bipolar disorder-associated brain transcription factor ZNF804A as an equally likely NDD-driving gene. Deep sequencing of fluorescent-sorted wild-type and derivative chromosomes confirmed the clinically undetected BCA. Moreover, deep sequencing further validated a high accuracy of mate-pair library sequencing to detect structural variants larger than 10 kB, proposing that this approach is powerful for clinical-grade genome-wide structural variant detection. Our study supports previous evidence for a role of ZNF804A in NDD and highlights the need for a more comprehensive assessment of structural variation in karyotypically abnormal individuals and patients with neurocognitive disease to avoid diagnostic deception. PMID:24625750

  3. Global chromosomal structural instability in a subpopulation of starving Escherichia coli cells.

    Directory of Open Access Journals (Sweden)

    Dongxu Lin

    2011-08-01

    Full Text Available Copy-number variations (CNVs constitute very common differences between individual humans and possibly all genomes and may therefore be important fuel for evolution, yet how they form remains elusive. In starving Escherichia coli, gene amplification is induced by stress, controlled by the general stress response. Amplification has been detected only encompassing genes that confer a growth advantage when amplified. We studied the structure of stress-induced gene amplification in starving cells in the Lac assay in Escherichia coli by array comparative genomic hybridization (aCGH, with polymerase chain reaction (pcr and DNA sequencing to establish the structures generated. About 10% of 300 amplified isolates carried other chromosomal structural change in addition to amplification. Most of these were inversions and duplications associated with the amplification event. This complexity supports a mechanism similar to that seen in human non-recurrent copy number variants. We interpret these complex events in terms of repeated template switching during DNA replication. Importantly, we found a significant occurrence (6 out of 300 of chromosomal structural changes that were apparently not involved in the amplification event. These secondary changes were absent from 240 samples derived from starved cells not carrying amplification, suggesting that amplification happens in a differentiated subpopulation of stressed cells licensed for global chromosomal structural change and genomic instability. These data imply that chromosomal structural changes occur in bursts or showers of instability that may have the potential to drive rapid evolution.

  4. Effective Normalization for Copy Number Variation Detection from Whole Genome Sequencing

    NARCIS (Netherlands)

    Janevski, A.; Varadan, V.; Kamalakaran, S.; Banerjee, N.; Dimitrova, D.

    2012-01-01

    Background Whole genome sequencing enables a high resolution view ofthe human genome and provides unique insights into genome structureat an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools while validatedalso include a number of

  5. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21

    DEFF Research Database (Denmark)

    McGinniss, M J; Kazazian, H H; Stetten, G

    1992-01-01

    We studied the mechanism of ring chromosome 21 (r(21)) formation in 13 patients (11 unique r(21)s), consisting of 7 from five families with familial r(21) and 6 with de novo r(21). The copy number of chromosome 21 sequences in the rings of these patients was determined by quantitative dosage......), resulting in deletion of varying amounts of 21q22.1 to 21qter. The data from one individual who had a Down syndrome phenotype were consistent with asymmetric breakage and reunion of 21q sequences from an intermediate isochromosome or Robertsonian translocation chromosome as reported by Wong et al. Another......). The phenotype of patients correlated well with the extent of deletion or duplication of chromosome 21 sequences. These data demonstrate three mechanisms of r(21) formation and show that the phenotype of r(21) patients varies with the extent of chromosome 21 monosomy or trisomy....

  6. A comprehensive profile of DNA copy number variations in a Korean population: identification of copy number invariant regions among Koreans.

    Science.gov (United States)

    Jeon, Jae Pil; Shim, Sung Mi; Jung, Jong Sun; Nam, Hye Young; Lee, Hye Jin; Oh, Berm Seok; Kim, Kuchan; Kim, Hyung Lae; Han, Bok Ghee

    2009-09-30

    To examine copy number variations among the Korean population, we compared individual genomes with the Korean reference genome assembly using the publicly available Korean HapMap SNP 50 k chip data from 90 individuals. Korean individuals exhibited 123 copy number variation regions (CNVRs) covering 27.2 mb, equivalent to 1.0% of the genome in the copy number variation (CNV) analysis using the combined criteria of P value (Por= 0.25) among study subjects. In contrast, when compared to the Affymetrix reference genome assembly from multiple ethnic groups, considerably more CNVRs (n=643) were detected in larger proportions (5.0%) of the genome covering 135.1 mb even by more stringent criteria (Por=0.25), reflecting ethnic diversity of structural variations between Korean and other populations. Some CNVRs were validated by the quantitative multiplex PCR of short fluorescent fragment (QMPSF) method, and then copy number invariant regions were detected among the study subjects. These copy number invariant regions would be used as good internal controls for further CNV studies. Lastly, we demonstrated that the CNV information could stratify even a single ethnic population with a proper reference genome assembly from multiple heterogeneous populations.

  7. Chromosomal instability and double minute chromosomes in a breast cancer patient

    International Nuclear Information System (INIS)

    Lalic, H.; Radosevic-Stasic, B.

    2004-01-01

    Cytogenetic analysis was performed in peripheral blood lymphocytes (PBL) of a woman with ductal breast carcinoma, who as a hospital employee was exposed professionally for 15 years to low doses of ionizing radiation. The most important finding after the chemotherapy in combination with radiotherapy was the presence of double minutes (DM) chromosomes, in combination with other chromosomal abnormalities (on 200 scored metaphases were found 2 chromatid breaks, 10 dicentrics, 11 acentric fragments, 2 gaps, and 3 double min chromosomes). In a repeated analysis (after 6 months), DM chromosomes were still present. To rule out the possibility that the patient was overexposed to ionizing radiation at work, her blood test was compared with a group of coworkers as well as with a group of professionally unexposed people. The data rejected this possibility, but the retroactive analysis showed that the patient even at the time of employment had a moderately increased number of chromosomal aberrations (3.5%) consisting of 3 isochromatids and 4 gaps, suggesting that her initial genomic instability enhanced the later development. The finding of a continuous presence of rare DM chromosomes in her PBL (4 and 10 months after radio-chemotherapy) was considered as an indicator of additional risk, which might have some prognostic significance. (author)

  8. Chromosome 17: association of a large inversion polymorphism with corticosteroid response in asthma.

    Science.gov (United States)

    Tantisira, Kelan G; Lazarus, Ross; Litonjua, Augusto A; Klanderman, Barbara; Weiss, Scott T

    2008-08-01

    A 900-kb inversion exists within a large region of conserved linkage disequilibrium (LD) on chromosome 17. CRHR1 is located within the inversion region and associated with inhaled corticosteroid response in asthma. We hypothesized that CRHR1 variants are in LD with the inversion, supporting a potential role for natural selection in the genetic response to corticosteroids. We genotyped six single nucleotide polymorphisms (SNPs) spanning chromosome 17: 40,410,565-42,372,240, including four SNPs defining inversion status. Similar allele frequencies and strong LD were noted between the inversion and a CRHR1 SNP previously associated with lung function response to inhaled corticosteroids. Each inversion-defining SNP was strongly associated with inhaled corticosteroid response in adult asthma (P values 0.002-0.005). The CRHR1 response to inhaled corticosteroids may thus be explained by natural selection resulting from inversion status or by long-range LD with another gene. Additional pharmacogenetic investigations into regions of chromosomal diversity, including copy number variation and inversions, are warranted.

  9. Copy number variation analysis of matched ovarian primary tumors and peritoneal metastasis.

    Directory of Open Access Journals (Sweden)

    Joel A Malek

    Full Text Available Ovarian cancer is the most deadly gynecological cancer. The high rate of mortality is due to the large tumor burden with extensive metastatic lesion of the abdominal cavity. Despite initial chemosensitivity and improved surgical procedures, abdominal recurrence remains an issue and results in patients' poor prognosis. Transcriptomic and genetic studies have revealed significant genome pathologies in the primary tumors and yielded important information regarding carcinogenesis. There are, however, few studies on genetic alterations and their consequences in peritoneal metastatic tumors when compared to their matched ovarian primary tumors. We used high-density SNP arrays to investigate copy number variations in matched primary and metastatic ovarian cancer from 9 patients. Here we show that copy number variations acquired by ovarian tumors are significantly different between matched primary and metastatic tumors and these are likely due to different functional requirements. We show that these copy number variations clearly differentially affect specific pathways including the JAK/STAT and cytokine signaling pathways. While many have shown complex involvement of cytokines in the ovarian cancer environment we provide evidence that ovarian tumors have specific copy number variation differences in many of these genes.

  10. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy.

    Directory of Open Access Journals (Sweden)

    Debora Giorgi

    Full Text Available The large size and complex polyploid nature of many genomes has often hampered genomics development, as is the case for several plants of high agronomic value. Isolating single chromosomes or chromosome arms via flow sorting offers a clue to resolve such complexity by focusing sequencing to a discrete and self-consistent part of the whole genome. The occurrence of sufficient differences in the size and or base-pair composition of the individual chromosomes, which is uncommon in plants, is critical for the success of flow sorting. We overcome this limitation by developing a robust method for labeling isolated chromosomes, named Fluorescent In situ Hybridization In suspension (FISHIS. FISHIS employs fluorescently labeled synthetic repetitive DNA probes, which are hybridized, in a wash-less procedure, to chromosomes in suspension following DNA alkaline denaturation. All typical A, B and D genomes of wheat, as well as individual chromosomes from pasta (T. durum L. and bread (T. aestivum L. wheat, were flow-sorted, after FISHIS, at high purity. For the first time in eukaryotes, each individual chromosome of a diploid organism, Dasypyrum villosum (L. Candargy, was flow-sorted regardless of its size or base-pair related content. FISHIS-based chromosome sorting is a powerful and innovative flow cytogenetic tool which can develop new genomic resources from each plant species, where microsatellite DNA probes are available and high quality chromosome suspensions could be produced. The joining of FISHIS labeling and flow sorting with the Next Generation Sequencing methodology will enforce genomics for more species, and by this mightier chromosome approach it will be possible to increase our knowledge about structure, evolution and function of plant genome to be used for crop improvement. It is also anticipated that this technique could contribute to analyze and sort animal chromosomes with peculiar cytogenetic abnormalities, such as copy number variations

  11. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy.

    Science.gov (United States)

    Giorgi, Debora; Farina, Anna; Grosso, Valentina; Gennaro, Andrea; Ceoloni, Carla; Lucretti, Sergio

    2013-01-01

    The large size and complex polyploid nature of many genomes has often hampered genomics development, as is the case for several plants of high agronomic value. Isolating single chromosomes or chromosome arms via flow sorting offers a clue to resolve such complexity by focusing sequencing to a discrete and self-consistent part of the whole genome. The occurrence of sufficient differences in the size and or base-pair composition of the individual chromosomes, which is uncommon in plants, is critical for the success of flow sorting. We overcome this limitation by developing a robust method for labeling isolated chromosomes, named Fluorescent In situ Hybridization In suspension (FISHIS). FISHIS employs fluorescently labeled synthetic repetitive DNA probes, which are hybridized, in a wash-less procedure, to chromosomes in suspension following DNA alkaline denaturation. All typical A, B and D genomes of wheat, as well as individual chromosomes from pasta (T. durum L.) and bread (T. aestivum L.) wheat, were flow-sorted, after FISHIS, at high purity. For the first time in eukaryotes, each individual chromosome of a diploid organism, Dasypyrum villosum (L.) Candargy, was flow-sorted regardless of its size or base-pair related content. FISHIS-based chromosome sorting is a powerful and innovative flow cytogenetic tool which can develop new genomic resources from each plant species, where microsatellite DNA probes are available and high quality chromosome suspensions could be produced. The joining of FISHIS labeling and flow sorting with the Next Generation Sequencing methodology will enforce genomics for more species, and by this mightier chromosome approach it will be possible to increase our knowledge about structure, evolution and function of plant genome to be used for crop improvement. It is also anticipated that this technique could contribute to analyze and sort animal chromosomes with peculiar cytogenetic abnormalities, such as copy number variations or cytogenetic

  12. Search for copy number variants in chromosomes 15q11-q13 and 22q11.2 in obsessive compulsive disorder

    Directory of Open Access Journals (Sweden)

    Grabe Hans

    2010-06-01

    Full Text Available Abstract Background Obsessive-compulsive disorder (OCD is a clinically and etiologically heterogeneous syndrome. The high frequency of obsessive-compulsive symptoms reported in subjects with the 22q11.2 deletion syndrome (DiGeorge/velocardiofacial syndrome or Prader-Willi syndrome (15q11-13 deletion of the paternally derived chromosome, suggests that gene dosage effects in these chromosomal regions could increase risk for OCD. Therefore, the aim of this study was to search for microrearrangements in these two regions in OCD patients. Methods We screened the 15q11-13 and 22q11.2 chromosomal regions for genomic imbalances in 236 patients with OCD using multiplex ligation-dependent probe amplification (MLPA. Results No deletions or duplications involving 15q11-13 or 22q11.2 were identified in our patients. Conclusions Our results suggest that deletions/duplications of chromosomes 15q11-13 and 22q11.2 are rare in OCD. Despite the negative findings in these two regions, the search for copy number variants in OCD using genome-wide array-based methods is a highly promising approach to identify genes of etiologic importance in the development of OCD.

  13. Determination of chromosomal ploidy in Agave ssp. | Lingling ...

    African Journals Online (AJOL)

    Chromosome observation is necessary to elucidate the structure, function and organization of Agave plants' genes and genomes. However, few researches about chromosome observation of Agave ssp. were done, not only because their chromosome numbers are large, but also because their ploidies are complicated.

  14. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms

    Science.gov (United States)

    Fleischmann, Andreas; Michael, Todd P.; Rivadavia, Fernando; Sousa, Aretuza; Wang, Wenqin; Temsch, Eva M.; Greilhuber, Johann; Müller, Kai F.; Heubl, Günther

    2014-01-01

    Background and Aims Some species of Genlisea possess ultrasmall nuclear genomes, the smallest known among angiosperms, and some have been found to have chromosomes of diminutive size, which may explain why chromosome numbers and karyotypes are not known for the majority of species of the genus. However, other members of the genus do not possess ultrasmall genomes, nor do most taxa studied in related genera of the family or order. This study therefore examined the evolution of genome sizes and chromosome numbers in Genlisea in a phylogenetic context. The correlations of genome size with chromosome number and size, with the phylogeny of the group and with growth forms and habitats were also examined. Methods Nuclear genome sizes were measured from cultivated plant material for a comprehensive sampling of taxa, including nearly half of all species of Genlisea and representing all major lineages. Flow cytometric measurements were conducted in parallel in two laboratories in order to compare the consistency of different methods and controls. Chromosome counts were performed for the majority of taxa, comparing different staining techniques for the ultrasmall chromosomes. Key Results Genome sizes of 15 taxa of Genlisea are presented and interpreted in a phylogenetic context. A high degree of congruence was found between genome size distribution and the major phylogenetic lineages. Ultrasmall genomes with 1C values of sections of the genus. The smallest known plant genomes were not found in G. margaretae, as previously reported, but in G. tuberosa (1C ≈ 61 Mbp) and some strains of G. aurea (1C ≈ 64 Mbp). Conclusions Genlisea is an ideal candidate model organism for the understanding of genome reduction as the genus includes species with both relatively large (∼1700 Mbp) and ultrasmall (∼61 Mbp) genomes. This comparative, phylogeny-based analysis of genome sizes and karyotypes in Genlisea provides essential data for selection of suitable species for comparative

  15. Chromosomal variation, macroevolution and possible parapatric speciation in Mepraia spinolai (Porter (Hemiptera: Reduviidae

    Directory of Open Access Journals (Sweden)

    Frias Daniel

    1998-01-01

    Full Text Available Mepraia spinolai is an endemic species in Chile that lives in wild and domestic habitats. It is the only species of the Reduviidae family that shows alate polymorphism; females are always wingless, but males can be found with and without wings. The M. spinolai karyotype consists of 10 pairs of autosomes and a complex sex determination system. Males from the northernmost regions I and II (latitude 18°-26° South are always winged (braquipterous and are X1X2Y, with a large Y chromosome. From region III to the metropolitan region (latitude 26°-33° South, males may be either winged or wingless but appear to be polymorphic for a small neo-Y chromosome, which may have originated by fracture of the large holocentric Y chromosome found in populations from farther north. Experimental crosses suggest that the genes for wings are linked in the Y chromosome and also that there are two cytologically indistinguishable types of neo-Y chromosomes. One form (Y1 bears a gene or genes for wings while the other (Y2 lacks such genes. Males that are X1X2Y1, X1X2Y1Y1 and X1X2Y1Y2 are winged, while the absence of Y1 (X1X2Y2 and X1X2Y2Y2 results in a wingless male. These chromosomes and morphological changes are correlated with a shift of the southern population into more arid habitats of the interior in the metropolitan region and region III.

  16. Development of a quantitative pachytene chromosome map and its unification with somatic chromosome and linkage maps of rice (Oryza sativa L.).

    Science.gov (United States)

    Ohmido, Nobuko; Iwata, Aiko; Kato, Seiji; Wako, Toshiyuki; Fukui, Kiichi

    2018-01-01

    A quantitative pachytene chromosome map of rice (Oryza sativa L.) was developed using imaging methods. The map depicts not only distribution patterns of chromomeres specific to pachytene chromosomes, but also the higher order information of chromosomal structures, such as heterochromatin (condensed regions), euchromatin (decondensed regions), the primary constrictions (centromeres), and the secondary constriction (nucleolar organizing regions, NOR). These features were image analyzed and quantitatively mapped onto the map by Chromosome Image Analyzing System ver. 4.0 (CHIAS IV). Correlation between H3K9me2, an epigenetic marker and formation and/or maintenance of heterochromatin, thus was, clearly visualized. Then the pachytene chromosome map was unified with the existing somatic chromosome and linkage maps by physically mapping common DNA markers among them, such as a rice A genome specific tandem repeat sequence (TrsA), 5S and 45S ribosomal RNA genes, five bacterial artificial chromosome (BAC) clones, four P1 bacteriophage artificial chromosome (PAC) clones using multicolor fluorescence in situ hybridization (FISH). Detailed comparison between the locations of the DNA probes on the pachytene chromosomes using multicolor FISH, and the linkage map enabled determination of the chromosome number and short/long arms of individual pachytene chromosomes using the chromosome number and arm assignment designated for the linkage map. As a result, the quantitative pachytene chromosome map was unified with two other major rice chromosome maps representing somatic prometaphase chromosomes and genetic linkages. In conclusion, the unification of the three rice maps serves as an indispensable basic information, not only for an in-depth comparison between genetic and chromosomal data, but also for practical breeding programs.

  17. Detecting single DNA copy number variations in complex genomes using one nanogram of starting DNA and BAC-array CGH.

    Science.gov (United States)

    Guillaud-Bataille, Marine; Valent, Alexander; Soularue, Pascal; Perot, Christine; Inda, Maria Mar; Receveur, Aline; Smaïli, Sadek; Roest Crollius, Hugues; Bénard, Jean; Bernheim, Alain; Gidrol, Xavier; Danglot, Gisèle

    2004-07-29

    Comparative genomic hybridization to bacterial artificial chromosome (BAC)-arrays (array-CGH) is a highly efficient technique, allowing the simultaneous measurement of genomic DNA copy number at hundreds or thousands of loci, and the reliable detection of local one-copy-level variations. We report a genome-wide amplification method allowing the same measurement sensitivity, using 1 ng of starting genomic DNA, instead of the classical 1 microg usually necessary. Using a discrete series of DNA fragments, we defined the parameters adapted to the most faithful ligation-mediated PCR amplification and the limits of the technique. The optimized protocol allows a 3000-fold DNA amplification, retaining the quantitative characteristics of the initial genome. Validation of the amplification procedure, using DNA from 10 tumour cell lines hybridized to BAC-arrays of 1500 spots, showed almost perfectly superimposed ratios for the non-amplified and amplified DNAs. Correlation coefficients of 0.96 and 0.99 were observed for regions of low-copy-level variations and all regions, respectively (including in vivo amplified oncogenes). Finally, labelling DNA using two nucleotides bearing the same fluorophore led to a significant increase in reproducibility and to the correct detection of one-copy gain or loss in >90% of the analysed data, even for pseudotriploid tumour genomes.

  18. Genetics Home Reference: Y chromosome infertility

    Science.gov (United States)

    ... NBK1339/ Citation on PubMed Tyler-Smith C. An evolutionary perspective on Y-chromosomal variation and male infertility. ... genome editing and CRISPR-Cas9? What is precision medicine? What is newborn screening? New Pages Alopecia areata ...

  19. Chromosomal aberrations in bone marrow cells of rats irradiated with different gamma-doses and protected with adeturon

    International Nuclear Information System (INIS)

    Ivanov, B.; Mileva, M.; Bulanova, M.; Pantev, T.

    1982-01-01

    Sexually mature wistor rats were irradiated on cesium gamma source ''IGUR-1'' with emissive power 3.25 mA/kg. The animals were divided in five groups of 10 rats each. They were irradiated respectively with 0.0129 C/kg, O, 0.0258 C/kg, 0.0516 C/kg, 0.1032 C/kg and control group. Five animals of each group received 300 meg/g weight Adeturone 15 minutes before exposure. The animals were sacrifices 20 hours after irradiation and preparations made from bone-marrow cells for chromosomal analysis. The number of structural chromosomal aberrations, aberrant cells and total number of aberrations in protected and in nonprotected cells were read under high-power microscope. The results were statistically processed by variation and regression analysis. It was found that Adeturone displays strong protective effect on the hereditary cell structures in all animals exposed to doses higher than 0.0129 C/kg, with the exception of chromatid fragments at a dose of 0.0258 C/kg. Mathematical models of the curves of the yields of chromatid and chromosomal fragments, aberrant cells and total number of aberrations in protected and nonprotected animals were described. (authors)

  20. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.

    Science.gov (United States)

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi; Kitagaki, Hiroshi

    2017-12-15

    The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast ( Saccharomyces cerevisiae ) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile. IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of

  1. Chromosome painting in biological dosimetry: Semi-automatic system to score stable chromosome aberrations

    International Nuclear Information System (INIS)

    Garcia-Sagredo, J.M.; Vallcorba, I.; Sanchez-Hombre, M.C.; Ferro, M.T.; San Roman Cos-Gayon, C.; Santos, A.; Malpica, N.; Ortiz, C.

    1997-01-01

    From the beginning of the description of the procedure of chromosome painting by fluorescence in situ hybridization (FISH), it was thought its possible application to score induced chromosomal aberrations in radiation exposition. With chromosome painting it is possible to detect changes between chromosomes that has been validated in radiation exposition. Translocation scoring by FISH, contrarily to the unstable dicentrics, mainly detect stable chromosome aberrations that do not disappear, it allows the capability of quantify delayed acute expositions or chronic cumulative expositions. The large number of cells that have to be analyzed for high accuracy, specially when dealing with low radiation doses, makes it almost imperative to use an automatic analysis system. After validate translocation scoring by FISH in our, we have evaluated the ability and sensitivity to detect chromosomal aberrations by chromosome using different paint probes used, showing that any combination of paint probes can be used to score induced chromosomal aberrations. Our group has developed a FISH analysis that is currently being adapted for translocation scoring analysis. It includes systematic error correction and internal control probes. The performance tests carried out show that 9,000 cells can be analyzed in 10 hr. using a Sparc 4/370. Although with a faster computer, a higher throughput is expected, for large population screening or very low radiation doses, this performance still has to be improved. (author)

  2. Radiation-induced chromosomal instability

    International Nuclear Information System (INIS)

    Ritter, S.

    1999-01-01

    Recent studies on radiation-induced chromosomal instability in the progeny of exposed mammalian cells were briefly described as well as other related studies. For the analysis of chromosomal damage in clones, cells were seeded directly after exposure in cell well-dish to form single cell clones and post-irradiation chromosome aberrations were scored. Both exposure to isoeffective doses of X-ray or 270 MeV/u C-ions (13 keV/μm) increased the number of clones with abnormal karyotype and the increase was similar for X-ray and for C-ions. Meanwhile, in the progeny of cells for mass cultures, there was no indication of a delayed expression of chromosomal damage up to 40 population doublings after the exposure. A high number of aberrant cells were only observed directly after exposure to 10.7 MeV/u O-ions, i.e. in the first cycle cells and decreased with subsequent cell divisions. The reason for these differences in the radiation-induced chromosomal instability between clonal isolates and mass culture has not been clarified. Recent studies indicated that genomic instability occurs at a high frequency in the progeny of cells irradiated with both sparsely and densely ionizing radiation. Such genomic instability is thought likely to increase the risk of carcinogenesis, but more data are required for a well understanding of the health risks resulting from radiation-induced delayed instability. (M.N.)

  3. The distribution of chromosome aberrations among chromosomes of karyotype in exposed human lymphocyte

    International Nuclear Information System (INIS)

    Que Tran; Tien Hoang Hung

    1997-01-01

    Induced chromosome aberrations (ch. ab.) in exposed Human peripheral blood lymphocyte have been used to assay radio.bio.doses, because of their characters such as: the maintaining Go phase in cell cycle in body, the distribution of cell in blood system and the distribution of ch. ab. in exposed cells of body and among chromosomes of karyotype. The frequency of ch. ab. reflected the quantity of radiation dose, dose rate and radiation energy. The dependence between radiation dose and frequency of ch. ab. was illustrated by the mathematic equations. The distribution of induced ch. ab. among the cells exposed to uniform radiation fields was Poisson's, but the distribution of ch. ab. among chromosomes in karyotype depended on radiation field and mononucleotid sequence of DNA molecular of each chromosome. The minimum influence of mononucleotid sequence of DNA molecular in inform ch. ab. will be advantageous state for dose-assessments. The location of induced ch. ab. in exposed Human lymphocyte had been determined by karyotype analyses. The data of statistic analyse had improved that the number of ch. ab. depended on the size of chromosomes in karyotype. The equal distribution of ch. ab.among chromosomes in karyotype provided the objectiveness and the accuracy of using the chromosomal aberrant analysis technique on bio-dosimetry. (author)

  4. Examination of X chromosome markers in Rett syndrome: Exclusion mapping with a novel variation on multilocus linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, K.A.; Fill, C.P. (Baylor College of Medicine, Houston, TX (United States)); Terwililger, J.; Percy, A.K.; Zobhbi, H. (Columbia University, NY (United States)); DeGennaro, L.J.; Ott, J. (University of Massachusetts Medical School, Worcester (United States)); Anvret, M.; Martin-Gallardo, A. (National Institutes of Health, Bethesda, MD (United States))

    1992-02-01

    Rett syndrome is a neurologic disorder characterized by early normal development followed by regression, acquired deceleration of head growth, autism, ataxia, and sterotypic hand movements. The exclusive occurrence of the syndrome in females and the occurrence of a few familial cases with inheritance through maternal lines suggest that this disorder is most likely secondary to a mutation on the X chromosome. To address this hypothesis and to identify candidate regions for the Rett syndrome gene locus, genotypic analysis was performed in two families with maternally related affected half-sisters by using 63 DNA markers from the X chromosome. Nineteen of the loci studied were chosen for multipoint linkage analysis because they have been previously genetically mapped using a large number of meioses from reference families. Using the exclusion criterion of a lod score less than [minus]2, the authors were able to exclude the region between the Duchenne muscular dystrophy locus and the DXS456 locus. This region extends from Xp21.2 to Xq21-q23. The use of the multipoint linkage analysis approach outlined in this study should allow the exclusion of additional regions of the X chromosome as new markers are analyzed.

  5. Sexual dimorphism in white campion: complex control of carpel number is revealed by Y chromosome deletions

    International Nuclear Information System (INIS)

    Lardon, A.; Georgiev, S.; Aghmir, A.; Le Merrer, G.; Negrutiu, I.

    1999-01-01

    Sexual dimorphism in the dioecious plant white campion (Silene latifolia = Melandrium album) is under the control of two main regions on the Y chromosome. One such region, encoding the gynoecium-suppressing function (GSF), is responsible for the arrest of carpel initiation in male flowers. To generate chromosomal deletions, we used pollen irradiation in male plants to produce hermaphroditic mutants (bsx mutants) in which carpel development was restored. The mutants resulted from alterations in at least two GSF chromosomal regions, one autosomal and one located on the distal half of the (p)-arm of the Y chromosome. The two mutations affected carpel development independently, each mutation showing incomplete penetrance and variegation, albeit at significantly different levels. During successive meiotic generations, a progressive increase in penetrance and a reduction in variegation levels were observed and quantified at the level of the Y-linked GSF (GSF-Y). Possible mechanisms are proposed to explain the behavior of the bsx mutations: epigenetic regulation or/and second-site mutation of modifier genes. In addition, studies on the inheritance of the hermaphroditic trait showed that, unlike wild-type Y chromosomes, deleted Y chromosomes can be transmitted through both the male and the female lines. Altogether, these findings bring experimental support, on the one hand, to the existence on the Y chromosome of genic meiotic drive function(s) and, on the other hand, to models that consider that dioecy evolved through multiple mutation events. As such, the GSF is actually a system containing more than one locus and whose primary component is located on the Y chromosome

  6. Sex-chromosome heterochromatin variation in the wood mouse, Apodemus sylvaticus

    Czech Academy of Sciences Publication Activity Database

    Nová, P.; Reutter, B. A.; Rábová, Marie; Zima, Jan

    2002-01-01

    Roč. 96, 1-4 (2002), s. 186-190 ISSN 0301-0171 R&D Projects: GA AV ČR KSK6005114 Keywords : sex-chromosome * Apodemus sylvaticus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.114, year: 2002

  7. Copy Number Variation of Cytokinin Oxidase Gene Tackx4 Associated with Grain Weight and Chlorophyll Content of Flag Leaf in Common Wheat.

    Science.gov (United States)

    Chang, Cheng; Lu, Jie; Zhang, Hai-Ping; Ma, Chuan-Xi; Sun, Genlou

    2015-01-01

    As the main pigment in photosynthesis, chlorophyll significantly affects grain filling and grain weight of crop. Cytokinin (CTK) can effectively increase chlorophyll content and chloroplast stability, but it is irreversibly inactivated by cytokinin oxidase (CKX). In this study, therefore, twenty-four pairs of primers were designed to identify variations of wheat CKX (Tackx) genes associated with flag leaf chlorophyll content after anthesis, as well as grain weight in 169 recombinant inbred lines (RIL) derived from Triticum aestivum Jing 411 × Hongmangchun 21. Results indicated variation of Tackx4, identified by primer pair T19-20, was proven to significantly associate with chlorophyll content and grain weight in the RIL population. Here, two Tackx4 patterns were identified: one with two co-segregated fragments (Tackx4-1/Tackx4-2) containing 618 bp and 620 bp in size (as in Jing 411), and another with no PCR product. The two genotypes were designated as genotype-A and genotype-B, respectively. Grain weight and leaf chlorophyll content at 5~15 days after anthesis (DAA) were significantly higher in genotype-A lines than those in genotype-B lines. Mapping analysis indicated Tackx4 was closely linked to Xwmc169 on chromosome 3AL, as well as co-segregated with a major quantitative trait locus (QTL) for both grain weight and chlorophyll content of flag leaf at 5~15 DAA. This QTL explained 8.9~22.3% phenotypic variations of the two traits across four cropping seasons. Among 102 wheat varieties, a third genotype of Tackx4 was found and designated as genotype-C, also having two co-segregated fragments, Tackx4-2 and Tackx4-3 (615bp). The sequences of three fragments, Tackx4-1, Tackx4-2, and Tackx4-3, showed high identity (>98%). Therefore, these fragments could be considered as different copies at Tackx4 locus on chromosome 3AL. The effect of copy number variation (CNV) of Tackx4 was further validated. In general, genotype-A contains both significantly higher grain weight

  8. Copy number variation in the bovine genome

    DEFF Research Database (Denmark)

    Fadista, João; Thomsen, Bo; Holm, Lars-Erik

    2010-01-01

    to genetic variation in cattle. Results We designed and used a set of NimbleGen CGH arrays that tile across the assayable portion of the cattle genome with approximately 6.3 million probes, at a median probe spacing of 301 bp. This study reports the highest resolution map of copy number variation...... in the cattle genome, with 304 CNV regions (CNVRs) being identified among the genomes of 20 bovine samples from 4 dairy and beef breeds. The CNVRs identified covered 0.68% (22 Mb) of the genome, and ranged in size from 1.7 to 2,031 kb (median size 16.7 kb). About 20% of the CNVs co-localized with segmental...... duplications, while 30% encompass genes, of which the majority is involved in environmental response. About 10% of the human orthologous of these genes are associated with human disease susceptibility and, hence, may have important phenotypic consequences. Conclusions Together, this analysis provides a useful...

  9. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana.

    Science.gov (United States)

    Simon, Lauriane; Rabanal, Fernando A; Dubos, Tristan; Oliver, Cecilia; Lauber, Damien; Poulet, Axel; Vogt, Alexander; Mandlbauer, Ariane; Le Goff, Samuel; Sommer, Andreas; Duborjal, Hervé; Tatout, Christophe; Probst, Aline V

    2018-04-06

    Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization.

  10. Ancient Male Recombination Shaped Genetic Diversity of Neo-Y Chromosome in Drosophila albomicans.

    Science.gov (United States)

    Satomura, Kazuhiro; Tamura, Koichiro

    2016-02-01

    Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Chromosomal Speciation Revisited: Modes of Diversification in Australian Morabine Grasshoppers (Vandiemenella, viatica Species Group

    Directory of Open Access Journals (Sweden)

    Steven J. B. Cooper

    2011-03-01

    Full Text Available Chromosomal rearrangements can alter the rate and patterns of gene flow within or between species through a reduction in the fitness of chromosomal hybrids or by reducing recombination rates in rearranged areas of the genome. This concept, together with the observation that many species have structural variation in chromosomes, has led to the theory that the rearrangements may play a direct role in promoting speciation. Australian morabine grasshoppers (genus Vandiemenella, viatica species group are an excellent model for studying the role of chromosomal rearrangement in speciation because they show extensive chromosomal variation, parapatric distribution patterns, and narrow hybrid zones at their boundaries. This species group stimulated development of one of the classic chromosomal speciation models, the stasipatric speciation model proposed by White in 1968. Our population genetic and phylogeographic analyses revealed extensive non-monophyly of chromosomal races along with historical and on-going gene introgression between them. These findings suggest that geographical isolation leading to the fixation of chromosomal variants in different geographic regions, followed by secondary contact, resulted in the present day parapatric distributions of chromosomal races. The significance of chromosomal rearrangements in the diversification of the viatica species group can be explored by comparing patterns of genetic differentiation between rearranged and co-linear parts of the genome.

  12. A pericentric inversion of chromosome X disrupting F8 and resulting in haemophilia A.

    Science.gov (United States)

    Xin, Yu; Zhou, Jingyi; Ding, Qiulan; Chen, Changming; Wu, Xi; Wang, Xuefeng; Wang, Hongli; Jiang, Xiaofeng

    2017-08-01

    The frequency of X chromosome pericentric inversion is much less than that of autosome chromosome. We hereby characterise a pericentric inversion of X chromosome associated with severe factor VIII (FVIII) deficiency in a sporadic haemophilia A (HA) pedigree. PCR primer walking and genome walking strategies were adopted to identify the exact breakpoints of the inversion. Copy number variations (CNVs) of the F8 and the whole chromosomes were detected by AccuCopy and Affymetrix CytoScan High Definition (HD) assays, respectively. A karyotype analysis was performed by cytogenetic G banding technique. We identified a previously undescribed type of pericentric inversion of the X chromosome [inv(X)(p11.21q28)] in the proband with FVIII:C inversion segment was approximately 64.4% of the total chromosomal length. The karyotype analysis of the X chromosome confirmed the pericentric inversion of the X chromosome in the proband and his mother. A haplotype analysis traced the inversion to his maternal grandfather, who was not a somatic mosaic of the inversion. This finding indicated that the causative mutation may originate from his germ cells or a rare possibility of germ-cell mosaicism. The characterisation of pericentric inversion involving F8 extended the molecular mechanisms causing HA. The pericentric inversion rearrangement involves F8 by non-homologous end joining is responsible for pathogensis of severe HA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Dynamic Copy Number Evolution of X- and Y-Linked Ampliconic Genes in Human Populations

    DEFF Research Database (Denmark)

    Lucotte, Elise A; Skov, Laurits; Jensen, Jacob Malte

    2018-01-01

    we explore the evolution of human X- and Y-linked ampliconic genes by investigating copy number variation (CNV) and coding variation between populations using the Simons Genome Diversity Project. We develop a method to assess CNVs using the read-depth on modified X and Y chromosome targets containing...... related Y haplogroups, that diversified less than 50,000 years ago. Moreover, X and Y-linked ampliconic genes seem to have a faster amplification dynamic than autosomal multicopy genes. Looking at expression data from another study, we also find that XY-linked ampliconic genes with extensive copy number...

  14. Clinical findings and genetic screening for copy number variation ...

    African Journals Online (AJOL)

    to the Unified Parkinson's Disease Rating Scale (UPDRS), and patients were classified according to motor features. Genomic DNA was extracted and multiplex ligation-dependent probe amplification was used for detection of copy number variation (CNV) mutations in the known PD-causing genes. Results. Sixteen patients ...

  15. Systematic, cross-cortex variation in neuron numbers in rodents and primates.

    Science.gov (United States)

    Charvet, Christine J; Cahalane, Diarmuid J; Finlay, Barbara L

    2015-01-01

    Uniformity, local variability, and systematic variation in neuron numbers per unit of cortical surface area across species and cortical areas have been claimed to characterize the isocortex. Resolving these claims has been difficult, because species, techniques, and cortical areas vary across studies. We present a stereological assessment of neuron numbers in layers II-IV and V-VI per unit of cortical surface area across the isocortex in rodents (hamster, Mesocricetus auratus; agouti, Dasyprocta azarae; paca, Cuniculus paca) and primates (owl monkey, Aotus trivigratus; tamarin, Saguinus midas; capuchin, Cebus apella); these chosen to vary systematically in cortical size. The contributions of species, cortical areas, and techniques (stereology, "isotropic fractionator") to neuron estimates were assessed. Neurons per unit of cortical surface area increase across the rostro-caudal (RC) axis in primates (varying by a factor of 1.64-2.13 across the rostral and caudal poles) but less in rodents (varying by a factor of 1.15-1.54). Layer II-IV neurons account for most of this variation. When integrated into the context of species variation, and this RC gradient in neuron numbers, conflicts between studies can be accounted for. The RC variation in isocortical neurons in adulthood mirrors the gradients in neurogenesis duration in development. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Chromosome 7 Aneusomy. A Marker for Metastatic Melanoma?

    Directory of Open Access Journals (Sweden)

    Martin Udart

    2001-01-01

    Full Text Available Receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR play an important role in a variety of malignant neoplasias, making the search for aberrations in the relevant chromosomes an important issue. Differential expression of the EGFR gene was investigated by reverse transcriptase (RT-PCR on tissue samples of normal skin, nevi, primary melanomas, and melanoma metastases. The EGFR gene is located on chromosome 7p12.3-p12.1. To determine the number of chromosomes 7 in cell nuclei of the mentioned tissue samples we performed fluorescence in situ hybridization (FISH on touch preparations, using a DNA probe that hybridizes specifically to the centromeric region of chromosome 7. Additionally, chromosome 7 number in interphase nuclei was determined in short-term primary cell cultures of nevi, primary melanomas, and metastases. The highest EGFR gene expression frequency was found in melanoma metastases. By FISH we detected the highest fraction of cell nuclei with more than two chromosomes 7 in the group of metastases. Our results suggest that overexpression of the EGFR gene might play an important role in metastasis of malignant melanoma. This is well reflected by polysomy 7, possibly accounting for an increased EGFRgene copy number.

  17. [Combined G-banded karyotyping and multiplex ligation-dependent probe amplification for the detection of chromosomal abnormalities in fetuses with congenital heart defects].

    Science.gov (United States)

    Liu, Yang; Xie, Jiansheng; Geng, Qian; Xu, Zhiyong; Wu, Weiqin; Luo, Fuwei; Li, Suli; Wang, Qin; Chen, Wubin; Tan, Hongxi; Zhang, Hu

    2017-02-10

    To assess the value of G-banded karyotyping in combination with multiplex ligation-dependent probe amplification (MLPA) as a tool for the detection of chromosomal abnormalities in fetuses with congenital heart defects. The combined method was used to analyze 104 fetuses with heart malformations identified by ultrasonography. Abnormal findings were confirmed with chromosomal microarray analysis (CMA). Nineteen (18%) fetuses were found to harbor chromosomal aberrations by G-banded karyotyping and MLPA. For 93 cases, CMA has detected abnormalities in 14 cases including 10 pathogenic copy number variations (CNVs) and 4 CNVs of uncertain significance (VOUS). MLPA was able to detect all of the pathogenic CNVs and 1 VOUS CNV. Combined use of G-banded karyotyping and MLPA is a rapid, low-cost and effective method to detect chromosomal abnormalities in fetuses with various heart malformations.

  18. Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis.

    Science.gov (United States)

    Zhang, Zhen-Tao; Yang, Shu-Qiong; Li, Zi-Ang; Zhang, Yun-Xia; Wang, Yun-Zhu; Cheng, Chun-Yan; Li, Ji; Chen, Jin-Feng; Lou, Qun-Feng

    2016-07-01

    Ribosomal DNAs are useful cytogenetic markers for chromosome analysis. Studies investigating site numbers and distributions of rDNAs have provided important information for elucidating genome organization and chromosomal relationships of many species by fluorescence in situ hybridization. But relevant studies are scarce for species of the genus Cucumis, especially in wild species. In the present study, FISH was conducted to investigate the organization of 45S and 5S rDNA among 20 Cucumis accessions, including cultivars and wild accessions. Our results showed that the number of 45S rDNA sites varied from one to five pairs in different accessions, and most of these sites are located at the terminal regions of chromosomes. Interestingly, up to five pairs of 45S rDNA sites were observed in C. sativus var. sativus, the species which has the lowest chromosome number, i.e., 2n = 14. Only one pair of 5S rDNA sites was detected in all accessions, except for C. heptadactylus, C. sp, and C. spp that had two pairs of 5S rDNA sites. The distributions of 5S rDNA sites showed more variation than 45S rDNA sites. The phylogenetic analysis in this study showed that 45S and 5S rDNA have contrasting evolutionary patterns. We find that 5S rDNA has a polyploidization-related tendency towards the terminal location from an interstitial location but maintains a conserved site number, whereas the 45S rDNA showed a trend of increasing site number but a relatively conserved location.

  19. Chromosomal aberrations in bone marrow of continuously irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Chlebosky, O; Praslicka, M; Chlebovska, K [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Prirodovedecka Fakulta

    1975-01-01

    Research on chromosomal aberrations of the bone marrow in continuously irradiated rats showed that chromosomal aberrations are a highly sensitive indicator of radiation injury. An increase in the chromosomal aberration frequency was already found on the 5th day at daily doses of 0.5 R, i.e. a 12% increase at a total dose of 25 R. In the steady-state stage at daily doses of 0.5; 1; 2.5 R, the number of chromosomal aberrations stabilized at values of about 20%; at daily doses of 5 and 10 R at values of 30.=., at daily doses of 53 R at 45%, at a daily dose of 82.5 R, the number of chromosomal aberrations increased to 55%.

  20. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds.

    Directory of Open Access Journals (Sweden)

    Taylor Reiter

    Full Text Available Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR, phytanol-CoA 2-hydroxylase (PHYH, and pancreatic α-amylase 2B (AMY2B. These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs.

  1. Karyotype diversity and genome size variation in Neotropical Maxillariinae orchids.

    Science.gov (United States)

    Moraes, A P; Koehler, S; Cabral, J S; Gomes, S S L; Viccini, L F; Barros, F; Felix, L P; Guerra, M; Forni-Martins, E R

    2017-03-01

    Orchidaceae is a widely distributed plant family with very diverse vegetative and floral morphology, and such variability is also reflected in their karyotypes. However, since only a low proportion of Orchidaceae has been analysed for chromosome data, greater diversity may await to be unveiled. Here we analyse both genome size (GS) and karyotype in two subtribes recently included in the broadened Maxillariinea to detect how much chromosome and GS variation there is in these groups and to evaluate which genome rearrangements are involved in the species evolution. To do so, the GS (14 species), the karyotype - based on chromosome number, heterochromatic banding and 5S and 45S rDNA localisation (18 species) - was characterised and analysed along with published data using phylogenetic approaches. The GS presented a high phylogenetic correlation and it was related to morphological groups in Bifrenaria (larger plants - higher GS). The two largest GS found among genera were caused by different mechanisms: polyploidy in Bifrenaria tyrianthina and accumulation of repetitive DNA in Scuticaria hadwenii. The chromosome number variability was caused mainly through descending dysploidy, and x=20 was estimated as the base chromosome number. Combining GS and karyotype data with molecular phylogeny, our data provide a more complete scenario of the karyotype evolution in Maxillariinae orchids, allowing us to suggest, besides dysploidy, that inversions and transposable elements as two mechanisms involved in the karyotype evolution. Such karyotype modifications could be associated with niche changes that occurred during species evolution. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. A large-scale chromosome-specific SNP discovery guideline.

    Science.gov (United States)

    Akpinar, Bala Ani; Lucas, Stuart; Budak, Hikmet

    2017-01-01

    Single-nucleotide polymorphisms (SNPs) are the most prevalent type of variation in genomes that are increasingly being used as molecular markers in diversity analyses, mapping and cloning of genes, and germplasm characterization. However, only a few studies reported large-scale SNP discovery in Aegilops tauschii, restricting their potential use as markers for the low-polymorphic D genome. Here, we report 68,592 SNPs found on the gene-related sequences of the 5D chromosome of Ae. tauschii genotype MvGB589 using genomic and transcriptomic sequences from seven Ae. tauschii accessions, including AL8/78, the only genotype for which a draft genome sequence is available at present. We also suggest a workflow to compare SNP positions in homologous regions on the 5D chromosome of Triticum aestivum, bread wheat, to mark single nucleotide variations between these closely related species. Overall, the identified SNPs define a density of 4.49 SNPs per kilobyte, among the highest reported for the genic regions of Ae. tauschii so far. To our knowledge, this study also presents the first chromosome-specific SNP catalog in Ae. tauschii that should facilitate the association of these SNPs with morphological traits on chromosome 5D to be ultimately targeted for wheat improvement.

  3. Breast tumor copy number aberration phenotypes and genomic instability

    International Nuclear Information System (INIS)

    Fridlyand, Jane; Jain, Ajay N; McLennan, Jane; Ziegler, John; Chin, Koei; Devries, Sandy; Feiler, Heidi; Gray, Joe W; Waldman, Frederic; Pinkel, Daniel; Albertson, Donna G; Snijders, Antoine M; Ylstra, Bauke; Li, Hua; Olshen, Adam; Segraves, Richard; Dairkee, Shanaz; Tokuyasu, Taku; Ljung, Britt Marie

    2006-01-01

    Genomic DNA copy number aberrations are frequent in solid tumors, although the underlying causes of chromosomal instability in tumors remain obscure. Genes likely to have genomic instability phenotypes when mutated (e.g. those involved in mitosis, replication, repair, and telomeres) are rarely mutated in chromosomally unstable sporadic tumors, even though such mutations are associated with some heritable cancer prone syndromes. We applied array comparative genomic hybridization (CGH) to the analysis of breast tumors. The variation in the levels of genomic instability amongst tumors prompted us to investigate whether alterations in processes/genes involved in maintenance and/or manipulation of the genome were associated with particular types of genomic instability. We discriminated three breast tumor subtypes based on genomic DNA copy number alterations. The subtypes varied with respect to level of genomic instability. We find that shorter telomeres and altered telomere related gene expression are associated with amplification, implicating telomere attrition as a promoter of this type of aberration in breast cancer. On the other hand, the numbers of chromosomal alterations, particularly low level changes, are associated with altered expression of genes in other functional classes (mitosis, cell cycle, DNA replication and repair). Further, although loss of function instability phenotypes have been demonstrated for many of the genes in model systems, we observed enhanced expression of most genes in tumors, indicating that over expression, rather than deficiency underlies instability. Many of the genes associated with higher frequency of copy number aberrations are direct targets of E2F, supporting the hypothesis that deregulation of the Rb pathway is a major contributor to chromosomal instability in breast tumors. These observations are consistent with failure to find mutations in sporadic tumors in genes that have roles in maintenance or manipulation of the genome

  4. Multiple var2csa-type PfEMP1 genes located at different chromosomal loci occur in many Plasmodium falciparum isolates

    DEFF Research Database (Denmark)

    Sander, Adam F; Salanti, Ali; Lavstsen, Thomas

    2009-01-01

    in the VAR2CSA protein, sequence variation in the DBL2X region of var2csa genes in 54 P.falciparum samples was analyzed. Chromosome mapping of var2csa loci was carried out and a quantitative PCR assay was developed to estimate the number of var2csa genes in P.falciparum isolates from the placenta of pregnant....... falciparum isolates. One gene is on chromosome 12 but additional var2csa-type genes are on different chromosomes in different isolates. Multiplicity of var2csa genes appears more common in infected placentae than in samples from non-pregnant donors indicating a possible advantage of this genotype...

  5. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?

    Science.gov (United States)

    Gleeson, Dianne; Georges, Arthur

    2018-01-01

    Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata) which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways. PMID:29751579

  6. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?

    Directory of Open Access Journals (Sweden)

    Shayer Mahmood Ibney Alam

    2018-05-01

    Full Text Available Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD and temperature-dependent sex determination (TSD within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways.

  7. Chromosome aberration analysis for biological dosimetry: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Among various biological dosimetry techniques, dicentric chromosome aberration method appears to be the method of choice in analysing accidental radiation exposure in most of the laboratories. The major advantage of this method is its sensitivity as the number of dicentric chromosomes present in control population is too small and more importantly radiation induces mainly dicentric chromosome aberration among unstable aberration. This report brings out the historical development of various cytogenetic methods, the basic structure of DNA, chromosomes and different forms of chromosome aberrations. It also highlights the construction of dose-response curve for dicentric chromosome and its use in the estimation of radiation dose. (author)

  8. Ancient migratory events in the Middle East: new clues from the Y-chromosome variation of modern Iranians.

    Directory of Open Access Journals (Sweden)

    Viola Grugni

    Full Text Available Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23, Central Asia (Q-M25, Asia Minor (J2a-M92 and southern Mesopotamia (J1-Page08. In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct populations.

  9. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats.

    NARCIS (Netherlands)

    Armour, J.A.; Palla, R.; Zeeuwen, P.L.J.M.; Heijer, M. den; Schalkwijk, J.; Hollox, E.J.

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and

  10. Production and characterization of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of Japanese bunching onion (A. fistulosum L.).

    Science.gov (United States)

    Hang, Tran Thi Minh; Shigyo, Masayoshi; Yamauchi, Naoki; Tashiro, Yosuke

    2004-10-01

    First and second backcrosses of amphidiploid hybrids (2n = 4x = 32, genomes AAFF) between shallot (Allium cepa Aggregatum group) and A. fistulosum were conducted to produce A. cepa - A. fistulosum alien addition lines. When shallot (A. cepa Aggregatum group) was used as a pollinator, the amphidiploids and allotriploids set germinable BC(1) and BC(2) seeds, respectively. The 237 BC(1) plants mainly consisted of 170 allotriploids (2n = 3x = 24, AAF) and 42 hypo-allotriploids possessing 23 chromosomes, i.e., single-alien deletions (2n = 3x-1 = 23, AAF-nF). The single-alien deletions in the BC(1) progeny showed dwarfing characteristics and were discriminated from the allotriploids (2n = 24) and hyper-allotriploids (2n = 25) by means of flow cytometric analysis. The chromosome numbers of 46 BC(2) seedlings varied from 16 to 24. Eight monosomic additions (2n = 2x+1 = 17, AA+nF) and 20 single-alien deletions were found in these BC(2) seedlings. Consequently, six kinds of A. cepa - A. fistulosum alien chromosome additions possessing different chromosome numbers (2n = 17, 18, 20, 21, 22, 23) were recognized in the BC(1) and BC(2) populations. A total of 79 aneuploids, including 62 single-alien deletions, were analyzed by a chromosome 6F-specific isozyme marker (Got-2) in order to recognize its existence in their chromosome complements. This analysis revealed that two out of 62 single-alien deletions did not possess 6F. One (AAF-6F) out of the possible eight single-alien deletions could be identified at first. The present study is a first step toward the development of a useful tool, such as a complete set of eight different single-alien deletions, for the rapid chromosomal assignment of genes and genetic markers in A. fistulosum.

  11. A minimal number of MELT repeats supports all functions of KNL1 in chromosome segregation

    DEFF Research Database (Denmark)

    Zhang, Gang; Lischetti, Tiziana; Nilsson, Jakob

    2013-01-01

    The Bub1-Bub3 and BubR1-Bub3 checkpoint complexes, or the Bubs, contribute to the accurate segregation of chromosomes during mitosis by promoting chromosome bi-orientation and halting exit from mitosis if this fails. The complexes associate with kinetochores during mitosis, which is required...

  12. Relationship between chromosome configurations/associations and nuclear size/shape

    International Nuclear Information System (INIS)

    Ostashevsky, J.Y.

    2003-01-01

    Full text: Chromosome configurations (linear,folded,loop,etc.,which are defined through a pattern of centromere and/or telomere anchoring to the nuclear membrane) and chromosome associations (homologous pairing, number of centromere or telomere clusters per nucleus, number of chromosome arms per cluster, etc.) are critical for the formation of radiation-induced chromosome aberrations and DSB repair. However, the rules of nuclear architecture are poorly understood. A polymer approach for chromosome configurations, associations, and attachments was developed, based on the coil-like behavior of chromosomal fibers and the tight packing of discrete chromatin domains in a nucleus. The model considers chromatin anchoring to nuclear structures and shows that confinement of chromatin diffusion in a nucleus can be related to its anchoring and higher-order chromatin structure. The model was applied to nuclei of budding and fission yeast, Drosophila, worm, newt, mammals (human, Indian and Chinese muntjac, mouse) and plants (Arabidopsis, maize, barley, wheat). Quantitative agreement between results calculated from the model and observed data was obtained in all considered (∼25) cases. This supports the model and means that permitted chromosome configurations and associations can be predicted from the geometrical constraints imposed on chromosomes by nuclear size and shape

  13. Flow cytogenetics and chromosome sorting.

    Science.gov (United States)

    Cram, L S

    1990-06-01

    This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.

  14. Karyotype variation in cultivars and spontaneous cocoa mutants (Theobroma cacao L.).

    Science.gov (United States)

    Figueiredo, G S F; Melo, C A F; Souza, M M; Araújo, I S; Zaidan, H A; Pires, J L; Ahnert, D

    2013-10-18

    Four mutant cocoa accessions with morphological changes and a cultivar sample were karyomorphologically characterized. Slides were prepared by enzymatic digestion of the root meristem and squashed in 45% acetic acid, followed by 2% Giemsa staining. The chromosome number of 2n = 20 was seen in all accessions. The karyotype formula for Cacau Comum and Cacau Rui was 2n = 20m. Submetacentric chromosomes were observed in Cacau Pucala and Cacau Jaca, both with 2n = 18m + 2sm, but the karyotype formula for Cacau Sem Vidro was 2n = 16m + 4sm. Satellites were located on the long arm of the 1st and 2nd chromosome pairs of Cacau Comum, whereas Cacau Pucala had satellites on the 6th chromosome pair. Greater karyotypic variation in Cacau Sem Vidro was found, whose 1st and 2nd chromosome pairs had satellites on the long arm and 6th and 10th pairs had satellites on the short arm. Analysis revealed a lower average chromosome length in Cacau Comum (1.53 ± 0.026 µm) and a higher length in Cacau Sem Vidro (2.26 ± 0.038 µm). ANOVA revealed significant difference (P Theobroma cacao.

  15. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster

    Science.gov (United States)

    Schrider, Daniel R.; Hahn, Matthew W.; Begun, David J.

    2016-01-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster. In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. PMID:26809315

  16. Rare copy number deletions predict individual variation in intelligence.

    Directory of Open Access Journals (Sweden)

    Ronald A Yeo

    2011-01-01

    Full Text Available Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in "mutation load" emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent copy number variations (CNVs, and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77 had been administered the Wechsler Abbreviated Scale of Intelligence (WASI. After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = -.30, p = .01. As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES, we also examined the impact of ethnicity (Anglo/White vs. Other, as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed.

  17. Rare Copy Number Deletions Predict Individual Variation in Intelligence

    Science.gov (United States)

    Yeo, Ronald A.; Gangestad, Steven W.; Liu, Jingyu; Calhoun, Vince D.; Hutchison, Kent E.

    2011-01-01

    Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in “mutation load” emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent) copy number variations (CNVs), and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77) had been administered the Wechsler Abbreviated Scale of Intelligence (WASI). After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = −.30, p = .01). As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES), we also examined the impact of ethnicity (Anglo/White vs. Other), as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less) adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed. PMID:21298096

  18. The genetic content of chromosomal inversions across a wide latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Pedro Simões

    Full Text Available There is increasing evidence regarding the role of chromosomal inversions in relevant biological processes such as local adaptation and speciation. A classic example of the adaptive role of chromosomal polymorphisms is given by the clines of inversion frequencies in Drosophila subobscura, repeatable across continents. Nevertheless, not much is known about the molecular variation associated with these polymorphisms. We characterized the genetic content of ca. 600 individuals from nine European populations following a latitudinal gradient by analysing 19 microsatellite loci from two autosomes (J and U and the sex chromosome (A, taking into account their chromosomal inversions. Our results clearly demonstrate the molecular genetic uniformity within a given chromosomal inversion across a large latitudinal gradient, particularly from Groningen (Netherlands in the north to Málaga (Spain in the south, experiencing highly diverse environmental conditions. This low genetic differentiation within the same gene arrangement across the nine European populations is consistent with the local adaptation hypothesis for th evolutionof chromosomal polymorphisms. We also show the effective role of chromosomal inversions in maintaining different genetic pools within these inverted genomic regions even in the presence of high gene flow. Inversions represent thus an important barrier to gene flux and can help maintain specific allelic combinations with positive effects on fitness. Consistent patterns of microsatellite allele-inversion linkage disequilibrium particularly in loci within inversions were also observed. Finally, we identified areas within inversions presenting clinal variation that might be under selection.

  19. High-density SNP genotyping of tomato (Solanum lycopersicum L. reveals patterns of genetic variation due to breeding.

    Directory of Open Access Journals (Sweden)

    Sung-Chur Sim

    Full Text Available The effects of selection on genome variation were investigated and visualized in tomato using a high-density single nucleotide polymorphism (SNP array. 7,720 SNPs were genotyped on a collection of 426 tomato accessions (410 inbreds and 16 hybrids and over 97% of the markers were polymorphic in the entire collection. Principal component analysis (PCA and pairwise estimates of F(st supported that the inbred accessions represented seven sub-populations including processing, large-fruited fresh market, large-fruited vintage, cultivated cherry, landrace, wild cherry, and S. pimpinellifolium. Further divisions were found within both the contemporary processing and fresh market sub-populations. These sub-populations showed higher levels of genetic diversity relative to the vintage sub-population. The array provided a large number of polymorphic SNP markers across each sub-population, ranging from 3,159 in the vintage accessions to 6,234 in the cultivated cherry accessions. Visualization of minor allele frequency revealed regions of the genome that distinguished three representative sub-populations of cultivated tomato (processing, fresh market, and vintage, particularly on chromosomes 2, 4, 5, 6, and 11. The PCA loadings and F(st outlier analysis between these three sub-populations identified a large number of candidate loci under positive selection on chromosomes 4, 5, and 11. The extent of linkage disequilibrium (LD was examined within each chromosome for these sub-populations. LD decay varied between chromosomes and sub-populations, with large differences reflective of breeding history. For example, on chromosome 11, decay occurred over 0.8 cM for processing accessions and over 19.7 cM for fresh market accessions. The observed SNP variation and LD decay suggest that different patterns of genetic variation in cultivated tomato are due to introgression from wild species and selection for market specialization.

  20. A Rare De novo Complex Chromosomal Rearrangement (CCR) Involving Four Chromosomes in An Oligo-asthenosperm Infertile Man.

    Science.gov (United States)

    Asia, Saba; Vaziri Nasab, Hamed; Sabbaghian, Marjan; Kalantari, Hamid; Zari Moradi, Shabnam; Gourabi, Hamid; Mohseni Meybodi, Anahita

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are rare events involving more than two chromosomes and over two breakpoints. They are usually associated with infertility or sub fertility in male carriers. Here we report a novel case of a CCR in a 30-year-old oligoasthenosperm man with a history of varicocelectomy, normal testes size and normal endocrinology profile referred for chromosome analysis to the Genetics unit of Royan Reproductive Biomedicine Research Center. Chromosomal analysis was performed using peripheral blood lymphocyte cultures and analyzed by GTG banding. Additional tests such as C-banding and multicolor fluorescence in situ hybridization (FISH) procedure for each of the involved chromosomes were performed to determine the patterns of the segregations. Y chromosome microdeletions in the azoospermia factor (AZF) region were analyzed with multiplex polymerase chain reaction. To identify the history and origin of this CCR, all the family members were analyzed. No micro deletion in Y chromosome was detected. The same de novo reciprocal exchange was also found in his monozygous twin brother. The other siblings and parents were normal. CCRs are associated with male infertility as a result of spermatogenic disruption due to complex meiotic configurations and the production of chromosomally abnormal sperms. These chromosomal rearrangements might have an influence on decreasing the number of sperms.

  1. Y-chromosomal variation in sub-Saharan Africa: insights into the history of Niger-Congo groups.

    Science.gov (United States)

    de Filippo, Cesare; Barbieri, Chiara; Whitten, Mark; Mpoloka, Sununguko Wata; Gunnarsdóttir, Ellen Drofn; Bostoen, Koen; Nyambe, Terry; Beyer, Klaus; Schreiber, Henning; de Knijff, Peter; Luiselli, Donata; Stoneking, Mark; Pakendorf, Brigitte

    2011-03-01

    Technological and cultural innovations as well as climate changes are thought to have influenced the diffusion of major language phyla in sub-Saharan Africa. The most widespread and the richest in diversity is the Niger-Congo phylum, thought to have originated in West Africa ∼ 10,000 years ago (ya). The expansion of Bantu languages (a family within the Niger-Congo phylum) ∼ 5,000 ya represents a major event in the past demography of the continent. Many previous studies on Y chromosomal variation in Africa associated the Bantu expansion with haplogroup E1b1a (and sometimes its sublineage E1b1a7). However, the distribution of these two lineages extends far beyond the area occupied nowadays by Bantu-speaking people, raising questions on the actual genetic structure behind this expansion. To address these issues, we directly genotyped 31 biallelic markers and 12 microsatellites on the Y chromosome in 1,195 individuals of African ancestry focusing on areas that were previously poorly characterized (Botswana, Burkina Faso, Democratic Republic of Congo, and Zambia). With the inclusion of published data, we analyzed 2,736 individuals from 26 groups representing all linguistic phyla and covering a large portion of sub-Saharan Africa. Within the Niger-Congo phylum, we ascertain for the first time differences in haplogroup composition between Bantu and non-Bantu groups via two markers (U174 and U175) on the background of haplogroup E1b1a (and E1b1a7), which were directly genotyped in our samples and for which genotypes were inferred from published data using linear discriminant analysis on short tandem repeat (STR) haplotypes. No reduction in STR diversity levels was found across the Bantu groups, suggesting the absence of serial founder effects. In addition, the homogeneity of haplogroup composition and pattern of haplotype sharing between Western and Eastern Bantu groups suggests that their expansion throughout sub-Saharan Africa reflects a rapid spread followed by

  2. Y-chromosomal variation in Sub-Saharan Africa: insights into the history of Niger-Congo groups

    Science.gov (United States)

    de Filippo, Cesare; Barbieri, Chiara; Whitten, Mark; Mpoloka, Sununguko Wata; Gunnarsdóttir, Ellen Drofn; Bostoen, Koen; Nyambe, Terry; Beyer, Klaus; Schreiber, Henning; de Knijff, Peter; Luiselli, Donata; Stoneking, Mark; Pakendorf, Brigitte

    2013-01-01

    Technological and cultural innovations, as well as climate changes, are thought to have influenced the diffusion of major language phyla in sub-Saharan Africa. The most widespread and the richest in diversity is the Niger-Congo phylum, thought to have originated in West Africa ~10,000 years ago. The expansion of Bantu languages (a family within the Niger-Congo phylum) ~5,000 years ago represents a major event in the past demography of the continent. Many previous studies on Y chromosomal variation in Africa associated the Bantu expansion with haplogroup E1b1a (and sometimes its sub-lineage E1b1a7). However, the distribution of these two lineages extends far beyond the area occupied nowadays by Bantu speaking people, raising questions on the actual genetic structure behind this expansion. To address these issues, we directly genotyped 31 biallelic markers and 12 microsatellites on the Y chromosome in 1195 individuals of African ancestry focusing on areas that were previously poorly characterized (Botswana, Burkina Faso, D.R.C, and Zambia). With the inclusion of published data, we analyzed 2736 individuals from 26 groups representing all linguistic phyla and covering a large portion of Sub-Saharan Africa. Within the Niger-Congo phylum, we ascertain for the first time differences in haplogroup composition between Bantu and non-Bantu groups via two markers (U174 and U175) on the background of haplogroup E1b1a (and E1b1a7), which were directly genotyped in our samples and for which genotypes were inferred from published data using Linear Discriminant Analysis on STR haplotypes. No reduction in STR diversity levels was found across the Bantu groups, suggesting the absence of serial founder effects. In addition, the homogeneity of haplogroup composition and pattern of haplotype sharing between Western and Eastern Bantu groups suggest that their expansion throughout Sub-Saharan Africa reflects a rapid spread followed by backward and forward migrations. Overall, we found

  3. Chromosomal characterization of cultured populations of Chilean coho salmon (Oncorhynchus kistuch

    Directory of Open Access Journals (Sweden)

    Nelson Colihueque V.

    1999-03-01

    Full Text Available Chromosomal characterization of coho salmon samples from three fish farms in southern Chile (Polcura, Castro and Coyhaique was carried out in order to compare their chromosome constitutions. All populations had a 2n = 60; however, Polcura and Coyhaique had a different chromosome arm number (NF = 110; 40m + 10sm + 10st/t than Castro (NF = 108; 40m + 8sm + 12st/t. Variation in NF was due to chromosome pair 25, which was submetacentric in Coyhaique and Polcura, but subtelocentric in Castro. In all karyotypes, a large submetacentric chromosome pair exhibited an interstitial secondary constriction in the short arm. The observed variability in chromosome arm number agrees with previous reports for O. kisutch, and in this particular case it seemed to be caused by a pericentric inversion of pair 25. Cultured populations of Chilean coho salmon are, therefore, likely to be cytogenetically variable.A caracterização cromossômica de amostras de salmon tipo coho de três criações de peixes do sul do Chile (Polcura, Castro e Coyhaique foi feita com a intenção de comparar suas constituições cromossômicas. Todas as populações apresentaram 2n = 60; contudo, Polcura e Coyhaique tiveram um número de braços cromossômicos (NF = 110; 40m + 10sm + 10st/t diferente de Castro (NF = 108; 40m + 8sm + 12st/t. A variação no NF deveu-se ao par cromossômico 25, que era submetacêntrico em Coyhaique e Polcura e subtelocêntrico em Castro. Em todos os cariótipos, um grande par cromossômico submetacêntrico exibiu uma constrição secundária intersticial no braço curto. A variabilidade observada no número de braços cromossômicos concorda com relatos prévios para O. kisutch e, neste caso particular, parece ter sido causada por uma inversão pericêntrica no par 25. Portanto, populações cultivadas de salmão chileno do tipo coho provavelmente são citogeneticamente variáveis.

  4. Heteromorphic Sex Chromosomes: Navigating Meiosis without a Homologous Partner

    OpenAIRE

    Checchi, Paula M.; Engebrecht, JoAnne

    2011-01-01

    Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have ...

  5. Chromosome studies in Cashew ( Anacardium occidentale L ...

    African Journals Online (AJOL)

    Despite the increased cultivation of cashew as a commodity crop in sub-Sahara Africa, Asia and South America there are few chromosome studies on it. The present study investigates number, structure and behavior of chromosome in cashew populations growing in Nigeria. Cytological examination of these populations ...

  6. Culture creates genetic structure in the Caucasus: Autosomal, mitochondrial, and Y-chromosomal variation in Daghestan

    Directory of Open Access Journals (Sweden)

    Harpending Henry C

    2008-07-01

    Full Text Available Abstract Background Near the junction of three major continents, the Caucasus region has been an important thoroughfare for human migration. While the Caucasus Mountains have diverted human traffic to the few lowland regions that provide a gateway from north to south between the Caspian and Black Seas, highland populations have been isolated by their remote geographic location and their practice of patrilocal endogamy. We investigate how these cultural and historical differences between highland and lowland populations have affected patterns of genetic diversity. We test 1 whether the highland practice of patrilocal endogamy has generated sex-specific population relationships, and 2 whether the history of migration and military conquest associated with the lowland populations has left Central Asian genes in the Caucasus, by comparing genetic diversity and pairwise population relationships between Daghestani populations and reference populations throughout Europe and Asia for autosomal, mitochondrial, and Y-chromosomal markers. Results We found that the highland Daghestani populations had contrasting histories for the mitochondrial DNA and Y-chromosome data sets. Y-chromosomal haplogroup diversity was reduced among highland Daghestani populations when compared to other populations and to highland Daghestani mitochondrial DNA haplogroup diversity. Lowland Daghestani populations showed Turkish and Central Asian affinities for both mitochondrial and Y-chromosomal data sets. Autosomal population histories are strongly correlated to the pattern observed for the mitochondrial DNA data set, while the correlation between the mitochondrial DNA and Y-chromosome distance matrices was weak and not significant. Conclusion The reduced Y-chromosomal diversity exhibited by highland Daghestani populations is consistent with genetic drift caused by patrilocal endogamy. Mitochondrial and Y-chromosomal phylogeographic comparisons indicate a common Near Eastern

  7. Hypervariability of ribosomal DNA at multiple chromosomal sites in lake trout (Salvelinus namaycush).

    Science.gov (United States)

    Zhuo, L; Reed, K M; Phillips, R B

    1995-06-01

    Variation in the intergenic spacer (IGS) of the ribosomal DNA (rDNA) of lake trout (Salvelinus namaycush) was examined. Digestion of genomic DNA with restriction enzymes showed that almost every individual had a unique combination of length variants with most of this variation occurring within rather than between populations. Sequence analysis of a 2.3 kilobase (kb) EcoRI-DraI fragment spanning the 3' end of the 28S coding region and approximately 1.8 kb of the IGS revealed two blocks of repetitive DNA. Putative transcriptional termination sites were found approximately 220 bases (b) downstream from the end of the 28S coding region. Comparison of the 2.3-kb fragments with two longer (3.1 kb) fragments showed that the major difference in length resulted from variation in the number of short (89 b) repeats located 3' to the putative terminator. Repeat units within a single nucleolus organizer region (NOR) appeared relatively homogeneous and genetic analysis found variants to be stably inherited. A comparison of the number of spacer-length variants with the number of NORs found that the number of length variants per individual was always less than the number of NORs. Examination of spacer variants in five populations showed that populations with more NORs had more spacer variants, indicating that variants are present at different rDNA sites on nonhomologous chromosomes.

  8. Natural Selection Reduced Diversity on Human Y Chromosomes

    Science.gov (United States)

    Wilson Sayres, Melissa A.; Lohmueller, Kirk E.; Nielsen, Rasmus

    2014-01-01

    The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area. PMID:24415951

  9. Statistics for X-chromosome associations.

    Science.gov (United States)

    Özbek, Umut; Lin, Hui-Min; Lin, Yan; Weeks, Daniel E; Chen, Wei; Shaffer, John R; Purcell, Shaun M; Feingold, Eleanor

    2018-06-13

    In a genome-wide association study (GWAS), association between genotype and phenotype at autosomal loci is generally tested by regression models. However, X-chromosome data are often excluded from published analyses of autosomes because of the difference between males and females in number of X chromosomes. Failure to analyze X-chromosome data at all is obviously less than ideal, and can lead to missed discoveries. Even when X-chromosome data are included, they are often analyzed with suboptimal statistics. Several mathematically sensible statistics for X-chromosome association have been proposed. The optimality of these statistics, however, is based on very specific simple genetic models. In addition, while previous simulation studies of these statistics have been informative, they have focused on single-marker tests and have not considered the types of error that occur even under the null hypothesis when the entire X chromosome is scanned. In this study, we comprehensively tested several X-chromosome association statistics using simulation studies that include the entire chromosome. We also considered a wide range of trait models for sex differences and phenotypic effects of X inactivation. We found that models that do not incorporate a sex effect can have large type I error in some cases. We also found that many of the best statistics perform well even when there are modest deviations, such as trait variance differences between the sexes or small sex differences in allele frequencies, from assumptions. © 2018 WILEY PERIODICALS, INC.

  10. Preparation and bivariate analysis of suspensions of human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    van den Engh, G.J.; Trask, B.J.; Gray, J.W.; Langlois, R.G.; Yu, L.C.

    1985-01-01

    Chromosomes were isolated from a variety of human cell types using a HEPES-buffered hypotonic solution (pH 8.0) containing KCl, MgSO/sub 4/ dithioerythritol, and RNase. The chromosomes isolated by this procedure could be stained with a variety of fluorescent stains including propidium iodide, chromomycin A3, and Hoeschst 33258. Addition of sodium citrate to the stained chromosomes was found to improve the total fluorescence resolution. High-quality bivariate Hoeschst vs. chromomycin fluorescence distributions were obtained for chromosomes isolated from a human fibroblast cell strain, a human colon carcinoma cell line, and human peripheral blood lymphocyte cultures. Good flow karyotypes were also obtained from primary amniotic cell cultures. The Hoeschst vs. chromomycin flow karyotypes of a given cell line, made at different times and at dye concentrations varying over fourfold ranges, show little variation in the relative peak positions of the chromosomes. The size of the DNA in chromosomes isolated using this procedure ranges from 20 to 50 kilobases. The described isolation procedure is simple, it yields high-quality flow karyotypes, and it can be used to prepare chromosomes from clinical samples. 22 references, 7 figures, 1 table.

  11. [Molecular cytogenetic analysis of a case with ring chromosome 3 syndrome].

    Science.gov (United States)

    Zhang, Kaihui; Song, Fengling; Zhang, Dongdong; Zhang, Haiyan; Wang, Ying; Dong, Rui; Zhang, Yufeng; Liu, Yi; Gai, Zhongtao

    2016-12-10

    To investigate the genetic cause for a child with developmental delay and congenital heart disease through molecular cytogenetic analysis. G-banded karyotyping and chromosomal microarray analysis (CMA) were performed for the patient and his parents. The proband's karyotype was detected as ring chromosome 3, and a 3q26.3-25.3 deletion encompassing 45 genes has been found with CMA. Testing of both parents was normal. Clinical phenotype of the patient with ring chromosome 3 mainly depends on the involved genes. It is necessary to combine CMA and karyotyping for the diagnosis of ring chromosome, as CMA can provide more accurate information for variations of the genome.

  12. Quantitative variation in obesity-related traits and insulin precursors linked to the OB gene region on human chromosome 7

    Energy Technology Data Exchange (ETDEWEB)

    Duggirala, R.; Stern, M.P.; Reinhart, L.J. [Univ. of Texas Health Science Center, San Antonio, TX (United States)] [and others

    1996-09-01

    Despite the evidence that human obesity has strong genetic determinants, efforts at identifying specific genes that influence human obesity have largely been unsuccessful. Using the sibship data obtained from 32 low-income Mexican American pedigrees ascertained on a type II diabetic proband and a multipoint variance-components method, we tested for linkage between various obesity-related traits plus associated metabolic traits and 15 markers on human chromosome 7. We found evidence for linkage between markers in the OB gene region and various traits, as follows: D7S514 and extremity skinfolds (LOD = 3.1), human carboxypeptidase A1 (HCPA1) and 32,33-split proinsulin level (LOD = 4.2), and HCPA1 and proinsulin level (LOD = 3.2). A putative susceptibility locus linked to the marker D7S514 explained 56% of the total phenotypic variation in extremity skinfolds. Variation at the HCPA1 locus explained 64% of phenotypic variation in proinsulin level and {approximately}73% of phenotypic variation in split proinsulin concentration, respectively. Weaker evidence for linkage to several other obesity-related traits (e.g., waist circumference, body-mass index, fat mass by bioimpedance, etc.) was observed for a genetic location, which is {approximately}15 cM telomeric to OB. In conclusion, our study reveals that the OB region plays a significant role in determining the phenotypic variation of both insulin precursors and obesity-related traits, at least in Mexican Americans. 66 refs., 3 figs., 4 tabs.

  13. De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy.

    Science.gov (United States)

    Zarrei, Mehdi; Fehlings, Darcy L; Mawjee, Karizma; Switzer, Lauren; Thiruvahindrapuram, Bhooma; Walker, Susan; Merico, Daniele; Casallo, Guillermo; Uddin, Mohammed; MacDonald, Jeffrey R; Gazzellone, Matthew J; Higginbotham, Edward J; Campbell, Craig; deVeber, Gabrielle; Frid, Pam; Gorter, Jan Willem; Hunt, Carolyn; Kawamura, Anne; Kim, Marie; McCormick, Anna; Mesterman, Ronit; Samdup, Dawa; Marshall, Christian R; Stavropoulos, Dimitri J; Wintle, Richard F; Scherer, Stephen W

    2018-02-01

    PurposeHemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP.MethodsWe genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs (<0.1% frequency) that might be relevant to CP. We also sequenced exomes of "CNV-positive" trios.ResultsWe detected de novo CNVs and/or sex chromosome abnormalities in 7/97 (7.2%) of probands, impacting important developmental genes such as GRIK2, LAMA1, DMD, PTPRM, and DIP2C. In 18/97 individuals (18.6%), rare inherited CNVs were found, affecting loci associated with known genomic disorders (17p12, 22q11.21) or involving genes linked to neurodevelopmental disorders.ConclusionWe found an increased rate of de novo CNVs in the hemiplegic CP subtype (7.2%) compared to controls (1%). This result is similar to that for an unselected CP group. Combined with rare inherited CNVs, the genomic data impacts the understanding of the potential etiology of hemiplegic CP in 23/97 (23.7%) of participants.

  14. Rare recombination events generate sequence diversity among balancer chromosomes in Drosophila melanogaster.

    Science.gov (United States)

    Miller, Danny E; Cook, Kevin R; Yeganeh Kazemi, Nazanin; Smith, Clarissa B; Cockrell, Alexandria J; Hawley, R Scott; Bergman, Casey M

    2016-03-08

    Multiply inverted balancer chromosomes that suppress exchange with their homologs are an essential part of the Drosophila melanogaster genetic toolkit. Despite their widespread use, the organization of balancer chromosomes has not been characterized at the molecular level, and the degree of sequence variation among copies of balancer chromosomes is unknown. To map inversion breakpoints and study potential diversity in descendants of a structurally identical balancer chromosome, we sequenced a panel of laboratory stocks containing the most widely used X chromosome balancer, First Multiple 7 (FM7). We mapped the locations of FM7 breakpoints to precise euchromatic coordinates and identified the flanking sequence of breakpoints in heterochromatic regions. Analysis of SNP variation revealed megabase-scale blocks of sequence divergence among currently used FM7 stocks. We present evidence that this divergence arose through rare double-crossover events that replaced a female-sterile allele of the singed gene (sn(X2)) on FM7c with a sequence from balanced chromosomes. We propose that although double-crossover events are rare in individual crosses, many FM7c chromosomes in the Bloomington Drosophila Stock Center have lost sn(X2) by this mechanism on a historical timescale. Finally, we characterize the original allele of the Bar gene (B(1)) that is carried on FM7, and validate the hypothesis that the origin and subsequent reversion of the B(1) duplication are mediated by unequal exchange. Our results reject a simple nonrecombining, clonal mode for the laboratory evolution of balancer chromosomes and have implications for how balancer chromosomes should be used in the design and interpretation of genetic experiments in Drosophila.

  15. Production and repair of chromosome damage in an X-ray sensitive CHO mutant visualized and analysed in interphase using the technique of premature chromosome condensation

    International Nuclear Information System (INIS)

    Iliakis, G.E.; Pantelias, G.E.

    1990-01-01

    Production of chromosome damage per unit of absorbed radiation dose was in xrs-5 cells larger by a factor of 2.6 than in CHO cells (5.2 breaks per cell per Gy). Changes in chromatin structure, associated with the radiation-sensitive pheno-type of xrs-5 cells, that increase the probability of conversion of a DNA double-strand break (dsb) to a chromosome break are invoked to explain this. Repair of chromosome breaks as measured in plateau-phase G 1 cells was deficient in xrs-5 cells and the number of residual chromosome breaks practically identical to the number of lethal lesions calculated from survival data, suggesting that non-repaired chromosome breaks are likely to be manifestations of lethal events in the cell. The yield of ring chromosomes scored after a few hours of repair was higher by a factor of three in xrs-5 compared with CHO cells. (author)

  16. Application and potentiality of laser micro-irradiation of chromosomes in animal and plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H Liang; Wang, L L [Laboratory of Laser and Genetics, Institute of Genetics, Academia Sinica, Beijing (China)

    1990-01-01

    Full text: The classical methods of inducing genetic variation use chemical or physical mutagens applied to populations of cells. Since the development of laser techniques allows focussing a beam to a submicron spot, laser microsurgery of chromosomes was attempted. In mammalian cells, the nucleolus formation could be prevented. Also several chromosome damages were produced by focussing on specific chromosomes in prophase, metaphase and anaphase. Chromosomes of broad bean, maize, wheat, barley were dissected into small fragments. (author)

  17. Mapping autism risk loci using genetic linkage and chromosomal rearrangements

    Science.gov (United States)

    Szatmari, Peter; Paterson, Andrew; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John; Skaug, Jennifer; Thompson, Ann; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan; Jones, Marshall; Marshall, Christian; Scherer, Stephen; Vieland, Veronica; Bartlett, Christopher; Mangin, La Vonne; Goedken, Rhinda; Segre, Alberto; Pericak-Vance, Margaret; Cuccaro, Michael; Gilbert, John; Wright, Harry; Abramson, Ruth; Betancur, Catalina; Bourgeron, Thomas; Gillberg, Christopher; Leboyer, Marion; Buxbaum, Joseph; Davis, Kenneth; Hollander, Eric; Silverman, Jeremy; Hallmayer, Joachim; Lotspeich, Linda; Sutcliffe, James; Haines, Jonathan; Folstein, Susan; Piven, Joseph; Wassink, Thomas; Sheffield, Val; Geschwind, Daniel; Bucan, Maja; Brown, Ted; Cantor, Rita; Constantino, John; Gilliam, Conrad; Herbert, Martha; Lajonchere, Clara; Ledbetter, David; Lese-Martin, Christa; Miller, Janet; Nelson, Stan; Samango-Sprouse, Carol; Spence, Sarah; State, Matthew; Tanzi, Rudolph; Coon, Hilary; Dawson, Geraldine; Devlin, Bernie; Estes, Annette; Flodman, Pamela; Klei, Lambertus; Mcmahon, William; Minshew, Nancy; Munson, Jeff; Korvatska, Elena; Rodier, Patricia; Schellenberg, Gerard; Smith, Moyra; Spence, Anne; Stodgell, Chris; Tepper, Ping Guo; Wijsman, Ellen; Yu, Chang-En; Rogé, Bernadette; Mantoulan, Carine; Wittemeyer, Kerstin; Poustka, Annemarie; Felder, Bärbel; Klauck, Sabine; Schuster, Claudia; Poustka, Fritz; Bölte, Sven; Feineis-Matthews, Sabine; Herbrecht, Evelyn; Schmötzer, Gabi; Tsiantis, John; Papanikolaou, Katerina; Maestrini, Elena; Bacchelli, Elena; Blasi, Francesca; Carone, Simona; Toma, Claudio; Van Engeland, Herman; De Jonge, Maretha; Kemner, Chantal; Koop, Frederieke; Langemeijer, Marjolein; Hijmans, Channa; Staal, Wouter; Baird, Gillian; Bolton, Patrick; Rutter, Michael; Weisblatt, Emma; Green, Jonathan; Aldred, Catherine; Wilkinson, Julie-Anne; Pickles, Andrew; Le Couteur, Ann; Berney, Tom; Mcconachie, Helen; Bailey, Anthony; Francis, Kostas; Honeyman, Gemma; Hutchinson, Aislinn; Parr, Jeremy; Wallace, Simon; Monaco, Anthony; Barnby, Gabrielle; Kobayashi, Kazuhiro; Lamb, Janine; Sousa, Ines; Sykes, Nuala; Cook, Edwin; Guter, Stephen; Leventhal, Bennett; Salt, Jeff; Lord, Catherine; Corsello, Christina; Hus, Vanessa; Weeks, Daniel; Volkmar, Fred; Tauber, Maïté; Fombonne, Eric; Shih, Andy; Meyer, Kacie

    2007-01-01

    Autism spectrum disorders (ASD) are common, heritable neurodevelopmental conditions. The genetic architecture of ASD is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASD by using Affymetrix 10K single nucleotide polymorphism (SNP) arrays and 1168 families with ≥ 2 affected individuals to perform the largest linkage scan to date, while also analyzing copy number variation (CNV) in these families. Linkage and CNV analyses implicate chromosome 11p12-p13 and neurexins, respectively, amongst other candidate loci. Neurexins team with previously-implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for ASD. PMID:17322880

  18. A familial Cri-du-Chat/5p deletion syndrome resulted from rare maternal complex chromosomal rearrangements (CCRs and/or possible chromosome 5p chromothripsis.

    Directory of Open Access Journals (Sweden)

    Heng Gu

    Full Text Available Cri-du-Chat syndrome (MIM 123450 is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs, diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5(p13.3p15.33 spanning ≈ 26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5 (q23;p14.1p15.31,ins(21;5(q21;p13.3p14.1,ins(21;5(q21;p15.31p15.33,inv(7(p22q32dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5 identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5. Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.

  19. A simple screening method for detection of Klinefelter syndrome and other X-chromosome aneuploidies based on copy number of the androgen receptor gene

    DEFF Research Database (Denmark)

    Ottesen, A M; Garn, I D; Aksglaede, L

    2007-01-01

    Due to the high prevalence and variable phenotype of patients with Klinefelter syndrome, there is a need for a robust and rapid screening method allowing early diagnosis. Here, we report on the development and detailed clinical validation of a quantitative real-time PCR (qPCR)-based method...... of the copy number assessment of the androgen receptor (AR) gene, located to Xq11.2-q12. We analysed samples from 50 individuals, including a healthy male and female controls and patients with Klinefelter syndrome (47,XXY; 48,XXXY) (n = 28), mosaicisms (46,XX/47,XXY/48XXYY; 45,X/46,XY) (n = 3), other sex......-gene expression. The XIST-expression based assay was correct in only 29/36 samples (81%). Our findings demonstrated that the AR-qPCR technique is a simple and reliable screening method for diagnosis of patients with Klinefelter syndrome or other chromosomal disorders involving an aberrant number of X-chromosomes....

  20. Genome-size Variation in Switchgrass (Panicum virgatum: Flow Cytometry and Cytology Reveal Rampant Aneuploidy

    Directory of Open Access Journals (Sweden)

    Denise E. Costich

    2010-11-01

    Full Text Available Switchgrass ( L., a native perennial dominant of the prairies of North America, has been targeted as a model herbaceous species for biofeedstock development. A flow-cytometric survey of a core set of 11 primarily upland polyploid switchgrass accessions indicated that there was considerable variation in genome size within each accession, particularly at the octoploid (2 = 8 = 72 chromosome ploidy level. Highly variable chromosome counts in mitotic cell preparations indicated that aneuploidy was more common in octoploids (86.3% than tetraploids (23.2%. Furthermore, the incidence of hyper- versus hypoaneuploidy is equivalent in tetraploids. This is clearly not the case in octoploids, where close to 90% of the aneuploid counts are lower than the euploid number. Cytogenetic investigation using fluorescent in situ hybridization (FISH revealed an unexpected degree of variation in chromosome structure underlying the apparent genomic instability of this species. These results indicate that rapid advances in the breeding of polyploid biofuel feedstocks, based on the molecular-genetic dissection of biomass characteristics and yield, will be predicated on the continual improvement of our understanding of the cytogenetics of these species.

  1. Mandatory chromosomal segment balance in aneuploid tumor cells

    International Nuclear Information System (INIS)

    Kost-Alimova, Maria; Stanbridge, Eric; Klein, George; Imreh, Stefan; Darai-Ramqvist, Eva; Yau, Wing Lung; Sandlund, Agneta; Fedorova, Ludmila; Yang, Ying; Kholodnyuk, Irina; Cheng, Yue; Li Lung, Maria

    2007-01-01

    Euploid chromosome balance is vitally important for normal development, but is profoundly changed in many tumors. Is each tumor dependent on its own structurally and numerically changed chromosome complement that has evolved during its development and progression? We have previously shown that normal chromosome 3 transfer into the KH39 renal cell carcinoma line and into the Hone1 nasopharyngeal carcinoma line inhibited their tumorigenicity. The aim of the present study was to distinguish between a qualitative and a quantitative model of this suppression. According to the former, a damaged or deleted tumor suppressor gene would be restored by the transfer of a normal chromosome. If so, suppression would be released only when the corresponding sequences of the exogenous normal chromosome are lost or inactivated. According to the alternative quantitative model, the tumor cell would not tolerate an increased dosage of the relevant gene or segment. If so, either a normal cell derived, or, a tumor derived endogenous segment could be lost. Fluorescence in Situ Hybridization based methods, as well as analysis of polymorphic microsatellite markers were used to follow chromosome 3 constitution changes in monochromosomal hybrids. In both tumor lines with introduced supernumerary chromosomes 3, the copy number of 3p21 or the entire 3p tended to fall back to the original level during both in vitro and in vivo growth. An exogenous, normal cell derived, or an endogenous, tumor derived, chromosome segment was lost with similar probability. Identification of the lost versus retained segments showed that the intolerance for increased copy number was particularly strong for 3p14-p21, and weaker for other 3p regions. Gains in copy number were, on the other hand, well tolerated in the long arm and particularly the 3q26-q27 region. The inability of the cell to tolerate an experimentally imposed gain in 3p14-p21 in contrast to the well tolerated gain in 3q26-q27 is consistent with the

  2. CoNVaQ: a web tool for copy number variation-based association studies

    DEFF Research Database (Denmark)

    Larsen, Simon Jonas; do Canto, Luisa Matos; Rogatto, Silvia Regina

    2018-01-01

    Copy number variations (CNVs) are large segments of the genome that are duplicated or deleted. Structural variations in the genome have been linked to many complex diseases. Similar to how genome-wide association studies (GWAS) have helped discover single-nucleotide polymorphisms linked to diseas...

  3. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster.

    Science.gov (United States)

    Schrider, Daniel R; Hahn, Matthew W; Begun, David J

    2016-05-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Chromosome polymorphism in a population of ceratitis capitata

    International Nuclear Information System (INIS)

    Lifschitz, E.

    1987-08-01

    A morphological chromosomal polymorphism along with the observation of B chromosomes in a natural population of Ceratitis capitata is reported. A variability affecting the centromere size of chromosome 3 is described. The observed B chromosome is minute, heterochromatic and telocentric. The B chromosome was found in the male and female germ cells and it exhibited, in the males, intra-individual numerical variation with OB and IB cells, which suggested a mitotic instability. It was also found, in both sexes, in somatic cells (cerebral ganglia tissue). Only males transmitted the B chromosomes to the progeny. The high rate of transmission suggested a differential utilization of the sperm carrying the B chromosomes or a preferential segregation into secondary spermatocytes. Previously reported linkage relationship between a pupal esterase gene (Est-1) and a pupa colour mutant (nig) has been extended to a line carrying a Y-chromosome (Y,B) shorter than the one previously studied (Y,A). Furthermore, an elaborate crossing scheme has been devised in order to estimate the recombination distances between these two genes and a third one affecting pupal length (lp-1). It is concluded that all three genes are in the same linkage group but Est-1 is far from the other two. In turn, nig and lp-1 are separated by 14.9 map units. It is confirmed that genetic recombination does not regularly occur at high frequency in the male and this frequency is not increased by the varying length of the Y-chromosome. Refs, figs, tabs

  5. Chromosomal aberrations in Cynomolgus peripheral lymphocytes during and after fractionated whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Guedeney, G.; Malarbet, J.L.; Doloy, M.T.

    1989-01-01

    Cynomolgus monkeys (Macaca fascicularis) were exposed to fractionated whole-body γ-irradiation at high and low dose rates for 4 or 5 weeks. The time-dependence of chromosomal aberrations was studied in relation to the number of lymphocytes during irradiation and after exposure for periods of up to about 600 days for chromosomal aberrations and 200 days for lymphocyte counts. Additivity of the daily effects on the number of chromosomal aberrations was observed during the exposures. Immediately after the end of the exposures the number of chromosomal aberrations decreased to reach low values. The disappearance of chromosomal aberrations seemed to be related to recovery of the lymphocyte counts. The data presented here emphasize the different kinetic patterns of chromosomal aberrations after fractionated and acute irradiation. (author)

  6. Genetic and phenotypic intra-species variation in Candida albicans.

    Science.gov (United States)

    Hirakawa, Matthew P; Martinez, Diego A; Sakthikumar, Sharadha; Anderson, Matthew Z; Berlin, Aaron; Gujja, Sharvari; Zeng, Qiandong; Zisson, Ethan; Wang, Joshua M; Greenberg, Joshua M; Berman, Judith; Bennett, Richard J; Cuomo, Christina A

    2015-03-01

    Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity. © 2015 Hirakawa et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Exceptional Complex Chromosomal Rearrangements in Three Generations

    Directory of Open Access Journals (Sweden)

    Hannie Kartapradja

    2015-01-01

    Full Text Available We report an exceptional complex chromosomal rearrangement (CCR found in three individuals in a family that involves 4 chromosomes with 5 breakpoints. The CCR was ascertained in a phenotypically abnormal newborn with additional chromosomal material on the short arm of chromosome 4. Maternal karyotyping indicated that the mother carried an apparently balanced CCR involving chromosomes 4, 6, 11, and 18. Maternal transmission of the derivative chromosome 4 resulted in partial trisomy for chromosomes 6q and 18q and a partial monosomy of chromosome 4p in the proband. Further family studies found that the maternal grandmother carried the same apparently balanced CCR as the proband’s mother, which was confirmed using the whole chromosome painting (WCP FISH. High resolution whole genome microarray analysis of DNA from the proband’s mother found no evidence for copy number imbalance in the vicinity of the CCR translocation breakpoints, or elsewhere in the genome, providing evidence that the mother’s and grandmother’s CCRs were balanced at a molecular level. This structural rearrangement can be categorized as an exceptional CCR due to its complexity and is a rare example of an exceptional CCR being transmitted in balanced and/or unbalanced form across three generations.

  8. Neocentromeres Provide Chromosome Segregation Accuracy and Centromere Clustering to Multiple Loci along a Candida albicans Chromosome.

    Directory of Open Access Journals (Sweden)

    Laura S Burrack

    2016-09-01

    Full Text Available Assembly of kinetochore complexes, involving greater than one hundred proteins, is essential for chromosome segregation and genome stability. Neocentromeres, or new centromeres, occur when kinetochores assemble de novo, at DNA loci not previously associated with kinetochore proteins, and they restore chromosome segregation to chromosomes lacking a functional centromere. Neocentromeres have been observed in a number of diseases and may play an evolutionary role in adaptation or speciation. However, the consequences of neocentromere formation on chromosome missegregation rates, gene expression, and three-dimensional (3D nuclear structure are not well understood. Here, we used Candida albicans, an organism with small, epigenetically-inherited centromeres, as a model system to study the functions of twenty different neocentromere loci along a single chromosome, chromosome 5. Comparison of neocentromere properties relative to native centromere functions revealed that all twenty neocentromeres mediated chromosome segregation, albeit to different degrees. Some neocentromeres also caused reduced levels of transcription from genes found within the neocentromere region. Furthermore, like native centromeres, neocentromeres clustered in 3D with active/functional centromeres, indicating that formation of a new centromere mediates the reorganization of 3D nuclear architecture. This demonstrates that centromere clustering depends on epigenetically defined function and not on the primary DNA sequence, and that neocentromere function is independent of its distance from the native centromere position. Together, the results show that a neocentromere can form at many loci along a chromosome and can support the assembly of a functional kinetochore that exhibits native centromere functions including chromosome segregation accuracy and centromere clustering within the nucleus.

  9. Chromosome

    Science.gov (United States)

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  10. Karyotype with 210 chromosomes in guaraná (Paullinia cupana 'Sorbilis').

    Science.gov (United States)

    de Freitas, Danival Vieira; Carvalho, Carlos Roberto; Filho, Firmino José do Nascimento; Astolfi-Filho, Spartaco

    2007-05-01

    The genus Paullinia includes the economically important P. cupana, known as guaraná in Brazil and more recently in the world market. Native Americans of the Maué and Andirá tribes cultivated P. cupana 'Sorbilis' in central Amazon, and the Barés cultivated the 'Typica' variety in the upper Negro River (Brazil). Cytological studies in the Sapindaceae family have concentrated on the diversity in number (from 2n = 14 to 96) and size of the chromosomes. In Paullinia, seven species have been karyotyped and all show 2n = 24. Meristem maceration, cellular dissociation and air-drying techniques were used for cytogenetic preparations and DNA content was determined by flow cytometry. Chromosome characterization and DNA content of Paullinia cupana Kunth 'Sorbilis' (Mart.) Ducke (Sapindaceae) were studied. The high chromosome number (2n = 210) fall into two cytomorphological groups: (a) a metacentric and submetacentric group showing 25 sets of three pairs of chromosomes (2-76); (b) a group containing only acrocentric showing 12 sets of two pairs of chromosomes (82-105), a homologous submetacentric pair (1) and an acrocentric pair (81). Mean nuclear DNA content of guaraná was 2C = 22.8 pg. A karyogram was set up showing a high chromosome number complement.

  11. An efficient multiplex genotyping approach for detecting the major worldwide human Y-chromosome haplogroups

    NARCIS (Netherlands)

    M. van Oven (Mannis); M.H. Kayser (Manfred); A. Ralf (Arwin)

    2011-01-01

    textabstractAbstract The Y chromosome is paternally inherited and therefore serves as an evolutionary marker of patrilineal descent. Worldwide DNA variation within the non-recombining portion of the Y chromosome can be represented as a monophyletic phylogenetic tree in which the branches

  12. Chromosomal rearrangements in Tourette syndrome

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Debes, Nanette Mol; Hjermind, Lena E

    2013-01-01

    , and identification of susceptibility genes through linkage and association studies has been complicated due to inherent difficulties such as no clear mode of inheritance, genetic heterogeneity, and apparently incomplete penetrance. Positional cloning through mapping of disease-related chromosome rearrangements has...... been an efficient tool for the cloning of disease genes in several Mendelian disorders and in a number of complex disorders. Through cytogenetic investigation of 205 TS patients, we identified three possibly disease-associated chromosome rearrangements rendering this approach relevant in chasing TS...

  13. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

    Science.gov (United States)

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-07-01

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep

    Directory of Open Access Journals (Sweden)

    Zhifeng Zhang

    2017-09-01

    Full Text Available Objective The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. Methods In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin (VRTN gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. Results The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20 was smaller than that in Texel sheep (17 to 21. The individuals with 19 thoracolumbar vertebrae (T13L6 were dominant in Kazakh sheep (79.2%. The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP (rs426367238 was suggested to associate with thoracic vertebral number statistically. Conclusion The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238 with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.

  15. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep.

    Science.gov (United States)

    Zhang, Zhifeng; Sun, Yawei; Du, Wei; He, Sangang; Liu, Mingjun; Tian, Changyan

    2017-09-01

    The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin ( VRTN ) gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20) was smaller than that in Texel sheep (17 to 21). The individuals with 19 thoracolumbar vertebrae (T13L6) were dominant in Kazakh sheep (79.2%). The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP) (rs426367238) was suggested to associate with thoracic vertebral number statistically. The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238) with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.

  16. Chromosome breakage in Vicia faba by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Fetner, R H

    1958-02-15

    Meristem cells of Vicia faba roots were exposed to an atmosphere of ozone and the fraction of cells showing chromosome aberrations were recorded. Chromosome aberrations were observed on a dose-response basis after exposing the seeds to 0.4 wt. percent ozone for 15, 30, and 60 minutes. The results of ozone, x-rays, and ozone and x-ray treatments are presented. A small number of root tips from each group was treated with colchicine and an analysis made of metaphase aberrations. These observations confirmed that the aberrations were all of the chromosome-type.

  17. Detection of erbB2 copy number variations in plasma of patients with esophageal carcinoma

    International Nuclear Information System (INIS)

    Andolfo, Immacolata; Orditura, Michele; Ciardiello, Fortunato; De Vita, Fernando; Zollo, Massimo; Petrosino, Giuseppe; Vecchione, Loredana; De Antonellis, Pasqualino; Capasso, Mario; Montanaro, Donatella; Gemei, Marica; Troncone, Giancarlo; Iolascon, Achille

    2011-01-01

    Mortality is high in patients with esophageal carcinoma as tumors are rarely detected before the disease has progressed to an advanced stage. Here, we sought to isolate cell-free DNA released into the plasma of patients with esophageal carcinoma, to analyze copy number variations of marker genes in the search for early detection of tumor progression. Plasma of 41 patients with esophageal carcinoma was prospectively collected before tumor resection and chemotherapy. Our dataset resulted heterogeneous for clinical data, resembling the characteristics of the tumor. DNA from the plasma was extracted to analyze copy number variations of the erbB2 gene using real-time PCR assays. The real-time PCR assays for erbB2 gene showed significant (P = 0.001) copy number variations in the plasma of patients with esophageal carcinoma, as compared to healthy controls with high sensitivity (80%) and specificity (95%). These variations in erbB2 were negatively correlated to the progression free survival of these patients (P = 0.03), and revealed a further risk category stratification of patients with low VEGF expression levels. The copy number variation of erbB2 gene from plasma can be used as prognostic marker for early detection of patients at risk of worse clinical outcome in esophageal cancer

  18. Genomic copy number variations in three Southeast Asian populations.

    Science.gov (United States)

    Ku, Chee-Seng; Pawitan, Yudi; Sim, Xueling; Ong, Rick T H; Seielstad, Mark; Lee, Edmund J D; Teo, Yik-Ying; Chia, Kee-Seng; Salim, Agus

    2010-07-01

    Research on the role of copy number variations (CNVs) in the genetic risk of diseases in Asian populations has been hampered by a relative lack of reference CNV maps for Asian populations outside the East Asians. In this article, we report the population characteristics of CNVs in Chinese, Malay, and Asian Indian populations in Singapore. Using the Illumina Human 1M Beadchip array, we identify 1,174 CNV loci in these populations that corroborated with findings when the same samples were typed on the Affymetrix 6.0 platform. We identify 441 novel loci not previously reported in the Database of Genomic Variations (DGV). We observe a considerable number of loci that span all three populations and were previously unreported, as well as population-specific loci that are quite common in the respective populations. From this we observe the distribution of CNVs in the Asian Indian population to be considerably different from the Chinese and Malay populations. About half of the deletion loci and three-quarters of duplication loci overlap UCSC genes. Tens of loci show population differentiation and overlap with genes previously known to be associated with genetic risk of diseases. One of these loci is the CYP2A6 deletion, previously linked to reduced susceptibility to lung cancer. (c) 2010 Wiley-Liss, Inc.

  19. X-ray induction of mitotic and meiotic chromosome aberrations

    International Nuclear Information System (INIS)

    Yao, K.T.S.

    1980-01-01

    In 1964 six pairs of rat kangaroo (Potorous tridactylis) were obtained from Australia. The tissues of these animals were used to initiate cell lines. Since this species has a low chromosome number of six pairs, each pair with its own distinctive morphology, it is particularly favorable for cytogenetic research. In cell cultures derived from the corneal endothelial tissues of one animal there emerged a number of haploid cells. The number of haploid cells in the cultures reached as high as 20% of the total mitotic configurations. The in vitro diploid and haploid mixture cell cultures could be a resemblance or a coincidence to the mixture existence of the diploid primary spermatocytes and the haploid secondary spermatocytes (gametes) in the in vivo testicular tissues of the male animals. It would be interesting to compare reactions of the haploid and diploid cell mixture, either in the cultures or in the testes, to x-ray exposure. Two other studies involving x-ray effects on Chinese hamster oocyte maturation and meiotic chromosomes and the x-ray induction of Chinese hamster spermatocyte meiotic chromosome aberrations have been done in this laboratory. A review of these three studies involving diploid and haploid chromosomes may lead to further research in the x-ray induction of chromosome aberrations

  20. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Pampalona, J.; Soler, D.; Genesca, A. [Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra E-08193 (Spain); Tusell, L., E-mail: laura.tusell@uab.es [Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra E-08193 (Spain)

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16{sup INK4a} protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and

  1. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies

    International Nuclear Information System (INIS)

    Pampalona, J.; Soler, D.; Genesca, A.; Tusell, L.

    2010-01-01

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16 INK4a protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  2. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies.

    Science.gov (United States)

    Pampalona, J; Soler, D; Genescà, A; Tusell, L

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  3. Prenatal chromosomal microarray analysis in fetuses with congenital heart disease: a prospective cohort study.

    Science.gov (United States)

    Wang, Yan; Cao, Li; Liang, Dong; Meng, Lulu; Wu, Yun; Qiao, Fengchang; Ji, Xiuqing; Luo, Chunyu; Zhang, Jingjing; Xu, Tianhui; Yu, Bin; Wang, Leilei; Wang, Ting; Pan, Qiong; Ma, Dingyuan; Hu, Ping; Xu, Zhengfeng

    2018-02-01

    Currently, chromosomal microarray analysis is considered the first-tier test in pediatric care and prenatal diagnosis. However, the diagnostic yield of chromosomal microarray analysis for prenatal diagnosis of congenital heart disease has not been evaluated based on a large cohort. Our aim was to evaluate the clinical utility of chromosomal microarray as the first-tier test for chromosomal abnormalities in fetuses with congenital heart disease. In this prospective study, 602 prenatal cases of congenital heart disease were investigated using single nucleotide polymorphism array over a 5-year period. Overall, pathogenic chromosomal abnormalities were identified in 125 (20.8%) of 602 prenatal cases of congenital heart disease, with 52.0% of them being numerical chromosomal abnormalities. The detection rates of likely pathogenic copy number variations and variants of uncertain significance were 1.3% and 6.0%, respectively. The detection rate of pathogenic chromosomal abnormalities in congenital heart disease plus additional structural anomalies (48.9% vs 14.3%, P congenital heart disease group. Additionally, the detection rate in congenital heart disease with additional structural anomalies group was significantly higher than that in congenital heart disease with soft markers group (48.9% vs 19.8%, P congenital heart disease with additional structural anomalies and congenital heart disease with intrauterine growth retardation groups (48.9% vs 50.0%), congenital heart disease with soft markers and congenital heart disease with intrauterine growth retardation groups (19.8% vs 50.0%), or congenital heart disease with soft markers and isolated congenital heart disease groups (19.8% vs 14.3%). The detection rate in fetuses with congenital heart disease plus mild ventriculomegaly was significantly higher than in those with other types of soft markers (50.0% vs 15.6%, P congenital heart disease in clinical practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. FISH with whole chromosome and telomeric probes demonstrates huge karyotypic reorganization with ITS between two species of Oryzomyini (Sigmodontinae, Rodentia): Hylaeamys megacephalus probes on Cerradomys langguthi karyotype.

    Science.gov (United States)

    Nagamachi, Cleusa Yoshiko; Pieczarka, Julio Cesar; O'Brien, Patricia Caroline Mary; Pinto, Jamilly Amaral; Malcher, Stella Miranda; Pereira, Adenilson Leão; Rissino, Jorge das Dores; Mendes-Oliveira, Ana Cristina; Rossi, Rogério Vieira; Ferguson-Smith, Malcolm Andrew

    2013-04-01

    Rodentia comprises 42 % of living mammalian species. The taxonomic identification can be difficult, the number of species currently known probably being underestimated, since many species show only slight morphological variations. Few studies surveyed the biodiversity of species, especially in the Amazon region. Cytogenetic studies show great chromosomal variability in rodents, with diploid numbers ranging from 10 to 102, making it difficult to find chromosomal homologies by comparative G banding. Chromosome painting is useful, but only a few species of rodents have been studied by this technique. In this study, we sorted whole chromosome probes by fluorescence-activated cell sorting from two Hylaeamys megacephalus individuals, an adult female (2n = 54) and a fetus (2n = 50). We made reciprocal chromosome painting between these karyotypes and cross-species hybridization on Cerradomys langguthi (2n = 46). Both species belong to the tribe Oryzomyini (Sigmodontinae), which is restricted to South America and were collected in the Amazon region. Twenty-four chromosome-specific probes from the female and 25 from the fetus were sorted. Reciprocal chromosome painting shows that the karyotype of the fetus does not represent a new cytotype, but an unbalanced karyotype with multiple rearrangements. Cross-species hybridization of H. megacephalus probes on metaphases of C. langguthi shows that 11 chromosomes of H. megacephalus revealed conserved synteny, 10 H. megacephalus probes hybridized to two chromosomal regions and three hybridized to three regions. Associations were observed on chromosomes pairs 1-4 and 11. Fluorescence in situ hybridization with a telomeric probe revealed interstitial regions in three pairs (1, 3, and 4) of C. langguthi chromosomes. We discuss the genomic reorganization of the C. langguthi karyotype.

  5. Frequencies of X-ray and fast neutron induced chromosome translocations in human peripheral blood lymphocytes as detected by in situ hybridization using chromosome specific DNA libraries

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Darroudi, F.; Vermeulen, S.; Wiegant, J.

    1992-01-01

    DNA libraries of six human chromosomes were used to detect translocations in human lymphocytes induced by different doses of X-rays and fast neutrons. Results show that with X-rays, one can detect about 1.5 to 2.0 fold more translocations in comparison to dicentrics, whereas following fast neutron irradiation, the difference between these two classes of aberrations are significantly different at high doses. In addition, triple fluorescent in situ hybridization technique was used to study the frequencies of radiation-induced translocations involving a specific chromosome. Chromosome number 1 was found to be involved in translocations more frequently than chromosomes number 2, 3, 4, 8 and X. (author). 10 refs., 1 fig., 2 tabs

  6. A Genome Wide Study of Copy Number Variation Associated with Nasopharyngeal Carcinoma in Malaysian Chinese Identifies CNVs at 11q14.3 and 6p21.3 as Candidate Loci

    Science.gov (United States)

    Low, Joyce Siew Yong; Chin, Yoon Ming; Mushiroda, Taisei; Kubo, Michiaki; Govindasamy, Gopala Krishnan; Pua, Kin Choo; Yap, Yoke Yeow; Yap, Lee Fah; Subramaniam, Selva Kumar; Ong, Cheng Ai; Tan, Tee Yong; Khoo, Alan Soo Beng; Ng, Ching Ching

    2016-01-01

    Background Nasopharyngeal carcinoma (NPC) is a neoplasm of the epithelial lining of the nasopharynx. Despite various reports linking genomic variants to NPC predisposition, very few reports were done on copy number variations (CNV). CNV is an inherent structural variation that has been found to be involved in cancer predisposition. Methods A discovery cohort of Malaysian Chinese descent (NPC patients, n = 140; Healthy controls, n = 256) were genotyped using Illumina® HumanOmniExpress BeadChip. PennCNV and cnvPartition calling algorithms were applied for CNV calling. Taqman CNV assays and digital PCR were used to validate CNV calls and replicate candidate copy number variant region (CNVR) associations in a follow-up Malaysian Chinese (NPC cases, n = 465; and Healthy controls, n = 677) and Malay cohort (NPC cases, n = 114; Healthy controls, n = 124). Results Six putative CNVRs overlapping GRM5, MICA/HCP5/HCG26, LILRB3/LILRA6, DPY19L2, RNase3/RNase2 and GOLPH3 genes were jointly identified by PennCNV and cnvPartition. CNVs overlapping GRM5 and MICA/HCP5/HCG26 were subjected to further validation by Taqman CNV assays and digital PCR. Combined analysis in Malaysian Chinese cohort revealed a strong association at CNVR on chromosome 11q14.3 (Pcombined = 1.54x10-5; odds ratio (OR) = 7.27; 95% CI = 2.96–17.88) overlapping GRM5 and a suggestive association at CNVR on chromosome 6p21.3 (Pcombined = 1.29x10-3; OR = 4.21; 95% CI = 1.75–10.11) overlapping MICA/HCP5/HCG26 genes. Conclusion Our results demonstrated the association of CNVs towards NPC susceptibility, implicating a possible role of CNVs in NPC development. PMID:26730743

  7. A Genome Wide Study of Copy Number Variation Associated with Nasopharyngeal Carcinoma in Malaysian Chinese Identifies CNVs at 11q14.3 and 6p21.3 as Candidate Loci.

    Directory of Open Access Journals (Sweden)

    Joyce Siew Yong Low

    Full Text Available Nasopharyngeal carcinoma (NPC is a neoplasm of the epithelial lining of the nasopharynx. Despite various reports linking genomic variants to NPC predisposition, very few reports were done on copy number variations (CNV. CNV is an inherent structural variation that has been found to be involved in cancer predisposition.A discovery cohort of Malaysian Chinese descent (NPC patients, n = 140; Healthy controls, n = 256 were genotyped using Illumina® HumanOmniExpress BeadChip. PennCNV and cnvPartition calling algorithms were applied for CNV calling. Taqman CNV assays and digital PCR were used to validate CNV calls and replicate candidate copy number variant region (CNVR associations in a follow-up Malaysian Chinese (NPC cases, n = 465; and Healthy controls, n = 677 and Malay cohort (NPC cases, n = 114; Healthy controls, n = 124.Six putative CNVRs overlapping GRM5, MICA/HCP5/HCG26, LILRB3/LILRA6, DPY19L2, RNase3/RNase2 and GOLPH3 genes were jointly identified by PennCNV and cnvPartition. CNVs overlapping GRM5 and MICA/HCP5/HCG26 were subjected to further validation by Taqman CNV assays and digital PCR. Combined analysis in Malaysian Chinese cohort revealed a strong association at CNVR on chromosome 11q14.3 (Pcombined = 1.54x10-5; odds ratio (OR = 7.27; 95% CI = 2.96-17.88 overlapping GRM5 and a suggestive association at CNVR on chromosome 6p21.3 (Pcombined = 1.29x10-3; OR = 4.21; 95% CI = 1.75-10.11 overlapping MICA/HCP5/HCG26 genes.Our results demonstrated the association of CNVs towards NPC susceptibility, implicating a possible role of CNVs in NPC development.

  8. Differential rates of genic and chromosomal evolution in bats of the family Rhinolophidae.

    Science.gov (United States)

    Qumsiyeh, M B; Owen, R D; Chesser, R K

    1988-06-01

    Data for nondifferentially stained chromosomes from 10 species of Rhinolophus (Chiroptera: Rhinolophidae) suggest a conserved chromosomal evolution. G-banded chromosomes for three well differentiated species (Rhinolophus hipposideros, Rhinolophus blasii, and Rhinolophus acuminatus) corroborate a low level of gross chromosomal rearrangements. Additionally, a comparison between G-banded chromosomes of Rhinolophus (Rhinolophidae) and Hipposideros (Hipposideridae) suggests extreme conservatism in chromosomal arms between these two distantly related groups. On the other hand, we report extensive genic divergence as assayed by starch gel electrophoresis among these 10 species, and between Rhinolophus and two hipposiderid genera (Hipposideros and Aselliscus). The present chromosomal data are not sufficient for phylogenetic analysis. Phylogenies based on electrophoretic data are in many aspects discordant with those based on the classical morphological criteria. Different (and as yet not clearly understood) evolutionary forces affecting chromosomal, morphologic, and electrophoretic variation may be the reason for the apparent lack of concordance in these independent data sets.

  9. CINcere Modelling : What Have Mouse Models for Chromosome Instability Taught Us?

    NARCIS (Netherlands)

    Simon, Judith E; Bakker, Bjorn; Foijer, Floris

    2015-01-01

    Chromosomal instability (CIN) is a process leading to errors in chromosome segregation and results in aneuploidy, a state in which cells have an abnormal number of chromosomes. CIN is a hallmark of cancer, and furthermore linked to ageing and age-related diseases such as Alzheimer's. Various mouse

  10. Cytogenetics of Mimosa bimucronata (DC. O. Kuntze (Mimosoideae, Leguminosae: chromosome number, polysomaty and meiosis.

    Directory of Open Access Journals (Sweden)

    Denise Olkoski

    2011-06-01

    Full Text Available Chromosome numbers (somatic and/or gametic were determined in 50 populations of M. bimucronata (DC. O.Kuntze collected in the species area of distribution in Rio Grande do Sul, south Brazil. All populations were diploid (2n = 2x = 26,n = 13. Polysomatic (mostly tetraploid cells were detected in the seedlings root-tip cells in 39 out of the 41 populations examined,ranging from 3.0 to 28.2 % among populations, but were absent in the root-tips of grown plants. Polysomaty was as well absent inpollen-mother cells. In M. bimucronata pollen-mother cells are joined two-by-two before the onset of meiosis, remaining attachedduring all the meiotic division until the formation of pollen grain polyads, composed of two sets of four pollen grains each, that aredispersed in this way, which, according to previous suggestions would be an adaptation to ensure high seed set after a singlepollination event.

  11. Positioning of the NOR-bearing chromosomes in relation to nucleoli in daughter cells after mitosis.

    Science.gov (United States)

    Kalmárová, M; Smirnov, E; Kovácik, L; Popov, A; Raska, I

    2008-01-01

    It is known that chromosomes occupy non-random positions in the cell nucleus. However, it is not clear to what extent their nuclear positions, together with their neighborhood, are conserved in daughter cells. To address specific aspects of this problem, we used the model of the chromosomes carrying ribosomal genes that are organized in clusters termed Nucleolus Organizer Regions (NORs). We compared the association of chosen NOR-bearing chromosomes (NOR-chromosomes) with nucleoli, as well as the numbers of nucleoli, in the pairs of daughter cells, and established how frequently the daughter cells had equal numbers of the homologs of certain NOR-chromosomes associated with individual nucleoli. The daughter cells typically had different numbers of nucleoli. At the same time, using immuno-FISH with probes for chromosomes 14 and 15 in HeLa cells, we found that the cell pairs with identical combinations appeared significantly more frequently than predicted by the random model. Thus, although the total number of chromosomes associated with nucleoli is variable, our data indicate that the position of the NOR-bearing chromosomes in relation to nucleoli is partly conserved through mitosis.

  12. Understanding Chromosome Disorders and their Implications for Special Educators

    Directory of Open Access Journals (Sweden)

    Linda Gilmore

    2014-03-01

    Full Text Available More children are now being diagnosed with chromosome abnormalities. Some chromosome disorder syndromes are relatively well known; while others are so rare that there is only limited evidence about their likely impact on learning and development. For educators, a basic level of knowledge about chromosome abnormalities is important for understanding the literature and communicating with families and professionals. This paper describes chromosomes, and the numerical and structural anomalies that can occur, usually spontaneously during early cell division. Distinctive features of various chromosome syndromes are summarised before a discussion of the rare chromosome disorders that are labelled, not with a syndrome name, but simply by a description of the chromosome number, size and shape. Because of the potential within-group variability that characterises syndromes, and the scarcity of literature about the rare chromosome disorders, expectations for learning and development of individual students need to be based on the range of possible outcomes that may be achievable.

  13. Rapid change of chromomeric and pairing patterns of polytene chromosome tips in D. melanogaster: migration of polytene-nonpolytene transition zone?

    Science.gov (United States)

    Roberts, P A

    1979-07-01

    The high variability of chromomeric patterns in near-terminal regions of polytene chromosome arms has been explored in a number of races, strains and hybrids of Drosophila melanogaster. Traditional explanations for tip differences between strains (differential compaction of chromatin, somatic or germinal deletion) are examined and, in the light of the reported observations, rejected. The range of polytene tip variability and rates of change in wild races are greater than has been supposed: strains formerly considered to be terminally deleted appear to gain terminal bands; others, formerly considered normal, appear to have lost them. Strains with high cell-to-cell tip variability are also described. Cell-to-cell variations, as well as much of the observed rapid changes in tip appearance, are probably due to heritable differences in the location of an abrupt transition zone between polytene and nonpolytene chromatin. A quantitative relationship between the amount of certain subterminal bands present and the frequency of tip association of nonhomologous chromosomes is shown and its possible significance for chromosome is shown and its possible for chromosome pairing discussed.

  14. Beyond the chromosome: the prevalence of unique extra-chromosomal bacteriophages with integrated virulence genes in pathogenic Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Bryan Utter

    Full Text Available In Staphylococcus aureus, the disease impact of chromosomally integrated prophages on virulence is well described. However, the existence of extra-chromosomal prophages, both plasmidial and episomal, remains obscure. Despite the recent explosion in bacterial and bacteriophage genomic sequencing, studies have failed to specifically focus on extra-chromosomal elements. We selectively enriched and sequenced extra-chromosomal DNA from S. aureus isolates using Roche-454 technology and uncovered evidence for the widespread distribution of multiple extra-chromosomal prophages (ExPΦs throughout both antibiotic-sensitive and -resistant strains. We completely sequenced one such element comprised of a 43.8 kbp, circular ExPΦ (designated ФBU01 from a vancomycin-intermediate S. aureus (VISA strain. Assembly and annotation of ФBU01 revealed a number of putative virulence determinants encoded within a bacteriophage immune evasion cluster (IEC. Our identification of several potential ExPΦs and mobile genetic elements (MGEs also revealed numerous putative virulence factors and antibiotic resistance genes. We describe here a previously unidentified level of genetic diversity of stealth extra-chromosomal elements in S. aureus, including phages with a larger presence outside the chromosome that likely play a prominent role in pathogenesis and strain diversity driven by horizontal gene transfer (HGT.

  15. Computer aided analysis of additional chromosome aberrations in Philadelphia chromosome positive acute lymphoblastic leukaemia using a simplified computer readable cytogenetic notation

    Directory of Open Access Journals (Sweden)

    Mohr Brigitte

    2003-01-01

    Full Text Available Abstract Background The analysis of complex cytogenetic databases of distinct leukaemia entities may help to detect rare recurring chromosome aberrations, minimal common regions of gains and losses, and also hot spots of genomic rearrangements. The patterns of the karyotype alterations may provide insights into the genetic pathways of disease progression. Results We developed a simplified computer readable cytogenetic notation (SCCN by which chromosome findings are normalised at a resolution of 400 bands. Lost or gained chromosomes or chromosome segments are specified in detail, and ranges of chromosome breakpoint assignments are recorded. Software modules were written to summarise the recorded chromosome changes with regard to the respective chromosome involvement. To assess the degree of karyotype alterations the ploidy levels and numbers of numerical and structural changes were recorded separately, and summarised in a complex karyotype aberration score (CKAS. The SCCN and CKAS were used to analyse the extend and the spectrum of additional chromosome aberrations in 94 patients with Philadelphia chromosome positive (Ph-positive acute lymphoblastic leukemia (ALL and secondary chromosome anomalies. Dosage changes of chromosomal material represented 92.1% of all additional events. Recurring regions of chromosome losses were identified. Structural rearrangements affecting (pericentromeric chromosome regions were recorded in 24.6% of the cases. Conclusions SCCN and CKAS provide unifying elements between karyotypes and computer processable data formats. They proved to be useful in the investigation of additional chromosome aberrations in Ph-positive ALL, and may represent a step towards full automation of the analysis of large and complex karyotype databases.

  16. Characterization of chromosome instability in interspecific somatic hybrids obtained by X-ray fusion between potato (Solanum tuberosum L.) and S. brevidens Phil

    International Nuclear Information System (INIS)

    Fehér, A.; Preiszner, J.; Litkey, Z.; Csanádi, G; Dudits, D.

    1992-01-01

    Asymmetric somatic hybrids between Solanum tuberosum L. and S. brevidens Phil. have been obtained via the fusion of protoplasts from potato leaves and from cell suspension culture of S. brevidens. The wild Solanum species served as donor after irradiation of its protoplasts with a lethal X-ray dose (200 Gy). Selection of the putative hybrids was based on the kanamycin-resistance marker gene previously introduced into the genome of Solanum brevidens by Agrobacterium-mediated gene transfer. Thirteen out of the 45 selected clones exhibited reduced morphogenic potential. The morphological abnormalities of the regenerated plantlets were gradually eliminated during the extended in vitro culture period. Cytological investigations revealed that the number of chromosomes in the cultured S. brevidens cells used as protoplast source ranged between 28-40 instead of the basic 2n=24 value. There was a high degree of aneuploidy in all of the investigated hybrid clones, and at least 12 extra chromosomes were observed in addition to the potato chromosomes (2n=48). Interand intraclonal variation and segregation during vegetative propagation indicated the genetic instability of the hybrids, which can be ascribed to the pre-existing and X-ray irradiation-induced chromosomal abnormalities in the donor S. brevidens cells. The detection of centromeric chromosome fragments and long, poly-constrictional chromosomes in cytological preparations as well as non-parental bands in Southern hybridizations with restriction fragment length polymorphism (RFLP) markers revealed extensive chromosome rearrangements in most of the regenerated clones. On the basis of the limited number of RFLP probes used, preferential loss of S. brevidens specific markers with a non-random elimination pattern could be detected in hybrid regenerants

  17. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Retno; Ohsaki, Eriko [Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Omori, Hiroko [Central Instrumentation Laboratory Research Institute for Microbial Diseases (BIKEN), Osaka University, Osaka 565-0871 (Japan); Ueda, Keiji, E-mail: kueda@virus.med.osaka-u.ac.jp [Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2016-09-15

    In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy–electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres, and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division. - Highlights: • This is the first report showing LANA dots on mitotic chromosomes by fluorescent microscopy followed by electron microscopy. • LANA dots localized randomly on condensed chromosomes other than centromere/pericentromere and telomere/peritelomre. • Cellular mitotic checkpoint should not be always involved in the segregation of KSHV genomes in the latency.

  18. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes

    International Nuclear Information System (INIS)

    Rahayu, Retno; Ohsaki, Eriko; Omori, Hiroko; Ueda, Keiji

    2016-01-01

    In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy–electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres, and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division. - Highlights: • This is the first report showing LANA dots on mitotic chromosomes by fluorescent microscopy followed by electron microscopy. • LANA dots localized randomly on condensed chromosomes other than centromere/pericentromere and telomere/peritelomre. • Cellular mitotic checkpoint should not be always involved in the segregation of KSHV genomes in the latency.

  19. Chromosomal instability in women with primary ovarian insufficiency.

    Science.gov (United States)

    Katari, Sunita; Aarabi, Mahmoud; Kintigh, Angela; Mann, Susan; Yatsenko, Svetlana A; Sanfilippo, Joseph S; Zeleznik, Anthony J; Rajkovic, Aleksandar

    2018-02-07

    What is the prevalence of somatic chromosomal instability among women with idiopathic primary ovarian insufficiency (POI)? A subset of women with idiopathic POI may have functional impairment in DNA repair leading to chromosomal instability in their soma. The formation and repair of DNA double-strand breaks during meiotic recombination are fundamental processes of gametogenesis. Oocytes with compromised DNA integrity are susceptible to apoptosis which could trigger premature ovarian aging and accelerated wastage of the human follicle reserve. Genomewide association studies, as well as whole exome sequencing, have implicated multiple genes involved in DNA damage repair. However, the prevalence of defective DNA damage repair in the soma of women with POI is unknown. In total, 46 women with POI and 15 family members were evaluated for excessive mitomycin-C (MMC)-induced chromosome breakage. Healthy fertile females (n = 20) and two lymphoblastoid cell lines served as negative and as positive controls, respectively. We performed a pilot functional study utilizing MMC to assess chromosomal instability in the peripheral blood of participants. A high-resolution array comparative genomic hybridization (aCGH) was performed on 16 POI patients to identify copy number variations (CNVs) for a set of 341 targeted genes implicated in DNA repair. Array CGH revealed three POI patients (3/16, 18.8%) with pathogenic CNVs. Excessive chromosomal breakage suggestive of a constitutional deficiency in DNA repair was detected in one POI patient with the 16p12.3 duplication. In two patients with negative chromosome breakage analysis, aCGH detected a Xq28 deletion comprising the Centrin EF-hand Protein 2 (CETN2) and HAUS Augmin Like Complex Subunit 7 (HAUS7) genes essential for meiotic DNA repair, and a duplication in the 3p22.2 region comprising a part of the ATPase domain of the MutL Homolog 1 (MLH1) gene. Peripheral lymphocytes, used as a surrogate tissue to quantify induced chromosome

  20. 125IdUrd-induced chromosome fragments, assayed by premature chromosome condensation, and DNA double-strand breaks have similar repair kinetics in G1-phase CHO-cells

    International Nuclear Information System (INIS)

    Iliakis, George; Pantelias, G.E.; Okayasu, Ryuichi; Seaner, Robert

    1987-01-01

    The effect of 125 I-decay on cell lethality, and induction of chromosome and DNA damage, was studied in synchronous non-cycling, G 1 -phase CHO-cells. Neutral filter elution was used to assay repair of DNA double-strand breaks (dsbs), and premature chromosome condensation was used to assay repair of chromosome fragments and induction of ring chromosomes. The results indicate very little repair at the cell survival level (repair of PLD). At the DNA level an efficient repair of DNA dsbs was observed, with kinetics similar to those observed after exposure to X-rays. At the chromosome level a fast repair of prematurely condensed chromosome fragments was observed, with a concomitant increase in the number of ring chromosomes induced. The repair kinetics of chromosome fragments and DNA dsbs were very similar, suggesting that DNA dsbs may underlie chromosome fragmentation. (author)

  1. Variation of CRE with exponents of time and number of fractions

    International Nuclear Information System (INIS)

    Supe, S.J.; Rao, S.M.; Sawant, S.G.; Bisht, J.S.

    1976-01-01

    The concept of NSD has been modified into TDF's by Orton and Ellis and CRE's by Kirk et al. It was aimed to study the variability of these new concepts on the exponents of time and number of fractions. It was found that TDF has larger variation with the exponents compared to that of CRE. The use of CRE and NSD for solving the treatment scheduling problems or for intercomparison of various regimes has been simplified by providing readymade estimation of CRE for various doses/fraction with increasing number of fractions. As there is increasing evidence for the change of exponents J and H, nomograms are presented to determine the CRE for various values of J and H. The variation of decay correction factors with the exponent H is also evaluated and is presented. This will help various radiotherapists to use CRE and the decay correction factors consistent with their clinical findings. (orig.) [de

  2. Chromosomal organization of the ribosomal RNA genes in the genus Chironomus (Diptera, Chironomidae

    Directory of Open Access Journals (Sweden)

    Larisa Gunderina

    2015-05-01

    Full Text Available Chromosomal localization of ribosomal RNA coding genes has been studied by using FISH (fluorescence in situ hybridization in 21 species from the genus Chironomus Meigen, 1803. Analysis of the data has shown intra- and interspecific variation in number and location of 5.8S rDNA hybridization sites in 17 species from the subgenus Chironomus and 4 species from the subgenus Camptochironomus Kieffer, 1914. In the majority of studied species the location of rDNA sites coincided with the sites where active NORs (nucleolus organizer regions were found. The number of hybridization sites in karyotypes of studied chironomids varied from 1 to 6. More than half of the species possessed only one NOR (12 out of 21. Two rDNA hybridization sites were found in karyotypes of five species, three – in two species, and five and six sites – in one species each. NORs were found in all chromosomal arms of species from the subgenus Chironomus with one of them always located on arm G. On the other hand, no hybridization sites were found on arm G in four studied species from the subgenus Camptochironomus. Two species from the subgenus Chironomus – Ch. balatonicus Devai, Wuelker & Scholl, 1983 and Ch. “annularius” sensu Strenzke, 1959 – showed intraspecific variability in the number of hybridization signals. Possible mechanisms of origin of variability in number and location of rRNA genes in the karyotypes of species from the genus Chironomus are discussed.

  3. Flower colour variation and chromosome numbers in the north western distributional area of Turners sidoides (Turneraceae

    Directory of Open Access Journals (Sweden)

    Viviana G. Solís Neffa

    2004-01-01

    Full Text Available In the context of the evolutionary studies that are being carried out in Turners sidoides autopolyploid complex (x= 7, a systematic survey was made in the northwestern area (Bolivia of its distribution. Six populations with salmon flowers and thirty five with yellow ones of the subsp. pinnatifida were found. The distribution of these populations is associated with climatic and spatial variables. The populations with salmon flowers live in the dry forests (Chaco Boreal Biogeographical Province, while yellow flowered populations occur in the inter-andean valleys (Boliviano-Tucumana Biogeographical Province. All the population studied are diploid. The results obtained support the allopatric diversification model of populations with yellow and salmon flowers at the diploid level, probably favoured by the orographic barriers and climatic changes that have arisen during the Andes development and Quaternary glaciations. Moreover, our analysis evidences that the north western area of T. sidoides constitutes an important centre of variation of the subsp. pinnatifida and the major centre of diploids hitherto detected

  4. Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups.

    Science.gov (United States)

    Marcone, C; Neimark, H; Ragozzino, A; Lauer, U; Seemüller, E

    1999-09-01

    ABSTRACT Chromosome sizes of 71 phytoplasmas belonging to 12 major phylogenetic groups including several of the aster yellows subgroups were estimated from electrophoretic mobilities of full-length chromosomes in pulsed-field gels. Considerable variation in genome size, from 660 to 1,130 kilobases (kb), was observed among aster yellows phytoplasmas. Chromosome size heterogeneity was also observed in the stolbur phytoplasma group (range 860 to 1,350 kb); in this group, isolate STOLF contains the largest chromosome found in a phytoplasma to date. A wide range of chromosome sizes, from 670 to 1,075 kb, was also identified in the X-disease group. The other phytoplasmas examined, which included members of the apple proliferation, Italian alfalfa witches' broom, faba bean phyllody, pigeon pea witches' broom, sugarcane white leaf, Bermuda grass white leaf, ash yellows, clover proliferation, and elm yellows groups, all have chromosomes smaller than 1 megabase, and the size ranges within each of these groups is narrower than in the aster yellows, stolbur, and X-disease groups. The smallest chromosome, approximately 530 kb, was found in two Bermuda grass white leaf phytoplasma isolates. This not only is the smallest mollicute chromosome found to date, but also is the smallest chromosome known for any cell. More than one large DNA band was observed in several phytoplasma preparations. Possible explanations for the occurrence of more than one band may be infection of the host plant by different phytoplasmas, the presence of more than one chromosome in the same organism, or the presence of large extrachromosomal DNA elements.

  5. An initial comparative map of copy number variations in the goat (Capra hircus genome

    Directory of Open Access Journals (Sweden)

    Casadio Rita

    2010-11-01

    Full Text Available Abstract Background The goat (Capra hircus represents one of the most important farm animal species. It is reared in all continents with an estimated world population of about 800 million of animals. Despite its importance, studies on the goat genome are still in their infancy compared to those in other farm animal species. Comparative mapping between cattle and goat showed only a few rearrangements in agreement with the similarity of chromosome banding. We carried out a cross species cattle-goat array comparative genome hybridization (aCGH experiment in order to identify copy number variations (CNVs in the goat genome analysing animals of different breeds (Saanen, Camosciata delle Alpi, Girgentana, and Murciano-Granadina using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. Results We identified a total of 161 CNVs (an average of 17.9 CNVs per goat, with the largest number in the Saanen breed and the lowest in the Camosciata delle Alpi goat. By aggregating overlapping CNVs identified in different animals we determined CNV regions (CNVRs: on the whole, we identified 127 CNVRs covering about 11.47 Mb of the virtual goat genome referred to the bovine genome (0.435% of the latter genome. These 127 CNVRs included 86 loss and 41 gain and ranged from about 24 kb to about 1.07 Mb with a mean and median equal to 90,292 bp and 49,530 bp, respectively. To evaluate whether the identified goat CNVRs overlap with those reported in the cattle genome, we compared our results with those obtained in four independent cattle experiments. Overlapping between goat and cattle CNVRs was highly significant (P Conclusions We describe a first map of goat CNVRs. This provides information on a comparative basis with the cattle genome by identifying putative recurrent interspecies CNVs between these two ruminant species. Several goat CNVs affect genes with important biological functions. Further studies are needed to evaluate the

  6. Chromosome aberrations and cell survival in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Tremp, J.

    1981-01-01

    A possible correlation between chromosome aberrations and reduced proliferation capacity or cell death was investigated. Synchronized Chinese hamster fibroblast cells were irradiated with 300 rad of x rays in early G 1 . Despite synchronization the cells reached the subsequent mitosis at different times. The frequency of chromosome aberrations was determined in the postirradiation division at 2-h intervals. The highest frequency occurred in cells with a first cell cycle of medium length. The colony-forming ability of mitotic cells was measured in parallel samples by following the progress of individual mitoses. The proportion of cells forming macrocolonies decreased with increasing cell cycle length, and the number of non-colony-forming cells increased. Irrespective of various first cell cycle lengths and different frequencies of chromosome aberrations, the number of cells forming microcolonies remained constant. A correlation was found between the absence of chromosome aberrations and the ability of cells to form macrocolonies. However, cells with a long first cell cycle formed fewer macrocolonies than expected

  7. The significance of chromosome deletions in atomic-bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Shigeta, Chiharu; Oguma, Nobuo; Kamada, Nanao; Deng, Z.; Niimi, Masanobu; Aisaka, Tadaichi.

    1986-01-01

    In 39 A-bomb survivors 40 years after exposure at ≤ 1,000 m from ground zero, the frequency and features of chromosome deletions in peripheral lymphocytes were examined using a differential staining technique. Simultaneously, in vitro irradiation experiment with Cf-252 was made to infer chromosome aberrations occuring immediately after exposure. Californium-252 with 100 rad induced dicentric and ring chromosomes in 40 % of the cells and acentric fragments in 44 %. Among the A-bomb survivors, chromosome aberrations were observed in 651 (21 %) of the total 3,136 cells. There were 146 cells with deletions (22 % of abnormal cells; 5 % of the total cells), and 10 cells with acentric fragment (0.3 % of the total cells). The figure for deletions was far higher than that reported in the literature. A large number of deletions were seen in chromosomes no.4, no.21, and no.22, and a few deletions in chromosomes no.7 and no.20. Significance of chromosome deletions is discussed. (Namekawa, K.)

  8. Variation and Evolution of the Meiotic Requirement for Crossing Over in Mammals.

    Science.gov (United States)

    Dumont, Beth L

    2017-01-01

    The segregation of homologous chromosomes at the first meiotic division is dependent on the presence of at least one well-positioned crossover per chromosome. In some mammalian species, however, the genomic distribution of crossovers is consistent with a more stringent baseline requirement of one crossover per chromosome arm. Given that the meiotic requirement for crossing over defines the minimum frequency of recombination necessary for the production of viable gametes, determining the chromosomal scale of this constraint is essential for defining crossover profiles predisposed to aneuploidy and understanding the parameters that shape patterns of recombination rate evolution across species. Here, I use cytogenetic methods for in situ imaging of crossovers in karyotypically diverse house mice (Mus musculus domesticus) and voles (genus Microtus) to test how chromosome number and configuration constrain the distribution of crossovers in a genome. I show that the global distribution of crossovers in house mice is thresholded by a minimum of one crossover per chromosome arm, whereas the crossover landscape in voles is defined by a more relaxed requirement of one crossover per chromosome. I extend these findings in an evolutionary metaanalysis of published recombination and karyotype data for 112 mammalian species and demonstrate that the physical scale of the genomic crossover distribution has undergone multiple independent shifts from one crossover per chromosome arm to one per chromosome during mammalian evolution. Together, these results indicate that the chromosomal scale constraint on crossover rates is itself a trait that evolves among species, a finding that casts light on an important source of crossover rate variation in mammals. Copyright © 2017 by the Genetics Society of America.

  9. The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa. IV. Transmission of rare B chromosome variants.

    Science.gov (United States)

    Bakkali, M; Camacho, J P M

    2004-01-01

    In addition to the principal B chromosome (B(1)) in Moroccan populations of the grasshopper Eyprepocnemis plorans, nine B chromosome variants appeared at low frequency. The transmission of five of these rare B chromosome variants through females was analysed in three natural populations. Sixteen controlled crosses provided useful information on the transmission of B(M2), B(M6) and B(M7) in Smir, B(M3) and B(M6) in SO.DE.A. (Société de Développement Agricole lands near Ksar-el-Kebir city), and B(M2) and B(M10) in Mechra, all located in Morocco. Since six female parents carried two different B variants, a total of 22 progeny analyses could be studied. Intraindividual variation in B transmission rate (k(B)) was observed among the successive egg pods in 26.7 % of the females, but this variation did not show a consistent temporal pattern. Only the B(M2) and B(M6) variants in Smir showed net drive, although variation was high among crosses, especially for B(M2). These two variants are thus good candidates for future regenerations (the replacement of a neutralized B, B(1) in this case, by a new driving variant, B(M2) or B(M6)) in Smir, the northern population where the B polymorphism is presumably older. The analysis of all crosses performed in the three populations, including those reported previously for the analysis of B(1) transmission, showed that the largest variance in k(B) among crosses stands at the individual level, and not at population or type of B levels. The implications of these findings for the occurrence of possible regeneration processes in Moroccan populations are discussed. Copyright 2004 S. Karger AG, Basel

  10. Chromosomal aberrations as etiological factors of intrauterine growth retardation

    Directory of Open Access Journals (Sweden)

    Petrović Bojana

    2008-01-01

    Full Text Available Background/Aim. Intrauterine growth retardation (IUGR is a pathological condition of pregnancy characterised by birth weight below the 10th centile. A number of fetal, placental and maternal causes can lead to IUGR; although, in most cases no specific causes can be identified. The aim of this study was to determine the part of chromosomal abnormalities in IUGR etiology. Methods. Fetal blood karyotype taken by cordocentesis from 168 fetuses with diagnosed IUGR was analyzed. Results. Chromosomal rearrangements both numerical and structural were detected in 14 cases (12.2%. Two cases were triploid. Patau syndrome, Edwards syndrome and Down syndrome were found in two cases each. There was one case of trisomy 7 (47, XY, +7 and one case of trisomy 16 (47, XX, +16; one translocation, 46, XY, t (2; 14(q23; q32 and a deletion 46, XYdel (12 (p12 as well as two cases of sex chromosomes abnormalities, 45, X (Turner syndrome and 47, XYY. Conclusion. These findings suggest that a consistent number of symmetrical IUGR cases (about 12% can be associated with chromosomal rearrangements. Chromosomal aberrations that cause IUGR are heterogeneous, aberration of autosomes, mostly autosomal trisomies, being the most common.

  11. Satellite DNA-based artificial chromosomes for use in gene therapy.

    Science.gov (United States)

    Hadlaczky, G

    2001-04-01

    Satellite DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian species. These artificially generated accessory chromosomes are composed of predictable DNA sequences and they contain defined genetic information. Prototype human SATACs have been successfully constructed in different cell types from 'neutral' endogenous DNA sequences from the short arm of the human chromosome 15. SATACs have already passed a number of hurdles crucial to their further development as gene therapy vectors, including: large-scale purification; transfer of purified artificial chromosomes into different cells and embryos; generation of transgenic animals and germline transmission with purified SATACs; and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals.

  12. Mapping copy number variation by population-scale genome sequencing

    DEFF Research Database (Denmark)

    Mills, Ryan E.; Walter, Klaudia; Stewart, Chip

    2011-01-01

    Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is......, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications...

  13. Residual chromosomal damage after radiochemotherapy with and without amifostine detected by 24-color FISH

    International Nuclear Information System (INIS)

    Kuechler, A.; Wendt, T.G.; Dreidax, M.; Liehr, T.; Claussen, U.; Pigorsch, S.U.; Dunst, J.

    2003-01-01

    Background: Amifostine is a radioprotective drug applied to reduce acute radiation toxicity during a course of conventionally fractionated radiotherapy. In the present study, amifostine was used in patients undergoing adjuvant radiochemotherapy for rectal cancer. It was described previously that additional application of amifostine led to less acute skin and bowel toxicity. The present study was aimed to determine whether amifostine has an influence on the amount of residual chromosomal damage. Material and Methods: Peripheral lymphocytes of twelve rectal cancer patients who had undergone postoperative radiochemotherapy 2-3 years ago were investigated for residual chromosomal damage using 24-color fluorescence in situ hybridization (24-color FISH). All twelve patients had received a total dose of 55.8 Gy in conventional fractionation of 1.8 Gy and a 120-h continuous infusion of 5-fluorouracil (5-FU) chemotherapy (1,000 mg/m 2 per day) in the 1st and 5th week of irradiation. Seven out of twelve patients had been given additional amifostine on chemotherapy days (500 mg total dose as short i.v. infusion immediately prior to the daily radiation fraction). Cultivation of lymphocytes and 24-color FISH were performed according to standard protocols. 100 metaphases per patient were analyzed for chromosomal aberrations in a blind study. Results: Analysis of the average number of breaks per mitosis (B/M) revealed an increased amount of residual chromosomal damage in the group treated with amifostine (0.65 B/M [0.32-0.97]) as well as in those treated without amifostine (0.76 B/M [0.31-1.25]). Also the average number of cells containing aberrations per 100 analyzed metaphases was similar (with amifostine: 22.1 [13-32] vs. 24.4 [13-35] without amifostine). The aberration types, occurring as simple translocations, reciprocal translocations, breaks, dicentrics, inversions, rings and complex chromosomal rearrangements, did not show any specific accumulation in one or the other

  14. Polymorphic haplotypes on R408BW PKU and normal PAH chromosomes in Quebec and European populations

    Energy Technology Data Exchange (ETDEWEB)

    Byck, S.; Morgan, K.; Scriver, C.R. [McGill Univ., Montreal (Canada)] [and others

    1994-09-01

    The R408W mutation in the phenylalanine hydroxylase gene (PAH) is associated with haplotype 2.3 (RFLP haplotype 2, VNTR 3 of the HindIII system) in most European populations. Another chromosome, first observed in Quebec and then in northwest Europe, carries R408W on haplotype 1.8. The occurrence of the R408W mutation on two different PKU chromosomes could be the result of intragenic recombination, recurrent mutation or gene conversion. In this study, we analyzed both normal and R408W chromosomes carrying 1.8 and 2.3 haplotypes in Quebec and European populations; we used the TCTA{sub (n)} short tandem repeat sequence (STR) at the 5{prime} end of the PAH gene and the HindIII VNTR system at the 3{prime} end of the PAH gene to characterize chromosomes. Fourteen of sixteen R408W chromosomes from {open_quotes}Celtic{close_quotes} families in Quebec and the United Kingdom (UK) harbor a 244 bp STR allele; the remaining two chromosomes, carry a 240 bp or 248bp STR allele. Normal chromosomes (n=18) carry the 240 bp STR allele. R408W chromosomes are different from mutant H1.8 chromosomes; mutant H2.3 carries the 240 bp STR allele (14 of 16 chromosomes) or the 236 allele (2 of 16 chromosomes). The HindIII VNTR comprises variable numbers of 30 bp repeats (cassettes); the repeats also vary in nucleotide sequence. Variation clusters toward the 3{prime} end of cassettes and VNTRs. VNTR 3 alleles on normal H2 (n=9) and mutant R408W H2 (n=19) chromosomes were identical. VNTR 8 alleles on normal H1 chromosomes (n=9) and on R408W H1 chromosomes (n=15) differ by 1 bp substitution near the 3{prime} end of the 6th cassette. In summary, the mutant H1.8 chromosome harboring the R408W mutation has unique features at both the 5{prime} and 3{prime} end of the gene that distinguish it from the mutant H2.3 and normal H1.8 and H2.3 counterparts. The explanation for the occurrence of R408W on two different PAH haplotypes is recurrent mutation affecting the CpG dinucleotide in PAH codon 408.

  15. Genetics of dioecy and causal sex chromosomes in plants

    Indian Academy of Sciences (India)

    2014-04-15

    chromosome evolution; sex-ratio variation ...... interaction between the two genes, Cm ACS7 and Cm W1P1, ... son of low pollinator density seed formation will be scanty ...... Kaltz O. and Bell G. 2002 The ecology and genetics of fitness in.

  16. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  17. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster

    Science.gov (United States)

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  18. Y-chromosome phylogeny in the evolutionary net of chamois (genus Rupicapra

    Directory of Open Access Journals (Sweden)

    Domínguez Ana

    2011-09-01

    Full Text Available Abstract Background The chamois, distributed over most of the medium to high altitude mountain ranges of southern Eurasia, provides an excellent model for exploring the effects of historical and evolutionary events on diversification. Populations have been grouped into two species, Rupicapra pyrenaica from southwestern Europe and R. rupicapra from eastern Europe. The study of matrilineal mitochondrial DNA (mtDNA and biparentally inherited microsatellites showed that the two species are paraphyletic and indicated alternate events of population contraction and dispersal-hybridization in the diversification of chamois. Here we investigate the pattern of variation of the Y-chromosome to obtain information on the patrilineal phylogenetic position of the genus Rupicapra and on the male-specific dispersal of chamois across Europe. Results We analyzed the Y-chromosome of 87 males covering the distribution range of the Rupicapra genus. We sequenced a fragment of the SRY gene promoter and characterized the male specific microsatellites UMN2303 and SRYM18. The SRY promoter sequences of two samples of Barbary sheep (Ammotragus lervia were also determined and compared with the sequences of Bovidae available in the GenBank. Phylogenetic analysis of the alignment showed the clustering of Rupicapra with Capra and the Ammotragus sequence obtained in this study, different from the previously reported sequence of Ammotragus which groups with Ovis. Within Rupicapra, the combined data define 10 Y-chromosome haplotypes forming two haplogroups, which concur with taxonomic classification, instead of the three clades formed for mtDNA and nuclear microsatellites. The variation shows a west-to-east geographical cline of ancestral to derived alleles. Conclusions The phylogeny of the SRY-promoter shows an association between Rupicapra and Capra. The position of Ammotragus needs a reinvestigation. The study of ancestral and derived characters in the Y-chromosome suggests

  19. Reduced polymorphism associated with X chromosome meiotic drive in the stalk-eyed fly Teleopsis dalmanni.

    Directory of Open Access Journals (Sweden)

    Sarah J Christianson

    Full Text Available Sex chromosome meiotic drive has been suggested as a cause of several evolutionary genetic phenomena, including genomic conflicts that give rise to reproductive isolation between new species. In this paper we present a population genetic analysis of X chromosome drive in the stalk-eyed fly, Teleopsis dalmanni, to determine how this natural polymorphism influences genetic diversity. We analyzed patterns of DNA sequence variation at two X-linked regions (comprising 1325 bp approximately 50 cM apart and one autosomal region (comprising 921 bp for 50 males, half of which were collected in the field from one of two allopatric locations and the other half were derived from lab-reared individuals with known brood sex ratios. These two populations are recently diverged but exhibit partial postzygotic reproductive isolation, i.e. crosses produce sterile hybrid males and fertile females. We find no nucleotide or microsatellite variation on the drive X chromosome, whereas the same individuals show levels of variation at autosomal regions that are similar to field-collected flies. Furthermore, one field-caught individual collected 10 years previously had a nearly identical X haplotype to the drive X, and is over 2% divergent from other haplotypes sampled from the field. These results are consistent with a selective sweep that has removed genetic variation from much of the drive X chromosome. We discuss how this finding may relate to the rapid evolution of postzygotic reproductive isolation that has been documented for these flies.

  20. Multiplex Ligation-Dependent Probe Amplification Analysis of GATA4 Gene Copy Number Variations in Patients with Isolated Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Valentina Guida

    2010-01-01

    Full Text Available GATA4 mutations are found in patients with different isolated congenital heart defects (CHDs, mostly cardiac septal defects and tetralogy of Fallot. In addition, GATA4 is supposed to be the responsible gene for the CHDs in the chromosomal 8p23 deletion syndrome, which is recognized as a malformation syndrome with clinical symptoms of facial anomalies, microcephaly, mental retardation, and congenital heart defects. Thus far, no study has been carried out to investigate the role of GATA4 copy number variations (CNVs in non-syndromic CHDs. To explore the possible occurrence of GATA4 gene CNVs in isolated CHDs, we analyzed by multiplex ligation-dependent probe amplification (MLPA a cohort of 161 non-syndromic patients with cardiac anomalies previously associated with GATA4 gene mutations. The patients were mutation-negative for GATA4, NKX2.5, and FOG2 genes after screening with denaturing high performance liquid chromatography. MLPA analysis revealed that normalized MLPA signals were all found within the normal range values for all exons in all patients, excluding a major contribution of GATA4 gene CNVs in CHD pathogenesis.

  1. Sociolinguistic Variation and Change in British Sign Language Number Signs: Evidence of Leveling?

    Science.gov (United States)

    Stamp, Rose; Schembri, Adam; Fenlon, Jordan; Rentelis, Ramas

    2015-01-01

    This article presents findings from the first major study to investigate lexical variation and change in British Sign Language (BSL) number signs. As part of the BSL Corpus Project, number sign variants were elicited from 249 deaf signers from eight sites throughout the UK. Age, school location, and language background were found to be significant…

  2. Ring Chromosome 17 Not Involving the Miller-Dieker Region: A Case with Drug-Resistant Epilepsy.

    Science.gov (United States)

    Coppola, Antonietta; Morrogh, Deborah; Farrell, Fiona; Balestrini, Simona; Hernandez-Hernandez, Laura; Krithika, S; Sander, Josemir W; Waters, Jonathan J; Sisodiya, Sanjay M

    2017-12-01

    Chromosomal abnormalities are often identified in people with neurodevelopmental disorders including intellectual disability, autism, and epilepsy. Ring chromosomes, which usually involve gene copy number loss, are formed by fusion of subtelomeric or telomeric chromosomal regions. Some ring chromosomes, including ring 14, 17, and 20, are strongly associated with seizure disorders. We report an individual with a ring chromosome 17, r(17)(p13.3q25.3), with a terminal 17q25.3 deletion and no short arm copy number loss, and with a phenotype characterized by intellectual disability and drug-resistant epilepsy, including a propensity for nonconvulsive status epilepticus.

  3. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  4. Copy number variations in 6q14.1 and 5q13.2 are associated with alcohol dependence.

    Science.gov (United States)

    Lin, Peng; Hartz, Sarah M; Wang, Jen-Chyong; Agrawal, Arpana; Zhang, Tian-Xiao; McKenna, Nicholas; Bucholz, Kathleen; Brooks, Andrew I; Tischfield, Jay A; Edenberg, Howard J; Hesselbrock, Victor M; Kramer, John R; Kuperman, Samuel; Schuckit, Marc A; Goate, Alison M; Bierut, Laura J; Rice, John P

    2012-09-01

    Excessive alcohol use is the third leading cause of preventable death and is highly correlated with alcohol dependence, a heritable phenotype. Many genetic factors for alcohol dependence have been found, but many remain unknown. In search of additional genetic factors, we examined the association between Diagnostic and StatisticalManual of Mental Disorders, Fourth Edition (DSM-IV) alcohol dependence and all common copy number variations (CNVs) with good reliability in the Study of Addiction: Genetics and Environment (SAGE). All participants in SAGE were interviewed using the Semi-Structured Assessment for the Genetics of Alcoholism, as a part of 3 contributing studies. A total of 2,610 non-Hispanic European American samples were genotyped on the Illumina Human 1M array. We performed CNV calling by CNVPartition, PennCNV, and QuantiSNP, and only CNVs identified by all 3 software programs were examined. Association was conducted with the CNV (as a deletion/duplication) as well as with probes in the CNV region. Quantitative polymerase chain reaction (qPCR) was used to validate the CNVs in the laboratory. CNVs in 6q14.1 (p = 1.04 × 10(-6)) and 5q13.2 (p = 3.37 × 10(-4)) were significantly associated with alcohol dependence after adjusting multiple tests. On chromosome 5q13.2, there were multiple candidate genes previously associated with various neurological disorders. The region on chromosome 6q14.1 is a gene desert that has been associated with mental retardation and language delay. The CNV in 5q13.2 was validated, whereas only a component of the CNV on 6q14.1 was validated by qPCR. Thus, the CNV on 6q14.1 should be viewed with caution. This is the first study to show an association between DSM-IV alcohol dependence and CNVs. CNVs in regions previously associated with neurological disorders may be associated with alcohol dependence. Copyright © 2012 by the Research Society on Alcoholism.

  5. Demasculinization of the Anopheles gambiae X chromosome

    Directory of Open Access Journals (Sweden)

    Magnusson Kalle

    2012-05-01

    Full Text Available Abstract Background In a number of organisms sex-biased genes are non-randomly distributed between autosomes and the shared sex chromosome X (or Z. Studies on Anopheles gambiae have produced conflicting results regarding the underrepresentation of male-biased genes on the X chromosome and it is unclear to what extent sexual antagonism, dosage compensation or X-inactivation in the male germline, the evolutionary forces that have been suggested to affect the chromosomal distribution of sex-biased genes, are operational in Anopheles. Results We performed a meta-analysis of sex-biased gene expression in Anopheles gambiae which provides evidence for a general underrepresentation of male-biased genes on the X-chromosome that increased in significance with the observed degree of sex-bias. A phylogenomic comparison between Drosophila melanogaster, Aedes aegypti and Culex quinquefasciatus also indicates that the Anopheles X chromosome strongly disfavours the evolutionary conservation of male-biased expression and that novel male-biased genes are more likely to arise on autosomes. Finally, we demonstrate experimentally that transgenes situated on the Anopheles gambiae X chromosome are transcriptionally silenced in the male germline. Conclusion The data presented here support the hypothesis that the observed demasculinization of the Anopheles X chromosome is driven by X-chromosome inactivation in the male germline and by sexual antagonism. The demasculinization appears to be the consequence of a loss of male-biased expression, rather than a failure in the establishment or the extinction of male-biased genes.

  6. A scale invariant clustering of genes on human chromosome 7

    Directory of Open Access Journals (Sweden)

    Kendal Wayne S

    2004-01-01

    Full Text Available Abstract Background Vertebrate genes often appear to cluster within the background of nontranscribed genomic DNA. Here an analysis of the physical distribution of gene structures on human chromosome 7 was performed to confirm the presence of clustering, and to elucidate possible underlying statistical and biological mechanisms. Results Clustering of genes was confirmed by virtue of a variance of the number of genes per unit physical length that exceeded the respective mean. Further evidence for clustering came from a power function relationship between the variance and mean that possessed an exponent of 1.51. This power function implied that the spatial distribution of genes on chromosome 7 was scale invariant, and that the underlying statistical distribution had a Poisson-gamma (PG form. A PG distribution for the spatial scattering of genes was validated by stringent comparisons of both the predicted variance to mean power function and its cumulative distribution function to data derived from chromosome 7. Conclusion The PG distribution was consistent with at least two different biological models: In the microrearrangement model, the number of genes per unit length of chromosome represented the contribution of a random number of smaller chromosomal segments that had originated by random breakage and reconstruction of more primitive chromosomes. Each of these smaller segments would have necessarily contained (on average a gamma distributed number of genes. In the gene cluster model, genes would be scattered randomly to begin with. Over evolutionary timescales, tandem duplication, mutation, insertion, deletion and rearrangement could act at these gene sites through a stochastic birth death and immigration process to yield a PG distribution. On the basis of the gene position data alone it was not possible to identify the biological model which best explained the observed clustering. However, the underlying PG statistical model implicated neutral

  7. Automatic aberration scoring using whole chromosome F.I.S.H

    International Nuclear Information System (INIS)

    Piper, J.; Bayley, R.; Boyle, S.; Fantes, J.A.; Green, D.K.; Gordon, J.; Hill, W.; Ji, L.; Malloy, P.; Perry, P.; Rutovitz, D.; Stark, M.; Whale, D.

    1993-01-01

    A radiation-induced rearrangement involving a painted and a non-painted chromosome will usually result in two partly-painted chromosomes, typically either a dicentric chromosome and associated fragment, or a reciprocal translocation pair. A consequence of such a rearrangement is that the number of painted image regions in the metaphase is increased by one, and their size distribution is altered. More complex rearrangements are uncommon, particularly at low doses. A high proportion of damaged cells can therefore be registered simply by detecting when the distribution of painted components differs from the expected number and size. A system has been constructed to pre-screen for damaged cells. It comprises automatic fluorescence metaphase finding followed by relocation and digitization of probe and counterstain channels at high resolution. Fully automatic segmentation in counterstain discriminates chromosomes from interphase nuclei and determines whether a metaphase is approximately diploid. The painted regions are segmented and their relative sizes estimated. Rules are applied which reduce the false positives due to artifacts such as overlapped painted chromosomes. More than 70% of cells with radiation damage involving painted and unpainted chromosomes were detected in a preliminary experiment using a small data set, with a low false positive rate. Results from a larger experiment in progress are presented

  8. Klinefelter syndrome and other sex chromosomal aneuploidies

    Directory of Open Access Journals (Sweden)

    Graham John M

    2006-10-01

    Full Text Available Abstract The term Klinefelter syndrome (KS describes a group of chromosomal disorder in which there is at least one extra X chromosome to a normal male karyotype, 46,XY. XXY aneuploidy is the most common disorder of sex chromosomes in humans, with prevalence of one in 500 males. Other sex chromosomal aneuploidies have also been described, although they are much less frequent, with 48,XXYY and 48,XXXY being present in 1 per 17,000 to 1 per 50,000 male births. The incidence of 49,XXXXY is 1 per 85,000 to 100,000 male births. In addition, 46,XX males also exist and it is caused by translocation of Y material including sex determining region (SRY to the X chromosome during paternal meiosis. Formal cytogenetic analysis is necessary to make a definite diagnosis, and more obvious differences in physical features tend to be associated with increasing numbers of sex chromosomes. If the diagnosis is not made prenatally, 47,XXY males may present with a variety of subtle clinical signs that are age-related. In infancy, males with 47,XXY may have chromosomal evaluations done for hypospadias, small phallus or cryptorchidism, developmental delay. The school-aged child may present with language delay, learning disabilities, or behavioral problems. The older child or adolescent may be discovered during an endocrine evaluation for delayed or incomplete pubertal development with eunuchoid body habitus, gynecomastia, and small testes. Adults are often evaluated for infertility or breast malignancy. Androgen replacement therapy should begin at puberty, around age 12 years, in increasing dosage sufficient to maintain age appropriate serum concentrations of testosterone, estradiol, follicle stimulating hormone (FSH, and luteinizing hormone (LH. The effects on physical and cognitive development increase with the number of extra Xs, and each extra X is associated with an intelligence quotient (IQ decrease of approximately 15–16 points, with language most affected

  9. The role of fusion in ant chromosome evolution: insights from cytogenetic analysis using a molecular phylogenetic approach in the genus mycetophylax.

    Science.gov (United States)

    Cardoso, Danon Clemes; das Graças Pompolo, Silvia; Cristiano, Maykon Passos; Tavares, Mara Garcia

    2014-01-01

    Among insect taxa, ants exhibit one of the most variable chromosome numbers ranging from n = 1 to n = 60. This high karyotype diversity is suggested to be correlated to ants diversification. The karyotype evolution of ants is usually understood in terms of Robertsonian rearrangements towards an increase in chromosome numbers. The ant genus Mycetophylax is a small monogynous basal Attini ant (Formicidae: Myrmicinae), endemic to sand dunes along the Brazilian coastlines. A recent taxonomic revision validates three species, Mycetophylax morschi, M. conformis and M. simplex. In this paper, we cytogenetically characterized all species that belongs to the genus and analyzed the karyotypic evolution of Mycetophylax in the context of a molecular phylogeny and ancestral character state reconstruction. M. morschi showed a polymorphic number of chromosomes, with colonies showing 2n = 26 and 2n = 30 chromosomes. M. conformis presented a diploid chromosome number of 30 chromosomes, while M. simplex showed 36 chromosomes. The probabilistic models suggest that the ancestral haploid chromosome number of Mycetophylax was 17 (Likelihood framework) or 18 (Bayesian framework). The analysis also suggested that fusions were responsible for the evolutionary reduction in chromosome numbers of M. conformis and M. morschi karyotypes whereas fission may determines the M. simplex karyotype. These results obtained show the importance of fusions in chromosome changes towards a chromosome number reduction in Formicidae and how a phylogenetic background can be used to reconstruct hypotheses about chromosomes evolution.

  10. Assessment of somaclonal variation in sugarcane

    African Journals Online (AJOL)

    admin

    2012-10-30

    Oct 30, 2012 ... and Mee, 1969; Nagai et al., 1986) and chromosome number (Sreenivasan and Jalaja, 1982; ... for sexual improvement through tissue culture. The somatic chromosome number of this variety is 2n = 108. .... rearrangements in repetitive sequences might be the reason for the difference between the control ...

  11. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia.

    Science.gov (United States)

    Li, Yilong; Schwab, Claire; Ryan, Sarra; Papaemmanuil, Elli; Robinson, Hazel M; Jacobs, Patricia; Moorman, Anthony V; Dyer, Sara; Borrow, Julian; Griffiths, Mike; Heerema, Nyla A; Carroll, Andrew J; Talley, Polly; Bown, Nick; Telford, Nick; Ross, Fiona M; Gaunt, Lorraine; McNally, Richard J Q; Young, Bryan D; Sinclair, Paul; Rand, Vikki; Teixeira, Manuel R; Joseph, Olivia; Robinson, Ben; Maddison, Mark; Dastugue, Nicole; Vandenberghe, Peter; Stephens, Philip J; Cheng, Jiqiu; Van Loo, Peter; Stratton, Michael R; Campbell, Peter J; Harrison, Christine J

    2014-04-03

    Changes in gene dosage are a major driver of cancer, known to be caused by a finite, but increasingly well annotated, repertoire of mutational mechanisms. This can potentially generate correlated copy-number alterations across hundreds of linked genes, as exemplified by the 2% of childhood acute lymphoblastic leukaemia (ALL) with recurrent amplification of megabase regions of chromosome 21 (iAMP21). We used genomic, cytogenetic and transcriptional analysis, coupled with novel bioinformatic approaches, to reconstruct the evolution of iAMP21 ALL. Here we show that individuals born with the rare constitutional Robertsonian translocation between chromosomes 15 and 21, rob(15;21)(q10;q10)c, have approximately 2,700-fold increased risk of developing iAMP21 ALL compared to the general population. In such cases, amplification is initiated by a chromothripsis event involving both sister chromatids of the Robertsonian chromosome, a novel mechanism for cancer predisposition. In sporadic iAMP21, breakage-fusion-bridge cycles are typically the initiating event, often followed by chromothripsis. In both sporadic and rob(15;21)c-associated iAMP21, the final stages frequently involve duplications of the entire abnormal chromosome. The end-product is a derivative of chromosome 21 or the rob(15;21)c chromosome with gene dosage optimized for leukaemic potential, showing constrained copy-number levels over multiple linked genes. Thus, dicentric chromosomes may be an important precipitant of chromothripsis, as we show rob(15;21)c to be constitutionally dicentric and breakage-fusion-bridge cycles generate dicentric chromosomes somatically. Furthermore, our data illustrate that several cancer-specific mutational processes, applied sequentially, can coordinate to fashion copy-number profiles over large genomic scales, incrementally refining the fitness benefits of aggregated gene dosage changes.

  12. Novel recurrent chromosomal aberrations detected in clonal plasma cells of light chain amyloidosis patients show potential adverse prognostic effect: first results from a genome-wide copy number array analysis.

    Science.gov (United States)

    Granzow, Martin; Hegenbart, Ute; Hinderhofer, Katrin; Hose, Dirk; Seckinger, Anja; Bochtler, Tilmann; Hemminki, Kari; Goldschmidt, Hartmut; Schönland, Stefan O; Jauch, Anna

    2017-07-01

    Immunoglobulin light chain (AL) amyloidosis is a rare plasma cell dyscrasia characterized by the deposition of abnormal amyloid fibrils in multiple organs, thus impairing their function. In the largest cohort studied up to now of 118 CD138-purified plasma cell samples from previously untreated immunoglobulin light chain amyloidosis patients, we assessed in parallel copy number alterations using high-density copy number arrays and interphase fluorescence in situ hybridization (iFISH). We used fluorescence in situ hybridization probes for the IgH translocations t(11;14), t(4;14), and t(14;16) or any other IgH rearrangement as well as numerical aberrations of the chromosome loci 1q21, 8p21, 5p15/5q35, 11q22.3 or 11q23, 13q14, 15q22, 17p13, and 19q13. Recurrent gains included chromosomes 1q (36%), 9 (24%), 11q (24%), as well as 19 (15%). Recurrent losses affected chromosome 13 (29% monosomy) and partial losses of 14q (19%), 16q (14%) and 13q (12%), respectively. In 88% of patients with translocation t(11;14), the hallmark chromosomal aberration in AL amyloidosis, a concomitant gain of 11q22.3/11q23 detected by iFISH was part of the unbalanced translocation der(14)t(11;14)(q13;q32) with the breakpoint in the CCND1/MYEOV gene region. Partial loss of chromosome regions 14q and 16q were significantly associated to gain 1q. Gain 1q21 detected by iFISH almost always resulted from a gain of the long arm of chromosome 1 and not from trisomy 1, whereas deletions on chromosome 1p were rarely found. Overall and event-free survival analysis found a potential adverse prognostic effect of concomitant gain 1q and deletion 14q as well as of deletion 1p. In conclusion, in the first whole genome report of clonal plasma cells in AL amyloidosis, novel aberrations and hitherto unknown potential adverse prognostic effects were uncovered. Copyright© 2017 Ferrata Storti Foundation.

  13. Chromosomal aberrations in Sigmodon hispidus from a Superfund site

    International Nuclear Information System (INIS)

    Bowers, B.; McBee, K.; Lochmiller, R.; Burks, S.; Qualls, C.

    1995-01-01

    Cotton rats (Sigmodon hispidus) were collected from an EPA Superfund site located on an abandoned oil refinery. Three trapping grids were located on the refinery and three similar grids were located at uncontaminated localities which served as reference sites. Bone marrow metaphase chromosome preparations were examined for chromosomal damage. For each individual, 50 cells were scored for six classes of chromosomal lesions. For the fall 1991 trapping period, mean number of aberrant cells per individual was 2.33, 0.85, and 1.50 for the three Superfund grids., Mean number of aberrant cells per individual was 2.55, 2.55, and 2.12 from the reference grids. Mean number of lesions per cell was 2.77, 0.86, and 1.9 from the Superfund grids, and 3.55, 2.77, and 2.50 from the reference grids. For the spring 1992 trapping period, more damage was observed in animals from both Superfund and reference sites; however, animals from Superfund grids had more damage than animals from reference grids. Mean number of aberrant cells per individual was 3.50, 3.25, and 3.70 from the Superfund grids, and 2.40, 2.11, and 1.40 from the reference grids. Mean number of lesions per cell was 4.80, 4.25, and 5.50 from the Superfund grids, and 2.60, 2.33, and 1.50 from the reference grids. These data suggest animals may be more susceptible to chromosomal damage during winter months, and animals from the Superfund grids appear to be more severely affected than animals from reference grids

  14. Chromosome aberrations in Norwegian reindeer following the Chernobyl accident

    International Nuclear Information System (INIS)

    Røed, K.H.; Jacobsen, M.

    1995-01-01

    Chromosome analyses were carried out on peripheral blood lymphocytes of semi-domestic reindeer in Norway which had been exposed to varying amounts of radiocesium emanating from the Chernobyl accident. The sampling was done in the period 1987-1990. The material included 192 reindeer, originating from four herds in central Norway, an area considerably affected by fallout from the Chernobyl accident, and from three herds in northern Norway which was unaffected by fallout from the accident. Significant heterogeneity in the distribution of chromosome aberrations between herds was observed. The pattern of chromosome aberration frequencies between herds was not related to the variation in radiocesium exposure from the Chernobyl accident. Other factors than the Chernobyl accident appear therefore to be of importance for the distribution of aberration frequencies found among present herds. Within the most contaminated area the reindeer born in 1986 showed significantly more chromosome aberrations than those born both before and after 1986. This could suggest that the Chernobyl accident fallout created an effect particularly among calves, during the immediate post-accident period in the most exposed areas

  15. Variations of the candidate SEZ6L2 gene on Chromosome 16p11.2 in patients with autism spectrum disorders and in human populations.

    Directory of Open Access Journals (Sweden)

    Marina Konyukh

    Full Text Available BACKGROUND: Autism spectrum disorders (ASD are a group of severe childhood neurodevelopmental disorders with still unknown etiology. One of the most frequently reported associations is the presence of recurrent de novo or inherited microdeletions and microduplications on chromosome 16p11.2. The analysis of rare variations of 8 candidate genes among the 27 genes located in this region suggested SEZ6L2 as a compelling candidate. METHODOLOGY/PRINCIPAL FINDINGS: We further explored the role of SEZ6L2 variations by screening its coding part in a group of 452 individuals, including 170 patients with ASD and 282 individuals from different ethnic backgrounds of the Human Genome Diversity Panel (HGDP, complementing the previously reported screening. We detected 7 previously unidentified non-synonymous variations of SEZ6L2 in ASD patients. We also identified 6 non-synonymous variations present only in HGDP. When we merged our results with the previously published, no enrichment of non-synonymous variation in SEZ6L2 was observed in the ASD group compared with controls. CONCLUSIONS/SIGNIFICANCE: Our results provide an extensive ascertainment of the genetic variability of SEZ6L2 in human populations and do not support a major role for SEZ6L2 sequence variations in the susceptibility to ASD.

  16. Comparative cytogenetics of six Indo-Pacific moray eels (Anguilliformes: Muraenidae) by chromosomal banding and fluorescence in situ hybridization.

    Science.gov (United States)

    Coluccia, E; Deidda, F; Cannas, R; Lobina, C; Cuccu, D; Deiana, A M; Salvadori, S

    2015-09-01

    A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo-Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species-specific C-banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine-cytosine-rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae. © 2015 The Fisheries Society of the British Isles.

  17. Variation in genome-wide levels of meiotic recombination is established at the onset of prophase in mammalian males.

    Directory of Open Access Journals (Sweden)

    Brian Baier

    2014-01-01

    Full Text Available Segregation of chromosomes during the first meiotic division relies on crossovers established during prophase. Although crossovers are strictly regulated so that at least one occurs per chromosome, individual variation in crossover levels is not uncommon. In an analysis of different inbred strains of male mice, we identified among-strain variation in the number of foci for the crossover-associated protein MLH1. We report studies of strains with "low" (CAST/EiJ, "medium" (C3H/HeJ, and "high" (C57BL/6J genome-wide MLH1 values to define factors responsible for this variation. We utilized immunofluorescence to analyze the number and distribution of proteins that function at different stages in the recombination pathway: RAD51 and DMC1, strand invasion proteins acting shortly after double-strand break (DSB formation, MSH4, part of the complex stabilizing double Holliday junctions, and the Bloom helicase BLM, thought to have anti-crossover activity. For each protein, we identified strain-specific differences that mirrored the results for MLH1; i.e., CAST/EiJ mice had the lowest values, C3H/HeJ mice intermediate values, and C57BL/6J mice the highest values. This indicates that differences in the numbers of DSBs (as identified by RAD51 and DMC1 are translated into differences in the number of crossovers, suggesting that variation in crossover levels is established by the time of DSB formation. However, DSBs per se are unlikely to be the primary determinant, since allelic variation for the DSB-inducing locus Spo11 resulted in differences in the numbers of DSBs but not the number of MLH1 foci. Instead, chromatin conformation appears to be a more important contributor, since analysis of synaptonemal complex length and DNA loop size also identified consistent strain-specific differences; i.e., crossover frequency increased with synaptonemal complex length and was inversely related to chromatin loop size. This indicates a relationship between recombination

  18. Chromosome painting analysis of X-ray-induced aberrations in human lymphocytes in vitro

    International Nuclear Information System (INIS)

    Matsuoka, A.; Hayashi, M.; Yamazaki, N.; Sofuni, T.

    1994-01-01

    Chromosomal rearrangements in human lymphocytes induced by X-rays (0, 0.5, 1.0 and 2.0 Gray) were analyzed using chromosome painting. DNA probes for human chromosomes 1, 3 or 4 alone, and a combination of 1 and 4, were used for analysis. The frequency of cells with rearrangements, i.e. reciprocal translocations, dicentrics, insertions, tricentrics and fragments, involving chromosome 4 increased with dose in both 48 and 72 h cultures. The number of translocations per cell also increased with dose at 48 and 72 h. Dicentrics increased with dose in 48 h but not in 72 h cultures. The estimated genomic frequency of aberrations per cell was comparable with results in banded cells. No difference was shown on the detection efficiency of chromosome rearrangements among the various DNA probes used. Since this technique does not necessarily require well-spread metaphases for analysis, it is possible to increase the number of analyzable metaphases compared with the banding technique. Chromosome painting is a simpler, more objective and practical method for detecting chromosome rearrangements than conventional banding analyses. (Author)

  19. F-value as a chromosomal fingerprint of the quality of radiation

    International Nuclear Information System (INIS)

    Sasaki, Masao S.

    1999-01-01

    Since the first proposal by Brenner and Sachs (Radiation Res. 140, 134-142, 1994), the F-value, the ratio of inter- to intra-chromosomal interchanges, as a biomarker for the quality of radiation has been a matter of repeated discussion. Controversies seem to stem from the selection of data which are heterogeneous in terms of chromosome scoring criteria and dose range. In the context of the critical evaluation of the validity of the F-value, the cytogenetic data obtained in our laboratory from the in vitro irradiation of human peripheral blood lymphocytes have been re-assessed for the F-value. The results were consistent with the original contention that the densely ionizing radiations showed lower F-value. The differential F-value was more pronounced in the low-dose range and disappeared with the increase of the dose, or more precisely with the number of charged particles passing through the cell nucleus. The range or charged particles also plays a role, which makes the F-value of neutrons insensitive to their energy due to a wide variation of the kinetic energy of recoil protons. (author)

  20. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  1. Genome Wide Distributions and Functional Characterization of Copy Number Variations between Chinese and Western Pigs.

    Directory of Open Access Journals (Sweden)

    Hongyang Wang

    Full Text Available Copy number variations (CNVs refer to large insertions, deletions and duplications in the genomic structure ranging from one thousand to several million bases in size. Since the development of next generation sequencing technology, several methods have been well built for detection of copy number variations with high credibility and accuracy. Evidence has shown that CNV occurring in gene region could lead to phenotypic changes due to the alteration in gene structure and dosage. However, it still remains unexplored whether CNVs underlie the phenotypic differences between Chinese and Western domestic pigs. Based on the read-depth methods, we investigated copy number variations using 49 individuals derived from both Chinese and Western pig breeds. A total of 3,131 copy number variation regions (CNVRs were identified with an average size of 13.4 Kb in all individuals during domestication, harboring 1,363 genes. Among them, 129 and 147 CNVRs were Chinese and Western pig specific, respectively. Gene functional enrichments revealed that these CNVRs contribute to strong disease resistance and high prolificacy in Chinese domestic pigs, but strong muscle tissue development in Western domestic pigs. This finding is strongly consistent with the morphologic characteristics of Chinese and Western pigs, indicating that these group-specific CNVRs might have been preserved by artificial selection for the favored phenotypes during independent domestication of Chinese and Western pigs. In this study, we built high-resolution CNV maps in several domestic pig breeds and discovered the group specific CNVs by comparing Chinese and Western pigs, which could provide new insight into genomic variations during pigs' independent domestication, and facilitate further functional studies of CNV-associated genes.

  2. Variation in nuclear DNA content and chromosome numbers in blueberry

    Science.gov (United States)

    Commercial blueberry production in the U.S. relies on cultivars derived from combinations of different blueberry species. Interspecific hybridization continues to be a vital strategy for blueberry breeding, especially in regards to improving abiotic and biotic stress tolerance to expand the range of...

  3. Inter-chromosomal heterogeneity in the formation of radiation induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Vermeulen, S.; Boei, J.J.W.A.

    1997-01-01

    It is generally assumed that radiation induced chromosomal lesions are distributed randomly and repaired randomly among the genome. Recent studies using fluorescent in situ hybridization (FISH) and chromosome specific DNA libraries indicate that some chromosomes are more sensitive for radiation induced aberration formation than others. Chromosome No. 4 in human and chromosome No. 8 in Chinese hamster have been found to involve more in exchange aberrations than others, when calculated on the basis of their DNA content. Painting with arm specific chromosome libraries indicate that the frequencies of radiation induced intra-chromosome exchanges (i.e., between the arms of a chromosome, such as centric rings and inversions) are far in excess than one would expect on the basis of the frequencies of observed inter-chromosomal exchanges. The possible factors leading to the observed heterogeneity will be discussed

  4. Mitotic and meiotic chromosomes of a southern Brazilian population of Boophilus microplus (Acari, Ixodidae

    Directory of Open Access Journals (Sweden)

    Rosane Nunes Garcia

    Full Text Available Using conventional staining with acetic orcein and C-banding techniques it was investigated constitutive heterochromatin chromosomal polymorphisms and the mitotic and the meiotic behavior of male and female chromosomes of Boophilus microplus (Canestrini, 1887. Some differences were detected in the population of southern Brazil as compared to the data of other authors for populations in other latitudes. The differences being mainly concerned with the distribution of constitutive centromeric heterochromatin and variation in the length of heterochromatic blocks in the pericentromeric regions of some chromosome pairs.

  5. Transmission of chromosomal and instability via a chromosome irradiated with ionizing radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji; Tanabe, Masateru; Shiraishi, Kazunori; Oshimura, Mitsuo

    2010-01-01

    We examined the stability of the transferred chromosome in 5 and 12 microcell hybrids including unirradiated human chromosomes 6 and 8, respectively, and 6 and 19 microcell hybrids including 4 Gy-irradiated human chromosomes 6 and 8, respectively. The transferred chromosome was structurally stable in most microcell hybrids transferred with the unirradiated chromosomes 6 and 8. In contrast, the 4 Gy-irradiated human chromosomes were unstable in 3 out of 6 hybrids (50%) with chromosome 6 and 3 out of 19 hybrids (16%) with chromosome 8, showing multiple aberrations in high frequencies (35∼98%). To know the cause of delayed chromosomal instability, intrachromosomal rearrangements of the human chromosome is investigated by subtelomere FISH in 17 microcell hybrids transferred with chromosomes 6 and 8. We found frequent intrachromosomal in 7 microcell hybrids (41%). However, no clear correlation was observed between the intrachromosomal rearrangements and the induction of delayed chromosomal instability by ionizing radiation

  6. Genome-wide recombination dynamics are associated with phenotypic variation in maize.

    Science.gov (United States)

    Pan, Qingchun; Li, Lin; Yang, Xiaohong; Tong, Hao; Xu, Shutu; Li, Zhigang; Li, Weiya; Muehlbauer, Gary J; Li, Jiansheng; Yan, Jianbing

    2016-05-01

    Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Mitotic chromosome structure

    International Nuclear Information System (INIS)

    Heermann, Dieter W.

    2012-01-01

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  8. Mitotic chromosome structure

    Energy Technology Data Exchange (ETDEWEB)

    Heermann, Dieter W., E-mail: heermann@tphys.uni-heidelberg.de

    2012-07-15

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  9. Effect of x-rays on the somatic chromosomes of the exotic fish, Tilapia mossambica

    Energy Technology Data Exchange (ETDEWEB)

    Manna, G.K.; Som, R.C. (Kalyani Univ. (India). Dept. of Zoology)

    1982-03-01

    Male and female T. mossambica were x-rayed with 100 r and the metaphase chromosome aberrations in their gill epithelia were studied at 13 different intervals against suitable control. The chromosomes of males appeared more radio-sensitive than those of females. Among the diploid complement of 44 chromosomes, the individual type aberrations were non-random in both sexes. The longest pair of chromosomes, taken as the marker pair, was found very highly radio-sensitive, while the remaining 21 pairs as non-markers were somewhat resistant to x-radiation when the observed and the expected numbers were subjected to statistical analysis. The break in the marker chromosome was also non-randomly distributed as the distal half had a significantly large number of breaks.

  10. Intraspecific crosses resulting in the first occurrence of eight and nine B chromosomes in Prochilodus lineatus (Characiformes, Prochilodontidae

    Directory of Open Access Journals (Sweden)

    Tatiana Aparecida Voltolin

    2011-01-01

    Full Text Available B chromosomes are supernumerary elements present in about 15% of eukaryotic species and are most frequently heterochromatic, behave parasitically, show a transmission rate higher than standard (A chromosomes, and can provoke harmful effects on carriers. In the current work, Prochilodus lineatus individuals carrying eight and nine B chromosomes were obtained by induced crossing performed involving breeders with different B chromosome numbers in their cells. The high B chromosome numbers found in the offspring were recorded for the first time in this species. The use of cytogenetic techniques applied in the present study revealed that regardless of the increase in number of B chromosomes in the genome of these individuals, those elements did not presented active genes, and showed their normal heterochromatic characteristic.

  11. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution.

    Science.gov (United States)

    Guillén, Yolanda; Ruiz, Alfredo

    2012-02-01

    Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.

  12. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution

    Directory of Open Access Journals (Sweden)

    Guillén Yolanda

    2012-02-01

    Full Text Available Abstract Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.

  13. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution

    Science.gov (United States)

    2012-01-01

    Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution. PMID:22296923

  14. A note on chromosomes of Pontellopsis herdmani and Pontella princeps (Copepoda) from the Laccadive sea

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, U.; Goswami, S.C.

    Pontellopsis herdmani and Pontella princeps (Pontellidae, Calanoida, Copepoda) showed a diploid number of 20 and a haploid number of 10 chromosomes during the spermatogonial metaphase and metaphase II stages. The chromosomes were in the size range...

  15. Structural Chromosomal Alterations Induced by Dietary Bioflavonoids in Fanconi Anemia Lymphocytes

    Directory of Open Access Journals (Sweden)

    Gonzalo Guevara

    2007-06-01

    Full Text Available IntroductionFanconi anemia is an autosomal recessive diseasecharacterized by a variety of congenital abnormalities,progressive bone marrow failure,increased chromosomal instability and higherrisk to acute myeloid leukemia, solid tumors. Thisentity can be considered an appropriate biologicalmodel to analyze natural substances with possiblegenotoxic effect. The aims of this study wereto describe and quantify structural chromosomalaberrations induced by 5 flavones, 2 isoflavonesand a topoisomerase II chemotherapeutic inhibitorin Fanconi anemia lymphocytes in order todetermine chromosomal numbers changes and/or type of chromosomal damage.Materials and methodsChromosomes stimulated by phytohaemagglutininM, from Fanconi anemia lymphocytes,were analysed by conventional cytogenetic culture.For each chemical substance and controls,one hundred metaphases were evaluated. Chromosomalalterations were documented by photographyand imaging analyzer. To statisticalanalysis was used chi square test to identify significantdifferences between frequencies of chromosomaldamage of basal and exposed cellcultured a P value less than 0.05.ResultsThere were 431 chromosomal alterations in1000 metaphases analysed; genistein was themore genotoxic bioflavonoid, followed in descendentorder by genistin, fisetin, kaempferol,quercetin, baicalein and miricetin. Chromosomalaberrations observed were: chromatidbreaks, chromosomal breaks, cromatid andchromosomal gaps, quadriratials exchanges,dicentrics chromosome and complex rearrangements.ConclusionBioflavonoids as genistein, genistin and fisetin,which are commonly present in the human diet,showed statistical significance in the number ofchromosomal aberrations in Fanconi anemialymphocytes, regarding the basal damage.

  16. A large scale survey reveals that chromosomal copy-number alterations significantly affect gene modules involved in cancer initiation and progression

    Directory of Open Access Journals (Sweden)

    Cigudosa Juan C

    2011-05-01

    Full Text Available Abstract Background Recent observations point towards the existence of a large number of neighborhoods composed of functionally-related gene modules that lie together in the genome. This local component in the distribution of the functionality across chromosomes is probably affecting the own chromosomal architecture by limiting the possibilities in which genes can be arranged and distributed across the genome. As a direct consequence of this fact it is therefore presumable that diseases such as cancer, harboring DNA copy number alterations (CNAs, will have a symptomatology strongly dependent on modules of functionally-related genes rather than on a unique "important" gene. Methods We carried out a systematic analysis of more than 140,000 observations of CNAs in cancers and searched by enrichments in gene functional modules associated to high frequencies of loss or gains. Results The analysis of CNAs in cancers clearly demonstrates the existence of a significant pattern of loss of gene modules functionally related to cancer initiation and progression along with the amplification of modules of genes related to unspecific defense against xenobiotics (probably chemotherapeutical agents. With the extension of this analysis to an Array-CGH dataset (glioblastomas from The Cancer Genome Atlas we demonstrate the validity of this approach to investigate the functional impact of CNAs. Conclusions The presented results indicate promising clinical and therapeutic implications. Our findings also directly point out to the necessity of adopting a function-centric, rather a gene-centric, view in the understanding of phenotypes or diseases harboring CNAs.

  17. Chromosomal inversion differences correlate with range overlap in passerine birds.

    Science.gov (United States)

    Hooper, Daniel M; Price, Trevor D

    2017-10-01

    Chromosomal inversions evolve frequently but the reasons for this remain unclear. We used cytological descriptions of 411 species of passerine birds to identify large pericentric inversion differences between species, based on the position of the centromere. Within 81 small clades comprising 284 of the species, we found 319 differences on the 9 largest autosomes combined, 56 on the Z chromosome, and 55 on the W chromosome. We also identified inversions present within 32 species. Using a new fossil-calibrated phylogeny, we examined the phylogenetic, demographic and genomic context in which these inversions have evolved. The number of inversion differences between closely related species is consistently predicted by whether the ranges of species overlap, even when time is controlled for as far as is possible. Fixation rates vary across the autosomes, but inversions are more likely to be fixed on the Z chromosome than the average autosome. Variable mutagenic input alone (estimated by chromosome size, map length, GC content or repeat density) cannot explain the differences between chromosomes in the number of inversions fixed. Together, these results support a model in which inversions increase because of their effects on recombination suppression in the face of hybridization. Other factors associated with hybridization may also contribute, including the possibility that inversions contain incompatibility alleles, making taxa less likely to collapse following secondary contact.

  18. Cytogenetic and molecular studies on a recombinant human X chromosome: implications for the spreading of X chromosome inactivation

    International Nuclear Information System (INIS)

    Mohandas, T.; Geller, R.L.; Yen, P.H.; Rosendorff, J.; Bernstein, R.; Yoshida, A.; Shapiro, L.J.

    1987-01-01

    A pericentric inversion of human X chromosome and a recombinant X chromosome [rec(X)] derived from crossing-over within the inversion was identified in a family. The rec(X) had a duplication of the segment Xq26.3 → Xqter and a deletion of Xp22.3 → Xpter and was interpreted to be Xqter → Xq26.3::Xp22.3 → Xqter. To characterize the rec(X) chromosome, dosage blots were done on genomic DNA from carriers of this rearranged X chromosome using a number of X chromosome probes. Results showed that anonymous sequences from the distal end of the long arm to which probes 4D8, Hx120A, DX13, and St14 bind as well as the locus for glucose-6-phosphate dehydrogenase (G6PD) wee duplicated on the rec(X). Mouse-human cell hybrids were constructed that retained the rec(X) in the active or inactive state. Analyses of these hybrid clones for markers from the distal short arm of the X chromosome showed that the rec(X) retained the loci for steroid sulfatase (STS) and the cell surface antigen 12E7 (MIC2); but not the pseudoautosomal sequence 113D. These molecular studies confirm that the rec(X) is a duplication-deficiency chromosome as expected. In the inactive state in cell hybrids, STS and MIC2 (which usually escape X chromosome inactivation) were expressed from the rec(X), whereas G6PD was not. Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3 → qter region of the human X chromosome. The mechanism of spreading of inactivation appears to operate in a sequence-specific fashion. Alternatively, STS and MIC2 may have undergone inactivation initially but could not be maintained in an inactive state

  19. Divergent Evolutionary Trajectories of Two Young, Homomorphic, and Closely Related Sex Chromosome Systems

    Science.gov (United States)

    Furman, Benjamin L S; Evans, Ben J

    2018-01-01

    Abstract There exists extraordinary variation among species in the degree and nature of sex chromosome divergence. However, much of our knowledge about sex chromosomes is based on comparisons between deeply diverged species with different ancestral sex chromosomes, making it difficult to establish how fast and why sex chromosomes acquire variable levels of divergence. To address this problem, we studied sex chromosome evolution in two species of African clawed frog (Xenopus), both of whom acquired novel systems for sex determination from a recent common ancestor, and both of whom have female (ZW/ZZ) heterogamy. Derived sex chromosomes of one species, X. laevis, have a small region of suppressed recombination that surrounds the sex determining locus, and have remained this way for millions of years. In the other species, X. borealis, a younger sex chromosome system exists on a different pair of chromosomes, but the region of suppressed recombination surrounding an unidentified sex determining gene is vast, spanning almost half of the sex chromosomes. Differences between these sex chromosome systems are also apparent in the extent of nucleotide divergence between the sex chromosomes carried by females. Our analyses also indicate that in autosomes of both of these species, recombination during oogenesis occurs more frequently and in different genomic locations than during spermatogenesis. These results demonstrate that new sex chromosomes can assume radically different evolutionary trajectories, with far-reaching genomic consequences. They also suggest that in some instances the origin of new triggers for sex determination may be coupled with rapid evolution sex chromosomes, including recombination suppression of large genomic regions. PMID:29608717

  20. Retrospective dosimetry using chromosome painting

    International Nuclear Information System (INIS)

    Nasazzi, N.B.; Giorgio, M.D.; Taja, M.R.

    2000-01-01

    Chromosome aberration frequency measured in peripheral lymphocytes of persons exposed to ionizing radiation has been used since 1960s for dose assessment. Suspected overexposure is usually evaluated by the frequency of dicentrics and centric rings using an appropriate in vitro calibration curve. However, these chromosome aberrations are unstable with time after exposure and dose reconstruction may encounter uncertainties when the time between the exposure and the analysis is considerable or even unknown. It appears that translocations persist with time after exposure and may be used as an indication of acute past overexposures. Moreover, they appear to accumulate the cytogenetical information, which correlates with the dose received under fractionated, chronic or even occupational exposure conditions. Translocations may be detected using G-banding, which allows to score the total amount of radiation induced translocations but it is a time consuming method, or by Chromosome Painting, a method base on the Fluorescence in situ Hybridization (FISH) technique, painting only some chromosome pairs with specific whole chromosome probes and then extrapolating the observed translocation frequencies to the full genome. The latter method allows a faster aberration scoring than G-banding and appears to be the most promissory tool for biodosimetry, particularly when it is necessary to assess low doses and consequently to score a large number of metaphases, e.g. radiation workers exposed within dose limits. As with the unstable chromosome aberration, it is necessary an in vitro calibration curve based on the frequency of stable chromosome aberrations to assess doses. Our laboratory performed calibration curves for Co 60 γ-rays based on the frequencies of unstable (dicentrics and centric rings detected by conventional Giemsa staining) and stable chromosome aberrations (translocations and inversions, detected by G-banding). In order to minimize the interlaboratory variability, we

  1. Chromosome and cell wall segregation in Streptococcus faecium ATCC 9790

    International Nuclear Information System (INIS)

    Higgins, M.L.; Glaser, D.; Dicker, D.T.; Zito, E.T.

    1989-01-01

    Segregation was studied by measuring the positions of autoradiographic grain clusters in chains formed from single cells containing on average less than one radiolabeled chromosome strand. The degree to which chromosomal and cell wall material cosegregated was quantified by using the methods of S. Cooper and M. Weinberger, dividing the number of chains labeled at the middle. This analysis indicated that in contrast to chromosomal segregation in Escherichia coli and, in some studies, to that in gram-positive rods, chromosomal segregation in Streptococcus faecium was slightly nonrandom and did not vary with growth rate. Results were not significantly affected by strand exchange. In contrast, labeled cell wall segregated predominantly nonrandomly

  2. Chromosomal Localization of DNA Amplifications in Neuroblastoma Tumors Using cDNA Microarray Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Ben Beheshti

    2003-01-01

    Full Text Available Conventional comparative genomic hybridization (CGH profiling of neuroblastomas has identified many genomic aberrations, although the limited resolution has precluded a precise localization of sequences of interest within amplicons. To map high copy number genomic gains in clinically matched stage IV neuroblastomas, CGH analysis using a 19,200-feature cDNA microarray was used. A dedicated (freely available algorithm was developed for rapid in silico determination of chromosomal localizations of microarray cDNA targets, and for generation of an ideogram-type profile of copy number changes. Using these methodologies, novel gene amplifications undetectable by chromosome CGH were identified, and larger MYCN amplicon sizes (in one tumor up to 6 Mb than those previously reported in neuroblastoma were identified. The genes HPCAL1, LPIN1/KIAA0188, NAG, and NSE1/LOC151354 were found to be coamplified with MYCN. To determine whether stage IV primary tumors could be further subclassified based on their genomic copy number profiles, hierarchical clustering was performed. Cluster analysis of microarray CGH data identified three groups: 1 no amplifications evident, 2 a small MYCN amplicon as the only detectable imbalance, and 3 a large MYCN amplicon with additional gene amplifications. Application of CGH to cDNA microarray targets will help to determine both the variation of amplicon size and help better define amplification-dependent and independent pathways of progression in neuroblastoma.

  3. Chromosomal aberration

    International Nuclear Information System (INIS)

    Ishii, Yutaka

    1988-01-01

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G 2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G 2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G 2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G 1 phase. (author)

  4. Population-genetic properties of differentiated copy number variations in cattle.

    Science.gov (United States)

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Zhou, Yang; Hay, El Hamidi Abdel; Song, Jiuzhou; Sonstegard, Tad S; Van Tassell, Curtis P; Liu, George E

    2016-03-23

    While single nucleotide polymorphism (SNP) is typically the variant of choice for population genetics, copy number variation (CNV) which comprises insertion, deletion and duplication of genomic sequence, is an informative type of genetic variation. CNVs have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a population genetics survey based on CNVs derived from the BovineHD SNP array data of eight distinct cattle breeds. We generated high resolution results that show geographical patterns of variations and genome-wide admixture proportions within and among breeds. Similar to the previous SNP-based studies, our CNV-based results displayed a strong correlation of population structure and geographical location. By conducting three pairwise comparisons among European taurine, African taurine, and indicine groups, we further identified 78 unique CNV regions that were highly differentiated, some of which might be due to selection. These CNV regions overlapped with genes involved in traits related to parasite resistance, immunity response, body size, fertility, and milk production. Our results characterize CNV diversity among cattle populations and provide a list of lineage-differentiated CNVs.

  5. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

    Science.gov (United States)

    Bachtrog, Doris

    2013-02-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.

  6. Genome-wide detection of copy number variations among diverse horse breeds by array CGH.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Recent studies have found that copy number variations (CNVs are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs. The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO, genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses.

  7. [Origin and morphological features of small supernumerary marker chromosomes in Turner syndrome].

    Science.gov (United States)

    Liu, Nan; Tong, Tong; Chen, Yue; Chen, Yanling; Cai, Chunquan

    2018-02-10

    OBJECTIVE To explore the origin and morphological features of small supernumerary marker chromosomes (sSMCs) in Turner syndrome. METHODS For 5 cases of Turner syndrome with a sSMC identified by conventional G-banding, dual-color fluorescence in situ hybridization (FISH) was applied to explore their origin and morphological features. RESULTS Among the 5 cases, 3 have derived from the X chromosome, which included 2 ring chromosomes and 1 centric minute. For the 2 sSMCs derived from the Y chromosome, 1 was ring or isodicentric chromosome, while the other was an isodicentric chromosome. CONCLUSION The sSMCs found in Turner syndrome have almost all derived from sex chromosomes. The majority of sSMCs derived from the X chromosome will form ring chromosomes, while a minority will form centric minute. While most sSMC derived from Y chromosome may exist as isodicentric chromosomes, and a small number may exist as rings. For Turner syndrome patients with sSMCs, dual-color FISH may be used to delineate their origins to facilitate genetic counseling and selection of clinical regime.

  8. Regulatory hotspots in the malaria parasite genome dictate transcriptional variation.

    Directory of Open Access Journals (Sweden)

    Joseph M Gonzales

    2008-09-01

    Full Text Available The determinants of transcriptional regulation in malaria parasites remain elusive. The presence of a well-characterized gene expression cascade shared by different Plasmodium falciparum strains could imply that transcriptional regulation and its natural variation do not contribute significantly to the evolution of parasite drug resistance. To clarify the role of transcriptional variation as a source of stain-specific diversity in the most deadly malaria species and to find genetic loci that dictate variations in gene expression, we examined genome-wide expression level polymorphisms (ELPs in a genetic cross between phenotypically distinct parasite clones. Significant variation in gene expression is observed through direct co-hybridizations of RNA from different P. falciparum clones. Nearly 18% of genes were regulated by a significant expression quantitative trait locus. The genetic determinants of most of these ELPs resided in hotspots that are physically distant from their targets. The most prominent regulatory locus, influencing 269 transcripts, coincided with a Chromosome 5 amplification event carrying the drug resistance gene, pfmdr1, and 13 other genes. Drug selection pressure in the Dd2 parental clone lineage led not only to a copy number change in the pfmdr1 gene but also to an increased copy number of putative neighboring regulatory factors that, in turn, broadly influence the transcriptional network. Previously unrecognized transcriptional variation, controlled by polymorphic regulatory genes and possibly master regulators within large copy number variants, contributes to sweeping phenotypic evolution in drug-resistant malaria parasites.

  9. Variations in CCL3L gene cluster sequence and non-specific gene copy numbers

    Directory of Open Access Journals (Sweden)

    Edberg Jeffrey C

    2010-03-01

    Full Text Available Abstract Background Copy number variations (CNVs of the gene CC chemokine ligand 3-like1 (CCL3L1 have been implicated in HIV-1 susceptibility, but the association has been inconsistent. CCL3L1 shares homology with a cluster of genes localized to chromosome 17q12, namely CCL3, CCL3L2, and, CCL3L3. These genes are involved in host defense and inflammatory processes. Several CNV assays have been developed for the CCL3L1 gene. Findings Through pairwise and multiple alignments of these genes, we have shown that the homology between these genes ranges from 50% to 99% in complete gene sequences and from 70-100% in the exonic regions, with CCL3L1 and CCL3L3 being identical. By use of MEGA 4 and BioEdit, we aligned sense primers, anti-sense primers, and probes used in several previously described assays against pre-multiple alignments of all four chemokine genes. Each set of probes and primers aligned and matched with overlapping sequences in at least two of the four genes, indicating that previously utilized RT-PCR based CNV assays are not specific for only CCL3L1. The four available assays measured median copies of 2 and 3-4 in European and African American, respectively. The concordance between the assays ranged from 0.44-0.83 suggesting individual discordant calls and inconsistencies with the assays from the expected gene coverage from the known sequence. Conclusions This indicates that some of the inconsistencies in the association studies could be due to assays that provide heterogenous results. Sequence information to determine CNV of the three genes separately would allow to test whether their association with the pathogenesis of a human disease or phenotype is affected by an individual gene or by a combination of these genes.

  10. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  11. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster.

    Science.gov (United States)

    Hunter, Chad M; Huang, Wen; Mackay, Trudy F C; Singh, Nadia D

    2016-04-01

    Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.

  12. Números cromossômicos em espécies de Acosmium Schott e Leptolobium Vogel (Leguminosae, Papilionoideae Chromosome numbers in species of Acosmium Schott and Leptolobium Vogel (Leguminosae, Papilionoideae

    Directory of Open Access Journals (Sweden)

    Rodrigo Schütz Rodrigues

    2009-09-01

    Full Text Available O objetivo deste trabalho foi realizar a análise citotaxonômica de espécies de Acosmium Schott e Leptolobium Vogel, através da determinação de seus números cromossômicos. Foram estudadas as três espécies aceitas de Acosmium e cinco espécies de Leptolobium (representando 50% do gênero, a partir de sementes oriundas de diferentes regiões do Brasil. As contagens mitóticas apresentadas para todas as espécies de Acosmium e para quatro espécies de Leptolobium são inéditas. Acosmium cardenasii apresentou uniformemente 2n = 18, enquanto que em A. diffusissimum foram encontradas no mesmo meristema 2n = 18, 24 e 32 e em A. lentiscifolium 2n = 18 e 32. Para Leptolobium, o número cromossômico das espécies estudadas foi de 2n = 18, confirmando uma contagem mitótica anterior para L. dasycarpum. Os resultados obtidos evidenciaram homogeneidade no número cromossômico de Acosmium e Leptolobium, confirmando x = 9 como o número cromossômico básico em ambos os gêneros. Portanto, o número cromossômico não é um caráter taxonômico utilizável na distinção entre Acosmium e Leptolobium.A cytotaxonomic analysis of species of Acosmium Schott e Leptolobium Vogel was carried out, by determining their chromosome numbers. The three species of Acosmium and five species of Leptolobium (representing 50% of the genus were studied from seeds obtained from different regions of Brazil. Chromosome counts were new for all Acosmium species and for four Leptolobium species. For Acosmium cardenasii, 2n = 18 was constantly observed, while occurring at the same meristem were found 2n = 18, 24 e 32 in A. diffusissimum and 2n = 18 e 32 in A. lentiscifolium. For Leptolobium, all studied species had 2n = 18, confirming a previous count for L. dasycarpum. The results showed that chromosome numbers of Acosmium and Leptolobium species are homogeneous, confirming the basic number x = 9 for both genera. Therefore, chromosome numbers do not provide a useful

  13. Potential Value of Genomic Copy Number Variations in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Chuanjun Zhuo

    2017-06-01

    Full Text Available Schizophrenia is a devastating neuropsychiatric disorder affecting approximately 1% of the global population, and the disease has imposed a considerable burden on families and society. Although, the exact cause of schizophrenia remains unknown, several lines of scientific evidence have revealed that genetic variants are strongly correlated with the development and early onset of the disease. In fact, the heritability among patients suffering from schizophrenia is as high as 80%. Genomic copy number variations (CNVs are one of the main forms of genomic variations, ubiquitously occurring in the human genome. An increasing number of studies have shown that CNVs account for population diversity and genetically related diseases, including schizophrenia. The last decade has witnessed rapid advances in the development of novel genomic technologies, which have led to the identification of schizophrenia-associated CNVs, insight into the roles of the affected genes in their intervals in schizophrenia, and successful manipulation of the target CNVs. In this review, we focus on the recent discoveries of important CNVs that are associated with schizophrenia and outline the potential values that the study of CNVs will bring to the areas of schizophrenia research, diagnosis, and therapy. Furthermore, with the help of the novel genetic tool known as the Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9 system, the pathogenic CNVs as genomic defects could be corrected. In conclusion, the recent novel findings of schizophrenia-associated CNVs offer an exciting opportunity for schizophrenia research to decipher the pathological mechanisms underlying the onset and development of schizophrenia as well as to provide potential clinical applications in genetic counseling, diagnosis, and therapy for this complex mental disease.

  14. A chromosomal analysis of four species of Chilean Chrysomelinae (Coleoptera, Chrysomelidae)

    OpenAIRE

    Petitpierre, Eduard; Elgueta, Mario

    2012-01-01

    Abstract Four species of Chilean leaf beetles in the subfamily Chrysomelinae have been cytogenetically analyzed, Blaptea elguetai Petitpierre, 2011, Henicotherus porteri Br?thes, 1929 and Jolivetia obscura (Philippi, 1864) show 2n = 28 chromosomes and a 13 + Xyp male meioformula, and Pataya nitida (Philippi, 1864) has the highest number of 2n = 38 chromosomes. The karyotype of Henicotherus porteri is made of mostly small meta/submetacentric chromosomes, and that of Jolivetia obscura displays ...

  15. Slit scan flow cytometry of isolated chromosomes following fluorescence hybridization: an approach of online screening for specific chromosomes and chromosome translocations

    NARCIS (Netherlands)

    Hausmann, M.; Dudin, G.; Aten, J. A.; Heilig, R.; Diaz, E.; Cremer, C.

    1991-01-01

    The recently developed methods of non radioactive in situ hybridization of chromosomes offer new aspects for chromosome analysis. Fluorescent labelling of hybridized chromosomes or chromosomal subregions allows to facilitate considerably the detection of specific chromosomal abnormalities. For many

  16. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats.

    Science.gov (United States)

    Armour, John A L; Palla, Raquel; Zeeuwen, Patrick L J M; den Heijer, Martin; Schalkwijk, Joost; Hollox, Edward J

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies.

  17. Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Ke; Zhang, Li-Jie; Fang, Ya-Hong; Jin, Xin-Na; Qi, Lei; Wu, Xue-Chang; Zheng, Dao-Qiong

    2016-03-01

    Genomic structural variation (GSV) is a ubiquitous phenomenon observed in the genomes of Saccharomyces cerevisiae strains with different genetic backgrounds; however, the physiological and phenotypic effects of GSV are not well understood. Here, we first revealed the genetic characteristics of a widely used industrial S. cerevisiae strain, ZTW1, by whole genome sequencing. ZTW1 was identified as an aneuploidy strain and a large-scale GSV was observed in the ZTW1 genome compared with the genome of a diploid strain YJS329. These GSV events led to copy number variations (CNVs) in many chromosomal segments as well as one whole chromosome in the ZTW1 genome. Changes in the DNA dosage of certain functional genes directly affected their expression levels and the resultant ZTW1 phenotypes. Moreover, CNVs of large chromosomal regions triggered an aneuploidy stress in ZTW1. This stress decreased the proliferation ability and tolerance of ZTW1 to various stresses, while aneuploidy response stress may also provide some benefits to the fermentation performance of the yeast, including increased fermentation rates and decreased byproduct generation. This work reveals genomic characters of the bioethanol S. cerevisiae strain ZTW1 and suggests that GSV is an important kind of mutation that changes the traits of industrial S. cerevisiae strains. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Nucleolar organizer regions and a new chromosome number for Rhea americana (Aves: Rheiformes

    Directory of Open Access Journals (Sweden)

    Ricardo José Gunski

    1998-06-01

    Full Text Available Sequential banding analysis (Giemsa-C-banding-Ag NOR of chromosomes of the common rhea (Rhea americana was performed. Metaphases were obtained by peripheral blood lymphocyte culture and monolayer embryo cell culture. The diploid chromosome number was 80, different from the 2n = 82 in previous reports. Macrochromosome pairs 1, 2 and 5 were submetacentric and pair 3, subacrocentric. The 4th pair was acrocentric and all of the microchromosomes appeared to be acrocentric, with the exception of a clearly metacentric pair which was fully heterochromatic. The Z was slightly larger than the W, both being acrocentric and C-band negative. Nucleolar organizer regions were observed in the secondary constriction of a microchromosome pair. Correct identification of the NOR-bearing pair was possible only by sequential analyses, Giemsa staining followed by the Ag-NOR technique.Foram efetuadas análises seqüenciais de bandeamento cromossômico (Giemsa-banda-C-AgNOR em material da espécie Rhea americana (ema com o objetivo de identificar os cromossomos portadores de regiões organizadoras de nucléolos e confirmar o cariótipo desta espécie. As metáfases foram obtidas de culturas de leucócitos e de células de embrião. O número diplóide de cromossomos, determinado pela análise de metáfases oriundas de 19 espécimes, foi de 80 (2n = 80, NF = 95, o que difere da literatura. Os pares de macrocromossomos números 1, 2 e 5 eram submetacêntricos e o par 3 era sub-acrocêntrico, confirmado pelo bandeamento C. O par 4 era acrocêntrico, bem como todos os microcromossomos, com exceção de um metacêntrico inteiramente heterocromático. O cromossomo Z era ligeiramente maior que o W, sendo ambos acrocêntricos e banda-C negativos. A região organizadora de nucléolos foi observada na constrição secundária de um par de microcromossomos. A correta identificação do par portador da NOR só foi possível com a utilização da análise seqüencial de colora

  19. An Overview on Prenatal Screening for Chromosomal Aberrations.

    Science.gov (United States)

    Hixson, Lucas; Goel, Srishti; Schuber, Paul; Faltas, Vanessa; Lee, Jessica; Narayakkadan, Anjali; Leung, Ho; Osborne, Jim

    2015-10-01

    This article is a review of current and emerging methods used for prenatal detection of chromosomal aneuploidies. Chromosomal anomalies in the developing fetus can occur in any pregnancy and lead to death prior to or shortly after birth or to costly lifelong disabilities. Early detection of fetal chromosomal aneuploidies, an atypical number of certain chromosomes, can help parents evaluate their pregnancy options. Current diagnostic methods include maternal serum sampling or nuchal translucency testing, which are minimally invasive diagnostics, but lack sensitivity and specificity. The gold standard, karyotyping, requires amniocentesis or chorionic villus sampling, which are highly invasive and can cause abortions. In addition, many of these methods have long turnaround times, which can cause anxiety in mothers. Next-generation sequencing of fetal DNA in maternal blood enables minimally invasive, sensitive, and reasonably rapid analysis of fetal chromosomal anomalies and can be of clinical utility to parents. This review covers traditional methods and next-generation sequencing techniques for diagnosing aneuploidies in terms of clinical utility, technological characteristics, and market potential. © 2015 Society for Laboratory Automation and Screening.

  20. Chromosome Characteristic of Peranakan Etawa (PE) Goat (Capra hircus Linn.) as Indonesian Local Breed

    Science.gov (United States)

    Putri, A. R. I.; Ciptadi, G.; Warih, A. P.

    2018-02-01

    Chromosome characteristics of Peranakan Etawa (PE) goat needs to be analyzed because information about Indonesian goat races is very limited. The purpose of this research was to determine the characteristics of PE goat chromosome as basic data as one of the genetic local resources. Blood was collected from pair of PE goat at Sumber Sekar Field Laboratory, Faculty of Animal Husbandry, Brawijaya University, Malang. Blood cultured using standard cytogenetic technique and stained with G-Banding. Observations being done in metaphase cells and analyzed using Genus Cytovision Image. Chromosomes arranged and numbered by standard goat karyotype. The result of this research showed that PE goat had number of chromosomes 2n=60, consisting of 29 pairs of autosome and a pair of sex chromosomes. Female goat had average of total length (TL) of autosome ranged from 47.91 µm±6.46 to 22.12 µm±3.33. TL of chromosome X are 45.96 µm±4,59 and 44.45 µm±3,96. Centromeric index (Ci) of chromosome X, 31,74 and 32,80. PE goat had average of TL of autosome ranged from 58.20µm±6.72 to 18.97µm±2.82. TL of chromosome X is 56,42µm±7,38 and Y chromosome is 15,80 µm±3,24. Ci in chromosome X and Y are 19.34 and 46.84. These results concluded that the total of goat chromosome was 60 with types of autosomal chromosomes were acrocentric as many as 58 chromosomes and pair of sex chromosomes XX and XY, X classified as subtelocentric and Y submetacentric.

  1. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis

    Directory of Open Access Journals (Sweden)

    Tamara Potapova

    2017-02-01

    Full Text Available Mistakes during cell division frequently generate changes in chromosome content, producing aneuploid or polyploid progeny cells. Polyploid cells may then undergo abnormal division to generate aneuploid cells. Chromosome segregation errors may also involve fragments of whole chromosomes. A major consequence of segregation defects is change in the relative dosage of products from genes located on the missegregated chromosomes. Abnormal expression of transcriptional regulators can also impact genes on the properly segregated chromosomes. The consequences of these perturbations in gene expression depend on the specific chromosomes affected and on the interplay of the aneuploid phenotype with the environment. Most often, these novel chromosome distributions are detrimental to the health and survival of the organism. However, in a changed environment, alterations in gene copy number may generate a more highly adapted phenotype. Chromosome segregation errors also have important implications in human health. They may promote drug resistance in pathogenic microorganisms. In cancer cells, they are a source for genetic and phenotypic variability that may select for populations with increased malignance and resistance to therapy. Lastly, chromosome segregation errors during gamete formation in meiosis are a primary cause of human birth defects and infertility. This review describes the consequences of mitotic and meiotic errors focusing on novel concepts and human health.

  2. Fish Karyome version 2.1: a chromosome database of fishes and other aquatic organisms.

    Science.gov (United States)

    Nagpure, Naresh Sahebrao; Pathak, Ajey Kumar; Pati, Rameshwar; Rashid, Iliyas; Sharma, Jyoti; Singh, Shri Prakash; Singh, Mahender; Sarkar, Uttam Kumar; Kushwaha, Basdeo; Kumar, Ravindra; Murali, S

    2016-01-01

    A voluminous information is available on karyological studies of fishes; however, limited efforts were made for compilation and curation of the available karyological data in a digital form. 'Fish Karyome' database was the preliminary attempt to compile and digitize the available karyological information on finfishes belonging to the Indian subcontinent. But the database had limitations since it covered data only on Indian finfishes with limited search options. Perceiving the feedbacks from the users and its utility in fish cytogenetic studies, the Fish Karyome database was upgraded by applying Linux, Apache, MySQL and PHP (pre hypertext processor) (LAMP) technologies. In the present version, the scope of the system was increased by compiling and curating the available chromosomal information over the globe on fishes and other aquatic organisms, such as echinoderms, molluscs and arthropods, especially of aquaculture importance. Thus, Fish Karyome version 2.1 presently covers 866 chromosomal records for 726 species supported with 253 published articles and the information is being updated regularly. The database provides information on chromosome number and morphology, sex chromosomes, chromosome banding, molecular cytogenetic markers, etc. supported by fish and karyotype images through interactive tools. It also enables the users to browse and view chromosomal information based on habitat, family, conservation status and chromosome number. The system also displays chromosome number in model organisms, protocol for chromosome preparation and allied techniques and glossary of cytogenetic terms. A data submission facility has also been provided through data submission panel. The database can serve as a unique and useful resource for cytogenetic characterization, sex determination, chromosomal mapping, cytotaxonomy, karyo-evolution and systematics of fishes. Database URL: http://mail.nbfgr.res.in/Fish_Karyome. © The Author(s) 2016. Published by Oxford University Press.

  3. Chromosomes and their meiotic behaviour in two species of Dieuches Dohrn, 1860 (Heteroptera: Lygaeidae: Rhyparochromini

    Directory of Open Access Journals (Sweden)

    Harbhajan Kaur

    2009-08-01

    Full Text Available The Lygaeidae (Heteroptera are a large and diverse family in which the male diploid chromosomal complement ranges from 10 to 30. Diploid numbers of 14 and 16 are taken as two modal numbers of the family. The Rhyparochrominae, one of the largest subfamilies of the Lygaeidae, are known to be heterogeneous both cytologically and morphologically. Available data on the tribe Rhyparochromini reveal that all species are characterized by the presence of a pair of microchromosomes (m-chromosomes and have an XY/XX (♂/♀ sex chromosome determining system. Dieuches coloratus (Distant, 1909 and D. insignis (Distant, 1918 belonging to Rhyparochromini, have 2n=14=10A+2m+XY and 2n=12=8A+2m+XY respectively. Both the species are similar inone pair of distinctly large autosomes in their chromosome complements. The metaphase plate arrangement of autosomes, sex chromosomes and m-chromosomes in D. coloratus is similar to the common condition observed in the tribe Rhyparochromini. In D. insignis, however, the arrangement is different. Here, metaphase I is usual in showing peripheral position of autosomes and central position of sex chromosomes and m-chromosomes. At metaphase II, however, autosomes, sex chromosomes and m-chromosomes are peripherally placed, an arrangement, which is not reported earlier in the tribe Rhyparochromini.

  4. Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids.

    Science.gov (United States)

    Fu, Shulan; Lv, Zhenling; Guo, Xiang; Zhang, Xiangqi; Han, Fangpu

    2013-08-20

    Wheat-rye addition and substitution lines and their self progenies revealed variations in telomeric heterochromatin and centromeres. Furthermore, a mitotically unstable dicentric chromosome and stable multicentric chromosomes were observed in the progeny of a Chinese Spring-Imperial rye 3R addition line. An unstable multicentric chromosome was found in the progeny of a 6R/6D substitution line. Drastic variation of terminal heterochromatin including movement and disappearance of terminal heterochromatin occurred in the progeny of wheat-rye addition line 3R, and the 5RS ditelosomic addition line. Highly stable minichromosomes were observed in the progeny of a monosomic 4R addition line, a ditelosomic 5RS addition line and a 6R/6D substitution line. Minichromosomes, with and without the FISH signals for telomeric DNA (TTTAGGG)n, derived from a monosomic 4R addition line are stable and transmissible to the next generation. The results indicated that centromeres and terminal heterochromatin can be profoundly altered in wheat-rye hybrid derivatives. Copyright © 2013. Published by Elsevier Ltd.

  5. HPV type-related chromosomal profiles in high-grade cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Bierkens Mariska

    2012-01-01

    Full Text Available Abstract Background The development of cervical cancer and its high-grade precursor lesions (Cervical Intraepithelial Neoplasia grade 2/3 [CIN2/3] result from a persistent infection with high-risk human papillomavirus (hrHPV types and the accumulation of (epigenetic host cell aberrations. Epidemiological studies have demonstrated variable CIN2/3 and cancer risks between different hrHPV types. Recent genomic profiling studies revealed substantial heterogeneity in the chromosomal aberrations detected in morphologically indistinguishable CIN2/3 suggestive of varying cancer risk. The current study aimed to investigate whether CIN2/3 with different hrHPV types vary with respect to their chromosomal profiles, both in terms of the number of aberrations and chromosomal loci affected. Methods Chromosomal profiles were determined of 43 p16INK4a-immunopositive CIN2/3 of women with long-term hrHPV infection (≥ 5 years. Sixteen lesions harboured HPV16, 3 HPV18, 14 HPV31, 1 HPV33, 4 HPV45, 1 HPV51, 2 HPV52 and 2 HPV58. Results Unsupervised hierarchical clustering analysis of the chromosomal profiles revealed two major clusters, characterised by either few or multiple chromosomal aberrations, respectively. A majority of 87.5% of lesions with HPV16 were in the cluster with relatively few aberrations, whereas no such unbalanced distribution was seen for lesions harbouring other hrHPV types. Analysis of the two most prevalent types (HPV16 and HPV31 in this data set revealed a three-fold increase in the number of losses in lesions with HPV31 compared to HPV16-positive lesions. In particular, losses at chromosomes 2q, 4p, 4q, 6p, 6q, 8q & 17p and gain at 1p & 1q were significantly more frequent in HPV31-positive lesions (FDR Conclusions Chromosomal aberrations in CIN2/3 are at least in part related to the hrHPV type present. The relatively low number of chromosomal aberrations observed in HPV16-positive CIN2/3 suggests that the development of these lesions is

  6. Impact of various parameters in detecting chromosomal aberrations by FISH to describe radiosensitivity

    International Nuclear Information System (INIS)

    Keller, U.; Mueller, E.; Grabenbauer, G.; Sauer, R.; Distel, L.; Kuechler, A.; Liehr, T.

    2004-01-01

    Background and purpose: analysis of radiation-induced chromosomal aberrations is regarded as the ''gold standard'' for classifying individual radiosensitivity. A variety of different parameters can be used. The crucial question, however, is to explore which parameter is suited best to describe the differences between patients with increased radiosensitivity and healthy individuals. Patients and methods: in this study, five patients with severe radiation-induced late effects of at least grade 3, classified according to the Radiation Therapy Oncology Group (RTOG), and eleven healthy individuals were examined retrospectively. Peripheral blood lymphocytes were irradiated in vitro with 0.7 Gy and 2.0 Gy prior to cultivation and stained by means of three-color fluorescence in situ hybridization (FISH). The detailed analysis was focused on the number of breaks per metaphase, on breaks from complex chromosomal rearrangements per metaphase, as well as on the percentage of translocations, dicentric chromosomes, breaks, and excess acentric fragments - each in comparison with the total number of mitoses analyzed. Results: using the number of breaks from complex chromosomal rearrangements after 2.0 Gy, radiosensitive patients as endpoint were clearly to be distinguished (p = 0.001) from healthy individuals. Translocations (p = 0.001) as well as breaks per metaphase (p = 0.002) were also suitable indicators for detecting differences between patients and healthy individuals. The parameters ''percentage of dicentric chromosomes'', ''breaks'', and ''excess acentric fragments'' in comparison to the total number of mitoses analyzed could neither serve as meaningful nor as significant criteria, since they showed a strong interindividual variability. Conclusion: to detect a difference in chromosomal aberrations between healthy and radiosensitive individuals, the parameters ''frequency of breaks per metaphase'', ''complex chromosomal rearrangements'', and ''translocations'' are most

  7. Roles of Cohesin and Condensin in Chromosome Dynamics During Mammalian Meiosis

    OpenAIRE

    LEE, Jibak

    2013-01-01

    Meiosis is a key step for sexual reproduction in which chromosome number is halved by two successive meiotic divisions after a single round of DNA replication. In the first meiotic division (meiosis I), homologous chromosomes pair, synapse, and recombine with their partners in prophase I. As a result, homologous chromosomes are physically connected until metaphase I and then segregated from each other at the onset of anaphase I. In the subsequent second meiotic division (meiosis II), sister c...

  8. Chromosome length scaling in haploid, asexual reproduction

    International Nuclear Information System (INIS)

    Oliveira, P M C de

    2007-01-01

    We study the genetic behaviour of a population formed by haploid individuals which reproduce asexually. The genetic information for each individual is stored along a bit-string (or chromosome) with L bits, where 0-bits represent the wild allele and 1-bits correspond to harmful mutations. Each newborn inherits this chromosome from its parent with a few random mutations: on average a fixed number m of bits are flipped. Selection is implemented according to the number N of 1-bits counted along the individual's chromosome: the smaller N the higher the probability an individual has to survive a new time step. Such a population evolves, with births and deaths, and its genetic distribution becomes stabilized after sufficiently many generations have passed. The question we pose concerns the procedure of increasing L. The aim is to get the same distribution of genetic loads N/L among the equilibrated population, in spite of a larger L. Should we keep the same mutation rate m/L for different values of L? The answer is yes, which intuitively seems to be plausible. However, this conclusion is not trivial, according to our simulation results: the question also involves the population size

  9. Sugar Cane Genome Numbers Assumption by Ribosomal DNA FISH Techniques

    NARCIS (Netherlands)

    Thumjamras, S.; Jong, de H.; Iamtham, S.; Prammanee, S.

    2013-01-01

    Conventional cytological method is limited for polyploidy plant genome study, especially sugar cane chromosomes that show unstable numbers of each cultivar. Molecular cytogenetic as fluorescent in situ hybridization (FISH) techniques were used in this study. A basic chromosome number of sugar cane

  10. The effects of exposure to different clastogens on the pattern of chromosomal aberrations detected by FISH whole chromosome painting in occupationally exposed individuals

    International Nuclear Information System (INIS)

    Beskid, O.; Dusek, Z.; Solansky, I.; Sram, R.J.

    2006-01-01

    The pattern of chromosomal aberrations (CA) was studied by fluorescence in situ hybridization (FISH) technique (whole chromosomes 1 and 4 painting) in workers occupationally exposed to any of the four following conditions: acrylonitrile (ACN), ethyl benzene (EB), carcinogenic polycyclic aromatic hydrocarbons (c-PAHs), and irradiation in nuclear power plants (NPP), respectively. Decrease in the relative frequency of translocations was observed in EB group, and an increase in reciprocal translocations in ACN and NPP-exposed groups. An increase in a relative number of insertions was registered under all four conditions (significant at ACN, EB, c-PAHs, quasisignificant at NPP-exposed groups). Significant differences in the percentage of lymphocytes with aberrations on chromosome 1 (58.8 ± 32.7%, versus 73.8 ± 33.6% in the controls, P G /100) increased with age (P G /100 (P < 0.05), but did not affect the pattern of chromosomal aberrations. Our results seem to indicate that different carcinogens may induce a different pattern of chromosomal aberrations

  11. Comparative analysis of chromosomes in the Palaearctic bush-crickets of tribe Pholidopterini (Orthoptera, Tettigoniinae

    Directory of Open Access Journals (Sweden)

    Elżbieta Warchałowska-Śliwa

    2017-05-01

    Full Text Available The present study focused on the evolution of the karyotype in four genera of the tribe Pholidopterini: Eupholidoptera Mařan, 1953, Parapholidoptera Mařan, 1953, Pholidoptera Wesmaël, 1838, Uvarovistia Mařan, 1953. Chromosomes were analyzed using fluorescence in situ hybridization (FISH with 18S rDNA and (TTAGGn telomeric probes, and classical techniques, such as C-banding, silver impregnation and fluorochrome DAPI/CMA3 staining. Most species retained the ancestral diploid chromosome number 2n = 31 (male or 32 (female, while some of the taxa, especially a group of species within genus Pholidoptera, evolved a reduced chromosome number 2n = 29. All species show the same sex determination system X0/XX. In some taxa, a pericentric inversion has changed the morphology of the ancestral acrocentric X chromosome to the biarmed X. The rDNA loci coincided with active NORs and C-band/CG-rich segments. A comparison of the location of the single rDNA/NOR in the genus Pholidoptera suggests that reduced chromosome number results from Robertsonian translocation between two pairs of autosomes, one carrying the rDNA/NOR. The results constitute a step towards better understanding of the chromosomal reorganization and evolution within the tribe Phaneropterini and the whole subfamily Tettigoniinae.

  12. Chromosomal phylogeny of Lagothrix, Brachyteles, and Cacajao.

    Science.gov (United States)

    Viegas Péquignot, E; Koiffmann, C P; Dutrillaux, B

    1985-01-01

    Based on a comparison of the karyotypes of two Plathyrrhini species, Cacajao melanocephalus (Pitheciinae) and Brachyteles arachnoides (Atelinae), with those of two previously studied species, Lagothrix lagothrica (Atelinae) and C calvus rubicundus (Pitheciinae), it appears that the two Cacajao species have undergone the same number of chromosome rearrangements since they diverged from their common ancestor and that the karyotype of Brachyteles is ancestral to that of Lagothrix. The chromosomal phylogeny of these four species is proposed. A Y-autosome translocation is present in the karyotypes of the two Cacajao species.

  13. Population-genetic nature of copy number variations in the human genome.

    Science.gov (United States)

    Kato, Mamoru; Kawaguchi, Takahisa; Ishikawa, Shumpei; Umeda, Takayoshi; Nakamichi, Reiichiro; Shapero, Michael H; Jones, Keith W; Nakamura, Yusuke; Aburatani, Hiroyuki; Tsunoda, Tatsuhiko

    2010-03-01

    Copy number variations (CNVs) are universal genetic variations, and their association with disease has been increasingly recognized. We designed high-density microarrays for CNVs, and detected 3000-4000 CNVs (4-6% of the genomic sequence) per population that included CNVs previously missed because of smaller sizes and residing in segmental duplications. The patterns of CNVs across individuals were surprisingly simple at the kilo-base scale, suggesting the applicability of a simple genetic analysis for these genetic loci. We utilized the probabilistic theory to determine integer copy numbers of CNVs and employed a recently developed phasing tool to estimate the population frequencies of integer copy number alleles and CNV-SNP haplotypes. The results showed a tendency toward a lower frequency of CNV alleles and that most of our CNVs were explained only by zero-, one- and two-copy alleles. Using the estimated population frequencies, we found several CNV regions with exceptionally high population differentiation. Investigation of CNV-SNP linkage disequilibrium (LD) for 500-900 bi- and multi-allelic CNVs per population revealed that previous conflicting reports on bi-allelic LD were unexpectedly consistent and explained by an LD increase correlated with deletion-allele frequencies. Typically, the bi-allelic LD was lower than SNP-SNP LD, whereas the multi-allelic LD was somewhat stronger than the bi-allelic LD. After further investigation of tag SNPs for CNVs, we conclude that the customary tagging strategy for disease association studies can be applicable for common deletion CNVs, but direct interrogation is needed for other types of CNVs.

  14. Patterns of genic intolerance of rare copy number variation in 59,898 human exomes

    Science.gov (United States)

    Ruderfer, Douglas M.; Hamamsy, Tymor; Lek, Monkol; Karczewski, Konrad J.; Kavanagh, David; Samocha, Kaitlin E.; Daly, Mark J.; MacArthur, Daniel G.; Fromer, Menachem; Purcell, Shaun M.

    2016-01-01

    Copy number variation (CNV) impacting protein-coding genes contributes significantly to human diversity and disease. Here we characterized the rates and properties of rare genic CNV (intolerance to CNVs that demonstrated moderate correlation with measures of genic constraint based on single-nucleotide variation (SNV) and was independently correlated with measures of evolutionary conservation. For individuals with schizophrenia, genes impacted by CNVs were more intolerant than in controls. ExAC CNV data constitutes a critical component of an integrated database spanning the spectrum of human genetic variation, aiding the interpretation of personal genomes as well as population-based disease studies. These data are freely available for download and visualization online. PMID:27533299

  15. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Chad M Hunter

    2016-04-01

    Full Text Available Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.

  16. Assessment of chromosomal imbalances in CIMP-high and CIMP-low/CIMP-0 colorectal cancers.

    Science.gov (United States)

    Kozlowska, Joanna; Karpinski, Pawel; Szmida, Elzbieta; Laczmanska, Izabela; Misiak, Blazej; Ramsey, David; Bebenek, Marek; Kielan, Wojciech; Pesz, Karolina A; Sasiadek, Maria M

    2012-08-01

    Data presented in a number of recent studies have revealed a negative correlation between CpG island methylator phenotype (CIMP) and chromosomal instability (CIN) measured by a loss of heterozygosity (LOH) of selected loci, suggesting that CIN and CIMP represent two independent mechanisms in sporadic colorectal cancer (CRC) carcinogenesis. However, CIN is a heterogeneous phenomenon, which may be studied not only by employing LOH analysis but also by observing chromosomal imbalances (gains and deletions). The current study aimed to investigate the relationship between CIMP and chromosomal gains and deletions (assessed by comparative genomic hybridization) in a group of 20 CIMP-high and 79 CIMP-low/CIMP-0 CRCs. Our results revealed that the mean numbers of gains and of total chromosomal imbalances were significantly greater (p = 0.004 and p = 0.007, respectively) in the CIMP-low/CIMP-0 group compared to the CIMP-high group, while no significant difference was observed between the mean numbers of losses (p = 0.056). The analysis of copy number changes of 41 cancer-related genes by multiplex ligation-dependent probe amplification showed that CRK gene was exclusively deleted in CIMP-low/CIMP-0 tumors (p = 0.02). Given that chromosomal losses play an important role in tumor suppressor inactivation and chromosomal gains, in the activation of proto-oncogenes, we hypothesize that tumor suppressor inactivation plays similar roles in both CIMP-high and CIMP-low/CIMP-0 CRCs, while the predominance of chromosomal gains in CIMP-low/CIMP-0 tumors may suggest that the activation of proto-oncogenes is the underlying mechanism of CIMP-low/CIMP-0 CRC progression.

  17. QTL variations for growth-related traits in eight distinct families of common carp (Cyprinus carpio).

    Science.gov (United States)

    Lv, Weihua; Zheng, Xianhu; Kuang, Youyi; Cao, Dingchen; Yan, Yunqin; Sun, Xiaowen

    2016-05-05

    Comparing QTL analyses of multiple pair-mating families can provide a better understanding of important allelic variations and distributions. However, most QTL mapping studies in common carp have been based on analyses of individual families. In order to improve our understanding of heredity and variation of QTLs in different families and identify important QTLs, we performed QTL analysis of growth-related traits in multiple segregating families. We completed a genome scan for QTLs that affect body weight (BW), total length (TL), and body thickness (BT) of 522 individuals from eight full-sib families using 250 microsatellites evenly distributed across 50 chromosomes. Sib-pair and half-sib model mapping identified 165 QTLs on 30 linkage groups. Among them, 10 (genome-wide P <0.01 or P < 0.05) and 28 (chromosome-wide P < 0.01) QTLs exhibited significant evidence of linkage, while the remaining 127 exhibited a suggestive effect on the above three traits at a chromosome-wide (P < 0.05) level. Multiple QTLs obtained from different families affect BW, TL, and BT and locate at close or identical positions. It suggests that same genetic factors may control variability in these traits. Furthermore, the results of the comparative QTL analysis of multiple families showed that one QTL was common in four of the eight families, nine QTLs were detected in three of the eight families, and 26 QTLs were found common to two of the eight families. These common QTLs are valuable candidates in marker-assisted selection. A large number of QTLs were detected in the common carp genome and associated with growth-related traits. Some of the QTLs of different growth-related traits were identified at similar chromosomal regions, suggesting a role for pleiotropy and/or tight linkage and demonstrating a common genetic basis of growth trait variations. The results have set up an example for comparing QTLs in common carp and provided insights into variations in the identified QTLs

  18. Human male infertility, the Y chromosome, and dinosaur extinction

    Directory of Open Access Journals (Sweden)

    Sherman J. Silber

    2011-06-01

    Our studies of the Y chromosome and male infertility suggest that the default mechanism for determining the sex of offspring is the temperature of egg incubation, and that genetic sex determination (based on sex chromosomes like X and Y has evolved many times over and over again in different ways, in different genera, as a more foolproof method than temperature variation of assuring a balanced sex ratio in offspring. The absence of such a genetic sex determining mechanism in dinosaurs may have led to a skewed sex ratio when global temperature dramatically changed 65,000,000 years ago, resulting in a preponderance of males, and consequentially a rapid decline in population.

  19. Chromosome-wise dissection of the genome of the extremely big mouse line DU6i.

    Science.gov (United States)

    Bevova, Marianna R; Aulchenko, Yurii S; Aksu, Soner; Renne, Ulla; Brockmann, Gudrun A

    2006-01-01

    The extreme high-body-weight-selected mouse line DU6i is a polygenic model for growth research, harboring many small-effect QTL. We dissected the genome of this line into 19 autosomes and the Y chromosome by the construction of a new panel of chromosome substitution strains (CSS). The DU6i chromosomes were transferred to a DBA/2 mice genetic background by marker-assisted recurrent backcrossing. Mitochondria and the X chromosome were of DBA/2 origin in the backcross. During the construction of these novel strains, >4000 animals were generated, phenotyped, and genotyped. Using these data, we studied the genetic control of variation in body weight and weight gain at 21, 42, and 63 days. The unique data set facilitated the analysis of chromosomal interaction with sex and parent-of-origin effects. All analyzed chromosomes affected body weight and weight gain either directly or in interaction with sex or parent of origin. The effects were age specific, with some chromosomes showing opposite effects at different stages of development.

  20. Spatial variation of particle number concentration in school microscale environments and its impact on exposure assessment.

    Science.gov (United States)

    Salimi, Farhad; Mazaheri, Mandana; Clifford, Sam; Crilley, Leigh R; Laiman, Rusdin; Morawska, Lidia

    2013-05-21

    It has not yet been established whether the spatial variation of particle number concentration (PNC) within a microscale environment can have an effect on exposure estimation results. In general, the degree of spatial variation within microscale environments remains unclear, since previous studies have only focused on spatial variation within macroscale environments. The aims of this study were to determine the spatial variation of PNC within microscale school environments, in order to assess the importance of the number of monitoring sites on exposure estimation. Furthermore, this paper aims to identify which parameters have the largest influence on spatial variation as well as the relationship between those parameters and spatial variation. Air quality measurements were conducted for two consecutive weeks at each of the 25 schools across Brisbane, Australia. PNC was measured at three sites within the grounds of each school, along with the measurement of meteorological and several other air quality parameters. Traffic density was recorded for the busiest road adjacent to the school. Spatial variation at each school was quantified using coefficient of variation (CV). The portion of CV associated with instrument uncertainty was found to be 0.3, and, therefore, CV was corrected so that only noninstrument uncertainty was analyzed in the data. The median corrected CV (CVc) ranged from 0 to 0.35 across the schools, with 12 schools found to exhibit spatial variation. The study determined the number of required monitoring sites at schools with spatial variability and tested the deviation in exposure estimation arising from using only a single site. Nine schools required two measurement sites and three schools required three sites. Overall, the deviation in exposure estimation from using only one monitoring site was as much as 1 order of magnitude. The study also tested the association of spatial variation with wind speed/direction and traffic density, using partial

  1. Karyotypic variation in Rhinophylla pumilio Peters, 1865 and comparative analysis with representatives of two subfamilies of Phyllostomidae (Chiroptera

    Directory of Open Access Journals (Sweden)

    A Gomes

    2012-05-01

    Full Text Available The family Phyllostomidae belongs to the most abundant and diverse group of bats in the Neotropics with more morphological traits variation at the family level than any other group within mammals. In this work, we present data of chromosome banding (G, C and Ag-NOR and Fluorescence In Situ Hybridization (FISH for representatives of Rhinophylla pumilio Peters, 1865 collected in four states of Brazil (Amazonas, Bahia, Mato Grosso and Pará. Two karyomorphs were found in this species: 2n=34, FN=64 in populations from western Pará and Mato Grosso states and 2n=34, FN=62 from Amazonas, Bahia, and northeastern Pará and Marajó Island (northern. Difference in the Fundamental Number is determined by variation in the size of the Nucleolar Organizer Region (NOR accompanied with heterochromatin on chromosomes of pair 16 or, alternatively, a pericentric inversion. The C-banding technique detected constitutive heterochromatin in the centromeric regions of all chromosomes and on the distal part of the long arm of pair 15 of specimens from all localities. FISH with a DNA telomeric probe did not show any interstitial sequence, and an 18S rDNA probe and silver staining revealed the presence of NOR in the long arm of the pair 15, associated with heterochromatin, and in the short arm of the pair 16 for all specimens. The intra-specific analysis using chromosome banding did not show any significant difference between the samples. The comparative analyses using G-banding have shown that nearly all chromosomes of R. pumilio were conserved in the chromosome complements of Glossophaga soricina Pallas, 1766, Phyllostomus hastatus Pallas, 1767, Phyllostomus discolor Wagner, 1843 and Mimon crenulatum Geoffroy, 1801, with a single chromosomal pair unique to R. pumilio (pair 15. However, two chromosomes of M. crenulatum are polymorphic for two independent pericentric inversions. The karyotype with 2n=34, NF=62 is probably the ancestral one for the other karyotypes

  2. Meiotic drive on aberrant chromosome 1 in the mouse is determined by a linked distorter.

    Science.gov (United States)

    Agulnik, S I; Sabantsev, I D; Orlova, G V; Ruvinsky, A O

    1993-04-01

    An aberrant chromosome 1 carrying an inverted fragment with two amplified DNA regions was isolated from wild populations of Mus musculus. Meiotic drive favouring the aberrant chromosome was demonstrated for heterozygous females. Its cause was preferential passage of aberrant chromosome 1 to the oocyte. Genetic analysis allowed us to identify a two-component system conditioning deviation from equal segregation of the homologues. The system consists of a postulated distorter and responder. The distorter is located on chromosome 1 distally to the responder, between the ln and Pep-3 genes, and it acts on the responder when in trans position. Polymorphism of the distorters was manifested as variation in their effect on meiotic drive level in the laboratory strain and mice from wild populations.

  3. Vibrio chromosome-specific families

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2014-01-01

    We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished...... chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown.) Of the chromosome specific core protein...... families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO) terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different "Molecular Function" GO categories were found for chromosome 1...

  4. Naturally occurring minichromosome platforms in chromosome engineering: an overview.

    Science.gov (United States)

    Raimondi, Elena

    2011-01-01

    Artificially modified chromosome vectors are non-integrating gene delivery platforms that can shuttle very large DNA fragments in various recipient cells: theoretically, no size limit exists for the chromosome segments that an engineered minichromosome can accommodate. Therefore, genetically manipulated chromosomes might be potentially ideal vector systems, especially when the complexity of higher eukaryotic genes is concerned. This review focuses on those chromosome vectors generated using spontaneously occurring small markers as starting material. The definition and manipulation of the centromere domain is one of the main obstacles in chromosome engineering: naturally occurring minichromosomes, due to their inherent small size, were helpful in defining some aspects of centromere function. In addition, several distinctive features of small marker chromosomes, like their appearance as supernumerary elements in otherwise normal karyotypes, have been successfully exploited to use them as gene delivery vectors. The key technologies employed for minichromosome engineering are: size reduction, gene targeting, and vector delivery in various recipient cells. In spite of the significant advances that have been recently achieved in all these fields, several unsolved problems limit the potential of artificially modified chromosomes. Still, these vector systems have been exploited in a number of applications where the investigation of the controlled expression of large DNA segments is needed. A typical example is the analysis of genes whose expression strictly depends on the chromosomal environment in which they are positioned, where engineered chromosomes can be envisaged as epigenetically regulated expression systems. A novel and exciting advance concerns the use of engineered minichromosomes to study the organization and dynamics of local chromatin structures.

  5. Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement.

    Science.gov (United States)

    Nemeth, Csilla; Yang, Cai-yun; Kasprzak, Paul; Hubbart, Stella; Scholefield, Duncan; Mehra, Surbhi; Skipper, Emma; King, Ian; King, Julie

    2015-02-01

    We aim to improve diversity of domesticated wheat by transferring genetic variation for important target traits from related wild and cultivated grass species. The present study describes the development of F1 hybrids between wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum and production of new amphidiploids. Amphidiploid lines were produced from 20 different distant relatives. Both colchicine and caffeine were successfully used to double the chromosome numbers. The genomic constitution of the newly formed amphidiploids derived from seven distant relatives was determined using genomic in situ hybridization (GISH). Altogether, 42 different plants were analysed, 19 using multicolour GISH separating the chromosomes from the A, B, and D genomes of wheat, as well as the distant relative, and 23 using single colour GISH. Restructuring of the allopolyploid genome, both chromosome losses and aneuploidy, was detected in all the genomes contained by the amphidiploids. From the observed chromosome numbers there is an indication that in amphidiploids the B genome of wheat suffers chromosome losses less frequently than the other wheat genomes. Phenotyping to realize the full potential of the wheat-related grass germplasm is underway, linking the analyzed genotypes to agronomically important target traits.

  6. Minimal sharing of Y-chromosome STR haplotypes among five endogamous population groups from western and southwestern India.

    Science.gov (United States)

    Das, Birajalaxmi; Chauhan, P S; Seshadri, M

    2004-10-01

    We attempt to address the issue of genetic variation and the pattern of male gene flow among and between five Indian population groups of two different geographic and linguistic affiliations using Y-chromosome markers. We studied 221 males at three Y-chromosome biallelic loci and 184 males for the five Y-chromosome STRs. We observed 111 Y-chromosome STR haplotypes. An analysis of molecular variance (AMOVA) based on Y-chromosome STRs showed that the variation observed between the population groups belonging to two major regions (western and southwestern India) was 0.17%, which was significantly lower than the level of genetic variance among the five populations (0.59%) considered as a single group. Combined haplotype analysis of the five STRs and the biallelic locus 92R7 revealed minimal sharing of haplotypes among these five ethnic groups, irrespective of the similar origin of the linguistic and geographic affiliations; this minimal sharing indicates restricted male gene flow. As a consequence, most of the haplotypes were population specific. Network analysis showed that the haplotypes, which were shared between the populations, seem to have originated from different mutational pathways at different loci. Biallelic markers showed that all five ethnic groups have a similar ancestral origin despite their geographic and linguistic diversity.

  7. Giemsa C-banding of Barley Chromosomes. IV. Chromosomal Constitution of Autotetraploid Barley

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1984-01-01

    The progeny of an autotetraploid barley plant (C1) consisted of 45 tetraploids and 33 aneuploids. Giemsa C-banding was used to identify each of the chromosomes in 20 euploid and 31 aneuploid C2--seedlings, and in 11 C3--offspring of aneuploid C2--plants. The euploid C2--seedlings all had four...... homologues of each of the chromosomes. The aneuploid C2--seedlings were fairly equally distributed on hypo-and hyperploids, and on the seven chromosome groups. This suggests that a particular chromosome is lost or gained at random in gametes and embryos. The 11 C3--seedlings comprised seven true euploids......, one seedling with 2n=28 having an extra chromosome 6 and missing one chromosome 3, and three seedlings with 2n=29. The chromosomal composition of aneuploid C3--seedlings did not reflect that of their aneuploid C2--parents with respect to missing or extra chromosomes. Two hypohexaploid C2--seedlings...

  8. Study of radiation-induced chromosomal aberrations; Untersuchung strahleninduzierter Chromosomenaberrationen. Bestrahlung der Brustdruesenepithelzelllinie MCF-12A mit Roentgenstrahlung aus konventionellen Roentgenroehren und Bestimmung der Dosis-Effekt-Kurve. Studienarbeit

    Energy Technology Data Exchange (ETDEWEB)

    Wolfring, E. [Technische Univ. Bergakademie Freiberg (Germany). Interdisziplinaeres Oekologisches Zentrum

    2004-06-01

    A method for determining chromosomal aberrations was established for the purpose of examining the relative biological effectiveness (RBE) of photon radiation with respect to mammary epithelium cells. Cells were exposed to 25 kV X-radiation and to 200 kV X-radiation for comparison and the resulting concentrations of chromosomal aberrations were compared. The RBE{sub M} value for radiation-induced fragmentation was found to be 4.2 {+-} 2.4, while the RBE{sub M} value for radiation-induced generation of dicentric chromosomes was found to be 0.5 {+-} 0.5. In addition to the evaluation of chromosomal aberrations the number of cell cycles undergone by the cells was monitored by means of BrDU staining. As expected, the proportion of cells which underwent more than one cell cycle following exposure to 5 Gy was very low in both cases, amounting to 1.9% (25 kV) and 3.2 (200 kV). Non-radiated cells yielded control values of 26.0% and 12.6%, suggesting variations in external conditions from day to day.

  9. Comparison of type and frequency of chromosome aberrations by conventional and G-staining methods in Hiroshima atomic bomb survivors

    International Nuclear Information System (INIS)

    Ohtaki, Kazuo; Shimba, Hachiro; Sofuni, Toshio; Awa, A.A.

    1982-07-01

    Somatic chromosomes derived from cultured lymphocytes of 23 atomic bomb survivors of Hiroshima were analyzed to determine the type and frequency of radiation-induced structural aberrations, using in sequence the ordinary staining method (O-method) and the trypsin G-banding method (G-method). Of 896 cells examined, 342 were found to contain induced aberrations, including 31 cells in which the precise identification of the type of aberrations was not possible even by the G-method. The number of chromosome aberrations observed was 376 in the 311 cells where aberrant precise identification was possible. The majority (288 or 76.6%) were intra- or inter-chromosomal symmetric exchanges due to a two-break event, while only 24 were found to be asymmetric exchanges (dicentrics, rings, and interstitial deletions). Further, there were 28 aberrations showing acentric fragments and terminal deletions, and the remaining 36 were complex intra- and inter-chromosomal exchanges involving three or more breaks which result in insertions and double translocations. A comparative karyotype analysis of the same metaphases examined by the sequential 0- And G-methods was carried out independently on 361 aberrations, mostly of the symmetric type. It was found that 78 (21.6%) of the 361 were detected only by the G-method; among these were 14 paracentric inversions, 48 reciprocal interchanges of chromosome segments with either equal length (11) or unequal length (37), 14 minor deletions and 2 complex rearrangements, all of which were nevertheless judged to fall within the normal range of variation by theO-method. In contrast, 25 aberrations detected in O-method chromosomes which were overcontracted or twisted, were shown to have normal banding patterns by the G-method. (author)

  10. Chromosome phylogenies of man, great apes, and Old World monkeys.

    Science.gov (United States)

    De Grouchy, J

    1987-08-31

    The karyotypes of man and of the closely related Pongidae--chimpanzee, gorilla, and orangutan--differ by a small number of well known rearrangements, mainly pericentric inversions and one fusion which reduced the chromosome number from 48 in the Pongidae to 46 in man. Dutrillaux et al. (1973, 1975, 1979) reconstructed the chromosomal phylogeny of the entire primate order. More and more distantly related species were compared thus moving backward in evolution to the common ancestors of the Pongidae, of the Cercopithecoidae, the Catarrhini, the Platyrrhini, the Prosimians, and finally the common ancestor of all primates. Descending the pyramid it becomes possible to assign the rearrangements that occurred in each phylum, and the one that led to man in particular. The main conclusions are that this phylogeny is compatible with the occurrence during evolution of simple chromosome rearrangements--inversions, fusions, reciprocal translocation, acquisition or loss of heterochromatin--and that it is entirely consistent with the known primate phylogeny based on physical morphology and molecular evolution. If heterochromatin is not taken into account, man has in common with the other primates practically all of his chromosomal material as determined by chromosome banding. However, it is arranged differently, according to species, on account of chromosome rearrangements. This interpretation has been confirmed by comparative gene mapping, which established that the same chromosome segments, identified by banding, carry the same genes (Finaz et al., 1973; Human Gene Mapping 8, 1985). A remarkable observation made by Dutrillaux is that different primate phyla seem to have adopted different chromosome rearrangements in the course of evolution: inversions for the Pongidae, Robertsonian fusions for the lemurs, etc. This observation may raise many questions, among which is that of an organized evolution. Also, the breakpoints of chromosomal rearrangements observed during evolution

  11. Induction of premature chromosome condensation by calyculin A for bio dosimetry

    International Nuclear Information System (INIS)

    Hosseini, S.; Mozdarani, H.

    2004-01-01

    Background: Premature chromosome condensation is a method for interphase chromosome analysis in bio dosimetry. This study was performed to verify the usefulness of premature chromosome condensation induced by calyculin A in human peripheral blood lymphocytes for biological dosimetry and possible construction of dose-response curve. Materials and methods: Peripheral blood was obtained from a healthy donor and exposed to various doses(0.25- 4 Gy) of γ-rays. The frequency of simple breaks and dicentrics were scored in G 2/M chromosomes of Giemsa stained cells. Results:Results show that the frequency of simple chromosome breaks appears to increase linearly with dose; while the frequency of dicentrics apparently increases linear-quadratically with the dose. Conclusion: Induction of chromosome condensation by calyculin A is a powerful biodisimetric method, which provides a high number of spreads for analysis. With the use of this method, it is possible to overcome problems related to low mitotic index or cell-cycle alterations in routine metaphase analysis and low fusion rate in conventional Premature chromosome condensation technique

  12. Expression of a possible constitutional hot spot in sperm chromosomes of a patient treated for Wilms' tumor

    International Nuclear Information System (INIS)

    Genesca, A.; Miro, R.; Caballin, M.R.; Benet, J.; Navarro, J.; Templado, C.; Bonfill, X.; Egozcue, J.

    1987-01-01

    Sperm chromosomes were studied in a man who was treated for Wilms' tumor with radiotherapy (RT) and chemotherapy (CT) 18 years ago. Human pronuclear sperm chromosomes were obtained after penetration of zona-free hamster eggs. Eighty-nine sperm chromosome complements were analyzed; 12.4% of them showed structural anomalies. This percentage was statistically different from the one found in our laboratory for controls (p less than 0.05). Five of eleven structurally abnormal metaphases had the same aberration: fission of chromosome number1 with the breakpoint at or near the centromere. Breaks and rearrangements of chromosome number1, often involving the centromere region, are among the most frequent anomalies found in Wilms' tumor cells

  13. Meiotic Recombination Analyses in Pigs Carrying Different Balanced Structural Chromosomal Rearrangements.

    Directory of Open Access Journals (Sweden)

    Nicolas Mary

    Full Text Available Correct pairing, synapsis and recombination between homologous chromosomes are essential for normal meiosis. All these events are strongly regulated, and our knowledge of the mechanisms involved in this regulation is increasing rapidly. Chromosomal rearrangements are known to disturb these processes. In the present paper, synapsis and recombination (number and distribution of MLH1 foci were studied in three boars (Sus scrofa domestica carrying different chromosomal rearrangements. One (T34he was heterozygote for the t(3;4(p1.3;q1.5 reciprocal translocation, one (T34ho was homozygote for that translocation, while the third (T34Inv was heterozygote for both the translocation and a pericentric inversion inv(4(p1.4;q2.3. All three boars were normal for synapsis and sperm production. This particular situation allowed us to rigorously study the impact of rearrangements on recombination. Overall, the rearrangements induced only minor modifications of the number of MLH1 foci (per spermatocyte or per chromosome and of the length of synaptonemal complexes for chromosomes 3 and 4. The distribution of MLH1 foci in T34he was comparable to that of the controls. Conversely, the distributions of MLH1 foci on chromosome 4 were strongly modified in boar T34Inv (lack of crossover in the heterosynaptic region of the quadrivalent, and crossover displaced to the chromosome extremities, and also in boar T34ho (two recombination peaks on the q-arms compared with one of higher magnitude in the controls. Analyses of boars T34he and T34Inv showed that the interference was propagated through the breakpoints. A different result was obtained for boar T34ho, in which the breakpoints (transition between SSC3 and SSC4 chromatin on the bivalents seemed to alter the transmission of the interference signal. Our results suggest that the number of crossovers and crossover interference could be regulated by partially different mechanisms.

  14. Variation of morphology, karyotype and protein band pattern of adenium (Adenium obesum varieties

    Directory of Open Access Journals (Sweden)

    PRABANG SETYONO

    2009-07-01

    Full Text Available Hastuti D, Suranto, Setyono P. 2009. Variation of morphology, karyotype and protein band pattern of adenium (Adenium obesum varieties. Nusantara Bioscience 1: 78-83. The aim of this research to find out the Adenium obesum variation from six varieties, namely: obesum, cery, red lucas, red fanta , white bigben and harry potter based on morphology, karyotype, as well as protein banding pattern. The chromosome preparation was made using semi-permanent squash method from the tip of root plant; while protein banding pattern was made using SDS-PAGE method. Qualitative data included shape and color of the leave and flower described from each variety. Data were presented in morphometry and analyzed using ANOVA and then followed by DMRT with 5% of confidence levels, indicated significance difference. Protein banding pattern, the root, stem, leave and all organs were analyzed using Hierarchical Cluster Analysis method with Average Linkage (between Groups using SPSS 10.0. The result of research shows that the six A. obesum varieties have morphological character with no variation of light green to dark green leave, not hairy, smooth leave bone, meanwhile for light red to dark red flower crown color although some of them are white and the same funnel color, yellow. All varieties of A. obesum have same number of chromosome, 2n = 22 and shows the difference ranging from 2.56 to 5.13 um. In the banding pattern formed qualitatively, there is variation among the six varieties.

  15. Custom CGH array profiling of copy number variations (CNVs) on chromosome 6p21.32 (HLA locus) in patients with venous malformations associated with multiple sclerosis

    Science.gov (United States)

    2010-01-01

    Background Multiple sclerosis (MS) is a complex disorder thought to result from an interaction between environmental and genetic predisposing factors which have not yet been characterised, although it is known to be associated with the HLA region on 6p21.32. Recently, a picture of chronic cerebrospinal venous insufficiency (CCSVI), consequent to stenosing venous malformation of the main extra-cranial outflow routes (VM), has been described in patients affected with MS, introducing an additional phenotype with possible pathogenic significance. Methods In order to explore the presence of copy number variations (CNVs) within the HLA locus, a custom CGH array was designed to cover 7 Mb of the HLA locus region (6,899,999 bp; chr6:29,900,001-36,800,000). Genomic DNA of the 15 patients with CCSVI/VM and MS was hybridised in duplicate. Results In total, 322 CNVs, of which 225 were extragenic and 97 intragenic, were identified in 15 patients. 234 known polymorphic CNVs were detected, the majority of these being situated in non-coding or extragenic regions. The overall number of CNVs (both extra- and intragenic) showed a robust and significant correlation with the number of stenosing VMs (Spearman: r = 0.6590, p = 0.0104; linear regression analysis r = 0.6577, p = 0.0106). The region we analysed contains 211 known genes. By using pathway analysis focused on angiogenesis and venous development, MS, and immunity, we tentatively highlight several genes as possible susceptibility factor candidates involved in this peculiar phenotype. Conclusions The CNVs contained in the HLA locus region in patients with the novel phenotype of CCSVI/VM and MS were mapped in detail, demonstrating a significant correlation between the number of known CNVs found in the HLA region and the number of CCSVI-VMs identified in patients. Pathway analysis revealed common routes of interaction of several of the genes involved in angiogenesis and immunity contained within this region. Despite the small

  16. Nuclei size in relation to nuclear status and aneuploidy rate for 13 chromosomes in donated four cells embryos

    DEFF Research Database (Denmark)

    Agerholm, I.E.; Hnida, C.; Cruger, D.G.

    2008-01-01

    Purpose The aim was to elucidate if the nuclear size and number are indicative of aberrant chromosome content in human blastomeres and embryos. Methods The number of nuclei and the nucleus and blastomere size were measured by a computer controlled system for multilevel analysis. Then the nuclei...... were enumerated for 13 chromosomes by a combination of PNA and DNA probes. Results In the mononucleated embryos there was no difference in the mean size of chromosomally normal and abnormal nuclei but a significant difference in the mean nuclei size of nuclei that had gained chromosomes compared...... to nuclei that had lost chromosomes. The nuclei from multinucleated blastomeres had a significant smaller mean size and the frequency of chromosomally aberrant blastomeres was significantly higher. Conclusion The mean nuclear size is not a marker for the chromosome content in mononucleated embryos. However...

  17. Analysis of the karyotype of Callisia elegans Alexand. (Commelinaceae including differential staining of chromosomes

    Directory of Open Access Journals (Sweden)

    Elżbieta Weryszko-Chmielewska

    2014-01-01

    Full Text Available The number and morphology of Callisia elegans Alexand. chromosomes were studied employing staining with acetic carmine and differential Giemsa staining. It was found that its karyotype was 2n = 12 chromosomes, whose lengths fell in the range of 16.8 to 8.8 µm. The chomosomes, arranged in order of length, were classified respectively to types: sm, t, t, t, t, st. The distribution of C-banding is given for this karyotype. The presence of microsatellites on the long and short arms was found in the chromosomes of the second pair. Frequently there were 4 nucleoli of unequal size in interphase nuclei. In many cells, lower numbers of nucleoli (3-1 were seen which was -probably due to their fusion. The maximum number of nucleoli corresponded to the number of nucleolar organizers accompanying the satellites.

  18. Chiasma failures and chromosome association in Rhoeo spathacea var. variegata.

    Science.gov (United States)

    Lin, Y J

    1982-01-01

    In Rhoeo spathacea var. variegata (2n = 2x = 12), the most frequent meiotic configuration was the chain-of-12 chromosomes (36%) and the second most frequent was the ring-of-12 chromosomes (25.6%). All six possible two-chain situations and eleven of the twelve possible three-chain situations were observed. A maximum of five chains was observed in four cells. The size of chains ranged from on through twelve chromosomes. The mean number of chiasma failures was 1.36 +/- 0.07 per cell and 0.1133 per pair of chromosome arms. Because the observed frequencies of various configurations agree with the expected, which were calculated under the assumption that chiasma failure is equally likely at each of the twelve positions around the ring, it was concluded that chiasma failures occurred at random among the arm-positions. Due to the lengths of arm-pairs in the ring vary considerably, the randomness may mean that chiasma formation was restricted to small terminal regions on all chromosomes.

  19. Fluorescence- and NOR-studies at chromosomes of several vertebrate-species

    International Nuclear Information System (INIS)

    Maurer, F.

    1984-05-01

    In the investigated species of fishes clear-cut Chromomycin-positive blocks were visualised. This holds true as well for Lecaspius delineatus, Gobio gobio, Perca fluciatilis, Cyprinus carpio, Carassius and auratus gibelio. In contrast, DA-DAPI-Fluorescence was homogenous along the entire chromosome. The silver-impregnation-technique proved useful in all investigated species of fisches. In the chicken certain chromosome-districts the Chromomycin-fluorescence was more pronounced than in others; Distamycin-DAPI led to a homogeneous staining along hole the arms. The investigations in mouse-chromosomes revealed an R-banding-pattern. The Distamycin-DAPI-pattern of mouse-chromosomes were complementary to the Chromomycin-pattern and strongly pronounced centromeres. Again Distmycin-DAPI-staining did not allow an unquastinable bandling resolution; simularities to Actimomycin-DAPI-fluorochrome-included patterns were observed. By means of silver-impragnation-techniques the presence of double-point-formed NOR's on more chromosomes were highlighted. However an exact destination of the number was not possible and remains reserved to further investigations. (Author)

  20. Implication of the apoptotic process in the modulation of chromosomal damages

    International Nuclear Information System (INIS)

    Blaise, Renaud

    2001-01-01

    In this research thesis in the field of biology, the author reports that the study of radio-induced chromosomal reorganizations during cellular proliferation revealed the occurrence of other radio-induced 'de novo' chromosomal anomalies present in the lineage of irradiated cells. Three cellular models have been studied. The obtained results show the role on a short term of the apoptosis in maintaining chromosomal damages, an inhibition of this death process along with an increase of the number of aberration in the first cellular generations following an irradiation or an extended exposure to H 2 O 2 . But the apoptotic process does not seem to influence the appearance of chromosomal damages on a long term. The author concludes that apoptosis as an early response to a stress, and chromosomal unsteadiness as a late response are not directly associated

  1. Allelic interaction of F1 pollen sterility loci and abnormal chromosome behaviour caused pollen sterility in intersubspecific autotetraploid rice hybrids.

    Science.gov (United States)

    He, J H; Shahid, M Q; Li, Y J; Guo, H B; Cheng, X A; Liu, X D; Lu, Y G

    2011-08-01

    The intersubspecific hybrids of autotetraploid rice has many features that increase rice yield, but lower seed set is a major hindrance in its utilization. Pollen sterility is one of the most important factors which cause intersubspecific hybrid sterility. The hybrids with greater variation in seed set were used to study how the F(1) pollen sterile loci (S-a, S-b, and S-c) interact with each other and how abnormal chromosome behaviour and allelic interaction of F(1) sterility loci affect pollen fertility and seed set of intersubspecific autotetraploid rice hybrids. The results showed that interaction between pollen sterility loci have significant effects on the pollen fertility of autotetraploid hybrids, and pollen fertility further decreased with an increase in the allelic interaction of F(1) pollen sterility loci. Abnormal ultra-structure and microtubule distribution patterns during pollen mother cell (PMC) meiosis were found in the hybrids with low pollen fertility in interphase and leptotene, suggesting that the effect-time of pollen sterility loci interaction was very early. There were highly significant differences in the number of quadrivalents and bivalents, and in chromosome configuration among all the hybrids, and quadrivalents decreased with an increase in the seed set of autotetraploid hybrids. Many different kinds of chromosomal abnormalities, such as chromosome straggling, chromosome lagging, asynchrony of chromosome disjunction, and tri-fission were found during the various developmental stages of PMC meiosis. All these abnormalities were significantly higher in sterile hybrids than in fertile hybrids, suggesting that pollen sterility gene interactions tend to increase the chromosomal abnormalities which cause the partial abortion of male gametes and leads to the decline in the seed set of the autotetraploid rice hybrids. © 2011 The Author(s).

  2. Discrimination of chromosome by autoradiography

    International Nuclear Information System (INIS)

    Masubuchi, Masanori

    1975-01-01

    This paper describes discrimination of chromosome by autoradiography. In this method, the difference in DNA synthetic phase between each chromosome was used as a standard, and the used chromosome was in metaphase, as morphological characteristics were markedly in this phase. Cell cycle and autoradiography with 3 H-thymidine were also examined. In order to discriminate chromosome by autoradiography, it was effective to utilize the labelled pattern in late DNA synthetic phase, where asynchronous replication of chromosome appeared most obviously. DNA synthesis in chromosome was examined in each DNA synthetic phase by culturing the chromosome after the treatment with 3 H-thymidine and altering the time to prepare chromosome specimen. Discrimination of chromosome in plants and animals by autoradiography was also mentioned. It was noticed as a structural and functional discrimination of chromosome to observe amino acid uptake into chromosome protein and to utilize the difference in labelled pattern between the sites of chromosome. (K. Serizawa)

  3. Naturally occurring genetic variation affecting the expression of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster.

    Science.gov (United States)

    Laurie-Ahlberg, C C; Bewley, G C

    1983-10-01

    Genetic variation among second and third chromosomes from natural populations of Drosophila melanogaster affects the activity level of sn-glycerol-3-phosphate dehydrogenase (EC 1.1.1.8; GPDH) at both the larval and the adult stages. The genetic effects, represented by differences among chromosome substitution lines with coisogenic backgrounds, are very repeatable over time and are generally substantially larger than environmental and measurement error effects. Neither the GPDH allozyme, the geographic origin, nor the karyotype of the chromosome contributes significantly to GPDH activity variation. The strong relationship between GPDH activity level and GPDH-specific CRM level, as well as our failure to find any thermostability variation among the lines, indicates that most, if not all, of the activity variation is due to variation in the steady-state quantity of enzyme rather than in its catalytic properties. The lack of a strong relationship between adult and larval activity levels suggests the importance of stage- or isozyme-specific effects.

  4. The Y chromosome of the Atelidae family (Platyrrhini): study by chromosome microdissection.

    Science.gov (United States)

    Gifalli-Iughetti, C; Koiffmann, C P

    2009-01-01

    In order to study the intergeneric variability of the Y chromosome, we describe the hybridization of the Y chromosome of Brachytelesarachnoides, obtained by microdissection, to metaphases of Atelesbelzebuthmarginatus, Lagothrixlagothricha, and Alouatta male specimens. Brachytelesarachnoides (Atelinae) has 62 chromosomes and a very small Y chromosome. Our results showed that the Brachytelesarachnoides Y chromosome probe hybridized to Lagothrixlagothricha metaphases yielding one hybridization signal on only the tiny Y chromosome, and when hybridized with Atelesbelzebuthmarginatus metaphases it yielded one hybridization signal on two thirds of the small acrocentric Y chromosome. However, no hybridization signal was observed in Alouatta metaphases (subfamily Alouattinae), a closely related genus in the Atelidae family. Furthermore, our data support a close phylogenetic relationship among Brachyteles, Ateles, and Lagothrix and their placement in the Atelinae subfamily, but exclude Alouatta from this group indicating its placement as basal to this group. Copyright 2009 S. Karger AG, Basel.

  5. Molecular phylogeny of the neotropical genus Christensonella (Orchidaceae, Maxillariinae): species delimitation and insights into chromosome evolution.

    Science.gov (United States)

    Koehler, Samantha; Cabral, Juliano S; Whitten, W Mark; Williams, Norris H; Singer, Rodrigo B; Neubig, Kurt M; Guerra, Marcelo; Souza, Anete P; Amaral, Maria do Carmo E

    2008-10-01

    Species' boundaries applied within Christensonella have varied due to the continuous pattern of variation and mosaic distribution of diagnostic characters. The main goals of this study were to revise the species' delimitation and propose a more stable classification for this genus. In order to achieve these aims phylogenetic relationships were inferred using DNA sequence data and cytological diversity within Christensonella was examined based on chromosome counts and heterochromatin patterns. The results presented describe sets of diagnostic morphological characters that can be used for species' identification. Phylogenetic studies were based on sequence data of nuclear and plastid regions, analysed using maximum parsimony and maximum likelihood criteria. Cytogenetic observations of mitotic cells were conducted using CMA and DAPI fluorochromes. Six of 21 currently accepted species were recovered. The results also support recognition of the 'C. pumila' clade as a single species. Molecular phylogenetic relationships within the 'C. acicularis-C. madida' and 'C. ferdinandiana-C. neowiedii' species' complexes were not resolved and require further study. Deeper relationships were incongruent between plastid and nuclear trees, but with no strong bootstrap support for either, except for the position of C. vernicosa. Cytogenetic data indicated chromosome numbers of 2n = 36, 38 and 76, and with substantial variation in the presence and location of CMA/DAPI heterochromatin bands. The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent dysploidy. Patterns of heterochromatin distribution and other karyotypic

  6. Molecular Phylogeny of the Neotropical Genus Christensonella (Orchidaceae, Maxillariinae): Species Delimitation and Insights into Chromosome Evolution

    Science.gov (United States)

    Koehler, Samantha; Cabral, Juliano S.; Whitten, W. Mark; Williams, Norris H.; Singer, Rodrigo B.; Neubig, Kurt M.; Guerra, Marcelo; Souza, Anete P.; Amaral, Maria do Carmo E.

    2008-01-01

    Background and Aims Species' boundaries applied within Christensonella have varied due to the continuous pattern of variation and mosaic distribution of diagnostic characters. The main goals of this study were to revise the species' delimitation and propose a more stable classification for this genus. In order to achieve these aims phylogenetic relationships were inferred using DNA sequence data and cytological diversity within Christensonella was examined based on chromosome counts and heterochromatin patterns. The results presented describe sets of diagnostic morphological characters that can be used for species' identification. Methods Phylogenetic studies were based on sequence data of nuclear and plastid regions, analysed using maximum parsimony and maximum likelihood criteria. Cytogenetic observations of mitotic cells were conducted using CMA and DAPI fluorochromes. Key Results Six of 21 currently accepted species were recovered. The results also support recognition of the ‘C. pumila’ clade as a single species. Molecular phylogenetic relationships within the ‘C. acicularis–C. madida’ and ‘C. ferdinandiana–C. neowiedii’ species' complexes were not resolved and require further study. Deeper relationships were incongruent between plastid and nuclear trees, but with no strong bootstrap support for either, except for the position of C. vernicosa. Cytogenetic data indicated chromosome numbers of 2n = 36, 38 and 76, and with substantial variation in the presence and location of CMA/DAPI heterochromatin bands. Conclusions The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent

  7. Genetic mapping of centromeres in the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes.

    Science.gov (United States)

    Aleza, Pablo; Cuenca, José; Hernández, María; Juárez, José; Navarro, Luis; Ollitrault, Patrick

    2015-03-08

    Mapping centromere locations in plant species provides essential information for the analysis of genetic structures and population dynamics. The centromere's position affects the distribution of crossovers along a chromosome and the parental heterozygosity restitution by 2n gametes is a direct function of the genetic distance to the centromere. Sexual polyploidisation is relatively frequent in Citrus species and is widely used to develop new seedless triploid cultivars. The study's objectives were to (i) map the positions of the centromeres of the nine Citrus clementina chromosomes; (ii) analyse the crossover interference in unreduced gametes; and (iii) establish the pattern of genetic recombination in haploid clementine gametes along each chromosome and its relationship with the centromere location and distribution of genic sequences. Triploid progenies were derived from unreduced megagametophytes produced by second-division restitution. Centromere positions were mapped genetically for all linkage groups using half-tetrad analysis. Inference of the physical locations of centromeres revealed one acrocentric, four metacentric and four submetacentric chromosomes. Crossover interference was observed in unreduced gametes, with variation seen between chromosome arms. For haploid gametes, a strong decrease in the recombination rate occurred in centromeric and pericentromeric regions, which contained a low density of genic sequences. In chromosomes VIII and IX, these low recombination rates extended beyond the pericentromeric regions. The genomic region corresponding to a genetic distance recombination pattern along each chromosome. However, regions with low recombination rates extended beyond the pericentromeric regions of some chromosomes into areas richer in genic sequences. The persistence of strong linkage disequilibrium between large numbers of genes promotes the stability of epistatic interactions and multilocus-controlled traits over successive generations but

  8. Chromosomal instability can be induced by the formation of breakage-prone chromosome rearrangement junctions

    International Nuclear Information System (INIS)

    Allen, R.N.; Ritter, L.; Moore, S.R.; Grosovsky, A.J.

    2003-01-01

    Full text: Studies in our lab have led to the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in chromosomal instability acting predominantly in cis. For example, specific breakage of large blocks of centromeric region heterochromatin on chromosome 16q by treatment with 2,6-diaminopurine (DAP) is associated with repeated rearrangement of chromosome 16q during outgrowth of DAP-treated clones, thereby establishing a link between the initial site of damage and the occurrence of persistent chromosomal instability. Similarly, karyotypic analysis of gamma ray induced instability demonstrated that chromosomal rearrangements in sub-clones were significantly clustered near the site of previously identified chromosomal rearrangement junctions in unstable parental clones. This study investigates the hypothesis that integration of transfected sequences into host chromosomes could create breakage-prone junction regions and persistent genomic instability without exposure to DNA-damage agents. These junctions may mimic the unstable chromosomal rearrangements induced by DAP or radiation, and thus provide a test of the broader hypothesis that instability can to some extent be attributed to the formation of novel chromosomal breakage hot spots. These experiments were performed using human-hamster hybrid AL cells containing a single human chromosome 11, which was used to monitor instability in a chromosomal painting assay. AL cells were transfected with a 2.5 Kb fragment containing multiple copies of the 180 bp human alpha heterochromatic repeat, which resulted in chromosomal instability in 41% of the transfected clones. Parallel exposure to gamma-radiation resulted in a similar level of chromosomal instability, although control transfections with plasmid alone did not lead to karyotypic instability. Chromosomal instability induced by integration of alpha heterochromatic repeats was also frequently associated with delayed reproductive

  9. Variation in sensitivity to #betta#-ray-induced chromosomal aberrations during the mitotic cycle of the sea urchin egg

    International Nuclear Information System (INIS)

    Ejima, Y.; Nakamura, I.; Shiroya, T.

    1982-01-01

    Sea urchin eggs were irradiated with 137 Cs #betta# rays at various stages of the mitotic cycle, and chromosomal aberrations at the first postirradiation mitosis and embryonic abnormalities at later developmental stages were examined. The radiosensitivity of the eggs to both endpoints varied in parallel with the mitotic stage at the time of irradiation, suggesting a possible relationship between chromosomal damage and embryonic abnormalities

  10. Reassignment of Drosophila willistoni Genome Scaffolds to Chromosome II Arms.

    Science.gov (United States)

    Garcia, Carolina; Delprat, Alejandra; Ruiz, Alfredo; Valente, Vera L S

    2015-10-04

    Drosophila willistoni is a geographically widespread Neotropical species. The genome of strain Gd-H4-1 from Guadeloupe Island (Caribbean) was sequenced in 2007 as part of the 12 Drosophila Genomes Project. The assembled scaffolds were joined based on conserved linkage and assigned to polytene chromosomes based on a handful of genetic and physical markers. This paucity of markers was particularly striking in the metacentric chromosome II, comprised two similarly sized arms, IIL and IIR, traditionally considered homologous to Muller elements C and B, respectively. In this paper we present the cytological mapping of 22 new gene markers to increase the number of markers mapped by in situ hybridization and to test the assignment of scaffolds to the polytene chromosome II arms. For this purpose, we generated, by polymerase chain reaction amplification, one or two gene probes from each scaffold assigned to the chromosome II arms and mapped these probes to the Gd-H4-1 strain's polytene chromosomes by nonfluorescent in situ hybridization. Our findings show that chromosome arms IIL and IIR correspond to Muller elements B and C, respectively, directly contrasting the current homology assignments in D. willistoni and constituting a major reassignment of the scaffolds to chromosome II arms. Copyright © 2015 Garcia et al.

  11. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability.

    Science.gov (United States)

    Sansregret, Laurent; Patterson, James O; Dewhurst, Sally; López-García, Carlos; Koch, André; McGranahan, Nicholas; Chao, William Chong Hang; Barry, David J; Rowan, Andrew; Instrell, Rachael; Horswell, Stuart; Way, Michael; Howell, Michael; Singleton, Martin R; Medema, René H; Nurse, Paul; Petronczki, Mark; Swanton, Charles

    2017-02-01

    Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. Cancer Discov; 7(2); 218-33. ©2017 AACR.See related commentary by Burkard and Weaver, p. 134This article is highlighted in the In This Issue feature, p. 115. ©2017 American Association for Cancer Research.

  12. Mechanisms of induction of chromosomal aberrations and their detection by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Natarajan, A.T.

    2002-01-01

    Recently introduced fluorescence in situ hybridization (FISH) technique employing chromosome specific DNA libraries as well as region specific DNA probes (e.g., centromere, telomere) have helped to analyse chromosomal aberrations in great detail and thus have given some new insights into the mechanisms of induction of chromosomal aberrations. The relative proportion of induction of translocations and dicentrics by ionising radiation was studied in human, mice and Chinese hamster cells. Many of the studies point to the differences between the mechanisms of induction of dicentrics and translocations. Preliminary results obtained in our laboratory using arm specific probes for human chromosomes 1 and 3 indicate that the aberrations between the arms appear to be more than expected on a random basis. By employing telomeric probes the frequencies of interstitial deletions were found to be high and similar to the frequencies of dicentrics both in human and mouse lymphocytes. A recent study with human chromosome specific probes clearly shows variation of sensitivity of chromosomes for the induction of exchange aberrations. Radiation response studies with Chinese hamster cells using telomeric probes, suggest that telomeric sequences, especially interstitial ones appear to be an important factor in the origin of both spontaneous and induced chromosomal aberrations

  13. Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2015-12-01

    The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.

  14. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F

    2011-01-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  15. Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Thudi, Mahendar; Khan, Aamir W; Kumar, Vinay; Gaur, Pooran M; Katta, Krishnamohan; Garg, Vanika; Roorkiwal, Manish; Samineni, Srinivasan; Varshney, Rajeev K

    2016-01-27

    Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in South Asia and Sub-Saharan Africa. In order to harness the untapped genetic potential available for chickpea improvement, we re-sequenced 35 chickpea genotypes representing parental lines of 16 mapping populations segregating for abiotic (drought, heat, salinity), biotic stresses (Fusarium wilt, Ascochyta blight, Botrytis grey mould, Helicoverpa armigera) and nutritionally important (protein content) traits using whole genome re-sequencing approach. A total of 192.19 Gb data, generated on 35 genotypes of chickpea, comprising 973.13 million reads, with an average sequencing depth of ~10 X for each line. On an average 92.18 % reads from each genotype were aligned to the chickpea reference genome with 82.17 % coverage. A total of 2,058,566 unique single nucleotide polymorphisms (SNPs) and 292,588 Indels were detected while comparing with the reference chickpea genome. Highest number of SNPs were identified on the Ca4 pseudomolecule. In addition, copy number variations (CNVs) such as gene deletions and duplications were identified across the chickpea parental genotypes, which were minimum in PI 489777 (1 gene deletion) and maximum in JG 74 (1,497). A total of 164,856 line specific variations (144,888 SNPs and 19,968 Indels) with the highest percentage were identified in coding regions in ICC 1496 (21 %) followed by ICCV 97105 (12 %). Of 539 miscellaneous variations, 339, 138 and 62 were inter-chromosomal variations (CTX), intra-chromosomal variations (ITX) and inversions (INV) respectively. Genome-wide SNPs, Indels, CNVs, PAVs, and miscellaneous variations identified in different mapping populations are a valuable resource in genetic research and helpful in locating genes/genomic segments responsible for economically important traits. Further, the genome-wide variations identified in the present study can be used for developing high density SNP arrays for

  16. Different radiosensitization effects of the halogenated compounds on the human chromosome in vitro

    International Nuclear Information System (INIS)

    Kang, Y.S.

    1976-01-01

    Unscheduled DNA synthesis and chromosome aberrations were compared following X- or UV-irradiation or methyl methanesulfonate treatment in cultures of HeLa S 3 or KB cells or human and rabbit lymphocytes. The sensitization by incorporation of the halouridines BUdR and IUdR was also investigated. Unscheduled DNA synthesis occurred in two established cell lines after irradiation with 0 to 10 kR of X-rays. The rate of unscheduled synthesis was dose dependent and differed for the two cell lines. The unscheduled synthesis was not correlated with the modal chromosome number nor with the number of aberrations produced. UV-irradiated rabbit lymphocytes exhibited unscheduled DNA synthesis which saturated after a dose of 250 ergs/mm 2 . In contrast the incorporation of BUdR or IUdR eliminated this saturation and caused an increasing effect with increasing dose up to 1000 ergs/mm 2 . The degree of sensitization varied between the two halo-uridines, BUdR being more effective at high doses while IUdR was a more potent sensitizer at low doses. Chromosome aberrations were not directly related to unscheduled DNA synthesis but were sensitized by halo-uridine incorporation. In this case IUdR was more potent than BUdR at all doses studied. Methyl methanesulfonate was an effective producer of chromosome aberration in human lymphocytes of both the chromosome and chromatid type. Prior incorporation of BUdR or IUdR did not increase the total aberration produced but did increase the number of chromosome type aberration at the expense of the chromatid type

  17. Ethnobotany and Ethnomedicinal Uses, Chromosomal Status and Natural Propagation of Some Plants of Lahaul-Spiti and Adjoining Hills

    Directory of Open Access Journals (Sweden)

    Puneet Kumar

    2013-01-01

    Full Text Available The present study documented the ethnobotanical and medicinal uses of plants from an ecologically fragile cold desert area of Lahaul-Spiti (Himachal Pradesh, India. Local people use plants for curing the stomach troubles, pain reliever, cough, gastric disorders, and aphrodisiac and other household purposes. In addition, chromosome numbers, male meiosis, and natural propagation were also investigated in these ethnobotanically used plants. Present investigations also form the basis for exploitation of intraspecific chromosomal variation/new cytotypes recorded in some of the presently studied species to detect biochemical diversity in the medicinally important plants. For documentation of ethnobotanical information, personal observations and interviews were conducted with medicine men, hakims, farmers, shepherds, local healers, and old aged people. This study identified 40 plant species under 33 genera belonging to 17 families which have been used locally for curing various diseases and other purposes. All the chromosome counts are new to the study area. On worldwide basis, meiotic chromosome counts of n=14 and n=8 in Rosularia alpestris and Corydalis govaniana, respectively, are the first ever reports. The present study indicates that the people of the area possess good knowledge about the different uses of plants in the area. It has been noticed that due to the lack of interest among younger generations in the preservation of invaluable ethnic knowledge, there is every possible chance of losing such a rich heritage of knowledge. It is very urgent to conserve such invaluable ethnic knowledge before it gets lost.

  18. Chromosome damage in Chinese hamster cells produced by 125I-UdR at the site of its incorporation

    International Nuclear Information System (INIS)

    Hughes, W.L.; Weinblatt, A.C.; Prensky, W.

    1978-01-01

    Metaphase chromosomal aberrations were produced by 125 I-labeled iododeoxyuridine ( 125 I-UdR) incorporated into Chinese hamster Don cells at the end of the S-period of the cell cycle. Chromosome damage and the number of autoradiographic silver grains were recorded for whole cells, for chromosome pairs 4 and 5 and for the X and the Y chromosomes. The X and the Y chromosomes, which label late in S, were at least twice as heavily labeled as chromosome pairs 4 and 5 - two readily recognizable autosomes of similar size. The incidence of chromosome damage was at least six times that which would have been expected from equivalent doses of X-rays and the incidence of damage was directly related to the number of silver grains over each chromosome. It is estimated that it takes four to ten disintegrations to produce a visible chromosome aberration. The finding that chromosome damage is localized at the site of the 125 I decay is most readily explained by the high flux of low energy Auger electrons occurring at the site of the decay of the incorporated 125 I atom. (Auth.)

  19. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes

    Directory of Open Access Journals (Sweden)

    Yu Jane-Fang

    2008-03-01

    Full Text Available Abstract Background The Azoospermia Factor c (AZFc region of the human Y chromosome is a unique product of segmental duplication. It consists almost entirely of very long amplicons, represented by different colors, and is frequently deleted in subfertile men. Most of the AZFc amplicons have high sequence similarity with autosomal segments, indicating recent duplication and transposition to the Y chromosome. The Deleted in Azoospermia (DAZ gene within the red-amplicon arose from an ancestral autosomal DAZ-like (DAZL gene. It varies significantly between different men regarding to its copy number and the numbers of RNA recognition motif and DAZ repeat it encodes. We used Southern analyses to study the evolution of DAZ and AZFc amplicons on the Y chromosomes of primates. Results The Old World monkey rhesus macaque has only one DAZ gene. In contrast, the great apes have multiple copies of DAZ, ranging from 2 copies in bonobos and gorillas to at least 6 copies in orangutans, and these DAZ genes have polymorphic structures similar to those of their human counterparts. Sequences homologous to the various AZFc amplicons are present on the Y chromosomes of some but not all primates, indicating that they arrived on the Y chromosome at different times during primate evolution. Conclusion The duplication and transposition of AZFc amplicons to the human Y chromosome occurred in three waves, i.e., after the branching of the New World monkey, the gorilla, and the chimpanzee/bonobo lineages, respectively. The red-amplicon, one of the first to arrive on the Y chromosome, amplified by inverted duplication followed by direct duplication after the separation of the Old World monkey and the great ape lineages. Subsequent duplication/deletion in the various lineages gave rise to a spectrum of DAZ gene structure and copy number found in today's great apes.

  20. Chromosome microdissection and cloning in human genome and genetic disease analysis

    International Nuclear Information System (INIS)

    Kao, Faten; Yu, Jingwei

    1991-01-01

    A procedure has been described for microdissection and microcloning of human chromosomal DNA sequences in which universal amplification of the dissected fragments by Mbo I linker adaptor and polymerase chain reaction is used. A very large library comprising 700,000 recombinant plasmid microclones from 30 dissected chromosomes of human chromosome 21 was constructed. Colony hybridization showed that 42% of the clones contained repetitive sequences and 58% contained single or low-copy sequences. The insert sizes generated by complete Mbo I cleavage ranged from 50 to 1,100 base pairs with a mean of 416 base pairs. Southern blot analysis of microclones from the library confirmed their human origin and chromosome 21 specificity. Some of these clones have also been regionally mapped to specific sites of chromosome 21 by using a regional mapping panel of cell hybrids. This chromosome microtechnology can generate large numbers of microclones with unique sequences from defined chromosomal regions and can be used for processes such as (i) isolating corresponding yeast artificial chromosome clones with large inserts, (ii) screening various cDNA libraries for isolating expressed sequences, and (iii) constructing region-specific libraries of the entire human genome. The studies described here demonstrate the power of this technology for high-resolution genome analysis and explicate their use in an efficient search for disease-associated genes localized to specific chromosomal regions

  1. Male infertility associated with de novo pericentric inversion of chromosome 1.

    Science.gov (United States)

    Balasar, Özgür; Zamani, Ayşe Gül; Balasar, Mehmet; Acar, Hasan

    2017-12-01

    Inversion occurs after two breaks in a chromosome have happened and the segment rotates 180° before reinserting. Inversion carriers have produced abnormal gametes if there is an odd number crossing- over between the inverted and the normal homologous chromosomes causing a duplication or deletion. Reproductive risks such as infertility, abortion, stillbirth and birth of malformed child would be expected in that case. A 54-year- old male patient was consulted to our clinic for primary infertility. The routine chromosome study were applied using peripheral blood lymphocyte cultures and analyzed by giemsa-trypsin-giemsa (GTG) banding, and centromer banding (C-banding) stains. Y chromosome microdeletions in the azoospermia factor (AZF) regions were analyzed with polymerase chain reaction. Additional test such as fluorescence in situ hybridization (FISH) was used to detect the sex-determining region of the Y chromosome (SRY). Semen analysis showed azoospermia. A large pericentric inversion of chromosome 1 46,XY, inv(1) (p22q32) was found in routine chromosome analysis. No microdeletions were seen in AZF regions. In our patient the presence of SRY region was observed by using FISH technique with SRY-specific probe. Men who have pericentric inversion of chromosome 1, appear to be at risk for infertility brought about by spermatogenic breakdown. The etiopathogenic relationship between azoospermia and pericentric inversion of chromosome 1 is discussed.

  2. Genome-wide mapping reveals single-origin chromosome replication in Leishmania, a eukaryotic microbe.

    Science.gov (United States)

    Marques, Catarina A; Dickens, Nicholas J; Paape, Daniel; Campbell, Samantha J; McCulloch, Richard

    2015-10-19

    DNA replication initiates on defined genome sites, termed origins. Origin usage appears to follow common rules in the eukaryotic organisms examined to date: all chromosomes are replicated from multiple origins, which display variations in firing efficiency and are selected from a larger pool of potential origins. To ask if these features of DNA replication are true of all eukaryotes, we describe genome-wide origin mapping in the parasite Leishmania. Origin mapping in Leishmania suggests a striking divergence in origin usage relative to characterized eukaryotes, since each chromosome appears to be replicated from a single origin. By comparing two species of Leishmania, we find evidence that such origin singularity is maintained in the face of chromosome fusion or fission events during evolution. Mapping Leishmania origins suggests that all origins fire with equal efficiency, and that the genomic sites occupied by origins differ from related non-origins sites. Finally, we provide evidence that origin location in Leishmania displays striking conservation with Trypanosoma brucei, despite the latter parasite replicating its chromosomes from multiple, variable strength origins. The demonstration of chromosome replication for a single origin in Leishmania, a microbial eukaryote, has implications for the evolution of origin multiplicity and associated controls, and may explain the pervasive aneuploidy that characterizes Leishmania chromosome architecture.

  3. Sex differences in circadian food anticipatory activity are not altered by individual manipulations of sex hormones or sex chromosome copy number in mice.

    Science.gov (United States)

    Aguayo, Antonio; Martin, Camille S; Huddy, Timothy F; Ogawa-Okada, Maya; Adkins, Jamie L; Steele, Andrew D

    2018-01-01

    Recent studies in mice have demonstrated a sexual dimorphism in circadian entrainment to scheduled feeding. On a time restricted diet, males tend to develop food anticipatory activity (FAA) sooner than females and with a higher amplitude of activity. The underlying cause of this sex difference remains unknown. One study suggests that sex hormones, both androgens and estrogens, modulate food anticipatory activity in mice. Here we present results suggesting that the sex difference in FAA is unrelated to gonadal sex hormones. While a sex difference between males and females in FAA on a timed, calorie restricted diet was observed there were no differences between intact and gonadectomized mice in the onset or magnitude of FAA. To test other sources of the sex difference in circadian entrainment to scheduled feeding, we used sex chromosome copy number mutants, but there was no difference in FAA when comparing XX, XY-, XY-;Sry Tg, and XX;Sry Tg mice, demonstrating that gene dosage of sex chromosomes does not mediate the sex difference in FAA. Next, we masculinized female mice by treating them with 17-beta estradiol during the neonatal period; yet again, we saw no difference in FAA between control and masculinized females. Finally, we observed that there was no longer a sex difference in FAA for older mice, suggesting that the sex difference in FAA is age-dependent. Thus, our study demonstrates that singular manipulations of gonadal hormones, sex chromosomes, or developmental patterning are not able to explain the difference in FAA between young male and female mice.

  4. Chromosomal Behavior during Meiosis in the Progeny of Triticum timopheevii × Hexaploid Wild Oat.

    Directory of Open Access Journals (Sweden)

    Hongzhou An

    Full Text Available The meiotic behavior of pollen mother cells (PMCs of the F2 and F3 progeny from Triticum timopheevii × hexaploid wild oat was investigated by cytological analysis and sequential C-banding-genomic in situ hybridization (GISH in the present study. A cytological analysis showed that the chromosome numbers of the F2 and F3 progeny ranged from 28 to 41. A large number of univalents, lagging chromosomes, chromosome bridges and micronuclei were found at the metaphase I, anaphase I, anaphase II and tetrad stages in the F2 and F3 progeny. The averages of univalents were 3.50 and 2.73 per cell, and those of lagging chromosomes were 3.37 and 1.87 in the F2 and F3 progeny, respectively. The PMC meiotic indices of the F2 and F3 progeny were 12.22 and 20.34, respectively, indicating considerable genetic instability. A sequential C-banding-GISH analysis revealed that some chromosomes and fragments from the hexaploid wild oat were detected at metaphase I and anaphase I in the progeny, showing that the progeny were of true intergeneric hybrid origin. The alien chromosomes 6A, 7A, 3C and 2D were lost during transmission from F2 to F3. In addition, partial T. timopheevii chromosomes appeared in the form of univalents or lagging chromosomes, which might result from large genome differences between the parents, and the wild oat chromosome introgression interfered with the wheat homologues' normally pairing.

  5. Sex chromosome repeats tip the balance towards speciation.

    Science.gov (United States)

    O'Neill, Michael J; O'Neill, Rachel J

    2018-04-06

    Because sex chromosomes, by definition, carry genes that determine sex, mutations that alter their structural and functional stability can have immediate consequences for the individual by reducing fertility, but also for a species by altering the sex ratio. Moreover, the sex-specific segregation patterns of heteromorphic sex chromosomes make them havens for selfish genetic elements that not only create sub-optimal sex ratios, but can also foster sexual antagonism. Compensatory mutations to mitigate antagonism or return sex ratios to a Fisherian optimum can create hybrid incompatibility and establish reproductive barriers leading to species divergence. The destabilizing influence of these selfish elements is often manifest within populations as copy number variants (CNVs) in satellite repeats and transposable elements (TE) or as CNVs involving sex determining genes, or genes essential to fertility and sex chromosome dosage compensation. This review catalogs several examples of well-studied sex chromosome CNVs in Drosophilids and mammals that underlie instances of meiotic drive, hybrid incompatibility and disruptions to sex differentiation and sex chromosome dosage compensation. While it is difficult to pinpoint a direct cause/effect relationship between these sex chromosome CNVs and speciation, it is easy to see how their effects in creating imbalances between the sexes, and the compensatory mutations to restore balance, can lead to lineage splitting and species formation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Renal Cell Carcinoma With Chromosome 6p Amplification Including the TFEB Gene: A Novel Mechanism of Tumor Pathogenesis?

    Science.gov (United States)

    Williamson, Sean R; Grignon, David J; Cheng, Liang; Favazza, Laura; Gondim, Dibson D; Carskadon, Shannon; Gupta, Nilesh S; Chitale, Dhananjay A; Kalyana-Sundaram, Shanker; Palanisamy, Nallasivam

    2017-03-01

    Amplification of chromosome 6p has been implicated in aggressive behavior in several cancers, but has not been characterized in renal cell carcinoma (RCC). We identified 9 renal tumors with amplification of chromosome 6p including the TFEB gene, 3 by fluorescence in situ hybridization, and 6 from the Cancer Genome Atlas (TCGA) databases. Patients' ages were 28 to 78 years (median, 61 y). Most tumors were high stage (7/9 pT3a, 2/9 pN1). Using immunohistochemistry, 2/4 were positive for melanocytic markers and cathepsin K. Novel TFEB fusions were reported by TCGA in 2; however, due to a small composition of fusion transcripts compared with full-length transcripts (0.5/174 and 3.3/132 FPKM), we hypothesize that these represent secondary fusions due to amplification. Five specimens (4 TCGA, 1 fluorescence in situ hybridization) had concurrent chromosome 3p copy number loss or VHL deletion. However, these did not resemble clear cell RCC, had negative carbonic anhydrase IX labeling, lacked VHL mutation, and had papillary or unclassified histology (2/4 had gain of chromosome 7 or 17). One tumor each had somatic FH mutation and SMARCB1 mutation. Chromosome 6p amplification including TFEB is a previously unrecognized cytogenetic alteration in RCC, associated with heterogenous tubulopapillary eosinophilic and clear cell histology. The combined constellation of features does not fit cleanly into an existing tumor category (unclassified), most closely resembling papillary or translocation RCC. The tendency for high tumor stage, varied tubulopapillary morphology, and a subset with melanocytic marker positivity suggests the possibility of a unique tumor type, despite some variation in appearance and genetics.

  7. Correspondence: chromosomal localization of uv-induced unscheduled DNA synthesis

    International Nuclear Information System (INIS)

    Berliner, J.; Mello, R.S.; Norman, A.

    1976-01-01

    We have measured the grain density - the number of grains per unit length - over the centromere and noncentromere regions of metaphase chromosomes in autoradiographs of human lymphocytes. When the chromosomes were labeled in G 0 by uv-induced unscheduled DNA synthesis, the grain density was two to four times larger over the centromere than over the noncentromere regions. When the labeling was done by scheduled DNA synthesis in S or unscheduled synthesis in M, the grain densities were approximately equal over both regions

  8. Abundance and Characterization of Perfect Microsatellites on the Cattle Y Chromosome.

    Science.gov (United States)

    Ma, Zhi-Jie

    2017-07-03

    Microsatellites or simple sequence repeats (SSRs) are found in most organisms and play an important role in genomic organization and function. To characterize the abundance of SSRs (1-6 base-pairs [bp]) on the cattle Y chromsome, the relative frequency and density of perfect or uninterrupted SSRs based on the published Y chromosome sequence were examined. A total of 17,273 perfect SSRs were found, with total length of 324.78 kb, indicating that approximately 0.75% of the cattle Y chromosome sequence (43.30 Mb) comprises perfect SSRs, with an average length of 18.80 bp. The relative frequency and density were 398.92 loci/Mb and 7500.62 bp/Mb, respectively. The proportions of the six classes of perfect SSRs were highly variable on the cattle Y chromosome. Mononucleotide repeats had a total number of 8073 (46.74%) and an average length of 15.45 bp, and were the most abundant SSRs class, while the percentages of di-, tetra-, tri-, penta-, and hexa-nucleotide repeats were 22.86%, 11.98%, 11.58%, 6.65%, and 0.19%, respectively. Different classes of SSRs varied in their repeat number, with the highest being 42 for dinucleotides. Results reveal that repeat categories A, AC, AT, AAC, AGC, GTTT, CTTT, ATTT, and AACTG predominate on the Y chromosome. This study provides insight into the organization of cattle Y chromosome repetitive DNA, as well as information useful for developing more polymorphic cattle Y-chromosome-specific SSRs.

  9. Relationship between the species-representative phenotype and intraspecific variation in Ranunculaceae floral organ and Asteraceae flower numbers.

    Science.gov (United States)

    Kitazawa, Miho S; Fujimoto, Koichi

    2016-04-01

    Phenotypic variation in floral morphologies contributes to speciation by testing various morphologies that might have higher adaptivity, leading eventually to phylogenetic diversity. Species diversity has been recognized, however, by modal morphologies where the variation is averaged out, so little is known about the relationship between the variation and the diversity. We analysed quantitatively the intraspecific variation of the organ numbers within flowers of Ranunculaceae, a family which branched near the monocot-eudicot separation, and the numbers of flowers within the capitula of Asteraceae, one of the most diverse families of eudicots. We used four elementary statistical quantities: mean, standard deviation (s.d.), degree of symmetry (skewness) and steepness (kurtosis). While these four quantities vary among populations, we found a common relationship between s.d. and the mean number of petals and sepals in Ranunculaceae and number of flowers per capitulum in Asteraceae. The s.d. is equal to the square root of the difference between the mean and specific number, showing robustness: for example, 3 in Ficaria sepals, 5 in Ranunculus petals and Anemone tepals, and 13 in Farfugium ray florets. This square-root relationship was not applicable to Eranthis petals which show little correlation between the s.d. and mean, and the stamens and carpels of Ranunculaceae whose s.d. is proportional to the mean. The specific values found in the square-root relationship provide a novel way to find the species-representative phenotype among varied morphologies. The representative phenotype is, in most cases, unique to the species or genus level, despite intraspecific differences of average phenotype among populations. The type of variation shown by the statistical quantities indicates not only the robustness of the morphologies but also how flowering plants changed during evolution among representative phenotypes that eventually led to phylogenetic diversification. © The

  10. The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle

    DEFF Research Database (Denmark)

    Rasmussen, Tue; Jensen, Rasmus Bugge; Skovgaard, Ole

    2007-01-01

    for analysing flow cytometry data and marker frequency analysis, we show that the small chromosome II is replicated late in the C period of the cell cycle, where most of chromosome I has been replicated. Owing to the delay in initiation of chromosome II, the two chromosomes terminate replication...... at approximately the same time and the average number of replication origins per cell is higher for chromosome I than for chromosome II. Analysis of cell-cycle parameters shows that chromosome replication and segregation is exceptionally fast in V. cholerae. The divided genome and delayed replication of chromosome...... II may reduce the metabolic burden and complexity of chromosome replication by postponing DNA synthesis to the last part of the cell cycle and reducing the need for overlapping replication cycles during rapid proliferation...

  11. Clonal evolution through loss of chromosomes and subsequent polyploidization in chondrosarcoma.

    Directory of Open Access Journals (Sweden)

    Linda Olsson

    Full Text Available Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events.

  12. Clonal evolution through loss of chromosomes and subsequent polyploidization in chondrosarcoma.

    Science.gov (United States)

    Olsson, Linda; Paulsson, Kajsa; Bovée, Judith V M G; Nord, Karolin H

    2011-01-01

    Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP) array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events.

  13. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    Science.gov (United States)

    The diversity and population-genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analyzed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, Romagnola), sequenced to 11-fold...

  14. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose-effect curve)

    International Nuclear Information System (INIS)

    Al-Achkar, W.

    2001-09-01

    In order to draw a dose-effect curve, experimentally gamma ray induced chromosomal aberrations in human peripheral lymphocytes from eight healthy people were studied. Samples from 4 males and 4 females were irradiated in tubes with 0.15, 0.25, 0.5, 1, 1.5, 2, 2.5 gray of gamma ray (Co 60 at dose rate 0.3 Gy/min). Irradiated and control samples were incubated in 37 centigrade for 48 hours cell cultures. Cell cultures then were stopped and metaphases spread, Giemsa stained to score the induced chromosomal aberrations. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics + rings and total numbers of breaks in cell for each individual or for all people were drawn. An increase of all chromosomal aberrations types with the elevation of the doses was observed. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  15. Infraspecific variation of C-banded karyotype and chiasma frequency in Cucumis sativus (Cucurbitaceae)

    NARCIS (Netherlands)

    Ramachandran, C.; Brandenburg, W.A.; Nijs, de S.A.P.M.

    1985-01-01

    Infraspecific cytogenetical variation was studied in a diverse collection of five non-cultivated and cultivatedCucumis sativus accessions. The individual chromosomes of different accessions could be identified by the C-banding pattern and chromosome measurements. About 40–50% of the genomic area are

  16. Genetic Diversity of Seven Cattle Breeds Inferred Using Copy Number Variations

    Directory of Open Access Journals (Sweden)

    Magretha D. Pierce

    2018-05-01

    Full Text Available Copy number variations (CNVs comprise deletions, duplications, and insertions found within the genome larger than 50 bp in size. CNVs are thought to be primary role-players in breed formation and adaptation. South Africa boasts a diverse ecology with harsh environmental conditions and a broad spectrum of parasites and diseases that pose challenges to livestock production. This has led to the development of composite cattle breeds which combine the hardiness of Sanga breeds and the production potential of the Taurine breeds. The prevalence of CNVs within these respective breeds of cattle and the prevalence of CNV regions (CNVRs in their diversity, adaptation and production is however not understood. This study therefore aimed to ascertain the prevalence, diversity, and correlations of CNVRs within cattle breeds used in South Africa. Illumina Bovine SNP50 data and PennCNV were utilized to identify CNVRs within the genome of 287 animals from seven cattle breeds representing Sanga, Taurine, Composite, and cross breeds. Three hundred and fifty six CNVRs of between 36 kb to 4.1 Mb in size were identified. The null hypothesis that one CNVR loci is independent of another was tested using the GENEPOP software. One hunded and two and seven of the CNVRs in the Taurine and Sanga/Composite cattle breeds demonstrated a significant (p ≤ 0.05 association. PANTHER overrepresentation analyses of correlated CNVRs demonstrated significant enrichment of a number of biological processes, molecular functions, cellular components, and protein classes. CNVR genetic variation between and within breed group was measured using phiPT which allows intra-individual variation to be suppressed and hence proved suitable for measuring binary CNVR presence/absence data. Estimate PhiPT within and between breed variance was 2.722 and 0.518 respectively. Pairwise population PhiPT values corresponded with breed type, with Taurine Holstein and Angus breeds demonstrating no between

  17. Chromosome studies on Brazilian cerrado plants

    Directory of Open Access Journals (Sweden)

    Eliana Regina Forni-Martins

    2000-12-01

    Full Text Available Cerrado is the Brazilian name for the neotropical savanna, which occurs mainly in Brazilian Central Plateau, composed of herbaceous-subshrubby and shrubby-arboreal floras, both of which are heliophilous, highly diverse and regionally differentiated. Considering species distribution and chromosome numbers, some authors have proposed that the herbaceous-subshrubby flora of the neotropical savanna is quite old, while the shrubby-arboreal flora is derived from forests, a hypothesis that implies higher chromosome numbers in the savanna than in the forest. If, however, chromosome numbers are similar in the cerrado and in forests, both could be similarly old, indicating that bi-directional flow of flora occurred in the past. This paper presents data on chromosome numbers and microsporogenesis for 20 species in 13 families collected in the States of São Paulo, Goiás and Minas Gerais, providing previously unpublished data for Myrcia (Myrtaceae, Luxemburgia (Ochnaceae and Hortia (Rutaceae. Meiosis proved to be normal, indicating regularity in the sexual reproductive process. Chromosome numbers varied from 2n = 18 (Allamanda angustifolia: Apocynaceae to 2n = ca. 104 (Ouratea spectabilis: Ochnaceae, being low (20 Cerrado é a palavra que, no Brasil, designa a savana neotropical, com área nuclear no Planalto Central, constituída de uma flora herbáceo-subarbustiva e outra arbustivo-arbórea, ambas heliófilas, altamente diversificadas e regionalmente diferenciadas. Considerando a distribuição de espécies e de números cromossômicos, alguns autores propuseram que a flora herbáceo-subarbustiva da savanna neotropical seria bastante antiga, enquanto a flora arbustivo-arbórea seria derivada das florestas Atlântica e Amazônica, uma hipótese que implica na ocorrência de números cromossômicos mais altos no cerrado que nas florestas. Porém, se os números cromossômicos forem similares no cerrado e nas florestas, ambos os tipos de formação poderiam

  18. Copy number variation and association analysis of SHANK3 as a candidate gene for autism in the IMGSAC collection.

    Science.gov (United States)

    Sykes, Nuala H; Toma, Claudio; Wilson, Natalie; Volpi, Emanuela V; Sousa, Inês; Pagnamenta, Alistair T; Tancredi, Raffaella; Battaglia, Agatino; Maestrini, Elena; Bailey, Anthony J; Monaco, Anthony P

    2009-10-01

    SHANK3 is located on chromosome 22q13.3 and encodes a scaffold protein that is found in excitatory synapses opposite the pre-synaptic active zone. SHANK3 is a binding partner of neuroligins, some of whose genes contain mutations in a small subset of individuals with autism. In individuals with autism spectrum disorders (ASDs), several studies have found SHANK3 to be disrupted by deletions ranging from hundreds of kilobases to megabases, suggesting that 1% of individuals with ASDs may have these chromosomal aberrations. To further analyse the involvement of SHANK3 in ASD, we screened the International Molecular Genetic Study of Autism Consortium (IMGSAC) multiplex family sample, 330 families, for SNP association and copy number variants (CNVs) in SHANK3. A collection of 76 IMGSAC Italian probands from singleton families was also examined by multiplex ligation-dependent probe amplification for CNVs. No CNVs or SNP associations were found within the sample set, although sequencing of the gene was not performed. Our data suggest that SHANK3 deletions may be limited to lower functioning individuals with autism.

  19. Karyotype evolution in Rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross-species chromosome painting and G-banding comparison.

    Science.gov (United States)

    Mao, Xiuguang; Nie, Wenhui; Wang, Jinhuan; Su, Weiting; Ao, Lei; Feng, Qing; Wang, Yingxiang; Volleth, Marianne; Yang, Fengtang

    2007-01-01

    Rhinolophus (Rhinolophidae) is the second most speciose genus in Chiroptera and has extensively diversified diploid chromosome numbers (from 2n = 28 to 62). In spite of many attempts to explore the karyotypic evolution of this genus, most studies have been based on conventional Giemsa staining rather than G-banding. Here we have made a whole set of chromosome-specific painting probes from flow-sorted chromosomes of Aselliscus stoliczkanus (Hipposideridae). These probes have been utilized to establish the first genome-wide homology maps among six Rhinolophus species with four different diploid chromosome numbers (2n = 36, 44, 58, and 62) and three species from other families: Rousettus leschenaulti (2n = 36, Pteropodidae), Hipposideros larvatus (2n = 32, Hipposideridae), and Myotis altarium (2n = 44, Vespertilionidae) by fluorescence in situ hybridization. To facilitate integration with published maps, human paints were also hybridized to A. stoliczkanus chromosomes. Our painting results substantiate the wide occurrence of whole-chromosome arm conservation in Rhinolophus bats and suggest that Robertsonian translocations of different combinations account for their karyotype differences. Parsimony analysis using chromosomal characters has provided some new insights into the Rhinolophus ancestral karyotype and phylogenetic relationships among these Rhinolophus species so far studied. In addition to Robertsonian translocations, our results suggest that whole-arm (reciprocal) translocations involving multiple non-homologous chromosomes as well could have been involved in the karyotypic evolution within Rhinolophus, in particular those bats with low and medium diploid numbers.

  20. A chromosomal analysis of four species of Chilean Chrysomelinae (Coleoptera, Chrysomelidae).

    Science.gov (United States)

    Petitpierre, Eduard; Elgueta, Mario

    2012-01-01

    Four species of Chilean leaf beetles in the subfamily Chrysomelinae have been cytogenetically analyzed, Blaptea elguetai Petitpierre, 2011, Henicotherus porteri Bréthes, 1929 and Jolivetia obscura (Philippi, 1864) show 2n = 28 chromosomes and a 13 + Xyp male meioformula, and Pataya nitida (Philippi, 1864) has the highest number of 2n = 38 chromosomes. The karyotype of Henicotherus porteri is made of mostly small meta/submetacentric chromosomes, and that of Jolivetia obscura displays striking procentric blocks of heterochromatin at pachytene autosomic bivalents using conventional staining. These findings are discussed in relation to previous cytogenetic data and current taxonomy of the subfamily.

  1. Y-chromosome variation in Altaian Kazakhs reveals a common paternal gene pool for Kazakhs and the influence of Mongolian expansions.

    Science.gov (United States)

    Dulik, Matthew C; Osipova, Ludmila P; Schurr, Theodore G

    2011-03-11

    Kazakh populations have traditionally lived as nomadic pastoralists that seasonally migrate across the steppe and surrounding mountain ranges in Kazakhstan and southern Siberia. To clarify their population history from a paternal perspective, we analyzed the non-recombining portion of the Y-chromosome from Kazakh populations living in southern Altai Republic, Russia, using a high-resolution analysis of 60 biallelic markers and 17 STRs. We noted distinct differences in the patterns of genetic variation between maternal and paternal genetic systems in the Altaian Kazakhs. While they possess a variety of East and West Eurasian mtDNA haplogroups, only three East Eurasian paternal haplogroups appear at significant frequencies (C3*, C3c and O3a3c*). In addition, the Y-STR data revealed low genetic diversity within these lineages. Analysis of the combined biallelic and STR data also demonstrated genetic differences among Kazakh populations from across Central Asia. The observed differences between Altaian Kazakhs and indigenous Kazakhs were not the result of admixture between Altaian Kazakhs and indigenous Altaians. Overall, the shared paternal ancestry of Kazakhs differentiates them from other Central Asian populations. In addition, all of them showed evidence of genetic influence by the 13(th) century CE Mongol Empire. Ultimately, the social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation.

  2. Y-chromosome variation in Altaian Kazakhs reveals a common paternal gene pool for Kazakhs and the influence of Mongolian expansions.

    Directory of Open Access Journals (Sweden)

    Matthew C Dulik

    Full Text Available Kazakh populations have traditionally lived as nomadic pastoralists that seasonally migrate across the steppe and surrounding mountain ranges in Kazakhstan and southern Siberia. To clarify their population history from a paternal perspective, we analyzed the non-recombining portion of the Y-chromosome from Kazakh populations living in southern Altai Republic, Russia, using a high-resolution analysis of 60 biallelic markers and 17 STRs. We noted distinct differences in the patterns of genetic variation between maternal and paternal genetic systems in the Altaian Kazakhs. While they possess a variety of East and West Eurasian mtDNA haplogroups, only three East Eurasian paternal haplogroups appear at significant frequencies (C3*, C3c and O3a3c*. In addition, the Y-STR data revealed low genetic diversity within these lineages. Analysis of the combined biallelic and STR data also demonstrated genetic differences among Kazakh populations from across Central Asia. The observed differences between Altaian Kazakhs and indigenous Kazakhs were not the result of admixture between Altaian Kazakhs and indigenous Altaians. Overall, the shared paternal ancestry of Kazakhs differentiates them from other Central Asian populations. In addition, all of them showed evidence of genetic influence by the 13(th century CE Mongol Empire. Ultimately, the social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation.

  3. Family-Based Benchmarking of Copy Number Variation Detection Software.

    Science.gov (United States)

    Nutsua, Marcel Elie; Fischer, Annegret; Nebel, Almut; Hofmann, Sylvia; Schreiber, Stefan; Krawczak, Michael; Nothnagel, Michael

    2015-01-01

    The analysis of structural variants, in particular of copy-number variations (CNVs), has proven valuable in unraveling the genetic basis of human diseases. Hence, a large number of algorithms have been developed for the detection of CNVs in SNP array signal intensity data. Using the European and African HapMap trio data, we undertook a comparative evaluation of six commonly used CNV detection software tools, namely Affymetrix Power Tools (APT), QuantiSNP, PennCNV, GLAD, R-gada and VEGA, and assessed their level of pair-wise prediction concordance. The tool-specific CNV prediction accuracy was assessed in silico by way of intra-familial validation. Software tools differed greatly in terms of the number and length of the CNVs predicted as well as the number of markers included in a CNV. All software tools predicted substantially more deletions than duplications. Intra-familial validation revealed consistently low levels of prediction accuracy as measured by the proportion of validated CNVs (34-60%). Moreover, up to 20% of apparent family-based validations were found to be due to chance alone. Software using Hidden Markov models (HMM) showed a trend to predict fewer CNVs than segmentation-based algorithms albeit with greater validity. PennCNV yielded the highest prediction accuracy (60.9%). Finally, the pairwise concordance of CNV prediction was found to vary widely with the software tools involved. We recommend HMM-based software, in particular PennCNV, rather than segmentation-based algorithms when validity is the primary concern of CNV detection. QuantiSNP may be used as an additional tool to detect sets of CNVs not detectable by the other tools. Our study also reemphasizes the need for laboratory-based validation, such as qPCR, of CNVs predicted in silico.

  4. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  5. Genetic recombination variation in wild Robertsonian mice: on the role of chromosomal fusions and Prdm9 allelic background

    OpenAIRE

    Capilla, Laia; Medarde, Nuria; Alemany-Schmidt, Alexandra; Oliver-Bonet, Maria; Ventura, Jacint; Ruiz-Herrera, Aurora

    2014-01-01

    Despite the existence of formal models to explain how chromosomal rearrangements can be fixed in a population in the presence of gene flow, few empirical data are available regarding the mechanisms by which genome shuffling contributes to speciation, especially in mammals. In order to shed light on this intriguing evolutionary process, here we present a detailed empirical study that shows how Robertsonian (Rb) fusions alter the chromosomal distribution of recombination events during the forma...

  6. Fetal chromosome analysis

    DEFF Research Database (Denmark)

    Philip, J; Tabor, A; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  7. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium

    Science.gov (United States)

    The chromosome painting is an efficient tool for chromosome research. However, plant chromosome painting is relatively underdeveloped. In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and chromosomes of...

  8. Chromosomal mapping of canine-derived BAC clones to the red fox and American mink genomes.

    Science.gov (United States)

    Kukekova, Anna V; Vorobieva, Nadegda V; Beklemisheva, Violetta R; Johnson, Jennifer L; Temnykh, Svetlana V; Yudkin, Dmitry V; Trut, Lyudmila N; Andre, Catherine; Galibert, Francis; Aguirre, Gustavo D; Acland, Gregory M; Graphodatsky, Alexander S

    2009-01-01

    High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene-containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations.

  9. Chromosome rearrangements, recombination suppression, and limited segregation distortion in hybrids between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (O. mykiss)

    Science.gov (United States)

    2013-01-01

    Background Introgressive hybridization is an important evolutionary process that can lead to the creation of novel genome structures and thus potentially new genetic variation for selection to act upon. On the other hand, hybridization with introduced species can threaten native species, such as cutthroat trout (Oncorhynchus clarkii) following the introduction of rainbow trout (O. mykiss). Neither the evolutionary consequences nor conservation implications of rainbow trout introgression in cutthroat trout is well understood. Therefore, we generated a genetic linkage map for rainbow-Yellowstone cutthroat trout (O. clarkii bouvieri) hybrids to evaluate genome processes that may help explain how introgression affects hybrid genome evolution. Results The hybrid map closely aligned with the rainbow trout map (a cutthroat trout map does not exist), sharing all but one linkage group. This linkage group (RYHyb20) represented a fusion between an acrocentric (Omy28) and a metacentric chromosome (Omy20) in rainbow trout. Additional mapping in Yellowstone cutthroat trout indicated the two rainbow trout homologues were fused in the Yellowstone genome. Variation in the number of hybrid linkage groups (28 or 29) likely depended on a Robertsonian rearrangement polymorphism within the rainbow trout stock. Comparison between the female-merged F1 map and a female consensus rainbow trout map revealed that introgression suppressed recombination across large genomic regions in 5 hybrid linkage groups. Two of these linkage groups (RYHyb20 and RYHyb25_29) contained confirmed chromosome rearrangements between rainbow and Yellowstone cutthroat trout indicating that rearrangements may suppress recombination. The frequency of allelic and genotypic segregation distortion varied among parents and families, suggesting few incompatibilities exist between rainbow and Yellowstone cutthroat trout genomes. Conclusions Chromosome rearrangements suppressed recombination in the hybrids. This result

  10. Proteome approaches to characterize seed storage proteins related to ditelocentric chromosomes in common wheat (Triticum aestivum L.).

    Science.gov (United States)

    Islam, Nazrul; Woo, Sun-Hee; Tsujimoto, Hisashi; Kawasaki, Hiroshi; Hirano, Hisashi

    2002-09-01

    Changes in protein composition of wheat endosperm proteome were investigated in 39 ditelocentric chromosome lines of common wheat (Triticum aestivum L.) cv. Chinese Spring. Two-dimensional gel electrophoresis followed by Coomassie Brilliant Blue staining has resolved a total of 105 protein spots in a gel. Quantitative image analysis of protein spots was performed by PDQuest. Variations in protein spots between the euploid and the 39 ditelocentric lines were evaluated by spot number, appearance, disappearance and intensity. A specific spot present in all gels was taken as an internal standard, and the intensity of all other spots was calculated as the ratio of the internal standard. Out of the 1755 major spots detected in 39 ditelocentric lines, 1372 (78%) spots were found variable in different spot parameters: 147 (11%) disappeared, 978 (71%) up-regulated and 247 (18%) down-regulated. Correlation studies in changes in protein intensities among 24 protein spots across the ditelocentric lines were performed. High correlations in changes of protein intensities were observed among the proteins encoded by genes located in the homoeologous arms. Locations of structural genes controlling 26 spots were identified in 10 chromosomal arms. Multiple regulators of the same protein located at various chromosomal arms were also noticed. Identification of structural genes for most of the proteins was found difficult due to multiple regulators encoding the same protein. Two novel subunits (1B(Z,) 1BDz), the structure of which are very similar to the high molecular weight glutenin subunit 12, were identified, and the chromosome arm locations of these subunits were assigned.

  11. Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages.

    Science.gov (United States)

    Bidon, Tobias; Janke, Axel; Fain, Steven R; Eiken, Hans Geir; Hagen, Snorre B; Saarma, Urmas; Hallström, Björn M; Lecomte, Nicolas; Hailer, Frank

    2014-06-01

    Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e

  12. Designing of plant artificial chromosome (PAC) by using the Chlorella smallest chromosome as a model system.

    Science.gov (United States)

    Noutoshi, Y; Arai, R; Fujie, M; Yamada, T

    1997-01-01

    As a model for plant-type chromosomes, we have been characterizing molecular organization of the Chlorella vulgaris C-169 chromosome I. To identify chromosome structural elements including the centromeric region and replication origins, we constructed a chromosome I specific cosmid library and aligned each cosmid clones to generate contigs. So far, more than 80% of the entire chromosome I has been covered. A complete clonal physical reconstitution of chromosome I provides information on the structure and genomic organization of plant genome. We propose our strategy to construct an artificial chromosome by assembling the functional chromosome structural elements identified on Chrorella chromosome I.

  13. Frequency and distribution analysis of chromosomal translocations induced by x-ray in human lymphocytes

    International Nuclear Information System (INIS)

    Lopez Hidalgo, Juana Ines

    2000-01-01

    . Thus, the frequency of radioinduced translocation in G0, would depend on the chromosomal length. When irradiation takes place with ddThd, the frequency of chromosome involvement in translocations does not appear to happen at random. Considering that the outcome obtained in this situation may well stand for induced-damage assessment, the differences found between the values measured and those expected for this kind of rearrangement appear to indicate that different chromosomes bear various degrees of radio-sensitivity. This could be linked to a larger or smaller number of transcriptionally active sequences. Thus, the frequency of the radioinduced translocations in G 0 , would be related to the specific radiosensitivity of each chromosome, probably associated to its structural and functional characteristics. The deviations between the frequency of translocations observed minus that expected (O-E) in irradiated lymphocytes with or without inhibitor (ddThd) were different in both situations. These deviations were of different magnitude in various chromosomes. Assuming that the ddThd-revealed induced DNA lesions are repaired in all chromosomes with the same efficiency, the magnitude of the variations observed in irradiated lymphocytes with inhibitor should be similar to that detected without it (basal). Therefore, the differences noticed in both situations suggest that translocation distribution in the basal case would be affected by the various levels of effectiveness of the base damage repair mechanisms for the different chromosomes. The level of repair reckoned for each one of the 10 individuals analyzed ranged from 17.6 % to 60 %. This suggests that another important factor affecting the frequency of chromosome involvement in translocations would be each individual's repair mechanism efficiency. Therefore, these results put together support the outlined hypothesis that, in human lymphocytes the distribution of radio-induced translocations in G 0 is influenced by

  14. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    Science.gov (United States)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  15. A multi-perspective view of genetic variation in Cameroon.

    Science.gov (United States)

    Coia, V; Brisighelli, F; Donati, F; Pascali, V; Boschi, I; Luiselli, D; Battaggia, C; Batini, C; Taglioli, L; Cruciani, F; Paoli, G; Capelli, C; Spedini, G; Destro-Bisol, G

    2009-11-01

    In this study, we report the genetic variation of autosomal and Y-chromosomal microsatellites in a large Cameroon population dataset (a total of 11 populations) and jointly analyze novel and previous genetic data (mitochondrial DNA and protein coding loci) taking geographic and cultural factors into consideration. The complex pattern of genetic variation of Cameroon can in part be described by contrasting two geographic areas (corresponding to the northern and southern part of the country), which differ substantially in environmental, biological, and cultural aspects. Northern Cameroon populations show a greater within- and among-group diversity, a finding that reflects the complex migratory patterns and the linguistic heterogeneity of this area. A striking reduction of Y-chromosomal genetic diversity was observed in some populations of the northern part of the country (Podokwo and Uldeme), a result that seems to be related to their demographic history rather than to sampling issues. By exploring patterns of genetic, geographic, and linguistic variation, we detect a preferential correlation between genetics and geography for mtDNA. This finding could reflect a female matrimonial mobility that is less constrained by linguistic factors than in males. Finally, we apply the island model to mitochondrial and Y-chromosomal data and obtain a female-to-male migration Nnu ratio that was more than double in the northern part of the country. The combined effect of the propensity to inter-populational admixture of females, favored by cultural contacts, and of genetic drift acting on Y-chromosomal diversity could account for the peculiar genetic pattern observed in northern Cameroon.

  16. Sex-chromosome anaphase movements in crane-fly spermatocytes are coordinated: ultraviolet microbeam irradiation of one kinetochore of one sex chromosome blocks the movements of both sex chromosomes

    International Nuclear Information System (INIS)

    Swedak, J.A.M.; Forer, A.

    1987-01-01

    Sex chromosomes in crane-fly spermatocytes move polewards at anaphase after the autosomes have reached the poles. We irradiated one kinetochore of one sex chromosome using an ultraviolet microbeam. When both sex chromosomes were normally oriented, irradiation of a single kinetochore permanently blocked movement of both sex chromosomes. Irradiation of non-kinetochore chromosomal regions or of spindle fibres did not block movement, or blocked movement only temporarily. We argue that ultraviolet irradiation of one kinetochore blocks movement of both sex chromosomes because of effects on a 'signal' system. Irradiation of one kinetochore of a maloriented sex chromosome did not block motion of either sex chromosome. However, irradiation of one kinetochore of a normally oriented sex chromosome permanently blocked motion of both that sex chromosome and the maloriented sex chromosome. Thus for the signal system to allow the sex chromosomes to move to the pole each sex chromosome must have one spindle fibre to each pole. (author)

  17. Modeling Chromosomes

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Learning about chromosomes is standard fare in biology classrooms today. However, students may find it difficult to understand the relationships among the "genome", "chromosomes", "genes", a "gene locus", and "alleles". In the simple activity described in this article, which follows the 5E approach…

  18. Chromosomal Conditions

    Science.gov (United States)

    ... and more. Stony Point, NY 10980 Close X Home > Complications & Loss > Birth defects & other health conditions > Chromosomal conditions Chromosomal conditions ... Disorders See also: Genetic counseling , Your family health history Last reviewed: February, 2013 ... labor & premature birth The newborn intensive care unit (NICU) Birth defects & ...

  19. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... chromosomes that results in formation of derivative chromosomes with a mixed DNA sequence. The method currently used for their detection is Fluorescent In Situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the derivative chromosomes. We present here a double...... hybridization approach developed for label-free detection of the chromosome translocations. For specific translocation detection it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The electrochemical...

  20. Chromosome-wise Protein Interaction Patterns and Their Impact on Functional Implications of Large-Scale Genomic Aberrations

    DEFF Research Database (Denmark)

    Kirk, Isa Kristina; Weinhold, Nils; Belling, Kirstine González-Izarzugaza

    2017-01-01

    Gene copy-number changes influence phenotypes through gene-dosage alteration and subsequent changes of protein complex stoichiometry. Human trisomies where gene copy numbers are increased uniformly over entire chromosomes provide generic cases for studying these relationships. In most trisomies......, gene and protein level alterations have fatal consequences. We used genome-wide protein-protein interaction data to identify chromosome-specific patterns of protein interactions. We found that some chromosomes encode proteins that interact infrequently with each other, chromosome 21 in particular. We...... combined the protein interaction data with transcriptome data from human brain tissue to investigate how this pattern of global interactions may affect cellular function. We identified highly connected proteins that also had coordinated gene expression. These proteins were associated with important...

  1. Allelic recombination between distinct genomic locations generates copy number diversity in human β-defensins

    Science.gov (United States)

    Bakar, Suhaili Abu; Hollox, Edward J.; Armour, John A. L.

    2009-01-01

    β-Defensins are small secreted antimicrobial and signaling peptides involved in the innate immune response of vertebrates. In humans, a cluster of at least 7 of these genes shows extensive copy number variation, with a diploid copy number commonly ranging between 2 and 7. Using a genetic mapping approach, we show that this cluster is at not 1 but 2 distinct genomic loci ≈5 Mb apart on chromosome band 8p23.1, contradicting the most recent genome assembly. We also demonstrate that the predominant mechanism of change in β-defensin copy number is simple allelic recombination occurring in the interval between the 2 distinct genomic loci for these genes. In 416 meiotic transmissions, we observe 3 events creating a haplotype copy number not found in the parent, equivalent to a germ-line rate of copy number change of ≈0.7% per gamete. This places it among the fastest-changing copy number variants currently known. PMID:19131514

  2. Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. METHODOLOGY/PRINCIPAL FINDINGS: Octoploid triticale was derived from common wheat T. aestivum L. 'Mianyang11'×rye S. cereale L. 'Kustro' and some progeny were obtained by the controlled backcrossing of triticale with 'Mianyang11' followed by self-fertilization. Genomic in situ hybridization (GISH using rye genomic DNA and fluorescence in situ hybridization (FISH using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in 'Mianyang11'. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. CONCLUSIONS/SIGNIFICANCE: These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat.

  3. Positioning of NORs and NOR-bearing chromosomes in relation to nucleoli.

    Science.gov (United States)

    Kalmárová, Markéta; Smirnov, Evgeny; Masata, Martin; Koberna, Karel; Ligasová, Anna; Popov, Alexey; Raska, Ivan

    2007-10-01

    It is widely accepted that chromosomes occupy more or less fixed positions in mammalian interphase nucleus. However, relation between large-scale order of chromosome positioning and gene activity remains unclear. We used the model of the human ribosomal genes to address specific aspects of this problem. Ribosomal genes are organized at particular chromosomal sites in clusters termed nucleolus organizer regions (NORs). Only some NORs, called competent are generally accepted to be transcriptionally active during interphase. Importantly in this respect, the regularities in distribution of competent, and non-competent NORs among the specific chromosomes were already established in two human-derived cell lines: transformed HeLa and primary LEP cells. In the present study, using FISH and immunocytochemistry, we found that in HeLa and LEP cells the large-scale positioning of the NOR-bearing chromosomes with regard to nucleoli is linked to the transcription activity of rDNA. Namely, the tendency of rDNA-bearing chromosomes to associate with nucleoli correlates with the number of transcriptionally competent NORs in the respective chromosome homologs. Regarding the position of NORs, we found that not only competent but also most of the non-competent NORs are included in the nucleoli. Some intranucleolar NORs (supposedly non-competent) are situated on elongated chromatin protrusions connecting nucleoli with respective chromosome territories spatially distanced from nucleoli.

  4. Chromosome characterization of two varieties of Mangifera indica L.¹

    Directory of Open Access Journals (Sweden)

    Neiva Izabel Pierozzi

    2011-10-01

    Full Text Available Chromosome studies were performed in two varieties of Mangifera indica L. (mango, 'IAC-140 Espadona' and in its progenitor 'Espada Stahl'. Both varieties showed 2n=40 chromosomes though the karyotype formulae were 8m + 10sm + 2sm s for 'Stahl' and 7m + 11sm + 2sm s for 'IAC-140'. The varieties showed moderate karyotype asymmetry which was estimated according to four different indices. Both varieties exhibited three chromosome pairs with silver impregnation after NOR-banding. The number of nucleoli within interphase cells varied from one, the commonest, to eight. The nucleolus persistent phenomenon was observed in more than 22% of metaphase cells of both varieties, seeing that in 'Stahl', up to two nucleoli were evidenced. This variety also showed one nucleolus in several anaphase cells. The studies were suitable for evidencing diversity at chromosomal level between these two varieties.

  5. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Directory of Open Access Journals (Sweden)

    Xingmei Xie

    Full Text Available Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR. Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY, five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377, one X/Y-common STR (X22, and two autosomal STRs (D13S305 and D21S11. Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  6. Chromosomal radiosensitivity of prostate cancer patients

    International Nuclear Information System (INIS)

    McRobbie, M.L.; Riches, A.; Baxby, K.

    2003-01-01

    Full text: Radiosensitivity of peripheral blood lymphocytes from prostate cancer patients is being investigated using the G2 assay and the Cytokinesis Block Micronucleus(CBMN)assay. The G2 assay evaluates chromosomal damage caused by irradiating cells in the G2 phase of the cell cycle. The CBMN assay quantifies the post mitotic micronuclei, which are the expression of damage incurred during G0. An association between hypersensitivity to the chromosome damaging effects of ionising radiation and cancer predispostion has been demonstrated in a number of heritable conditions by using the aforementioned techniques. Recently, increased chromosomal radiosensitivity has been demonstrated in a significant proportion of patients with no obvious family history of malignancy. The aim of this study is to establish whether a group of prostatic carcinoma patients exists and if so whether there are any correlations between their G2 and G0 sensitivities. The study has shown there is no correlation between G2 and G0 sensitivity, confirming the general trend that individuals exhibiting chromosomal radiosensitivity are defective in only one mechanism and G2 and G0 sensitivity are largely independent. Current data indicates that there is an identifiable group of men within the prostate cancer population with increased chromosomal radiosensitivity. Using the G2 assay and the 90th percentile of the controls as a cut off point for sensitivity, no significant difference between the controls and the patient population has been found. However, using the CBMN assay and again the 90th percentile, approximately 11% of the control group are sensitive compared with approximately 40% of the carcinoma cases. The implications of this increased radiosensitivity are as yet unclear, but it is indicative of increased chromosomal fragility and therefore, possibly associated with malignant transformation. Hence, it may prove a useful tool in identifying individuals at increased risk of developing

  7. Association of low-affinity FC gamma receptor 3B (FCGR3B) copy number variation with rheumatoid arthritis in Caucasian subjects

    NARCIS (Netherlands)

    Merriman, T.R.; Fanciulli, M.; Merriman, M.E.; Alizadeh, B.Z.; Koeleman, B.P.C.; Dalbeth, N.; Gow, P.; Harrison, A.A.; Highton, J.; Jones, P.B.; Stamp, L.K.; Steer, S.; Barrera, P.; Coenen, M.J.H.; Franke, B.; Vyse, T.; Aitman, T.; Radstake, T.; McKinney, C.

    2009-01-01

    Aim: There is increasing evidence that gene copy-number variation influences phenotypic variation. The low-affinity Fc receptor 3B (FCGR3B) is a copy-number polymorphic gene involved in the recruitment to sites of inflammation and activation of polymorphonuclear neutrophils (PMN). Given the

  8. Karyotypic variation between wood mouse species: banded chromosomes of Apodemus alpicola and A. microps

    Czech Academy of Sciences Publication Activity Database

    Reutter, B. A.; Nová, P.; Vogel, P.; Zima, Jan

    2001-01-01

    Roč. 46, č. 4 (2001), s. 353-362 ISSN 0001-7051 R&D Projects: GA MŠk VS97102 Institutional research plan: CEZ:AV0Z6093917 Keywords : Apodemus * Sylvaemus * chromosomal banding Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.652, year: 2001 http://acta.zbs.bialowieza.pl/contents/? art =2001-046-4-0353

  9. Cellular irradiation during phase S: a study of induced chromosomic damage and its transmission

    International Nuclear Information System (INIS)

    Antoine, J.L.

    1986-01-01

    The author examines the effects of ionizing radiation on the chromosomes during phase S (synthesis) in which DNA progressively duplicates itself. He analyses disturbances in the cellular cycle of human lymphocytes caused by the type and number of radiologically induced lesions on the chromosomes [fr

  10. Pure chromosome-specific PCR libraries from single sorted chromosomes

    NARCIS (Netherlands)

    VanDevanter, D. R.; Choongkittaworn, N. M.; Dyer, K. A.; Aten, J. A.; Otto, P.; Behler, C.; Bryant, E. M.; Rabinovitch, P. S.

    1994-01-01

    Chromosome-specific DNA libraries can be very useful in molecular and cytogenetic genome mapping studies. We have developed a rapid and simple method for the generation of chromosome-specific DNA sequences that relies on polymerase chain reaction (PCR) amplification of a single flow-sorted

  11. Estimating the number of competing terminals without a state variation detector in wireless LAN

    Science.gov (United States)

    Lim, Jaechan; Kim, Taejin; Hong, Daehyoung

    2013-12-01

    Estimating the number of competing terminals n (who wish to transmit a packet at the same time) in the IEEE 802.11 system is important for system throughput performance because optimal back-off window size needs to be selected based on n. Therefore, as a new approach for estimating n, we propose H infinity filter that does not need a state variation detector as opposed to the cases of previously proposed approaches. The state variation detector's flaw is incurring tracking latency in addition to the side effect of increased computational cost. All previously proposed approaches demand the employment of the state variation detector to detect the variation of n in the IEEE 802.11 system. By employing H infinity filter, we show improved throughput performance of the system compared to that of previously proposed approaches (e.g., the Kalman filter and particle filter) based on the improved performance in tracking n. In this paper, we justify the superiority of the proposed approach in the terms of tracking performance, throughput performance, and computational complexity.

  12. Biological dosimetry of ionizing radiation by chromosomal aberration analysis

    International Nuclear Information System (INIS)

    Gonzalez-Castano, S.; Silva, A.; Navlet, J.

    1990-01-01

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haematological, biochemical, and cytogenetic data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable. In this case, the study ol chromosomal aberrations, normally dicentric chromosomes, in peripheral lymphocytes can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using dicentric chromosomes analysis, X-rays at 300 kVp, 114 rad/min and temperature 37 degree celsius has been produced. Experimental data is fitted to model Y =α + β 1 D + β 2 D 2 , where Y is the number of dicentrics per cell and D the dose. The curve is compared with those produced elsewhere. (Author) 14 refs

  13. Biological dosimetry of ionizing radiation by chromosomal aberration analysis

    International Nuclear Information System (INIS)

    Navlet Armenta, J.M.; Gonzalez, S.; Silva, A.

    1990-01-01

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haemathological, biochemical, and cytogenetic data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable. In this case, the study of chromosomal aberrations, normally dicentric chromosomes, in peripheral lymphocytes can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve using dicentric chromosomes analysis, X-rays at 300 kVp, 114 rad/min and temperature 37 o C has been produced. Experimental data is fitted to model Y = α+β 1 D+β 2 D 2 , where Y is the number of dicentrics per cell and D the dose. The curve is compared with those produced elsewhere. (Author)

  14. Procedure Improvement in Blood Processing for Chromosome Aberration Analyst

    International Nuclear Information System (INIS)

    Noraisyah Mohd Yusof; Juliana Mahamad; Rahimah Abd Rahim; Yahaya Talib; Mohd Rodzi Ali

    2015-01-01

    Detection of chromosome at metaphase of the cell cycle is performed either manually or automatically. Procedure for slide preparation published by the IAEA does not guarantee that the quality of slide is suitable for automatic detection. The detection efficiency reduces if there is cells debris on slides. This paper describes the modifications made to the standard procedure. The period of hypotonic treatment to the cell was lengthened; the slides were pre-treated with RNase and the frequency of rinsing during the chromosomal coloring process was increased. Results show the metaphase images were better and clearer, and numbers of metaphase that can be detected automatically were also increased. In conclusion, modification to the current standard protocol helps to easy the process of chromosome aberration analysis at Nuclear Malaysia. (author)

  15. Structural rearrangements of chromosomes in the domestic chicken: experimental production by X-irradiation of spermatozoa

    International Nuclear Information System (INIS)

    Wooster, W.E.; Fechheimer, N.S.; Jaap, R.G.

    1977-01-01

    In order to produce chicks heterozygous for structural aberrations of chromosomes, 67 hens were inseminated with semen that had been exposed to 1200 R of X-rays. A sample of 204 chicks was hatched and survived. Among these, 18 (8.9%) contained rearrangements comprising 19 translocations and one pericentric inversion. All 10 males and eight females heterozygous for rearrangements were fertile and transmitted these rearrangements to approximately half their hatched progeny. Each of the major chromosomes of the chicken karyotype, except number 6, was involved in one or more of the translocations. The pericentric inversion was of a segment of chromosome number 2. (author)

  16. Intraspecific chromosome variability

    Directory of Open Access Journals (Sweden)

    N Dubinin

    2010-12-01

    Full Text Available (Editorial preface. The publication is presented in order to remind us of one of dramatic pages of the history of genetics. It re-opens for the contemporary reader a comprehensive work marking the priority change from plant cytogenetics to animal cytogenetics led by wide population studies which were conducted on Drosophila polytene chromosomes. The year of the publication (1937 became the point of irretrievable branching between the directions of Old World and New World genetics connected with the problems of chromosome variability and its significance for the evolution of the species. The famous book of T. Dobzhansky (1937 was published by Columbia University in the US under the title “Genetics and the origin of species”, and in the shadow of this American ‘skybuilding’ all other works grew dim. It is remarkable that both Dobzhansky and Dubinin come to similar conclusions about the role of chromosomes in speciation. This is not surprising given that they both might be considered as representatives of the Russian genetic school, by their birth and education. Interestingly, Dobzhansky had never referred to the full paper of Dubinin et al. (1937, though a previous short communication in Nature (1936 was included together with all former papers on the related subject. In full, the volume of the original publication printed in the Biological Journal in Moscow comprised 47 pages, in that number 41 pages of the Russian text accompanied by 16 Figs, a table and reference list, and, above all, 6 pages of the English summary. This final part in English is now reproduced in the authors’ version with the only addition being the reference list in the originally printed form.

  17. Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards.

    Science.gov (United States)

    Lutes, Aracely A; Neaves, William B; Baumann, Diana P; Wiegraebe, Winfried; Baumann, Peter

    2010-03-11

    Although bisexual reproduction has proven to be highly successful, parthenogenetic all-female populations occur frequently in certain taxa, including the whiptail lizards of the genus Aspidoscelis. Allozyme analysis revealed a high degree of fixed heterozygosity in these parthenogenetic species, supporting the view that they originated from hybridization events between related sexual species. It has remained unclear how the meiotic program is altered to produce diploid eggs while maintaining heterozygosity. Here we show that meiosis commences with twice the number of chromosomes in parthenogenetic versus sexual species, a mechanism that provides the basis for generating gametes with unreduced chromosome content without fundamental deviation from the classic meiotic program. Our observation of synaptonemal complexes and chiasmata demonstrate that a typical meiotic program occurs and that heterozygosity is not maintained by bypassing recombination. Instead, fluorescent in situ hybridization probes that distinguish between homologues reveal that bivalents form between sister chromosomes, the genetically identical products of the first of two premeiotic replication cycles. Sister chromosome pairing provides a mechanism for the maintenance of heterozygosity, which is critical for offsetting the reduced fitness associated with the lack of genetic diversity in parthenogenetic species.

  18. Major Chromosomal Breakpoint Intervals in Breast Cancer Co-Localize with Differentially Methylated Regions

    Energy Technology Data Exchange (ETDEWEB)

    Eric Tang, Man-Hung [Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (United States); Department of Oncology, Clinical Sciences, Lund University, Lund (Sweden); Varadan, Vinay; Kamalakaran, Sitharthan [Philips Research North America, Briarcliff Manor, NY (United States); Zhang, Michael Q. [Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (United States); The University of Texas at Dallas, Richardson, TX (United States); Tsinghua University, Beijing (China); Dimitrova, Nevenka, E-mail: nevenka.dimitrova@philips.com [Philips Research North America, Briarcliff Manor, NY (United States); Hicks, James, E-mail: hicks@cshl.edu [Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (United States)

    2012-12-27

    Solid tumors exhibit chromosomal rearrangements resulting in gain or loss of multiple chromosomal loci (copy number variation, or CNV), and translocations that occasionally result in the creation of novel chimeric genes. In the case of breast cancer, although most individual tumors each have unique CNV landscape, the breakpoints, as measured over large datasets, appear to be non-randomly distributed in the genome. Breakpoints show a significant regional concentration at genomic loci spanning perhaps several megabases. The proximal cause of these breakpoint concentrations is a subject of speculation, but is, as yet, largely unknown. To shed light on this issue, we have performed a bio-statistical analysis on our previously published data for a set of 119 breast tumors and normal controls (Wiedswang et al., 2003), where each sample has both high-resolution CNV and methylation data. The method examined the distribution of closeness of breakpoint regions with differentially methylated regions (DMR), coupled with additional genomic parameters, such as repeat elements and designated “fragile sites” in the reference genome. Through this analysis, we have identified a set of 93 regional loci called breakpoint enriched DMR (BEDMRs) characterized by altered DNA methylation in cancer compared to normal cells that are associated with frequent breakpoint concentrations within a distance of 1 Mb. BEDMR loci are further associated with local hypomethylation (66%), concentrations of the Alu SINE repeats within 3 Mb (35% of the cases), and tend to occur near a number of cancer related genes such as the protocadherins, AKT1, DUB3, GAB2. Furthermore, BEDMRs seem to deregulate members of the histone gene family and chromatin remodeling factors, e.g., JMJD1B, which might affect the chromatin structure and disrupt coordinate signaling and repair. From this analysis we propose that preference for chromosomal breakpoints is related to genome structure coupled with alterations in DNA

  19. The X chromosome in space.

    Science.gov (United States)

    Jégu, Teddy; Aeby, Eric; Lee, Jeannie T

    2017-06-01

    Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.

  20. Chromosome Bridges Maintain Kinetochore-Microtubule Attachment throughout Mitosis and Rarely Break during Anaphase.

    Science.gov (United States)

    Pampalona, Judit; Roscioli, Emanuele; Silkworth, William T; Bowden, Brent; Genescà, Anna; Tusell, Laura; Cimini, Daniela

    2016-01-01

    Accurate chromosome segregation during cell division is essential to maintain genome stability, and chromosome segregation errors are causally linked to genetic disorders and cancer. An anaphase chromosome bridge is a particular chromosome segregation error observed in cells that enter mitosis with fused chromosomes/sister chromatids. The widely accepted Breakage/Fusion/Bridge cycle model proposes that anaphase chromosome bridges break during mitosis to generate chromosome ends that will fuse during the following cell cycle, thus forming new bridges that will break, and so on. However, various studies have also shown a link between chromosome bridges and aneuploidy and/or polyploidy. In this study, we investigated the behavior and properties of chromosome bridges during mitosis, with the idea to gain insight into the potential mechanism underlying chromosome bridge-induced aneuploidy. We find that only a small number of chromosome bridges break during anaphase, whereas the rest persist through mitosis into the subsequent cell cycle. We also find that the microtubule bundles (k-fibers) bound to bridge kinetochores are not prone to breakage/detachment, thus supporting the conclusion that k-fiber detachment is not the cause of chromosome bridge-induced aneuploidy. Instead, our data suggest that while the microtubules bound to the kinetochores of normally segregating chromosomes shorten substantially during anaphase, the k-fibers bound to bridge kinetochores shorten only slightly, and may even lengthen, during anaphase. This causes some of the bridge kinetochores/chromosomes to lag behind in a position that is proximal to the cell/spindle equator and may cause the bridged chromosomes to be segregated into the same daughter nucleus or to form a micronucleus.