WorldWideScience

Sample records for chromosome candidate genes

  1. Identification of candidate genes for dyslexia susceptibility on chromosome 18.

    Directory of Open Access Journals (Sweden)

    Thomas S Scerri

    Full Text Available Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s conferring susceptibility by a two stage strategy of linkage and association analysis.Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R, dymeclin (DYM and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L.Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.

  2. Third chromosome candidate genes for conspecific sperm precedence between D. simulans and D. mauritiana

    Directory of Open Access Journals (Sweden)

    Brouwers Barb

    2010-04-01

    Full Text Available Abstract Background Male - female incompatibilities can be critical in keeping species as separate and discrete units. Premating incompatibilities and postzygotic hybrid sterility/inviability have been widely studied as isolating barriers between species. In recent years, a number of studies have brought attention to postmating prezygotic barriers arising from male - male competition and male - female interactions. Yet little is known about the genetic basis of postmating prezygotic isolation barriers between species. Results Using D. simulans lines with mapped introgressions of D. mauritiana into their third chromosome, we find at least two D. mauritiana introgressions causing male breakdown in competitive paternity success. Eighty one genes within the mapped introgressed regions were identified as broad-sense candidates on the basis of male reproductive tract expression and male-related function. The list of candidates was narrowed down to five genes based on differences in male reproductive tract expression between D. simulans and D. mauritiana. Another ten genes were confirmed as candidates using evidence of adaptive gene coding sequence diversification in the D. simulans and/or D. mauritiana lineage. Our results show a complex genetic basis for conspecific sperm precedence, with evidence of gene interactions between at least two third chromosome loci. Pleiotropy is also evident from correlation between conspecific sperm precedence and female induced fecundity and the identification of candidate genes that might exert an effect through genetic conflict and immunity. Conclusions We identified at least two loci responsible for conspecific sperm precedence. A third of candidate genes within these two loci are located in the 89B cytogenetic position, highlighting a possible major role for this chromosome position during the evolution of species specific adaptations to postmating prezygotic reproductive challenges.

  3. The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components.

    Directory of Open Access Journals (Sweden)

    Peter C Stirling

    2011-04-01

    Full Text Available Chromosome instability (CIN is observed in most solid tumors and is linked to somatic mutations in genome integrity maintenance genes. The spectrum of mutations that cause CIN is only partly known and it is not possible to predict a priori all pathways whose disruption might lead to CIN. To address this issue, we generated a catalogue of CIN genes and pathways by screening ∼ 2,000 reduction-of-function alleles for 90% of essential genes in Saccharomyces cerevisiae. Integrating this with published CIN phenotypes for other yeast genes generated a systematic CIN gene dataset comprised of 692 genes. Enriched gene ontology terms defined cellular CIN pathways that, together with sequence orthologs, created a list of human CIN candidate genes, which we cross-referenced to published somatic mutation databases revealing hundreds of mutated CIN candidate genes. Characterization of some poorly characterized CIN genes revealed short telomeres in mutants of the ASTRA/TTT components TTI1 and ASA1. High-throughput phenotypic profiling links ASA1 to TTT (Tel2-Tti1-Tti2 complex function and to TORC1 signaling via Tor1p stability, consistent with the role of TTT in PI3-kinase related kinase biogenesis. The comprehensive CIN gene list presented here in principle comprises all conserved eukaryotic genome integrity pathways. Deriving human CIN candidate genes from the list allows direct cross-referencing with tumor mutational data and thus candidate mutations potentially driving CIN in tumors. Overall, the CIN gene spectrum reveals new chromosome biology and will help us to understand CIN phenotypes in human disease.

  4. Detection of differentially expressed candidate genes for a fatty liver QTL on mouse chromosome 12

    OpenAIRE

    Kobayashi, Misato; Suzuki, Miyako; Ohno, Tamio; Tsuzuki, Kana; Taguchi, Chie; Tateishi, Soushi; Kawada, Teruo; Kim, Young-Il; Murai, Atsushi; Horio, Fumihiko

    2016-01-01

    Background The SMXA-5 mouse is an animal model of high-fat diet-induced fatty liver. The major QTL for fatty liver, Fl1sa on chromosome 12, was identified in a SM/J × SMXA-5 intercross. The SMXA-5 genome consists of the SM/J and A/J genomes, and the A/J allele of Fl1sa is a fatty liver-susceptibility allele. The existence of the responsible genes for fatty liver within Fl1sa was confirmed in A/J-12SM consomic mice. The aim of this study was to identify candidate genes for Fl1sa, and to invest...

  5. Association study of candidate genes for susceptibility to schizophrenia and bipolar disorder on chromosome 22Q13

    DEFF Research Database (Denmark)

    Severinsen, Jacob; Binderup, Helle; Mors, Ole; Wang, August G; Vang, Maria; Murray, V; Muir, Walter; Mckee, I; Kruse, Torben A; Blackwood, Douglas HR; Ewald, Henrik; Børglum, Anders

    Chromosome 22q is suspected to harbor risk genes for schizophrenia as well as bipolar affective disorder. This is evidenced through genetic mapping studies, investigations of cytogenetic abnormalities, and direct examination of candidate genes. In a recent study of distantly related patients from...... the Faroe Islands we have obtained evidence suggesting two regions on chromosome 22q13 to potentially harbor susceptibility genes for both schizophrenia and bipolar affective disorder. We have selected a number of candidate genes from these two regions for further analysis, including the neuro......-gene WKL1, in which a missense mutation recently has been suggested to cause catatonic schizophrenia in a German family. The selected candidate genes were analyzed by a combination of database search and direct sequencing in a subset of the patients from the Faroe Islands in order to identify SNPs in the...

  6. Isolation of candidate genes and physical mapping in the Familial Dysautonomia region of chromosome 9q31

    Energy Technology Data Exchange (ETDEWEB)

    Slaugenhaupt, S.A.; Liebert, C.B.; Monahan, M. [Harvard Medical School, Boston, MA (United States)] [and others

    1994-09-01

    Familial Dysautonomia is an autosomal recessive disorder characterized by the developmental loss of both sensory and autonomic neurons. We have mapped the DYS gene to human chromosome 9q31-33 by genetic linkage analysis of 26 Ashkenazi Jewish pedigrees. The gene is located in a 3 cM interval between D9S310 and D9S105. We have examined several new SSCP and repeat polymorphisms and have successfully narrowed the minimum candidate region to approximately 300 kb using linkage disequilibrium. A YAC contig that spans 1.5 Mb has been constructed using both Alu-PCR and STS screening methods. In addition, the YACs were used to isolate cosmids by direct hybridization to the Lawrence Livermore National Laboratory chromosome 9 flow-sorted cosmid library. Having cloned the minimal candidate region, we are now constructing a detailed transcription map of the DYS region of chromosome 9. Using exon amplification, we have rapidly identified exon sequences and have used these as probes to isolate three candidate genes. These genes are currently being sequenced and will be assessed for mutations using both SSCP analysis and direct sequencing. A detailed physical map of the DYS region, as well as sequence and homology information for DYS candidate genes, will be presented.

  7. Analysis of IFT74 as a candidate gene for chromosome 9p-linked ALS-FTD

    Directory of Open Access Journals (Sweden)

    Rogaeva Ekaterina

    2006-12-01

    Full Text Available Abstract Background A new locus for amyotrophic lateral sclerosis – frontotemporal dementia (ALS-FTD has recently been ascribed to chromosome 9p. Methods We identified chromosome 9p segregating haplotypes within two families with ALS-FTD (F476 and F2 and undertook mutational screening of candidate genes within this locus. Results Candidate gene sequencing at this locus revealed the presence of a disease segregating stop mutation (Q342X in the intraflagellar transport 74 (IFT74 gene in family 476 (F476, but no mutation was detected within IFT74 in family 2 (F2. While neither family was sufficiently informative to definitively implicate or exclude IFT74 mutations as a cause of chromosome 9-linked ALS-FTD, the nature of the mutation observed within F476 (predicted to truncate the protein by 258 amino acids led us to sequence the open reading frame of this gene in a large number of ALS and FTD cases (n = 420. An additional sequence variant (G58D was found in a case of sporadic semantic dementia. I55L sequence variants were found in three other unrelated affected individuals, but this was also found in a single individual among 800 Human Diversity Gene Panel samples. Conclusion Confirmation of the pathogenicity of IFT74 sequence variants will require screening of other chromosome 9p-linked families.

  8. Origin and evolution of candidate mental retardation genes on the human X chromosome (MRX

    Directory of Open Access Journals (Sweden)

    Deakin Janine E

    2008-02-01

    Full Text Available Abstract Background The human X chromosome has a biased gene content. One group of genes that is over-represented on the human X are those expressed in the brain, explaining the large number of sex-linked mental retardation (MRX syndromes. Results To determine if MRX genes were recruited to the X, or whether their brain-specific functions were acquired after relocation to the mammalian X chromosome, we examined the location and expression of their orthologues in marsupials, which diverged from human approximately 180 million years ago. We isolated and mapped nine tammar wallaby MRX homologues, finding that six were located on the tammar wallaby X (which represents the ancient conserved mammal X and three on chromosome 5, representing the recently added region of the human X chromosome. The location of MRX genes within the same synteny groups in human and wallaby does not support the hypothesis that genes with an important function in the brain were recruited in multiple independent events from autosomes to the mammalian X chromosome. Most of the tammar wallaby MRX homologues were more widely expressed in tammar wallaby than in human. Only one, the tammar wallaby ARX homologue (located on tammar chromosome 5p, has a restricted expression pattern comparable to its pattern in human. The retention of the brain-specific expression of ARX over 180 million years suggests that this gene plays a fundamental role in mammalian brain development and function. Conclusion Our results suggest all the genes in this study may have originally had more general functions that became more specialised and important in brain function during evolution of humans and other placental mammals.

  9. Mutation screening and association analysis of six candidate genes for autism on chromosome 7q

    DEFF Research Database (Denmark)

    Bonora, Elena; Lamb, Janine A; Barnby, Gabrielle;

    2005-01-01

    Genetic studies have provided evidence for an autism susceptibility locus (AUTS1) on chromosome 7q. Screening for mutations in six genes mapping to 7q, CUTL1, SRPK2, SYPL, LAMB1, NRCAM and PTPRZ1 in 48 unrelated individuals with autism led to the identification of several new coding variants in t...

  10. Evaluation of 6 candidate genes on chromosome 11q23 for coeliac disease susceptibility: a case control study

    Directory of Open Access Journals (Sweden)

    Close Eimear

    2010-05-01

    Full Text Available Abstract Background Recent whole genome analysis and follow-up studies have identified many new risk variants for coeliac disease (CD, gluten intolerance. The majority of newly associated regions encode candidate genes with a clear functional role in T-cell regulation. Furthermore, the newly discovered risk loci, together with the well established HLA locus, account for less than 50% of the heritability of CD, suggesting that numerous additional loci remain undiscovered. Linkage studies have identified some well-replicated risk regions, most notably chromosome 5q31 and 11q23. Methods We have evaluated six candidate genes in one of these regions (11q23, namely CD3E, CD3D, CD3G, IL10RA, THY1 and IL18, as risk factors for CD using a 2-phase candidate gene approach directed at chromosome 11q. 377 CD cases and 349 ethnically matched controls were used in the initial screening, followed by an extended sample of 171 additional coeliac cases and 536 additional controls. Results Promotor SNPs (-607, -137 in the IL18 gene, which has shown association with several autoimmune diseases, initially suggested association with CD (P IL18-137/-607 also supported this effect, primarily due to one relatively rare haplotype IL18-607C/-137C (P Conclusion Haplotypes of the IL18 promotor region may contribute to CD risk, consistent with this cytokine's role in maintaining inflammation in active CD.

  11. Exclusion of candidate genes from the chromosome 1q juvenile glaucoma region and mapping of the peripheral cannabis receptor gene (CNR2) to chromosome 1

    Energy Technology Data Exchange (ETDEWEB)

    Sunden, S.L.F.; Nichols, B.E.; Alward, W.L.M. [Univ. of Iowa, Iowa City, IA (United States)] [and others

    1994-09-01

    Juvenile onset primary open angle glaucoma has been mapped by linkage to 1q21-q31. Several candidate genes were evaluated in the same family used to identify the primary linkage. Atrionatriuretic peptide receptor A (NPR1) and laminin C1 (LAMC1) have been previously mapped to this region and could putatively play a role in the pathogenesis of glaucoma. A third gene, the peripheral cannabis receptor (CNR2) was not initially mapped in humans but was a candidate because of the relief that cannabis affords some patients with primary open angle glaucoma. Microsatellites associated with NPR1 and LAMC1 revealed multiple recombinations in affected members of this pedigree. CNR2 was shown to be on chromosome 1 by PCR amplification of a 150 bp fragment of the 3{prime} untranslated region in monochromosomal somatic cell hybrids (NIGMS panel No. 2). These primers also revealed a two allele single strand conformation polymorphism which showed multiple recombinants with juvenile onset primary open angle glaucoma in large pedigrees, segregating this disorder. The marker was then mapped to 1p34-p36 by linkage, with the most likely location between liver alkaline phosphatase (ALPL) and alpha-L-1 fucosidase (FUCA1).

  12. Elucidating the Chromosome 9 Association with AS; CARD9 is a Candidate Gene

    OpenAIRE

    Pointon, Jennifer J.; Harvey, David; Karaderi, Tugce; Appleton, Louise H; Farrar, Claire; Stone, Millicent A; Sturrock, Roger D.; Brown, Matthew A; Wordsworth, B Paul

    2010-01-01

    Ankylosing spondylitis (AS) is polygenic with contributions from the immunologically relevant genes HLA-B*27, ERAP1 and IL23R. A recent genome-wide association study (GWAS) identified associations (p~0.005) with the non-synonymous single nucleotide polymorphisms (nsSNPs), rs4077515 and rs3812571, in CARD9 and SNAPC4 on chromosome 9q that had previously been linked to AS. We replicated these associations in a study of 730 AS patients compared to 2879 historic disease controls, (rs4077515 p = 0...

  13. 3p22.1p21.31 microdeletion identifies CCK as Asperger syndrome candidate gene and shows the way for therapeutic strategies in chromosome imbalances

    OpenAIRE

    Iourov, Ivan Y; Vorsanova, Svetlana G; Voinova, Victoria Y.; Yurov, Yuri B.

    2015-01-01

    Background In contrast to other autism spectrum disorders, chromosome abnormalities are rare in Asperger syndrome (AS) or high-functioning autism. Consequently, AS was occasionally subjected to classical positional cloning. Here, we report on a case of AS associated with a deletion of the short arm of chromosome 3. Further in silico analysis has identified a candidate gene for AS and has suggested a therapeutic strategy for manifestations of the chromosome rearrangement. Results Using array c...

  14. Evaluation of 6 candidate genes on chromosome 11q23 for coeliac disease susceptibility: a case control study.

    LENUS (Irish Health Repository)

    Brophy, Karen

    2010-01-01

    BACKGROUND: Recent whole genome analysis and follow-up studies have identified many new risk variants for coeliac disease (CD, gluten intolerance). The majority of newly associated regions encode candidate genes with a clear functional role in T-cell regulation. Furthermore, the newly discovered risk loci, together with the well established HLA locus, account for less than 50% of the heritability of CD, suggesting that numerous additional loci remain undiscovered. Linkage studies have identified some well-replicated risk regions, most notably chromosome 5q31 and 11q23. METHODS: We have evaluated six candidate genes in one of these regions (11q23), namely CD3E, CD3D, CD3G, IL10RA, THY1 and IL18, as risk factors for CD using a 2-phase candidate gene approach directed at chromosome 11q. 377 CD cases and 349 ethnically matched controls were used in the initial screening, followed by an extended sample of 171 additional coeliac cases and 536 additional controls. RESULTS: Promotor SNPs (-607, -137) in the IL18 gene, which has shown association with several autoimmune diseases, initially suggested association with CD (P < 0.05). Follow-up analyses of an extended sample supported the same, moderate effect (P < 0.05) for one of these. Haplotype analysis of IL18-137\\/-607 also supported this effect, primarily due to one relatively rare haplotype IL18-607C\\/-137C (P < 0.0001), which was independently associated in two case-control comparisons. This same haplotype has been noted in rheumatoid arthritis. CONCLUSION: Haplotypes of the IL18 promotor region may contribute to CD risk, consistent with this cytokine\\'s role in maintaining inflammation in active CD.

  15. Evaluation of 6 candidate genes on chromosome 11q23 for coeliac disease susceptibility: a case control study

    LENUS (Irish Health Repository)

    Brophy, Karen

    2010-05-17

    Abstract Background Recent whole genome analysis and follow-up studies have identified many new risk variants for coeliac disease (CD, gluten intolerance). The majority of newly associated regions encode candidate genes with a clear functional role in T-cell regulation. Furthermore, the newly discovered risk loci, together with the well established HLA locus, account for less than 50% of the heritability of CD, suggesting that numerous additional loci remain undiscovered. Linkage studies have identified some well-replicated risk regions, most notably chromosome 5q31 and 11q23. Methods We have evaluated six candidate genes in one of these regions (11q23), namely CD3E, CD3D, CD3G, IL10RA, THY1 and IL18, as risk factors for CD using a 2-phase candidate gene approach directed at chromosome 11q. 377 CD cases and 349 ethnically matched controls were used in the initial screening, followed by an extended sample of 171 additional coeliac cases and 536 additional controls. Results Promotor SNPs (-607, -137) in the IL18 gene, which has shown association with several autoimmune diseases, initially suggested association with CD (P < 0.05). Follow-up analyses of an extended sample supported the same, moderate effect (P < 0.05) for one of these. Haplotype analysis of IL18-137\\/-607 also supported this effect, primarily due to one relatively rare haplotype IL18-607C\\/-137C (P < 0.0001), which was independently associated in two case-control comparisons. This same haplotype has been noted in rheumatoid arthritis. Conclusion Haplotypes of the IL18 promotor region may contribute to CD risk, consistent with this cytokine\\'s role in maintaining inflammation in active CD.

  16. Analysis of positional candidate genes in the AAA1 susceptibility locus for abdominal aortic aneurysms on chromosome 19

    Directory of Open Access Journals (Sweden)

    Ferrell Robert E

    2011-01-01

    Full Text Available Abstract Background Abdominal aortic aneurysm (AAA is a complex disorder with multiple genetic risk factors. Using affected relative pair linkage analysis, we previously identified an AAA susceptibility locus on chromosome 19q13. This locus has been designated as the AAA1 susceptibility locus in the Online Mendelian Inheritance in Man (OMIM database. Methods Nine candidate genes were selected from the AAA1 locus based on their function, as well as mRNA expression levels in the aorta. A sample of 394 cases and 419 controls was genotyped for 41 SNPs located in or around the selected nine candidate genes using the Illumina GoldenGate platform. Single marker and haplotype analyses were performed. Three genes (CEBPG, PEPD and CD22 were selected for DNA sequencing based on the association study results, and exonic regions were analyzed. Immunohistochemical staining of aortic tissue sections from AAA and control individuals was carried out for the CD22 and PEPD proteins with specific antibodies. Results Several SNPs were nominally associated with AAA (p CEBPG, peptidase D (PEPD, and CD22. Haplotype analysis found a nominally associated 5-SNP haplotype in the CEBPG/PEPD locus, as well as a nominally associated 2-SNP haplotype in the CD22 locus. DNA sequencing of the coding regions revealed no variation in CEBPG. Seven sequence variants were identified in PEPD, including three not present in the NCBI SNP (dbSNP database. Sequencing of all 14 exons of CD22 identified 20 sequence variants, five of which were in the coding region and six were in the 3'-untranslated region. Five variants were not present in dbSNP. Immunohistochemical staining for CD22 revealed protein expression in lymphocytes present in the aneurysmal aortic wall only and no detectable expression in control aorta. PEPD protein was expressed in fibroblasts and myofibroblasts in the media-adventitia border in both aneurysmal and non-aneurysmal tissue samples. Conclusions Association testing

  17. Construction of an Americn mink Bacterial Artificial Chromosome (BAC) library and sequencing candidate genes important for the fur industry

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Hallers, Boudewijn ten; Nefedov, Michael;

    2011-01-01

    consisting of 18,432 clones spotted in duplicate, have been produced for hybridization screening and are publicly available. Overgo probes derived from expressed sequence tags (ESTs), representing 21 candidate genes for traits important for the mink industry, were used to screen the BAC library......BACKGROUND: Bacterial artificial chromosome (BAC) libraries continue to be invaluable tools for the genomic analysis of complex organisms. Complemented by the newly and fast growing deep sequencing technologies, they provide an excellent source of information in genomics projects. RESULTS: Here, we...... report the construction and characterization of the CHORI-231 BAC library constructed from a Danish-farmed, male American mink (Neovison vison). The library contains approximately 165,888 clones with an average insert size of 170 kb, representing approximately 10-fold coverage. High-density filters, each...

  18. Construction of an American mink Bacterial Artificial Chromosome (BAC library and sequencing candidate genes important for the fur industry

    Directory of Open Access Journals (Sweden)

    Christensen Knud

    2011-07-01

    Full Text Available Abstract Background Bacterial artificial chromosome (BAC libraries continue to be invaluable tools for the genomic analysis of complex organisms. Complemented by the newly and fast growing deep sequencing technologies, they provide an excellent source of information in genomics projects. Results Here, we report the construction and characterization of the CHORI-231 BAC library constructed from a Danish-farmed, male American mink (Neovison vison. The library contains approximately 165,888 clones with an average insert size of 170 kb, representing approximately 10-fold coverage. High-density filters, each consisting of 18,432 clones spotted in duplicate, have been produced for hybridization screening and are publicly available. Overgo probes derived from expressed sequence tags (ESTs, representing 21 candidate genes for traits important for the mink industry, were used to screen the BAC library. These included candidate genes for coat coloring, hair growth and length, coarseness, and some receptors potentially involved in viral diseases in mink. The extensive screening yielded positive results for 19 of these genes. Thirty-five clones corresponding to 19 genes were sequenced using 454 Roche, and large contigs (184 kb in average were assembled. Knowing the complete sequences of these candidate genes will enable confirmation of the association with a phenotype and the finding of causative mutations for the targeted phenotypes. Additionally, 1577 BAC clones were end sequenced; 2505 BAC end sequences (80% of BACs were obtained. An excess of 2 Mb has been analyzed, thus giving a snapshot of the mink genome. Conclusions The availability of the CHORI-321 American mink BAC library will aid in identification of genes and genomic regions of interest. We have demonstrated how the library can be used to identify specific genes of interest, develop genetic markers, and for BAC end sequencing and deep sequencing of selected clones. To our knowledge, this is the

  19. Physical mapping of the major early-onset familial Alzheimer`s disease locus on chromosome 14 and analysis of candidate gene sequences

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, R.E.; Romano, D.M.; Crowley, A.C. [Harvard Medical School, Charlestown, MA (United States)] [and others

    1994-09-01

    Genetic studies of kindreds displaying evidence for familial AD (FAD) have led to the localization of gene defects responsible for this disorder on chromosomes 14, 19, and 21. A minor early-onset FAD gene on chromosome 21 has been identified to enode the amyloid precursor protein (APP), and the late-onset FAD susceptibility locus on chromosome 19 has been shown to be in linkage disequilibrium with the E4 allele of the APOE gene. Meanwhile, the locus responsible for the major form of early-onset FAD on chromosome 14q24 has not yet been identified. By recombinational analysis, we have refined the minimal candidate region containing the gene defect to approximately 3 megabases in 14q24. We will describe our laboratory`s progress on attempts to finely localize this locus, as well as test known candidate genes from this region for either inclusion in the minimal candidate region or the presence of pathogenic mutations. Candidate genes that have been tested so far include cFOS, heat shock protein 70 member (HSF2A), transforming growth factor beta (TGFB3), the trifunctional protein C1-THF synthase (MTHFD), bradykinin receptor (BR), and the E2k component of a-ketoglutarate dehydrogenase. HSP2A, E2k, MTHFD, and BR do not map to the current defined minimal candidate region; however, sequence analysis must be performed to confirm exclusion of these genes as true candidates. Meanwhile, no pathogenic mutations have yet been found in cFOS or TGFB3. We have also isolated a large number of novel transcribed sequences from the minimal candidate region in the form of {open_quotes}trapped exons{close_quotes} from cosmids identified by hybridization to select YAC clones; we are currently in the process of searching for pathogenic mutations in these exons in affected individuals from FAD families.

  20. A genome-wide association study on androstenone levels in pigs reveals a cluster of candidate genes on chromosome 6

    Directory of Open Access Journals (Sweden)

    Groenen Martien AM

    2010-05-01

    Full Text Available Abstract Background In many countries, male piglets are castrated shortly after birth because a proportion of un-castrated male pigs produce meat with an unpleasant flavour and odour. Main compounds of boar taint are androstenone and skatole. The aim of this high-density genome-wide association study was to identify single nucleotide polymorphisms (SNPs associated with androstenone levels in a commercial sire line of pigs. The identification of major genetic effects causing boar taint would accelerate the reduction of boar taint through breeding to finally eliminate the need for castration. Results The Illumina Porcine 60K+SNP Beadchip was genotyped on 987 pigs divergent for androstenone concentration from a commercial Duroc-based sire line. The association analysis with 47,897 SNPs revealed that androstenone levels in fat tissue were significantly affected by 37 SNPs on pig chromosomes SSC1 and SSC6. Among them, the 5 most significant SNPs explained together 13.7% of the genetic variance in androstenone. On SSC6, a larger region of 10 Mb was shown to be associated with androstenone covering several candidate genes potentially involved in the synthesis and metabolism of androgens. Besides known candidate genes, such as cytochrome P450 A19 (CYP2A19, sulfotransferases SULT2A1, and SULT2B1, also new members of the cytochrome P450 CYP2 gene subfamilies and of the hydroxysteroid-dehydrogenases (HSD17B14 were found. In addition, the gene encoding the ß-chain of the luteinizing hormone (LHB which induces steroid synthesis in the Leydig cells of the testis at onset of puberty maps to this area on SSC6. Interestingly, the gene encoding the α-chain of LH is also located in one of the highly significant areas on SSC1. Conclusions This study reveals several areas of the genome at high resolution responsible for variation of androstenone levels in intact boars. Major genetic factors on SSC1 and SSC6 showing moderate to large effects on androstenone

  1. Fine mapping of fatness QTL on porcine chromosome X and analyses of three positional candidate genes

    OpenAIRE

    Ma, Junwu; Gilbert, Hélène; Iannuccelli, Nathalie; Duan, Yanyu; Guo, Beili; Huang, Weibing; Ma, Huanban; Riquet, Juliette; Bidanel, Jean Pierre

    2013-01-01

    Background: Porcine chromosome X harbors four QTL strongly affecting backfat thickness (BFT), ham weight (HW), intramuscular fat content (IMF) and loin eye area (LEA). The confidence intervals (CI) of these QTL overlap and span more than 30 cM, or approximately 80 Mb. This study therefore attempts to fine map these QTL by joint analysis of two large-scale F2 populations (Large White × Meishan and White Duroc × Erhualian constructed by INRA and JXAU respectively) and furthermore, to determine ...

  2. Analysis of t(9;17)(q33.2;q25.3) chromosomal breakpoint regions and genetic association reveals novel candidate genes for bipolar disorder

    DEFF Research Database (Denmark)

    Rajkumar, A.P.; Christensen, Jane H.; Mattheisen, Manuel;

    2015-01-01

    OBJECTIVES: Breakpoints of chromosomal abnormalities facilitate identification of novel candidate genes for psychiatric disorders. Genome-wide significant evidence supports the linkage between chromosome 17q25.3 and bipolar disorder (BD). Co-segregation of translocation t(9;17)(q33.2;q25.3) with...... psychiatric disorders has been reported. We aimed to narrow down these chromosomal breakpoint regions and to investigate the associations between single nucleotide polymorphisms within these regions and BD as well as schizophrenia (SZ) in large genome-wide association study samples. METHODS: We cross......-linked Danish psychiatric and cytogenetic case registers to identify an individual with both t(9;17)(q33.2;q25.3) and BD. Fluorescent in situ hybridization was employed to map the chromosomal breakpoint regions of this proband. We accessed the Psychiatric Genomics Consortium BD (n = 16,731) and SZ (n = 21...

  3. Identification of MSRA gene on chromosome 8p as a candidate metastasis suppressor for human hepatitis B virus-positive hepatocellular carcinoma

    International Nuclear Information System (INIS)

    The prognosis of patients with hepatocellular carcinoma (HCC) still remains very dismal, which is mainly due to metastasis. In our previous studies, we found that chromosome 8p deletions might contribute to metastasis of HCC. In this study, we aimed to identify the candidate metastatic suppressor gene on chromosome 8p. Oligo-nucleotide microarrays which included 322 genes on human chromosome 8p were constructed to analyze the difference in gene expression profiles between HCC tissues with and without metastasis. The leading differentially expressed genes were identified and selected for further analysis by real-time PCR and Western blotting. Recombinant expression plasmid vectors for each target gene were constructed and transfected into HCC cells and its in vitro effects on proliferation and invasion of HCC cells were also investigated. Sixteen leading differentially expressed genes were identified from the HCC tissues with metastasis compared with those without metastasis (p < 0.01, q < 16 %). Among of the 10 significantly down-regulated genes in HCC with metastasis, methionine sulfoxide reductase A (MSRA) had the lowest p value and false discovery rate (FDR), and was considered as a potential candidate for metastasis suppressor gene. Real-time PCR and Western blotting confirmed that the mRNA and protein expression levels of MSRA were significantly decreased in HCC with metastasis compared with those without metastasis (p < 0.001), and MSRA mRNA level in HCCLM6 cells (with high metastatic potential) was also much lower than that of other HCC cell lines. Transfection of a recombinant expression plasmid vector and overexpression of MSRA gene could obviously inhibit cell colony formation (4.33 ± 2.92 vs. 9.17 ± 3.38, p = 0.008) and invasion (7.40 ± 1.67 vs. 17.20 ± 2.59, p= 0.0001) of HCCLM6 cell line. MSRA gene on chromosome 8p might possess metastasis suppressor activity in HCC

  4. A follow-up study for left ventricular mass on chromosome 12p11 identifies potential candidate genes

    Directory of Open Access Journals (Sweden)

    Slifer Susan

    2011-07-01

    Full Text Available Abstract Background Left ventricular mass (LVM is an important risk factor for cardiovascular disease. Previously we found evidence for linkage to chromosome 12p11 in Dominican families, with a significant increase in a subset of families with high average waist circumference (WC. In the present study, we use association analysis to further study the genetic effect on LVM. Methods Association analysis with LVM was done in the one LOD critical region of the linkage peak in an independent sample of 897 Caribbean Hispanics. Genotype data were available on 7085 SNPs from 23 to 53 MB on chromosome 12p11. Adjustment was made for vascular risk factors and population substructure using an additive genetic model. Subset analysis by WC was performed to test for a difference in genetic effects between the high and low WC subsets. Results In the overall analysis, the most significant association was found to rs10743465, downstream of the SOX5 gene (p = 1.27E-05. Also, 19 additional SNPs had nominal p TMTC1. Twelve additional SNPs in or near 6 genes had p Conclusions The current study supports previously identified evidence by linkage for a genetic effect on LVM on chromosome 12p11 using association analysis in population-based Caribbean Hispanic cohort. SOX5 may play an important role in the regulation of LVM. An interaction of TMTC1 with abdominal obesity may contribute to phenotypic variation of LVM.

  5. Mapping of Mcs30, a new mammary carcinoma susceptibility quantitative trait locus (QTL30 on rat chromosome 12: identification of fry as a candidate Mcs gene.

    Directory of Open Access Journals (Sweden)

    Xuefeng Ren

    Full Text Available Rat strains differ dramatically in their susceptibility to mammary carcinogenesis. On the assumption that susceptibility genes are conserved across mammalian species and hence inform human carcinogenesis, numerous investigators have used genetic linkage studies in rats to identify genes responsible for differential susceptibility to carcinogenesis. Using a genetic backcross between the resistant Copenhagen (Cop and susceptible Fischer 344 (F344 strains, we mapped a novel mammary carcinoma susceptibility (Mcs30 locus to the centromeric region on chromosome 12 (LOD score of ∼8.6 at the D12Rat59 marker. The Mcs30 locus comprises approximately 12 Mbp on the long arm of rat RNO12 whose synteny is conserved on human chromosome 13q12 to 13q13. After analyzing numerous genes comprising this locus, we identified Fry, the rat ortholog of the furry gene of Drosophila melanogaster, as a candidate Mcs gene. We cloned and determined the complete nucleotide sequence of the 13 kbp Fry mRNA. Sequence analysis indicated that the Fry gene was highly conserved across evolution, with 90% similarity of the predicted amino acid sequence among eutherian mammals. Comparison of the Fry sequence in the Cop and F344 strains identified two non-synonymous single nucleotide polymorphisms (SNPs, one of which creates a putative, de novo phosphorylation site. Further analysis showed that the expression of the Fry gene is reduced in a majority of rat mammary tumors. Our results also suggested that FRY activity was reduced in human breast carcinoma cell lines as a result of reduced levels or mutation. This study is the first to identify the Fry gene as a candidate Mcs gene. Our data suggest that the SNPs within the Fry gene contribute to the genetic susceptibility of the F344 rat strain to mammary carcinogenesis. These results provide the foundation for analyzing the role of the human FRY gene in cancer susceptibility and progression.

  6. Identification of mediator complex 26 (Crsp7) gametologs on platypus X1 and Y5 sex chromosomes: a candidate testis-determining gene in monotremes?

    OpenAIRE

    Tsend-Ayush, E.; Kortschak, R.; Bernard, P.; Lim, S.; Ryan, J.; R. Rosenkranz; Borodina, T.; Dohm, J.; Himmelbauer, H.; Harley, V; Grützner, F.

    2012-01-01

    The basal lineage of monotremes features an extraordinarily complex sex chromosome system which has provided novel insights into the evolution of mammalian sex chromosomes. Recently, sequence information from autosomes, X chromosomes, and XY-shared pseudoautosomal regions has become available. However, no gene has so far been described on any of the Y chromosome-specific regions. We analyzed sequences derived from Y-specific BAC clones to identify genes with potentially male-specific function...

  7. Confirmation of linkage of Hypokalemic periodic paralysis to chromosome 1q31-32: Further evidence supporting CACNL1A3 as a candidate gene

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, K.; Knouff, C.; Gaskell, P.C. [Duke Univ. Medical Center, Durham, NC (United States)] [and others

    1994-09-01

    Hypokalemic periodic paralysis (HOKPP; MIM 170400) is one entity of a series of periodic paralyses characterized by episodic bouts of weakness with onset in the second to third decades. The hypokalemic form is defined by decreased serum potassium during a paralytic attack. HOKPP can occur in both familial and sporadic forms; the familal form is autosomal dominant with reduced penetrance in female gene carriers. Recently, Fontaine et al. have localized HOKPP to 1q31-32 in three multigenerational HOKPP families. The region of sub-localization includes the CACNL1A3 gene, making it a potential candidate for the genetic defect in HOKPP. We have ascertained and sampled 2 large multigenerational HOKPP pedigrees (N = 55 individuals with DNA) for linkage analysis. The families were initially screened for linkage with over 150 marker loci located throughout the genome. Analysis of the chromosome 1 markers D1S412, D1S413 and F13B gave significant evidence for linkage. The peak two-point lod score realized was Z = 4.34 at theta = 0.0 (D1S413). A sex-dependent penetrance of 80% was assumed, although varying the penetrance did not significantly alter the results. There was no evidence for heterogeneity. Multipoint analysis of the data defined the region between D1S238 and D1S245 (which contains the CACNL1A3 gene) as the most likely region (> 1000 odds) for the location of the HOKPP gene. There were no obligate recombinants among males or affected females for the CACNL1A3 (Z = 3.19, theta = 0.0), although several potential non-penetrant females were identified. These studies confirm linkage of HOPKK to chromosome 1 in an independent data set, lend further support of CACNL1A3 as a potential candidate gene, and give evidence for homogeneity in this disease.

  8. Physical mapping of the holoprosencephaly critical region in 21q22.3, exclusion of SIM2 as a candidate gene for holoprosencephaly, and mapping of SIM2 to a region of chromosome 21 important for Down syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Muenke, M.; Bone, L.J.; Mitchell, H.F. [Children`s Hospital of Philadelphia, PA (United States)] [and others

    1995-11-01

    We set out to define the holoprosencephaly (HPE) critical region on chromosome 21 and also to determine whether there were human homologues of the Drosophila single-minded (sim) gene that might be involved in HPE. Analysis of somatic cell hybrid clones that contained rearranged chromosomes 21 from HPE patients defined the HPE minimal critical region in 21q22.3 as D21S113 to qter. We used established somatic cell hybrid mapping panels to map SIM2 to chromosome 21 within subbands q22.2-q22.3. Analysis of the HPE patient-derived somatic cell hybrids showed that SIM2 is not deleted in two of three patients and thus is not a likely candidate for HPE1, the HPE gene on chromosome 21. However, SIM2 does map within the Down syndrome critical region and thus is a candidate gene that might contribute to the Down syndrome phenotype. 31 refs., 2 figs., 1 tab.

  9. Physical Mapping of the Holoprosencephaly Critical Region in 21q22.3, Exclusion of SIM2 as a Candidate Gene for Holoprosencephaly, and Mapping of SIM2 to a Region of Chromosome 21 Important for Down Syndrome

    Science.gov (United States)

    Muenke, Maximilian; Bone, Linda J.; Mitchell, Heather F.; Hart, Iris; Walton, Katy; Hall-Johnson, Karen; Ippel, Elly F.; Dietz-Band, Jeanne; Kvaløy, Kirsti; Fan, Chen-Ming; Tessier-Lavigne, Marc; Patterson, David

    1995-01-01

    We set out to define the holoprosencephaly (HPE) critical region on chromosome 21 and also to determine whether there were human homologues of the Drosophila single-minded (sim) gene that might be involved in HPE. Analysis of somatic cell hybrid clones that contained rearranged chromosomes 21 from HPE patients defined the HPE minimal critical region in 21q22.3 as D21S113 to qter. We used established somatic cell hybrid mapping panels to map SIM2 to chromosome 21 within subbands q22.2-q22.3. Analysis of the HPE patient–derived somatic cell hybrids showed that SIM2 is not deleted in two of three patients and thus is not a likely candidate for HPE1, the HPE gene on chromosome 21. However, SIM2 does map within the Down syndrome critical region and thus is a candidate gene that might contribute to the Down syndrome phenotype. ImagesFigure 1 PMID:7485157

  10. Characterization of a kinesin-related gene ATSV, within the tuberous sclerosis locus (TSC1) candidate region on chromosome 9q34

    Energy Technology Data Exchange (ETDEWEB)

    Furlong, R.A.; Zhou, Chun Yan; Ferguson-Smith, M.A.; Affara, N.A. [Univ. of Cambridge (United Kingdom)

    1996-05-01

    In the search for candidate genes for the tuberous sclerosis (TSC1) disease locus on chromosome 9q34, we have isolated an overlapping series of 22 plasmid and phage cDNA clones covering nearly 7 kb and with an open reading frame of 5070 bp encoding a protein of 1690 amino acids. The putative protein product is a member of the kinesin superfamily and is homologous to the mouse KIF1A and the Caenorhabditas elegans unc-104 genes. Both KIF1A and unc-104 function in the anterograde axonal transport of synaptic vesicles. The human homolog is therefore termed H-ATSV (axonal transporter of synaptic vesicles, HGMW-approved nomenclature ATSV). Screening of DNA from 107 tuberous sclerosis patients and 80 unaffected individuals with H-ATSV cDNA probes by pulsed-field gel electrophoresis/Southern blotting following digestion by rare-cutting methylation-sensitive restriction enzymes showed variant banding patterns in three patients with tuberous sclerosis. However, further analysis indicated that these variant fragments represent a rare polymorphism probably associated with methylation of clustered restriction sites. There is no evidence to support H-ATSV as a candidate gene for TSC1. 28 refs., 5 figs.

  11. Cat3vl and Cat3vao cataract mutations on mouse chromosome 10: phenotypic characterization, linkage studies and analysis of candidate genes.

    Science.gov (United States)

    Löster, J; Immervoll, T; Schmitt-John, T; Graw, J

    1997-12-01

    Cat3vl and Cat3vao are two allelic, dominant cataract mutations that arose independently in the F1 generation after gamma-irradiation of male mice. The cataracts are already present at birth. Examination of the eyes with a slit lamp revealed completely vacuolated lenses in Cat3vl mutants and anteriorly located opacity in Cat3vao mutants. The appearance of the opacities does not differ between the individuals or between heterozygotes and homozygotes. Penetrance of the mutations is complete. Viability and fertility of the mutants are normal except in the case of the Cat3vl homozygotes. Cat3vao was assigned to the distal part of mouse chromosome 10, 3.2 +/- 0.9 cM away from the visible marker Steel (SlgbH). Using polymorphic markers the following locus order was found: D10Mit230-(0.2 +/- 0.1 cM)-Cat3vao-(2.5 +/- 0.6 cM)-D10Mit70. No recombinants were found between Cat3vao and the markers D10Mit4l and D10Mit95 among 921 offspring. The results exclude allelism of Cat3vao with CatLop or To2, which also map to chromosome 10. Candidate genes were tested by examination of their expression in the eye of newborn mice and by analysis of cDNA sequences. So far, negative results have been obtained for the genes encoding the proteoglycans lumican and decorin, the nuclear orphan receptor Tr2-11 and the transcription factor Elk3. Based on syntenic homology of the Cat3 region to the human chromosome 12q, the Cat3 mutants are discussed as mouse models for cornea plana congenita in man. The recovery of the Cat3 mutations demonstrates the importance of the corresponding locus for proper eye development. PMID:9439574

  12. A BACTERIAL ARTIFICIAL CHROMOSOME CONTIG SPANNING THE MAJOR DOMESTICATION LOCUS Q IN WHEAT AND IDENTIFICATION OF A CANDIDATE GENE

    Science.gov (United States)

    The Q locus played a major role in the domestication of wheat because it confers the free-threshing character and influences many other agronomically important traits. We constructed a physical contig spanning the Q locus using a Triticum monococcum BAC library. Four chromosome walking steps were ...

  13. A follow-up study for left ventricular mass on chromosome 12p11 identifies potential candidate genes

    OpenAIRE

    Slifer Susan; McClendon Mark S; Wang Liyong; Rundek Tatjana; Beecham Ashley; Della-Morte David; Blanton Susan H; Di Tullio Marco R; Sacco Ralph L

    2011-01-01

    Abstract Background Left ventricular mass (LVM) is an important risk factor for cardiovascular disease. Previously we found evidence for linkage to chromosome 12p11 in Dominican families, with a significant increase in a subset of families with high average waist circumference (WC). In the present study, we use association analysis to further study the genetic effect on LVM. Methods Association analysis with LVM was done in the one LOD critical region of the linkage peak in an independent sam...

  14. An X chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males

    OpenAIRE

    Chung Ren-Hua; Ma Deqiong; Wang Kai; Hedges Dale J; Jaworski James M; Gilbert John R; Cuccaro Michael L; Wright Harry H; Abramson Ruth K; Konidari Ioanna; Whitehead Patrice L; Schellenberg Gerard D; Hakonarson Hakon; Haines Jonathan L; Pericak-Vance Margaret A

    2011-01-01

    Abstract Background Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic component. The skewed prevalence toward males and evidence suggestive of linkage to the X chromosome in some studies suggest the presence of X-linked susceptibility genes in people with ASD. Methods We analyzed genome-wide association study (GWAS) data on the X chromosome in three independent autism GWAS data sets: two family data sets and one case-control data set. We performed m...

  15. Genomic dissection and prioritizing of candidate genes of QTL for regulating spontaneous arthritis on chromosome 1 in mice deficient for interleukin-1 receptor antagonist

    Indian Academy of Sciences (India)

    Yanhong Cao; Jifei Zhang; Yan Jiao; Jian Yan; Feng Jiao; Xiaoyun Liu; Robert W. Williams; Karen A. Hasty; John M. Stuart; Weikuan Gu

    2012-08-01

    Rheumatoid arthritis is a heterogeneous disease with clinical and biological polymorphisms. IL-1RN is a protein that binds to interleukin-1 (IL-1) receptors and inhibits the binding of IL-1-alpha and IL-1-beta. IL-1RN levels are elevated in the blood of patients with a variety of infectious, immune, and traumatic conditions. Balb/c mice deficient in IL-1ra (mouse gene of IL-1RN) develop spontaneous autoimmune arthritis while DBA/1 mice deficient in IL-1ra do not. Previously, we identified a major QTL that regulates the susceptibility to arthritis in Balb/c mice with IL-1ra deficiency. In this study, we found that the QTL may contain two peaks that are regulated by two sets of candidate genes. By haplotype analysis, the total genomic regions of candidate genes were reduced from about 19 Mbp to approximately 9 Mbp. The total number of candidate genes was reduced from 208 to 21.

  16. Unifying Candidate Gene and GWAS Approaches in Asthma

    OpenAIRE

    Michel, Sven; Liang, Liming; Depner, Martin; Klopp, Norman; Ruether, Andreas; Kumar, Ashish; Schedel, Michaela; Vogelberg, Christian; Mutius, Erika von; Berg, Andrea von; Bufe, Albrecht; Rietschel, Ernst; Heinzmann, Andrea; Laub, Otto; Simma, Burkhard

    2010-01-01

    The first genome wide association study (GWAS) for childhood asthma identified a novel major susceptibility locus on chromosome 17q21 harboring the ORMDL3 gene, but the role of previous asthma candidate genes was not specifically analyzed in this GWAS. We systematically identified 89 SNPs in 14 candidate genes previously associated with asthma in >3 independent study populations. We re-genotyped 39 SNPs in these genes not covered by GWAS performed in 703 asthmatics and 658 reference children....

  17. The genes for nicein/kalinin 125- and 100-kDa subunits, candidates for junctional epidermiolysis bullosa, map to chromosomes 1q32 and 1q25-q31

    Energy Technology Data Exchange (ETDEWEB)

    Vailly, J.; Ortonne, J.P.; Meneguzzi, G.; Szepetowski, P.; Pedeutour, F. (Faculte de Medicine, Nice (France)); Mattei, M.G. (INSERM, Marseille (France)); Burgeson, R. (Harvard Medical School, Charlestown, MA (United States))

    1994-05-01

    Expression of nicein is specifically hampered in the severe form of junctional epidermolysis bullosa (JEB), a recessive genodermatosis characterized by blister formation of integument believed to be due to defects in hemidesmosomes. Nicein genes are therefore the prime candidates for involvement in JEB. To map the gene encoding the 125-kDa subunit of nicein, the authors used the cDNA Kal5.5C coding for the amino-terminal domain of the protein. In situ hybridization was carried out on chromosomes in phytohemagglutinin-stimulated blood lymphocytes of healthy donors. In 100 metaphases examined, 153 silver grains were found associated with chromosomes; 45 (29%) of these were located on chromosome 1, and 33 (73%) of these 45 grains mapped to region 1q32.1-q41 with a maximum in band 1q32. To confirm the regional localization of the genes for nicein subunits of 100 and 125 kDa, fluorescence in situ hybridization was performed on normal lymphocytes from two unrelated normal males and fibroblast cell lines GM00257 (karyotype 46,XX, t(1;2)(1q32;2p23)) and GM004088 (46,XY,t(1;4)(q32;p16)). It was thus confirmed that the genes for nicein 125- and 100-kDa subunits are localized at 1q32 and 1q25-q31, respectively. 9 refs., 1 fig.

  18. An X chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males

    Directory of Open Access Journals (Sweden)

    Chung Ren-Hua

    2011-11-01

    Full Text Available Abstract Background Autism spectrum disorder (ASD is a complex neurodevelopmental disorder with a strong genetic component. The skewed prevalence toward males and evidence suggestive of linkage to the X chromosome in some studies suggest the presence of X-linked susceptibility genes in people with ASD. Methods We analyzed genome-wide association study (GWAS data on the X chromosome in three independent autism GWAS data sets: two family data sets and one case-control data set. We performed meta- and joint analyses on the combined family and case-control data sets. In addition to the meta- and joint analyses, we performed replication analysis by using the two family data sets as a discovery data set and the case-control data set as a validation data set. Results One SNP, rs17321050, in the transducin β-like 1X-linked (TBL1X gene [OMIM:300196] showed chromosome-wide significance in the meta-analysis (P value = 4.86 × 10-6 and joint analysis (P value = 4.53 × 10-6 in males. The SNP was also close to the replication threshold of 0.0025 in the discovery data set (P = 5.89 × 10-3 and passed the replication threshold in the validation data set (P = 2.56 × 10-4. Two other SNPs in the same gene in linkage disequilibrium with rs17321050 also showed significance close to the chromosome-wide threshold in the meta-analysis. Conclusions TBL1X is in the Wnt signaling pathway, which has previously been implicated as having a role in autism. Deletions in the Xp22.2 to Xp22.3 region containing TBL1X and surrounding genes are associated with several genetic syndromes that include intellectual disability and autistic features. Our results, based on meta-analysis, joint analysis and replication analysis, suggest that TBL1X may play a role in ASD risk.

  19. Candidate gene prioritization with Endeavour.

    Science.gov (United States)

    Tranchevent, Léon-Charles; Ardeshirdavani, Amin; ElShal, Sarah; Alcaide, Daniel; Aerts, Jan; Auboeuf, Didier; Moreau, Yves

    2016-07-01

    Genomic studies and high-throughput experiments often produce large lists of candidate genes among which only a small fraction are truly relevant to the disease, phenotype or biological process of interest. Gene prioritization tackles this problem by ranking candidate genes by profiling candidates across multiple genomic data sources and integrating this heterogeneous information into a global ranking. We describe an extended version of our gene prioritization method, Endeavour, now available for six species and integrating 75 data sources. The performance (Area Under the Curve) of Endeavour on cross-validation benchmarks using 'gold standard' gene sets varies from 88% (for human phenotypes) to 95% (for worm gene function). In addition, we have also validated our approach using a time-stamped benchmark derived from the Human Phenotype Ontology, which provides a setting close to prospective validation. With this benchmark, using 3854 novel gene-phenotype associations, we observe a performance of 82%. Altogether, our results indicate that this extended version of Endeavour efficiently prioritizes candidate genes. The Endeavour web server is freely available at https://endeavour.esat.kuleuven.be/. PMID:27131783

  20. Deletions and candidate genes in Williams syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Perez Jurado, L.A.; Peoples, R.; Francke, U. [Stanford Univ. CA (United States)] [and others

    1994-09-01

    Hemizygosity at the elastin locus (ELN) on chromosome 7q11.23 has recently been reported in several familial and sporadic cases of the developmental disorder, Williams syndrome (WS). Because the deletion is greater than the span of the ELN gene, a contiguous gene deletion syndrome has been suggested as the probable molecular basis for this condition. Thus far, neither the size of the deletion(s), nor other genes within it are known. We have analyzed samples from 27 sporadic WS patients by genotyping two multiallelic ELN intragenic polymorphisms, detectable by PCR amplification, and by Southern blotting for ELN gene dosage. Twenty four patients were hemizygous at the ELN locus while 3 showed no deletion or detectable rearrangement. Genotype studies on parental DNA were informative in 12 of the deletions. All 12 were due to de novo events, 8 in the maternal and 4 in the paternal chromosome. In an attempt to identify genes involved in WS we are also using a candidate gene approach. Delayed clearance of an exogenous calcium load with normal or slightly increased calcitonin levels in serum has been documented in WS patients suggesting a defective calcitonin action or calcium sensing function. The calcitonin receptor (CTR) gene is, therefore, a good candidate since CTR has a dual role as a hormonal receptor for calcitonin and an extracellular calcium sensor. We have mapped the CTR gene to chromosome 7q21.1 by PCR-SSCA of somatic cell hybrids and FISH analysis. Using two color FISH with probes for ELN and CTR, both loci are located on 7q at a distance of {approximately}10 Mb, CTR being telomeric. Our CTR probe does not detect any genomic abnormality by FISH or Southern blot in the patients` samples analyzed. We have identified a diallelic polymorphism in the CTR cDNA and are currently testing the hypothesis of an impaired CTR expression as responsible for some of the clinical features of WS by analysing the CTR transcripts by RT-PCR.

  1. Systematic characterisation of disease associated balanced chromosome rearrangements by FISH: cytogenetically and genetically anchored YACs identify microdeletions and candidate regions for mental retardation genes

    DEFF Research Database (Denmark)

    Wirth, J; Nothwang, H G; van der Maarel, S;

    1999-01-01

    average one per 3 cM, spaced over the entire human genome. By fluorescence in situ hybridisation (FISH), we have performed a systematic search for YACs spanning translocation breakpoints. Patients with DBCRs and either syndromic or non-syndromic mental retardation (MR) were ascertained through the...... of disease in seemingly balanced chromosome rearrangements that are associated with a disease phenotype. Our region specific FISH probes, which are available to MCN members, can be a powerful tool in clinical cytogenetics and positional cloning....

  2. CRISPLD2: a novel NSCLP candidate gene.

    Science.gov (United States)

    Chiquet, Brett T; Lidral, Andrew C; Stal, Samuel; Mulliken, John B; Moreno, Lina M; Arcos-Burgos, Mauricio; Arco-Burgos, Mauricio; Valencia-Ramirez, Consuelo; Blanton, Susan H; Hecht, Jacqueline T

    2007-09-15

    Non-syndromic cleft lip with or without cleft palate (NSCLP) results from the complex interaction between genes and environmental factors. Candidate gene analysis and genome scans have been employed to identify the genes contributing to NSCLP. In this study, we evaluated the 16q24.1 chromosomal region, which has been identified by multiple genome scans as an NSCLP region of interest. Two candidate genes were found in the region: interferon regulatory factor 8 (IRF8) and cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2). Initially, Caucasian and Hispanic NSCLP multiplex families and simplex parent-child trios were genotyped for single nucleotide polymorphisms (SNPs) in both IRF8 and CRISPLD2. CRISPLD2 was subsequently genotyped in a data set comprised of NSCLP families from Colombia, South America. Linkage disequilibrium analysis identified a significant association between CRISPLD2 and NSCLP in both our Caucasian and Hispanic NSCLP cohorts. SNP rs1546124 and haplotypes between rs1546124 and either rs4783099 or rs16974880 were significant in the Caucasian multiplex population (P=0.01, P=0.002 and P=0.001, respectively). An altered transmission of CRISPLD2 SNPs rs8061351 (P=0.02) and rs2326398 (P=0.06) was detected in the Hispanic population. No association was found between CRISPLD2 and our Colombian population or IRF8 and NSCLP. In situ hybridization showed that CRISPLD2 is expressed in the mandible, palate and nasopharynx regions during craniofacial development at E13.5-E17.5, respectively. Altogether, these data suggest that genetic variation in CRISPLD2 has a role in the etiology of NSCLP. PMID:17616516

  3. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  4. Novel Gene Acquisition on Carnivore Y Chromosomes

    OpenAIRE

    Murphy, William J.; A J Pearks Wilkerson; Terje Raudsepp; Richa Agarwala; Schäffer, Alejandro A.; Roscoe Stanyon; Chowdhary, Bhanu P

    2006-01-01

    Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we...

  5. Unifying candidate gene and GWAS Approaches in Asthma.

    Directory of Open Access Journals (Sweden)

    Sven Michel

    Full Text Available The first genome wide association study (GWAS for childhood asthma identified a novel major susceptibility locus on chromosome 17q21 harboring the ORMDL3 gene, but the role of previous asthma candidate genes was not specifically analyzed in this GWAS. We systematically identified 89 SNPs in 14 candidate genes previously associated with asthma in >3 independent study populations. We re-genotyped 39 SNPs in these genes not covered by GWAS performed in 703 asthmatics and 658 reference children. Genotyping data were compared to imputation data derived from Illumina HumanHap300 chip genotyping. Results were combined to analyze 566 SNPs covering all 14 candidate gene loci. Genotyped polymorphisms in ADAM33, GSTP1 and VDR showed effects with p-values <0.0035 (corrected for multiple testing. Combining genotyping and imputation, polymorphisms in DPP10, EDN1, IL12B, IL13, IL4, IL4R and TNF showed associations at a significance level between p = 0.05 and p = 0.0035. These data indicate that (a GWAS coverage is insufficient for many asthma candidate genes, (b imputation based on these data is reliable but incomplete, and (c SNPs in three previously identified asthma candidate genes replicate in our GWAS population with significance after correction for multiple testing in 14 genes.

  6. Novel gene acquisition on carnivore Y chromosomes.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced. We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority.

  7. The Important Candidate Genes in Goats - A Review

    Directory of Open Access Journals (Sweden)

    China SUPAKORN

    2009-01-01

    Full Text Available A total of 271 candidate genes have been detected in goats. However, comprehensive investigations have been carried out on the polymorphism of some genes, involved in the control of economic traits. Candidate genes have an effect on the physiological pathway, metabolism and expression of phenotypes. For growth traits, growth hormone (GH, growth hormone receptor (GHR, insulin like growth factor I (IGF-I, leptin (LEP, caprine pituitary specific transcription factor-1 (POU1F1, caprine myostatin (MSTN and bone morphogenetic protein (BMP genes are necessary for bone formation, birth weight, weaning weight, body condition and muscle growth. For reproduction, forkhead box L 2 (FOXL2, melatonin receptor 1A (MTNR1A, sex determination region of Y chromosome (SRY and amelogenin (AMEL genes influence sex determination and proliferation. The major candidate genes for milk yield and milk composition traits are the casein gene and their family. Keratin associated protein (KAP and melanocortin 1 receptor (MC1R genes are candidate genes for wool traits. The major histocompatibility complex (MHC gene is considered important for the immune system and disease resistance traits. The functions of these genes on economically important traits are different. Some genes have synergistic or antagonistic effects in nature for expression of phenotypic traits. On the other hand, some genes could control more than one trait. Also, the producers should be concerned with these effects because selection of a single trait by using only a gene could affect other traits. Therefore, the identification of candidate genes and their mutations which cause variations of gene expression and phenotype of economic traits will help breeders to search some genetic markers for these economic traits. It may be used as an aid in the selection of parent stock at an early age in the future.

  8. Cattle Candidate Genes for Milk Production Traits

    OpenAIRE

    Kadlec,Tomáš

    2012-01-01

    The aim of this thesis is to make an overview of important candidate genes affecting milk yield and milk quality parameters, with an emphasis on genes associated with the quantity and quality of milk proteins and milk fat.

  9. Physical Mapping of the Holoprosencephaly Critical Region in 21q22.3, Exclusion of SIM2 as a Candidate Gene for Holoprosencephaly, and Mapping of SIM2 to a Region of Chromosome 21 Important for Down Syndrome

    OpenAIRE

    Muenke, Maximilian; Bone, Linda J.; Mitchell, Heather F.; Hart, Iris; Walton, Katy; Hall-Johnson, Karen; Ippel, Elly F; Dietz-Band, Jeanne; Kvaløy, Kirsti; Fan, Chen-Ming; Tessier-Lavigne, Marc; Patterson, David

    1995-01-01

    We set out to define the holoprosencephaly (HPE) critical region on chromosome 21 and also to determine whether there were human homologues of the Drosophila single-minded (sim) gene that might be involved in HPE. Analysis of somatic cell hybrid clones that contained rearranged chromosomes 21 from HPE patients defined the HPE minimal critical region in 21q22.3 as D21S113 to qter. We used established somatic cell hybrid mapping panels to map SIM2 to chromosome 21 within subbands q22.2-q22.3. A...

  10. Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: Pathological significance in early- and late-onset breast carcinoma

    Directory of Open Access Journals (Sweden)

    Roychoudhury Susanta

    2008-11-01

    Full Text Available Abstract Introduction Younger women with breast carcinoma (BC exhibits more aggressive pathologic features compared to older women; young age could be an independent predictor of adverse prognosis. To find any existing differences in the molecular pathogenesis of BC in both younger and older women, alterations at chromosomal (chr. 9q22.32-22.33 region were studied owing to its association in wide variety of tumors. Present work focuses on comparative analysis of alterations of four candidate genes; PHF2, FANCC, PTCH1 and XPA located within 4.4 Mb region of the afore-said locus in two age groups of BC, as well as the interrelation and prognostic significance of alterations of these genes. Methods Deletion analysis of PHF2, FANCC, PTCH1 and XPA were examined in a subset of 47 early-onset (group-A: ≤ 40 years and 59 late-onset (group-B: > 40 years breast carcinomas using both microsatellite and exonic markers. Methylation Sensitive Restriction analysis (MSRA was done to check for promoter methylation. Quantitative real-time polymerase chain reaction (Q-PCR and immunohistochemisty (IHC was done in some genes to see their relative mRNA and protein expressions respectively. Clinico-pathological correlation of different parameters as well as patient survival was calculated using different statistical softwares like EpiInfo 6.04b, SPSS 10.0 etc. Results Either age group exhibited high frequency of overall alterations in PHF2, FANCC and PTCH1 compared to XPA. Samples with alteration (deletion/methylation in these genes showed reduced level of mRNA expression as seen by Q-PCR. Immunohistochemical analysis of FANCC and PTCH1 also supported this observation. Poor patient survival was noted in both age groups having alterations in FANCC. Similar result was also seen with PTCH1 and XPA alterations in group-A and PHF2 alterations in group-B. This reflected their roles as prognostic tools in the respective groups in which they were altered. Conclusion Overall

  11. Evaluating historical candidate genes for schizophrenia

    DEFF Research Database (Denmark)

    Farrell, M S; Werge, T; Sklar, P;

    2015-01-01

    Prior to the genome-wide association era, candidate gene studies were a major approach in schizophrenia genetics. In this invited review, we consider the current status of 25 historical candidate genes for schizophrenia (for example, COMT, DISC1, DTNBP1 and NRG1). The initial study for 24 of these...... genes explicitly evaluated common variant hypotheses about schizophrenia. Our evaluation included a meta-analysis of the candidate gene literature, incorporation of the results of the largest genomic study yet published for schizophrenia, ratings from informed researchers who have published on these...... genes, and ratings from 24 schizophrenia geneticists. On the basis of current empirical evidence and mostly consensual assessments of informed opinion, it appears that the historical candidate gene literature did not yield clear insights into the genetic basis of schizophrenia. A likely reason why...

  12. Chromosomal organization of adrenergic receptor genes

    International Nuclear Information System (INIS)

    The adrenergic receptors (ARs) (subtypes α1, α2, β1, and β2) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. The authors have previously assigned the genes for β2-and α2-AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, they have now mapped the α1-AR gene to chromosome 5q32→q34, the same position as β2-AR, and the β1-AR gene to chromosome 10q24→q26, the region where α2-AR, is located. In mouse, both α2-and β1-AR genes were assigned to chromosome 19, and the α1-AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the α1-and β2-AR genes in humans are within 300 kilobases (kb) and the distance between the α2- and β1-AR genes is <225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediation the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families off receptor molecules

  13. Candidate genes for behavioural ecology

    NARCIS (Netherlands)

    Fitzpatrick, M.J.; Ben-Sahar, Y.; Smid, H.M.; Vet, L.E.M.; Robinson, G.E.; Sokolowski, M.B.

    2005-01-01

    In spite of millions of years of evolutionary divergence, the conservation of gene function is common across distant lineages. As such, genes that are known to influence behaviour in one organism are likely to influence similar behaviours in other organisms. Recent studies of the evolution of behavi

  14. Alcoholism and Alternative Splicing of Candidate Genes

    OpenAIRE

    Toshikazu Sasabe; Shoichi Ishiura

    2010-01-01

    Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports sugg...

  15. Evaluating historical candidate genes for schizophrenia.

    Science.gov (United States)

    Farrell, M S; Werge, T; Sklar, P; Owen, M J; Ophoff, R A; O'Donovan, M C; Corvin, A; Cichon, S; Sullivan, P F

    2015-05-01

    Prior to the genome-wide association era, candidate gene studies were a major approach in schizophrenia genetics. In this invited review, we consider the current status of 25 historical candidate genes for schizophrenia (for example, COMT, DISC1, DTNBP1 and NRG1). The initial study for 24 of these genes explicitly evaluated common variant hypotheses about schizophrenia. Our evaluation included a meta-analysis of the candidate gene literature, incorporation of the results of the largest genomic study yet published for schizophrenia, ratings from informed researchers who have published on these genes, and ratings from 24 schizophrenia geneticists. On the basis of current empirical evidence and mostly consensual assessments of informed opinion, it appears that the historical candidate gene literature did not yield clear insights into the genetic basis of schizophrenia. A likely reason why historical candidate gene studies did not achieve their primary aims is inadequate statistical power. However, the considerable efforts embodied in these early studies unquestionably set the stage for current successes in genomic approaches to schizophrenia. PMID:25754081

  16. Cattle Candidate Genes for Meat Production Traits

    OpenAIRE

    Bláhová, Alice

    2013-01-01

    The objective of this study was to compile a summary of the most important candidate genes for meat production. The studied genes were: GH, GHR, MSTN, MyoD family, leptin, IGF, TG5, SCD, DGAT and STAT5A. Growth hormone (GH) is involved in physiological processes of growth and metabolism. Growth hormone receptor (GHR) has been proposed as a candidate gene for meat production in cattle. Myostatin is a significant marker. It affects the amount of muscle, reduces marbling and elevate meat tendern...

  17. Are TMEM genes potential candidate genes for panic disorder?

    DEFF Research Database (Denmark)

    Gregersen, Noomi O; Buttenschøn, Henriette Nørmølle; Hedemand, Anne;

    2014-01-01

    We analysed single nucleotide polymorphisms in two transmembrane genes (TMEM98 and TMEM132E) in panic disorder (PD) patients and control individuals from the Faroe Islands, Denmark and Germany. The genes encode single-pass membrane proteins and are located within chromosome 17q11.2-q12, a...

  18. Genetics of human longevity with emphasis on the relevance of HSP70 as candidate genes

    DEFF Research Database (Denmark)

    Singh, Ripudaman; Kølvrå, Steen; Rattan, Suresh I S

    2007-01-01

    mechanisms. One such pathway includes the battery of stress response genes, especially the heat shock protein HSP70 genes. Three such genes, HSPA1A, HSPA1B and HSPA1L, are present within the MHC-III region on the short arm of chromosome 6. We and others have found alleles, genotypes and haplotypes which have...... heat shock. Stress response genes, particularly HSP70, are now the major candidates in the gene-longevity association studies....

  19. Making the Chromosome-Gene-Protein Connection.

    Science.gov (United States)

    Mulvihill, Charlotte

    1996-01-01

    Presents an exercise that demonstrates the chromosome-gene-protein connection using sickle-cell anemia, a genetic disease with a well-characterized molecular basis. Involves connecting changes in DNA to protein outcomes and tying them into the next generation by meiosis and gamete formation with genetic crosses. Motivates students to integrate…

  20. Genes and chromosomes: control of development

    Directory of Open Access Journals (Sweden)

    Oleg Serov

    2004-09-01

    Full Text Available The past decade has witnessed immense progress in research into the molecular basis behind the developmental regulation of genes. Sets of genes functioning under hierarchical control have been identified, evolutionary conserved systems of genes effecting the cell-to-cell transmission of transmembrane signals and assigned a central role in morphogenesis have been intensively studied; the concept of genomic regulatory networks coordinating expression of many genes has been introduced, to mention some of the major breakthroughs. It should be noted that the temporal and tissue-specific parameters of gene expression are correctly regulated in development only in the context of the chromosome and that they are to a great extent dependent on the position of the gene on the chromosome or the interphase nucleus. Moreover epigenetic inheritance of the gene states through successive cell generations has been conducted exclusively at the chromosome level by virtue of cell or chromosome memory. The ontogenetic memory is an inherent property of the chromosome and cis-regulation has a crucial role in its maintenance.Durante a última década houve imenso progresso na pesquisa sobre as bases moleculares da regulação gênica durante o desenvolvimento. Foram identificados grupos de genes funcionando sob controle hierárquico, sistemas de genes conservados ao longo da evolução atuando na transmissão célula a célula de sinais transmembrana e com uma função central na morfogênese foram intensamente estudados e o conceito de redes genômicas regulatórias coordenando a expressão de diversos genes foi introduzido, para citar apenas alguns dos principais avanços. Deve-se notar que os parâmetros tempo e tecido-específicos da expressão gênica são corretamente regulados durante o desenvolvimento apenas no contexto do cromossomo e que são amplamente dependentes da posição do gene no cromossomo ou no núcleo em interfase. Além do mais, a herança epigen

  1. Investigation of two candidate genes for Hailey-Hailey disease

    Energy Technology Data Exchange (ETDEWEB)

    Peluso, A.M.; Ikeda, S.; Bonifas, J.M. [Univ. of California, San Francisco, CA (United States)] [and others

    1994-09-01

    Hailey-Hailey disease (familial benign chronic pemphigus) is an autosomal dominant skin disease characterized by impaired keratinocyte cohesion and consequent blister formation. Recently we have used linkage to map the gene for this disease to a region of chromosome 3q between D3S1589 and D3S1316. The maximum combined two point lod score in four families studied was 14.60 at {theta} = 0 at the D3S1290 microsatellite repeat. Several genes have been mapped to chromosome 3q21-24, including cellular retinol binding protein (RBP1) and rhodopsin (RHO). Using microsatellite repeat for RHO we have found a recombinant with the RHO gene and Hailey-Hailey disease in one patient. Because of the profound effects of retinoids on epidermal differentiation, RBP1 could be considered as a possible candidate gene. We have amplified genomic DNA from patients from 14 individual families with Hailey-Hailey disease and 10 different control samples for each of the 4 exons of RBP1. Thus far, SSCP analysis has failed to detect different banding patterns in patients versus controls. We are now attempting to extend this RBP1 analysis and are collecting new families to use linkage analysis to narrow this still rather large (approximately 14 cM) interval.

  2. Positional cloning of disease genes on chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Doggett, N. [Los Alamos National Lab., NM (United States); Bruening, M. [Leiden Univ. (Netherlands); Callen, D. [Adelaide Women`s and Children`s Hospital, North Adelaide, South Australia (Australia); Gardiner, M. [University Coll., London (United Kingdom); Lerner, T. [Massachusetts General Hospital, Boston, MA (United States)

    1996-04-01

    The project seeks to elucidate the molecular basis of an important genetic disease (Batten`s disease) by molecular cloning of the affected gene by utilizing an overlapping clone map of chromosome 16. Batten disease (also known as juvenile neuronal ceroid lipofuscinosis) is a recessively inherited neurodegenerative disorder of childhood characterized by progressive loss of vision, seizures, and psychomoter disturbances. The Batten disease gene was genetically mapped to the chromosome region 16p 12.1 in close linkage with the genetic markers D16S299 and D16S298. Exon amplification of a cosmid containing D16S298 yielded a candidate gene that was disrupted by a 1 kb genomic deletion in all patients containing the most common haplotype for the disease. Two separate deletions and a point mutation altering a splice site in three unrelated families have confirmed the gene as the Batten disease gene. The disease gene encodes a novel 438 amino acid membrane binding protein of unknown function.

  3. Candidate gene effects on beef quality

    OpenAIRE

    Ekerljung, Marie

    2012-01-01

    The contribution of five candidate genes to the variation in meat tenderness, pH, colour, marbling and water holding capacity (WHC) was analysed in muscle samples from 243 young bulls of Angus, Charolais, Hereford, Limousin, or Simmental breed, raised in Swedish commercial herds. The animals were genotyped for single nucleotide polymorphisms (SNPs) in the genes encoding calpain 1 (CAPN1:c.947G>C), calpastatin, (CAST:c.155C>T), diacylglycerol O-acyltransferase 1 (DGAT1), leptin (UASMS2C>T) a...

  4. Positional and functional mapping of a neuroblastoma differentiation gene on chromosome 11

    Directory of Open Access Journals (Sweden)

    Bader Scott

    2005-07-01

    Full Text Available Abstract Background Loss of chromosome 11q defines a subset of high-stage aggressive neuroblastomas. Deletions are typically large and mapping efforts have thus far not lead to a well defined consensus region, which hampers the identification of positional candidate tumour suppressor genes. In a previous study, functional evidence for a neuroblastoma suppressor gene on chromosome 11 was obtained through microcell mediated chromosome transfer, indicated by differentiation of neuroblastoma cells with loss of distal 11q upon introduction of chromosome 11. Interestingly, some of these microcell hybrid clones were shown to harbour deletions in the transferred chromosome 11. We decided to further exploit this model system as a means to identify candidate tumour suppressor or differentiation genes located on chromosome 11. Results In a first step, we performed high-resolution arrayCGH DNA copy-number analysis in order to evaluate the chromosome 11 status in the hybrids. Several deletions in both parental and transferred chromosomes in the investigated microcell hybrids were observed. Subsequent correlation of these deletion events with the observed morphological changes lead to the delineation of three putative regions on chromosome 11: 11q25, 11p13->11p15.1 and 11p15.3, that may harbour the responsible differentiation gene. Conclusion Using an available model system, we were able to put forward some candidate regions that may be involved in neuroblastoma. Additional studies will be required to clarify the putative role of the genes located in these chromosomal segments in the observed differentiation phenotype specifically or in neuroblastoma pathogenesis in general.

  5. Mapping and expression of candidate genes for development rate in rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Development rate has important implications for many aspects of an individual's biology. In rainbow trout (Oncorhynchus mykiss), a major QTL for embryonic development rate has been detected on chromosome 5, but at present, few candidate genes have been mapped to this region. This paucity of known ge...

  6. A transcription map of the 6p22.3 reading disability locus identifying candidate genes

    Directory of Open Access Journals (Sweden)

    Gruen Jeffrey R

    2003-06-01

    Full Text Available Abstract Background Reading disability (RD is a common syndrome with a large genetic component. Chromosome 6 has been identified in several linkage studies as playing a significant role. A more recent study identified a peak of transmission disequilibrium to marker JA04 (G72384 on chromosome 6p22.3, suggesting that a gene is located near this marker. Results In silico cloning was used to identify possible candidate genes located near the JA04 marker. The 2 million base pairs of sequence surrounding JA04 was downloaded and searched against the dbEST database to identify ESTs. In total, 623 ESTs from 80 different tissues were identified and assembled into 153 putative coding regions from 19 genes and 2 pseudogenes encoded near JA04. The identified genes were tested for their tissue specific expression by RT-PCR. Conclusions In total, five possible candidate genes for RD and other diseases mapping to this region were identified.

  7. Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome.

    Directory of Open Access Journals (Sweden)

    Yong E Zhang

    Full Text Available Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI. These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution.

  8. Chromosomal Redistribution of Male-Biased Genes in Mammalian Evolution with Two Bursts of Gene Gain on the X Chromosome

    Science.gov (United States)

    Zhang, Yong E.; Vibranovski, Maria D.; Landback, Patrick; Marais, Gabriel A. B.; Long, Manyuan

    2010-01-01

    Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution. PMID:20957185

  9. Deficit of mitonuclear genes on the human X chromosome predates sex chromosome formation.

    Science.gov (United States)

    Dean, Rebecca; Zimmer, Fabian; Mank, Judith E

    2015-02-01

    Two taxa studied to date, the therian mammals and Caenorhabditis elegans, display underrepresentations of mitonuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions over the generality of the role of sexual conflict in shaping the distribution of mt-N genes. Here we tested whether mt-N genes moved off of the therian X chromosome following sex chromosome formation, consistent with the role of sexual conflict, or whether the paucity of mt-N genes on the therian X is a chance result of an underrepresentation on the ancestral regions that formed the X chromosome. We used a synteny-based approach to identify the ancestral regions in the platypus and chicken genomes that later formed the therian X chromosome. We then quantified the movement of mt-N genes on and off of the X chromosome and the distribution of mt-N genes on the human X and ancestral X regions. We failed to find an excess of mt-N gene movement off of the X. The bias of mt-N genes on ancestral therian X chromosomes was also not significantly different from the biases on the human X. Together our results suggest that, rather than conflict driving mt-N genes off of the mammalian X, random biases on chromosomes that formed the X chromosome could explain the paucity of mt-N genes in the therian lineage. PMID:25637223

  10. Gene-centric Association Mapping of Chromosome 3p implicates MST1 in IBD pathogenesis

    OpenAIRE

    Goyette, Philippe; Ng, Aylwin; Lefebvre, Céline; Brant, Steven R.; Cho, Judy H; Duerr, Richard H.; Silverberg, Mark S; Kent D. Taylor; Latiano, Anna; Aumais, Guy; Deslandres, Colette; Jobin, Gilles; Annese, Vito; Daly, Mark J.; Xavier, Ramnik J.

    2008-01-01

    Association mapping and candidate gene studies within IBD linkage regions, as well as genome-wide association studies in CD have led to the discovery of multiple risk genes, but these only explain a fraction of the genetic susceptibility observed in IBD. We have thus been pursuing a region on chromosome 3p21-22 showing linkage to CD and UC using a gene-centric association mapping approach. We identified twelve functional candidate genes by searching for literature co-citations with relevant k...

  11. Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer

    DEFF Research Database (Denmark)

    Kabisch, Maria; Lorenzo Bermejo, Justo; Dünnebier, Thomas;

    2015-01-01

    The chromosomal passenger complex (CPC) plays a pivotal role in the regulation of cell division. Therefore, inherited CPC variability could influence tumor development. The present candidate gene approach investigates the relationship between single nucleotide polymorphisms (SNPs) in genes encodi...

  12. Sex chromosome evolution: platypus gene mapping suggests that part of the human X chromosome was originally autosomal.

    OpenAIRE

    Watson, J M; Spencer, J. A.; Riggs, A D; Graves, J.A.

    1991-01-01

    To investigate the evolution of the mammalian sex chromosomes, we have compared the gene content of the X chromosomes in the mammalian groups most distantly related to man (marsupials and monotremes). Previous work established that genes on the long arm of the human X chromosome are conserved on the X chromosomes in all mammals, revealing that this region was part of an ancient mammalian X chromosome. However, we now report that several genes located on the short arm of the human X chromosome...

  13. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  14. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    2013-05-01

    Full Text Available In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae. The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome or both sex chromosomes (X and Y chromosomes. This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

  15. Divergence of gene regulation through chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Messing Joachim

    2010-11-01

    Full Text Available Abstract Background The molecular mechanisms that modify genome structures to give birth and death to alleles are still not well understood. To investigate the causative chromosomal rearrangements, we took advantage of the allelic diversity of the duplicated p1 and p2 genes in maize. Both genes encode a transcription factor involved in maysin synthesis, which confers resistance to corn earworm. However, p1 also controls accumulation of reddish pigments in floral tissues and has therefore acquired a new function after gene duplication. p1 alleles vary in their tissue-specific expression, which is indicated in their allele designation: the first suffix refers to red or white pericarp pigmentation and the second to red or white glume pigmentation. Results Comparing chromosomal regions comprising p1-ww[4Co63], P1-rw1077 and P1-rr4B2 alleles with that of the reference genome, P1-wr[B73], enabled us to reconstruct additive events of transposition, chromosome breaks and repairs, and recombination that resulted in phenotypic variation and chimeric regulatory signals. The p1-ww[4Co63] null allele is probably derived from P1-wr[B73] by unequal crossover between large flanking sequences. A transposon insertion in a P1-wr-like allele and NHEJ (non-homologous end-joining could have resulted in the formation of the P1-rw1077 allele. A second NHEJ event, followed by unequal crossover, probably led to the duplication of an enhancer region, creating the P1-rr4B2 allele. Moreover, a rather dynamic picture emerged in the use of polyadenylation signals by different p1 alleles. Interestingly, p1 alleles can be placed on both sides of a large retrotransposon cluster through recombination, while functional p2 alleles have only been found proximal to the cluster. Conclusions Allelic diversity of the p locus exemplifies how gene duplications promote phenotypic variability through composite regulatory signals. Transposition events increase the level of genomic complexity

  16. Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Bortoluzzi Stefania

    2004-06-01

    Full Text Available Abstract Background Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy. Results A Perl-code web client was developed to automatically obtain genome map positions of large sets of genes. The software, based on automatic search on Human Genome Browser by sequence alignment, only requires availability of a single transcribed sequence for each gene. In this way, we obtained tissue-specific chromosomal maps of genes expressed in rhabdomyosarcoma or skeletal muscle. Subsequently, Perl software was developed to calculate gene density along chromosomes, by using a sliding window. Thirty-three chromosomal regions harbouring genes mostly expressed in rhabdomyosarcoma were identified. Similarly, 48 chromosomal regions were detected including genes possibly related to function of differentiated skeletal muscle, but silenced in rhabdomyosarcoma. Conclusion In this study we developed a method and the associated software for the comparative analysis of genomic expression in tissues and we identified chromosomal segments showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma, appearing as candidate regions for harbouring genes involved in origin of alveolar rhabdomyosarcoma representing possible targets for drug treatment and/or development of tumor markers.

  17. Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma

    Science.gov (United States)

    Bisognin, Andrea; Bortoluzzi, Stefania; Danieli, Gian Antonio

    2004-01-01

    Background Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy. Results A Perl-code web client was developed to automatically obtain genome map positions of large sets of genes. The software, based on automatic search on Human Genome Browser by sequence alignment, only requires availability of a single transcribed sequence for each gene. In this way, we obtained tissue-specific chromosomal maps of genes expressed in rhabdomyosarcoma or skeletal muscle. Subsequently, Perl software was developed to calculate gene density along chromosomes, by using a sliding window. Thirty-three chromosomal regions harbouring genes mostly expressed in rhabdomyosarcoma were identified. Similarly, 48 chromosomal regions were detected including genes possibly related to function of differentiated skeletal muscle, but silenced in rhabdomyosarcoma. Conclusion In this study we developed a method and the associated software for the comparative analysis of genomic expression in tissues and we identified chromosomal segments showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma, appearing as candidate regions for harbouring genes involved in origin of alveolar rhabdomyosarcoma representing possible targets for drug treatment and/or development of tumor markers. PMID:15176974

  18. The human gene for neurotrophic tyrosine kinase receptor type 2 (NTRK2) is located on chromosome 9 but is not the familial dysautonomia gene

    Energy Technology Data Exchange (ETDEWEB)

    Slaugenhaupt, S.A. [Massachusetts General Hospital, Boston, MA (United States)]|[Harvard Medical School, Boston, MA (United States); Liebert, C.B.; Lucente, D.E. [Massachusetts General Hospital, Boston, MA (United States)] [and others

    1995-02-10

    The neurotrophic tyrosine kinase receptor type 2 (NTRK2) gene is a member of the trk family of tyrosine protein kinases, which encode receptors for the nerve growth factor-related proteins known as neurotrophins. The neurotrophins and their receptors have long been considered candidate genes for familial dysautonomia (FD), a hereditary sensory neuropathy resulting from the congenital loss of both sensory and autonomic neurons. The DYS gene has recently been mapped to human chromosome 9q31-q33, and therefore we set out to determine the chromosomal localization of the candidate gene NTRK2. A mouse trkB probe was hybridized to both somatic cell hybrids containing human chromosome 9 and a human chromosome 9 flow-sorted cosmid library. The human homologue of trkB, NTRK2, was assigned to chromosome 9. To localize the NTRK2 gene further, a dinucleotide repeat polymorphism was identified within a cosmid that contains NTRK2 exon sequences. This marker was genotyped in the CEPH reference pedigrees and places the NTRK2 gene near D9S1 on the proximal long arm of human chromosome 9. The NTRK2 gene is located approximately 22 cm proximal to DYS and shows several recombinants in disease families. Therefore, the NTRK2 gene can now be excluded as a candidate gene for familial dysautonomia. 18 refs., 1 fig.

  19. Chromosomal assignment of the genes for proprotein convertases PC4, PC5, and PACE 4 in mouse and human

    Energy Technology Data Exchange (ETDEWEB)

    Mbikay, M.; Seidah, N.G.; Chretien, M. [Univ. of Montreal, Quebec (Canada)] [and others

    1995-03-01

    The genes for three subtilisin/kexin-like proprotein convertases, PC4, PC5, and PACE4, were mapped in the mouse by RFLP analysis of a DNA panel from a (C57BL/6JEi x SPRET/Ei) F{sub 1} x SPRET/Ei backcross. The chromosomal locations of the human homologs were determined by Southern blot analysis of a DNA panel from human-rodent somatic cell hybrids, most of which contained a single human chromosome each. The gene for PC4 (Pcsk4 locus) mapped to mouse chromosome 10, close to the Adn (adipsin, a serine protease) locus and near the Amh (anti-Mullerian hormone) locus; in a human, the gene was localized to chromosome 19. The gene for PC5 (Pcsk5 locus) mapped to mouse chromosome 19 close to the Lpc1 (lipoacortin-1) locus and, in human, was localized to chromosome 9. The gene for PACE4 (Pcsk6 locus) mapped to mouse chromosome 7, at a distance of 13 cM from the Pcsk3 locus, which specifies furin, another member of this family of enzymes previoulsy mapped to this chromosome. This is in concordance with the known close proximity of these two loci in the homologous region on human chromosome 15q25-qter. Pcsk3 and Pcsk6 mapped to a region of mouse chromosome 7 that has been associated cytogenetically with postnatal lethality in maternal disomy, suggesting that these genes might be candidates for imprinting. 43 refs., 3 figs., 2 tabs.

  20. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster.

    Science.gov (United States)

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  1. Spare PRELI gene loci: failsafe chromosome insurance?

    Directory of Open Access Journals (Sweden)

    Wenbin Ma

    Full Text Available BACKGROUND: LEA (late embryogenesis abundant proteins encode conserved N-terminal mitochondrial signal domains and C-terminal (A/TAEKAK motif repeats, long-presumed to confer cell resistance to stress and death cues. This prompted the hypothesis that LEA proteins are central to mitochondria mechanisms that connect bioenergetics with cell responses to stress and death signaling. In support of this hypothesis, recent studies have demonstrated that mammalian LEA protein PRELI can act as a biochemical hub, which upholds mitochondria energy metabolism, while concomitantly promoting B cell resistance to stress and induced death. Hence, it is important to define in vivo the physiological relevance of PRELI expression. METHODS AND FINDINGS: Given the ubiquitous PRELI expression during mouse development, embryo lethality could be anticipated. Thus, conditional gene targeting was engineered by insertion of flanking loxP (flox/Cre recognition sites on PRELI chromosome 13 (Chr 13 locus to abort its expression in a tissue-specific manner. After obtaining mouse lines with homozygous PRELI floxed alleles (PRELI(f/f, the animals were crossed with CD19-driven Cre-recombinase transgenic mice to investigate whether PRELI inactivation could affect B-lymphocyte physiology and survival. Mice with homozygous B cell-specific PRELI deletion (CD19-Cre/Chr13 PRELI(-/- bred normally and did not show any signs of morbidity. Histopathology and flow cytometry analyses revealed that cell lineage identity, morphology, and viability were indistinguishable between wild type CD19-Cre/Chr13 PRELI(+/+ and CD19-Cre/Chr13 PRELI(-/- deficient mice. Furthermore, B cell PRELI gene expression seemed unaffected by Chr13 PRELI gene targeting. However, identification of additional PRELI loci in mouse Chr1 and Chr5 provided an explanation for the paradox between LEA-dependent cytoprotection and the seemingly futile consequences of Chr 13 PRELI gene inactivation. Importantly, PRELI expression

  2. Analysis of losses of heterozygosity of the candidate tumour suppressor gene DMBT1 in melanoma resection specimens

    DEFF Research Database (Denmark)

    Deichmann, M; Mollenhauer, J; Helmke, B;

    2002-01-01

    Deleted in malignant brain tumours 1 (DMBT1), a candidate tumour suppressor gene located on chromosome 10q25.3-q26.1, has recently been identified and found to be deleted in several different types of human tumours. In melanomas, the chromosomal region 10q22-qter is commonly affected by losses, h...... naevi and melanoma cells themselves were negative. All considered, the candidate tumour suppressor gene DMBT1 does not appear to be a major inactivation target in the development of melanomas....

  3. The chromosomal location of mouse interferon alpha genes.

    OpenAIRE

    Lovett, M; Cox, D. R.; Yee, D; Boll, W; Weissmann, C; Epstein, C J; Epstein, L B

    1984-01-01

    The chromosomal location of mouse leukocyte-interferon (IFN-alpha) genes was determined by Southern blot analysis of DNA from a panel of Chinese hamster x mouse somatic cell hybrids using a mouse IFN-alpha cDNA as a hybridization probe. All resolvable mouse genes are located on mouse chromosome 4. In addition, two common restriction site polymorphisms within these genes were identified in several mouse strains.

  4. Isolation of a candidate gene for choroideremia.

    OpenAIRE

    Merry, D E; Jänne, P A; Landers, J E.; Lewis, R A; Nussbaum, R L

    1992-01-01

    Choroideremia is an X chromosome-linked retinal dystrophy of unknown pathogenesis. We have isolated cDNAs from a human retinal library with a genomic probe located at the X chromosomal breakpoint in a female with choroideremia and an X;13 translocation. This cDNA spans the breakpoint in the X;13 translocation female and is deleted in males who have choroideremia as part of a complex phenotype including mental retardation and deafness. However, this cDNA detects no alterations in the DNA of 34...

  5. Evaluating gene × gene and gene × smoking interaction in rheumatoid arthritis using candidate genes in GAW15

    OpenAIRE

    Mei Ling; Li Xiaohui; Yang Kai; Cui Jinrui; Fang Belle; Guo Xiuqing; Rotter Jerome I

    2007-01-01

    Abstract We examined the potential gene × gene interactions and gene × smoking interactions in rheumatoid arthritis (RA) using the candidate gene data sets provided by Genetic Analysis Workshop 15 Problem 2. The multifactor dimensionality reduction (MDR) method was used to test gene × gene interactions among candidate genes. The case-only sample was used to test gene × smoking interactions. The best predictive model was the single-locus model with single-nucleotide polymorphism (SNP) rs247660...

  6. BRCA1-mediated repression of select X chromosome genes

    Directory of Open Access Journals (Sweden)

    Ropers H Hilger

    2004-09-01

    Full Text Available Abstract Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling. Significance was determined using parametric statistics with P

  7. Genomic Characterisation and Polymorphism Analysis of Candidate Genes for Milk Production Traits and Association Studies in Three Cattle Breeds

    OpenAIRE

    Seefried, Franz Reinhold

    2008-01-01

    In the past decades, various mapping experiments resulted in the detection of several markers affecting milk production traits on bovine chromosome 6. The aim of this study was to identify causative polymorphisms of milk traits using a multiple breed approach. Six selected candidate genes on chromosome 6 in cattle were characterised and screened for polymorphisms. Following this, 50 polymorphisms were genotyped in sires of German Brown, Fleckvieh and German Holstein for investigation in assoc...

  8. Exclusion of the PAX2 gene as a candidate gene for Crouzon craniofacial dysostosis

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.A.; Gorry, M.C. [Univ. of Pittsburgh, PA (United States); Warman, M. [Harvard Univ., Boston, MA (United States)] [and others

    1994-09-01

    Crouzon craniofacial dysostosis (CFD, MIM 123500) is an abnormality of craniofacial development characterized by premature craniosynostosis, maxillary hypoplasia, and shallow orbits. We have mapped the CFD gene locus using a candidate gene approach to a 7 centiMorgan region on chromosome 10q in three CFD families. A maximal multipoint LOD score of 12.33 was achieved for a locus 2 cM distal to the microsatellite marker D10S209. A comparison of several physical, cytogenetic, and linkage maps revealed that the cytogenetic bands, 10q25-q26, most likely contain this CFD locus. The PAX2 gene, which has been mapped near another marker which in turn has been mapped to 10q25, was analyzed as a candidate gene. PAX2 was chosen for analysis because mutations in other members of the PAX gene family have been identified with human craniofacial abnormalities (e.g. Waardenburg syndrome). A YAC contig, consisting of 5 overlapping groups and composed of 11 YACs that spans the entire 7 cM region, was assembled for PAX2 analyses. None of these YACs supported PAX2-specific amplification using primer sets for both the second and third PAX2 exons. Control amplifications for YAC vector sequences produced robust amplifications in all cases. In addition, SSCP analyses of amplification products generated from the second and third PAX2 exons and the 3{prime} untranslated region of the PAX2 gene from both affected and unaffected family members in two of the kindreds failed to reveal any polymorphisms. Although it remains theoretically possible, due to artifacts in the YAC contigs, it is unlikely that PAX2 is the CFD gene.

  9. Fine mapping and candidate gene analysis of purple pericarp gene Pb in rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Purple rice is a type of rice with anthocyanins deposited in its grain pericarp. The rice Pb gene controlling purple pericarp character is known to be on chromosome 4, and the purple color is dominant over white color. In this study, we fine mapped the Pb gene using two F2 segregating populations, i.e. Pei'ai 64S (white) × Yunanheixiannuo (purple) and Pei'ai 64S × Chuanheinuo (purple). In the first-pass mapping, the Pb gene was located in the region downstream the SSR marker RM3820. In the fine mapping, the candidate region was saturated with InDel and CAPS markers developed specifically for this study. Eventually, the Pb gene was mapped within the 25-kb region delimited by the upstream marker RID3 and the downstream marker RID4. The delimited region contained two annotated genes, Ra and bhlh16 (TIGR Rice Genome, R.5). The former is a homologue of the Myc transcription factor Lc controlling anthocyanin biosynthesis in maize, and the latter is a homologue of the TT8 gene, which is also an Myc transcription factor gene controlling the pericarp pigmentation in Arabidopsis thaliana. Sequence analysis showed that the exon 7 of the Ra gene of Yunanheixiannuo and Chuanheinuo had a 2-bp (GT) deletion compared with those of the white rice varieties Pei'ai 64S, 9311 and Nipponbare. A CAPS marker, CAPSRa, was developed according to the GT deletion for analysis of the two F2 segregating populations and 106 rice lines. The results showed that all F2 plants with white pericarp, and all non-purple rice lines (63 white and 22 red) contained no GT deletion, but all 20 purple rice lines contained the GT deletion. These results suggested that the Ra gene may be the Pb gene and the purple pericarp characteristic of rice is caused by the GT deletion within exon 7 of the Ra gene.

  10. Epidermal growth factor gene is a newly identified candidate gene for gout.

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67-0.88, Padjusted = 6.42 × 10(-3)). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  11. Abundance of female-biased and paucity of male-biased somatically expressed genes on the mouse X-chromosome

    Directory of Open Access Journals (Sweden)

    Reinius Björn

    2012-11-01

    Full Text Available Abstract Background Empirical evaluations of sexually dimorphic expression of genes on the mammalian X-chromosome are needed to understand the evolutionary forces and the gene-regulatory mechanisms controlling this chromosome. We performed a large-scale sex-bias expression analysis of genes on the X-chromosome in six different somatic tissues from mouse. Results Our results show that the mouse X-chromosome is enriched with female-biased genes and depleted of male-biased genes. This suggests that feminisation as well as de-masculinisation of the X-chromosome has occurred in terms of gene expression in non-reproductive tissues. Several mechanisms may be responsible for the control of female-biased expression on chromosome X, and escape from X-inactivation is a main candidate. We confirmed escape in case of Tmem29 using RNA-FISH analysis. In addition, we identified novel female-biased non-coding transcripts located in the same female-biased cluster as the well-known coding X-inactivation escapee Kdm5c, likely transcribed from the transition-region between active and silenced domains. We also found that previously known escapees only partially explained the overrepresentation of female-biased X-genes, particularly for tissue-specific female-biased genes. Therefore, the gene set we have identified contains tissue-specific escapees and/or genes controlled by other sexually skewed regulatory mechanisms. Analysis of gene age showed that evolutionarily old X-genes (>100 myr, preceding the radiation of placental mammals are more frequently female-biased than younger genes. Conclusion Altogether, our results have implications for understanding both gene regulation and gene evolution of mammalian X-chromosomes, and suggest that the final result in terms of the X-gene composition (masculinisation versus feminisation is a compromise between different evolutionary forces acting on reproductive and somatic tissues.

  12. Examination of NRCAM, LRRN3, KIAA0716, and LAMB1 as autism candidate genes

    Directory of Open Access Journals (Sweden)

    Santangelo Susan L

    2004-05-01

    Full Text Available Abstract Background A substantial body of research supports a genetic involvement in autism. Furthermore, results from various genomic screens implicate a region on chromosome 7q31 as harboring an autism susceptibility variant. We previously narrowed this 34 cM region to a 3 cM critical region (located between D7S496 and D7S2418 using the Collaborative Linkage Study of Autism (CLSA chromosome 7 linked families. This interval encompasses about 4.5 Mb of genomic DNA and encodes over fifty known and predicted genes. Four candidate genes (NRCAM, LRRN3, KIAA0716, and LAMB1 in this region were chosen for examination based on their proximity to the marker most consistently cosegregating with autism in these families (D7S1817, their tissue expression patterns, and likely biological relevance to autism. Methods Thirty-six intronic and exonic single nucleotide polymorphisms (SNPs and one microsatellite marker within and around these four candidate genes were genotyped in 30 chromosome 7q31 linked families. Multiple SNPs were used to provide as complete coverage as possible since linkage disequilibrium can vary dramatically across even very short distances within a gene. Analyses of these data used the Pedigree Disequilibrium Test for single markers and a multilocus likelihood ratio test. Results As expected, linkage disequilibrium occurred within each of these genes but we did not observe significant LD across genes. None of the polymorphisms in NRCAM, LRRN3, or KIAA0716 gave p LAMB1, the allelic association analysis revealed suggestive evidence for a positive association, including one individual SNP (p = 0.02 and three separate two-SNP haplotypes across the gene (p = 0.007, 0.012, and 0.012. Conclusions NRCAM, LRRN3, KIAA0716 are unlikely to be involved in autism. There is some evidence that variation in or near the LAMB1 gene may be involved in autism.

  13. Utilization of Gene Mapping and Candidate Gene Mutation Screening for Diagnosing Clinically Equivocal Conditions:A Norrie Disease Case Study

    Institute of Scientific and Technical Information of China (English)

    Vasiliki Chini; Danai Stambouli; Florina Mihaela Nedelea; George Alexandru Filipescu; Diana Mina; Marios Kambouris; Hatem El-Shanti

    2014-01-01

    Prenatal diagnosis was requested for an undiagnosed eye disease showing X-linked inheritance in a family. No medical records existed for the affected family members..Mapping of the X chromosome and candidate gene mutation screening i-dentified a c.C267A[p.F89L] mutation in NPD previously de-scribed as possibly causing Norrie disease..The detection of the c.C267A[p.F89L] variant in another unrelated family con-firms the pathogenic nature of the mutation for the Norrie dis-ease phenotype. Gene mapping, haplotype analysis, and can-didate gene screening have been previously utilized in research applications but were applied here in a diagnostic setting due to the scarcity of available clinical information..The clinical diagnosis and mutation identification were critical for provid-ing proper genetic counseling and prenatal diagnosis for this family.

  14. A direct molecular link between the autism candidate gene RORa and the schizophrenia candidate MIR137

    Science.gov (United States)

    Devanna, Paolo; Vernes, Sonja C.

    2014-02-01

    Retinoic acid-related orphan receptor alpha gene (RORa) and the microRNA MIR137 have both recently been identified as novel candidate genes for neuropsychiatric disorders. RORa encodes a ligand-dependent orphan nuclear receptor that acts as a transcriptional regulator and miR-137 is a brain enriched small non-coding RNA that interacts with gene transcripts to control protein levels. Given the mounting evidence for RORa in autism spectrum disorders (ASD) and MIR137 in schizophrenia and ASD, we investigated if there was a functional biological relationship between these two genes. Herein, we demonstrate that miR-137 targets the 3'UTR of RORa in a site specific manner. We also provide further support for MIR137 as an autism candidate by showing that a large number of previously implicated autism genes are also putatively targeted by miR-137. This work supports the role of MIR137 as an ASD candidate and demonstrates a direct biological link between these previously unrelated autism candidate genes.

  15. Generating Genome-Scale Candidate Gene Lists for Pharmacogenomics

    DEFF Research Database (Denmark)

    Hansen, Niclas Tue; Brunak, Søren; Altman, R. B.

    2009-01-01

    A critical task in pharmacogenomics is identifying genes that may be important modulators of drug response. High-throughput experimental methods are often plagued by false positives and do not take advantage of existing knowledge. Candidate gene lists can usefully summarize existing knowledge, bu...

  16. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels

    Science.gov (United States)

    Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua

    2016-01-01

    Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65–75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  17. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels.

    Science.gov (United States)

    Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua

    2016-01-01

    Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65-75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops. PMID:27512395

  18. Candidate gene studies in human anxiety disorders

    OpenAIRE

    Donner, Jonas

    2012-01-01

    Anxiety disorders, such as panic disorder (PD), obsessive-compulsive disorder, post-traumatic stress disorder, generalized anxiety disorder, and phobias are common psychiatric disorders, characterized by exaggerated, prolonged and debilitating levels of anxiety. They are complex diseases with onset influenced by both environmental and genetic factors, but so far little progress has been made in identifying solid susceptibility genes. The aim of this study was to shed light on the genetic basi...

  19. Investigation of the molecular relationship between breast cancer and obesity by candidate gene prioritization methods

    Directory of Open Access Journals (Sweden)

    Saba Garshasbi

    2015-10-01

    Full Text Available Background: Cancer and obesity are two major public health concerns. More than 12 million cases of cancer are reported annually. Many reports confirmed obesity as a risk factor for cancer. The molecular relationship between obesity and breast cancer has not been clear yet. The purpose of this study was to investigate priorities of effective genes in the molecular relationship between obesity and breast cancer. Methods: In this study, computer simulation method was used for prioritizing the genes that involved in the molecular links between obesity and breast cancer in laboratory of systems biology and bioinformatics (LBB, Tehran University, Tehran, Iran, from March to July 2014. In this study, ENDEAVOUR software was used for prioritizing the genes and integrating multiple data sources was used for data analysis. Training genes were selected from effective genes in obesity and/or breast cancer. Two groups of candidate genes were selected. The first group was included the existential genes in 5 common region chromosomes (between obesity and breast cancer and the second group was included the results of genes microarray data analysis of research Creighton, et al (In 2012 on patients with breast cancer. The microarray data were analyzed with GER2 software (R online software on GEO website. Finally, both training and candidate genes were entered in ENDEAVOUR software package. Results: The candidate genes were prioritized to four style and five genes in ten of the first priorities were repeated twice. In other word, the outcome of prioritizing of 72 genes (Product of microarray data analysis and genes of 5 common chromosome regions (Between obesity and breast cancer showed, 5 genes (TNFRSF10B, F2, IGFALS, NTRK3 and HSP90B1 were the priorities in the molecular connection between obesity and breast cancer. Conclusion: There are some common genes between breast cancer and obesity. So, molecular relationship is confirmed. In this study the possible effect

  20. Evolution of Y chromosome gene functions

    Czech Academy of Sciences Publication Activity Database

    Žlůvová, Jitka; Marková, Michaela; Janoušek, Bohuslav; Vyskot, Boris

    Marseilles, 2006. s. 19-19. [10th Evolution ary Biology Meeting at Marseilles. 20.09.2006-22.09.2006, Marseilles] R&D Projects: GA ČR(CZ) GP204/05/P505; GA ČR(CZ) GD205/05/H505 Institutional research plan: CEZ:AV0Z50040507 Keywords : Silene latifolia * Y chromosome Subject RIV: BO - Biophysics

  1. Localization of the gene for the ciliary neutrotrophic factor receptor (CNTFR) to human chromosome 9

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, D.H.; Jones, C.; Patterson, D. (Eleanor Roosevelt Institute, Denver, CO (United States) Univ. of Colorado Health Science Center, Denver, CO (United States)); Britt, D.E.; Jackson, C.L. (Brown Univ., Providence, RI (United States))

    1993-09-01

    Ciliary neurotrophic factor (CNTF) has recently been found to be important for the survival of motor neurons and has shown activity in animal models of amyotrophic lateral sclerosis (ALS). CNTF therefore holds promise as a treatment for ALS, and it and its receptor (CNTFR) are candidates for a gene involved in familial ALS. The CNTFR gene was mapped to chromosome 9 by PCR on a panel of human/CHO somatic cell hybrids and localized to 9p13 by PCR on a panel of radiation hybrids. 18 ref., 1 fig., 2 tabs.

  2. CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23

    OpenAIRE

    Eggert Angelika; De Paepe Anne; Brichard Bénédicte; Schramm Alexander; De Preter Katleen; Hoebeeck Jasmien; Michels Evi; Laureys Geneviève; Vandesompele Jo; Speleman Frank

    2008-01-01

    Abstract Background Recurrent loss of part of the long arm of chromosome 11 is a well established hallmark of a subtype of aggressive neuroblastomas. Despite intensive mapping efforts to localize the culprit 11q tumour suppressor gene, this search has been unsuccessful thus far as no sufficiently small critical region could be delineated for selection of candidate genes. Methods To refine the critical region of 11q loss, the chromosome 11 status of 100 primary neuroblastoma tumours and 29 cel...

  3. Oligonucleotide conjugates - Candidates for gene silencing therapeutics.

    Science.gov (United States)

    Gooding, Matt; Malhotra, Meenakshi; Evans, James C; Darcy, Raphael; O'Driscoll, Caitriona M

    2016-10-01

    The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications. PMID:27521696

  4. Identification of Fat4 as a candidate tumor suppressor gene in breast cancers

    OpenAIRE

    Qi, Chao; Zhu, Yiwei Tony; Hu, Liping; Zhu, Yi-Jun

    2009-01-01

    Fat, a candidate tumor suppressor in drosophila, is a component of Hippo signaling pathway involved in controlling organ size. We found that a ~3Mbp deletion in mouse chromosome 3 caused tumorigenesis of a non-tumorigenic mammary epithelial cell line. The expression of Fat4 gene, one member of the Fat family, in the deleted region was inactivated, which resulted from promoter methylation of another Fat4 allele following the deletion of one Fat4 allele. Re-expression of Fat4 in Fat4-deficient ...

  5. Number and size of human X chromosome fragments transferred to mouse cells by chromosome-mediated gene transfer.

    OpenAIRE

    Olsen, A S; McBride, O W; Moore, D. E.

    1981-01-01

    Labeled probes of unique-sequence human X chromosomal deoxyribonucleic acid, prepared by two different procedures, were used to measure the amount of human X chromosomal deoxyribonucleic acid in 12 mouse cell lines expressing human hypoxanthine phosphoribosyltransferase after chromosome-mediated gene transfer. The amount of X chromosomal deoxyribonucleic acid detected by this procedure ranged from undetectable levels in the three stable transformants and some unstable transformants examined t...

  6. Candidate genes of idiopathic pulmonary fibrosis: current evidence and research

    Directory of Open Access Journals (Sweden)

    Zhou W

    2016-02-01

    Full Text Available Wei Zhou,1,2 Yaping Wang1,2 1Department of Medical Genetics, 2Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, People's Republic of China Abstract: Idiopathic pulmonary fibrosis (IPF is a group of common and lethal forms of idiopathic interstitial pulmonary disease. IPF is characterized by a progressive decline in lung function with a median survival of 2–3 years after diagnosis. Although the pathogenesis of the disease remains unknown, genetic predisposition could play a causal role in IPF. A set of genes have been identified as candidate genes of IPF in the past 20 years. However, the recent technological advances that allow for the analysis of millions of polymorphisms in different subjects have deepened the understanding of the genetic complexity of IPF susceptibility. Genome-wide association studies and whole-genome sequencing continue to reveal the genetic loci associated with IPF risk. In this review, we describe candidate genes on the basis of their functions and aim to gain a better understanding of the genetic basis of IPF. The discovered candidate genes may help to clarify pivotal aspects in the diagnosis, prognosis, and therapies of IPF. Keywords: idiopathic pulmonary fibrosis, candidate genes, susceptibility 

  7. Genome wide analysis indicates genes for basement membrane and cartilage matrix proteins as candidates for hip dysplasia in Labrador Retrievers.

    Directory of Open Access Journals (Sweden)

    Ineke C M Lavrijsen

    Full Text Available Hip dysplasia, an abnormal laxity of the hip joint, is seen in humans as well as dogs and is one of the most common skeletal disorders in dogs. Canine hip dysplasia is considered multifactorial and polygenic, and a variety of chromosomal regions have been associated with the disorder. We performed a genome-wide association study in Dutch Labrador Retrievers, comparing data of nearly 18,000 single nucleotide polymorphisms (SNPs in 48 cases and 30 controls using two different statistical methods. An individual SNP analysis based on comparison of allele frequencies with a χ(2 statistic was used, as well as a simultaneous SNP analysis based on Bayesian variable selection. Significant association with canine hip dysplasia was observed on chromosome 8, as well as suggestive association on chromosomes 1, 5, 15, 20, 25 and 32. Next-generation DNA sequencing of the exons of genes of seven regions identified multiple associated alleles on chromosome 1, 5, 8, 20, 25 and 32 (p<0.001. Candidate genes located in the associated regions on chromosomes 1, 8 and 25 included LAMA2, LRR1 and COL6A3, respectively. The associated region on CFA20 contained candidate genes GDF15, COMP and CILP2. In conclusion, our study identified candidate genes that might affect susceptibility to canine hip dysplasia. These genes are involved in hypertrophic differentiation of chondrocytes and extracellular matrix integrity of basement membrane and cartilage. The functions of the genes are in agreement with the notion that disruptions in endochondral bone formation in combination with soft tissue defects are involved in the etiology of hip dysplasia.

  8. Candidate gene analysis of GH1 for effects on growth and carcass composition of cattle.

    Science.gov (United States)

    Taylor, J F; Coutinho, L L; Herring, K L; Gallagher, D S; Brenneman, R A; Burney, N; Sanders, J O; Turner, J W; Smith, S B; Miller, R K; Savell, J W; Davis, S K

    1998-06-01

    We present an approach to evaluate the support for candidate genes as quantitative trait loci (QTLs) within the context of genome-wide map-based cloning strategies. To establish candidacy, a bacterial artificial chromosome (BAC) clone containing a putative candidate gene is physically assigned to an anchored linkage map to localise the gene relative to an identified QTL effect. Microsatellite loci derived from BAC clones containing an established candidate gene are integrated into the linkage map facilitating the evaluation by interval analysis of the statistical support for QTL identity. Permutation analysis is employed to determine experiment-wise statistical support. The approach is illustrated for the growth hormone 1 (GH1) gene and growth and carcass phenotypes in cattle. Polymerase chain reaction (PCR) primers which amplify a 441 bp fragment of GH1 were used to systematically screen a bovine BAC library comprising 60,000 clones and with a 95% probability of containing a single copy sequence. The presence of GH1 in BAC-110R2C3 was confirmed by sequence analysis of the PCR product from this clone and by the physical assignment of BAC110R2C3 to bovine chromosome 19 (BTA19) band 22 by fluorescence in situ hybridisation (FISH). Microsatellite KHGH1 was isolated from BAC110R2C3 and scored in 529 reciprocal backcross and F2 fullsib progeny from 41 resource families derived from Angus (Bos taurus) and Brahman (Bos indicus). The microsatellite KHGH1 was incorporated into a framework genetic map of BTA19 comprising 12 microsatellite loci, the erythrocyte antigen T and a GH1-TaqI restriction fragment length polymorphism (RFLP). Interval analysis localised effects of taurus vs. indicus alleles on subcutaneous fat and the percentage of either extractable fat from the Iongissimus dorsi muscle to the region of BTA19 harbouring GH1. PMID:9720178

  9. CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23

    Directory of Open Access Journals (Sweden)

    Eggert Angelika

    2008-06-01

    Full Text Available Abstract Background Recurrent loss of part of the long arm of chromosome 11 is a well established hallmark of a subtype of aggressive neuroblastomas. Despite intensive mapping efforts to localize the culprit 11q tumour suppressor gene, this search has been unsuccessful thus far as no sufficiently small critical region could be delineated for selection of candidate genes. Methods To refine the critical region of 11q loss, the chromosome 11 status of 100 primary neuroblastoma tumours and 29 cell lines was analyzed using a BAC array containing a chromosome 11 tiling path. For the genes mapping within our refined region of loss, meta-analysis on published neuroblastoma mRNA gene expression datasets was performed for candidate gene selection. The DNA methylation status of the resulting candidate gene was determined using re-expression experiments by treatment of neuroblastoma cells with the demethylating agent 5-aza-2'-deoxycytidine and bisulphite sequencing. Results Two small critical regions of loss within 11q23 at chromosomal band 11q23.1-q23.2 (1.79 Mb and 11q23.2-q23.3 (3.72 Mb were identified. In a first step towards further selection of candidate neuroblastoma tumour suppressor genes, we performed a meta-analysis on published expression profiles of 692 neuroblastoma tumours. Integration of the resulting candidate gene list with expression data of neuroblastoma progenitor cells pinpointed CADM1 as a compelling candidate gene. Meta-analysis indicated that CADM1 expression has prognostic significance and differential expression for the gene was noted in unfavourable neuroblastoma versus normal neuroblasts. Methylation analysis provided no evidence for a two-hit mechanism in 11q deleted cell lines. Conclusion Our study puts CADM1 forward as a strong candidate neuroblastoma suppressor gene. Further functional studies are warranted to elucidate the role of CADM1 in neuroblastoma development and to investigate the possibility of CADM1

  10. CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23

    Science.gov (United States)

    Michels, Evi; Hoebeeck, Jasmien; De Preter, Katleen; Schramm, Alexander; Brichard, Bénédicte; De Paepe, Anne; Eggert, Angelika; Laureys, Geneviève; Vandesompele, Jo; Speleman, Frank

    2008-01-01

    Background Recurrent loss of part of the long arm of chromosome 11 is a well established hallmark of a subtype of aggressive neuroblastomas. Despite intensive mapping efforts to localize the culprit 11q tumour suppressor gene, this search has been unsuccessful thus far as no sufficiently small critical region could be delineated for selection of candidate genes. Methods To refine the critical region of 11q loss, the chromosome 11 status of 100 primary neuroblastoma tumours and 29 cell lines was analyzed using a BAC array containing a chromosome 11 tiling path. For the genes mapping within our refined region of loss, meta-analysis on published neuroblastoma mRNA gene expression datasets was performed for candidate gene selection. The DNA methylation status of the resulting candidate gene was determined using re-expression experiments by treatment of neuroblastoma cells with the demethylating agent 5-aza-2'-deoxycytidine and bisulphite sequencing. Results Two small critical regions of loss within 11q23 at chromosomal band 11q23.1-q23.2 (1.79 Mb) and 11q23.2-q23.3 (3.72 Mb) were identified. In a first step towards further selection of candidate neuroblastoma tumour suppressor genes, we performed a meta-analysis on published expression profiles of 692 neuroblastoma tumours. Integration of the resulting candidate gene list with expression data of neuroblastoma progenitor cells pinpointed CADM1 as a compelling candidate gene. Meta-analysis indicated that CADM1 expression has prognostic significance and differential expression for the gene was noted in unfavourable neuroblastoma versus normal neuroblasts. Methylation analysis provided no evidence for a two-hit mechanism in 11q deleted cell lines. Conclusion Our study puts CADM1 forward as a strong candidate neuroblastoma suppressor gene. Further functional studies are warranted to elucidate the role of CADM1 in neuroblastoma development and to investigate the possibility of CADM1 haploinsufficiency in neuroblastoma. PMID

  11. CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23

    International Nuclear Information System (INIS)

    Recurrent loss of part of the long arm of chromosome 11 is a well established hallmark of a subtype of aggressive neuroblastomas. Despite intensive mapping efforts to localize the culprit 11q tumour suppressor gene, this search has been unsuccessful thus far as no sufficiently small critical region could be delineated for selection of candidate genes. To refine the critical region of 11q loss, the chromosome 11 status of 100 primary neuroblastoma tumours and 29 cell lines was analyzed using a BAC array containing a chromosome 11 tiling path. For the genes mapping within our refined region of loss, meta-analysis on published neuroblastoma mRNA gene expression datasets was performed for candidate gene selection. The DNA methylation status of the resulting candidate gene was determined using re-expression experiments by treatment of neuroblastoma cells with the demethylating agent 5-aza-2'-deoxycytidine and bisulphite sequencing. Two small critical regions of loss within 11q23 at chromosomal band 11q23.1-q23.2 (1.79 Mb) and 11q23.2-q23.3 (3.72 Mb) were identified. In a first step towards further selection of candidate neuroblastoma tumour suppressor genes, we performed a meta-analysis on published expression profiles of 692 neuroblastoma tumours. Integration of the resulting candidate gene list with expression data of neuroblastoma progenitor cells pinpointed CADM1 as a compelling candidate gene. Meta-analysis indicated that CADM1 expression has prognostic significance and differential expression for the gene was noted in unfavourable neuroblastoma versus normal neuroblasts. Methylation analysis provided no evidence for a two-hit mechanism in 11q deleted cell lines. Our study puts CADM1 forward as a strong candidate neuroblastoma suppressor gene. Further functional studies are warranted to elucidate the role of CADM1 in neuroblastoma development and to investigate the possibility of CADM1 haploinsufficiency in neuroblastoma

  12. Activation of an enhancerless gene by chromosomal integration.

    OpenAIRE

    Hamada, H

    1986-01-01

    Expression of enhancerless (E-) and enhancer-containing (E+) genes that are chromosomally integrated was examined. An E- plasmid (pE-cat) containing a chloramphenicol acetyltransferase (cat) gene linked to the simian virus 40 (SV40) early promoter or its E+ counterpart plasmid (pE+-cat) containing the SV40 enhancer was cotransfected into thymidine kinase (TK)-deficient L cells with a cloned tk gene. A number of TK+ transformants were isolated, and expression of the cointegrated cat gene in th...

  13. Co-localization of growth QTL with differentially expressed candidate genes in rainbow trout.

    Science.gov (United States)

    Kocmarek, Andrea L; Ferguson, Moira M; Danzmann, Roy G

    2015-09-01

    We tested whether genes differentially expressed between large and small rainbow trout co-localized with familial QTL regions for body size. Eleven chromosomes, known from previous work to house QTL for weight and length in rainbow trout, were examined for QTL in half-sibling families produced in September (1 XY male and 1 XX neomale) and December (1 XY male). In previous studies, we identified 108 candidate genes for growth expressed in the liver and white muscle in a subset of the fish used in this study. These gene sequences were BLASTN aligned against the rainbow trout and stickleback genomes to determine their location (rainbow trout) and inferred location based on synteny with the stickleback genome. Across the progeny of all three males used in the study, 63.9% of the genes with differential expression appear to co-localize with the QTL regions on 6 of the 11 chromosomes tested in these males. Genes that co-localized with QTL in the mixed-sex offspring of the two XY males primarily showed up-regulation in the muscle of large fish and were related to muscle growth, metabolism, and the stress response. PMID:26360524

  14. Fine mapping and single nucleotide polymorphism association results of candidate genes for asthma and related phenotypes.

    Science.gov (United States)

    Immervoll, T; Loesgen, S; Dütsch, G; Gohlke, H; Herbon, N; Klugbauer, S; Dempfle, A; Bickeböller, H; Becker-Follmann, J; Rüschendorf, F; Saar, K; Reis, A; Wichmann, H E; Wjst, M

    2001-10-01

    Several genome-wide screens for asthma and related phenotypes have been published to date but data on fine-mapping are scarce. For higher resolution we performed a fine-mapping study with 2 cM average spacing in often discussed asthma candidate regions (2p, 5q, 6p, 7p, 9q, 11p, and 12q) to narrow down the regions of interest. All participants of a Caucasian family study (97 families with at least two affected sib pairs) were genotyped for 49 supplementary polymorphic dinucleotide markers. Our results indicate increased evidence for linkage on chromosome 6p, 9q, and 12q. These candidate regions were further analyzed with SNP polymorphisms in the endothelin 1 (EDN1), lymphotoxin alpha (LTA), and neuronal nitric oxide synthase (NOS1) genes. In addition, IL4 -590C>T and IL10 -592C>A, localized on chromosomes 5q and 1q, respectively, have been analyzed for SNP association. Of the six SNPs tested, four revealed weak association with the examined phenotypes. These are the IL10 -592C>A SNP in the interleukin 10 gene (p=0.036 for eosinophil cell counts), the 4124T>C SNP in EDN1 (p=0.044 for asthma), the 3391C>T SNP in NOS1 with eosinophil cell counts (p=0.0086), and the 5266C>T polymorphism, also in the NOS1 gene, for high IgE levels (p=0.022). In summary, fine mapping data enable us to confine asthma candidate regions, while variants of EDN1 and NOS1, or nearby genes, may play an important role in this context. PMID:11668616

  15. Refined human artificial chromosome vectors for gene therapy and animal transgenesis

    OpenAIRE

    Kazuki, Y; Hoshiya, H.; Takiguchi, M.; S. Abe; Iida, Y; Osaki, M.; Katoh, M; Hiratsuka, M; Shirayoshi, Y; Hiramatsu, K; Ueno, E; N. Kajitani; Yoshino, T.; Kazuki, K; Ishihara, C.

    2010-01-01

    Human artificial chromosomes (HACs) have several advantages as gene therapy vectors, including stable episomal maintenance, and the ability to carry large gene inserts. We previously developed HAC vectors from the normal human chromosomes using a chromosome engineering technique. However, endogenous genes were remained in these HACs, limiting their therapeutic applications. In this study, we refined a HAC vector without endogenous genes from human chromosome 21 in homologous recombination-pro...

  16. Frequency of Cancer Genes on the Chicken Z Chromosome and Its Human Homologues: Implications for Sex Chromosome Evolution

    Directory of Open Access Journals (Sweden)

    Rami Stiglec

    2007-01-01

    Full Text Available It has been suggested that there are special evolutionary forces that act on sex chromosomes. Hemizygosity of the X chromosome in male mammals has led to selection for male-advantage genes, and against genes posing extreme risks of tumor development. A similar bias against cancer genes should also apply to the Z chromosome that is present as a single copy in female birds. Using comparative database analysis, we found that there was no significant underrepresentation of cancer genes on the chicken Z, nor on the Z-orthologous regions of human chromosomes 5 and 9. This result does not support the hypothesis that genes involved in cancer are selected against on the sex chromosomes.

  17. Association testing to detect gene-gene interactions on sex chromosomes in trio data

    Directory of Open Access Journals (Sweden)

    Yeonok eLee

    2013-11-01

    Full Text Available Autism Spectrum Disorder (ASD occurs more often among males than females in a 4:1 ratio. Among theories used to explain the causes of ASD, the X chromosome and the Y chromosome theories attribute ASD to X-linked mutation and the male-limited gene expressions on the Y chromosome, respectively. Despite the rationale of the theory, studies have failed to attribute the sex-biased ratio to the significant linkage or association on the regions of interest on X chromosome. We further study the gender biased ratio by examining the possible interaction effects between two genes in the sex chromosomes. We propose a logistic regression model with mixed effects to detect gene-gene interactions on sex chromosomes. We investigated the power and type I error rates of the approach for a range of minor allele frequencies and varying linkage disequilibrium between markers and QTLs. We also evaluated the robustness of the model to population stratification. We applied the model to a trio-family data set with an ASD affected male child to study gene-gene interactions on sex chromosomes.

  18. Structure and chromosomal localization of the human renal kallikrein gene

    International Nuclear Information System (INIS)

    Glandular kallikreins are a family of proteases encoded by a variable number of genes in different mammalian species. In all species examined, however, one particular kallikrein is functionally conserved in its capacity to release the vasoactive peptide, Lys-bradykinin, from low molecular weight kininogen. This kallikrein is found in the kidney, pancreas, and salivary gland, showing a unique pattern of tissue-specific expression relative to other members of the family. The authors have isolated a genomic clone carrying the human renal kallikrein gene and compared the nucleotide sequence of its promoter region with those of the mouse renal kallikrein gene and another mouse kallikrein gene expressed in a distinct cell type. They find four sequence elements conserved between renal kallikrein genes from the two species. They have also shown that the human gene is localized to 19q13, a position analogous to that of the kallikrein gene family on mouse chromosome 7

  19. Reranking candidate gene models with cross-species comparison for improved gene prediction

    Directory of Open Access Journals (Sweden)

    Pereira Fernando CN

    2008-10-01

    Full Text Available Abstract Background Most gene finders score candidate gene models with state-based methods, typically HMMs, by combining local properties (coding potential, splice donor and acceptor patterns, etc. Competing models with similar state-based scores may be distinguishable with additional information. In particular, functional and comparative genomics datasets may help to select among competing models of comparable probability by exploiting features likely to be associated with the correct gene models, such as conserved exon/intron structure or protein sequence features. Results We have investigated the utility of a simple post-processing step for selecting among a set of alternative gene models, using global scoring rules to rerank competing models for more accurate prediction. For each gene locus, we first generate the K best candidate gene models using the gene finder Evigan, and then rerank these models using comparisons with putative orthologous genes from closely-related species. Candidate gene models with lower scores in the original gene finder may be selected if they exhibit strong similarity to probable orthologs in coding sequence, splice site location, or signal peptide occurrence. Experiments on Drosophila melanogaster demonstrate that reranking based on cross-species comparison outperforms the best gene models identified by Evigan alone, and also outperforms the comparative gene finders GeneWise and Augustus+. Conclusion Reranking gene models with cross-species comparison improves gene prediction accuracy. This straightforward method can be readily adapted to incorporate additional lines of evidence, as it requires only a ranked source of candidate gene models.

  20. No Evidence for Association between Amelogenesis Imperfecta and Candidate Genes

    Directory of Open Access Journals (Sweden)

    M Ghandehari Motlagh

    2009-03-01

    Full Text Available "nBackground: Amelogenesis imperfecta (AI is an inherited tooth disorder. Despite the fact that up to now, several gene muta­tions in MMP20, ENAM, AMELX and KLK4 genes have been reported to be associated with AI, many other genes sug­gested to be involved. The main objective of this study was to find the mutations in three major candidate genes including MMP20, ENAM and KLK4 responsible for AI from three Iranian families with generalized hypoplastic phenotype in all teeth. "nMethods: All exon/intron boundaries of subjected genes were amplified by polymerase chain reaction and subjected to direct sequencing."nResults: One polymorphisms was identified in KLK4 exon 2, in one family a homozygous mutation was found in the third base of codon 22 for serine (TCG>TCT, but not in other families. Although these base substitutions have been occurred in the signaling domain, they do not seem to influence the activity of KLK4 protein."nConclusion: Our results might support the further evidence for genetic heterogeneity; at least, in some AI cases are not caused by a gene in these reported candidate genes.

  1. CANDIDATE GENE ANALYSIS IN ISRAELI SOLDIERS WITH STRESS FRACTURES

    Directory of Open Access Journals (Sweden)

    Ran Yanovich

    2012-03-01

    Full Text Available To investigate the association of polymorphisms within candidate genes which we hypothesized may contribute to stress fracture predisposition, a case-control, cross- sectional study design was employed. Genotyping 268 Single Nucleotide Polymorphisms- SNPs within 17 genes in 385 Israeli young male and female recruits (182 with and 203 without stress fractures. Twenty-five polymorphisms within 9 genes (NR3C1, ANKH, VDR, ROR2, CALCR, IL6, COL1A2, CBG, and LRP4 showed statistically significant differences (p < 0.05 in the distribution between stress fracture cases and non stress fracture controls. Seventeen genetic variants were associated with an increased stress fracture risk, and eight variants with a decreased stress fracture risk. None of the SNP associations remained significant after correcting for multiple comparisons (false discovery rate- FDR. Our findings suggest that genes may be involved in stress fracture pathogenesis. Specifically, the CALCR and the VDR genes are intriguing candidates. The putative involvement of these genes in stress fracture predisposition requires analysis of more cases and controls and sequencing the relevant genomic regions, in order to define the specific gene mutations

  2. The human and mouse receptors of hyaluronan-mediated motility, RHAMM, genes (HMMR) map to human chromosome 5q33.2-qter and mouse chromosome 11

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Roller, M.L.; Camper, S.A. [Univ. of Michigan Medical School, Ann Arbor, MI (United States)] [and others

    1995-11-01

    The gene for the receptor for hyaluronan-mediated motility, RHAAM (designated hyaluronan-mediated motility receptor, HMMR (human) and Hmmr (mouse), for mapping purposes), was localized to human chromosome 5q33.2-qter by somatic cell and radiation hybrid analyses. Investigation of two interspecific back-crosses localized the mouse RHAMM (Hmmr) locus 18 cM from the centromere of mouse chromosome 11 within a region of synteny homology with human chromosome 5q23-q35 genes. The map position of the human RHAMM gene places it in a region comparatively rich in disease-associated genes, including those for low-frequency hearing loss, dominant limb-girdle muscular dystrophy, diastrophic dysplasia, Treacher Collins syndrome, and myeloid disorders associated with the 5q-syndrome. The RHAMM gene location and its ability to transform cells when overexpressed implicate RHAMM as a possible candidate gene in the pathogenesis of the recently described t(5;14)(q33-q34;q11) acute lymphoblastic leukemias. 18 refs., 1 fig.

  3. Retinoblastoma-associated protein 140 as a candidate for a novel etiological gene to hypertension.

    Science.gov (United States)

    Crespo, Kimberley; Ménard, Annie; Deng, Alan Y

    2016-01-01

    Gene discovery in animal models may lead to the revelation of therapeutic targets for essential hypertension as well as mechanistic insights into blood pressure (BP) regulation. Our aim was to identify a disease-causing gene for a component of polygenic hypertension contrasting inbred hypertensive Dahl salt-sensitive (DSS) and normotensive Lewis rats. The chromosome segment harboring a quantitative trait locus (QTL), C16QTL, was first isolated from the rat genome via congenic strains. A candidate gene responsible for C16QTL causing a BP difference between DSS and Lewis rats was then identified using molecular analyses combining our independently-conducted total genome and gene-specific sequencings. The retinoblastoma-associated protein 140 (Rap140)/family with sequence similarity 208 member A (Fam208a) is the only candidate gene supported to be C16QTL among three genes in genome block 1 present in the C16QTL-residing interval. A mode of its actions could be to influence the expressions of genes that are downstream in a pathway potentially leading to BP regulation such as that encoding the solute carrier family 7 (cationic amino acid transporter, y+ system) member 12 (Slc7a12), which is specifically expressed in kidneys. Thus, Rap140/Fam208a probably encoding a transcription factor is the strongest candidate for a novel BP QTL that acts via a putative Rap140/Fam208a-Slc7a12-BP pathway. These data implicate a premier physiological role for Rap140/Fam208 beyond development and a first biological function for the Slc7a12 protein in any organism. PMID:27391979

  4. Genome-Wide Association Study with Sequence Variants Identifies Candidate Genes for Mastitis Resistance in Dairy Cattle

    DEFF Research Database (Denmark)

    Sahana, Goutam; Guldbrandtsen, Bernt; Bendixen, Christian;

    Six genomic regions affecting clinical mastitis were identified through a GWAS study with imputed BovineHD chip genotype data in the Nordic Holstein cattle population. The association analyses were carried out using a SNP-by-SNP analysis by fitting the regression of allele dosage and a polygenic...... Variant Effect Predictor (VEP) vers. 2.6 using ENSEMBL vers. 67 databases. Candidate polymorphisms affecting clinical mastitis were selected based on their association with the traits and functional annotations. A strong positional candidate gene for mastitis resistance on chromosome-6 is the NPFFR2 which...... Factor Receptor Alpha (LIFR) emerged as a strong candidate gene for mastitis resistance. The LIFR gene is involved in acute phase response and is expressed in saliva and mammary gland....

  5. The chromosomal arrangement of six soybean leghemoglobin genes

    DEFF Research Database (Denmark)

    Bojsen, Kirsten; Abildsten, Dorte; Jensen, Erik Ø; Paludan, Kirsten; Marcker, Kjeld A

    1983-01-01

    Clones containing six leghemoglobin (Lb) genes have been isolated from two genomic libraries of soybean. They encompass two independent DNA regions: a 40-kb region containing four genes in the order 5' Lba-Lbc(1)-[unk]Lb-Lbc(3) 3' with the same transcriptional polarity, and another 40-kb region...... containing two genes in the order 5' Lbc(4)-Lbc(2) 3' with the same polarity. The order in which the Lb genes are arranged in the soybean genome imply that they are activated in the opposite order to which they are arranged on the chromosome. There is a close similarity between corresponding DNA regions...... differs from that of the Lb genes. The existence of two very similar Lb gene clusters in soybean suggest that soybean may have evolved from an ancestral form by genome duplication. Udgivelsesdato: 1983-null...

  6. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution.

    Science.gov (United States)

    Vicoso, Beatriz; Kaiser, Vera B; Bachtrog, Doris

    2013-04-16

    Sex chromosomes originate from autosomes. The accumulation of sexually antagonistic mutations on protosex chromosomes selects for a loss of recombination and sets in motion the evolutionary processes generating heteromorphic sex chromosomes. Recombination suppression and differentiation are generally viewed as the default path of sex chromosome evolution, and the occurrence of old, homomorphic sex chromosomes, such as those of ratite birds, has remained a mystery. Here, we analyze the genome and transcriptome of emu (Dromaius novaehollandiae) and confirm that most genes on the sex chromosome are shared between the Z and W. Surprisingly, however, levels of gene expression are generally sex-biased for all sex-linked genes relative to autosomes, including those in the pseudoautosomal region, and the male-bias increases after gonad formation. This expression bias suggests that the emu sex chromosomes have become masculinized, even in the absence of ZW differentiation. Thus, birds may have taken different evolutionary solutions to minimize the deleterious effects imposed by sexually antagonistic mutations: some lineages eliminate recombination along the protosex chromosomes to physically restrict sexually antagonistic alleles to one sex, whereas ratites evolved sex-biased expression to confine the product of a sexually antagonistic allele to the sex it benefits. This difference in conflict resolution may explain the preservation of recombining, homomorphic sex chromosomes in other lineages and illustrates the importance of sexually antagonistic mutations driving the evolution of sex chromosomes. PMID:23547111

  7. Using Chromosomes to Teach Evolution: Conserved Genes and Genes Families.

    Science.gov (United States)

    Offner, Susan

    1994-01-01

    Uses diagrams to aid in discussing how the English map of the human chromosomes, published by Offner in 1993, can be used to illustrate some important questions in evolution, as well as give students a glimpse into some of the mechanisms underlying evolutionary change. (ZWH)

  8. Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage.

    Directory of Open Access Journals (Sweden)

    Khalid A Osman

    Full Text Available Soil waterlogging is one of the major abiotic stresses adversely affecting maize growth and yield. To identify dynamic expression of genes or quantitative trait loci (QTL, QTL associated with plant height, root length, root dry weight, shoot dry weight and total dry weight were identified via conditional analysis in a mixed linear model and inclusive composite interval mapping method at three respective periods under waterlogging and control conditions. A total of 13, 19 and 23 QTL were detected at stages 3D|0D (the period during 0-3 d of waterlogging, 6D|3D and 9D|6D, respectively. The effects of each QTL were moderate and distributed over nine chromosomes, singly explaining 4.14-18.88% of the phenotypic variation. Six QTL (ph6-1, rl1-2, sdw4-1, sdw7-1, tdw4-1 and tdw7-1 were identified at two consistent stages of seedling development, which could reflect a continuous expression of genes; the remaining QTL were detected at only one stage. Thus, expression of most QTL was influenced by the developmental status. In order to provide additional evidence regarding the role of corresponding genes in waterlogging tolerance, mapping of Expressed Sequence Tags markers and microRNAs were conducted. Seven candidate genes were observed to co-localize with the identified QTL on chromosomes 1, 4, 6, 7 and 9, and may be important candidate genes for waterlogging tolerance. These results are a good starting point for understanding the genetic basis for selectively expressing of QTL in different stress periods and the common genetic control mechanism of the co-localized traits.

  9. Assignment of the appaloosa coat colour gene (LP) to equine chromosome 1.

    Science.gov (United States)

    Terry, R B; Archer, S; Brooks, S; Bernoco, D; Bailey, E

    2004-04-01

    A single autosomal dominant locus, leopard complex (LP) controls the presence of appaloosa pigmentation patterns in the horse. The causative gene for LP is unknown. This study was undertaken to map LP in the horse. Two paternal half sib families segregating for the LP locus and including a total of 47 offspring were used to perform a genome scan which localized LP to horse chromosome 1 (ECA1). LP was linked to ASB08 (LOD = 9.99 at Theta = 0.02) and AHT21 (LOD = 5.03 at Theta = 0.14). To refine the map position of LP, eight microsatellite markers on ECA1 (UM041, LEX77, 1CA41, TKY374, COR046, 1CA32, 1CA43, and TKY002) were analysed in the two half sib families. Results from this linkage analysis showed LP was located in the interval between ASB08 and 1CA43. Tight junction protein (TJP1), which lies within the LP interval on ECA1, was used to determine the homologous chromosomes in humans (HSA15) and mice (mouse chromosome 7). We propose that the pink eyed dilution (p) gene and transient receptor potential cation channel subfamily M, member 1 (TRPM1) are positional candidate genes for LP. PMID:15025575

  10. The KCNE genes in hypertrophic cardiomyopathy: a candidate gene study

    DEFF Research Database (Denmark)

    Hedley, Paula L; Haundrup, Ole; Andersen, Paal S;

    2011-01-01

    The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere...... as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM), a...

  11. Slitrks as emerging candidate genes involved in neuropsychiatric disorders

    OpenAIRE

    Proenca, Catia C.; Gao, Kate P.; Shmelkov, Sergey V.; Rafii, Shahin; Lee, Francis S

    2011-01-01

    Slitrks are a family of structurally-related transmembrane proteins belonging to the leucine-rich repeat (LRR) superfamily. Six family members exist (Slitrk1–Slitrk6), and all are highly expressed in the central nervous system (CNS). Slitrks have been implicated in mediating basic neuronal processes ranging from neurite outgrowth and dendritic elaboration to neuronal survival. Recent studies in humans and genetic mouse models have led to the identification of Slitrks as candidate genes that m...

  12. Genetics of intracerebral hemorrhage: Insights from candidate gene approaches

    OpenAIRE

    Baoqiong Liu; Le Zhang; Qidong Yang

    2012-01-01

    Intracerebral hemorrhage (ICH) is a heterogeneous disease with genetic factors playing an important role. Association studies on a wide range of candidate pathways suggest a weak but significant effect for several alleles with ICH risk. Among the most widely investigated genes are those involved in the renin-angiotensin-aldosterone system (e.g., angiotensin-converting enzyme), coagulation pathway (e.g., Factor XIII, Factor VII, platelet-activating factor acetylhydrolase, Factor V Leiden, and ...

  13. Association of candidate genes with antisocial drug dependence in adolescents

    OpenAIRE

    Corley, Robin P.; Zeiger, Joanna S.; Crowley, Thomas; Ehringer, Marissa A.; Hewitt, John K.; Christian J Hopfer; Lessem, Jeffrey; McQueen, Matthew B.; Rhee, Soo Hyun; Smolen, Andrew; Stallings, Michael C.; Young, Susan E.; Krauter, Kenneth

    2008-01-01

    The Colorado Center for Antisocial Drug Dependence (CADD) is using several research designs and strategies in its study of the genetic basis for antisocial drug dependence in adolescents. This study reports Single Nucleotide Polymorphism (SNP) association results from a Targeted Gene Assay (SNP chip) of 231 Caucasian male probands in treatment with antisocial drug dependence and a matched set of community controls. The SNP chip was designed to assay 1500 SNPs distributed across 50 candidate g...

  14. Genomic analysis reveals MATH gene(s) as candidate(s) for Plum pox virus (PPV) resistance in apricot (Prunus armeniaca L.).

    Science.gov (United States)

    Zuriaga, Elena; Soriano, José Miguel; Zhebentyayeva, Tetyana; Romero, Carlos; Dardick, Chris; Cañizares, Joaquín; Badenes, Maria Luisa

    2013-09-01

    Sharka disease, caused by Plum pox virus (PPV), is the most important viral disease affecting Prunus species. A major PPV resistance locus (PPVres) has been mapped to the upper part of apricot (Prunus armeniaca) linkage group 1. In this study, a physical map of the PPVres locus in the PPV-resistant cultivar 'Goldrich' was constructed. Bacterial artificial chromosome (BAC) clones belonging to the resistant haplotype contig were sequenced using 454/GS-FLX Titanium technology. Concurrently, the whole genome of seven apricot varieties (three PPV-resistant and four PPV-susceptible) and two PPV-susceptible apricot relatives (P. sibirica var. davidiana and P. mume) were obtained using the Illumina-HiSeq2000 platform. Single nucleotide polymorphisms (SNPs) within the mapped interval, recorded from alignments against the peach genome, allowed us to narrow down the PPVres locus to a region of ∼196 kb. Searches for polymorphisms linked in coupling with the resistance led to the identification of 68 variants within 23 predicted transcripts according to peach genome annotation. Candidate resistance genes were ranked combining data from variant calling and predicted functions inferred from sequence homology. Together, the results suggest that members of a cluster of meprin and TRAF-C homology domain (MATHd)-containing proteins are the most likely candidate genes for PPV resistance in apricot. Interestingly, MATHd proteins are hypothesized to control long-distance movement (LDM) of potyviruses in Arabidopsis, and restriction for LDM is also a major component of PPV resistance in apricot. Although the PPV resistance gene(s) remains to be unambiguously identified, these results pave the way to the determination of the underlying mechanism and to the development of more accurate breeding strategies. PMID:23672686

  15. The mapping of novel genes to human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Buenaventura, J.M. [Sarah Lawrence College, Bronxville, NY (United States)

    1994-12-01

    The principle goal of our laboratory is the discovery of new genes on human chromosome 19. One of the strategies to achieve this goal is through the use of cDNA clones known as {open_quotes}expressed sequence tags{close_quotes} (ESTs). ESTs, short segments of sequence from a cDNA clone that correspond to the mRNA, occur as unique regions in the genome and, therefore, can be used as markers for specific positions. In collaboration with researchers from Genethon in France, fifteen cDNA clones from a normalized human infant brain cDNA library were tested and determined to map to chromosome 19. A verification procedure is then followed to confirm assignment to chromosome 19. First, primers for each cDNA clone are developed and then amplified by polymerase chain reaction from genomic DNA. Next, a {sup 32}P-radiolabeled probe is made by polymerase chain reaction for each clone and then hybridized against filters containing an LLNL chromosome 19-specific cosmid library to find putative locations on the chromosome. The location is then verified by running a polymerase chain reactions from the positive cosmids. With the Browser database at LLNL, additional information about the positive cosmids can be found. Through use of the BLAST database at the National Library of Medicine, homologous sequences to the clones can be found. Among the fifteen cDNA clones received from Genethon, all have been amplified by polymerase chain reaction. Three have turned out as repetitive elements in the genome. Ten have been mapped to specific locations on chromosome 19. Putative locations have been found for the remaining two clones and thus verification testing will proceed.

  16. Annual Killifish Transcriptomics and Candidate Genes for Metazoan Diapause.

    Science.gov (United States)

    Thompson, Andrew W; Ortí, Guillermo

    2016-09-01

    Dormancy has evolved in all major metazoan lineages. It is critical for survival when environmental stresses are not conducive to growth, maturation, or reproduction. Embryonic diapause is a form of dormancy where development is reversibly delayed and metabolism is depressed. We report the diapause transcriptome of the annual killifish Nematolebias whitei, and compare gene expression between diapause embryos and free-living larvae to identify a candidate set of 945 differentially expressed "diapause" genes for this species. Similarity of transcriptional patterns among N. whitei and other diapausing animals is striking for a small set of genes associated with stress resistance, circadian rhythm, and metabolism, while other genes show discordant patterns. Although convergent evolution of diapause may require shared molecular mechanisms for fundamental processes, similar physiological phenotypes also may arise through modification of alternative pathways. Annual killifishes are a tractable model system for comparative transcriptomic studies on the evolution of diapause. PMID:27297470

  17. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle.

    Science.gov (United States)

    Thaller, G; Kühn, C; Winter, A; Ewald, G; Bellmann, O; Wegner, J; Zühlke, H; Fries, R

    2003-10-01

    Intramuscular fat content, also assessed as marbling of meat, represents an important beef quality trait. Recent work has mapped a quantitative trait locus (QTL) with an effect on marbling to the centromeric region of bovine chromosome 14, with the gene encoding thyroglobulin (TG) being proposed as a positional and functional candidate gene for this QTL. Recently, the gene encoding diacylglycerol O-acyltransferase (DGAT1), which also has been mapped within the region of the marbling QTL, has been demonstrated to affect the fat content of milk. In the present study, the effects of a 5'-polymorphism of TG and of a lysine/alanine polymorphism of DGAT1 on the fat content of musculus (m.) semitendinosus and m. longissimus dorsi in 55 bovine animals (28 German Holstein and 27 Charolais) has been investigated. Significant effects were found for both candidate genes in both the breeds. These effects seem to be independent of one another because the alleles of the two polymorphisms showed no statistically significant disequilibrium. The DGAT1 effect is mainly on the m. semitendinosus. The TG polymorphism only affects m. longissimus dorsi. However, both intramuscular fat enhancing effects seem to be recessive. The possibility of two linked loci, acting recessively on intramuscular fat content, will require special strategies when selecting for higher marbling scores. PMID:14510671

  18. Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiming [Univ. of Geneva Medical School (Switzerland); Gos, A.; Morris, M.A. [Cantonal Hospital, Geneva (Switzerland)] [and others

    1996-08-01

    Exon trapping was used to identify portions of genes from cosmid DNA of a human chromosome 21-specific library LL21NC02-Q. More than 650 potential exons have been cloned and characterized to date. Among these, 3 trapped {open_quotes}exons{close_quotes} showed strong homology to different regions of the cDNA for the mouse pericentrin (Pcnt) gene, indicating that these 3 exons are portions of a human homolog of the mouse pericentrin gene. With PCR amplification, Southern blot analysis, and FISH, we have mapped this presumed human pericentrin gene (PCNT) to the long arm of chromosome 21 between marker PFKL and 21qter. Pericentrin is a conserved protein component of the filamentous matrix of the centrosome involved in the initial establishment of the organized microtubule array. No candidate hereditary disorder for pericentrin deficiency/abnormality has yet been mapped in the most distal region of 21q; in addition the role of triplication of the pericentrin gene in the pathophysiology or etiology of trisomy 21 is currently unknown. 16 refs., 3 figs.

  19. Novel sex-determining genes in fish and sex chromosome evolution.

    Science.gov (United States)

    Kikuchi, Kiyoshi; Hamaguchi, Satoshi

    2013-04-01

    Although the molecular mechanisms underlying many developmental events are conserved across vertebrate taxa, the lability at the top of the sex-determining (SD) cascade has been evident from the fact that four master SD genes have been identified: mammalian Sry; chicken DMRT1; medaka Dmy; and Xenopus laevis DM-W. This diversity is thought to be associated with the turnover of sex chromosomes, which is likely to be more frequent in fishes and other poikilotherms than in therian mammals and birds. Recently, four novel candidates for vertebrate SD genes were reported, all of them in fishes. These include amhy in the Patagonian pejerrey, Gsdf in Oryzias luzonensis, Amhr2 in fugu and sdY in rainbow trout. These studies provide a good opportunity to infer patterns from the seemingly chaotic picture of sex determination systems. Here, we review recent advances in our understanding of the master SD genes in fishes. PMID:23335327

  20. Genetic Variation in Candidate Genes Like the HMGA2 Gene in the Extremely Tall

    NARCIS (Netherlands)

    Hendriks, A. E. J.; Brown, M. R.; Boot, A. M.; Oostra, B. A.; Drop, S. L. S.; Parks, J. S.

    2011-01-01

    Background/Aims: Genetic variation in several candidate genes has been associated with short stature. Recently, a high-mobility group A2 (HMGA2) gene SNP has been robustly associated with height in the general population. Only few have attempted to study these genes in extremely tall stature. We the

  1. Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Induri, Brahma R [West Virginia University; Ellis, Danielle R [West Virginia University; Slavov, Goncho T. [West Virginia University; Yin, Tongming [ORNL; Zhang, Xinye [ORNL; Tuskan, Gerald A [ORNL; DiFazio, Steven P [West Virginia University

    2012-01-01

    Understanding genetic variation for the response of Populus to heavy metals like cadmium (Cd) is an important step in elucidating the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa Torr. & Gray and Populus deltoides Bart. was characterized for growth and performance traits after Cd exposure. A total of 16 quantitative trait loci (QTL) at logarithm of odds (LOD) ratio 2.5 were detected for total dry weight, its components and root volume. Major QTL for Cd responses were mapped to two different linkage groups and the relative allelic effects were in opposing directions on the two chromosomes, suggesting differential mechanisms at these two loci. The phenotypic variance explained by Cd QTL ranged from 5.9 to 11.6% and averaged 8.2% across all QTL. A whole-genome microarray study led to the identification of nine Cd-responsive genes from these QTL. Promising candidates for Cd tolerance include an NHL repeat membrane-spanning protein, a metal transporter and a putative transcription factor. Additional candidates in the QTL intervals include a putative homolog of a glutamate cysteine ligase, and a glutathione-S-transferase. Functional characterization of these candidate genes should enhance our understanding of Cd metabolism and transport and phytoremediation capabilities of Populus.

  2. Sleeping Beauty Mouse Models Identify Candidate Genes Involved in Gliomagenesis

    Science.gov (United States)

    Vyazunova, Irina; Maklakova, Vilena I.; Berman, Samuel; De, Ishani; Steffen, Megan D.; Hong, Won; Lincoln, Hayley; Morrissy, A. Sorana; Taylor, Michael D.; Akagi, Keiko; Brennan, Cameron W.; Rodriguez, Fausto J.; Collier, Lara S.

    2014-01-01

    Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma. PMID:25423036

  3. Chromosomal assignments of the genes coding for human types II, III, and IV collagen: a dispersed gene family.

    OpenAIRE

    Solomon, E; Hiorns, L R; Spurr, N; Kurkinen, M.; Barlow, D; Hogan, B L; Dalgleish, R.

    1985-01-01

    The human type II collagen gene, COL2A1, has been assigned to chromosome 12, the type III gene, COL3A1, to chromosome 2, and one of the type IV genes, COL4A1, to chromosome 13. These assignments were made by using cloned genes as probes on Southern blots of DNA from a panel of mouse/human somatic cell hybrids. The two genes of type I collagen, COL1A1 and COL2A1, have been mapped previously to chromosomes 17 and 7, respectively. This family of conserved genes seems therefore to be dispersed th...

  4. Genome-wide linkage analysis of global gene expression in loin muscle tissue identifies candidate genes in pigs.

    Directory of Open Access Journals (Sweden)

    Juan Pedro Steibel

    Full Text Available BACKGROUND: Nearly 6,000 QTL have been reported for 588 different traits in pigs, more than in any other livestock species. However, this effort has translated into only a few confirmed causative variants. A powerful strategy for revealing candidate genes involves expression QTL (eQTL mapping, where the mRNA abundance of a set of transcripts is used as the response variable for a QTL scan. METHODOLOGY/PRINCIPAL FINDINGS: We utilized a whole genome expression microarray and an F(2 pig resource population to conduct a global eQTL analysis in loin muscle tissue, and compared results to previously inferred phenotypic QTL (pQTL from the same experimental cross. We found 62 unique eQTL (FDR <10% and identified 3 gene networks enriched with genes subject to genetic control involved in lipid metabolism, DNA replication, and cell cycle regulation. We observed strong evidence of local regulation (40 out of 59 eQTL with known genomic position and compared these eQTL to pQTL to help identify potential candidate genes. Among the interesting associations, we found aldo-keto reductase 7A2 (AKR7A2 and thioredoxin domain containing 12 (TXNDC12 eQTL that are part of a network associated with lipid metabolism and in turn overlap with pQTL regions for marbling, % intramuscular fat (% fat and loin muscle area on Sus scrofa (SSC chromosome 6. Additionally, we report 13 genomic regions with overlapping eQTL and pQTL involving 14 local eQTL. CONCLUSIONS/SIGNIFICANCE: Results of this analysis provide novel candidate genes for important complex pig phenotypes.

  5. Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome

    Directory of Open Access Journals (Sweden)

    Nurminsky Dmitry I

    2011-05-01

    Full Text Available Abstract Background Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven. Results Microarray-based study and qRT-PCR analyses show that the dynamics of gene expression during testis development are very similar between X-linked and autosomal genes, with both showing transcriptional activation concomitant with meiosis. However, the genes showing at least ten-fold expression bias toward testis are significantly underrepresented on the X chromosome. Intriguingly, the genes with similar expression bias toward tissues other than testis, even those not apparently associated with reproduction, are also strongly underrepresented on the X. Bioinformatics analysis shows that while tissue-specific genes often bind silencing-associated factors in embryonic and cultured cells, this trend is less prominent for the X-linked genes. Conclusions Our data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila. Paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue-biased genes on this chromosome. Our analyses suggest that the activation/repression switch mechanisms that probably orchestrate the highly-biased expression of tissue-specific genes are generally not efficient on the X chromosome. This effect, probably caused by dosage compensation counteracting repression of the X-linked genes, may be the cause of the exodus of highly tissue-biased genes to the autosomes.

  6. Functional Insight From Fruit Flies on Human ADHD Candidate Genes

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Demontis, Ditte; Arvidson, Sandra Marie Neumann;

    2015-01-01

    of developing ADHD. We use Minos mutants, where target genes have been disrupted by the Minos transposable element, to test the effect on locomotor activity. By measuring the distance traveled, we find disparity in locomotor activity between control and Minos mutants. Impaired dopamine system...... underlies the majority of ADHD symptoms, and effective treatment is achieved with amphetamines. We fed flies with either 1.5 mg/ml dexamphetamine dissolved in 5% w/w sucrose or a 5% w/w sucrose solution. Treatment with dexamphetamine increased activity of controls and some Minos lines, and decreased...... activity levels for other mutants. Decreased activity level, when treated with dexamphetamine, is seen when using other ADHD animal models. Our findings suggest involvement of the proposed candidate genes Genes, Brain, and Behavior 2015 36 Talk Abstracts in hyperactivity in D. melanogaster, providing...

  7. Conserved co-expression for candidate disease gene prioritization

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2008-04-01

    Full Text Available Abstract Background Genes that are co-expressed tend to be involved in the same biological process. However, co-expression is not a very reliable predictor of functional links between genes. The evolutionary conservation of co-expression between species can be used to predict protein function more reliably than co-expression in a single species. Here we examine whether co-expression across multiple species is also a better prioritizer of disease genes than is co-expression between human genes alone. Results We use co-expression data from yeast (S. cerevisiae, nematode worm (C. elegans, fruit fly (D. melanogaster, mouse and human and find that the use of evolutionary conservation can indeed improve the predictive value of co-expression. The effect that genes causing the same disease have higher co-expression than do other genes from their associated disease loci, is significantly enhanced when co-expression data are combined across evolutionarily distant species. We also find that performance can vary significantly depending on the co-expression datasets used, and just using more data does not necessarily lead to better prioritization. Instead, we find that dataset quality is more important than quantity, and using a consistent microarray platform per species leads to better performance than using more inclusive datasets pooled from various platforms. Conclusion We find that evolutionarily conserved gene co-expression prioritizes disease candidate genes better than human gene co-expression alone, and provide the integrated data as a new resource for disease gene prioritization tools.

  8. Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize

    Institute of Scientific and Technical Information of China (English)

    Hongwei Zhang; Mohammed Shalim Uddin; Cheng Zou; Chuanxiao Xie; Yunbi Xu; WenXue Li

    2014-01-01

    Plants with tolerance to low-phosphorus (P) can grow better under low-P conditions, and understanding of genetic mechanisms of low-P tolerance can not only facilitate identifying relevant genes but also help to develop low-P tolerant cultivars. QTL meta-analysis was conducted after a comprehensive review of the reports on QTL mapping for low-P tolerance-related traits in maize. Meta-analysis pro-duced 23 consensus QTL (cQTL), 17 of which located in similar chromosome regions to those previously reported to influence root traits. Meanwhile, candidate gene mining yielded 215 genes, 22 of which located in the cQTL regions. These 22 genes are homologous to 14 functionally character-ized genes that were found to participate in plant low-P tolerance, including genes encoding miR399s, Pi transporters and purple acid phosphatases. Four cQTL loci (cQTL2-1, cQTL5-3, cQTL6-2, and cQTL10-2) may play important roles for low-P tolerance because each contains more original QTL and has better consistency across previous reports.

  9. The human neurofilament gene (NEFL) is located on the short arm of chromosome 8.

    NARCIS (Netherlands)

    J. Hurst; D. Flavell (David); J-P. Julien (Jean-Pierre); D.N. Meijer (Dies); W. Mushynski (Walter); F.G. Grosveld (Frank)

    1987-01-01

    textabstractWe have localized the gene coding for the human neurofilament light chain (NEFL) to chromosome band 8p2.1 by Southern blotting of DNA from hybrid cell panels and in situ hybridization to metaphase chromosomes.

  10. Gene recovery microdissection (GRM) a process for producing chromosome region-specific libraries of expressed genes

    Energy Technology Data Exchange (ETDEWEB)

    Christian, A T; Coleman, M A; Tucker, J D

    2001-02-08

    Gene Recovery Microdissection (GRM) is a unique and cost-effective process for producing chromosome region-specific libraries of expressed genes. It accelerates the pace, reduces the cost, and extends the capabilities of functional genomic research, the means by which scientists will put to life-saving, life-enhancing use their knowledge of any plant or animal genome.

  11. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome

    OpenAIRE

    Thévenin, Annelyse; Ein-Dor, Liat; Ozery-Flato, Michal; Shamir, Ron

    2014-01-01

    Genomes undergo changes in organization as a result of gene duplications, chromosomal rearrangements and local mutations, among other mechanisms. In contrast to prokaryotes, in which genes of a common function are often organized in operons and reside contiguously along the genome, most eukaryotes show much weaker clustering of genes by function, except for few concrete functional groups. We set out to check systematically if there is a relation between gene function and gene organization in ...

  12. Genetic effects of polymorphisms in candidate genes and the QTL region on chicken age at first egg

    Directory of Open Access Journals (Sweden)

    Zhou Min

    2011-04-01

    Full Text Available Abstract Background The age at first egg (AFE, an important indicator for sexual maturation in female chickens, is controlled by polygenes. Based on our knowledge of reproductive physiology, 6 genes including gonadotrophin releasing hormone-I (GnRH-I, neuropeptide Y (NPY, dopamine D2 receptor (DRD2, vasoactive intestinal polypeptide (VIP, VIP receptor-1 (VIPR-1, and prolactin (PRL, were selected as candidates for influencing AFE. Additionally, the region between ADL0201 and MCW0241 of chromosome Z was chosen as the candidate QTL region according to some QTL databases. The objective of the present study was to investigate the effects of mutations in candidate genes and the QTL region on chicken AFE. Results Marker-trait association analysis of 8 mutations in those 6 genes in a Chinese native population found a highly significant association (P G840327C of the GnRH-I gene with AFE, and it remained significant even with Bonferroni correction. Based on the results of the 2-tailed χ2 test, mutations T32742394C, T32742468C, G32742603A, and C33379782T in the candidate QTL region of chromosome Z were selected for marker-trait association analysis. The haplotypes of T32742394C and T32742468C were significantly associated (P T32742394C and T32742468C were located in the intron region of the SH3-domain GRB2-like 2 (SH3GL2 gene, which appeared to be associated in the endocytosis and development of the oocyte. Conclusion This study found that G840327C of the GnRH-I gene and the haplotypes of T32742394C-T32742468C of the SH3GL2 gene were associated with the chicken AFE.

  13. Molecular Mapping and Candidate Gene Analysis for Numerous Spines on the Fruit of Cucumber.

    Science.gov (United States)

    Zhang, Shengping; Liu, Shulin; Miao, Han; Wang, Min; Liu, Panna; Wehner, Todd C; Gu, Xingfang

    2016-09-01

    Number of spines on the fruit is an important quality trait in cucumber. The inheritance and identification of molecular markers for fruit spine density gene can provide a basis for breeding and lay the foundation for gene cloning. Cucumber inbred lines NCG-122 with numerous spines and NCG-121 with few spines were used for genetic analysis and gene mapping in this study. Genetic analysis showed that the numerous spines trait in NCG-122 was qualitative, and a single recessive nuclear gene (ns) controlled this trait. The few spines trait was dominant over the numerous spines trait. In the preliminary genetic mapping of the ns gene, 8 SSR markers were found to be linked to ns, which mapped to chromosome 2 (Chr.2) of cucumber. The closest flanking markers SSR22338 and SSR11596 were linked to the ns gene, with genetic distances of 10.2 and 1.7cM, respectively. One-hundred and thirty pairs of new SSR primers and 28 pairs of Indel primers were developed based on sequence information in the preliminary mapping region of ns Fifteen SSR markers and 2 Indel markers were identified to be linked to the ns gene after analysis on the F2 mapping population using the new molecular markers. The 2 closest flanking markers, SSRns-127 and SSR04219, were 0.7 and 2.4 cM from ns, respectively. The physical distance between SSRns-127 and SSR04219 was 266.1kb, containing 27 predicted genes. Csa2G285390 was speculated as the probable candidate gene for numerous spines. The accuracy of the closest linked marker to the ns gene, SSRns-127, for MAS breeding was 95.0%. PMID:27317924

  14. A Generally Applicable Translational Strategy Identifies S100A4 as a Candidate Gene in Allergy

    DEFF Research Database (Denmark)

    Bruhn, Sören; Fang, Yu; Barrenäs, Fredrik;

    2014-01-01

    The identification of diagnostic markers and therapeutic candidate genes in common diseases is complicated by the involvement of thousands of genes. We hypothesized that genes co-regulated with a key gene in allergy, IL13, would form a module that could help to identify candidate genes. We identi...

  15. A genome-wide study of panic disorder suggests the amiloride-sensitive cation channel 1 as a candidate gene

    DEFF Research Database (Denmark)

    Gregersen, Noomi; Dahl, Hans A.; Buttenschön, Henriette N.;

    2012-01-01

    Panic disorder (PD) is a mental disorder with recurrent panic attacks that occur spontaneously and are not associated to any particular object or situation. There is no consensus on what causes PD. However, it is recognized that PD is influenced by environmental factors, as well as genetic factors...... the Faroe Islands. Subsequently, we conducted a fine mapping, which revealed the amiloride-sensitive cation channel 1 (ACCN1) located on chromosome 17q11.2-q12 as a potential candidate gene for PD. The further analyses of the ACCN1 gene using single-nucleotide polymorphisms (SNPs) revealed significant...

  16. A cohort of balanced reciprocal translocations associated with dyslexia: identification of two putative candidate genes at DYX1

    DEFF Research Database (Denmark)

    Buonincontri, Roberta; Bache, Iben; Silahtaroglu, Asli;

    2011-01-01

    Dyslexia is one of the most common neurodevelopmental disorders where likely many genes are involved in the pathogenesis. So far six candidate dyslexia genes have been proposed, and two of these were identified by rare chromosomal translocations in affected individuals. By systematic re......-examination of all translocation carriers in Denmark, we have identified 16 different translocations associated with dyslexia. In four families, where the translocation co-segregated with the phenotype, one of the breakpoints concurred (at the cytogenetic level) with either a known dyslexia linkage region--at 15......q21 (DYX1), 2p13 (DYX3) and 1p36 (DYX8)--or an unpublished linkage region at 19q13. As a first exploitation of this unique cohort, we identify three novel candidate dyslexia genes, ZNF280D and TCF12 at 15q21, and PDE7B at 6q23.3, by molecular mapping of the familial translocation with the 15q21...

  17. Evolutionary history of novel genes on the tammar wallaby Y chromosome: Implications for sex chromosome evolution.

    Science.gov (United States)

    Murtagh, Veronica J; O'Meally, Denis; Sankovic, Natasha; Delbridge, Margaret L; Kuroki, Yoko; Boore, Jeffrey L; Toyoda, Atsushi; Jordan, Kristen S; Pask, Andrew J; Renfree, Marilyn B; Fujiyama, Asao; Graves, Jennifer A Marshall; Waters, Paul D

    2012-03-01

    We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECP2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated from each other before the marsupial/eutherian split, and the remaining three (RPL10X/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis-brain expressed genes on the X. PMID:22128133

  18. Evolutionary history of novel genes on the tammar wallaby Y chromosome: Implications for sex chromosome evolution

    Science.gov (United States)

    Murtagh, Veronica J.; O'Meally, Denis; Sankovic, Natasha; Delbridge, Margaret L.; Kuroki, Yoko; Boore, Jeffrey L.; Toyoda, Atsushi; Jordan, Kristen S.; Pask, Andrew J.; Renfree, Marilyn B.; Fujiyama, Asao; Graves, Jennifer A. Marshall; Waters, Paul D.

    2012-01-01

    We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECP2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated from each other before the marsupial/eutherian split, and the remaining three (RPL10X/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis–brain expressed genes on the X. PMID:22128133

  19. Gene Dosage Imbalance Contributes to Chromosomal Instability-Induced Tumorigenesis.

    Science.gov (United States)

    Clemente-Ruiz, Marta; Murillo-Maldonado, Juan M; Benhra, Najate; Barrio, Lara; Pérez, Lidia; Quiroga, Gonzalo; Nebreda, Angel R; Milán, Marco

    2016-02-01

    Chromosomal instability (CIN) is thought to be a source of mutability in cancer. However, CIN often results in aneuploidy, which compromises cell fitness. Here, we used the dosage compensation mechanism (DCM) of Drosophila to demonstrate that chromosome-wide gene dosage imbalance contributes to the deleterious effects of CIN-induced aneuploidy and its pro-tumorigenic action. We present evidence that resetting of the DCM counterbalances the damaging effects caused by CIN-induced changes in X chromosome number. Importantly, interfering with the DCM suffices to mimic the cellular effects of aneuploidy in terms of reactive oxygen species (ROS) production, JNK-dependent cell death, and tumorigenesis upon apoptosis inhibition. We unveil a role of ROS in JNK activation and a variety of cellular and tissue-wide mechanisms that buffer the deleterious effects of CIN, including DNA-damage repair, activation of the p38 pathway, and cytokine induction to promote compensatory proliferation. Our data reveal the existence of robust compensatory mechanisms that counteract CIN-induced cell death and tumorigenesis. PMID:26859353

  20. A new web-based data mining tool for the identification of candidate genes for human genetic disorders.

    Science.gov (United States)

    van Driel, Marc A; Cuelenaere, Koen; Kemmeren, Patrick P C W; Leunissen, Jack A M; Brunner, Han G

    2003-01-01

    To identify the gene underlying a human genetic disorder can be difficult and time-consuming. Typically, positional data delimit a chromosomal region that contains between 20 and 200 genes. The choice then lies between sequencing large numbers of genes, or setting priorities by combining positional data with available expression and phenotype data, contained in different internet databases. This process of examining positional candidates for possible functional clues may be performed in many different ways, depending on the investigator's knowledge and experience. Here, we report on a new tool called the GeneSeeker, which gathers and combines positional data and expression/phenotypic data in an automated way from nine different web-based databases. This results in a quick overview of interesting candidate genes in the region of interest. The GeneSeeker system is built in a modular fashion allowing for easy addition or removal of databases if required. Databases are searched directly through the web, which obviates the need for data warehousing. In order to evaluate the GeneSeeker tool, we analysed syndromes with known genesis. For each of 10 syndromes the GeneSeeker programme generated a shortlist that contained a significantly reduced number of candidate genes from the critical region, yet still contained the causative gene. On average, a list of 163 genes based on position alone was reduced to a more manageable list of 22 genes based on position and expression or phenotype information. We are currently expanding the tool by adding other databases. The GeneSeeker is available via the web-interface (http://www.cmbi.kun.nl/GeneSeeker/). PMID:12529706

  1. Novel primary immunodeficiency candidate genes predicted by the human gene connectome

    Directory of Open Access Journals (Sweden)

    Yuval eItan

    2015-04-01

    Full Text Available Germline genetic mutations underlie various primary immunodeficiency (PID diseases. Patients with rare PID diseases (like most non-PID patients and healthy individuals carry, on average, 20,000 rare and common coding variants detected by high throughput sequencing. It is thus a major challenge to select only a few candidate disease-causing variants for experimental testing. One of the tools commonly used in the pipeline for estimating a potential PID candidate gene is to test whether the specific gene is included in the list of genes that were already experimentally validated as PID-causing in previous studies. However, this approach is limited because it cannot detect the PID-causing mutation(s in the many PID patients carrying causal mutations of as yet unidentified PID-causing genes. In this study, we expanded in silico the list of potential PID-causing candidate genes from 229 to 3,110. We first identified the top 1% of human genes predicted by the human genes connectome to be biologically close to the 229 known PID genes. We then further narrowed down the list of genes by retaining only the most biologically relevant genes, with functionally enriched gene ontology biological categories similar to those for the known PID genes. We validated this prediction by showing that 17 of the 21 novel PID genes published since the last IUIS classification fall into this group of 3,110 genes (p<10-7. The resulting new extended list of 3,110 predicted PID genes should be useful for the discovery of novel PID genes in patients.

  2. Identifying disease candidate genes via large-scale gene network analysis.

    Science.gov (United States)

    Kim, Haseong; Park, Taesung; Gelenbe, Erol

    2014-01-01

    Gene Regulatory Networks (GRN) provide systematic views of complex living systems, offering reliable and large-scale GRNs to identify disease candidate genes. A reverse engineering technique, Bayesian Model Averaging-based Networks (BMAnet), which ensembles all appropriate linear models to tackle uncertainty in model selection that integrates heterogeneous biological data sets is introduced. Using network evaluation metrics, we compare the networks that are thus identified. The metric 'Random walk with restart (Rwr)' is utilised to search for disease genes. In a simulation our method shows better performance than elastic-net and Gaussian graphical models, but topological quantities vary among the three methods. Using real-data, brain tumour gene expression samples consisting of non-tumour, grade III and grade IV are analysed to estimate networks with a total of 4422 genes. Based on these networks, 169 brain tumour-related candidate genes were identified and some were found to relate to 'wound', 'apoptosis', and 'cell death' processes. PMID:25796737

  3. Chromosomal nif Genes Transfer by Conjugation in Nitrogen Fixing Azotobacter chroococcum to Lactobacillus plantarium

    OpenAIRE

    Adel Kamal Khider; Aras Muhammad Khidher

    2011-01-01

    To determine the possibility of transferring chromosomal nitrogen fixation genes (nif genes) from Azotobacter chroococcum to Lactobacillus planetarium, a total of 72 Azotobacter chroococcum isolated from Erbil governorate, Iraq were culturally, morphologically and biochemically characterized. Genes for atmospheric nitrogen fixation, located on the chromosome of Azotobacter chroococcum isolates were transferred by conjugation process to a recipient Lactobacillus plantarium isolated from Erbil ...

  4. A gene for cleidocranial dysplasia maps to the short arm of chromosome 6.

    Science.gov (United States)

    Feldman, G J; Robin, N H; Brueton, L A; Robertson, E; Thompson, E M; Siegel-Bartelt, J; Gasser, D L; Bailey, L C; Zackai, E H; Muenke, M

    1995-01-01

    Cleidocranial dysplasia (CCD) is an autosomal dominant generalized bone dysplasia characterized by mild-to-moderate short stature, clavicular aplasia or hypoplasia, supernumerary and ectopic teeth, delayed eruption of secondary teeth, a characteristic craniofacial appearance, and a variety of other skeletal anomalies. We have performed linkage studies in five families with CCD, with 24 affected and 20 unaffected individuals, using microsatellite markers spanning two candidate regions on chromosomes 8q and 6. The strongest support for linkage was with chromosome 6p microsatellite marker D6S282 with a two-point lod score of 4.84 (theta = .03). Furthermore, the multipoint lod score was 5.70 in the interval between D6S282 and D6S291. These data show that the gene for autosomal dominant CCD is located within a 19-cM interval on the short arm of chromosome 6, between D6S282 and D6S291. Images Figure 1 PMID:7717404

  5. A gene for cleidocranial dysplasia to the short arm of chromosome 6

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, G.F.; Muenke, M.; Robin, N.H.; Zackai, E.H. [Children`s Hospital of Philadelphia, PA (United States)]|[Univ. of Pennsylvania, Philadelphia, PA (United States); Gasser, D.L.; Bailey, C. [Univ. of Pennsylvania, Philadelphia, PA (United States); Siegel-Bartelt, J. [Hospital for Sick Children, Toronto (Canada); Brueton, L.A.; Robertson, E.; Thompson, E.M.

    1995-04-01

    Cleidocranial dysplasia (CCD) is an autosomal dominant generalized bone dysplasia characterized by mild-to-moderate short stature, clavicular aplasia or hypoplasia, supernumerary and ectopic teeth, delayed eruption of secondary teeth, a characteristic craniofacial appearance, and a variety of other skeletal anomalies. We have performed linkage studies in five families with CCD, with 24 affected and 20 unaffected individuals, using microsatellite markers spanning two candidate regions on chromosomes 8q and 6. The strongest support for linkage was with chromosome 6p microsatellite marker D6S282 with a two-point lod score of 4.84 ({theta} = .03). Furthermore, the multipoint lod score was 5.70 in the interval between D6S282 and D6S291. These data show that the gene for autosomal dominant CCD is located within a 19-cM interval on the short arm of chromosome 6, between D6S282 and D6S291. 25 refs., 3 figs., 1 tab.

  6. Identification and characterization of potential tumor suppressor genes for ovarian cancer on chromosome 8p22

    International Nuclear Information System (INIS)

    Frequent Loss of Heterozygosity (LOH) in specific chromosomal regions of tumors indicates the residence of at least one tumor suppressor gene (TSG) in the corresponding chromosomal region. Chromosome 8p22 is described as LOH hotspot in several epithelial tumors. However, the related genes of this chromosomal band are still very poorly described. The aim of this study was the identification and characterization of potential tumor suppressor genes on chromosome 8p22 in ovarian cancer. Two out of 22 genes of 8p22, hVps37A and TuSC3, turned out to be promising tumor suppressor candidates and were characterized in more detail. It could be shown that hVps37 expression is significantly reduced in primary ovarian tumors relative to normal ovarian epithelials. Furthermore, survival rates of the patients were directly correlated with the hVps37A expression of the corresponding tumors. In-vitro characterization of hVps37A in two ovarian cancer cell lines resulted in an explanatory model of the clinical observations. As part of the ESCRT-I complex hVps37A is involved in the degradation process of activated receptor tyrosine kinases (RTKs) including the well described oncogenes EGFR and HER2. Consequently, hVps37A knockdown led to a hyperactivation of the MAPK (Mitogen Activated Protein Kinase) pathway secondary to accumulating amounts of the activated EGFR (pEGFR) in the cytoplasm. Furthermore, the hVps37-silenced cell lines developed a resistance against the growth inhibitory effect of Cetuximab. In contrast to hVps37A, 29.7% of the tumors analyzed were methylated at the TuSC3 promoter, accompanied with reduced mRNA expression and unfavourable survival rate of the patients. Therefore, promoter methylation turned out to be an independent prognostic factor for ovarian cancer. In-vitro, it could be shown that TuSCS3 resides in the endoplasmatic reticulum and is involved in the N-glycosylation process of integrin-β1 and potentially further proteins. Moreover, reconstitution of

  7. Chromosomal location of the human gene for DNA polymerase β

    International Nuclear Information System (INIS)

    Inhibition studies indicate that DNA polymerase β has a synthetic role in DNA repair after exposure of mammalian cells to some types of DNA-damaging agents. The primary structure of the enzyme is highly conserved in vertebrates, and nearly full-length cDNAs for the enzyme were recently cloned from mammalian cDNA libraries. Southern blot analysis of DNA from a panel of human-rodent somatic cell hybrids, using portions of the cDNA as probe, indicates that the gene for human DNA polymerase β is single copy and located on the short arm or proximal long arm of chromosome 8 (8pter-8q22). A restriction fragment length polymorphism (RFLP) was detected in normal individuals by using a probe from the 5' end of the cDNA, and this RFLP probably is due to an insertion or duplication of DNA in 20-25% of the population. This restriction site can be used as one marker for chromosome 8 genetic linkage studies and for family studies of traits potentially involving this DNA repair gene

  8. Mapping of metastasis suppressor genes for prostate cancer by microcell-mediated chromosome transfer

    Institute of Scientific and Technical Information of China (English)

    TomohikoICHIKAWA; ShigeruHOSOKI; HiroyoshiSUZUKI; KoichiroAKAKURA; TatsuoIGARASHI; YuzoFURUYA; MitsuoOSHIMURA; CarrieW.RINKER-SCHAEFFER; NaokiNIHEI; JohnT.ISAACS; HaruoITO

    2000-01-01

    Aim: To identify the metastasis suppressor genes for prostate cancer. Methods: A copy of human chromosomes was introduced into the highly metastatic Dunning R-3327 rat prostate cancer cells by the use of microcell-mediated chromosome transfer. Relationships between the size of human chromosomes introduced into microcell hybrid clones and the number of lung metastases produced by the clones were analyzed to determine which part of human chromosomes contained the metastasis suppressor gene (s) for prostate cancer. To determine portions of human chromosomes introduced, G-banding chromosomal analysis, fluorescence in situ hybridization analysis, and polymerase chain reaction analysis were performed. Results: Each of microcell hybrid clones containing human chromosomes 7, 8, 10, 11, 12, or 17 showed decreased ability to metastasize to the lung without any loss of ttmaorigenicity. This demonstrates that these human chromosomes contain metastasis suppressor genes for prostate cancer. Spontaneous deletion of portions of human chromosomes was observed in the human chromosome 7, 10, 11, 12, and 17 studies. In the human chromosome 8 study, irradiated microcell-mediated chromosome transfer was performed to enrich chromosomal ann deletions of human chromosome 8. Molecular and cytogenetic analyses of microcell hybrid clones demonstrated that metastasis suppressor genes on human chromosomes were located on 7q21-22, 7q31.2-32, 8p21-12, 10q11-22, 11p13-11.2, 12p11-q13, 12q24-ter, and 17pter-q23. KAI1 and MKK4/SEKI were identified as metastasis suppressor genes from 11p11.2 and 17p12, respectively. Conclusion: This assay system is useful to identify metastasis suppressor gene (s) for prostate cancer.

  9. Mapping of the Sca1 and pcd genes on mouse chromosome 13 provides evidence that they are different genes

    Energy Technology Data Exchange (ETDEWEB)

    Servadio, A.; McCall, A.; Zoghbi, H. [Baylor College of Medicine, Houston, TX (United States); Eicher, E.M. [Jackson Laboratory, Bar Harbor, ME (United States)

    1995-10-10

    It is well established that large chromosomal segments have remained intact during the evolution of different mammalian species. Thus, mapping information for a gene in mammalian species facilitates mapping the same gene in another mammalian species. In addition, phenotypically similar diseases that map to linkage conserved regions in two species may be caused by mutations in the same gene. Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited human disorder characterized by progressive ataxia, dysarthria, and dysmetria. SCA1 maps to the short arm of human chromosome (Chr) 6 in the 6p23-p22 region. SCA1 is caused by the expansion of an unstable CAG repeat located within the coding region of a novel protein, ataxin-1, Purkinje cell degeneration (pcd) is a recessively inherited mouse disorder characterized by a moderate ataxia, usually noted by 3-4 weeks of age. Progressive degeneration of Purkinje cells is the underlying pathogenesis in this disorder. The pcd gene was assigned to mouse Chr 13 because it showed linkage to extra toes (Xt) and pearl (pe). Some doubt about this assignment existed, however, because the calculated genetic distance between pcd and Xt was 32 cM and that between pcd and pe was 18 cM. If pcd is located in Chr 13, its placement relative to Xt and pe suggests that it would be located in the region that shares linkage homology with the region that shares linkage homology with the region of human Chr 6 that contains SCA1. Here, we present data that confirm the assignment of pcd to Chr 13, map the mouse Sca1 gene to Chr 13, and eliminate Sca1 as a candidate gene for pcd. 11 refs., 1 tab.

  10. Localisation of the gene for achondroplasia to the telomeric region of chromosome 4p

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, I.; Velinov, M.; Kilpatrick, M.W. [and others

    1994-09-01

    Achondroplasia (ACH), the most common type of genetic dwarfism, is characterized by a variety of skeletal anomalies including disproportionate short stature and rhizomelic shortening of the extremities. The disorder is inherited as an autosomal dominant trait, with a prevalence of 1-15 per 100,000 live births. The etiology of ACH remains unknown, although evidence points to a defect in the maturation of the chondrocytes in the growth plate of the cartilage. To determine the location of the gene responsible for ACH, a panel of 14 families with a total of 43 meioses was genotyped for 40 polymorphic markers for loci randomly distributed throughout the genome. The first significant positive Lod score was obtained for the locus D4S127 (Zmax=3.65 at {theta}=0.03). A series of 20 markers for chromosome 4p16.3 loci were then used to determine the most likely position of the ACH gene. Two additional loci, D4S412 and IDUA, showed strong linkage to the disease (Zmax=3.34 at {theta}=0.03 and Zmax=3.35 at {theta}=0.0, respectively). Multipoint analysis and direct counting of recombinants places the ACH gene in a 2.5 cM region between the marker D4S43 and the chromosome 4p telomere. No evidence was found for genetic heterogeneity. The ACH region contains a number of genes, including that for the fibroblast growth factor receptor FGFR3, which are being evaluated as candidates for the ACH gene. This identification of tightly linked polymorphic markers, as well as being the first step in the characterization of the ACH gene, offers the possibility of DNA based prenatal diagnosis of this disorder.

  11. A Causal Gene for Seed Dormancy on Wheat Chromosome 4A Encodes a MAP Kinase Kinase.

    Science.gov (United States)

    Torada, Atsushi; Koike, Michiya; Ogawa, Taiichi; Takenouchi, Yu; Tadamura, Kazuki; Wu, Jianzhong; Matsumoto, Takashi; Kawaura, Kanako; Ogihara, Yasunari

    2016-03-21

    Seed germination under the appropriate environmental conditions is important both for plant species survival and for successful agriculture. Seed dormancy, which controls germination time, is one of the adaptation mechanisms and domestication traits [1]. Seed dormancy is generally defined as the absence of germination of a viable seed under conditions that are favorable for germination [2]. The seed dormancy of cultivated plants has generally been reduced during domestication [3]. Bread wheat (Triticum aestivum L.) is one of the most widely grown crops in the world. Weak dormancy may be an advantage for the productivity due to uniform emergence and a disadvantage for the risks of pre-harvest sprouting (PHS), which decreases grain quality and yield [4]. A number of quantitative trait loci (QTLs) controlling natural variation of seed dormancy have been identified on various chromosomes [5]. A major QTL for seed dormancy has been consistently detected on chromosome 4A [6-13]. The QTL was designated as a major gene, Phs1, which could be precisely mapped within a 2.6 cM region [14]. Here, we identified a mitogen-activated protein kinase kinase 3 (MKK3) gene (designated TaMKK3-A) by a map-based approach as a candidate gene for the seed dormancy locus Phs1 on chromosome 4A in bread wheat. Complementation analysis showed that transformation of a dormant wheat cultivar with the TaMKK3-A allele from a nondormant cultivar clearly reduced seed dormancy. Cultivars differing in dormancy had a single nonsynonymous amino acid substitution in the kinase domain of the predicted MKK3 protein sequence, which may be associated with the length of seed dormancy. PMID:26948878

  12. Beyond the chromosome: the prevalence of unique extra-chromosomal bacteriophages with integrated virulence genes in pathogenic Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Bryan Utter

    Full Text Available In Staphylococcus aureus, the disease impact of chromosomally integrated prophages on virulence is well described. However, the existence of extra-chromosomal prophages, both plasmidial and episomal, remains obscure. Despite the recent explosion in bacterial and bacteriophage genomic sequencing, studies have failed to specifically focus on extra-chromosomal elements. We selectively enriched and sequenced extra-chromosomal DNA from S. aureus isolates using Roche-454 technology and uncovered evidence for the widespread distribution of multiple extra-chromosomal prophages (ExPΦs throughout both antibiotic-sensitive and -resistant strains. We completely sequenced one such element comprised of a 43.8 kbp, circular ExPΦ (designated ФBU01 from a vancomycin-intermediate S. aureus (VISA strain. Assembly and annotation of ФBU01 revealed a number of putative virulence determinants encoded within a bacteriophage immune evasion cluster (IEC. Our identification of several potential ExPΦs and mobile genetic elements (MGEs also revealed numerous putative virulence factors and antibiotic resistance genes. We describe here a previously unidentified level of genetic diversity of stealth extra-chromosomal elements in S. aureus, including phages with a larger presence outside the chromosome that likely play a prominent role in pathogenesis and strain diversity driven by horizontal gene transfer (HGT.

  13. Integration of biological data by kernels on graph nodes allows prediction of new genes involved in mitotic chromosome condensation.

    Science.gov (United States)

    Hériché, Jean-Karim; Lees, Jon G; Morilla, Ian; Walter, Thomas; Petrova, Boryana; Roberti, M Julia; Hossain, M Julius; Adler, Priit; Fernández, José M; Krallinger, Martin; Haering, Christian H; Vilo, Jaak; Valencia, Alfonso; Ranea, Juan A; Orengo, Christine; Ellenberg, Jan

    2014-08-15

    The advent of genome-wide RNA interference (RNAi)-based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function-mitotic chromosome condensation-and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest. PMID:24943848

  14. Expression cloning of a candidate gene for Mucolipidosis type IV

    Energy Technology Data Exchange (ETDEWEB)

    Gama Sosa, M.A.; De Gasperi, R.; Battistini, S. [New York Univ. School of Medicine, NY (United States)] [and others

    1994-09-01

    Mucolipidosis IV is an autosomal recessive lysosomal storage disease characterized by progressive psychomotor retardation and opthalmological abnormalities, namely corneal opacity and retinal degeneration. Biochemically, it is characterized by the lysosomal accumulation of diverse compounds such as gangliosides, phospholipids and acidic mucopolysaccharides. To date, the basic biochemical defect causing this storage disease is still unknown and the relevant gene has also not been identified. An expression cloning strategy was used to identify human kidney cDNA clones capable of reverting in transient gene expression assays the PAS+ phenotype typical of Mucolipidosis IV cells to the normal PAS- phenotype. By this method, a candidate cDNA clone (Mu cDNA) capable of clearing Mucolipidosis IV fibroblasts of their PAS+ positive storage material was isolated. Nucleotide sequence analysis indicated the presence of 2 open reading frames. In vitro translation of T7 transcribed Mu RNA showed protein products of 7,000 and 6,000 mw. Altered expression of the Mu gene may result in the onset of Mucolipidosis type IV.

  15. Localization of Sry gene on Y chromosome of Muntjac munticus vaginalis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The chromosomes 1, Y1, Y2 of Muntjac munticus vaginalis were isolated by fluorescence activated chromosome sorting and amplified by degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR). A primer pair within human Sry HMG box was designed and the Sry gene of the male M. m vaginalis was amplified. The product was cloned and sequenced. The result proved that Sry is located on chromosome Y2, which is the sex-determining chromosome in the male M. m vaginalis.

  16. Length of Selection Around Candidate Genes for Artificial Selection During Domestication and Crop Improvement in Maize

    Science.gov (United States)

    Genomic screens for artificial selection have been successful in identifying candidate genes for agronomic traits in maize (Zea mays L). However, the validity of the candidates identified requires that selection sweeps are very short, only containing the candidate gene with the nearest neighboring g...

  17. Candidate Genes Detected in Transcriptome Studies are Strongly Dependent on Genetic Background

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Jesper Givskov; Kristensen, Torsten Nygård; Hoffmann, Ary Anthony; Loeschcke, Volker; Paige, Ken N; Sørensen, Peter

    2011-01-01

    Whole genome transcriptomic studies can point to potential candidate genes for organismal traits. However, the importance of potential candidates is rarely followed up through functional studies and/or by comparing results across independent studies. We have analysed the overlap of candidate gene...

  18. Computational selection and prioritization of candidate genes for Fetal Alcohol Syndrome

    Directory of Open Access Journals (Sweden)

    Hide Winston

    2007-10-01

    Full Text Available Abstract Background Fetal alcohol syndrome (FAS is a serious global health problem and is observed at high frequencies in certain South African communities. Although in utero alcohol exposure is the primary trigger, there is evidence for genetic- and other susceptibility factors in FAS development. No genome-wide association or linkage studies have been performed for FAS, making computational selection and -prioritization of candidate disease genes an attractive approach. Results 10174 Candidate genes were initially selected from the whole genome using a previously described method, which selects candidate genes according to their expression in disease-affected tissues. Hereafter candidates were prioritized for experimental investigation by investigating criteria pertinent to FAS and binary filtering. 29 Criteria were assessed by mining various database sources to populate criteria-specific gene lists. Candidate genes were then prioritized for experimental investigation using a binary system that assessed the criteria gene lists against the candidate list, and candidate genes were scored accordingly. A group of 87 genes was prioritized as candidates and for future experimental validation. The validity of the binary prioritization method was assessed by investigating the protein-protein interactions, functional enrichment and common promoter element binding sites of the top-ranked genes. Conclusion This analysis highlighted a list of strong candidate genes from the TGF-β, MAPK and Hedgehog signalling pathways, which are all integral to fetal development and potential targets for alcohol's teratogenic effect. We conclude that this novel bioinformatics approach effectively prioritizes credible candidate genes for further experimental analysis.

  19. Genetics of intracerebral hemorrhage: Insights from candidate gene approaches

    Directory of Open Access Journals (Sweden)

    Baoqiong Liu

    2012-01-01

    Full Text Available Intracerebral hemorrhage (ICH is a heterogeneous disease with genetic factors playing an important role. Association studies on a wide range of candidate pathways suggest a weak but significant effect for several alleles with ICH risk. Among the most widely investigated genes are those involved in the renin-angiotensin-aldosterone system (e.g., angiotensin-converting enzyme, coagulation pathway (e.g., Factor XIII, Factor VII, platelet-activating factor acetylhydrolase, Factor V Leiden, and beta1-tubulin, lipid metabolism (e.g., apolipoproteins (ApoE, Apo(a, ApoH, homocysteine metabolism (e.g., methylenetetrahydrofolate reductase, inflammation (e.g., interleukin-6 and tumor necrosis-alpha and other candidate pathways. To identify the robustness of the above associations with ICH, a search of Pubmed (1988 through December 2011 was performed, with searches limited to English-language studies conducted among adult human subjects. This article presents a review of the examined literature on the genetics of ICH.

  20. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human

    Energy Technology Data Exchange (ETDEWEB)

    Blatt, C.; Eversole-Cire, P.; Cohn, V.H.; Zollman, S.; Fournier, R.E.K.; Mohandas, L.T.; Nesbitt, M.; Lugo, T.; Jones, D.T.; Reed, R.R.; Weiner, L.P.; Sparkes, R.S.; Simon, M.I. (Weizmann Institute, Rehovoth (Israel))

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding {alpha}-subunit proteins, two different {beta} subunits, and one {gamma} subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The {beta} subunits were also assigned-GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extend of the G{alpha} gene family and may help in attempts to correlate specific genetic diseases and with genes corresponding to G proteins.

  1. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human.

    Science.gov (United States)

    Blatt, C; Eversole-Cire, P; Cohn, V H; Zollman, S; Fournier, R E; Mohandas, L T; Nesbitt, M; Lugo, T; Jones, D T; Reed, R R

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding alpha-subunit proteins, two different beta subunits, and one gamma subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The beta subunits were also assigned--GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extent of the G alpha gene family and may help in attempts to correlate specific genetic diseases with genes corresponding to G proteins. PMID:2902634

  2. Gene Duplication, Gene Conversion and the Evolution of the Y Chromosome

    Science.gov (United States)

    Connallon, Tim; Clark, Andrew G.

    2010-01-01

    Nonrecombining chromosomes, such as the Y, are expected to degenerate over time due to reduced efficacy of natural selection compared to chromosomes that recombine. However, gene duplication, coupled with gene conversion between duplicate pairs, can potentially counteract forces of evolutionary decay that accompany asexual reproduction. Using a combination of analytical and computer simulation methods, we explicitly show that, although gene conversion has little impact on the probability that duplicates become fixed within a population, conversion can be effective at maintaining the functionality of Y-linked duplicates that have already become fixed. The coupling of Y-linked gene duplication and gene conversion between paralogs can also prove costly by increasing the rate of nonhomologous crossovers between duplicate pairs. Such crossovers can generate an abnormal Y chromosome, as was recently shown to reduce male fertility in humans. The results represent a step toward explaining some of the more peculiar attributes of the human Y as well as preliminary Y-linked sequence data from other mammals and Drosophila. The results may also be applicable to the recently observed pattern of tetraploidy and gene conversion in asexual, bdelloid rotifers. PMID:20551442

  3. Y-Chromosome haplogroup I prehistoric gene flow in Europe

    Directory of Open Access Journals (Sweden)

    Siiri Rootsi

    2006-12-01

    Full Text Available To investigate which aspects of contemporary human Y-chromosome variation in Europe are characteristic of primary colonization, late-glacial expansions from refuge areas, Neolithic dispersals or more recent events in gene flow haplogroup I was analyzed. The analysis of Hg I Y chromosomes revealed several sub-clades with distinct geographic distributions. Sub-clade I1a accounts for most of Hg I in Scandinavia, with a rapidly decreasing frequency towards the East European Plain and the Atlantic fringe; but microsatellite diversity reveals that the Iberian Peninsula/Southern France refugial area could be the source region of the early spread of both I1a and the less common I1c. I1b* extends from the eastern Adriatic to Eastern Europe, and declines noticeably towards the southern Balkans, and abruptly towards North Italy. This clade probably diffused after the Last Glacial Maximum from a homeland in the Balkans or Eastern Europe. In contrast, I1b2 most probably arose in southern France/Iberia, underwent a post-glacial expansion, and marked the human colonization of Sardinia about 9000 years ago.

  4. Chromosomal translocation involving the beta T cell receptor gene in acute leukemia

    OpenAIRE

    1988-01-01

    DNA spanning a t(7;19) chromosomal translocation breakpoint was isolated from the human T cell line SUP-T7 established from an acute lymphoblastic leukemia. Nucleotide sequence analysis showed that the point of crossover on chromosome 7 occurred immediately adjacent to joining segment J beta 1.1 within the TCR-beta gene, suggesting that this translocation resulted from an error in TCR gene rearrangement. On chromosome 19, the translocation occurred within a previously uncharacterized transcri...

  5. Chromosome mapping of the GD3 synthase gene (SIAT8) in human and mouse

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yoichi; Saito, Toshiyuki [National Inst. of Radiological Sciences, Chiba (Japan); Nara, Kiyomitsu [Tokyo Metropolitan Inst. of Medical Science (Japan)] [and others

    1996-02-15

    This article reports on the genetic mapping of the human and mouse GD3 synthase gene (SIAT8) using fluorescence in situ hybridization and interspecific backcross analysis. The human gene was localized to human chromosome 12p12.1-p11.2; the mouse homologue was localized to mouse chromosome 6, which has been shown to be syntenic with the short arm of human chromosome 12, suggesting a common evolution. 16 refs., 1 fig.

  6. Phase Transition in the Genome Evolution Favors Nonrandom Distribution of Genes on Chromosomes

    Science.gov (United States)

    Kowalski, Jakub; Waga, Wojciech; Zawierta, Marta; Cebrat, Stanisław

    We have used the Monte Carlo-based computer models to show that selection pressure could affect the distribution of recombination hotspots along the chromosome. Close to the critical crossover rate, where genomes may switch between the Darwinian purifying selection or complementation of haplotypes, the distribution of recombination events and the force of selection exerted on genes affect the structure of chromosomes. The order of expression of genes and their location on chromosome may decide about the extinction or survival of competing populations.

  7. Nuclear positioning, higher-order folding, and gene expression of Mmu15 sequences are refractory to chromosomal translocation

    OpenAIRE

    Snow, Kathy J.; Wright, Sarah M.; Woo, Yong; Titus, Laura C.; Mills, Kevin D.; Shopland, Lindsay S.

    2010-01-01

    Nuclear localization influences the expression of certain genes. Chromosomal rearrangements can reposition genes in the nucleus and thus could impact the expression of genes far from chromosomal breakpoints. However, the extent to which chromosomal rearrangements influence nuclear organization and gene expression is poorly understood. We examined mouse progenitor B cell lymphomas with a common translocation, der(12)t(12;15), which fuses a gene-rich region of mouse chromosome12 (Mmu12) with a ...

  8. The norepinephrine transporter gene is a candidate gene for panic disorder

    DEFF Research Database (Denmark)

    Buttenschøn, H N; Kristensen, A S; Buch, H N;

    2011-01-01

    Panic disorder (PD) is an anxiety disorder characterized by recurrent panic attacks with a lifetime prevalence of 4.7%. Genetic factors are known to contribute to the development of the disorder. Several lines of evidence point towards a major role of the norepinephrine system in the pathogenesis...... of PD. The SLC6A2 gene is located on chromosome 16q12.2 and encodes the norepinephrine transporter (NET), responsible for the reuptake of norepinephrine into presynaptic nerve terminals. The aim of the present study was to analyze genetic variants located within the NET gene for association with PD...

  9. Recombinant cells that highly express chromosomally-integrated heterologous gene

    Science.gov (United States)

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  10. Chromosomal integration of recombinant alpha-amylase and glucoamylase genes in saccharomyces cerevisiae for starch conversion

    Science.gov (United States)

    Recombinant constructs of barley '-amylase and Lentinula edodes glucoamylase genes were integrated into the chromosomes of Saccharomyces cerevisiae. The insertion was confirmed by PCR amplification of the gene sequence in the chromosomes. The expression was analyzed by SDS-PAGE of the enzymes puri...

  11. Role of Testis-Specific Gene Expression in Sex-Chromosome Evolution of Anopheles gambiae

    Science.gov (United States)

    Baker, Dean A.; Russell, Steven

    2011-01-01

    Gene expression in Anopheles gambiae shows a deficiency of testis-expressed genes on the X chromosome associated with an excessive movement of retrogene duplication. We suggest that the degeneration of sex chromosomes in this monandrous species is likely the result of pressures from X inactivation, dosage compensation, and sexual antagonism. PMID:21890740

  12. Imprinted survival genes preclude loss of heterozygosity of chromosome 7 in cancer cells.

    Science.gov (United States)

    Boot, Arnoud; Oosting, Jan; de Miranda, Noel Fcc; Zhang, Yinghui; Corver, Willem E; van de Water, Bob; Morreau, Hans; van Wezel, Tom

    2016-09-01

    The genomes of a wide range of cancers, including colon, breast, and thyroid cancers, frequently show copy number gains of chromosome 7 and rarely show loss of heterozygosity. The molecular basis for this phenomenon is unknown. Strikingly, oncocytic follicular thyroid carcinomas can display an extreme genomic profile, with homozygosity of all chromosomes except for chromosome 7. The observation that homozygosity of chromosome 7 is never observed suggests that retention of heterozygosity is essential for cells. We hypothesized that cell survival genes are genetically imprinted on either of two copies of chromosome 7, which thwarts loss of heterozygosity at this chromosome in cancer cells. By employing a DNA methylation screen and gene expression analysis, we identified six imprinted genes that force retention of heterozygosity on chromosome 7. Subsequent knockdown of gene expression showed that CALCR, COPG2, GRB10, KLF14, MEST, and PEG10 were essential for cancer cell survival, resulting in reduced cell proliferation, G1 -phase arrest, and increased apoptosis. We propose that imprinted cell survival genes provide a genetic basis for retention of chromosome 7 heterozygosity in cancer cells. The monoallelically expressed cell survival genes identified in this study, and the cellular pathways that they are involved in, offer new therapeutic targets for the treatment of tumours showing retention of heterozygosity on chromosome 7. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27265324

  13. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean.

    Directory of Open Access Journals (Sweden)

    Andrew J Burt

    Full Text Available Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris. Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08 where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.

  14. Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry.

    Science.gov (United States)

    De Franceschi, P; Stegmeir, T; Cabrera, A; van der Knaap, E; Rosyara, U R; Sebolt, A M; Dondini, L; Dirlewanger, E; Quero-Garcia, J; Campoy, J A; Iezzoni, A F

    2013-01-01

    Striking increases in fruit size distinguish cultivated descendants from small-fruited wild progenitors for fleshy fruited species such as Solanum lycopersicum (tomato) and Prunus spp. (peach, cherry, plum, and apricot). The first fruit weight gene identified as a result of domestication and selection was the tomato FW2.2 gene. Members of the FW2.2 gene family in corn (Zea mays) have been named CNR (Cell Number Regulator) and two of them exert their effect on organ size by modulating cell number. Due to the critical roles of FW2.2/CNR genes in regulating cell number and organ size, this family provides an excellent source of candidates for fruit size genes in other domesticated species, such as those found in the Prunus genus. A total of 23 FW2.2/CNR family members were identified in the peach genome, spanning the eight Prunus chromosomes. Two of these CNRs were located within confidence intervals of major quantitative trait loci (QTL) previously discovered on linkage groups 2 and 6 in sweet cherry (Prunus avium), named PavCNR12 and PavCNR20, respectively. An analysis of haplotype, sequence, segregation and association with fruit size strongly supports a role of PavCNR12 in the sweet cherry linkage group 2 fruit size QTL, and this QTL is also likely present in sour cherry (P. cerasus). The finding that the increase in fleshy fruit size in both tomato and cherry associated with domestication may be due to changes in members of a common ancestral gene family supports the notion that similar phenotypic changes exhibited by independently domesticated taxa may have a common genetic basis. PMID:23976873

  15. Association of single nucleotide polymorphisms in candidate genes residing under quantitative trait loci in beef cattle

    Science.gov (United States)

    The objective was to assess the association of single nucleotide polymorphisms (SNP) developed on candidate genes residing under previously identified quantitative trait loci for marbling score and meat tenderness. Two hundred five SNP were identified on twenty candidate genes. Genes selected under ...

  16. Structure of the human gene encoding the associated microfibrillar protein (MFAP1) and localization to chromosome 15q15-q21

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, H.; Chow, M.; Abrams, W.R. [Univ. of Pennsylvania, Philadelphia, PA (United States)] [and others

    1994-09-15

    Microfibrils with a diameter of 10-12 nm, found either in assocation with elastin or independently, are an important component of the extracellular matrix of many tissues. To extend understanding of the proteins composing these microfibrils, the cDNA and gene encoding the human associated microfibril protein (MRAP1) have been cloned and characterized. The coding portion is contained in 9 exons, and the sequence is very homologous to the previously described chick cDNA, but does not appear to share homology or domain motifs with any other known protein. Interestingly, the gene has been localized to chromosome 15q15-q21 by somatic hybrid cell and chromosome in situ analyses. This is the same chromosomal region to which the fibrillin gene, FBN1, known to be defective in the Marfan syndrome, has been mapped. MFAP1 is a candidate gene for heritable diseases affecting microfibrils. 38 refs., 6 figs.

  17. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.J.; Rounsley, S.D.; Rodriguez-Carres, M.; Kuo, A.; Wasmann, C.c.; Grimwood, J.; Schmutz, J.; Taga, M.; White, G.J.; Zhuo, S.; Schwartz, D.C.; Freitag, M.; Ma, L.-J.; Danchin, E.G.J.; Henrissat, B.; Cutinho, P.M.; Nelson, D.R.; Straney, D.; Napoli, C.A.; Baker, B.M.; Gribskov, M.; Rep, M.; Kroken, S.; Molnar, I.; Rensing, C.; Kennell, J.C.; Zamora, J.; Farman, M.L.; Selker, E.U.; Salamov, A.; Shapiro, H.; Pangilinan, J.; Lindquist, E.; Lamers, C.; Grigoriev, I.V.; Geiser, D.M.; Covert, S.F.; Temporini, S.; VanEtten, H.D.

    2009-04-20

    The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of .50 species known as the"Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on .100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on

  18. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Coleman

    2009-08-01

    Full Text Available The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani, is a member of a group of >50 species known as the "Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on >100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI. Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique

  19. Four kinds of ENU-induced white spot mice and chromosome locations of the mutant genes

    Institute of Scientific and Technical Information of China (English)

    WU Baojin; MAO Huihua; SHAO Yixiang; XUE Zhengfeng; LI Houda

    2003-01-01

    Phenotype-driven is the name for an approach used to study gene functions through mutagenesis, location and cloning of the mutant gene. In this study, 150 male C57BL/6J(B6) mice were treated with ENU and reproduced a total offspring of 3860. Of these descendants, 210 exhibited mutation phenotypes by screening, and more than 10 of them are hereditable. Four kinds of mutant mice, named Wbct, W-1Bao, W-2Bao, and W-3Bao, showed dominant hereditary white spot mutation with partial albinism on their belly, distal limbs and tail terminal. To map these mutant genes, 39 microsatellites, equally distributed on the mouse genome and with difference between B6 and DBA/2J (D2), were selected to scan the genome after discrimination of the white spots in the F2 mice [(B6×D2)×D2]. It is found that, the log odds score (LODS) between W-1Bao and D5Mit168 is 0.56, and the LODS of W-1Bao and D5Mit352 is 4.47. With the gradual application of microsatellites D5Mit290, D5Mit312, D5Mit308 and D5Mit356 that are close to the mutant gene, and the number of F2 mice going up to 537, the mutant W-1Bao is located between D5Mit356 and D5Mit308 on chromosome 5, about 42.19 cM from the centromere. In the same way, W-2Bao and W-3Bao are mapped nearby W-1Bao, and Wbct is located on chromosome 1, about 41.6 cM from the centromere. After searching for the mouse genome database (MGD) and performing a one-by-one study of all genes located on chromosome subregion, it is believed that the kit gene is an excellent candidate for the white spot mutations of W-1Bao, W-2Bao and W-3Bao.

  20. Exclusion of the neuronal nitric oxide synthase gene and the human achaete-scute homologue 1 gene as candidate loci for spinal cerebellar ataxia 2 (SCA2)

    Energy Technology Data Exchange (ETDEWEB)

    Twells, R.; Xu, W. [Imperial College, London (United Kingdom)]|[Institute of Animal Physiology and Genetics Research, Babraham, Cambridge (United Kingdom); Ball, D. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)] [and others

    1994-09-01

    The autosomal dominant ataxias are a heterogeneous group of disorders, characterized by progressive degeneration of the cerebellum, pons and inferior olives, as well as the spinal cord. We previously mapped the spinal cerebellar ataxia 2 locus (SCA2) to chromosome 12q23-24.1 in a large Cuban founder population, flanked by the markers D12S58 and PLA2. Anticipation is a common feature of this disorder and therefore we have examined genes in this region which contain trinucleotide repeat motifs as candidate loci for SCA2. The neuronal nitric oxide synthase gene (NOS) has recently been assigned to chromosome 12q24.2-24.3 by fluorescent in situ hybridization. Neuronal NOS is responsible for the production of nitric oxide, a neurotransmitter expressed in high levels in the cerebellum as well as other regions of the nervous system. We report here the identification and analysis of an (AAT){sub n} repeat motif in an intronic region of the neuronal NOS gene, genetic mapping data and its exclusion from being involved in SCA2. We also report the exclusion of the human achaete-scute homologue 1 gene (HASH1), instrumental in neurosensory development in mouse, from being involved in SCA2 by the analysis of a proximal (CAG){sub n} repeat motif in the Cuban pedigrees, and its genetic location on chromosome 12q.

  1. Analysis of dyslexia candidate genes in the Raine cohort representing the general Australian population

    OpenAIRE

    Paracchini, S; Ang, Q W; Stanley, F J; Monaco, A. P.; Pennell, C E; Whitehouse, A J O

    2011-01-01

    Several genes have been suggested as dyslexia candidates. Some of these candidate genes have been recently shown to be associated with literacy measures in sample cohorts derived from the general population. Here, we have conducted an association study in a novel sample derived from the Australian population (the Raine cohort) to further investigate the role of dyslexia candidate genes. We analysed markers, previously reported to be associated with dyslexia, located within the MRPL19/C2ORF3, ...

  2. The Axon Guidance Receptor Gene ROBO1 Is a Candidate Gene for Developmental Dyslexia.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  3. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia.

    Directory of Open Access Journals (Sweden)

    Katariina Hannula-Jouppi

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  4. A Parthenogenesis Gene Candidate and Evidence for Segmental Allopolyploidy in Apomictic Brachiaria decumbens.

    Science.gov (United States)

    Worthington, Margaret; Heffelfinger, Christopher; Bernal, Diana; Quintero, Constanza; Zapata, Yeny Patricia; Perez, Juan Guillermo; De Vega, Jose; Miles, John; Dellaporta, Stephen; Tohme, Joe

    2016-07-01

    Apomixis, asexual reproduction through seed, enables breeders to identify and faithfully propagate superior heterozygous genotypes by seed without the disadvantages of vegetative propagation or the expense and complexity of hybrid seed production. The availability of new tools such as genotyping by sequencing and bioinformatics pipelines for species lacking reference genomes now makes the construction of dense maps possible in apomictic species, despite complications including polyploidy, multisomic inheritance, self-incompatibility, and high levels of heterozygosity. In this study, we developed saturated linkage maps for the maternal and paternal genomes of an interspecific Brachiaria ruziziensis (R. Germ. and C. M. Evrard) × B. decumbens Stapf. F1 mapping population in order to identify markers linked to apomixis. High-resolution molecular karyotyping and comparative genomics with Setaria italica (L.) P. Beauv provided conclusive evidence for segmental allopolyploidy in B. decumbens, with strong preferential pairing of homologs across the genome and multisomic segregation relatively more common in chromosome 8. The apospory-specific genomic region (ASGR) was mapped to a region of reduced recombination on B. decumbens chromosome 5. The Pennisetum squamulatum (L.) R.Br. PsASGR-BABY BOOM-like (psASGR-BBML)-specific primer pair p779/p780 was in perfect linkage with the ASGR in the F1 mapping population and diagnostic for reproductive mode in a diversity panel of known sexual and apomict Brachiaria (Trin.) Griseb. and P. maximum Jacq. germplasm accessions and cultivars. These findings indicate that ASGR-BBML gene sequences are highly conserved across the Paniceae and add further support for the postulation of the ASGR-BBML as candidate genes for the apomictic function of parthenogenesis. PMID:27206716

  5. Targeted Chromosomal Translocations and Essential Gene Knockout Using CRISPR/Cas9 Technology in Caenorhabditis elegans.

    Science.gov (United States)

    Chen, Xiangyang; Li, Mu; Feng, Xuezhu; Guang, Shouhong

    2015-12-01

    Many genes play essential roles in development and fertility; their disruption leads to growth arrest or sterility. Genetic balancers have been widely used to study essential genes in many organisms. However, it is technically challenging and laborious to generate and maintain the loss-of-function mutations of essential genes. The CRISPR/Cas9 technology has been successfully applied for gene editing and chromosome engineering. Here, we have developed a method to induce chromosomal translocations and produce genetic balancers using the CRISPR/Cas9 technology and have applied this approach to edit essential genes in Caenorhabditis elegans. The co-injection of dual small guide RNA targeting genes on different chromosomes resulted in reciprocal translocation between nonhomologous chromosomes. These animals with chromosomal translocations were subsequently crossed with animals that contain normal sets of chromosomes. The F1 progeny were subjected to a second round of Cas9-mediated gene editing. Through this method, we successfully produced nematode strains with specified chromosomal translocations and generated a number of loss-of-function alleles of two essential genes (csr-1 and mes-6). Therefore, our method provides an easy and efficient approach to generate and maintain loss-of-function alleles of essential genes with detailed genetic background information. PMID:26482793

  6. Suppression of tumorigenicity of breast cancer cells by transfer of human chromosome 17 does not require transferred BRCA1 and p53 genes.

    Science.gov (United States)

    Theile, M; Hartmann, S; Scherthan, H; Arnold, W; Deppert, W; Frege, R; Glaab, F; Haensch, W; Scherneck, S

    1995-02-01

    A number of candidate tumor suppressor genes located on the human chromosome 17 are thought to have a role to play in the development of breast cancer. In addition to the p53 gene on 17p13.1 and the BRCA1 gene mapped to 17q12-21, other chromosomal regions for tumor suppressor genes have been suggested to exist on 17p13.3 and both the central and the distal parts of 17q, although definitive functional proof of their involvement in breast cancer tumorigenesis is still lacking. In this report we show that microcell transfer of a human chromosome 17 into wild-type p53 breast cancer cells CAL51 results in loss of tumorigenicity and anchorage-independent growth, changes in cell morphology and a reduction of cell growth rates of the neo-selected microcell hybrids. In the hybrid cells, which express the p53 wild-type protein, only the p- and the distal parts of the q arm of donor chromosome 17 are transferred. Thus, our results provide functional evidence for the presence of one or more tumor suppressor gene(s) on chromosome 17, which are distinct from the p53 and the BRCA1 genes. PMID:7845668

  7. Cytogenetic Mapping of Disease Resistance Genes and Analysis of Their Distribution Features on Chromosomes in Maize

    Institute of Scientific and Technical Information of China (English)

    LiLi-jia; SongYun-chun

    2003-01-01

    Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plant species onto maize chromosomes, combining with data published before. These genes include Helminthosporium turcium Pass resistance genes Htl, Htnl and Ht2, Helminthosporium maydis Nisik resistance genes Rhml and Rhm2,maize dwarf mosaic virus resistance gene Mdml, wheat streak mosaic virus resistance gene Wsml, Helminthosporium carbonum ULLstrup resistance gene Hml and the cloned Xanthomonas oryzae pv. Oryzae resistance gene Xa21 of rice, Cladosporium fulvum resistance genes Cf-9 and Cf-2. 1 of tomato, and Pseudomonas syringae resistance gene RPS2 of Arabidopsis. Most of the tested disease resistance genes located on the four chromosomes, i. e. , chromosomesl, 3, 6 and 8, and they closely distributed at the interstitial regions of these chromosomal long arms with percentage distances ranging 31.44(±3.72)-72.40(±3. 25) except for genes Rhml, Rhm2, Mdml and Wsml which mapped on the satellites of the short arms of chromosome6. It showed that the tested RFLP markers and genes were duplicated or triplicated in maize genome. Homology and conservation of disease resistance genes among species, and relationship between distribution features and functions of the genes were discussed. The results provide important scientific basis for deeply understanding structure and function of disease resistance genes and breeding in maize.

  8. Identification of a candidate gene for panicle length in rice (Oryza sativa L. via association and linkage analysis

    Directory of Open Access Journals (Sweden)

    Erbao eLiu

    2016-05-01

    Full Text Available Panicle length (PL is an important trait for improving panicle architecture and grain yield in rice (Oryza sativa L.. Three populations were used to identify QTLs and candidate genes associated with PL. Four QTLs for PL were detected on chromosomes 4, 6 and 9 through linkage mapping in the recombinant inbred line population derived from a cross between the cultivars Xiushui79 (short panicle and C-bao (long panicle. Ten SSR markers associated with PL were detected on chromosomes 2, 3, 5, 6, 8, 9 and 10 in the natural population consisting of 540 accessions collected from East and Southeast Asia. A major locus on chromosome 9 with the largest effect was identified via both linkage and association mapping. LONG PANICLE 1 (LP1 locus was delimited to a 90-kb region of the long arm of chromosome 9 through fine mapping using a single segment segregating F2 population. Two single nucleotide polymorphisms (SNPs leading to amino acid changes were detected in the third and fifth exons of LP1. LP1encodes a Remorin_C-containing protein of unknown function with homologs in a variety of species. Sequencing analysis of LP1 in two parents and 103 rice accessions indicated that SNP1 is associated with panicle length. The LP1 allele of Xiushui79 leads to reduced panicle length, whereas the allele of C-bao relieves the suppression of panicle length. LP1 and the elite alleles can be used to improve panicle length in rice.

  9. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  10. Adaptive Evolution of Genes Duplicated from the Drosophila pseudoobscura neo-X Chromosome

    Science.gov (United States)

    Meisel, Richard P.; Hilldorfer, Benedict B.; Koch, Jessica L.; Lockton, Steven; Schaeffer, Stephen W.

    2010-01-01

    Drosophila X chromosomes are disproportionate sources of duplicated genes, and these duplications are usually the result of retrotransposition of X-linked genes to the autosomes. The excess duplication is thought to be driven by natural selection for two reasons: X chromosomes are inactivated during spermatogenesis, and the derived copies of retroposed duplications tend to be testis expressed. Therefore, autosomal derived copies of retroposed genes provide a mechanism for their X-linked paralogs to “escape” X inactivation. Once these duplications have fixed, they may then be selected for male-specific functions. Throughout the evolution of the Drosophila genus, autosomes have fused with X chromosomes along multiple lineages giving rise to neo-X chromosomes. There has also been excess duplication from the two independent neo-X chromosomes that have been examined—one that occurred prior to the common ancestor of the willistoni species group and another that occurred along the lineage leading to Drosophila pseudoobscura. To determine what role natural selection plays in the evolution of genes duplicated from the D. pseudoobscura neo-X chromosome, we analyzed DNA sequence divergence between paralogs, polymorphism within each copy, and the expression profiles of these duplicated genes. We found that the derived copies of all duplicated genes have elevated nonsynonymous polymorphism, suggesting that they are under relaxed selective constraints. The derived copies also tend to have testis- or male-biased expression profiles regardless of their chromosome of origin. Genes duplicated from the neo-X chromosome appear to be under less constraints than those duplicated from other chromosome arms. We also find more evidence for historical adaptive evolution in genes duplicated from the neo-X chromosome, suggesting that they are under a unique selection regime in which elevated nonsynonymous polymorphism provides a large reservoir of functional variants, some of which are

  11. Candidate genes for drought tolerance and improved productivity in rice (Oryza sativa L.)

    Indian Academy of Sciences (India)

    M S Vinod; Naveen Sharma; K Manjunatha; Adnan Kanbar; N B Prakash; H E Shashidhar

    2006-03-01

    Candidate genes are sequenced genes of known biological action involved in the development or physiology of a trait. Twenty-one putative candidate genes were designed after an exhaustive search in the public databases along with an elaborate literature survey for candidate gene products and/or regulatory sequences associated with enhanced drought resistance. The downloaded sequences were then used to design primers considering the flanking sequences as well. Polymerase chain reaction (PCR) performed on 10 diverse cultivars that involved Japonica, Indica and local accessions, revealed 12 polymorphic candidate genes. Seven polymorphic candidate genes were then utilized to genotype 148 individuals of CT9993 × IR62266 doubled haploid (DH) mapping population. The segregation data were tested for deviation from the expected Mendelian ratio (1:1) using a Chi-square test (<1%). Based on this, four candidate genes were assessed to be significant and the remaining three, as non-significant. All the significant candidate genes were biased towards CT9993, the female parent in the DH mapping population. Single-marker analysis strongly associated ( < 1%) them to different traits under both well-watered and low-moisture stress conditions. Two candidate genes, EXP15 and EXP13, were found to be associated with root number and silicon content in the stem respectively, under both well-watered and low-moisture stress conditions.

  12. Compensation of Dosage-Sensitive Genes on the Chicken Z Chromosome.

    Science.gov (United States)

    Zimmer, Fabian; Harrison, Peter W; Dessimoz, Christophe; Mank, Judith E

    2016-01-01

    In many diploid species, sex determination is linked to a pair of sex chromosomes that evolved from a pair of autosomes. In these organisms, the degeneration of the sex-limited Y or W chromosome causes a reduction in gene dose in the heterogametic sex for X- or Z-linked genes. Variations in gene dose are detrimental for large chromosomal regions when they span dosage-sensitive genes, and many organisms were thought to evolve complete mechanisms of dosage compensation to mitigate this. However, the recent realization that a wide variety of organisms lack complete mechanisms of sex chromosome dosage compensation has presented a perplexing question: How do organisms with incomplete dosage compensation avoid deleterious effects of gene dose differences between the sexes? Here we use expression data from the chicken (Gallus gallus) to show that ohnologs, duplicated genes known to be dosage-sensitive, are preferentially dosage-compensated on the chicken Z chromosome. Our results indicate that even in the absence of a complete and chromosome wide dosage compensation mechanism, dosage-sensitive genes are effectively dosage compensated on the Z chromosome. PMID:27044516

  13. Affected kindred analysis of human X chromosome exomes to identify novel X-linked intellectual disability genes.

    Directory of Open Access Journals (Sweden)

    Tejasvi S Niranjan

    Full Text Available X-linked Intellectual Disability (XLID is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders.

  14. The plasmacytoma resistance gene, Pctr2, delays the onset of tumorigenesis and resides in the telomeric region of chromosome 4.

    Science.gov (United States)

    Mock, B A; Hartley, J; Le Tissier, P; Wax, J S; Potter, M

    1997-11-15

    Mouse plasmacytomas share pathogenetic features in common with both multiple myeloma and Burkitt's lymphoma in humans. Susceptibility to plasmacytoma induction by intraperitoneal pristane in mice is controlled by multiple genes. At least two of these genes reside on mouse chromosome 4 in regions of the genome sharing linkage homology with human chromosomes 9p21, 1p32, and 1p36. A series of congenic strains recombinant for regions of mouse chromosome 4 in the vicinity of the Pctr2 predisposition locus were created and typed for their tumor susceptibility/resistance phenotypes. These strains were derived by introgressively backcrossing alleles from resistant DBA/2 mice onto the susceptible BALB/cAnPt background. Six resistant and two susceptible strains were allelotyped for 10 genes and 49 random DNA markers to identify the smallest region of overlap in the resistant strains. These studies have determined that the Pctr2 locus resides in either a 500-kb interval proximal to Nppa, or in a 1- to 2-centiMorgan (cM) interval distal to Nppa. In these congenic strain analyses, the Nppa and Fv1 loci, in addition to genes within about 1 cM of these loci, have been excluded as candidates for the Pctr2 locus. A relevant locus that may reside in this interval is Rep2; it is associated with the efficiency of repairing X-ray induced DNA damage sustained during the G2 phase of the mitotic cycle. The Pctr2 locus acts in a codominant fashion. F1 hybrids between resistant and susceptible congenic strains exhibit a reduced tumor incidence and a significant delay in the onset of tumorigenesis. Identification and eventual cloning of the Pctr2 locus may assist in the identification of genes involved in many types of cancer showing aberrations in human chromosome 1p36. PMID:9354679

  15. Differential Gene Expression Reveals Candidate Genes for Drought Stress Response in Abies alba (Pinaceae)

    OpenAIRE

    David Behringer; Heike Zimmermann; Birgit Ziegenhagen; Sascha Liepelt

    2015-01-01

    Increasing drought periods as a result of global climate change pose a threat to many tree species by possibly outpacing their adaptive capabilities. Revealing the genetic basis of drought stress response is therefore implemental for future conservation strategies and risk assessment. Access to informative genomic regions is however challenging, especially for conifers, partially due to their large genomes, which puts constraints on the feasibility of whole genome scans. Candidate genes offer...

  16. Database of cattle candidate genes and genetic markers for milk production and mastitis

    OpenAIRE

    Ogorevc, J; Kunej, T; Razpet, A; Dovc, P

    2009-01-01

    A cattle database of candidate genes and genetic markers for milk production and mastitis has been developed to provide an integrated research tool incorporating different types of information supporting a genomic approach to study lactation, udder development and health. The database contains 943 genes and genetic markers involved in mammary gland development and function, representing candidates for further functional studies. The candidate loci were drawn on a genetic map to reveal positio...

  17. Identification of Pneumocystis carinii chromosomes and mapping of five genes

    DEFF Research Database (Denmark)

    Lundgren, B; Cotton, R; Lundgren, J D;

    1990-01-01

    Pulsed field gel electrophoresis was used to identify the chromosome-size DNA of Pneumocystis carinii, a major pathogen of immunocompromised patients. Thirteen chromosomes of rodent Pneumocystis carinii, ranging in size from 300 to 700 kilobases (kb), were identified. The minimum genome size for ...

  18. Cloning, tissue expression pattern, and chromosome localization of human protein kinase Bγ gene

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Protein kinase B (PKB) is a member of the second messenger-regulated subfamily of protein kinases, and plays a key role in cell-cycle regulation, glucose uptake and promotion of cell differentiation. Evidence shows that PKB undergoes activation in some human tumors and is involved in Ras pathway, which implies that PKB can trigger a pathway to induce oncogenic transformation. A nucleotide sequence of mouse Pkb? was used as a probe to screen homolog in a human liver cDNA library. A fragment of 1998 bp containing a 1440 bp ORF encoding 479 amino acid residues was obtained. Then the 3'-terminal of this fragment was extended to 2788 bp by 'electronic walking' screening, and the extended fragment was confirmed by PCR amplification. The protein deduced by the gene had a high identity of 83% and 78% to the human PKBγ and γ, respectively, and was designated as human PKB?. Northern hybridization detected two equally expressed transcripts of 8.5 and 6.5 kb in length in all 16 human tissues tested, with the highest expression level in brain, and lower levels with variation in the other tissues. By RH mapping, the PKBγ was placed on chromosome 1q43, between markers D1S304 and D1S2693. It is a valuable clue for cloning the candidate genes related to prostate cancer; Arrhythmogenic Right Ventricular Dysplasia (ARVD); Chediak-Higashi, NK cell Deficiency (CHS); and Hypoparathyrodism with Short Stature, Mental Retardation and Seizures which have already been mapped in this chromosomal region.

  19. Cytogenetic Mapping of Disease Resistance Genes and Analysis of Their Distribution Features on Chromosomes in Maize

    Institute of Scientific and Technical Information of China (English)

    Li Li-jia; Song Yun-chun

    2003-01-01

    Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plant species onto maize chromosomes, combining with data published before. These genes include Helminthosporium turcium Pass resistance genes Ht1, Htn1 and Ht2, Helminthosporium maydis Nisik resistance genes Rhm1 and Rhm2, maize dwarf mosaic virus resistance gene Mdm1, wheat streak mosaic virus resistance gene Wsm1, Helminthosporium carbonum ULLstrup resistance gene Hml and the cloned Xanthomonas oryzae pv. Oryzae resistance gene Xa21 of rice, Cladosporium fulvum resistance genes Cf-9 and Cf-2.1 of tomato,and Pseudomonas syringae resistance gene RPS2 of Arabidopsis. Most of the tested disease resistance genes located on the four chromosomes, i.e., chromosomes1, 3, 6 and 8, and they closely distributed at the interstitial regions of these chromosomal long arms with percentage distances ranging 31.44(±3.72)-72.40(±3.25) except for genes Rhm1, Rhm2, Mdm1 and Wsm1 which mapped on the satellites of the short arms of chromosome6. It showed that the tested RFLP markers and genes were duplicated or triplicated in maize genome. Homology and conservation of disease resistance genes among species, and relationship between distribution features and functions of the genes were discussed. The results provide important scientific basis for deeply understanding structure and function of disease resistance genes and breeding in maize.

  20. Structure of the human paralemmin gene (PALM), mapping to human chromosome 19p13.3 and mouse chromosome 10, and exclusion of coding mutations in grizzled, mocha, jittery, and hesitant mice.

    Science.gov (United States)

    Burwinkel, B; Miglierini, G; Jenne, D E; Gilbert, D J; Copeland, N G; Jenkins, N A; Ring, H Z; Francke, U; Kilimann, M W

    1998-05-01

    Paralemmin is a newly identified protein that is associated with the plasma membrane and with intracellular membranes through a lipid anchor. It is abundant in brain, is expressed at intermediate levels in the kidney and in endocrine cells, and occurs at low levels in many other tissues. As it is a candidate for genetic disorders that affect membrane functions, we have determined the structure of the human paralemmin gene, PALM, showing that it is organized into nine exons. Moreover, we have performed chromosomal assignments of the human and mouse paralemmin genes, localizing them to regions of homology at human 19p13.3 and the central mouse chromosome 10. Finally, mutation analysis using RNA from mice homozygous for the mutant genes grizzled (gr), mocha (mh), mocha 2J (mh2J), jittery (ji) and hesitant (ji(hes)), which map to this area, excluded mutations in their Palm coding sequences. PMID:9615234

  1. Assignment of the human pancreatic regenerating (REG) gene to chromosome 2p12

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, R.; Egan, J.M.; Zenilman, M.E.; Shuldiner, A.R.; Hawkins, A.L.; Griffin, C.A. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1994-03-15

    A cDNA termed reg (for regenerating gene) has been isolated and characterized from a rat pancreatic library. Expression of reg is markedly increased in regenerating islets and decreased when insulin gene expression is inhibited. These findings have led to the hypothesis that reg may be involved in the expansion [beta]-cell function. The human reg gene has a high degree of similarity to the rat reg gene. To determine the chromosomal location of the human reg gene, the authors analyzed two panels of mouse- or hamster-human hybrid cell lines containing a single human chromosome or several different human chromosomes. DNA extracts from these cell lines were analyzed for the presence of the human reg gene by polymerase chain reaction. In addition, human metaphase chromosomes were used for fluorescence in situ hybridization to further confirm the chromosomal assignment and to determine the subchromosomal localization. With these approaches, they show that the human reg gene is located on the short arm of chromosome 2 near the centromere at band 2p12. 17 refs., 2 figs.

  2. Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer

    Science.gov (United States)

    Lawrenson, Kate; Li, Qiyuan; Kar, Siddhartha; Seo, Ji-Heui; Tyrer, Jonathan; Spindler, Tassja J.; Lee, Janet; Chen, Yibu; Karst, Alison; Drapkin, Ronny; Aben, Katja K. H.; Anton-Culver, Hoda; Antonenkova, Natalia; Bowtell, David; Webb, Penelope M.; deFazio, Anna; Baker, Helen; Bandera, Elisa V.; Bean, Yukie; Beckmann, Matthias W.; Berchuck, Andrew; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Chen, Anne; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas T.; Edwards, Robert P.; Eilber, Ursula; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A. T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; James, Paul; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kruger Kjaer, Susanne; Kelemen, Linda E.; Kellar, Melissa; Kelley, Joseph L.; Kiemeney, Lambertus A.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F. A. G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; Nevanlinna, Heli; McNeish, Ian; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Azmi, Mat Adenan Noor; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Phelan, Catherine M.; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Sellers, Thomas A.; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston, Lara; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Monteiro, Alvaro; Pharoah, Paul D.; Gayther, Simon A.; Freedman, Matthew L.

    2015-01-01

    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10−5). For three cis-eQTL associations (P<1.4 × 10−3, FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10−10 for risk variants (P<10−4) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC. PMID:26391404

  3. Identification of Candidate Genes related to Bovine Marbling using Protein-Protein Interaction Networks

    OpenAIRE

    Lim, Dajeong; Kim, Nam-Kuk; Park, Hye-Sun; Lee, Seung-Hwan; Cho, Yong-Min; Oh, Sung Jong; Kim, Tae-Hun; Kim, Heebal

    2011-01-01

    Complex traits are determined by the combined effects of many loci and are affected by gene networks or biological pathways. Systems biology approaches have an important role in the identification of candidate genes related to complex diseases or traits at the system level. The present study systemically analyzed genes associated with bovine marbling score and identified their relationships. The candidate nodes were obtained using MedScan text-mining tools and linked by protein-protein intera...

  4. The human gene encoding acetylcholinesterase is located on the long arm of chromosome 7.

    OpenAIRE

    Getman, D K; Eubanks, J H; Camp, S; Evans, G.A.; Taylor, P

    1992-01-01

    Acetylcholinesterase (AChE) is a secreted enzyme essential for regulating cholinergic neurotransmission at neuronal and neuromuscular synapses. In view of the altered expression of AChE in some central neurological and neuromuscular disorders with a probable genetic basis, we have identified the chromosomal location of the gene encoding AChE. Chromosomal in situ suppression hybridization analysis revealed a single gene to be at 7q22, a result which was confirmed by PCR analysis of genomic DNA...

  5. Human enteric defensin genes: Chromosomal map position and a model for possible evolutionary relationships

    Energy Technology Data Exchange (ETDEWEB)

    Bevins, C.L.; Jones, D.E.; Dutra, A.; Schaffzin, J.; Muenke, M. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    1996-01-01

    Defensins, a family of antimicrobial peptides isolated from several mammalian species, have a proposed functional role in innate host defense. In humans, certain defensin genes are expressed in phagocytic cells of hematopoietic origin, while others are expressed in Paneth cells, epithelial cells of the small intestine. In this study, we determined the chromosomal localization of the human defensin (HD) genes expressed in Paneth cells, HD-5 and HD-6. Analysis of a panel of human/hamster hybrids localized both HD-5 and HD-6 to chromosome 8. Southern blot analysis of DNA from cell lines that contain either chromosome 8 deletions or duplications further localized these two genes to 8p21-pter. Fluorescence in situ hybridization analysis of metaphase chromosomes using an HD-5 probe further supported the regional map assignment. Previous studies had localized the hematopoietic genes to chromosome 8p23, and the current work is consistent with both the enteric and the myeloid defensin genes being located at the same cytogenetic region of chromosome 8. In addition, the evolutionary relationships of this gene family were addressed using dot matrix sequence analysis. From this analysis, a model for the possible evolutionary history of the human defensin genes is proposed. According to this model, an early duplication of a primordial defensin gene yielded the ancestral genes of present day HD-5 and HD-6. The model further suggests that a subsequent unequal meiotic crossover event had generated an additional gene, comprised of a hybrid of sequences from the two parental genes, and that this hybrid gene then served as the ancestor to present day hematopoietic defensin genes. 39 refs., 5 figs., 1 tab.

  6. Identification of candidate methylation-responsive genes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Dickerson Erin B

    2007-01-01

    Full Text Available Abstract Background Aberrant methylation of gene promoter regions has been linked to changes in gene expression in cancer development and progression. Genes associated with CpG islands (CGIs are especially prone to methylation, but not all CGI-associated genes display changes in methylation patterns in cancers. Results In order to identify genes subject to regulation by methylation, we conducted gene expression profile analyses of an ovarian cancer cell line (OVCAR-3 before and after treatment with the demethylating agent 5-aza-deoxycytidine (5-aza-dC. An overlapping subset of these genes was found to display significant differences in gene expression between normal ovarian surface epithelial cells and malignant cells isolated from ovarian carcinomas. While 40% of all human genes are associated with CGIs, > 94% of the overlapping subset of genes is associated with CGIs. The predicted change in methylation status of genes randomly selected from the overlapping subset was experimentally verified. Conclusion We conclude that correlating genes that are upregulated in response to 5-aza-dC treatment of cancer cell lines with genes that are down-regulated in cancer cells may be a useful method to identify genes experiencing epigenetic-mediated changes in expression over cancer development.

  7. Cytogenetic Analysis of Chromosome 3 in DROSOPHILA MELANOGASTER: The Homoeotic Gene Complex in Polytene Chromosome Interval 84a-B

    OpenAIRE

    Kaufman, Thomas C.; Lewis, Ricki; Wakimoto, Barbara

    1980-01-01

    Cytogenetic evidence is presented demonstrating that the 84A-B interval in the proximal portion of the right arm of chromosome 3 is the residence of a homoeotic gene complex similar to the bithorax locus. This complex, originally defined by the Antennapedia (Antp) mutation, controls segmentation in the anterior portion of the organism. Different lesions within this complex homoeotically transform portions of the prothorax, proboscis, antenna and eye and present clear analogies to similar lesi...

  8. Identification of candidate B-lymphoma genes by cross-species gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Van S Tompkins

    Full Text Available Comparative genome-wide expression profiling of malignant tumor counterparts across the human-mouse species barrier has a successful track record as a gene discovery tool in liver, breast, lung, prostate and other cancers, but has been largely neglected in studies on neoplasms of mature B-lymphocytes such as diffuse large B cell lymphoma (DLBCL and Burkitt lymphoma (BL. We used global gene expression profiles of DLBCL-like tumors that arose spontaneously in Myc-transgenic C57BL/6 mice as a phylogenetically conserved filter for analyzing the human DLBCL transcriptome. The human and mouse lymphomas were found to have 60 concordantly deregulated genes in common, including 8 genes that Cox hazard regression analysis associated with overall survival in a published landmark dataset of DLBCL. Genetic network analysis of the 60 genes followed by biological validation studies indicate FOXM1 as a candidate DLBCL and BL gene, supporting a number of studies contending that FOXM1 is a therapeutic target in mature B cell tumors. Our findings demonstrate the value of the "mouse filter" for genomic studies of human B-lineage neoplasms for which a vast knowledge base already exists.

  9. Chromosomal mapping, gene structure and characterization of the human and murine RAB27B gene

    Directory of Open Access Journals (Sweden)

    Huxley Clare

    2001-02-01

    Full Text Available Abstract Background Rab GTPases are regulators of intracellular membrane traffic. The Rab27 subfamily consists of Rab27a and Rab27b. Rab27a has been recently implicated in Griscelli Disease, a disease combining partial albinism with severe immunodeficiency. Rab27a plays a key role in the function of lysosomal-like organelles such as melanosomes in melanocytes and lytic granules in cytotoxic T lymphocytes. Little is known about Rab27b. Results The human RAB27B gene is organised in six exons, spanning about 69 kb in the chromosome 18q21.1 region. Exon 1 is non-coding and is separated from the others by 49 kb of DNA and exon 6 contains a long 3' untranslated sequence (6.4 kb. The mouse Rab27b cDNA shows 95% identity with the human cDNA at the protein level and maps to mouse chromosome 18. The mouse mRNA was detected in stomach, large intestine, spleen and eye by RT-PCR, and in heart, brain, spleen and kidney by Northern blot. Transient over-expression of EGF-Rab27b fusion protein in cultured melanocytes revealed that Rab27b is associated with melanosomes, as observed for EGF-Rab27a. Conclusions Our results indicate that the Rab27 subfamily of Ras-like GTPases is highly conserved in mammals. There is high degree of conservation in sequence and gene structure between RAB27A and RAB27B genes. Exogenous expression of Rab27b in melanocytes results in melanosomal association as observed for Rab27a, suggesting the two Rab27 proteins are functional homologues. As with RAB27A in Griscelli Disease, RAB27B may be also associated with human disease mapping to chromosome 18.

  10. Transcriptome network analysis reveals candidate genes for renal cell carcinoma

    OpenAIRE

    Wei Zhai; Yun-Fei Xu; Min Liu; Jun-Hua Zheng

    2012-01-01

    Context: Renal cell carcinoma (RCC) is a kidney cancer that originates in renal parenchyma and it is the most common type of kidney cancer with approximately 80% lethal cases. Aims: To interpret the mechanism, explore the regulation of TF-target genes and TF-pathway, and identify the potential key genes of renal cell carcinoma. Settings and Design: After constructing a regulation network from differently expressed genes and transcription factors, pathway regulation network and gene onto...

  11. Fine Mapping of a GWAS-Derived Obesity Candidate Region on Chromosome 16p11.2

    Science.gov (United States)

    Jarick, Ivonne; Pütter, Carolin; Göbel, Maria; Horn, Lucie; Struve, Christoph; Haas, Katharina; Knoll, Nadja; Grallert, Harald; Illig, Thomas; Reinehr, Thomas; Wang, Hai-Jun; Hebebrand, Johannes; Hinney, Anke

    2015-01-01

    Introduction Large-scale genome-wide association studies (GWASs) have identified 97 chromosomal loci associated with increased body mass index in population-based studies on adults. One of these SNPs, rs7359397, tags a large region (approx. 1MB) with high linkage disequilibrium (r²>0.7), which comprises five genes (SH2B1, APOBR, sulfotransferases: SULT1A1 and SULT1A2, TUFM). We had previously described a rare mutation in SH2B1 solely identified in extremely obese individuals but not in lean controls. Methods The coding regions of the genes APOBR, SULT1A1, SULT1A2, and TUFM were screened for mutations (dHPLC, SSCP, Sanger re-sequencing) in 95 extremely obese children and adolescents. Detected non-synonymous variants were genotyped (TaqMan SNP Genotyping, MALDI TOF, PCR-RFLP) in independent large study groups (up to 3,210 extremely obese/overweight cases, 485 lean controls and 615 obesity trios). In silico tools were used for the prediction of potential functional effects of detected variants. Results Except for TUFM we detected non-synonymous variants in all screened genes. Two polymorphisms rs180743 (APOBR p.Pro428Ala) and rs3833080 (APOBR p.Gly369_Asp370del9) showed nominal association to (extreme) obesity (uncorrected p = 0.003 and p = 0.002, respectively). In silico analyses predicted a functional implication for rs180743 (APOBR p.Pro428Ala). Both APOBR variants are located in the repetitive region with unknown function. Conclusion Variants in APOBR contributed as strongly as variants in SH2B1 to the association with extreme obesity in the chromosomal region chr16p11.2. In silico analyses implied no functional effect of several of the detected variants. Further in vitro or in vivo analyses on the functional implications of the obesity associated variants are warranted. PMID:25955518

  12. Gene organization in the region containing a new gene involved in chromosome partition in Escherichia coli.

    OpenAIRE

    Kato, J; Nishimura, Y.; Yamada, M.; Suzuki, H.; Hirota, Y

    1988-01-01

    A new mutation, parC, causing abnormal chromosome segregation was identified in two thermosensitive mutants of Escherichia coli. The thermosensitive growth of the mutants was corrected by pLC4-14 in the Clarke-Carbon collection. This plasmid carries a putative gene which can suppress the cell division defect due to ftsI (pbpB) and has hence been termed sufI (sui). The nearness of parC to metC was confirmed, and cotransduction frequency of parC was 59% with metC and 20% with glc. The parC-sufI...

  13. Molecular Evolution of Candidate Genes for Crop-Related Traits in Sunflower (Helianthus annuus L.)

    OpenAIRE

    Mandel, Jennifer R.; McAssey, Edward V.; Nambeesan, Savithri; García-Navarro, Elena; Burke, John M.

    2014-01-01

    Evolutionary analyses aimed at detecting the molecular signature of selection during crop domestication and/or improvement can be used to identify genes or genomic regions of likely agronomic importance. Here, we describe the DNA sequence-based characterization of a pool of candidate genes for crop-related traits in sunflower. These genes, which were identified based on homology to genes of known effect in other study systems, were initially sequenced from a panel of improved lines. All genes...

  14. Affected Kindred Analysis of Human X Chromosome Exomes to Identify Novel X-Linked Intellectual Disability Genes

    OpenAIRE

    Niranjan, Tejasvi S.; Skinner, Cindy; May, Melanie; Turner, Tychele; Rose, Rebecca; Stevenson, Roger; Schwartz, Charles E.; Wang, Tao

    2015-01-01

    X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families ...

  15. Chromosomal location and gene paucity of the male specific region on papaya Y chromosome

    Czech Academy of Sciences Publication Activity Database

    Yu, Q.; Hou, S.; Hobza, Roman; Feltus, F.A.; Wang, X.; Jin, W.; Skelton, R.L.; Blas, A.; Lemke, C.; Saw, J.H.; Moore, P.H.; Alam, M.; Jiang, J.; Paterson, A.H.; Vyskot, Boris; Ming, R.

    2007-01-01

    Roč. 278, č. 2 (2007), s. 177-185. ISSN 1617-4615 R&D Projects: GA ČR(CZ) GA521/06/0056 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Carica papaya * repetitive sequences * sex chromosome Subject RIV: BO - Biophysics Impact factor: 2.978, year: 2007

  16. Sex-biased gene expression and evolution of the x chromosome in nematodes.

    Science.gov (United States)

    Albritton, Sarah Elizabeth; Kranz, Anna-Lena; Rao, Prashant; Kramer, Maxwell; Dieterich, Christoph; Ercan, Sevinç

    2014-07-01

    Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno's hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive. PMID:24793291

  17. Expression of the dyslexia candidate gene kiaa0319-like in insect cells

    NARCIS (Netherlands)

    Holster, S.; Oers, van M.M.; Roode, E.C.; Tsang, O.W.H.; Yeung, V.S.Y.; Vlak, J.M.; Waye, M.M.Y.

    2013-01-01

    The human kiaa0319-like gene is one of the candidate genes for developmental dyslexia, but the exact function of the encoded KIAA0319L (KL) protein is not known. To allow functional analysis a purified, biologically active KL protein is required. The kiaa0319-like gene was expressed in insect cells

  18. Candidate gene analysis of organ pigmentation loci in the Solanaceae

    OpenAIRE

    Thorup, T. A.; Tanyolac, B.; Livingstone, K D; Popovsky, S.; Paran, I.; Jahn, Molly

    2000-01-01

    Ten structural genes from the Capsicum (pepper) carotenoid biosynthetic pathway have been localized on a (Capsicum annuum × Capsicum chinense)F2 genetic map anchored in Lycopersicon (tomato). The positions of these genes were compared with positions of the same genes in tomato when known, and with loci from pepper, potato, and tomato that affect carotenoid levels in different tissues. C2, one of three phenotypically defined loci determining pepper fruit color, ...

  19. Chromosome mapping of dragline silk genes in the genomes of widow spiders (Araneae, Theridiidae.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhao

    Full Text Available With its incredible strength and toughness, spider dragline silk is widely lauded for its impressive material properties. Dragline silk is composed of two structural proteins, MaSp1 and MaSp2, which are encoded by members of the spidroin gene family. While previous studies have characterized the genes that encode the constituent proteins of spider silks, nothing is known about the physical location of these genes. We determined karyotypes and sex chromosome organization for the widow spiders, Latrodectus hesperus and L. geometricus (Araneae, Theridiidae. We then used fluorescence in situ hybridization to map the genomic locations of the genes for the silk proteins that compose the remarkable spider dragline. These genes included three loci for the MaSp1 protein and the single locus for the MaSp2 protein. In addition, we mapped a MaSp1 pseudogene. All the MaSp1 gene copies and pseudogene localized to a single chromosomal region while MaSp2 was located on a different chromosome of L. hesperus. Using probes derived from L. hesperus, we comparatively mapped all three MaSp1 loci to a single region of a L. geometricus chromosome. As with L. hesperus, MaSp2 was found on a separate L. geometricus chromosome, thus again unlinked to the MaSp1 loci. These results indicate orthology of the corresponding chromosomal regions in the two widow genomes. Moreover, the occurrence of multiple MaSp1 loci in a conserved gene cluster across species suggests that MaSp1 proliferated by tandem duplication in a common ancestor of L. geometricus and L. hesperus. Unequal crossover events during recombination could have given rise to the gene copies and could also maintain sequence similarity among gene copies over time. Further comparative mapping with taxa of increasing divergence from Latrodectus will pinpoint when the MaSp1 duplication events occurred and the phylogenetic distribution of silk gene linkage patterns.

  20. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  1. Identification of microdeletions in candidate genes for cleft lip and/or palate

    DEFF Research Database (Denmark)

    Shi, Min; Mostowska, Adrianna; Jugessur, Astanand;

    2009-01-01

    contribute to a particular disease. METHODS: We performed a candidate gene analysis involving 1,221 SNPs in 333 candidate genes for orofacial clefting, using 2,823 samples from 725 two- and three-generation families with a proband having cleft lip with or without cleft palate. We used SNP genotyping, DNA......, TBX1, and TFAP2A are likely to be etiologic. CONCLUSIONS: These deletions suggest the potential roles of genes or regulatory elements contained within deleted regions in the etiology of clefting. Our analysis took advantage of genotypes from a candidate-gene-based SNP survey and proved to be an...... efficient analytical approach to interrogate genes potentially involved in clefting. This can serve as a model to find genes playing a role in complex traits in general....

  2. Application of genomic and quantitative genetic tools to identify candidate resistance genes for brown rot resistance in peach.

    Directory of Open Access Journals (Sweden)

    Pedro J Martínez-García

    Full Text Available The availability of a complete peach genome assembly and three different peach genome sequences created by our group provide new opportunities for application of genomic data and can improve the power of the classical Quantitative Trait Loci (QTL approaches to identify candidate genes for peach disease resistance. Brown rot caused by Monilinia spp., is the most important fungal disease of stone fruits worldwide. Improved levels of peach fruit rot resistance have been identified in some cultivars and advanced selections developed in the UC Davis and USDA breeding programs. Whole genome sequencing of the Pop-DF parents lead to discovery of high-quality SNP markers for QTL genome scanning in this experimental population. Pop-DF created by crossing a brown rot moderately resistant cultivar 'Dr. Davis' and a brown rot resistant introgression line, 'F8,1-42', derived from an initial almond × peach interspecific hybrid, was evaluated for brown rot resistance in fruit of harvest maturity over three seasons. Using the SNP linkage map of Pop-DF and phenotypic data collected with inoculated fruit, a genome scan for QTL identified several SNP markers associated with brown rot resistance. Two of these QTLs were placed on linkage group 1, covering a large (physical region on chromosome 1. The genome scan for QTL and SNP effects predicted several candidate genes associated with disease resistance responses in other host-pathogen systems. Two potential candidate genes, ppa011763m and ppa026453m, may be the genes primarily responsible for M. fructicola recognition in peach, activating both PAMP-triggered immunity (PTI and effector-triggered immunity (ETI responses. Our results provide a foundation for further genetic dissection, marker assisted breeding for brown rot resistance, and development of peach cultivars resistant to brown rot.

  3. Application of genomic and quantitative genetic tools to identify candidate resistance genes for brown rot resistance in peach.

    Science.gov (United States)

    Martínez-García, Pedro J; Parfitt, Dan E; Bostock, Richard M; Fresnedo-Ramírez, Jonathan; Vazquez-Lobo, Alejandra; Ogundiwin, Ebenezer A; Gradziel, Thomas M; Crisosto, Carlos H

    2013-01-01

    The availability of a complete peach genome assembly and three different peach genome sequences created by our group provide new opportunities for application of genomic data and can improve the power of the classical Quantitative Trait Loci (QTL) approaches to identify candidate genes for peach disease resistance. Brown rot caused by Monilinia spp., is the most important fungal disease of stone fruits worldwide. Improved levels of peach fruit rot resistance have been identified in some cultivars and advanced selections developed in the UC Davis and USDA breeding programs. Whole genome sequencing of the Pop-DF parents lead to discovery of high-quality SNP markers for QTL genome scanning in this experimental population. Pop-DF created by crossing a brown rot moderately resistant cultivar 'Dr. Davis' and a brown rot resistant introgression line, 'F8,1-42', derived from an initial almond × peach interspecific hybrid, was evaluated for brown rot resistance in fruit of harvest maturity over three seasons. Using the SNP linkage map of Pop-DF and phenotypic data collected with inoculated fruit, a genome scan for QTL identified several SNP markers associated with brown rot resistance. Two of these QTLs were placed on linkage group 1, covering a large (physical) region on chromosome 1. The genome scan for QTL and SNP effects predicted several candidate genes associated with disease resistance responses in other host-pathogen systems. Two potential candidate genes, ppa011763m and ppa026453m, may be the genes primarily responsible for M. fructicola recognition in peach, activating both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. Our results provide a foundation for further genetic dissection, marker assisted breeding for brown rot resistance, and development of peach cultivars resistant to brown rot. PMID:24244329

  4. Mapping the chromosome 16 cadherin gene cluster to a minimal deleted region in ductal breast cancer.

    Science.gov (United States)

    Chalmers, I J; Aubele, M; Hartmann, E; Braungart, E; Werner, M; Höfler, H; Atkinson, M J

    2001-04-01

    The cadherin family of cell adhesion molecules has been implicated in tumor metastasis and progression. Eight family members have been mapped to the long arm of chromosome 16. Using radiation hybrid mapping, we have located six of these genes within a cluster at 16q21-q22.1. In invasive lobular carcinoma of the breast frequent LOH and accompanying mutation affect the CDH1 gene, which is a member of this chromosome 16 gene cluster. CDH1 LOH also occurs in invasive ductal carcinoma, but in the absence of gene mutation. The proximity of other cadherin genes to 16q22.1 suggests that they may be affected by LOH in invasive ductal carcinomas. Using the mapping data, microsatellite markers were selected which span regions of chromosome 16 containing the cadherin genes. In breast cancer tissues, a high rate of allelic loss was found over the gene cluster region, with CDH1 being the most frequently lost marker. In invasive ductal carcinoma a minimal deleted region was identified within part of the chromosome 16 cadherin gene cluster. This provides strong evidence for the existence of a second 16q22 suppressor gene locus within the cadherin cluster. PMID:11343777

  5. Predicting sensation seeking from dopamine genes: A candidate system approach

    OpenAIRE

    Derringer, Jaime; Robert F Krueger; Dick, Danielle M; Saccone, Scott; Grucza, Richard A.; Agrawal, Arpana; Lin, Peng; Almasy, Laura; Edenberg, Howard J.; Foroud, Tatiana; Nurnberger, John I.; Hesselbrock, Victor M.; Kramer, John R.; Kuperman, Samuel; Porjesz, Bernice

    2010-01-01

    Sensation seeking is a heritable personality trait that has been reliably linked to behavior disorders. The dopamine system has been hypothesized to contribute to individual differences in sensation seeking, and both experimental and observational studies in humans and non-human animals provide evidence for this relationship. We present here a candidate-system approach to genetic association analysis of sensation seeking, in which single nucleotide polymorphisms (SNPs) from a number of dopami...

  6. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  7. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Science.gov (United States)

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  8. Functional epigenomics approach to identify methylated candidate tumour suppressor genes in renal cell carcinoma

    OpenAIRE

    Morris, M.

    2008-01-01

    Promoter region hypermethylation and transcriptional silencing is a frequent cause of tumour suppressor gene (TSG) inactivation in many human cancers. Previously, to identify candidate epigenetically inactivated TSGs in renal cell carcinoma (RCC), we monitored changes in gene expression in four RCC cell lines after treatment with the demethylating agent 5-azacytidine. This enabled us to identify HAI-2/SPINT2 as a novel epigenetically inactivated candidate RCC TSG. To identify further candidat...

  9. Accuracy of preimplantation genetic diagnosis (PGD) of single gene and chromosomal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Verlinsky, Y.; Strom, C.; Rechitsky, S. [Reproductive Genetics Institute, Chicage, IL (United States)] [and others

    1994-09-01

    We have developed a polar body inferred approach for preconception diagnosis of single gene and chromosomal disorders. Preconception PCR or FISH analysis was performed in a total of 310 first polar bodies for the following genetic conditions: cystic fibrosis, hemophilia A, alpha-1-antitrypsin deficiency, Tay Sachs disease, retinitis pigmentosa and common chromosomal trisomies. An important advantage of this approach is the avoidance of sperm (DNA) contamination, which is the major problem of PGD. We are currently applying FISH analysis of biopsied blastomeres, in combination with PCR or separately, and have demonstrated a significant improvement of the accuracy of PGD of X-linked disorders at this stage. Our data have also demonstrated feasibility of the application of FISH technique for PGD of chromosomal disorders. It was possible to detect chromosomal non-disjunctions and chromatid malsegregations in the first meiotic division, as well as to evaluate chromosomal mutations originating from the second meiotic nondisjunction.

  10. Chromosomal localization of the human gene encoding c-myc promoter-binding protein (MPB1) to chromosome 1p35-pter

    Energy Technology Data Exchange (ETDEWEB)

    White, R.A.; Dowler, L.L. [Univ. of Missouri, Kansas City, MO (United States); Adkison, L.R. [Mercer Univ. School of Medicine, Macon, GA (United States); Ray, R.B. [St. Louis Univ. Health Sciences Center, St. Louis, MO (United States)

    1997-02-01

    We report the mapping of the human gene MPB1 (c-myc promoter binding protein), a recently identified gene regulatory protein. MPB1 binds to the c-myc P2 promoter and exerts a negative regulatory role on c-myc transcription. Since exogenous expression from transfection of the MPB1 gene suppresses the tumorigenic property of breast cancer cells, there was interest in determining the chromosomal location of this gene. The human MPB1 gene was assigned to human chromosome 1p35-pter using Southern blot analyses of genomic DNAs from rodent-human somatic hybrid cell lines. A specific human genomic fragment was observed only in the somatic cell lines containing human chromosome 1 or the p35-pter region of the chromosome. 10 refs., 2 figs.

  11. A gene for autosomal dominant progressive cone dystrophy (CORD5) maps to chromosome 17p12-p13

    Energy Technology Data Exchange (ETDEWEB)

    Balciuniene, J.; Holmgren, G.; Forsman, K. [University Hospital, Umea (Sweden)] [and others

    1995-11-20

    Inherited retinal dystrophy is a common cause of visual impairment. Cone dystrophy affects the cone function and is manifested as progressive loss of the central vision, defective color vision, and photophobia. Linkage was demonstrated between progressive cone dystrophy (CORD5) and genetic markers on chromosome 17p12-p13 in a five-generation family. Multipoint analysis gave a maximum lod score of 7.72 at the marker D17S938. Recombinant haplotypes in the family suggest that the cone dystrophy locus is located in a 25-cM interval between the markers D17S926/D17S849 and D17S804/D17S945. Furthermore, one recombination was detected between the disease locus and a microsatellite marker in the candidate gene RCV1, encoding the retinal protein recoverin. Two additional candidate genes encoding retinal guanylate cyclase (GUC2D) and pigment epithelium-derived factor (PEDF) are located at 17p13.1. Moreover, loci for retinitis pigmentosa and Leber congenital amaurosis have been mapped to the same region. Identification of the cone dystrophy locus may be of importance not only for identifying functional genes in the cone system, but also for identifying genes for other retinal disorders. 34 refs., 3 figs., 2 tabs.

  12. Re-sequencing data for refining candidate genes and polymorphisms in QTL regions affecting adiposity in chicken.

    Directory of Open Access Journals (Sweden)

    Pierre-François Roux

    Full Text Available In this study, we propose an approach aiming at fine-mapping adiposity QTL in chicken, integrating whole genome re-sequencing data. First, two QTL regions for adiposity were identified by performing a classical linkage analysis on 1362 offspring in 11 sire families obtained by crossing two meat-type chicken lines divergently selected for abdominal fat weight. Those regions, located on chromosome 7 and 19, contained a total of 77 and 84 genes, respectively. Then, SNPs and indels in these regions were identified by re-sequencing sires. Considering issues related to polymorphism annotations for regulatory regions, we focused on the 120 and 104 polymorphisms having an impact on protein sequence, and located in coding regions of 35 and 42 genes situated in the two QTL regions. Subsequently, a filter was applied on SNPs considering their potential impact on the protein function based on conservation criteria. For the two regions, we identified 42 and 34 functional polymorphisms carried by 18 and 24 genes, and likely to deeply impact protein, including 3 coding indels and 4 nonsense SNPs. Finally, using gene functional annotation, a short list of 17 and 4 polymorphisms in 6 and 4 functional genes has been defined. Even if we cannot exclude that the causal polymorphisms may be located in regulatory regions, this strategy gives a complete overview of the candidate polymorphisms in coding regions and prioritize them on conservation- and functional-based arguments.

  13. Search of type 2 diabetes susceptibility gene on chromosome 20q

    International Nuclear Information System (INIS)

    Significant evidence of linkage to type 2 diabetes (T2D) has been shown in a relatively broad region on chromosome 20q, where the hepatocyte nuclear factor-4α (HNF4A) has been noted as a positional candidate. To systematically evaluate genetic susceptibility to T2D in the relevant region, we examined the disease association by using 1145 SNPs in two-step screening in the Japanese population. The marker screening enabled us to identify significant disease association in the lipopolysaccharide binding protein (LBP) but not in the HNF4A locus. In a 17.7-Mb interval screened, the strongest association was identified for a SNP, rs2232592, located in the intron of LBP, with an estimated odds ratio of 1.73 (95% CI 1.30-2.31) (P 0.0002) in the whole study panel involving 675 case and 474 control subjects. Our data suggest that the LBP gene may confer genetic susceptibility to T2D and this warrants further replication study

  14. Genes for resistance to stripe rust on chromosome 2B and their application in wheat breeding

    Institute of Scientific and Technical Information of China (English)

    Peigao Luo; Xueyun Hu; Huaiyu Zhang; Zhenglong Ren

    2009-01-01

    Stripe rust,caused by Puccinia striiformis f.sp.tritici,is one of the most damaging diseases of wheat worldwide.Growing resistant cultivars is the most economic and environmental friendly way to control the disease.There are many resistance genes to stripe rust located on wheat chromosome 2B.Here,we propose a strategy to construct the recombinant wheat chromosome 2B with multiple resistances to stripe rust by making crosses between wheat lines or cultivars carrying Yr genes and using marker-assisted selection,based on the reported information about resistance spectrum,chromosomal location,and linked markers of the genes.Pyramiding the resistance genes on 2B would afford a valuable strategy to control the disease by cultivating varieties with durable resistance.The possibility,efficiency,and prospect of the suggested strategy are reviewed in the paper.

  15. Fluorescence in situ hybridization (FISH) mapping of single copy genes on Trichomonas vaginalis chromosomes.

    Science.gov (United States)

    Zubáčová, Zuzana; Krylov, Vladimír; Tachezy, Jan

    2011-04-01

    The highly repetitive nature of the Trichomonas vaginalis genome and massive expansion of various gene families has caused difficulties in genome assembly and has hampered genome mapping. Here, we adapted fluorescence in situ hybridization (FISH) for T. vaginalis, which is sensitive enough to detect single copy genes on metaphase chromosomes. Sensitivity of conventional FISH, which did not allow single copy gene detection in T. vaginalis, was increased by means of tyramide signal amplification. Two selected single copy genes, coding for serine palmitoyltransferase and tryptophanase, were mapped to chromosome I and II, respectively, and thus could be used as chromosome markers. This established protocol provides an amenable tool for the physical mapping of the T. vaginalis genome and other essential applications, such as development of genetic markers for T. vaginalis genotyping. PMID:21195113

  16. cDNA cloning and chromosomal mapping of the mouse type VII collagen gene (Col7a1): Evidence for rapid evolutionary divergence of the gene

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kehua; Christiano, A.M.; Chu, Mon Li; Uitto, J. (Jefferson Medical College, Philadelphia, PA (United States) Thomas Jefferson Univ., Philadelphia, PA (United States)); Copeland, N.G.; Gilbert, D.J. (NCI-Federick Cancer Research and Development Center, Federick, MD (United States))

    1993-06-01

    Type VII collagen is the major component of anchoring fibrils, critical attachment structures at the dermal-epidermal basement membrane zone. Genetic linkage analyses with recently cloned human type VII collagen cDNAs have indicated that the corresponding gene, COL7A1, is the candidate gene in the dystrophic forms of epidermolysis bullosa. To gain insight into the evolutionary conservation of COL7A1, in this study the authors have isolated mouse type VII collagen cDNAs by screening a mouse epidermal keratinocyte cDNA library with a human COL7A1 cDNA. Two overlapping mouse cDNAs were isolated, and Northern hybridization of mouse epidermal keratinocyte RNA with one of them revealed the presence of a mRNA transcript of [approximately]9.5 kb, the approximate size of the human COL7A1 mRNA. Nucleotide sequencing of the mouse cDNAs revealed a 2760-bp open reading frame that encodes the 5[prime] half of the collagenous domain and a segment of the NC-1, the noncollagenous amino-terminal domain of type VII collagen. Comparison of the mouse amino acid sequences with the corresponding human sequences deduced from cDNAs revealed 82.5% identity. The evolutionary divergence of the gene was relatively rapid in comparison to other collagen genes. Despite the high degree of sequence variation, several sequences, including the size and the position of noncollagenous imperfections and interruptions within the Gly-X-Y repeat sequence, were precisely conserved. Finally, the mouse Col7a1 gene was located by interspecific backcross mapping to mouse Chromosome 9, a region that corresponds to human chromosome 3p21, the position of human COL7Al. This assignment confirms and extends the relationship between the mouse and the human chromosomes in this region of the genome. 33 refs., 5 figs., 1 tab.

  17. Evolutionary history of novel genes on the tammar wallaby Y chromosome: Implications for sex chromosome evolution

    OpenAIRE

    Murtagh, Veronica J.; O'Meally, Denis; Sankovic, Natasha; Delbridge, Margaret L.; Kuroki, Yoko; Boore, Jeffrey L.; Toyoda, Atsushi; Jordan, Kristen S.; Pask, Andrew J; Renfree, Marilyn B.; Fujiyama, Asao; Graves, Jennifer A. Marshall; Waters, Paul D.

    2012-01-01

    We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene ...

  18. Chromosome engineering for alien gene introgression in wheat: Progress and prospective

    Science.gov (United States)

    Chromosome engineering is a useful strategy for introgression of desirable genes from wild relatives into cultivated wheat. However, it has been a challenge to transfer a small amount of alien chromatin containing the gene of interest from one genome to another non-homologous genome through classic...

  19. Congenital diaphragmatic hernia candidate genes derived from embryonic transcriptomes

    DEFF Research Database (Denmark)

    Russell, Meaghan K; Longoni, Mauro; Wells, Julie;

    2012-01-01

    expression profiling of developing embryonic diaphragms would help identify genes likely to be associated with diaphragm defects. We generated a time series of whole-transcriptome expression profiles from laser captured embryonic mouse diaphragms at embryonic day (E)11.5 and E12.5 when experimental...... undetected diaphragmatic defects. Our study demonstrates the utility of genetic characterization of normal development as an integral part of a disease gene identification and prioritization strategy for CDH, an approach that can be extended to other diseases and developmental anomalies....... perturbations lead to CDH phenotypes, and E16.5 when the diaphragm is fully formed. Gene sets defining biologically relevant pathways and temporal expression trends were identified by using a series of bioinformatic algorithms. These developmental sets were then compared with a manually curated list of genes...

  20. Quantitative DNA Methylation Analysis of Candidate Genes in Cervical Cancer

    OpenAIRE

    Erin M Siegel; Riggs, Bridget M; Delmas, Amber L.; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D.

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and ...

  1. Candidate gene linkage analysis indicates genetic heterogeneity in Marfan syndrome

    Directory of Open Access Journals (Sweden)

    L.V.S. Teixeira

    2011-08-01

    Full Text Available Marfan syndrome (MFS is an autosomal dominant disease of the connective tissue that affects the ocular, skeletal and cardiovascular systems, with a wide clinical variability. Although mutations in the FBN1 gene have been recognized as the cause of the disease, more recently other loci have been associated with MFS, indicating the genetic heterogeneity of this disease. We addressed the issue of genetic heterogeneity in MFS by performing linkage analysis of the FBN1 and TGFBR2 genes in 34 families (345 subjects who met the clinical diagnostic criteria for the disease according to Ghent. Using a total of six microsatellite markers, we found that linkage with the FBN1 gene was observed or not excluded in 70.6% (24/34 of the families, and in 1 family the MFS phenotype segregated with the TGFBR2 gene. Moreover, in 4 families linkage with the FBN1 and TGFBR2 genes was excluded, and no mutations were identified in the coding region of TGFBR1, indicating the existence of other genes involved in MFS. Our results suggest that the genetic heterogeneity of MFS may be greater that previously reported.

  2. Aberrant methylation of candidate tumor suppressor genes in neuroblastoma.

    Science.gov (United States)

    Hoebeeck, Jasmien; Michels, Evi; Pattyn, Filip; Combaret, Valérie; Vermeulen, Joëlle; Yigit, Nurten; Hoyoux, Claire; Laureys, Geneviève; De Paepe, Anne; Speleman, Frank; Vandesompele, Jo

    2009-01-18

    CpG island hypermethylation has been recognized as an alternative mechanism for tumor suppressor gene inactivation. In this study, we performed methylation-specific PCR (MSP) to investigate the methylation status of 10 selected tumor suppressor genes in neuroblastoma. Seven of the investigated genes (CD44, RASSF1A, CASP8, PTEN, ZMYND10, CDH1, PRDM2) showed high frequencies (> or =30%) of methylation in 33 neuroblastoma cell lines. In 42 primary neuroblastoma tumors, the frequencies of methylation were 69%, CD44; 71%, RASSF1A; 56%, CASP8; 25%, PTEN; 15%, ZMYND10; 8%, CDH1; and 0%, PRDM2. Furthermore, CASP8 and CDH1 hypermethylation was significantly associated with poor event-free survival. Meta-analysis of 115 neuroblastoma tumors demonstrated a significant correlation between CASP8 methylation and MYCN amplification. In addition, there was a correlation between ZMYND10 methylation and MYCN amplification. The MSP data, together with optimized mRNA re-expression experiments (in terms of concentration and time of treatment and use of proper reference genes) further strengthen the notion that epigenetic alterations could play a significant role in NB oncogenesis. This study thus warrants the need for a global profiling of gene promoter hypermethylation to identify genome-wide aberrantly methylated genes in order to further understand neuroblastoma pathogenesis and to identify prognostic methylation markers. PMID:18819746

  3. Frequent gene conversion events between the X and Y homologous chromosomal regions in primates

    Directory of Open Access Journals (Sweden)

    Hirai Hirohisa

    2010-07-01

    Full Text Available Abstract Background Mammalian sex-chromosomes originated from a pair of autosomes. A step-wise cessation of recombination is necessary for the proper maintenance of sex-determination and, consequently, generates a four strata structure on the X chromosome. Each stratum shows a specific per-site nucleotide sequence difference (p-distance between the X and Y chromosomes, depending on the time of recombination arrest. Stratum 4 covers the distal half of the human X chromosome short arm and the p-distance of the stratum is ~10%, on average. However, a 100-kb region, which includes KALX and VCX, in the middle of stratum 4 shows a significantly lower p-distance (1-5%, suggesting frequent sequence exchanges or gene conversions between the X and Y chromosomes in humans. To examine the evolutionary mechanism for this low p-distance region, sequences of a corresponding region including KALX/Y from seven species of non-human primates were analyzed. Results Phylogenetic analysis of this low p-distance region in humans and non-human primate species revealed that gene conversion like events have taken place at least ten times after the divergence of New World monkeys and Catarrhini (i.e., Old World monkeys and hominoids. A KALY-converted KALX allele in white-handed gibbons also suggests a possible recent gene conversion between the X and Y chromosomes. In these primate sequences, the proximal boundary of this low p-distance region is located in a LINE element shared between the X and Y chromosomes, suggesting the involvement of this element in frequent gene conversions. Together with a palindrome on the Y chromosome, a segmental palindrome structure on the X chromosome at the distal boundary near VCX, in humans and chimpanzees, may mediate frequent sequence exchanges between X and Y chromosomes. Conclusion Gene conversion events between the X and Y homologous regions have been suggested, mainly in humans. Here, we found frequent gene conversions in the

  4. Localization of the casein gene family to a single mouse chromosome

    OpenAIRE

    1982-01-01

    A series of mouse-hamster somatic cell hybrids containing a variable number of mouse chromosomes and a constant set of hamster chromosomes have been used to determine the chromosomal location of a family of hormone-inducible genes, the murine caseins. Recombinant mouse cDNA clones encoding the alpha-, beta-, and gamma-caseins were constructed and used in DNA restriction mapping experiments. All three casein cDNAs hybridized to the same set of somatic cell hybrid DNAs isolated from cells conta...

  5. Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L.

    Science.gov (United States)

    Li, Haibo; Zhu, Lixia; Yuan, Gaigai; Heng, Shuangping; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2016-08-01

    Because of the advantages of anthocyanins, the genetics and breeding of crops rich in anthocyanins has become a hot research topic. However, due to the lack of anthocyanin-related mutants, no regulatory genes have been mapped in Brassica napus. In this study, we first report the characterization of a B. napus line with purple leaves and the fine mapping and candidate screening of the BnaA.PL1 gene. The amount of anthocyanins in the purple leaf line was six times higher than that in a green leaf line. A genetic analysis indicated that the purple character was controlled by an incomplete dominant gene. Through map-based cloning, we localized the BnaA.PL1 gene to a 99-kb region at the end of B. napus chromosome A03. Transcriptional analysis of 11 genes located in the target region revealed that the expression level of only the BnAPR2 gene in seedling leaves decreased from purple to reddish green to green individuals, a finding that was consistent with the measured anthocyanin accumulation levels. Molecular cloning and sequence analysis of BnAPR2 showed that the purple individual-derived allele contained 17 variants. Markers co-segregating with BnaA.PL1 were developed from the sequence of BnAPR2 and were validated in the BC4P2 population. These results suggested that BnAPR2, which encodes adenosine 5'-phosphosulfate reductase, is likely to be a valuable candidate gene. This work may lay the foundation for the marker-assisted selection of B. napus vegetables that are rich in anthocyanins and for an improved understanding of the molecular mechanisms controlling anthocyanin accumulation in Brassica. PMID:27003438

  6. Sequencing of rhesus macaque Y chromosome clarifies origins and evolution of the DAZ (Deleted in AZoospermia) genes

    OpenAIRE

    Hughes, Jennifer F.; Skaletsky, Helen; Page, David C.

    2012-01-01

    Studies of Y chromosome evolution often emphasize gene loss, but this loss has been counterbalanced by addition of new genes. The DAZ genes, which are critical to human spermatogenesis, were acquired by the Y chromosome in the ancestor of Old World monkeys and apes. We and our colleagues recently sequenced the rhesus macaque Y chromosome, and comparison of this sequence to human and chimpanzee enables us to reconstruct much of the evolutionary history of DAZ. We report that DAZ arrived on the...

  7. Meta-Analysis Reveals that Genes Regulated by the Y Chromosome in Drosophila melanogaster Are Preferentially Localized to Repressive Chromatin

    OpenAIRE

    Sackton, Timothy; Hartl, Daniel L.

    2013-01-01

    The Drosophila Y chromosome is a degenerated, heterochromatic chromosome with few functional genes. Despite this, natural variation on the Y chromosome in D. melanogaster has substantial trans-acting effects on the regulation of X-linked and autosomal genes. It is not clear, however, whether these genes simply represent a random subset of the genome or whether specific functional properties are associated with susceptibility to regulation by Y-linked variation. Here, we present a meta-analysi...

  8. Analysis of Y chromosome microdeletions and CFTR gene mutations as genetic markers of infertility in Serbian men

    OpenAIRE

    Dinić Jelena; Kušić Jelena; Nikolić Аleksandra; Divac Aleksandra; Ristanović Momčilo; Radojković Dragica

    2007-01-01

    Background/Aim. Impaired fertility of a male partner is the main cause of infertility in up to one half of all infertile couples. At the genetic level, male infertility can be caused by chromosome aberrations or gene mutations. The presence and types of Y chromosome microdeletions and cystic fybrosis transmembrane conductance regulator (CFTR) gene mutations as genetic cause of male infertility was tested in Serbian men. The aim of this study was to analyze CFTR gene mutations and Y chromosome...

  9. Transcriptome network analysis reveals potential candidate genes for squamous lung cancer.

    Science.gov (United States)

    Bai, Jing; Hu, Sheng

    2012-01-01

    Squamous lung cancer is a common type of lung cancer; however, its mechanism of oncogenesis is still unknown. The aim of this study was to screen candidate genes of squamous lung cancer using a bioinformatics strategy and elucidate the mechanism of squamous lung cancer. Published microarray data of the GSE3268 series was obtained from Gene Expression Omnibus (GEO). Significance analysis of microarrays was performed using the software R, and differentially expressed genes by R analysis were harvested. The relationship between transcription factors and target genes in cancer were collected from the Transcriptional regulatory element database. A transcriptome network analysis method was used to construct gene regulation networks and select the candidate genes for squamous lung cancer. SPI1, FLI1, FOS, ETS2, EGR1 and PPARG were defined as candidate genes for squamous lung cancer by the transcriptome network analysis method. Among them, 5 genes had been reported to be involved in lung cancer, except SPI1 and FLI1. Effective recall on previous knowledge conferred strong confidence in these methods. It is demonstrated that transcriptome network analysis is useful in the identification of candidate genes in disease. PMID:21922129

  10. Molecular genetic approach to human meningioma: loss of genes on chromosome 22

    Energy Technology Data Exchange (ETDEWEB)

    Seizinger, B.R.; De La Monte, S.; Atkins, L.; Gusella, J.F.; Martuza, R.L.

    1987-08-01

    A molecular genetic approach employing polymorphic DNA markers has been used to investigate the role of chromosomal aberrations in meningioma, one of the most common tumors of the human nervous system. Comparison of the alleles detected by DNA markers in tumor DNA versus DNA from normal tissue revealed chromosomal alterations present in primary surgical specimens. In agreement with cytogenetic studies of cultured meningiomas, the most frequent alteration detected was loss of heterozygosity on chromosome 22. Forty of 51 patients were constitutionally heterozygous for at least one chromosome 22 DNA marker. Seventeen of the 40 constitutionally heterozygotic patients (43%) displayed hemizygosity for the corresponding marker in their meningioma tumor tissues. Loss of heterozygosity was also detected at a significantly lower frequency for markers on several other autosomes. In view of the striking association between acoustic neuroma and meningioma in bilateral acoustic neurofibromatosis and the discovery that acoustic neuromas display specific loss of genes on chromosome 22, the authors propose that a common mechanism involving chromosome 22 is operative in the development of both tumor types. Fine-structure mapping to reveal partial deletions in meningiomas may provide the means to clone and characterize a gene (or genes) of importance for tumorigenesis in this and possibly other clinically associated tumors of the human nervous system.

  11. Physical mapping, expression analysis and polymorphism survey of resistance gene analogues on chromosome 11 of rice

    Indian Academy of Sciences (India)

    Irfan A Ghazi; Prem S Srivastava; Vivek Dalal; Kishor Gaikwad; Ashok K Singh; Tilak R Sharma; Nagendra K Singh; Trilochan Mohapatra

    2009-06-01

    Rice is the first cereal genome with a finished sequence and a model crop that has important syntenic relationships with other cereal species. The objectives of our study were to identify resistance gene analogue (RGA) sequences from chromosome 11 of rice, understand their expression in other cereals and dicots by in silico analysis, determine their presence on other rice chromosomes, and evaluate the extent of polymorphism and actual expression in a set of rice genotypes. A total of 195 RGAs were predicted and physically localised. Of these, 91.79% expressed in rice, and 51.28% expressed in wheat, which was the highest among other cereals. Among monocots, sugarcane showed the highest (78.92%) expression, while among dicots, RGAs were maximally expressed in Arabidopsis (11.79%). Interestingly, two of the chromosome 11-specific RGAs were found to be expressing in all the organisms studied. Eighty RGAs of chromosome 11 had significant homology with chromosome 12, which was the maximum among all the rice chromosomes. Thirty-one per cent of the RGAs used in polymerase chain reaction (PCR) amplification showed polymorphism in a set of rice genotypes. Actual gene expression analysis revealed post-inoculation induction of one RGA in the rice line IRBB-4 carrying the bacterial blight resistance gene Xa-4. Our results have implications for the development of sequence-based markers and functional validation of specific RGAs in rice.

  12. Fine Mapping and Candidate Gene Analysis of the Leaf-Color Gene ygl-1 in Maize

    Science.gov (United States)

    Guan, Haiying; Xu, Xiangbo; He, Chunmei; Liu, Chunxiao; Liu, Qiang; Dong, Rui; Liu, Tieshan; Wang, Liming

    2016-01-01

    A novel yellow-green leaf mutant yellow-green leaf-1 (ygl-1) was isolated in self-pollinated progenies from the cross of maize inbred lines Ye478 and Yuanwu02. The mutant spontaneously showed yellow-green character throughout the lifespan. Meanwhile, the mutant reduced contents of chlorophyll and Car, arrested chloroplast development and lowered the capacity of photosynthesis compared with the wild-type Lx7226. Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. The ygl-1 locus was initially mapped to an interval of about 0.86 Mb in bin 1.01 on the short arm of chromosome 1 using 231 yellow-green leaf individuals of an F2 segregating population from ygl-1/Lx7226. Utilizing four new polymorphic SSR markers, the ygl-1 locus was narrowed down to a region of about 48 kb using 2930 and 2247 individuals of F2 and F3 mapping populations, respectively. Among the three predicted genes annotated within this 48 kb region, GRMZM2G007441, which was predicted to encode a cpSRP43 protein, had a 1-bp nucleotide deletion in the coding region of ygl-1 resulting in a frame shift mutation. Semi-quantitative RT-PCR analysis revealed that YGL-1 was constitutively expressed in all tested tissues and its expression level was not significantly affected in the ygl-1 mutant from early to mature stages, while light intensity regulated its expression both in the ygl-1 mutant and wild type seedlings. Furthermore, the mRNA levels of some genes involved in chloroplast development were affected in the six-week old ygl-1 plants. These findings suggested that YGL-1 plays an important role in chloroplast development of maize. PMID:27100184

  13. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes

    Directory of Open Access Journals (Sweden)

    Yu Jane-Fang

    2008-03-01

    Full Text Available Abstract Background The Azoospermia Factor c (AZFc region of the human Y chromosome is a unique product of segmental duplication. It consists almost entirely of very long amplicons, represented by different colors, and is frequently deleted in subfertile men. Most of the AZFc amplicons have high sequence similarity with autosomal segments, indicating recent duplication and transposition to the Y chromosome. The Deleted in Azoospermia (DAZ gene within the red-amplicon arose from an ancestral autosomal DAZ-like (DAZL gene. It varies significantly between different men regarding to its copy number and the numbers of RNA recognition motif and DAZ repeat it encodes. We used Southern analyses to study the evolution of DAZ and AZFc amplicons on the Y chromosomes of primates. Results The Old World monkey rhesus macaque has only one DAZ gene. In contrast, the great apes have multiple copies of DAZ, ranging from 2 copies in bonobos and gorillas to at least 6 copies in orangutans, and these DAZ genes have polymorphic structures similar to those of their human counterparts. Sequences homologous to the various AZFc amplicons are present on the Y chromosomes of some but not all primates, indicating that they arrived on the Y chromosome at different times during primate evolution. Conclusion The duplication and transposition of AZFc amplicons to the human Y chromosome occurred in three waves, i.e., after the branching of the New World monkey, the gorilla, and the chimpanzee/bonobo lineages, respectively. The red-amplicon, one of the first to arrive on the Y chromosome, amplified by inverted duplication followed by direct duplication after the separation of the Old World monkey and the great ape lineages. Subsequent duplication/deletion in the various lineages gave rise to a spectrum of DAZ gene structure and copy number found in today's great apes.

  14. The gene-reduction effect of chromosomal losses detected in gastric cancers

    Directory of Open Access Journals (Sweden)

    Choi Sang-Wook

    2010-11-01

    Full Text Available Abstract Background The level of loss of heterozygosity (LOH that reduces a gene dose and exerts a cell-adverse effect is known to be a parameter for the genetic staging of gastric cancers. This study investigated if the cell-adverse effect induced with the gene reduction was a rate-limiting factor for the LOH events in two distinct histologic types of gastric cancers, the diffuse- and intestinal-types. Methods The pathologic specimens obtained from 145 gastric cancer patients were examined for the level of LOH using 40 microsatellite markers on eight cancer-associated chromosomes (3p, 4p, 5q, 8p, 9p, 13q, 17p and 18q. Results Most of the cancer-associated chromosomes were found to belong to the gene-poor chromosomes and to contain a few stomach-specific genes that were highly expressed. A baseline-level LOH involving one or no chromosome was frequent in diffuse-type gastric cancers. The chromosome 17 containing a relatively high density of genes was commonly lost in intestinal-type cancers but not in diffuse-type cancers. A high-level LOH involving four or more chromosomes tended to be frequent in the gastric cancers with intestinal and mixed differentiation. Disease relapse was common for gastric cancers with high-level LOH through both the hematogenous (38% and non-hematogenous (36% routes, and for the baseline-level LOH cases through the non-hematogenous route (67%. Conclusions The cell-adverse effect of gene reduction is more tolerated in intestinal-type gastric cancers than in diffuse-type cancers, and the loss of high-dose genes is associated with hematogenous metastasis.

  15. Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2010-01-01

    Full Text Available Abstract Background Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community. Results Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families Astroviridae, Reoviridae, Rhabdoviridae and Coronaviridae, respectively.

  16. LOD score exclusion analyses for candidate disease susceptibility genes using case-parents design

    Institute of Scientific and Technical Information of China (English)

    DENG Hongwen; GAO Guimin

    2006-01-01

    The focus of almost all the association studies of candidate genes is to test for their importance. We recently developed a LOD score approach that can be used to test against the importance of candidate genes for complex diseases and quantitative traits in random samples. As a complementary method to regular association analyses, our LOD score approach is powerful but still affected by the population admixture, though it is more conservative. To control the confounding effect of population heterogeneity, we develop here a LOD score exclusion analysis using case-parents design, the basic design of the transmission disequilibrium test (TDT) approach that is immune to population admixture. In the analysis, specific genetic effects and inheritance models at candidate genes can be analyzed and if a LOD score is ≤ - 2.0, the locus can be excluded from having an effect larger than that specified. Simulations show that this approach has reasonable power to exclude a candidate gene having small genetic effects if it is not a disease susceptibility locus (DSL) with sample size often employed in TDT studies. Similar to association analyses with the TDT in nuclear families, our exclusion analyses are generally not affected by population admixture. The exclusion analyses may be implemented to rule out candidate genes with no or minor genetic effects as supplemental analyses for the TDT. The utility of the approach is illustrated with an application to test the importance of vitamin D receptor (VDR) gene underlying the differential risk to osteoporosis.

  17. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium.

    Directory of Open Access Journals (Sweden)

    Sophie Castède

    Full Text Available The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies 'Regina' × 'Garnet' and 'Regina' × 'Lapins', and to select those candidate genes which co-localized with quantitative trait loci (QTLs associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions.

  18. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium).

    Science.gov (United States)

    Castède, Sophie; Campoy, José Antonio; Le Dantec, Loïck; Quero-García, José; Barreneche, Teresa; Wenden, Bénédicte; Dirlewanger, Elisabeth

    2015-01-01

    The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies 'Regina' × 'Garnet' and 'Regina' × 'Lapins', and to select those candidate genes which co-localized with quantitative trait loci (QTLs) associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions. PMID:26587668

  19. EXONSAMPLER: a computer program for genome-wide and candidate gene exon sampling for targeted next-generation sequencing.

    Science.gov (United States)

    Cosart, Ted; Beja-Pereira, Albano; Luikart, Gordon

    2014-11-01

    The computer program EXONSAMPLER automates the sampling of thousands of exon sequences from publicly available reference genome sequences and gene annotation databases. It was designed to provide exon sequences for the efficient, next-generation gene sequencing method called exon capture. The exon sequences can be sampled by a list of gene name abbreviations (e.g. IFNG, TLR1), or by sampling exons from genes spaced evenly across chromosomes. It provides a list of genomic coordinates (a bed file), as well as a set of sequences in fasta format. User-adjustable parameters for collecting exon sequences include a minimum and maximum acceptable exon length, maximum number of exonic base pairs (bp) to sample per gene, and maximum total bp for the entire collection. It allows for partial sampling of very large exons. It can preferentially sample upstream (5 prime) exons, downstream (3 prime) exons, both external exons, or all internal exons. It is written in the Python programming language using its free libraries. We describe the use of EXONSAMPLER to collect exon sequences from the domestic cow (Bos taurus) genome for the design of an exon-capture microarray to sequence exons from related species, including the zebu cow and wild bison. We collected ~10% of the exome (~3 million bp), including 155 candidate genes, and ~16,000 exons evenly spaced genomewide. We prioritized the collection of 5 prime exons to facilitate discovery and genotyping of SNPs near upstream gene regulatory DNA sequences, which control gene expression and are often under natural selection. PMID:24751285

  20. Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex.

    Directory of Open Access Journals (Sweden)

    Tomoko M Tabuchi

    2011-05-01

    Full Text Available DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA-binding moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif, DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound evolutionary effects on genome organization and transcriptional regulatory networks.

  1. Identification of Candidate Genes Related to Polyploidy and/or Apomixis in Eragrostis curvula

    Directory of Open Access Journals (Sweden)

    Juan-Pablo Selva

    2012-03-01

    Full Text Available This work was aimed at identifying genes that show altered expression profiles in response to changes in ploidy and/or reproductive mode (from sexual to apomictic in the African grass Eragrostis curvula. A differential display analysis was performed on leaf and flower transcriptomes from a series of genetically related euploid plants, including tetraploid apomictic, diploid sexual, and tetraploid sexual plants. More than 100 primer combinations were used to generate 11,864 total markers, yielding 1293 differential bands. Of these bands, 11.84% to 6.74% were related to ploidy and 0.71% to 2.17% to the reproductive mode, depending on the tissue. A small percentage of bands showed similar expressions between the tetraploid apomictic and the diploid sexual plants. Expression-based similarity dendrograms were constructed. Our data suggested that ploidy is more decisive than tissue type in defining the transcriptome structure. Out of 102 fragments sequenced, 50 showed strong homology to known genes. The differentially expressed genes were mapped in silico onto maize chromosomes. Several candidates mapped within the linkage group syntenic to the Tripsacum dactyloides diplospory-governing region. The evidence indicates that expression of genes located around the diplospory-associated region may be strongly influenced by ploidy and may be silenced in the apomictic genotype. These findings are discussed in the context of diplospory molecular control and its connection with ploidy.

  2. Cloning, structure, and chromosome localization of the mouse glutaryl-CoA dehydrogenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Koeller, D.M.; DiGiulio, A.; Frerman, F.E. [Univ. of Colorado Health Sciences Center, Denver, CO (United States)] [and others

    1995-08-10

    Glutaryl-CoA dehydrogenase (GCDH) is a nuclear-encoded, mitochondrial matrix enzyme. In humans, deficiency of GCDH leads to glutaric acidemia type I, and inherited disorder of amino acid metabolism characterized by a progressive neurodegenerative disease. In this report we describe the cloning and structure of the mouse GCDH (Gcdh) gene and cDNA and its chromosomal localization. The mouse Gcdh cDNA is 1.75 kb long and contains and open reading frame of 438 amino acids. The amino acid sequences of mouse, human, and pig GCDH are highly conserved. The mouse Gcdh gene contains 11 exons and spans 7 kb of genomic DNA. Gcdh was mapped by backcross analysis to mouse chromosome 8 within a region that is homologous to a region of human chromosome 19, where the human gene was previously mapped. 14 refs., 3 figs.

  3. Rapid evolution of cancer/testis genes on the X chromosome

    Directory of Open Access Journals (Sweden)

    Simpson Andrew J

    2007-05-01

    Full Text Available Abstract Background Cancer/testis (CT genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole. Results To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes. Conclusion Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.

  4. The evolution of vertebrate somatostatin receptors and their gene regions involves extensive chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Ocampo Daza Daniel

    2012-11-01

    Full Text Available Abstract Background Somatostatin and its related neuroendocrine peptides have a wide variety of physiological functions that are mediated by five somatostatin receptors with gene names SSTR1-5 in mammals. To resolve their evolution in vertebrates we have investigated the SSTR genes and a large number of adjacent gene families by phylogeny and conserved synteny analyses in a broad range of vertebrate species. Results We find that the SSTRs form two families that belong to distinct paralogons. We observe not only chromosomal similarities reflecting the paralogy relationships between the SSTR-bearing chromosome regions, but also extensive rearrangements between these regions in teleost fish genomes, including fusions and translocations followed by reshuffling through intrachromosomal rearrangements. These events obscure the paralogy relationships but are still tractable thanks to the many genomes now available. We have identified a previously unrecognized SSTR subtype, SSTR6, previously misidentified as either SSTR1 or SSTR4. Conclusions Two ancestral SSTR-bearing chromosome regions were duplicated in the two basal vertebrate tetraploidizations (2R. One of these ancestral SSTR genes generated SSTR2, -3 and -5, the other gave rise to SSTR1, -4 and -6. Subsequently SSTR6 was lost in tetrapods and SSTR4 in teleosts. Our study shows that extensive chromosomal rearrangements have taken place between related chromosome regions in teleosts, but that these events can be resolved by investigating several distantly related species.

  5. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Science.gov (United States)

    Hurst, Laurence D; Ghanbarian, Avazeh T; Forrest, Alistair R R; Huminiecki, Lukasz

    2015-12-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  6. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Directory of Open Access Journals (Sweden)

    Laurence D Hurst

    2015-12-01

    Full Text Available X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE and data from the Functional Annotation of the Mammalian Genome (FANTOM5 project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds, as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased

  7. The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome

    KAUST Repository

    Hurst, Laurence D.

    2015-12-18

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression

  8. Whole genome amplification of DNA for genotyping pharmacogenetics candidate genes.

    Directory of Open Access Journals (Sweden)

    Santosh ePhilips

    2012-03-01

    Full Text Available Whole genome amplification (WGA technologies can be used to amplify genomic DNA when only small amounts of DNA are available. The Multiple Displacement Amplification Phi polymerase based amplification has been shown to accurately amplify DNA for a variety of genotyping assays; however, it has not been tested for genotyping many of the clinically relevant genes important for pharmacogenetic studies, such as the cytochrome P450 genes, that are typically difficult to genotype due to multiple pseudogenes, copy number variations, and high similarity to other related genes. We evaluated whole genome amplified samples for Taqman™ genotyping of SNPs in a variety of pharmacogenetic genes. In 24 DNA samples from the Coriell human diversity panel, the call rates and concordance between amplified (~200-fold amplification and unamplified samples was 100% for two SNPs in CYP2D6 and one in ESR1. In samples from a breast cancer clinical trial (Trial 1, we compared the genotyping results in samples before and after WGA for four SNPs in CYP2D6, one SNP in CYP2C19, one SNP in CYP19A1, two SNPs in ESR1, and two SNPs in ESR2. The concordance rates were all >97%. Finally, we compared the allele frequencies of 143 SNPs determined in Trial 1 (whole genome amplified DNA to the allele frequencies determined in unamplified DNA samples from a separate trial (Trial 2 that enrolled a similar population. The call rates and allele frequencies between the two trials were 98% and 99.7%, respectively. We conclude that the whole genome amplified DNA is suitable for Taqman™ genotyping for a wide variety of pharmacogenetically relevant SNPs.

  9. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes

    OpenAIRE

    Lieberman, Tami D; Michel, Jean-Baptiste; Aingaran, Mythili; Potter-Bynoe, Gail; Roux, Damien; Davis, Michael R.; Skurnik, David; Leiby, Nicholas; LiPuma, John J.; Goldberg, Joanna B.; McAdam, Alexander J.; Priebe, Gregory P.; Kishony, Roy

    2011-01-01

    Bacterial pathogens evolve during the infection of their human hosts 1-8 , but separating adaptive and neutral mutations remains challenging 9-11 . Here, we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple patients. We conducted a retrospective study of a Burkholderia dolosa outbreak among people with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals ...

  10. Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species.

    Science.gov (United States)

    Park, Y K; Park, K C; Park, C H; Kim, N S

    2000-02-29

    Chromosomal localization and sequence analysis of the 5S rRNA gene were carried out in five Capsicum species. Fluorescence in situ hybridization revealed that chromosomal location of the 5S rRNA gene was conserved in a single locus at a chromosome which was assigned to chromosome 1 by the synteny relationship with tomato. In sequence analysis, the repeating units of the 5S rRNA genes in the Capsicum species were variable in size from 278 bp to 300 bp. In sequence comparison of our results to the results with other Solanaceae plants as published by others, the coding region was highly conserved, but the spacer regions varied in size and sequence. T stretch regions, just after the end of the coding sequences, were more prominant in the Capsicum species than in two other plants. High G x C rich regions, which might have similar functions as that of the GC islands in the genes transcribed by RNA PolII, were observed after the T stretch region. Although we could not observe the TATA like sequences, an AT rich segment at -27 to -18 was detected in the 5S rRNA genes of the Capsicum species. Species relationship among the Capsicum species was also studied by the sequence comparison of the 5S rRNA genes. While C. chinense, C. frutescens, and C. annuum formed one lineage, C. baccatum was revealed to be an intermediate species between the former three species and C. pubescens. PMID:10774742

  11. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria.

    Science.gov (United States)

    Lin, Wei; Pan, Yongxin

    2015-04-01

    The intracellular biomineralization of magnetite and/or greigite magnetosomes in magnetotactic bacteria (MTB) is strictly controlled by a group of conserved genes, termed magnetosome genes, which are organized as clusters (or islands) in MTB genomes. So far, all reported MTB are affiliated within the Proteobacteria phylum, the Nitrospirae phylum and the candidate division OP3. Here, we report the discovery of a putative magnetosome gene cluster structure from the draft genome of an uncultivated bacterium belonging to the candidate phylum Latescibacteria (formerly candidate division WS3) recently recovered by Rinke and colleagues, which contains 10 genes with homology to magnetosome mam genes of magnetotactic Proteobacteria and Nitrospirae. Moreover, these genes are phylogenetically closely related to greigite-type magnetosome genes that were only found from the Deltaproteobacteria MTB before, suggesting that the greigite genes may originate earlier than previously imagined. These findings indicate that some members of Latescibacteria may be capable of forming greigite magnetosomes, and thus may play previously unrecognized roles in environmental iron and sulfur cycles. The conserved genomic structure of magnetosome gene cluster in Latescibacteria phylum supports the hypothesis of horizontal transfer of these genes among distantly related bacterial groups in nature. PMID:25382584

  12. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  13. Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bai, Dongmei; Siewers, Verena; Huang, Le;

    2009-01-01

    The construction of mitotically stable yeast strains for heterologous gene or pathway expression often requires chromosomal integration. However, transcription levels vary between different chromosome regions. We therefore characterized 20 different integration sites of the Sacchromyces cerevisiae...... genome by inserting lacZ as a reporter gene under the control of two different promoters and determining expression levels through enzyme activity measurement. An up to 8.7-fold difference was detected between the sites conferring lowest and highest expression, respectively. This opens the opportunity...

  14. Cloning of a human galactokinase gene (GK2) on chromosome 15 by complementation in yeast.

    OpenAIRE

    Lee, R T; Peterson, C L; Calman, A F; Herskowitz, I.; O'Donnell, J J

    1992-01-01

    A human cDNA encoding a galactokinase (EC 2.7.1.6) was isolated by complementation of a galactokinase-deficient (gal1-) strain of Saccharomyces cerevisiae. This cDNA encodes a predicted protein of 458 amino acids with 29% identity to galactokinase of Saccharomyces carlsbergensis. Previous studies have mapped a human galactokinase gene (GK1) to chromosome 17q23-25, closely linked to thymidine kinase. The galactokinase gene that we have isolated (GK2) is located on chromosome 15. The relationsh...

  15. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies

    Directory of Open Access Journals (Sweden)

    Martins Cesar

    2010-01-01

    Full Text Available Abstract Background Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood. Results In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s occurring in 39.6% of the analyzed individuals (both male and female were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences. Conclusion Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement.

  16. Genetic divergence in domesticated and non-domesticated gene regions of barley chromosomes.

    Directory of Open Access Journals (Sweden)

    Songxian Yan

    Full Text Available Little is known about the genetic divergence in the chromosomal regions with domesticated and non-domesticated genes. The objective of our study is to examine the effect of natural selection on shaping genetic diversity of chromosome region with domesticated and non-domesticated genes in barley using 110 SSR markers. Comparison of the genetic diversity loss between wild and cultivated barley for each chromosome showed that chromosome 5H had the highest divergence of 35.29%, followed by 3H, 7H, 4H, 2H, 6H. Diversity ratio was calculated as (diversity of wild type - diversity of cultivated type/diversity of wild type×100%. It was found that diversity ratios of the domesticated regions on 5H, 1H and 7H were higher than those of non-domesticated regions. Diversity ratio of the domesticated region on 2H and 4H is similar to that of non-domesticated region. However, diversity ratio of the domesticated region on 3H is lower than that of non-domesticated region. Averaged diversity among six chromosomes in domesticated region was 33.73% difference between wild and cultivated barley, and was 27.56% difference in the non-domesticated region. The outcome of this study advances our understanding of the evolution of crop chromosomes.

  17. Using microarrays to identify positional candidate genes for QTL: the case study of ACTH response in pigs

    DEFF Research Database (Denmark)

    Jouffe, Vincent; Rowe, Suzanne; Liaubet, Laurence;

    2009-01-01

    Background: Microarray studies can supplement QTL studies by suggesting potential candidate. Microarray studies can supplement QTL studies by suggesting potential candidate genes in the QTL regions, which by themselves are too large to provide a limited selection of candidate genes. Here we provi...

  18. Isoform-Level Gene Expression Profiles of Human Y Chromosome Azoospermia Factor Genes and Their X Chromosome Paralogs in the Testicular Tissue of Non-Obstructive Azoospermia Patients.

    Science.gov (United States)

    Ahmadi Rastegar, Diba; Sharifi Tabar, Mehdi; Alikhani, Mehdi; Parsamatin, Pouria; Sahraneshin Samani, Fazel; Sabbaghian, Marjan; Sadighi Gilani, Mohammad Ali; Mohammad Ahadi, Ali; Mohseni Meybodi, Anahita; Piryaei, Abbas; Ansari-Pour, Naser; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-09-01

    The human Y chromosome has an inevitable role in male fertility because it contains many genes critical for spermatogenesis and the development of the male gonads. Any genetic variation or epigenetic modification affecting the expression pattern of Y chromosome genes may thus lead to male infertility. In this study, we performed isoform-level gene expression profiling of Y chromosome genes within the azoospermia factor (AZF) regions, their X chromosome counterparts, and few autosomal paralogues in testicular biopsies of 12 men with preserved spermatogenesis and 68 men with nonobstructive azoospermia (NOA) (40 Sertoli-cell-only syndrome (SCOS) and 28 premiotic maturation arrest (MA)). This was undertaken using quantitative real-time PCR (qPCR) at the transcript level and Western blotting (WB) and immunohistochemistry (IHC) at the protein level. We profiled the expression of 41 alternative transcripts encoded by 14 AZFa, AZFb, and AZFc region genes (USP9Y, DDX3Y, XKRY, HSFY1, CYORF15A, CYORF15B, KDM5D, EIF1AY, RPS4Y2, RBMY1A1, PRY, BPY2, DAZ1, and CDY1) as well as their X chromosome homologue transcripts and a few autosomal homologues. Of the 41 transcripts, 18 were significantly down-regulated in men with NOA when compared with those of men with complete spermatogenesis. In contrast, the expression of five transcripts increased significantly in NOA patients. Furthermore, to confirm the qPCR results at the protein level, we performed immunoblotting and IHC experiments (based on 24 commercial and homemade antibodies) that detected 10 AZF-encoded proteins. In addition, their localization in testis cell types and organelles was determined. Interestingly, the two missing proteins, XKRY and CYORF15A, were detected for the first time. Finally, we focused on the expression patterns of the significantly altered genes in 12 MA patients with successful sperm retrieval compared to those of 12 MA patients with failed sperm retrieval to predict the success of sperm retrieval in

  19. Integrating genes and phenotype: a wheat-Arabidopsis-rice glycosyltransferase database for candidate gene analyses.

    Science.gov (United States)

    Sado, Pierre-Etienne; Tessier, Dominique; Vasseur, Marc; Elmorjani, Khalil; Guillon, Fabienne; Saulnier, Luc

    2009-02-01

    Glycosyltransferases (GTs) constitute a very large multi-gene superfamily, containing several thousand members identified in sequenced organisms especially in plants. GTs are key enzymes involved in various biological processes such as cell wall formation, storage polysaccharides biosynthesis, and glycosylation of various metabolites. GTs have been identified in rice (Oryza sativa) and Arabidopsis thaliana, but their precise function has been demonstrated biochemically for only a few. In this work we have established a repertoire of virtually all the wheat (Triticum aestivum) GT sequences, using the large publicly available banks of expressed sequences. Based on sequence similarity with Arabidopsis and rice GTs compiled in the carbohydrate active enzyme database (CAZY), we have identified and classified these wheat sequences. The results were used to feed a searchable database available on the web ( http://wwwappli.nantes.inra.fr:8180/GTIDB ) that can be used for initiating an exhaustive candidate gene survey in wheat applied to a particular biological process. This is illustrated through the identification of GT families which are expressed during cell wall formation in wheat grain maturation. PMID:19005709

  20. Position of neocortical neurons transfected at different gestational ages with shRNA targeted against candidate dyslexia susceptibility genes.

    Directory of Open Access Journals (Sweden)

    William T Adler

    Full Text Available Developmental dyslexia is a language learning disorder that affects approximately 4-10% of the population. A number of candidate dyslexia susceptibility genes have been identified, including DCDC2 and KIAA0319 on Chromosome (Chr 6p22.2 and DYX1C1 on Chr 15q21. Embryonic knockdown of the function of homologs of these genes in rat neocortical projection cell progenitors by in utero electroporation of plasmids encoding small hairpin RNA (shRNA revealed that all three genes disrupted neuronal migration to the neocortex. Specifically, this disruption would result in heterotopia formation (Dyx1c1 and Kiaa0319 and/or overmigration past their expected laminar location (Dyx1c1 and Dcdc2. In these experiments, neurons normally destined for the upper neocortical laminæ were transfected on embryonic day (E 15.5, and we designed experiments to test whether these migration phenotypes were the result of targeting a specific type of projection neuron. We transfected litters with Dcdc2 shRNA, Dyx1c1 shRNA, Kiaa0319 shRNA, or fluorescent protein (as a control at each of three gestational ages (E14.5, E15.5, or E16.5. Pups were allowed to come to term, and their brains were examined at 3 weeks of age for the position of transfected cells. We found that age of transfection did not affect the percentage of unmigrated neurons--transfection with Kiaa0319 shRNA resulted in heterotopia formation at all three ages. Overmigration of neurons transfected with Dcdc2 shRNA, while present following transfections at the later ages, did not occur following E14.5 transfections. These results are considered in light of the known functions of each of these candidate dyslexia susceptibility genes.

  1. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes.

    Science.gov (United States)

    Crasta, Oswald R; Folkerts, Otto; Fei, Zhangjun; Mane, Shrinivasrao P; Evans, Clive; Martino-Catt, Susan; Bricker, Betsy; Yu, GongXin; Du, Lei; Sobral, Bruno W

    2008-01-01

    The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9-941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60 bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism. PMID:18478107

  2. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes.

    Directory of Open Access Journals (Sweden)

    Oswald R Crasta

    Full Text Available The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9-941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60 bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism.

  3. Cholesterol tethered bioresponsive polycation as a candidate for gene delivery

    International Nuclear Information System (INIS)

    The efficient unpacking of viral protein shell gave the inspiration for the synthesized vectors. In this research, novel cholesterol tethered bioresponsive polyethylenimine (PEI) was specially designed via disulfide-containing cross-linker. The cholesterol lipid had proved to increase the permeability of gene vector through cell membrane. The acid-base titration indicated that the synthesized polycation possessed efficient proton sponge effect, which was suggested to increase endosomal release of pDNA complexes into the cytoplasm. The cholesterol tethered polycation could effectively induce DNA condensation and form spherical particles with diameter about 200 nm at N/P ratio of 10. At glutathione concentration of 3 mM, the polyplexes were unpacked due to the bioresponsive cleavage of the disulfide bonds. The in-vitro experiment indicated that the polyplexes showed efficient transfection efficiency to HEK293T cells. All the results indicated that the bioresponsive polycation could be served as an effective trigger to control the release of DNA at the intracellular environment. The novel bioresponsive polycation might have great potential in non-viral gene delivery research and application.

  4. Cholesterol tethered bioresponsive polycation as a candidate for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Ying [Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou 310009 (China); Wang Youxiang, E-mail: yx_wang@zju.edu.cn [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou 310027 (China); Hu Qiaoling; Shen Jiacong [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou 310027 (China)

    2009-04-30

    The efficient unpacking of viral protein shell gave the inspiration for the synthesized vectors. In this research, novel cholesterol tethered bioresponsive polyethylenimine (PEI) was specially designed via disulfide-containing cross-linker. The cholesterol lipid had proved to increase the permeability of gene vector through cell membrane. The acid-base titration indicated that the synthesized polycation possessed efficient proton sponge effect, which was suggested to increase endosomal release of pDNA complexes into the cytoplasm. The cholesterol tethered polycation could effectively induce DNA condensation and form spherical particles with diameter about 200 nm at N/P ratio of 10. At glutathione concentration of 3 mM, the polyplexes were unpacked due to the bioresponsive cleavage of the disulfide bonds. The in-vitro experiment indicated that the polyplexes showed efficient transfection efficiency to HEK293T cells. All the results indicated that the bioresponsive polycation could be served as an effective trigger to control the release of DNA at the intracellular environment. The novel bioresponsive polycation might have great potential in non-viral gene delivery research and application.

  5. Identification of a novel zinc finger protein gene (ZNF298) in the GAP2 of human chromosome 21q

    International Nuclear Information System (INIS)

    We have isolated a novel zinc finger protein gene, designated ZNF298, as a candidate gene for a particular phenotype of Down syndrome or bipolar affective disorder (BPAD) which maps to human chromosome 21q22.3. ZNF298 gene consists of 25 exons spanning approximately 80 kb in a direction from the telomere to centromere. There are four kinds of transcripts that harbor three types of 3' UTR. These four transcripts (ZNF298a, ZNF298b, ZNF298c, and ZNF298d) contain putative open reading frames encoding 1178, 1198, 555, and 515 amino acids, respectively. ZNF298 gene was ubiquitously expressed in various tissues at very low level. The protein motif analysis revealed that ZNF298 proteins contain a SET [Su(var)3-9, Enhancer-of-zeste, Trithorax] domain, multiple C2H2-type zinc finger (ZnFC2H2) domains, several nuclear localization signals (NLSs), and PEST sequences. Nuclear localization of ZNF298 protein was confirmed by transfection of expression vector of GFP-tagged protein into two human cell lines. Interestingly, this gene crosses over a clone gap (GAP2) remaining in the band 21q22.3. We obtained the DNA fragments corresponding to GAP2 using ZNF298 cDNA sequence as anchor primers for PCR and determined its genomic DNA sequence

  6. Housekeeping gene on the X chromosome encodes a protein similar to ubiquitin

    International Nuclear Information System (INIS)

    An X chromosome gene located 40 kilobases downstream from the G6PD gene, at Xq28, was isolated and sequenced. This gene, which the authors named GdX, spans about 3.5 kilobases of genomic DNA. GdX is a single-copy gene, is conserved in evolution, and has the features of a housekeeping gene. At its 5' end, a cluster of CpG dinucleotides is methylated on the inactive X chromosome and unmethylated on the active X chromosome. The GdX gene can code for a 157 amino acid protein, GdX. Residues 1-74 of GdX show 43% identity to ubiquitin, a highly conserved 76 amino acid protein. The COOH-terminal moiety of GdX is characterized in its central part (residues 110-128) by a sequence homologous to the COOH-terminal hormonogenic site of thyroglobulin. The structural organization of the GdX protein suggests the existence of a family of genes, in addition to the ubiquitin gene, that could play specific roles in key cellular processes, possible through protein-protein recognition

  7. Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS.

    Science.gov (United States)

    Luo, P G; Hu, X Y; Ren, Z L; Zhang, H Y; Shu, K; Yang, Z J

    2008-11-01

    Stripe rust, caused by Puccinia striiormis Westend f. sp. tritici, is one of the most important foliar diseases of wheat (Triticum aestivum L.) worldwide. Stripe rust resistance genes Yr27, Yr31, YrSp, YrV23, and YrCN19 on chromosome 2BS confer resistance to some or all Chinese P. striiormis f. sp. tritici races CYR31, CYR32, SY11-4, and SY11-14 in the greenhouse. To screen microsatellite (SSR) markers linked with YrCN19, F1, F2, and F3 populations derived from cross Ch377/CN19 were screened with race CYR32 and 35 SSR primer pairs. Linkage analysis indicated that the single dominant gene YrCN19 in cultivar CN19 was linked with SSR markers Xgwm410, Xgwm374, Xwmc477, and Xgwm382 on chromosome 2BS with genetic distances of 0.3, 7.9, 12.3, and 21.2 cM, respectively. Crosses of CN19 with wheat lines carrying other genes on chromosome 2B showed that all were located at different loci. YrCN19 is thus different from the other reported Yr genes in chromosomal location and resistance response and was therefore named Yr41. Prospects and strategies of using Yr41 and other Yr genes in wheat improvement for stripe rust resistance are discussed. PMID:18956025

  8. Mapping the human melanocortin 2 receptor (adrenocorticotropic hormone receptor; ACTHR) gene (MC2R) to the small arm of chromosome 18 (18p11. 21-pter)

    Energy Technology Data Exchange (ETDEWEB)

    Vamvakopoulos, N.C.; Chrousos, G.P. (National Institute of Child Health and Human Development, Bethesda, MD (United States)); Rojas, K.; Overhauser, J. (Thomas Jefferson Univ., Philadelphia, PA (United States)); Durkin, A.S.; Nierman, W.C. (American Type Collection, Rockville, MD (United States))

    1993-11-01

    The human adrenocorticotropic hormone receptor (ACTHR) was recently cloned and shown to belong to the superfamily of membrane receptors that couple to guanine nucleotide-binding proteins and adenylyl cyclase. A genetically heterogeneous (including both X-linked and autosomally recessive forms) congenital syndrome of general hereditary adrenal unresponsiveness to ACTH has been documented in several kindreds. This inherited defect affects one of the steps in the cascade of events of ACTH action on glucocorticoid biosynthesis, without altering mineralocorticoid productions. Since candidate targets for pathophysiological manifestations of deficient responsiveness to ACTH include lesions of the ACTHR gene, the authors undertook to map it to a chromosomal location. They first used polymerase chain reaction (PCR) amplification of NIGMS Panel 1 DNA template to assign a 960-bp-long fragment of the human ACTHR gene to chromosome 18. Subsequently, they determined the location of the ACTHR gene within human chromosome 18 by PCR amplification of genomic DNA template from somatic cell hybrids that contain deletions of this chromosome.

  9. Mutagenesis and Physical Mapping of Genes in Crops with Small Chromosomes

    International Nuclear Information System (INIS)

    The manipulation of quality genes in agronomical and economical important plant species requires well-established cytogenetic maps and detailed genome characterization. Advance cytogenetic molecular methods, especially fluorescence in situ hybridization (FISH) have proved to be helpful in detecting chromosome-specific tags. The introduction of new cytogenetic markers to karyotyping using FISH is necessary, especially in species, which chromosomes are inordinately small and morphologically uniform, such as Brassica and Chenopodium species. The application of rDNA as probes for FISH does not provide enough chromosome specific landmarks in Chenopodium and Brassica. More molecular markers are still needed for identification of chromosomes of investigated species. In this study, different DNA sequences: BAC clones, retroelements-like and transposon-like sequences were localized on chromosomes of the three species studied using FISH. A detailed characterization of chromosomal aberrations in Hordeum vulgare (2n = 14) cells was done by the identification of individual chromosomes involved in their formation with FISH. Simultaneous FISH with 5S and 25S rDNA and, after reprobing of preparations, telomeric and centromeric DNA sequences as probes, was used to compare the cytogenetic effects of different mutagens on root tip meristem cells of barley. This is the first application of more than 2 DNA probes in FISH experiments in order to analyze chromosomal aberrations in plant cells. A better knowledge of the correlation between the level of DNA breaks detected by TUNEL and comet assay and the frequency of chromosome aberrations could speed up evaluation of effectiveness of mutagenic treatment in barley root cells. The comet assay and TUNEL test can be used as a predictive test for the outcome of the CA after using physical mutagen. The potential usefulness of the analysis of the level of DNA breaks in embryo in order to speed up the evaluation the effectiveness of mutagenic

  10. Identification of Candidate Genes related to Bovine Marbling using Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Dajeong Lim, Nam-Kuk Kim, Hye-Sun Park, Seung-Hwan Lee, Yong-Min Cho, Sung Jong Oh, Tae-Hun Kim, Heebal Kim

    2011-01-01

    Full Text Available Complex traits are determined by the combined effects of many loci and are affected by gene networks or biological pathways. Systems biology approaches have an important role in the identification of candidate genes related to complex diseases or traits at the system level. The present study systemically analyzed genes associated with bovine marbling score and identified their relationships. The candidate nodes were obtained using MedScan text-mining tools and linked by protein-protein interaction (PPI from the Human Protein Reference Database (HPRD. To determine key node of marbling, the degree and betweenness centrality (BC were used. The hub nodes and biological pathways of our network are consistent with the previous reports about marbling traits, and also suggest unknown candidate genes associated with intramuscular fat. Five nodes were identified as hub genes, which was consistent with the network analysis using quantitative reverse-transcription PCR (qRT-PCR. Key nodes of the PPI network have positive roles (PPARγ, C/EBPα, and RUNX1T1 and negative roles (RXRA, CAMK2A in the development of intramuscular fat by several adipogenesis-related pathways. This study provides genetic information for identifying candidate genes for the marbling trait in bovine.

  11. Spermatogenesis Drives Rapid Gene Creation and Masculinization of the X Chromosome in Stalk-Eyed Flies (Diopsidae)

    Science.gov (United States)

    Baker, Richard H.; Narechania, Apurva; DeSalle, Rob; Johns, Philip M.; Reinhardt, Josephine A.; Wilkinson, Gerald S.

    2016-01-01

    Throughout their evolutionary history, genomes acquire new genetic material that facilitates phenotypic innovation and diversification. Developmental processes associated with reproduction are particularly likely to involve novel genes. Abundant gene creation impacts the evolution of chromosomal gene content and general regulatory mechanisms such as dosage compensation. Numerous studies in model organisms have found complex and, at times contradictory, relationships among these genomic attributes highlighting the need to examine these patterns in other systems characterized by abundant sexual selection. Therefore, we examined the association among novel gene creation, tissue-specific gene expression, and chromosomal gene content within stalk-eyed flies. Flies in this family are characterized by strong sexual selection and the presence of a newly evolved X chromosome. We generated RNA-seq transcriptome data from the testes for three species within the family and from seven additional tissues in the highly dimorphic species, Teleopsis dalmanni. Analysis of dipteran gene orthology reveals dramatic testes-specific gene creation in stalk-eyed flies, involving numerous gene families that are highly conserved in other insect groups. Identification of X-linked genes for the three species indicates that the X chromosome arose prior to the diversification of the family. The most striking feature of this X chromosome is that it is highly masculinized, containing nearly twice as many testes-specific genes as expected based on its size. All the major processes that may drive differential sex chromosome gene content—creation of genes with male-specific expression, development of male-specific expression from pre-existing genes, and movement of genes with male-specific expression—are elevated on the X chromosome of T. dalmanni. This masculinization occurs despite evidence that testes expressed genes do not achieve the same levels of gene expression on the X chromosome as they

  12. Spermatogenesis Drives Rapid Gene Creation and Masculinization of the X Chromosome in Stalk-Eyed Flies (Diopsidae).

    Science.gov (United States)

    Baker, Richard H; Narechania, Apurva; DeSalle, Rob; Johns, Philip M; Reinhardt, Josephine A; Wilkinson, Gerald S

    2016-01-01

    Throughout their evolutionary history, genomes acquire new genetic material that facilitates phenotypic innovation and diversification. Developmental processes associated with reproduction are particularly likely to involve novel genes. Abundant gene creation impacts the evolution of chromosomal gene content and general regulatory mechanisms such as dosage compensation. Numerous studies in model organisms have found complex and, at times contradictory, relationships among these genomic attributes highlighting the need to examine these patterns in other systems characterized by abundant sexual selection. Therefore, we examined the association among novel gene creation, tissue-specific gene expression, and chromosomal gene content within stalk-eyed flies. Flies in this family are characterized by strong sexual selection and the presence of a newly evolved X chromosome. We generated RNA-seq transcriptome data from the testes for three species within the family and from seven additional tissues in the highly dimorphic species,Teleopsis dalmanni Analysis of dipteran gene orthology reveals dramatic testes-specific gene creation in stalk-eyed flies, involving numerous gene families that are highly conserved in other insect groups. Identification of X-linked genes for the three species indicates that the X chromosome arose prior to the diversification of the family. The most striking feature of this X chromosome is that it is highly masculinized, containing nearly twice as many testes-specific genes as expected based on its size. All the major processes that may drive differential sex chromosome gene content-creation of genes with male-specific expression, development of male-specific expression from pre-existing genes, and movement of genes with male-specific expression-are elevated on the X chromosome ofT. dalmanni This masculinization occurs despite evidence that testes expressed genes do not achieve the same levels of gene expression on the X chromosome as they do on

  13. The calcitonin receptor gene is a candidate for regulation of susceptibility to herpes simplex type 1 neuronal infection leading to encephalitis in rat.

    Directory of Open Access Journals (Sweden)

    Nada Abdelmagid

    Full Text Available Herpes simplex encephalitis (HSE is a fatal infection of the central nervous system (CNS predominantly caused by Herpes simplex virus type 1. Factors regulating the susceptibility to HSE are still largely unknown. To identify host gene(s regulating HSE susceptibility we performed a genome-wide linkage scan in an intercross between the susceptible DA and the resistant PVG rat. We found one major quantitative trait locus (QTL, Hse1, on rat chromosome 4 (confidence interval 24.3-31 Mb; LOD score 29.5 governing disease susceptibility. Fine mapping of Hse1 using recombinants, haplotype mapping and sequencing, as well as expression analysis of all genes in the interval identified the calcitonin receptor gene (Calcr as the main candidate, which also is supported by functional studies. Thus, using unbiased genetic approach variability in Calcr was identified as potentially critical for infection and viral spread to the CNS and subsequent HSE development.

  14. Fine mapping and candidate gene prediction of a pleiotropic quantitative trait locus for yield-related trait in Zea mays.

    Directory of Open Access Journals (Sweden)

    Ruixiang Liu

    Full Text Available The yield of maize grain is a highly complex quantitative trait that is controlled by multiple quantitative trait loci (QTLs with small effects, and is frequently influenced by multiple genetic and environmental factors. Thus, it is challenging to clone a QTL for grain yield in the maize genome. Previously, we identified a major QTL, qKNPR6, for kernel number per row (KNPR across multiple environments, and developed two nearly isogenic lines, SL57-6 and Ye478, which differ only in the allelic constitution at the short segment harboring the QTL. Recently, qKNPR6 was re-evaluated in segregating populations derived from SL57-6×Ye478, and was narrowed down to a 2.8 cM interval, which explained 56.3% of the phenotypic variance of KNPR in 201 F(2∶3 families. The QTL simultaneously affected ear length, kernel weight and grain yield. Furthermore, a large F(2 population with more than 12,800 plants, 191 recombinant chromosomes and 10 overlapping recombinant lines placed qKNPR6 into a 0.91 cM interval corresponding to 198Kb of the B73 reference genome. In this region, six genes with expressed sequence tag (EST evidence were annotated. The expression pattern and DNA diversity of the six genes were assayed in Ye478 and SL57-6. The possible candidate gene and the pathway involved in inflorescence development were discussed.

  15. Mapping a candidate gene (MdMYB10 for red flesh and foliage colour in apple

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2007-07-01

    Full Text Available Abstract Background Integrating plant genomics and classical breeding is a challenge for both plant breeders and molecular biologists. Marker-assisted selection (MAS is a tool that can be used to accelerate the development of novel apple varieties such as cultivars that have fruit with anthocyanin through to the core. In addition, determining the inheritance of novel alleles, such as the one responsible for red flesh, adds to our understanding of allelic variation. Our goal was to map candidate anthocyanin biosynthetic and regulatory genes in a population segregating for the red flesh phenotypes. Results We have identified the Rni locus, a major genetic determinant of the red foliage and red colour in the core of apple fruit. In a population segregating for the red flesh and foliage phenotype we have determined the inheritance of the Rni locus and DNA polymorphisms of candidate anthocyanin biosynthetic and regulatory genes. Simple Sequence Repeats (SSRs and Single Nucleotide Polymorphisms (SNPs in the candidate genes were also located on an apple genetic map. We have shown that the MdMYB10 gene co-segregates with the Rni locus and is on Linkage Group (LG 09 of the apple genome. Conclusion We have performed candidate gene mapping in a fruit tree crop and have provided genetic evidence that red colouration in the fruit core as well as red foliage are both controlled by a single locus named Rni. We have shown that the transcription factor MdMYB10 may be the gene underlying Rni as there were no recombinants between the marker for this gene and the red phenotype in a population of 516 individuals. Associating markers derived from candidate genes with a desirable phenotypic trait has demonstrated the application of genomic tools in a breeding programme of a horticultural crop species.

  16. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2008-06-01

    Full Text Available Abstract Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events. RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate

  17. Schizophrenia susceptibility genes on chromosome 13q32

    Institute of Scientific and Technical Information of China (English)

    胡颖; 许琪; 鞠桂芝; 刘树铮; 史杰萍; 于雅琴; 尉军

    2004-01-01

    @@Schizophrenia is a complex mental disorder affecting approximately 1% of the general population worldwide.1 It has a high incidence in the general population, a poor prognosis and a poor outcome, in that it has become a major social problem. Family, twin, and adoption studies have clearly shown that a genetic component is quite likely to play an important role in determining susceptibility to schizophrenia. The genome-wide scan indicates that several chromosomal regions are linked to schizophrenia, some of which have been replicated independently including 6p21-24, 8p21-22, 13q14-33 and 22q11-12.2,3 This study was designed to detect two single nucleotide polymorphisms (SNPs) located in the 13q14-33 region, rs188608 at the STK24 locus and rs2892679 at the GPC6 locus, among Chinese population.

  18. Social cognitive role of schizophrenia candidate gene GABRB2.

    Directory of Open Access Journals (Sweden)

    Shui Ying Tsang

    Full Text Available The occurrence of positive selection in schizophrenia-associated GABRB2 suggests a broader impact of the gene product on population fitness. The present study considered the possibility of cognition-related GABRB2 involvement by examining the association of GABRB2 with psychosis and altruism, respectively representing psychiatric and psychological facets of social cognition. Four single nucleotide polymorphisms (SNPs were genotyped for quantitative trait analyses and population-based association studies. Psychosis was measured by either the Positive and Negative Syndrome Scale (PANSS or antipsychotics dosage, and altruism was based on a self-report altruism scale. The minor alleles of SNPs rs6556547, rs1816071 and rs187269 in GABRB2 were correlated with high PANSS score for positive symptoms in a Han Chinese schizophrenic cohort, whereas those of rs1816071 and rs1816072 were associated with high antipsychotics dosage in a US Caucasian schizophrenic cohort. Moreover, strongly significant GABRB2-disease associations were found among schizophrenics with severe psychosis based on high PANSS positive score, but no significant association was observed for schizophrenics with only mild psychosis. Interestingly, in addition to association with psychosis in schizophrenics, rs187269 was also associated with altruism in healthy Han Chinese. Furthermore, parallel to correlation with severe psychosis, its minor allele was correlated with high altruism scores. These findings revealed that GABRB2 is associated with psychosis, the core symptom and an endophenotype of schizophrenia. Importantly, the association was found across the breadth of the psychiatric (psychosis to psychological (altruism spectrum of social cognition suggesting GABRB2 involvement in human cognition.

  19. The CRO-1 gene of Saccharomyces cerevisiae controls mitotic crossing over, chromosomal stability and sporulation

    International Nuclear Information System (INIS)

    The properties of a novel temperature-sensitive recombination-defective mutant of Saccharomyces cerevisiae, cro1-1 is described. The cro1-1 mutant is the first instance of a rec mutation that reduces drastically the rates of spontaneous mitotic crossing-over events but not those of gene conversional events. The cro1-1 mutation thus provides evidence that mitotic crossing-over is dependent upon gene products that are not essential for gene conversional events. The cro1-1 mutation also results in enhanced mitotic-chromosomal instability and MATa/MATα cro1-1/cro1-1 mutants are sporulation deficient. These phenotypes indicate that the CRO1 gene modulates mitotic chromosomal integrity and is essential for normal meiosis. The cro1-1 mutant possesses Holliday junction resolvase activity, hence its recombinational defect does not involve failure to execute this putative final recombinational step. 7 refs., 1 fig., 5 tabs

  20. The mouse and human excitatory amino acid transporter gene (EAAT1) maps to mouse chromosome 15 and a region of syntenic homology on human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, M.A.; Arriza, J.L.; Amara, S.G. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1994-08-01

    The gene for human excitatory amino acid transporter (EAAT1) was localized to the distal region of human chromosome 5p13 by in situ hybridization of metaphase chromosome spreads. Interspecific backcross analysis identified the mouse Eaat1 locus in a region of 5p13 homology on mouse chromosome 15. Markers that are linked with EAAT1 on both human and mouse chromosomes include the receptors for leukemia inhibitory factor, interleukin-7, and prolactin. The Eaat1 locus appears not be linked to the epilepsy mutant stg locus, which is also on chromosome 15. The EAAT1 locus is located in a region of 5p deletions that have been associated with mental retardation and microcephaly. 22 refs., 2 figs.

  1. High School Students' Understanding of Chromosome/Gene Behavior during Meiosis.

    Science.gov (United States)

    Stewart, Jim; Dale, Michael

    1989-01-01

    Investigates high school students' understanding of the physical relationship of chromosomes and genes as expressed in their conceptual models and in their ability to manipulate the models to explain solutions to dihybrid cross problems. Describes three typical models and three students' reasoning processes. Discusses four implications. (YP)

  2. Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation

    DEFF Research Database (Denmark)

    Frigaard, N-U; Bryant, D A

    2001-01-01

    Conditions for inactivating chromosomal genes of Chlorobium tepidum by natural transformation and homologous recombination were established. As a model, mutants unable to perform nitrogen fixation were constructed by interrupting nifD with various antibiotic resistance markers. Growth of wild-typ...

  3. The constrained maximal expression level owing to haploidy shapes gene content on the mammalian X chromosome

    DEFF Research Database (Denmark)

    Hurst, Laurence D.; Ghanbarian, Avazeh T.; Forrest, Alistair R R;

    2015-01-01

    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functional...

  4. Nonrandom representation of sex-biased genes on chicken z chromosome

    Czech Academy of Sciences Publication Activity Database

    Storchová, Radka; Divina, Petr

    2006-01-01

    Roč. 63, č. 5 (2006), s. 676-681. ISSN 0022-2844 R&D Projects: GA MŠk 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : chicken chromosome * sex-biased genes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.767, year: 2006

  5. Linkage and radiation hybrid mapping of the porcine MPZ gene to chromosome 4q

    Czech Academy of Sciences Publication Activity Database

    Wagenknecht, Daniel; Bartenschlager, H.; Van Poucke, M.; Geldermann, H.; Peelman, L. J.; Majzlík, I.; Stratil, Antonín

    2005-01-01

    Roč. 36, - (2005), s. 181-182. ISSN 0268-9146 R&D Projects: GA ČR GA523/03/0858 Institutional research plan: CEZ:AV0Z50450515 Keywords : chromosome 4q * porcine MPZ gene Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.437, year: 2005

  6. Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes

    DEFF Research Database (Denmark)

    de Jong, Simone; van Eijk, Kristel R; Zeegers, Dave W L H;

    2012-01-01

    There is genetic evidence that schizophrenia is a polygenic disorder with a large number of loci of small effect on disease susceptibility. Genome-wide association studies (GWASs) of schizophrenia have had limited success, with the best finding at the MHC locus at chromosome 6p. A recent effort o...... expression QTLs (eQTLs) and differential gene expression in whole blood of schizophrenia patients and controls. We examined the 6192 single-nucleotide polymorphisms (SNPs) with significance threshold at P...

  7. Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging.

    Science.gov (United States)

    Johansson, Fredrik K; Brodd, Josefin; Eklöf, Charlotta; Ferletta, Maria; Hesselager, Göran; Tiger, Carl-Fredrik; Uhrbom, Lene; Westermark, Bengt

    2004-08-01

    Murine retroviruses may cause malignant tumors in mice by insertional mutagenesis of host genes. The use of retroviral tagging as a means of identifying cancer-causing genes has, however, almost entirely been restricted to hematopoietic tumors. The aim of this study was to develop a system allowing for the retroviral tagging of candidate genes in malignant brain tumors. Mouse gliomas were induced by a recombinant Moloney murine leukemia virus encoding platelet-derived growth factor (PDGF) B-chain. The underlying idea was that tumors evolve through a combination of PDGF-mediated autocrine growth stimulation and insertional mutagenesis of genes that cooperate with PDGF in gliomagenesis. Common insertion sites (loci that were tagged in more than one tumor) were identified by cloning and sequencing retroviral flanking segments, followed by blast searches of mouse genome databases. A number of candidate brain tumor loci (Btls) were identified. Several of these Btls correspond to known tumor-causing genes; these findings strongly support the underlying idea of our experimental approach. Other Btls harbor genes with a hitherto unproven role in transformation or oncogenesis. Our findings indicate that retroviral tagging with a growth factor-encoding virus may be a powerful means of identifying candidate tumor-causing genes in nonhematopoietic tumors. PMID:15273287

  8. Regulated expression of genes inserted at the human chromosomal β-globin locus by homologous recombination

    International Nuclear Information System (INIS)

    The authors have examined the effect of the site of integration on the expression of cloned genes introduced into cultured erythroid cells. Smithies et al. reported the targeted integration of DNA into the human β-globin locus on chromosome 11 in a mouse erythroleukemia-human cell hybrid. These hybrid cells can undergo erythroid differentiation leading to greatly increased mouse and human β-globin synthesis. By transfection of these hybrid cells with a plasmid carrying a modified human β-globin gene and a foreign gene composed of the coding sequence of the bacterial neomycin-resistance gene linked to simian virus 40 transcription signals (SVneo), cells were obtained in which the two genes are integrated at the β-globin locus on human chromosome 11 or at random sites. When they examined the response of the integrated genes to cell differentation, they found that the genes inserted at the β-globin locus were induced during differentiation, whereas randomly positioned copies were not induced. Even the foreign SVneo gene was inducible when it had been integrated at the β-globin locus. The results show that genes introduced at the β-globin locus acquire some of the regulatory properties of globin genes during erythroid differentiation

  9. High-Resolution Chromosome Ideogram Representation of Currently Recognized Genes for Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Merlin G. Butler

    2015-03-01

    Full Text Available Recently, autism-related research has focused on the identification of various genes and disturbed pathways causing the genetically heterogeneous group of autism spectrum disorders (ASD. The list of autism-related genes has significantly increased due to better awareness with advances in genetic technology and expanding searchable genomic databases. We compiled a master list of known and clinically relevant autism spectrum disorder genes identified with supporting evidence from peer-reviewed medical literature sources by searching key words related to autism and genetics and from authoritative autism-related public access websites, such as the Simons Foundation Autism Research Institute autism genomic database dedicated to gene discovery and characterization. Our list consists of 792 genes arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms, thereby enabling clinical and laboratory geneticists and genetic counsellors to access convenient visual images of the location and distribution of ASD genes. Meaningful correlations of the observed phenotype in patients with suspected/confirmed ASD gene(s at the chromosome region or breakpoint band site can be made to inform diagnosis and gene-based personalized care and provide genetic counselling for families.

  10. Analysis of breast cancer metastasis candidate genes from next generation-sequencing via systematic functional genomics

    DEFF Research Database (Denmark)

    Blomstrøm, Monica Marie

    2016-01-01

    ) and non-CSCs. The main goal of this project was to functionally characterize a set of candidate genes recovered from next-generation sequencing analysis for their role in breast cancer metastasis formation. The starting gene set comprised 104 gene variants; i.e. 57 wildtype and 47 mutated variants....... During the project, the aim was to generate a panel of genetically identical (“isogenic”) MCF7 breast cancer cell lines with inducible overexpression of the gene variants, and to analyze these for effects on breast cancer growth and invasion in vitro under standardized conditions. Moreover, it was aimed...

  11. Evolution of X-degenerate Y chromosome genes in greater apes: conservation of gene content in human and gorilla, but not chimpanzee.

    Science.gov (United States)

    Goto, Hiroki; Peng, Lei; Makova, Kateryna D

    2009-02-01

    Compared with the X chromosome, the mammalian Y chromosome is considerably diminished in size and has lost most of its ancestral genes during evolution. Interestingly, for the X-degenerate region on the Y chromosome, human has retained all 16 genes, while chimpanzee has lost 4 of the 16 genes since the divergence of the two species. To uncover the evolutionary forces governing ape Y chromosome degeneration, we determined the complete sequences of the coding exons and splice sites for 16 gorilla Y chromosome genes of the X-degenerate region. We discovered that all studied reading frames and splice sites were intact, and thus, this genomic region experienced no gene loss in the gorilla lineage. Higher nucleotide divergence was observed in the chimpanzee than the human lineage, particularly for genes with disruptive mutations, suggesting a lack of functional constraints for these genes in chimpanzee. Surprisingly, our results indicate that the human and gorilla orthologues of the genes disrupted in chimpanzee evolve under relaxed functional constraints and might not be essential. Taking mating patterns and effective population sizes of ape species into account, we conclude that genetic hitchhiking associated with positive selection due to sperm competition might explain the rapid decline in the Y chromosome gene number in chimpanzee. As we found no evidence of positive selection acting on the X-degenerate genes, such selection likely targets other genes on the chimpanzee Y chromosome. PMID:19142680

  12. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    International Nuclear Information System (INIS)

    Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Array-comparative genomic hybridization (array-CGH) was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR), chromogenic in situ hybridization (CISH), reverse transcriptase-qPCR (RT-qPCR), and immunohistochemistry (IHC) in more patients. We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1) functioning in Rho activity control, FRAT2 (10q24.1) involved in Wnt signaling, PAFAH1B1 (17p13.3) functioning in motility control, and ZNF322A (6p22.1) involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (P<0.001~P=0.06). In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of PAFAH1B1 protein overexpression was 68

  13. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Lo Fang-Yi

    2012-06-01

    Full Text Available Abstract Background Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Methods Array-comparative genomic hybridization (array-CGH was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR, chromogenic in situ hybridization (CISH, reverse transcriptase-qPCR (RT-qPCR, and immunohistochemistry (IHC in more patients. Results We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1 functioning in Rho activity control, FRAT2 (10q24.1 involved in Wnt signaling, PAFAH1B1 (17p13.3 functioning in motility control, and ZNF322A (6p22.1 involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (PP=0.06. In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of

  14. Pharmacogenetic effects of 'candidate gene complexes' on stroke in the GenHAT study

    DEFF Research Database (Denmark)

    Sørensen, Izel F; Vazquez, Ana I; Irvin, Marguerite R;

    2014-01-01

    Americans and 539 whites who had experienced stroke in the GenHAT study were genotyped for 768 single nucleotide polymorphisms (SNPs) in 280 candidate genes. To detect a genotype-by-treatment interaction, we used the Pearson's χ-test to assess whether the genotype frequencies differed at the single SNP...... level for the three drug treatment groups. From these single SNP analyses, we derived a summary statistic for the degree of association at the gene and gene complex levels. This was done by grouping SNPs using information on gene locations and defining gene complexes on the basis of protein...... groups. In African Americans, SNP rs12143842 showed a significant association (P<0.001) with drug treatment. At the gene level, HNRNPA1P4 and NOS1AP in African Americans and PRICKLE1 and NINJ2 in non-Hispanic whites were significantly associated (P<0.01) with drug treatment, whereas none of the gene...

  15. Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava

    OpenAIRE

    Turyagyenda, Laban F.; Kizito, Elizabeth B.; Ferguson, Morag; Baguma, Yona; Agaba, Morris; Jagger J W Harvey; Osiru, David S. O.

    2013-01-01

    Cassava is an important root crop to resource-poor farmers in marginal areas, where its production faces drought stress constraints. Given the difficulties associated with cassava breeding, a molecular understanding of drought tolerance in cassava will help in the identification of markers for use in marker-assisted selection and genes for transgenic improvement of drought tolerance. This study was carried out to identify candidate drought-tolerance genes and expression-based markers of droug...

  16. Candidate gene study to investigate the genetic determinants of normal variation in central corneal thickness

    OpenAIRE

    Dimasi, David P.; Kathryn P Burdon; Hewitt, Alex W; Savarirayan, Ravi; Healey, Paul R.; Mitchell, Paul; Mackey, David A.; Craig, Jamie E

    2010-01-01

    Purpose The genetic component underlying variation in central corneal thickness (CCT) in the normal population remains largely unknown. As CCT is an identified risk factor for open-angle glaucoma, understanding the genes involved in CCT determination could improve our understanding of the mechanisms involved in this association. Methods To identify novel CCT genes, we selected eight different candidates based on a range of criteria. These included; aquaporin 1 (AQ1), aquaporin 5 (AQ5), decori...

  17. Identification of human chromosome 9 specific genes using exon amplification.

    Science.gov (United States)

    Church, D M; Banks, L T; Rogers, A C; Graw, S L; Housman, D E; Gusella, J F; Buckler, A J

    1993-11-01

    We have recently developed a method, exon amplification, that is designed for isolation of exon sequences from genomic DNA. To assess the efficacy of this method we have analyzed cosmid genomic clones derived from human chromosome 9, and have cloned several products from this analysis. Approximately 63% of cosmids produced at least one product derived from functioning splice sites within the target genomic fragment, and in many cases multiple products were isolated. In addition, an easily identifiable class of false positives was produced from 56% of cosmids analyzed; these are readily eliminated from subsequent study. Sequence analysis and database searches revealed that the majority (87%) of the putative exon clones were unique, the remainder being derived from repetitive sequences. Analysis of sequence conservation by Southern blotting in addition to cDNA screening experiments suggested that most, if not all, of these unique sequences represent true exons. The results of these studies indicate that exon amplification is a rapid and reliable approach for isolation of exon sequences from mammalian genomic DNA. PMID:7506603

  18. A unique mosaic Turner syndrome patient with androgen receptor gene derived marker chromosome.

    Science.gov (United States)

    Kalkan, Rasime; Özdağ, Nermin; Bundak, Rüveyde; Çirakoğlu, Ayşe; Serakinci, Nedime

    2016-01-01

    Patients with Turner syndrome are generally characterized by having short stature with no secondary sexual characteristics. Some abnormalities, such as webbed neck, renal malformations (>50%) and cardiac defects (10%) are less common. The intelligence of these patients is considered normal. Non-mosaic monosomy X is observed in approximately 45% of postnatal patients with Turner syndrome and the rest of the patients have structural abnormalities or mosaicism involving 46,X,i(Xq), 45,X/46,XX, 45,X and other variants. The phenotype of 45,X/46,X,+mar individuals varies by the genetic continent and degree of the mosaicism. The gene content of the marker chromosome is the most important when correlating the phenotype with the genotype. Here we present an 11-year-old female who was referred for evaluation of her short stature and learning disabilities. Conventional cytogenetic investigation showed a mosaic 45,X/46,X,+mar karyotype. Fluorescence in situ hybridization showed that the marker chromosome originated from the X chromosome within the androgen receptor (AR) and X-inactive specific transcript (XIST) genes. Therefore, it is possible that aberrant activation of the marker chromosome, compromising the AR and XIST genes, may modify the Turner syndrome phenotype. PMID:26744914

  19. Morphometric Analysis of Recognized Genes for Autism Spectrum Disorders and Obesity in Relationship to the Distribution of Protein-Coding Genes on Human Chromosomes.

    Science.gov (United States)

    McGuire, Austen B; Rafi, Syed K; Manzardo, Ann M; Butler, Merlin G

    2016-01-01

    Mammalian chromosomes are comprised of complex chromatin architecture with the specific assembly and configuration of each chromosome influencing gene expression and function in yet undefined ways by varying degrees of heterochromatinization that result in Giemsa (G) negative euchromatic (light) bands and G-positive heterochromatic (dark) bands. We carried out morphometric measurements of high-resolution chromosome ideograms for the first time to characterize the total euchromatic and heterochromatic chromosome band length, distribution and localization of 20,145 known protein-coding genes, 790 recognized autism spectrum disorder (ASD) genes and 365 obesity genes. The individual lengths of G-negative euchromatin and G-positive heterochromatin chromosome bands were measured in millimeters and recorded from scaled and stacked digital images of 850-band high-resolution ideograms supplied by the International Society of Chromosome Nomenclature (ISCN) 2013. Our overall measurements followed established banding patterns based on chromosome size. G-negative euchromatic band regions contained 60% of protein-coding genes while the remaining 40% were distributed across the four heterochromatic dark band sub-types. ASD genes were disproportionately overrepresented in the darker heterochromatic sub-bands, while the obesity gene distribution pattern did not significantly differ from protein-coding genes. Our study supports recent trends implicating genes located in heterochromatin regions playing a role in biological processes including neurodevelopment and function, specifically genes associated with ASD. PMID:27164088

  20. A Candidate Gene Analysis of Methylphenidate Response in Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    McGough, James J.; McCracken, James T.; Loo, Sandra K.; Manganiello, Marc; Leung, Michael C.; Tietjens, Jeremy R.; Trinh, Thao; Baweja, Shilpa; Suddath, Robert; Smalley, Susan L.; Hellemann, Gerhard; Sugar, Catherine A.

    2009-01-01

    Objective: This study examines the potential role of candidate genes in moderating treatment effects of methylphenidate (MPH) in attention-deficit/hyperactivity disorder (ADHD). Method: Eighty-two subjects with ADHD aged 6 to 17 years participated in a prospective, double-blind, placebo-controlled, multiple-dose, crossover titration trial of…

  1. Bioinformatics-Driven Identification and Examination of Candidate Genes for Non-Alcoholic Fatty Liver Disease

    DEFF Research Database (Denmark)

    Banasik, Karina; Justesen, Johanne M.; Hornbak, Malene;

    2011-01-01

    Objective: Candidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes. Research Design and Methods: By integrating public database text mining, trans-organism protein...

  2. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D;

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA-dam...

  3. No association of candidate genes with cannabis use in a large sample of Australian twin families

    NARCIS (Netherlands)

    Verweij, C.J.H.; Zietsch, B.P.; Liu, J.Z.; Medland, S.E.; Lynskey, M.T.; Madden, P.A.F.; Agrawal, A.; Montgomery, G.W.; Heath, A.C.; Martin, N.G.

    2012-01-01

    While there is solid evidence that cannabis use is heritable, attempts to identify genetic influences at the molecular level have yielded mixed results. Here, a large twin family sample (n = 7452) was used to test for association between 10 previously reported candidate genes and lifetime frequency

  4. Candidate fire blight resistance genes in Malus identified with the use of genomic tools and approaches

    Science.gov (United States)

    The goal of this research is to utilize current advances in Rosaceae genomics to identify DNA markers for use in marker-assisted selection of durable resistance to fire blight. Candidate fire blight resistance genes were selected and ranked based upon differential expression after inoculation with ...

  5. Chromosomal mapping of the human M6 genes

    Energy Technology Data Exchange (ETDEWEB)

    Olinsky, S.; Loop, B.T.; DeKosky, A. [Univ. of Pittsburgh, PA (United States)] [and others

    1996-05-01

    M6 is a neuronal membrane glycoprotein that may have an important role in neural development. This molecule was initially defined by a monoclonal antibody that affected the survival of cultured cerebellar neurons and the outgrowth of neurites. The nature of the antigen was discovered by expression cDNA cloning using this monoclonal antibody. Two distinct murine M6 cDNAs (designated M6a and M6b) whose deduced amino acid sequences were remarkably similar to that of the myelin proteolipid protein human cDNA and genomic clones encoding M6a and M6b and have characterized them by restriction mapping, Southern hybridization with cDNA probes, and sequence analysis. We have localized these genes within the human genome by FISH (fluorescence in situ hybridization). The human M6a gene is located at 4q34, and the M6b gene is located at Xp22.2 A number of human neurological disorders have been mapped to the Xp22 region, including Aicardi syndrome (MIM 304050), Rett syndrome (MIM 312750), X-linked Charcot-Marie-Tooth neuropathy (MIM 302801), and X-linked mental retardation syndromes (MRX1, MIM 309530). This raises the possibility that a defect in the M6b gene is responsible for one of these neurological disorders. 8 refs., 3 figs.

  6. Genes on B chromosomes: Old questions revisited with new tools

    Czech Academy of Sciences Publication Activity Database

    Banaei-Moghaddam, A.M.; Martis, M.M.; Macas, Jiří; Gundlach, H.; Himmelbach, A.; Altschmied, L.; Mayer, K. F. X.; Houben, A.

    2015-01-01

    Roč. 1849, č. 1 (2015), s. 64-70. ISSN 1874-9399 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:60077344 Keywords : Gene regulation * genome evolution * junk DNA * pseudogene * transcription Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.332, year: 2014

  7. Chromosomal Abnormalities and Putative Susceptibility Genes in Autism Spectrum Disorders

    DEFF Research Database (Denmark)

    Nielsen, Mette Gilling

    Autism spectrum disorders (ASDs) is a heterogeneous group of neurodevelopmental disorders with a significant genetic component as shown by family and twin studies. However, only a few genes have repeatedly been shown to be involved in the development of ASDs. The aim of this study has been to...

  8. Chromosomal nif Genes Transfer by Conjugation in Nitrogen Fixing Azotobacter chroococcum to Lactobacillus plantarium

    Directory of Open Access Journals (Sweden)

    Adel Kamal Khider

    2011-03-01

    Full Text Available To determine the possibility of transferring chromosomal nitrogen fixation genes (nif genes from Azotobacter chroococcum to Lactobacillus planetarium, a total of 72 Azotobacter chroococcum isolated from Erbil governorate, Iraq were culturally, morphologically and biochemically characterized. Genes for atmospheric nitrogen fixation, located on the chromosome of Azotobacter chroococcum isolates were transferred by conjugation process to a recipient Lactobacillus plantarium isolated from Erbil city soils. The chromosomal genes transferred were verified by analysis of the genomes of donor, recipient and putative transconjugants, by polymorphism of DNA bands obtained through amplification of nifH1, nifH2, nifH3, nifU and nifV genes by PCR technique. The transconjugant cells promote an efficient fixation of nitrogen in liquid cultures fixed 0.2% nitrogen, and in the soil as inoculums of wheat plants, fixed 0.31% nitrogen and solublized 11.71 ppm phosphorus, beside all advantages of Lactic acid bacteria, and probably to be used as inoculums for both nitrogen fixation and solublizing insoluble phosphorus components, and used as biofertilizers

  9. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T;

    1994-01-01

    Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding...... "adapter" proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent-human...... hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ...

  10. A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain.

    Science.gov (United States)

    Taipale, Mikko; Kaminen, Nina; Nopola-Hemmi, Jaana; Haltia, Tuomas; Myllyluoma, Birgitta; Lyytinen, Heikki; Muller, Kurt; Kaaranen, Minna; Lindsberg, Perttu J; Hannula-Jouppi, Katariina; Kere, Juha

    2003-09-30

    Approximately 3-10% of people have specific difficulties in reading, despite adequate intelligence, education, and social environment. We report here the characterization of a gene, DYX1C1 near the DYX1 locus in chromosome 15q21, that is disrupted by a translocation t(2;15)(q11;q21) segregating coincidentally with dyslexia. Two sequence changes in DYX1C1, one involving the translation initiation sequence and an Elk-1 transcription factor binding site (-3G --> A) and a codon (1249G --> T), introducing a premature stop codon and truncating the predicted protein by 4 aa, associate alone and in combination with dyslexia. DYX1C1 encodes a 420-aa protein with three tetratricopeptide repeat (TPR) domains, thought to be protein interaction modules, but otherwise with no homology to known proteins. The mouse Dyx1c1 protein is 78% identical to the human protein, and the nonhuman primates differ at 0.5-1.4% of residues. DYX1C1 is expressed in several tissues, including the brain, and the protein resides in the nucleus. In human brain, DYX1C1 protein localizes to a fraction of cortical neurons and white matter glial cells. We conclude that DYX1C1 should be regarded as a candidate gene for developmental dyslexia. Detailed study of its function may open a path to understanding a complex process of development and maturation of the human brain. PMID:12954984

  11. Single Nucleotide Polymorphism Microarray Analysis in Cortisol-Secreting Adrenocortical Adenomas Identifies New Candidate Genes and Pathways

    Directory of Open Access Journals (Sweden)

    Cristina L. Ronchi

    2012-03-01

    Full Text Available The genetic mechanisms underlying adrenocortical tumor development are still largely unknown. We used high-resolution single nucleotide polymorphism microarrays (Affymetrix SNP 6.0 to detect copy number alterations (CNAs and copy-neutral losses of heterozygosity (cnLOH in 15 cortisol-secreting adrenocortical adenomas with matched blood samples. We focused on microalterations aiming to discover new candidate genes involved in early tumorigenesis and/or autonomous cortisol secretion. We identified 962 CNAs with a median of 18 CNAs per sample. Half of them involved noncoding regions, 89% were less than 100 kb, and 28% were found in at least two samples. The most frequently gained regions were 5p15.33, 6q16.1, 7p22.3-22.2, 8q24.3, 9q34.2-34.3, 11p15.5, 11q11, 12q12, 16q24.3, 20p11.1-20q21.11, and Xq28 (≥20% of cases, most of them being identified in the same three adenomas. These regions contained among others genes like NOTCH1, CYP11B2, HRAS, and IGF2. Recurrent losses were less common and smaller than gains, being mostly localized at 1p, 6q, and 11q. Pathway analysis revealed that Notch signaling was the most frequently altered. We identified 46 recurrent CNAs that each affected a single gene (31 gains and 15 losses, including genes involved in steroidogenesis (CYP11B1 or tumorigenesis (CTNNB1, EPHA7, SGK1, STIL, FHIT. Finally, 20 small cnLOH in four cases affecting 15 known genes were found. Our findings provide the first high-resolution genome-wide view of chromosomal changes in cortisol-secreting adenomas and identify novel candidate genes, such as HRAS, EPHA7, and SGK1. Furthermore, they implicate that the Notch1 signaling pathway might be involved in the molecular pathogenesis of adrenocortical tumors.

  12. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  13. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder.

    Science.gov (United States)

    Ashbrook, David G; Williams, Robert W; Lu, Lu; Hager, Reinmar

    2015-01-01

    Bipolar disorder (BD) is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS) have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium's bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis. We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1, and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG, and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG, and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG, and TNR influence intercellular signaling in the striatum. PMID:26190982

  14. Fine mapping and candidate gene prediction of the photoperiod and thermo-sensitive genic male sterile gene pms1(t) in rice

    Institute of Scientific and Technical Information of China (English)

    Yuan-fei ZHOU; Xian-yin ZHANG; Qing-zhong XUE

    2011-01-01

    Pei'ai64S, an indica sterile variety with photoperiod and thermo-sensitive genic male sterile (PTGMS) genes, has been widely exploited for commercial seed production for "two-line" hybrid rice in China. One PTGMS gene from Pei'ai64S, pms1(t), was mapped by a strategy of bulked-extreme and recessive-class approach with simple sequence repeat (SSR) and insert and deletion (In-Del) markers. Using linkage analysis for the F2 mapping population consisting of 320 completely male sterile individuals derived from a cross between Pei'ai64S and 93-11 (indica restorer) lines, the pms1(t) gene was delimited to the region between the RM21242 (0.2 cM) and YF11 (0.2 cM) markers on the short arm of chromosome 7. The interval containing the pms1(t) locus, which was co-segregated with RM6776, is a 101.1 kb region based on the Nipponbare rice genome. Fourteen predicted loci were found in this region by the Institute for Genomic Research (TIGR) Genomic Annotation. Based on the function of the locus LOC_Os07g12130 by bioinformatics analysis, it is predicted to encode a protein containing a Myb-like DNA-binding domain, and may process the transcript with thermosensory response. The reverse transcription-polymerase chain reaction (RT-PCR) results revealed that the mRNA levels of LOC_Os07g12130 were altered in different photoperiod and temperature treatments. Thus, the LOC_Os07g12130 locus is the most likely candidate gene for pms1(t). These results may facilitate not only using the molecular marker assisted selection of PTGMS genes, but also cloning of the pms1(t) gene itself.

  15. Phylogenetic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters

    Directory of Open Access Journals (Sweden)

    Larsson Tomas A

    2008-09-01

    Full Text Available Abstract Background Ever since the theory about two rounds of genome duplication (2R in the vertebrate lineage was proposed, the Hox gene clusters have served as the prime example of quadruplicate paralogy in mammalian genomes. In teleost fishes, the observation of additional Hox clusters absent in other vertebrate lineages suggested a third tetraploidization (3R. Because the Hox clusters occupy a quite limited part of each chromosome, and are special in having position-dependent regulation within the multi-gene cluster, studies of syntenic gene families are needed to determine the extent of the duplicated chromosome segments. We have analyzed in detail 14 gene families that are syntenic with the Hox clusters to see if their phylogenies are compatible with the Hox duplications and the 2R/3R scenario. Our starting point was the gene family for the NPY family of peptides located near the Hox clusters in the pufferfish Takifugu rubripes, the zebrafish Danio rerio, and human. Results Seven of the gene families have members on at least three of the human Hox chromosomes and two families are present on all four. Using both neighbor-joining and quartet-puzzling maximum likelihood methods we found that 13 families have a phylogeny that supports duplications coinciding with the Hox cluster duplications. One additional family also has a topology consistent with 2R but due to lack of urochordate or cephalocordate sequences the time window when these duplications could have occurred is wider. All but two gene families also show teleost-specific duplicates. Conclusion Based on this analysis we conclude that the Hox cluster duplications involved a large number of adjacent gene families, supporting expansion of these families in the 2R, as well as in the teleost 3R tetraploidization. The gene duplicates presumably provided raw material in early vertebrate evolution for neofunctionalization and subfunctionalization.

  16. Gene Expression Analysis in Tubule Interstitial Compartments Reveals Candidate Agents for IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Jinling Wang

    2014-09-01

    Full Text Available Background/Aims: Our aim was to explore the molecular mechanism underlying development of IgA nephropathy and discover candidate agents for IgA nephropathy. Methods: The differentially expressed genes (DEGs between patients with IgA nephropathy and normal controls were identified by the data of GSE35488 downloaded from GEO (Gene Expression Omnibus database. The co-expressed gene pairs among DEGs were screened to construct the gene-gene interaction network. Gene Ontology (GO enrichment analysis was performed to analyze the functions of DEGs. The biologically active small molecules capable of targeting IgA nephropathy were identified using the Connectivity Map (cMap database. Results: A total of 55 genes involved in response to organic substance, transcription factor activity and response to steroid hormone stimulus were identified to be differentially expressed in IgA nephropathy patients compared to healthy individuals. A network with 45 co-expressed gene pairs was constructed. DEGs in the network were significantly enriched in response to organic substance. Additionally, a group of small molecules were identified, such as doxorubicin and thapsigargin. Conclusion: Our work provided a systematic insight in understanding the mechanism of IgA nephropathy. Small molecules such as thapsigargin might be potential candidate agents for the treatment of IgA nephropathy.

  17. Looking for arthritis regulating genes on mouse chromosome 6 & 14

    OpenAIRE

    Popovic, Marjan

    2008-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disease of the joints with a complex aetiology affected by largely unknown genetic and environmental factors. Because ~60% of susceptibility to RA is genetically inherited, one way to progress towards understanding of the disease is to identify the disease regulating genes. Collagen-induced arthritis (CIA) is the most commonly used model of RA in mice. After immunisation by a subcutaneous injection of collagen emulsified ...

  18. Evaluation of candidate nephropathy susceptibility genes in a genome-wide association study of African American diabetic kidney disease.

    Directory of Open Access Journals (Sweden)

    Nicholette D Palmer

    Full Text Available Type 2 diabetes (T2D-associated end-stage kidney disease (ESKD is a complex disorder resulting from the combined influence of genetic and environmental factors. This study contains a comprehensive genetic analysis of putative nephropathy loci in 965 African American (AA cases with T2D-ESKD and 1029 AA population-based controls extending prior findings. Analysis was based on 4,341 directly genotyped and imputed single nucleotide polymorphisms (SNPs in 22 nephropathy candidate genes. After admixture adjustment and correction for multiple comparisons, 37 SNPs across eight loci were significantly associated (1.6E-05chromosome 22 loci (APOL1, SFI1, and LIMK2. Nominal signals were observed in AGTR1, RPS12, CHN2 and CNDP1. Additional adjustment for APOL1 G1/G2 risk variants attenuated association at MYH9 (P(emp = 0.00026-0.043 while marginally improving significance of other APOL1 SNPs (rs136161, rs713753, and rs767855; P(emp = 0.0060-0.037; association at other loci was markedly reduced except for CHN2 (chimerin; rs17157914, P(emp= 0.029. In addition, SNPs in other candidate loci (FRMD3 and TRPC6 trended toward association with T2D-ESKD (P(emp<0.05. These results suggest that risk contributed by putative nephropathy genes is shared across populations of African and European ancestry.

  19. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR.

    Directory of Open Access Journals (Sweden)

    Ruby Chandna

    Full Text Available The real time quantitative reverse transcription PCR (qRT-PCR is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes, ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes, in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization.

  20. Phylogenetic analyses of peanut resistance gene candidates and screening of different genotypes for polymorphic markers.

    Science.gov (United States)

    Radwan, Osman E; Ahmed, Talaat A; Knapp, Steven J

    2010-01-01

    The nucleotide-binding-site-leucine-rich-repeat (NBS-LRR)-encoding gene family has attracted much research interest because approximately 75% of the plant disease resistance genes that have been cloned to date are from this gene family. Here, we describe a collection of peanut NBS-LRR resistance gene candidates (RGCs) isolated from peanut (Arachis) species by mining Gene Bank data base. NBS-LRR sequences assembled into TIR-NBS-LRR (75.4%) and non-TIR-NBS-LRR (24.6%) subfamilies. Total of 20 distinct clades were identified and showed a high level of sequence divergence within TIR-NBS and non-TIR-NBS subfamilies. Thirty-four primer pairs were designed from these RGC sequences and used for screening different genotypes belonging to wild and cultivated peanuts. Therefore, peanut RGC identified in this study will provide useful tools for developing DNA markers and cloning the genes for resistance to different pathogens in peanut. PMID:23961057

  1. Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages.

    Science.gov (United States)

    Bidon, Tobias; Janke, Axel; Fain, Steven R; Eiken, Hans Geir; Hagen, Snorre B; Saarma, Urmas; Hallström, Björn M; Lecomte, Nicolas; Hailer, Frank

    2014-06-01

    Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms. PMID:24667925

  2. Chromosomal evolution of the PKD1 gene family in primates

    OpenAIRE

    Krawczak Michael; Pennekamp Petra; Münch Claudia; Bogdanova Nadia; Wolf Andreas; Pasantes Juanjo; Kirsch Stefan; Dworniczak Bernd; Schempp Werner

    2008-01-01

    Abstract Background The autosomal dominant polycystic kidney disease (ADPKD) is mostly caused by mutations in the PKD1 (polycystic kidney disease 1) gene located in 16p13.3. Moreover, there are six pseudogenes of PKD1 that are located proximal to the master gene in 16p13.1. In contrast, no pseudogene could be detected in the mouse genome, only a single copy gene on chromosome 17. The question arises how the human situation originated phylogenetically. To address this question we applied compa...

  3. QTLs and candidate genes for desiccation and abscisic acid content in maize kernels

    Directory of Open Access Journals (Sweden)

    Charcosset Alain

    2010-01-01

    Full Text Available Abstract Background Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes. Results The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive Rab17 and Rab28 genes as well as the late embryogenesis abundant Emb5 and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two zeaxanthin epoxidase (ZEP and five novel 9-cis-epoxycarotenoid dioxygenase (NCED related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in

  4. Gene dosage methods as diagnostic tools for the identification of chromosome abnormalities.

    Science.gov (United States)

    Gouas, L; Goumy, C; Véronèse, L; Tchirkov, A; Vago, P

    2008-09-01

    Cytogenetics is the part of genetics that deals with chromosomes, particularly with numerical and structural chromosome abnormalities, and their implications in congenital or acquired genetic disorders. Standard karyotyping, successfully used for the last 50 years in investigating the chromosome etiology in patients with infertility, fetal abnormalities and congenital disorders, is constrained by the limits of microscopic resolution and is not suited for the detection of subtle chromosome abnormalities. The ability to detect submicroscopic chromosomal rearrangements that lead to copy-number changes has escalated progressively in recent years with the advent of molecular cytogenetic techniques. Here, we review various gene dosage methods such as FISH, PCR-based approaches (MLPA, QF-PCR, QMPSF and real time PCR), CGH and array-CGH, that can be used for the identification and delineation of copy-number changes for diagnostic purposes. Besides comparing their relative strength and weakness, we will discuss the impact that these detection methods have on our understanding of copy number variations in the human genome and their implications in genetic counseling. PMID:18513889

  5. Narrowing of the Hailey-Hailey disease gene region on chromosome 3q and identification of one kindred with a deletion in this region

    Energy Technology Data Exchange (ETDEWEB)

    Peluso, A.M.; Bonifas, J.M.; Ikeda, S.; Hu, Z. [Univ. of California, San Francisco, CA (United States)] [and others

    1995-11-01

    Hailey-Hailey disease is a cutaneous abnormality transmitted as an autosomal dominant trait in which impaired interkeratinocyte adhesion produces recurrent blisters in characteristic skin sites. We report here a confirmation of the initial mapping of the mutant gene to chromosome 3q in an additional seven kindreds, narrowing of the candidate region to the sequences flanked by D3S1589 and D3S1541, and the finding in one family of a genomic DNA deletion whose centromeric end is located between these two flanking markers. 6 refs., 2 figs.

  6. Sequence signatures involved in targeting the male-specific lethal complex to X-chromosomal genes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Philip Philge

    2012-03-01

    Full Text Available Abstract Background In Drosophila melanogaster, the dosage-compensation system that equalizes X-linked gene expression between males and females, thereby assuring that an appropriate balance is maintained between the expression of genes on the X chromosome(s and the autosomes, is at least partially mediated by the Male-Specific Lethal (MSL complex. This complex binds to genes with a preference for exons on the male X chromosome with a 3' bias, and it targets most expressed genes on the X chromosome. However, a number of genes are expressed but not targeted by the complex. High affinity sites seem to be responsible for initial recruitment of the complex to the X chromosome, but the targeting to and within individual genes is poorly understood. Results We have extensively examined X chromosome sequence variation within five types of gene features (promoters, 5' UTRs, coding sequences, introns, 3' UTRs and intergenic sequences, and assessed its potential involvement in dosage compensation. Presented results show that: the X chromosome has a distinct sequence composition within its gene features; some of the detected variation correlates with genes targeted by the MSL-complex; the insulator protein BEAF-32 preferentially binds upstream of MSL-bound genes; BEAF-32 and MOF co-localizes in promoters; and that bound genes have a distinct sequence composition that shows a 3' bias within coding sequence. Conclusions Although, many strongly bound genes are close to a high affinity site neither our promoter motif nor our coding sequence signatures show any correlation to HAS. Based on the results presented here, we believe that there are sequences in the promoters and coding sequences of targeted genes that have the potential to direct the secondary spreading of the MSL-complex to nearby genes.

  7. Integration of disease association and eQTL data using a Bayesian colocalisation approach highlights six candidate causal genes in immune-mediated diseases.

    Science.gov (United States)

    Guo, Hui; Fortune, Mary D; Burren, Oliver S; Schofield, Ellen; Todd, John A; Wallace, Chris

    2015-06-15

    The genes and cells that mediate genetic associations identified through genome-wide association studies (GWAS) are only partially understood. Several studies that have investigated the genetic regulation of gene expression have shown that disease-associated variants are over-represented amongst expression quantitative trait loci (eQTL) variants. Evidence for colocalisation of eQTL and disease causal variants can suggest causal genes and cells for these genetic associations. Here, we used colocalisation analysis to investigate whether 595 genetic associations to ten immune-mediated diseases are consistent with a causal variant that regulates, in cis, gene expression in resting B cells, and in resting and stimulated monocytes. Previously published candidate causal genes were over-represented amongst genes exhibiting colocalisation (odds ratio > 1.5), and we identified evidence for colocalisation (posterior odds > 5) between cis eQTLs in at least one cell type and at least one disease for six genes: ADAM15, RGS1, CARD9, LTBR, CTSH and SYNGR1. We identified cell-specific effects, such as for CTSH, the expression of which in monocytes, but not in B cells, may mediate type 1 diabetes and narcolepsy associations in the chromosome 15q25.1 region. Our results demonstrate the utility of integrating genetic studies of disease and gene expression for highlighting causal genes and cell types. PMID:25743184

  8. Screening of B chromosomes for presence of two genes in yellow-necked mice, Apodemus flavicollis (Mammalia, Rodentia)

    OpenAIRE

    Rajičić Marija; Adnađević Tanja; Stamenković Gorana; Blagojević Jelena; Vujošević Mladen

    2015-01-01

    B chromosomes (Bs) are a very heterogeneous group of extra chromosomes. In various species Bs occur with different nucleotide sequences ranging from repetitive to protein coding. In yellow-necked field mice, Apodemus flavicollis Bs are small euchromatic chromosomes and untill now, only few molecular analyses have been conducted. In this study we examined A. flavicollis individuals with different number of Bs for presence of two genes, C-KIT and 18S rRNA. Th...

  9. Candidate gene selection and detailed morphological evaluations of fs8.1, a quantitative trait locus controlling tomato fruit shape

    Science.gov (United States)

    Sun, Liang; Rodriguez, Gustavo R.; Clevenger, Josh P.; Illa-Berenguer, Eudald; Lin, Jinshan; Blakeslee, Joshua J.; Liu, Wenli; Fei, Zhangjun; Wijeratne, Asela; Meulia, Tea; van der Knaap, Esther

    2015-01-01

    fs8.1 is a major quantitative trait locus (QTL) that controls the elongated shape of tomato (Solanum lycopersicum) fruit. In this study, we fine-mapped the locus from a 47Mb to a 3.03Mb interval on the long arm of chromosome 8. Of the 122 annotated genes found in the fs8.1 region, 51 were expressed during floral development and six were differentially expressed in anthesis-stage ovaries in fs8.1 and wild-type (WT) lines. To identify possible nucleotide polymorphisms that may underlie the fruit shape phenotype, genome sequence analyses between tomato cultivars carrying the mutant and WT allele were conducted. This led to the identification of 158 single-nucleotide polymorphisms (SNPs) and five small indels in the fs8.1 interval, including 31 that could be associated with changes in gene expression or function. Morphological and histological analyses showed that the effects of fs8.1 were mainly on reproductive organ elongation by increasing cell number in the proximal–distal direction. Fruit weight was also increased in fs8.1 compared with WT, which was predominantly attributed to the increased fruit length. By combining the findings from the different analyses, we consider 12 likely candidate genes to underlie fs8.1, including Solyc08g062580 encoding a pentatricopeptide repeat protein, Solyc08g061560 encoding a putative orthologue of ERECTA, which is known to control fruit morphology and inflorescence architecture in Arabidopsis, Solyc08g061910 encoding a GTL2-like trihelix transcription factor, Solyc08g061930 encoding a protein that regulates cytokinin degradation, and two genes, Solyc08g062340 and Solyc08g062450, encoding 17.6kDa class II small heat-shock proteins. PMID:26175354

  10. Localization of TDPX1, a human homologue of the yeast thioredoxin-dependent peroxide reductase gene (TPX), to chromosome 13q12

    Energy Technology Data Exchange (ETDEWEB)

    Pahl, P.; Berger, R.; Hart, I. [Eleanor Roosevelt Institute for Cancer Research, Denver, CO (United States)]|[Univ. of Colorado Health Sciences Center and the Univ. of Colorado Cancer Center, Denver, CO (United States)] [and others

    1995-04-10

    Reactive oxygen species and free radicals that are produced during normal metabolism can potentially damage cellular macromolecules. Defenses against such damage include a number of antioxidant enzymes that specifically target the removal or dismutation of the reactive agent. We report here the isolation and regional mapping of a human gene, TDPX1, that encodes an enzyme homologous to a yeast thioredoxin-dependent peroxide reductase (thioredoxin peroxidase, TPX). The human TDPX1 coding sequence was determined from the product of a polymerase chain reaction (PCR) amplification of human cDNA. Based on PCR analysis of DNA from a human/rodent somatic cell hybrid panel, the TDPX1 locus was assigned to chromosome 13. Further localization of the locus to 13q12 was accomplished by fluorescence in situ hybridization analysis, using as a probe DNA from a yeast artificial chromosome (YAC) that contains the TDPX1 gene. It was also determined by PCR analysis of various YACs that the TDPX1 locus is in the region of the dinucleotide repeat markers D13S289 and D13S290. This regional mapping localizes the TDPX1 gene to a genomic region recently shown to contain the breast cancer susceptibility gene BRCA2 and a gene associated with a form of muscular dystrophy. Oxygen radical metabolism has been hypothesized to be important for cancer, muscular dystrophy, and other disorders, so TDPX1 should be considered a candidate gene for these diseases. 33 refs., 2 figs., 1 tab.

  11. Testing candidate genes for attention-deficit/hyperactivity disorder in fruit flies using a high throughput assay for complex behavior

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Madsen, Lisbeth Strøm; Arvidson, Sandra Marie Neumann; Loeschcke, Volker; Demontis, Ditte; Kristensen, Torsten Nygaard

    2016-01-01

    Fruit flies are important model organisms for functional testing of candidate genes in multiple disciplines, including the study of human diseases. Here we use a high-throughput locomotor activity assay to test the response on activity behavior of gene disruption in Drosophila melanogaster. The aim...... behavioral activity in fruit flies. Results provide additional support for the investigated genes being risk candidate genes for ADHD in humans....

  12. Evolutionary conservation of candidate osmoregulation genes in plant phloem sap-feeding insects.

    Science.gov (United States)

    Jing, X; White, T A; Luan, J; Jiao, C; Fei, Z; Douglas, A E

    2016-06-01

    The high osmotic pressure generated by sugars in plant phloem sap is reduced in phloem-feeding aphids by sugar transformations and facilitated water flux in the gut. The genes mediating these osmoregulatory functions have been identified and validated empirically in the pea aphid Acyrthosiphon pisum: sucrase 1 (SUC1), a sucrase in glycoside hydrolase family 13 (GH13), and aquaporin 1 (AQP1), a member of the Drosophila integral protein (DRIP) family of aquaporins. Here, we describe molecular analysis of GH13 and AQP genes in phloem-feeding representatives of the four phloem-feeding groups: aphids (Myzus persicae), coccids (Planococcus citri), psyllids (Diaphorina citri, Bactericera cockerelli) and whiteflies (Bemisia tabaci MEAM1 and MED). A single candidate GH13-SUC gene and DRIP-AQP gene were identified in the genome/transcriptome of most insects tested by the criteria of sequence motif and gene expression in the gut. Exceptionally, the psyllid Ba. cockerelli transcriptome included a gut-expressed Pyrocoelia rufa integral protein (PRIP)-AQP, but has no DRIP-AQP transcripts, suggesting that PRIP-AQP is recruited for osmoregulatory function in this insect. This study indicates that phylogenetically related SUC and AQP genes may generally mediate osmoregulatory functions in these diverse phloem-feeding insects, and provides candidate genes for empirical validation and development as targets for osmotic disruption of pest species. PMID:26896054

  13. Bioinformatics-driven identification and examination of candidate genes for non-alcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Karina Banasik

    Full Text Available OBJECTIVE: Candidate genes for non-alcoholic fatty liver disease (NAFLD identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes. RESEARCH DESIGN AND METHODS: By integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D, central obesity, and WHO-defined metabolic syndrome (MetS. RESULTS: 273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05 to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations. CONCLUSIONS: Using a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS.

  14. Network Based Integrated Analysis of Phenotype-Genotype Data for Prioritization of Candidate Symptom Genes

    Directory of Open Access Journals (Sweden)

    Xing Li

    2014-01-01

    Full Text Available Background. Symptoms and signs (symptoms in brief are the essential clinical manifestations for individualized diagnosis and treatment in traditional Chinese medicine (TCM. To gain insights into the molecular mechanism of symptoms, we develop a computational approach to identify the candidate genes of symptoms. Methods. This paper presents a network-based approach for the integrated analysis of multiple phenotype-genotype data sources and the prediction of the prioritizing genes for the associated symptoms. The method first calculates the similarities between symptoms and diseases based on the symptom-disease relationships retrieved from the PubMed bibliographic database. Then the disease-gene associations and protein-protein interactions are utilized to construct a phenotype-genotype network. The PRINCE algorithm is finally used to rank the potential genes for the associated symptoms. Results. The proposed method gets reliable gene rank list with AUC (area under curve 0.616 in classification. Some novel genes like CALCA, ESR1, and MTHFR were predicted to be associated with headache symptoms, which are not recorded in the benchmark data set, but have been reported in recent published literatures. Conclusions. Our study demonstrated that by integrating phenotype-genotype relationships into a complex network framework it provides an effective approach to identify candidate genes of symptoms.

  15. Assignment of the 5HT7 receptor gene (HTR7) to chromosome 10q and exclusion of genetic linkage with Tourette syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Gelernter, J.; Rao, P.A.; Pauls, D.L. [Yale Univ. School of Medicine, West Haven, CT (United States)] [and others

    1995-03-20

    A novel serotonin receptor designated 5HT7 (genetic locus HTR7) was cloned in 1993. This receptor has interesting properties related to ligand affinity and CNS distribution that render HTR7 a very interesting candidate gene for neuropsychiatric disorders. We mapped this gene, first by physical methods and then by genetic linkage. First, we made a tentative assignment to chromosome 10, based on hybridization of an HTR7 probe to a Southern blot of DNA from somatic cell hybrids. We then identified a genetic polymorphism at the HTR7 locus. We identified one extended pedigree where the polymorphism segregated. Using the LEPED computer program for pairwise linkage analysis, we confirmed the assignment of the gene to chromosome 10, specifically 10q21-q24, based on a lod score of 5.37 at 0% recombination between HTR7 and D10S20 (a chromosome 10 reference marker). Finally, we excluded genetic linkage between this locus and Tourette syndrome under a reasonable set of assumptions. 15 refs., 1 fig., 1 tab.

  16. Male-specific region of the bovine Y chromosome is gene rich with a high transcriptomic activity in testis development.

    Science.gov (United States)

    Chang, Ti-Cheng; Yang, Yang; Retzel, Ernest F; Liu, Wan-Sheng

    2013-07-23

    The male-specific region of the mammalian Y chromosome (MSY) contains clusters of genes essential for male reproduction. The highly repetitive and degenerative nature of the Y chromosome impedes genomic and transcriptomic characterization. Although the Y chromosome sequence is available for the human, chimpanzee, and macaque, little is known about the annotation and transcriptome of nonprimate MSY. Here, we investigated the transcriptome of the MSY in cattle by direct testis cDNA selection and RNA-seq approaches. The bovine MSY differs radically from the primate Y chromosomes with respect to its structure, gene content, and density. Among the 28 protein-coding genes/families identified on the bovine MSY (12 single- and 16 multicopy genes), 16 are bovid specific. The 1,274 genes identified in this study made the bovine MSY gene density the highest in the genome; in comparison, primate MSYs have only 31-78 genes. Our results, along with the highly transcriptional activities observed from these Y-chromosome genes and 375 additional noncoding RNAs, challenge the widely accepted hypothesis that the MSY is gene poor and transcriptionally inert. The bovine MSY genes are predominantly expressed and are differentially regulated during the testicular development. Synonymous substitution rate analyses of the multicopy MSY genes indicated that two major periods of expansion occurred during the Miocene and Pliocene, contributing to the adaptive radiation of bovids. The massive amplification and vigorous transcription suggest that the MSY serves as a genomic niche regulating male reproduction during bovid expansion. PMID:23842086

  17. Analysis of Y chromosome microdeletions and CFTR gene mutations as genetic markers of infertility in Serbian men

    Directory of Open Access Journals (Sweden)

    Dinić Jelena

    2007-01-01

    Full Text Available Background/Aim. Impaired fertility of a male partner is the main cause of infertility in up to one half of all infertile couples. At the genetic level, male infertility can be caused by chromosome aberrations or gene mutations. The presence and types of Y chromosome microdeletions and cystic fybrosis transmembrane conductance regulator (CFTR gene mutations as genetic cause of male infertility was tested in Serbian men. The aim of this study was to analyze CFTR gene mutations and Y chromosome microdelations as potential causes of male infertility in Serbian patients, as well as to test the hypothesis that CFTR mutations in infertile men are predominantly located in the several last exons of the gene. Methods. This study has encompassed 33 men with oligo- or azoospermia. The screening for Y chromosome microdeletions in the azoospermia factor (AZF region was performed by multiplex PCR analysis. The screening of the CFTR gene was performed by denaturing gradient gel electrophoresis (DGGE method. Results. Deletions on Y chromosome were detected in four patients, predominantly in AZFc region (four of total six deletions. Mutations in the CFTR gene were detected on eight out of 66 analyzed chromosomes of infertile men. The most common mutation was F508del (six of total eight mutations. Conclusion. This study confirmed that both Y chromosome microdeletions and CFTR gene mutations played important role in etiology of male infertility in Serbian infertile men. Genetic testing for Y chromosome microdeletions and CFTR gene mutations has been introduced in routine diagnostics and offered to couples undergoing assisted reproduction techniques. Considering that both the type of Y chromosome microdeletion and the type of CFTR mutation have a prognostic value, it is recommended that AZF and CFTR genotyping should not only be performed in patients with reduced sperm quality before undergoing assisted reproduction, but also for the purpose of preimplantation and

  18. Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1.

    Directory of Open Access Journals (Sweden)

    Anne R Greenlee

    Full Text Available MicroRNAs (miRNAs are a class of endogenous, non-coding RNAs that mediate post-transcriptional gene silencing by inhibiting mRNA translation and promoting mRNA decay. DICER1, an RNase III endonuclease encoded by Dicer1, is required for processing short 21-22 nucleotide miRNAs from longer double-stranded RNA precursors. Here, we investigate the loss of Dicer1 in mouse postnatal male germ cells to determine how disruptions in the miRNA biogenesis pathway may contribute to infertility. Reduced levels of Dicer1 transcripts and DICER1 were confirmed in germ cell knock-out (GCKO testes by postnatal day 18 (P18. Compared to wild-type (WT at 8 weeks, GCKO males had no change in body weight; yet showed significant reductions in testis mass and sperm number. Histology and fertility tests confirmed spermatogenic failure in GCKO males. Array analyses at P18 showed that in comparison to WT testes, 75% of miRNA genes and 37% of protein coding genes were differentially expressed in GCKO testes. Among these, 96% of miRNA genes were significantly down-regulated, while 4% miRNA genes were overexpressed. Interestingly, we observed preferential overexpression of genes encoded on the sex chromosomes in GCKO testes, including more than 80% of previously identified targets of meiotic sex chromosome inactivation (MSCI. Compared to WT, GCKO mice showed higher percentages of germ cells at early meiotic stages (leptotene and zygotene but lower percentages at later stages (pachytene, diplotene and metaphase I providing evidence that deletion of Dicer1 leads to disruptions in meiotic progression. Therefore, deleting Dicer1 in early postnatal germ cells resulted in deregulation of transcripts encoded by genes on the sex chromosomes, impaired meiotic progression and led to spermatogenic failure and infertility.

  19. Structure and chromosomal localization of the human PD-1 gene (PDCD1)

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, T.; Ishida, Y.; Kawaichi, M. [Kyoto Prefectural Medical School, Sakyo-ku (Japan)] [and others

    1994-10-01

    A cDNA encoding mouse PD-1, a member of the immunoglobulin superfamily, was previously isolated from apoptosis-induced cells by subtractive hybridization. To determine the structure and chromosomal location of the human PD-1 gene, we screened a human T cell cDNA library by mouse PD-1 probe and isolated a cDNA coding for the human PD-1 protein. The deduced amino acid sequence of human PD-1 was 60% identical to the mouse counterpart, and a putative tyrosine kinase-association motif was well conserved. The human PD-1 gene was mapped to 2q37.3 by chromosomal in situ hybridization. 7 refs., 3 figs.

  20. Dissection of a locus on mouse chromosome 5 reveals arthritis promoting and inhibitory genes

    DEFF Research Database (Denmark)

    Lindvall, Therese; Karlsson, Jenny; Holmdahl, Rikard;

    2009-01-01

    ABSTRACT: INTRODUCTION: In a cross between the susceptible B10.RIII (H-2r) and resistant RIIIS/J (H-2r) mouse strains, a locus on mouse chromosome 5 (Eae39) was previously shown to control experimental autoimmune encephalomyelitis (EAE). Recently, quantitative trait loci (QTL), linked to disease in...... Eae39 congenic- and sub-interval congenic mice, carrying RIIIS/J genes on the B10.RIII genetic background, revealed three loci within Eae39 that control disease and anti-collagen antibody titers. Two of the loci promoted disease and the third locus was protecting from collagen induced arthritis...... development. By further breeding of mice with small congenic fragments, we identified a 3.2 Megabasepair (Mbp) interval that regulates disease. CONCLUSIONS: Disease promoting- and protecting genes within the Eae39 locus on mouse chromosome 5, control susceptibility to collagen induced arthritis. A disease...

  1. Identification of a novel asthma susceptibility gene on chromosome 1qter and its functional evaluation

    DEFF Research Database (Denmark)

    White, Julia H; Chiano, Mathias; Wigglesworth, Mark;

    2008-01-01

    , through a series of genotyping screens. Further screening using the pedigree-based association test (PBAT) identified polymorphisms in the OPN3 and CHML genes as being associated with asthma and atopic asthma after correcting for multiple comparisons. We observed that polymorphisms flanking the OPN3 and......Asthma is a multifactorial disease, in which the intricate interplay between genetic and environmental factors underlies the overall phenotype of the disease. Using a genome-wide scan for linkage in a population comprising of Danish families, we identified a novel linked locus on chromosome 1qter...... (LOD 3.6, asthma) and supporting evidence for this locus was identified for both asthma and atopic-asthma phenotypes in the GAIN (Genetics of Asthma International Network) families. The putative susceptibility gene was progressively localized to a 4.5 Mb region on chromosome 1q adjacent to the telomere...

  2. The gene for human erythrocyte protein 4. 2 maps to chromosome 15q15

    Energy Technology Data Exchange (ETDEWEB)

    Najfeld, V. (Mount Sinai School of Medicine, NY (United States)); Ballard, S.G.; Menninger, J.; Ward, D.C. (Yale Univ., New Haven, CT (United States)); Bouhassira, E.E.; Schwartz, R.S.; Nagel, R.L.; Rybicki, A.C. (Albert Einstein Coll. of Medicine/Montefiore Medical Center, Bronx, NY (United States))

    1992-01-01

    Protein 4.2 (P4.2), one of the major components of the red-blood-cell membrane, is located on the interior surface, where it binds with high affinity to the cytoplasmic domain of band 3. Individuals whose red blood cells are deficient in P4.2 have osmotically fragile, abnormally shaped cells and moderate hemolytic anemia. cDNA clones from both the 5{prime} and the 3{prime} coding regions of the P4.2 gene were used to map its chromosomal location by fluorescence in situ hybridization. The probes, individually or in combination, gave specific hybridization signals on chromosome 15. The hybridization locus was identified by combining fluorescence images of the probe signals with fluorescence banding patterns generated by Alu-PCR (R-like) probe and by DAPI staining (G-like). The authors results demonstrate that the locus of the P4.2 gene is located within 15q15.

  3. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture

    Science.gov (United States)

    González-Plaza, Juan J.; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F.; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R.; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R.

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species. PMID:26973682

  4. Identification of candidate genes for dissecting complex branch number trait in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Upadhyaya, Hari D; Das, Shouvik; Kumar, Vinod; Gowda, C L L; Sharma, Shivali; Tyagi, Akhilesh K; Parida, Swarup K

    2016-04-01

    The present study exploited integrated genomics-assisted breeding strategy for genetic dissection of complex branch number quantitative trait in chickpea. Candidate gene-based association analysis in a branch number association panel was performed by utilizing the genotyping data of 401 SNP allelic variants mined from 27 known cloned branch number gene orthologs of chickpea. The genome-wide association study (GWAS) integrating both genome-wide GBS- (4556 SNPs) and candidate gene-based genotyping information of 4957 SNPs in a structured population of 60 sequenced desi and kabuli accessions (with 350-400kb LD decay), detected 11 significant genomic loci (genes) associated (41% combined PVE) with branch number in chickpea. Of these, seven branch number-associated genes were further validated successfully in two inter (ICC 4958×ICC 17160)- and intra (ICC 12299×ICC 8261)-specific mapping populations. The axillary meristem and shoot apical meristem-specific expression, including differential up- and down-regulation (4-5 fold) of the validated seven branch number-associated genes especially in high branch number as compared to the low branch number-containing parental accessions and homozygous individuals of two aforesaid mapping populations was apparent. Collectively, this combinatorial genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in seven potential known/candidate genes [PIN1 (PIN-FORMED protein 1), TB1 (teosinte branched 1), BA1/LAX1 (BARREN STALK1/LIKE AUXIN1), GRAS8 (gibberellic acid insensitive/GAI, Repressor of ga13/RGA and Scarecrow8/SCR8), ERF (ethylene-responsive element-binding factor), MAX2 (more axillary growth 2) and lipase] governing chickpea branch number. The useful information generated from this study have potential to expedite marker-assisted genetic enhancement by developing high-yielding cultivars with more number of productive (pods and seeds) branches in chickpea. PMID:26940492

  5. Genetic and Epigenetic Alterations of DLC-1, a Candidate Tumor Suppressor Gene, in Nasopharyngeal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Dan PENG; Cai-Ping REN; Hong-Mei YI; Liang ZHOU; Xu-Yu YANG; Hui LI; Kai-Tai YAO

    2006-01-01

    The DLC-1 gene, located at the human chromosome region 8p22, behaves like a tumor suppressor gene and is frequently deleted in diverse tumors. The deletion of 8p22 is not an uncommon event in nasopharyngeal carcinoma (NPC), therefore we explored the expression levels of the DLC-1 gene in NPCs and NPC cell lines by reverse transcription-polymerase chain reaction. The results showed the mRNA level of DLC-1 was downregulated. To identify the mechanism of DLC-1 downregulation in NPC, we investigated the methylation status of the DLC-1 gene using methylation-specific PCR, and found that 79% (31 of 39) of the NPC tissues and two DLC-1 nonexpressing NPC cell lines, 6-10B and 5-8F, were methylated in the DLC-1 CpG island. Microsatellite PCR was also carried out, and loss of heterozygosity was found at four microsatellite sites (D8S552, D8S1754, D8S1790 and D8S549) covering the whole DLC-1 gene with ratios of 33% (4 of 12 informative cases), 18% (2 of 11), 5% (1 of 18), and 25% (3 of 12), respectively. Taken together, our results suggest that DLC-1 might be an NPC-related tumor suppressor gene affected by aberrant promoter methylation and gene deletion.

  6. Asr genes belong to a gene family comprising at least three closely linked loci on chromosome 4 in tomato.

    Science.gov (United States)

    Rossi, M; Lijavetzky, D; Bernacchi, D; Hopp, H E; Iusem, N

    1996-09-25

    Asr1, Asr2 and Asr3 are three homologous clones isolated from tomato whose expression is believed to be regulated by abscisic acid (ABA); the corresponding genes thus participate in physiological and developmental processes such as responses of leaf and root to water stress, and fruit ripening. In this report, results obtained with Near Isogenic Lines reveal that Asr1, Asr2 and Asr3 represent three different loci. In addition, we map these genes on the restriction fragment length polymorphism (RFLP) map of the tomato genome by using an F2 population derived from an interspecific hybrid cross L. esculentum x L. penelli. RFLP data allow us to map these genes on chromosome 4, suggesting that they belong to a gene family. The elucidation of the genomic organization of the Asr gene family may help in understanding the role of its members in the response to osmotic stress, as well as in fruit ripening, at the molecular level. PMID:8879251

  7. Microsatellite polymorphism on human insulin receptor gene (INSR) on chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, K.; Granqvist, M.; Seino, M.; Seino, S.; Bell, G.I. (Univ. of Chicago, IL (United States))

    1991-09-25

    Two primers (INSR E3-2B, 5{prime}-ATTGCTGCATATGCAGACAG-3{prime} and INSR E3-rC3, 5{prime}-TGCAGCCGTGTGACTTACAG-3{prime}) were used to amplify a 138-156 bp ATTT and CT repeat-rich region in intron 2 of the human INSR gene. Nine alleles were observed in 48 unrelated Caucasians. INSR was assigned to chromosome 19q13.3-p13.2. Codominant inheritance was observed in four nuclear families.

  8. Contribution of chromosomal abnormalities and genes of the major histocompatibility complex to early pregnancy losses

    OpenAIRE

    Tkach I. R.; Sosnina K. O.; Huleyuk N. L.; Terpylyak O. I.; Zastavna D. V.; Weise A.; Kosyakova N.; Liehr T.

    2015-01-01

    Aim. The determination of chromosomal abnormalities in samples from early pregnancy losses and allelic polymorphism of HLA–DRB1 and DQA1 genes in couples with recurrent miscarriage. Methods. Banding cytogenetic and interphase mFISH analysis, DNA extraction by salting method, PCR, agarose gel electrophoresis. Results. Cytogenetic and molecular-cytogenetic investigations of SA material identified karyotype anomalies in 32.4 % of cases with prevalence of autosomal trisomy – 42.65 %, triploidy – ...

  9. ADA1 and NET1 Genes of Yeast Mediate Both Chromosome Maintenance and Mitochondrial $\\rho^{-}$ Mutagenesis

    CERN Document Server

    Koltovaya, N A; Tchekhouta, I A; Devin, A B

    2002-01-01

    An increase in the mitochondrial (mt) rho^- mutagenesis is a well-known respose of yeast cells to mutations in the numerous nuclear genes as well as to various kinds of stress. Notwithstanding the extensive studies during several decades the biological significance of this response is not yet fully understood. The genetic approach to solution of this subject includes the study of genes that are required for the high incidence of spontaneous rho^- mutants. Previously we found that mutations in certain nuclear genes including CDC28, the central cell-cycle regulation gene, may decrease the spontaneous rho^- mutability and simultaneously affect maintenance of the yeast chromosomes and plasmids. The present work provides data on identification of two more genes, resembling CDC28 in this respect. These genes NET1 and ADA1 mediate important regulatory protein-protein interactions in the yeast cell. The effects of net1 and ada1 mutations on the maintenance of yeast mt genome, chromosomes and plasmids as well as on ce...

  10. ADA1 and NET1 genes of yeast mediate both chromosome maintenance and mitochondrial rho- mutagenesis

    International Nuclear Information System (INIS)

    An increase in the mitochondrial (mt) rho- mutagenesis is a well-known response of yeast cells to mutations in the numerous nuclear genes as well as to various kinds of stress. Notwithstanding the extensive studies during several decades the biological significance of this response is not yet fully understood. The genetic approach to solution of this subject includes the study of genes that are required for the high incidence of spontaneous rho- mutants. Previously we found that mutations in certain nuclear genes including CDC28, the central cell-cycle regulation gene, may decrease the spontaneous rho- mutability and simultaneously affect maintenance of the yeast chromosomes and plasmids. The present work provides data on identification of two more genes, resembling CDC28 in this respect. These genes NET1 and ADA1 mediate important regulatory protein-protein interactions in the yeast cell. The effects of net1 and ada1 mutations on the maintenance of yeast mt genome, chromosomes and plasmids as well on cell sensitivity to ionizing radiation are also described. (author)

  11. Genetic mapping of the human tryptophan hydroxylase gene on chromosome 11, using an intronic conformational polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, D.A.; Goldman, D. (National Inst. on Alcohol Abuse and Alcoholism, Bethesda, MD (United States)); Dean, M. (National Cancer Inst., Frederick, MD (United States))

    1992-12-01

    The identification of polymorphic alleles at loci coding for functional genes is crucial for genetic association and linkage studies. Since the tryptophan hydroxylase (TPH) gene codes for the rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, it would be advantageous to identify a polymorphism in this gene. By examining introns of the human TPH gene by PCR amplification and analysis by the single-strand conformation polymorphism (SSCP) technique, an SSCP was revealed with two alleles that occur with frequencies of .40 and .60 in unrelated Caucasians. DNAs from 24 informative CEPH families were typed for the TPH intron polymorphism and analyzed with respect to 10 linked markers on chromosome 11, between p13 and p15, with the result that TPH was placed between D11S151 and D11S134. This region contains loci for several important genes, including those for Beckwith-Wiedemann syndrome and tyrosine hydroxylase. 37 refs., 2 figs., 1 tab.

  12. Gene Expression Signature TOPFOX Reflecting Chromosomal Instability Refines Prediction of Prognosis in Grade 2 Breast Cancer

    DEFF Research Database (Denmark)

    Szasz, A.; Li, Qiyuan; Sztupinszki, Z.; Tokes, A. M.; Szekely, B.; Szendroi, M.; Gyorffy, B.; Szallasi, Z.; Swanton, C.; Kulkal, J.

    Purpose: To assess the ability of genes selected from those reflecting chromosomal instability to identify good and poor prognostic subsets of Grade 2 breast carcinomas. Methods: We selected genes for splitting grade 2 tumours into low and high grade type groups by using public databases. Patients...... immunophenotypical characterization of tumours. 1509 samples were in silico analyzed for further validation of the selected genes. Results: Grade 1 and 3 groups were used as training set for the selected genes. The 4-gene signature was able to split grade 2 carcinomas (n = 62) into a good and a poor prognosis group...... (RFS: 83.8±4.9 months and 69.4±8.2 months, respectively, p = 0.016). Furthermore, independent of grade, the identified signature containing only TOP2A and FOXM1 (TOPFOX) was able to separate ER+ tumours in an efficient manner (p = 0.009), which is further supported by validation in a dataset containing...

  13. Chromosome localization analysis of genes strongly expressed in human visceral adipose tissue.

    Science.gov (United States)

    Yang, Yi-Sheng; Song, Huai-Dong; Shi, Wen-Jing; Hu, Ren-Ming; Han, Ze-Guang; Chen, Jia-Lun

    2002-06-01

    To understand fully the physiologic functions of visceral adipose tissue and to provide a basis for the identification of novel genes related to obesity and insulin resistance, the gene expression profiling of human visceral adipose tissue was established by using cDNA array. The characterization and chromosome localization of 400 expressed sequence tags (ESTs) strongly expressed in visceral adipose tissue were analyzed by searching PubMed, UniGene, the Human Genome Draft Database, and Location Data Base. Two hundred eighty-nine clones were classified into known genes among the 400 ESTs strongly expressed in the tissue. Among them, proteina; and phosphoinositide-3-kinase, regulatory subunit, polypeptide 2 (p85beta), were also localized in the concentrated regions, which may provide clues to identifying novel genes closely related to adipocyte function with potential pathophysiologic implications. PMID:12166625

  14. Molecular patterns of X chromosome-linked color vision genes among 134 menof European ancestry

    International Nuclear Information System (INIS)

    The authors used Southern blot hybridization to study X chromosome-linked color vision genes encoding the apoproteins of red and green visual pigments in 134 unselected Caucasian men. One hundred and thirteen individuals (84.3%) had a normal arrangement of their color vision pigment genes. All had one red pigment gene; the number of green pigment genes ranged from one to five with a mode of two. The frequency of molecular genotypes indicative of normal color vision (84.3%) was significantly lower than had been observed in previous studies of color vision phenotypes. Color vision defects can be due to deletions of red or green pigment genes or due to formation of hybrid genes comprising portions of both red and green pigment genes. Characteristic anomalous patterns were seen in 15 (11.2%) individuals: 7 (5.2%) had patterns characteristic of deuteranomaly, 2 (1.5%) had patterns characteristic of deuteranopia, and 6 (4.5%) had protan patterns. Previously undescribed hybrid gene patterns consisting of both green and red pigment gene fragments in addition to normal red and green genes were observed in another 6 individuals (4.5%). Thus, DNA testing detected anomalous color vision pigment genes at a higher frequency than expected from phenotypic color vision tests

  15. A YAC contig of the human CC chemokine genes clustered on chromosome 17q11.2

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Kuniko [Kumamoto Univ. Medical School, Honjo (Japan)]|[Prefectural Univ. of Kumamoto, Tsukide (Japan); Nomiyama, Hisayuki; Miura, Retsu [Kumamoto Univ. Medical School, Honjo (Japan)] [and others

    1996-06-01

    CC chemokines are cytokines that attract and activate leukocytes. The human genes for the CC chemokines are clustered on chromosome 17. To elucidate the genomic organization of the CC chemokine genes, we constructed a YAC contig comprising 34 clones. The contig was shown to contain all 10 CC chemokine genes reported so far, except for one gene whose nucleotide sequence is not available. The contig also contains 4 CC chemokine-like genes, which were deposited in GenBank as ESTs and are here referred to as NCC-1, NCC-2, NCC-3, and NCC-4. Within the contig, the CC chemokine genes were localized in two regions. In addition, the CC chemokine genes were localized in two regions. In addition, the CC chemokine genes were more precisely mapped on chromosome 17q11.2 using a somatic cell hybrid cell DNA panel containing various portions of human chromosome 17. Interestingly, a reciprocal translocation t(Y;17) breakpoint, contained in the hybrid cell line Y1741, lay between the two chromosome 17 chemokine gene regions covered by our YAC contig. From these results, the order and the orientation of CC chemokine genes on chromosome 17 were determined as follows: centromere-neurofibromatosis 1-(MCP-3, MCP-1, NCC-1, I-309)-Y1741 breakpoint-RANTES-(LD78{gamma}, AT744.2, LD78{beta})-(NCC-3, NCC-2, AT744.1, LD78{alpha})-NCC-4-retinoic acid receptor {alpha}-telomere. 22 refs., 1 fig., 2 tabs.

  16. Expression pattern and mapping of the murine versican gene (Cspg2) to chromosome 13

    Energy Technology Data Exchange (ETDEWEB)

    Naso, M.F.; Morgan, J.L.; Buchberg, A.M. [Thomas Jefferson Univ., Philadelphia, PA (United States)] [and others

    1995-09-01

    Versican is a modular proteoglycan harboring a hyaluronan-binding domain at its amino-terminal end and a selectin-like domain at its carboxyl-terminal end, separated by a large intervening region containing the attachment sites for the glycosaminoglycan side chains. By virtue of its modular nature, versican may play a role in cellular attachment, migration, and proliferation by interacting with cell surfaces and extracellular matrix molecules. To discern the function of versican through the analysis of spontaneous and targeted genetic mutations, we have isolated a mouse versican cDNA encoding part of the hyaluronan-binding region, analyzed its mRNA expression in various adult mouse tissues and embryos, and determined the chromosomal location of the gene. Murine versican was 89% identical to human versican at the amino acid level and was highly expressed in mouse embryos at Days 13, 14, and 18. Expression was also detected in adult mouse brain, heart, lung, spleen, skeletal muscle, skin, tail, kidney, and testis. Using interspecific backcross analysis, we assigned the versican gene (Cspg2) to mouse chromosome 13, in a region that is syntenic with the long arm of human chromosome 5 where the human CSPG2 gene is located. 16 refs., 2 figs., 1 tab.

  17. Sequencing of rhesus macaque Y chromosome clarifies origins and evolution of the DAZ (Deleted in AZoospermia) genes.

    Science.gov (United States)

    Hughes, Jennifer F; Skaletsky, Helen; Page, David C

    2012-12-01

    Studies of Y chromosome evolution often emphasize gene loss, but this loss has been counterbalanced by addition of new genes. The DAZ genes, which are critical to human spermatogenesis, were acquired by the Y chromosome in the ancestor of Old World monkeys and apes. We and our colleagues recently sequenced the rhesus macaque Y chromosome, and comparison of this sequence to human and chimpanzee enables us to reconstruct much of the evolutionary history of DAZ. We report that DAZ arrived on the Y chromosome about 38 million years ago via the transposition of at least 1.1 megabases of autosomal DNA. This transposition also brought five additional genes to the Y chromosome, but all five genes were subsequently lost through mutation or deletion. As the only surviving gene, DAZ experienced extensive restructuring, including intragenic amplification and gene duplication, and has been the target of positive selection in the chimpanzee lineage. Editor's suggested further reading in BioEssays Should Y stay or should Y go: The evolution of non-recombining sex chromosomes Abstract. PMID:23055411

  18. Identification of two new drought specific candidate genes in sugarcane (Saccharum spp.

    Directory of Open Access Journals (Sweden)

    Swapna Simon and G. Hemaprabha

    2010-07-01

    Full Text Available Effective identification and understanding of genes contribute to improve plant drought resistance. A study was conducted toidentify drought responsive candidate genes in sugarcane. Two genes viz., SOD (Superoxide dismutase and IGS (Indole 3-glycerol phosphate synthase were used as gene specific markers. Specific primers were designed based on the sequences inGenbank databases. Mapping population developed by crossing a drought tolerant parent (Co 740 and a drought susceptibleparent (Co 775 were phenotyped using physiological and sugar yield contributing parameters and were characterized into groupsof varying levels of resistance and susceptibility. Parental polymorphism for SOD and IGS specific primers was established usinggenomic DNA from field grown drought tolerant and susceptible parents, as the presence in Co 740 (resistant and absence in Co775 (susceptible respectively. Resistant and susceptible parents and six each resistant and susceptible progeny were subjected todrought imposition and RNA were isolated and RT - PCR analysis performed using these gene specific primers. A specific bandof 618 bp was identified in drought tolerant parent and progeny, absent in drought susceptible parent and progeny genotypedusing SOD gene. A specific band of 340 bp was identified in drought tolerant parent and progeny while it was absent in droughtsusceptible parent and progeny genotyped using IGS gene. These two fragments of interests were cloned in PTz57R/T vector andsequenced. SOD618 sequence was BLAST searched that showed 98 % homology with the drought inducible protein in Saccharumhybrid and IGS340 showed 80 % homology with the hypothetical protein expressed in rice genome. These new genes hold promiseimproving drought resistance of sugarcane through their use as candidate genes in marker assisted selection and in genetictransformation.

  19. Regional assignment of the human homebox-containing gene EN1 to chromosome 2q13-q21

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, A.; Muenke, M. (Univ. of Pennsylvania, Philadelphia (United States)); Logan, C. (Univ. of Toronto (Canada)); Joyner, A.L. (Univ. of Toronto (Canada) Samuel Lunenfeld Research Institute, Toronto (Canada))

    1993-01-01

    The human homeobox-containing genes EN1 and EN2 are closely related to the Drosophila pattern formation gene engrailed (en), which may be important in brain development, as shown by gene expression studies during mouse embryogenesis. Here, we have refined the localization of EN1 to human chromosome 2q13-q21 using a mapping panel of rodent/human cell hybrids containing different regions of chromosome 2 and a lymphoblastoid cell line with an interstitial deletion, del(2) (q21-q23.2). This regional assignment of EN1 increases to 22 the number of currently known genes on human chromosome 2q that have homologs on the proximal region of mouse chromosome 1. 15 refs., 2 figs.

  20. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Nigel P S Crawford

    2007-11-01

    Full Text Available A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b, was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis.

  1. Fine mapping of the hereditary haemorrhagic telangiectasia (HHT3 locus on chromosome 5 excludes VE-Cadherin-2, Sprouty4 and other interval genes

    Directory of Open Access Journals (Sweden)

    Govani Fatima S

    2010-08-01

    Full Text Available Abstract Background There is significant interest in new loci for the inherited condition hereditary haemorrhagic telangiectasia (HHT because the known disease genes encode proteins involved in vascular transforming growth factor (TGF-β signalling pathways, and the disease phenotype appears to be unmasked or provoked by angiogenesis in man and animal models. In a previous study, we mapped a new locus for HHT (HHT3 to a 5.7 Mb region of chromosome 5. Some of the polymorphic markers used had been uninformative in key recombinant individuals, leaving two potentially excludable regions, one of which contained loci for attractive candidate genes encoding VE Cadherin-2, Sprouty4 and FGF1, proteins involved in angiogenesis. Methods Extended analyses in the interval-defining pedigree were performed using informative genomic sequence variants identified during candidate gene sequencing. These variants were amplified by polymerase chain reaction; sequenced on an ABI 3730xl, and analysed using FinchTV V1.4.0 software. Results Informative genomic sequence variants were used to construct haplotypes permitting more precise citing of recombination breakpoints. These reduced the uninformative centromeric region from 141.2-144 Mb to between 141.9-142.6 Mb, and the uninformative telomeric region from 145.2-146.9 Mb to between 146.1-146.4 Mb. Conclusions The HHT3 interval on chromosome 5 was reduced to 4.5 Mb excluding 30% of the coding genes in the original HHT3 interval. Strong candidates VE-cadherin-2 and Sprouty4 cannot be HHT3.

  2. Cloning, chromosome localization and features of a novel human gene, MATH2

    Indian Academy of Sciences (India)

    Lingchen Guo; Min Jiang; Yushu Ma; Haipeng Cheng; Xiaohua Ni; Yangsheng Jin; Yi Xie; Yumin Mao

    2002-04-01

    We report cloning and some features of a novel human gene, MATH2, which encodes a protein of 337 amino acid residues with a basic helix–loop–helix domain and exhibits 98% similarity to mouse Math2. Results of Northern blot analysis revealed two transcripts of the MATH2 gene of 1.7 kb and 2.4 kb in human brain. We localized MATH2 to chromosome 7 at 7p14–15 by matching with the Human Genome Sequence Database. Human MATH2 and mouse Math2 may have the same functions in the nervous system.

  3. Genetic relationships of some Citrus genotypes based on the candidate iron chlorosis genes

    OpenAIRE

    KAÇAR, Yıldız AKA; Özhan ŞİMŞEK; DÖNMEZ, Dicle; BONCUK, Melda; YEŞİLOĞLU, Turgut; Ollitrault, Patrick

    2014-01-01

    Iron is one of the most important elements in plant mineral nutrition. Fe deficiency is a critical abiotic stress factor for Mediterranean citriculture; the development of marker-assisted selection for this trait would greatly enhance rootstock breeding. In this study, DNA sequencing and single-stranded conformation polymorphism (SSCP) analyses were performed to determine the allelic diversity of genes associated with tolerance to iron chlorosis in citrus. Two candidate iron chlorosis toleran...

  4. Attempted Replication of Reported Chronic Obstructive Pulmonary Disease Candidate Gene Associations

    OpenAIRE

    Hersh, Craig P; DeMeo, Dawn L; Lange, Christoph; Litonjua, Augusto A.; Reilly, John J.; Kwiatkowski, David; Laird, Nan; Sylvia, Jody S.; Sparrow, David; Speizer, Frank E; Weiss, Scott T.; Silverman, Edwin K.

    2005-01-01

    Case-control studies have successfully identified many significant genetic associations for complex diseases, but lack of replication has been a criticism of case-control genetic association studies in general. We selected 12 candidate genes with reported associations to chronic obstructive pulmonary disease (COPD) and genotyped 29 polymorphisms in a family-based study and in a case-control study. In the Boston Early-Onset COPD Study families, significant associations with quantitative and/or...

  5. Tales of one gene discovery of a novel candidate receptor in mammalian taste

    OpenAIRE

    Huang, Angela Lilly

    2007-01-01

    There are five basic taste modalities in mammals: bitter, sweet, sour, salty, and Umami (taste of MSG and L-amino acids). Receptors for bitter, sweet, and Umami were previously discovered. Identities of receptors for salty and sour taste modalities remained elusive. In this dissertation, I will present: 1) development of a novel bioinformatics screen to discover candidate receptors; 2) discovery of a novel gene, PKD2L1, in taste receptor cells; 3) evidence demonstrating PKD2L1-expressing tast...

  6. Genetic Analysis of Candidate Genes for the Metabolic Syndrome and Type 2 Diabetes

    OpenAIRE

    Grallert, Harald

    2008-01-01

    This work investigated genetic susceptibility for type 2 diabetes and the metabolic syndrome (MetS) in several study designs. 31 DNA variants from 7 candidate genes involved in development of these diseases were analyzed for associations with the diseases or related parameters. Single nucleotide polymorphisms were genotyped using MALDI-TOF MS and statistically analyzed. The obtained associations are the basis for further functional studies, which will provide deeper insight in the etiology of...

  7. Screening for candidate genes related to breast cancer with cDNA microarray analysis

    Institute of Scientific and Technical Information of China (English)

    Yu-Juan Xiang; Zhi-Gang Yu; Ming-Ming Guo; Qin-Ye Fu; Zhong-Bing Ma; De-Zong Gao; Qiang Zhang; Yu-Yang Li; Liang Li; Lu Liu; Chun-Miao Ye

    2015-01-01

    Objective: The aim of this study was to reveal the exact changes during the occurrence of breast cancer to explore significant new and promising genes or factors related to this disease. Methods: We compared the gene expression profiles of breast cancer tissues with its uninvolved normal breast tissues as controls using the cDNA microarray analysis in seven breast cancer patients. Further, one representative gene, named IFI30, was quanti-tatively analyzed by real-time PCR to confirm the result of the cDNA microarray analysis. Results: A total of 427 genes were identified with significantly differential expression, 221 genes were up-regulated and 206 genes were down-regulated. And the result of cDNA microarray analysis was validated by detection of IFI30 mRNA level changes by real-time PCR. Genes for cell proliferation, cell cycle, cell division, mitosis, apoptosis, and immune response were enriched in the up-regulated genes, while genes for cell adhesion, proteolysis, and transport were significantly enriched in the down-regulated genes in breast cancer tissues compared with normal breast tissues by a gene ontology analysis. Conclusion: Our present study revealed a range of differentially expressed genes between breast cancer tissues and normal breast tissues, and provide candidate genes for further study focusing on the pathogenesis and new biomarkers for breast cancer. Copyright © 2015, Chinese Medical Association Production. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  8. Identification of Soat1 as a quantitative trait locus gene on mouse chromosome 1 contributing to hyperlipidemia.

    Science.gov (United States)

    Lu, Zongji; Yuan, Zuobiao; Miyoshi, Toru; Wang, Qian; Su, Zhiguang; Chang, Catherine C; Shi, Weibin

    2011-01-01

    We previously identified two closely linked quantitative trait loci (QTL) on distal chromosome 1 contributing to major variations in plasma cholesterol and triglyceride levels in an intercross derived from C57BL/6 (B6) and C3H/HeJ (C3H) apolipoprotein E-deficient (apoE(-/-)) mice. Soat1, encoding sterol o-acyltransferase 1, is a functional candidate gene located underneath the proximal linkage peak. We sequenced the coding region of Soat1 and identified four single nucleotide polymorphisms (SNPs) between B6 and C3H mice. Two of the SNPs resulted in amino-acid substitutions (Ile147Val and His205Tyr). Functional assay revealed an increased enzyme activity of Soat1 in peritoneal macrophages of C3H mice relative to those of B6 mice despite comparable protein expression levels. Allelic variants of Soat1 were associated with variations in plasma cholesterol and triglyceride levels in an intercross between B6.apoE(-/-) and C3H.apoE(-/-) mice. Inheritance of the C3H allele resulted in significantly higher plasma lipid levels than inheritance of the B6 allele. Soat1 variants were also significantly linked to major variations in plasma esterified cholesterol levels but not with free cholesterol levels. Trangenic expression of C3H Soat1 in B6.apoE(-/-) mice resulted in elevations of plasma cholesterol and triglyceride levels. These results indicate that Soat1 is a QTL gene contributing to hyperlipidemia. PMID:22022387

  9. Genetics of Estrogen-Related Traits; From Candidate Genes to GWAS

    OpenAIRE

    Stolk, Lisette

    2009-01-01

    textabstractIn the first part of this thesis, the association of polymorphisms in three candidate genes (estrogen receptor alpha (ESR1), retinoblastoma interacting zinc finger domain (RIZ1) and catechol-O-methyltransferase (COMT)) with estradiol levels, age at natural menopause, BMD and fracture risk in the Rotterdam Study is shown. For the ESR1 gene, fine-mapping of the PvuII and XbaI LD-block is presented, together with a haplotype analysis, showing that one additional SNP in the promoter r...

  10. Transferability of microsatellite markers located in candidate genes for wood properties between Eucalyptus species

    Directory of Open Access Journals (Sweden)

    Cintia V. Acuña

    2014-12-01

    Full Text Available Aim of study:  To analyze the feasibility of extrapolating conclusions on wood quality genetic control between different Eucalyptus species, particularly from species with better genomic information, to those less characterized. For this purpose, the first step is to analyze the conservation and cross-transferability of microsatellites markers (SSRs located in candidate genes.Area of study: Eucalyptus species implanted in Argentina coming from different Australian origins.Materials and methods: Twelve validated and polymorphic SSRs in candidate genes (SSR-CGs for wood quality in E. globulus were selected for cross species amplification in six species: E. grandis, E. saligna, E. dunnii, E. viminalis, E. camaldulensis and E. tereticornis.Main results: High cross-species transferability (92% to 100% was found for the 12 polymorphic SSRs detected in E. globulus. These markers revealed allelic diversity in nine important candidate genes: cinnamoyl CoA reductase (CCR, cellulose synthase 3 (CesA3, the transcription factor LIM1, homocysteine S-methyltransferase (HMT, shikimate kinase (SK, xyloglucan endotransglycosylase 2 (XTH2, glutathione S-transferase (GST, glutamate decarboxylase (GAD and peroxidase (PER.Research highlights: The markers described are potentially suitable for comparative QTL mapping, molecular marker assisted breeding (MAB and for population genetic studies across different species within the subgenus Symphyomyrtus.Keywords: validation; cross-transferability; SSR; functional markers; eucalypts; Symphyomyrtus.

  11. Candidate gene association studies in syndromic and non-syndromic cleft lip and palate

    Energy Technology Data Exchange (ETDEWEB)

    Daack-Hirsch, S.; Basart, A.; Frischmeyer, P. [Univ. of Iowa, IA (United States)] [and others

    1994-09-01

    Using ongoing case ascertainment through a birth defects registry, we have collected 219 nuclear families with non-syndromic cleft lip and/or palate and 111 families with a collection of syndromic forms. Syndromic cases include 24 with recognized forms and 72 with unrecognized syndromes. Candidate gene studies as well as genome-wide searches for evidence of microdeletions and isodisomy are currently being carried out. Candidate gene association studies, to date, have made use of PCR-based polymorphisms for TGFA, MSX1, CLPG13 (a CA repeat associated with a human homologue of a locus that results in craniofacial dysmorphogenesis in the mouse) and an STRP found in a Van der Woude syndrome microdeletion. Control tetranucleotide repeats, which insure that population-based differences are not responsible for any observed associations, are also tested. Studies of the syndromic cases have included the same list of candidate genes searching for evidence of microdeletions and a genome-wide search using tri- and tetranucleotide polymorphic markers to search for isodisomy or structural rearrangements. Significant associations have previously been identified for TGFA, and, in this report, identified for MSX1 and nonsyndromic cleft palate only (p = 0.04, uncorrected). Preliminary results of the genome-wide scan for isodisomy has returned no true positives and there has been no evidence for microdeletion cases.

  12. High-resolution chromosome ideogram representation of recognized genes for bipolar disorder.

    Science.gov (United States)

    Douglas, Lindsay N; McGuire, Austen B; Manzardo, Ann M; Butler, Merlin G

    2016-07-15

    Bipolar disorder (BPD) is genetically heterogeneous with a growing list of BPD associated genes reported in recent years resulting from increased genetic testing using advanced genetic technology, expanded genomic databases, and better awareness of the disorder. We compiled a master list of recognized susceptibility and genes associated with BPD identified from peer-reviewed medical literature sources using PubMed and by searching online databases, such as OMIM. Searched keywords were related to bipolar disorder and genetics. Our compiled list consisted of 290 genes with gene names arranged in alphabetical order in tabular form with source documents and their chromosome location and gene symbols plotted on high-resolution human chromosome ideograms. The identified genes impacted a broad range of biological pathways and processes including cellular signaling pathways particularly cAMP and calcium (e.g., CACNA1C, CAMK2A, CAMK2D, ADCY1, ADCY2); glutamatergic (e.g., GRIK1, GRM3, GRM7), dopaminergic (e.g., DRD2, DRD4, COMT, MAOA) and serotonergic (e.g., HTR1A, HTR2A, HTR3B) neurotransmission; molecular transporters (e.g., SLC39A3, SLC6A3, SLC8A1); and neuronal growth (e.g., BDNF, IGFBP1, NRG1, NRG3). The increasing prevalence of BPD calls for better understanding of the genetic etiology of this disorder and associations between the observed BPD phenotype and genes. Visual representation of genes for bipolar disorder becomes a tool enabling clinical and laboratory geneticists, genetic counselors, and other health care providers and researchers easy access to the location and distribution of currently recognized BPD associated genes. Our study may also help inform diagnosis and advance treatment developments for those affected with this disorder and improve genetic counseling for families. PMID:27063557

  13. Search for common haplotypes on chromosome 22q in patients with schizophrenia or bipolar disorder from the Faroe Islands

    DEFF Research Database (Denmark)

    Jorgensen, Tove H; Børglum, A.D; Mors, O; Wang, A.G; Pinaud, M; Flint, T.J; Dahl, Hanne; Vang, M; Kruse, T.A; Ewald, H

    2002-01-01

    Chromosome 22q may harbor risk genes for schizophrenia and bipolar affective disorder. This is evidenced through genetic mapping studies, investigations of cytogenetic abnormalities, and direct examination of candidate genes. Patients with schizophrenia and bipolar affective disorder from the Far...

  14. Evidence for the evolutionary origin of human chromosome 21 from comparative gene mapping in the cow and mouse

    International Nuclear Information System (INIS)

    To determine the extent of conservation between bovine syntenic group U10, human chromosome 21 (HSA 21), and mouse chromosome 16(MMU 16), 11 genes were physically mapped by segregation analysis in a bovine-hamster hybrid somatic cell panel. The genes chosen for study span MMU 16 and represent virtually the entire q arm of HSA 21. Because the somatostatin gene (SST), an HSA 3/MMU 16 locus, was previously shown to be in U10, the transferrin gene (TF), an HSA 3/MMU 9 marker, was also mapped to determine whether U10 contains any HSA 3 genes not represented on MMU 16. With the exception of the protamine gene PRM1 (HSA 16/MMU 16), all of the genes studies were syntenic on bovine U10. Thus, all homologous loci from HSA 21 that have been studied in the cow are on a single chromosome. The bovine homolog of HSA 21 also carries several HSA 3 genes, two of which have homologous loci on MMU 16. The syntenic association of genes from the q arm of HSA 3 with HSAS 21 genes in two mammalian species, the mouse and the cow, indicates that HSA 21 may have evolved from a larger ancestral mammalian chromosome that contained genes now residing on HSA 3. Additionally, the syntenic association of TF with SST in the cow permits the prediction that the rhodopsin gene (RHO) is proximal to TF on HSA 3q

  15. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ma Menggen

    2010-06-01

    Full Text Available Abstract Background Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain. Results A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p. Conclusion Enriched background of transcription abundance

  16. Widespread Impact of Chromosomal Inversions on Gene Expression Uncovers Robustness via Phenotypic Buffering.

    Science.gov (United States)

    Naseeb, Samina; Carter, Zorana; Minnis, David; Donaldson, Ian; Zeef, Leo; Delneri, Daniela

    2016-07-01

    The nonrandom gene organization in eukaryotes plays a significant role in genome evolution and function. Chromosomal structural changes impact meiotic fitness and, in several organisms, are associated with speciation and rapid adaptation to different environments. Small sized chromosomal inversions, encompassing few genes, are pervasive in Saccharomyces "sensu stricto" species, while larger inversions are less common in yeasts compared with higher eukaryotes. To explore the effect of gene order on phenotype, reproductive isolation, and gene expression, we engineered 16 Saccharomyces cerevisiae strains carrying all possible paracentric and pericentric inversions between Ty1 elements, a natural substrate for rearrangements. We found that 4 inversions were lethal, while the other 12 did not show any fitness advantage or disadvantage in rich and minimal media. At meiosis, only a weak negative correlation with fitness was seen with the size of the inverted region. However, significantly lower fertility was seen in heterozygote invertant strains carrying recombination hotspots within the breakpoints. Altered transcription was observed throughout the genome rather than being overrepresented within the inversions. In spite of the large difference in gene expression in the inverted strains, mitotic fitness was not impaired in the majority of the 94 conditions tested, indicating that the robustness of the expression network buffers the deleterious effects of structural changes in several environments. Overall, our results support the notion that transcriptional changes may compensate for Ty-mediated rearrangements resulting in the maintenance of a constant phenotype, and suggest that large inversions in yeast are unlikely to be a selectable trait during vegetative growth. PMID:26929245

  17. Science Letters: Assignment of CCR 7 gene to chicken chromosome 27 by radiation hybrid panel mapping

    Institute of Scientific and Technical Information of China (English)

    TIAN Yong; LU Li-zhi; FU Yan; TAO Zheng-rong; SHEN Jun-da; WANG De-qian; YUAN Ai-ping; YIN Zhao-zheng

    2007-01-01

    The protein encoded by CC chemokine receptor 7 (CCR7) is a member of the G protein-coupled receptor family. This receptor was identified as a gene induced by the Epstein-Barr virus (EBV), and is thought to be a mediator of EBV effects on B lymphocytes. This receptor is expressed in various lymphoid tissues and activates B and T lymphocytes. It has been shown to control the migration of memory T cells to inflamed tissues, as well as stimulate dendritic cell maturation. To map the CCR7 gene in chicken chromosome, a 6000 rads chicken-hamster radiation hybrid panel (ChickRH6) was used. PCR of samples from ChickRH6 revealed that the location of CCR7 gene is linked to the maker SEQ0347 (6 cR away) with LOD score of 16.6 and that the marker SEQ0347 is located on chromosome 27 at 27 cR of RH (radiation hydrid) map. We compared the corresponding human mRNA sequence with the predicted coding sequence of chicken CCR7 gene, and found that the assembled contig shared a high percentage of similarity with that of the human gene.

  18. Genome scans reveal candidate domestication and improvement genes in cultivated sunflower, as well as post-domestication introgression with wild relatives.

    Science.gov (United States)

    Baute, Gregory J; Kane, Nolan C; Grassa, Christopher J; Lai, Zhao; Rieseberg, Loren H

    2015-04-01

    The development of modern crops typically involves both selection and hybridization, but to date most studies have focused on the former. In the present study, we explore how both processes, and their interactions, have molded the genome of the cultivated sunflower (Helianthus annuus), a globally important oilseed. To identify genes targeted by selection during the domestication and improvement of sunflower, and to detect post-domestication hybridization with wild species, we analyzed transcriptome sequences of 80 genotypes, including wild, landrace, and modern lines of H. annuus, as well as two cross-compatible wild relatives, Helianthus argophyllus and Helianthus petiolaris. Outlier analyses identified 122 and 15 candidate genes associated with domestication and improvement, respectively. As in several previous studies, genes putatively involved in oil biosynthesis were the most extreme outliers. Additionally, several promising associations were observed with previously mapped quantitative trait loci (QTLs), such as branching. Admixture analyses revealed that all the modern cultivar genomes we examined contained one or more introgressions from wild populations, with every chromosome having evidence of introgression in at least one modern line. Cumulatively, introgressions cover c. 10% of the cultivated sunflower genome. Surprisingly, introgressions do not avoid candidate domestication genes, probably because of the reintroduction of branching. PMID:25641359

  19. Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy

    Directory of Open Access Journals (Sweden)

    Olla Carlo

    2007-08-01

    Full Text Available Abstract Background The Down syndrome phenotype has been attributed to overexpression of chromosome 21 (Hsa21 genes. However, the expression profile of Hsa21 genes in trisomic human subjects as well as their effects on genes located on different chromosomes are largely unknown. Using oligonucleotide microarrays we compared the gene expression profiles of hearts of human fetuses with and without Hsa21 trisomy. Results Approximately half of the 15,000 genes examined (87 of the 168 genes on Hsa21 were expressed in the heart at 18–22 weeks of gestation. Hsa21 gene expression was globally upregulated 1.5 fold in trisomic samples. However, not all genes were equally dysregulated and 25 genes were not upregulated at all. Genes located on other chromosomes were also significantly dysregulated. Functional class scoring and gene set enrichment analyses of 473 genes, differentially expressed between trisomic and non-trisomic hearts, revealed downregulation of genes encoding mitochondrial enzymes and upregulation of genes encoding extracellular matrix proteins. There were no significant differences between trisomic fetuses with and without heart defects. Conclusion We conclude that dosage-dependent upregulation of Hsa21 genes causes dysregulation of the genes responsible for mitochondrial function and for the extracellular matrix organization in the fetal heart of trisomic subjects. These alterations might be harbingers of the heart defects associated with Hsa21 trisomy, which could be based on elusive mechanisms involving genetic variability, environmental factors and/or stochastic events.

  20. Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients.

    Science.gov (United States)

    Li, Zibo; Guo, Xinwu; Wu, Yepeng; Li, Shengyun; Yan, Jinhua; Peng, Limin; Xiao, Zhi; Wang, Shouman; Deng, Zhongping; Dai, Lizhong; Yi, Wenjun; Xia, Kun; Tang, Lili; Wang, Jun

    2015-02-01

    Gene-specific methylation alterations in breast cancer have been suggested to occur early in tumorigenesis and have the potential to be used for early detection and prevention. The continuous increase in worldwide breast cancer incidences emphasizes the urgent need for identification of methylation biomarkers for early cancer detection and patient stratification. Using microfluidic PCR-based target enrichment and next-generation bisulfite sequencing technology, we analyzed methylation status of 48 candidate genes in paired tumor and normal tissues from 180 Chinese breast cancer patients. Analysis of the sequencing results showed 37 genes differentially methylated between tumor and matched normal tissues. Breast cancer samples with different clinicopathologic characteristics demonstrated distinct profiles of gene methylation. The methylation levels were significantly different between breast cancer subtypes, with basal-like and luminal B tumors having the lowest and the highest methylation levels, respectively. Six genes (ACADL, ADAMTSL1, CAV1, NPY, PTGS2, and RUNX3) showed significant differential methylation among the 4 breast cancer subtypes and also between the ER +/ER- tumors. Using unsupervised hierarchical clustering analysis, we identified a panel of 13 hypermethylated genes as candidate biomarkers that performed a high level of efficiency for cancer prediction. These 13 genes included CST6, DBC1, EGFR, GREM1, GSTP1, IGFBP3, PDGFRB, PPM1E, SFRP1, SFRP2, SOX17, TNFRSF10D, and WRN. Our results provide evidence that well-defined DNA methylation profiles enable breast cancer prediction and patient stratification. The novel gene panel might be a valuable biomarker for early detection of breast cancer. PMID:25636590

  1. The genetic basis of quality of life in healthy Swedish women: a candidate gene approach.

    Directory of Open Access Journals (Sweden)

    Dounya Schoormans

    Full Text Available Quality of life (QoL is an increasingly important parameter in clinical practice as it predicts mortality and poor health outcomes. It is hypothesized that one may have a genetic predisposition for QoL. We therefore related 139 candidate genes, selected through a literature search, to QoL in healthy females.In 5,142 healthy females, background characteristics (i.e. demographic, clinical, lifestyle, and psychological factors were assessed. QoL was measured by the EORTC QLQ-C30, which consists of 15 domains. For all women genotype information was available. For each candidate gene, single nucleotide polymorphisms (SNPs were identified based on their functional (n = 2,663 and physical annotation (n = 10,649. SNPs were related to each QoL-domain, while controlling for background characteristics and population stratification. Finally, gene-based analyses were performed relating the combined effect of 10,649 SNPs (selected based on physical annotation for each gene, to QoL using the statistical software package VEGAS.Overall, we found no relation between genetic variations (SNPs and genes and 14 out of 15 QoL-domains. The strongest association was found between cognitive functioning and the top SNP rs1468951 (p = 1.21E-05 in the GSTZ1 gene. Furthermore, results of the gene-based test showed that the combined effect of 11 SNPs within the GSTZ1 gene is significantly associated with cognitive functioning (p = 2.60E-05.If validated, the involvement of GSTZ1 in cognitive functioning underscores its heritability which is likely the result of differences in the dopamine pathway, as GSTZ1 contributes to the equilibrium between dopamine and its neurotoxic metabolites via the glutathione redox cycle.

  2. The R-Operon: A Model of Repetitive DNA-Organized Transcriptional Compartmentation of Eukaryotic Chromosomes for Coordinated Gene Expression

    Science.gov (United States)

    Tang, Shao-Jun

    2016-01-01

    In eukaryotic genomes, it is essential to coordinate the activity of genes that function together to fulfill the same biological processes. Genomic organization likely plays a key role in coordinating transcription of different genes. However, little is known about how co-regulated genes are organized in the cell nucleus and how the chromosomal organization facilitates the co-regulation of different genes. I propose that eukaryotic genomes are organized into repeat assembly (RA)-based structural domains (“R-operons”) in the nuclear space. R-operons result from the interaction of homologous DNA repeats. In an R-operon, genes in different loci of the linear genome are brought into spatial vicinity and co-regulated by the same pool of transcription factors. This type of large-scale chromosomal organization may provide a mechanism for functional compartmentation of chromosomes to facilitate the transcriptional coordination of gene expression. PMID:27110825

  3. Gene-level integrated metric of negative selection (GIMS prioritizes candidate genes for nephrotic syndrome.

    Directory of Open Access Journals (Sweden)

    Matthew G Sampson

    Full Text Available Nephrotic syndrome (NS gene discovery efforts are now occurring in small kindreds and cohorts of sporadic cases. Power to identify causal variants in these groups beyond a statistical significance threshold is challenging due to small sample size and/or lack of family information. There is a need to develop novel methods to identify NS-associated variants. One way to determine putative functional relevance of a gene is to measure its strength of negative selection, as variants in genes under strong negative selection are more likely to be deleterious. We created a gene-level, integrated metric of negative selection (GIMS score for 20,079 genes by combining multiple comparative genomics and population genetics measures. To understand the utility of GIMS for NS gene discovery, we examined this score in a diverse set of NS-relevant gene sets. These included genes known to cause monogenic forms of NS in humans as well as genes expressed in the cells of the glomerulus and, particularly, the podocyte. We found strong negative selection in the following NS-relevant gene sets: (1 autosomal-dominant Mendelian focal segmental glomerulosclerosis (FSGS genes (p = 0.03 compared to reference, (2 glomerular expressed genes (p = 4×10(-23, and (3 predicted podocyte genes (p = 3×10(-9. Eight genes causing autosomal dominant forms of FSGS had a stronger combined score of negative selection and podocyte enrichment as compared to all other genes (p = 1 x 10(-3. As a whole, recessive FSGS genes were not enriched for negative selection. Thus, we also created a transcript-level, integrated metric of negative selection (TIMS to quantify negative selection on an isoform level. These revealed transcripts of known autosomal recessive disease-causing genes that were nonetheless under strong selection. We suggest that a filtering strategy that includes measuring negative selection on a gene or isoform level could aid in identifying NS-related genes. Our GIMS and TIMS

  4. Differential Expression between Human Dermal Papilla Cells from Balding and Non-Balding Scalps Reveals New Candidate Genes for Androgenetic Alopecia.

    Science.gov (United States)

    Chew, Elaine G Y; Tan, Joanna H J; Bahta, Adiam W; Ho, Bryan S-Y; Liu, Xingliang; Lim, Tze Chiun; Sia, Yee Yen; Bigliardi, Paul L; Heilmann, Stefanie; Wan, Andrew C A; Nöthen, Markus M; Philpott, Michael P; Hillmer, Axel M

    2016-08-01

    Androgenetic alopecia (AGA) is a common heritable and androgen-dependent hair loss condition in men. Twelve genetic risk loci are known to date, but it is unclear which genes at these loci are relevant for AGA. Dermal papilla cells (DPCs) located in the hair bulb are the main site of androgen activity in the hair follicle. Widely used monolayer-cultured primary DPCs in hair-related studies often lack dermal papilla characteristics. In contrast, immortalized DPCs have high resemblance to intact dermal papilla. We derived immortalized human DPC lines from balding (BAB) and non-balding (BAN) scalp. Both BAB and BAN retained high proportions of dermal papilla signature gene and versican protein expression. We performed expression analysis of BAB and BAN and annotated AGA risk loci with differentially expressed genes. We found evidence for AR but not EDA2R as the candidate gene at the AGA risk locus on chromosome X. Further, our data suggest TWIST1 (twist family basic helix-loop-helix transcription factor 1) and SSPN (sarcospan) to be the functionally relevant AGA genes at the 7p21.1 and 12p12.1 risk loci, respectively. Down-regulated genes in BAB compared to BAN were highly enriched for vasculature-related genes, suggesting that deficiency of DPC from balding scalps in fostering vascularization around the hair follicle may contribute to the development of AGA. PMID:27060448

  5. Human ETS2 gene on chromosome 21 is not rearranged in Alzheimer disease

    International Nuclear Information System (INIS)

    The human ETS2 gene, a member of the ETS gene family, with sequence homology with the retroviral ets sequence of the avian erythroblastosis retrovirus E26 is located on chromosome 21. Molecular genetic analysis of Down syndrome (DS) patients with partial trisomy 21 allowed us to reinforce the supposition that ETS2 may be a gene of the minimal DS genetic region. It was originally proposed that a duplication of a portion of the DS region represents the genetic basis of Alzheimer disease, a condition associated also with DS. No evidence of either rearrangements or duplications of ETS2 could be detected in DNA from fibroblasts and brain tissue of Alzheimer disease patients with either the sporadic or the familiar form of the disease. Thus, an altered ETS2 gene dosage does not seem to be a genetic cause or component of Alzheimer disease

  6. Human ETS2 gene on chromosome 21 is not rearranged in Alzheimer disease

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, N.; Nalbantoglu, J.; Sergovich, F.R.; Papas, T.S. (National Cancer Institute, Frederick, MD (USA))

    1988-10-01

    The human ETS2 gene, a member of the ETS gene family, with sequence homology with the retroviral ets sequence of the avian erythroblastosis retrovirus E26 is located on chromosome 21. Molecular genetic analysis of Down syndrome (DS) patients with partial trisomy 21 allowed us to reinforce the supposition that ETS2 may be a gene of the minimal DS genetic region. It was originally proposed that a duplication of a portion of the DS region represents the genetic basis of Alzheimer disease, a condition associated also with DS. No evidence of either rearrangements or duplications of ETS2 could be detected in DNA from fibroblasts and brain tissue of Alzheimer disease patients with either the sporadic or the familiar form of the disease. Thus, an altered ETS2 gene dosage does not seem to be a genetic cause or component of Alzheimer disease.

  7. A Multiple Interaction Analysis Reveals ADRB3 as a Potential Candidate for Gallbladder Cancer Predisposition via a Complex Interaction with Other Candidate Gene Variations

    OpenAIRE

    Rajani Rai; Jong Joo Kim; Sanjeev Misra; Ashok Kumar; Balraj Mittal

    2015-01-01

    Gallbladder cancer is the most common and a highly aggressive biliary tract malignancy with a dismal outcome. The pathogenesis of the disease is multifactorial, comprising the combined effect of multiple genetic variations of mild consequence along with numerous dietary and environmental risk factors. Previously, we demonstrated the association of several candidate gene variations with GBC risk. In this study, we aimed to identify the combination of gene variants and their possible interactio...

  8. Medical Sequencing of Candidate Genes for Nonsyndromic Cleft Lip and Palate.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available Nonsyndromic or isolated cleft lip with or without cleft palate (CL/P occurs in wide geographic distribution with an average birth prevalence of 1/700. We used direct sequencing as an approach to study candidate genes for CL/P. We report here the results of sequencing on 20 candidate genes for clefts in 184 cases with CL/P selected with an emphasis on severity and positive family history. Genes were selected based on expression patterns, animal models, and/or role in known human clefting syndromes. For seven genes with identified coding mutations that are potentially etiologic, we performed linkage disequilibrium studies as well in 501 family triads (affected child/mother/father. The recently reported MSX1 P147Q mutation was also studied in an additional 1,098 cleft cases. Selected missense mutations were screened in 1,064 controls from unrelated individuals on the Centre d'Etude du Polymorphisme Humain (CEPH diversity cell line panel. Our aggregate data suggest that point mutations in these candidate genes are likely to contribute to 6% of isolated clefts, particularly those with more severe phenotypes (bilateral cleft of the lip with cleft palate. Additional cases, possibly due to microdeletions or isodisomy, were also detected and may contribute to clefts as well. Sequence analysis alone suggests that point mutations in FOXE1, GLI2, JAG2, LHX8, MSX1, MSX2, SATB2, SKI, SPRY2, and TBX10 may be rare causes of isolated cleft lip with or without cleft palate, and the linkage disequilibrium data support a larger, as yet unspecified, role for variants in or near MSX2, JAG2, and SKI. This study also illustrates the need to test large numbers of controls to distinguish rare polymorphic variants and prioritize functional studies for rare point mutations.

  9. The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis.

    Science.gov (United States)

    Cocquet, Julie; Ellis, Peter J I; Yamauchi, Yasuhiro; Mahadevaiah, Shantha K; Affara, Nabeel A; Ward, Monika A; Burgoyne, Paul S

    2009-11-01

    Studies of mice with Y chromosome long arm deficiencies suggest that the male-specific region (MSYq) encodes information required for sperm differentiation and postmeiotic sex chromatin repression (PSCR). Several genes have been identified on MSYq, but because they are present in more than 40 copies each, their functions cannot be investigated using traditional gene targeting. Here, we generate transgenic mice producing small interfering RNAs that specifically target the transcripts of the MSYq-encoded multicopy gene Sly (Sycp3-like Y-linked). Microarray analyses performed on these Sly-deficient males and on MSYq-deficient males show a remarkable up-regulation of sex chromosome genes in spermatids. SLY protein colocalizes with the X and Y chromatin in spermatids of normal males, and Sly deficiency leads to defective repressive marks on the sex chromatin, such as reduced levels of the heterochromatin protein CBX1 and of histone H3 methylated at lysine 9. Sly-deficient mice, just like MSYq-deficient mice, have severe impairment of sperm differentiation and are near sterile. We propose that their spermiogenesis phenotype is a consequence of the change in spermatid gene expression following Sly deficiency. To our knowledge, this is the first successful targeted disruption of the function of a multicopy gene (or of any Y gene). It shows that SLY has a predominant role in PSCR, either via direct interaction with the spermatid sex chromatin or via interaction with sex chromatin protein partners. Sly deficiency is the major underlying cause of the spectrum of anomalies identified 17 y ago in MSYq-deficient males. Our results also suggest that the expansion of sex-linked spermatid-expressed genes in mouse is a consequence of the enhancement of PSCR that accompanies Sly amplification. PMID:19918361

  10. Identification of Stim1 as a candidate gene for exaggerated sympathetic response to stress in the stroke-prone spontaneously hypertensive rat.

    Directory of Open Access Journals (Sweden)

    Mohammed Zubaerul Ferdaus

    Full Text Available The stroke-prone spontaneously hypertensive rat (SHRSP is known to have exaggerated sympathetic nerve activity to various types of stress, which might contribute to the pathogenesis of severe hypertension and stroke observed in this strain. Previously, by using a congenic strain (called SPwch1.72 constructed between SHRSP and the normotensive Wistar-Kyoto rat (WKY, we showed that a 1.8-Mbp fragment on chromosome 1 (Chr1 of SHRSP harbored the responsible gene(s for the exaggerated sympathetic response to stress. To further narrow down the candidate region, in this study, another congenic strain (SPwch1.71 harboring a smaller fragment on Chr1 including two functional candidate genes, Phox2a and Ship2, was generated. Sympathetic response to cold and restraint stress was compared among SHRSP, SPwch1.71, SPwch1.72 and WKY by three different methods (urinary norepinephrine excretion, blood pressure measurement by the telemetry system and the power spectral analysis on heart rate variability. The results indicated that the response in SPwch1.71 did not significantly differ from that in SHRSP, excluding Phox2a and Ship2 from the candidate genes. As the stress response in SPwch1.72 was significantly less than that in SHRSP, it was concluded that the 1.2-Mbp congenic region covered by SPwch1.72 (and not by SPwch1.71 was responsible for the sympathetic stress response. The sequence analysis of 12 potential candidate genes in this region in WKY/Izm and SHRSP/Izm identified a nonsense mutation in the stromal interaction molecule 1 (Stim1 gene of SHRSP/Izm which was shared among 4 substrains of SHRSP. A western blot analysis confirmed a truncated form of STIM1 in SHRSP/Izm. In addition, the analysis revealed that the protein level of STIM1 in the brainstem of SHRSP/Izm was significantly lower when compared with WKY/Izm. Our results suggested that Stim1 is a strong candidate gene responsible for the exaggerated sympathetic response to stress in SHRSP.

  11. Loss of heterozygosity on chromosome 10q23 and mutation of the phosphatase and tensin homolog deleted from chromosome 10 tumor suppressor gene in Korean hepatocellular carcinoma patients.

    Science.gov (United States)

    Bae, Jei-Jun; Rho, Jin-Woo; Lee, Tae-Jin; Yun, Sung-Su; Kim, Hong-Jin; Choi, Joon-Hyuk; Jeong, Daewon; Jang, Byeong-Churl; Lee, Tae-Yoon

    2007-10-01

    Loss of heterozygosity (LOH) in the 10q23 chromosomal region was analyzed in 18 tissue samples from Korean hepatocellular carcinoma (HCC) patients. LOH at the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) region (D10S215, AFMa086wg9 and D10S541) was found in 8 of the 18 (44.4%) HCCs. LOH (20%) and microsatellite instability (26.7%) were also frequently found at the D10S2177 locus, which is located on the telomere side of the PTEN region. LOH was found in other loci, such as AFM280we1 and D10S2281. The presence of LOH in regions other than the PTEN region on chromosome 10q23 suggested the presence of additional tumor suppressor gene(s). PTEN mutation was found in only a subset of HCCs: A single base insertion at the end of the 5'-end splice signal (AG-GUAAGUU) in intron 5 and a silent mutation in exon 6 (codon 188, CTG-Val to CTA). Our data collectively suggest that the genetic alterations of chromosome 10q23, including the PTEN gene, could be important in hepatocarcinogenesis in the Korean population. PMID:17786367

  12. Evolution of the Structure and Chromosomal Distribution of Histidine Biosynthetic Genes

    Science.gov (United States)

    Fani, Renato; Mori, Elena; Tamburini, Elena; Lazcano, Antonio

    1998-10-01

    A database of more than 100 histidine biosynthetic genes from different organisms belonging to the three primary domains has been analyzed, including those found in the now completely sequenced genomes of Haemophilus influenzae, Mycoplasma genitalium, Synechocystis sp., Methanococcus jannaschii, and Saccharomyces cerevisiae. The ubiquity of his genes suggests that it is a highly conserved pathway that was probably already present in the last common ancestor of all extant life. The chromosomal distribution of the his genes shows that the enterobacterial histidine operon structure is not the only possible organization, and that there is a diversity of gene arrays for the his pathway. Analysis of the available sequences shows that gene fusions (like those involved in the origin of the Escherichia coli and Salmonella typhimurium hisIE and hisB gene structures) are not universal. In contrast, the elongation event that led to the extant hisA gene from two homologous ancestral modules, as well as the subsequent paralogous duplication that originated hisF, appear to be irreversible and are conserved in all known organisms. The available evidence supports the hypothesis that histidine biosynthesis was assembled by a gene recruitment process.

  13. Exploring Codon Usage Patterns of Alternatively Spliced Genes in Human Chromosome 1

    Institute of Scientific and Technical Information of China (English)

    马飞; 庄永龙; 黄颖; 李衍达

    2004-01-01

    In this study, 414 whole protein-coding sequences (238 004 codons) of alternatively spliced genes of human chromosome 1 have been employed to explore the patterns of codon usage bias among genes. Overall codon usage data analysis indicates that G- and C-ending codons are predominant in the genes. The base usage in all three codon positions suggests a selection-mutation balance. Multivariate statistical analysis reveals that the codon usage variation has a strong positive correlation with the expressivities of the genes (r=0.5790, P<0.0001). All 27 codons identified as optimal are G- and C-ending codons.Correlation analysis shows a strong negative correlation between the gene length and codon adaptation index value (r=-0.2252, P<0.0001), and a significantly positive correlation between the gene length and Nc values (r=0.1876, P<0.0001). These results suggest that the comparatively shorter genes in the genes have higher codon usage bias to maximize translational efficiency, and selection may also contribute to the reduction of highly expressed proteins.

  14. Localization of the {alpha}7 integrin gene (ITGA7) on human chromosome 12q13: Clustering of integrin and Hox genes implies parallel evolution of these gene families

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Wu, W.; Kaufman, S.J. [Univ. of Illinois, Urbana, IL (United States)] [and others

    1995-04-10

    Expression of the {alpha}7 integrin gene (ITGA7) is developmentally regulated during the formation of skeletal muscle. Increased levels of expression and production of isoforms containing different cytoplasmic and extracellular domains accompany myogenesis. To determine whether a single or multiple {alpha}7 gene(s) underlie the structural diversity in this alpha chain that accompanies development, we have examined the rat and human genomes by Southern blotting and in situ hybridization. Our results demonstrate that there is only one {alpha}7 gene in both the rat and the human genomes. In the human, ITGA7 is present on chromosome 12q13. Phylogenetic analysis of the integrin alpha chain sequences suggests that the early integrin genes evolved in two pathways to form the I-integrins and the non-I-integrins. The I-integrin alpha chains contain an additional sequence of approximately 180 amino acids and arose as a result of an early insertion into the non-I-gene. The I-chain subfamily further evolved by duplications within the same chromosome. The non-I-integrin alpha chain genes are localized in clusters on chromosomes 2, 12, and 17, and this closely coincides with the localization of the human homeobox gene clusters. Non-I-integrin alpha chain genes appear to have evolved in parallel and in proximity to the Hox clusters. Thus, the Hox genes that underlie the design of body structure and the Integrin genes that underlie informed cell-cell and cell-matrix interactions appear to have evolved in parallel and coordinate fashions. 52 refs., 5 figs., 2 tabs.

  15. Genome-wide linkage scan for colorectal cancer susceptibility genes supports linkage to chromosome 3q

    Directory of Open Access Journals (Sweden)

    Velculescu Victor E

    2008-04-01

    Full Text Available Abstract Background Colorectal cancer is one of the most common causes of cancer-related mortality. The disease is clinically and genetically heterogeneous though a strong hereditary component has been identified. However, only a small proportion of the inherited susceptibility can be ascribed to dominant syndromes, such as Hereditary Non-Polyposis Colorectal Cancer (HNPCC or Familial Adenomatous Polyposis (FAP. In an attempt to identify novel colorectal cancer predisposing genes, we have performed a genome-wide linkage analysis in 30 Swedish non-FAP/non-HNPCC families with a strong family history of colorectal cancer. Methods Statistical analysis was performed using multipoint parametric and nonparametric linkage. Results Parametric analysis under the assumption of locus homogeneity excluded any common susceptibility regions harbouring a predisposing gene for colorectal cancer. However, several loci on chromosomes 2q, 3q, 6q, and 7q with suggestive linkage were detected in the parametric analysis under the assumption of locus heterogeneity as well as in the nonparametric analysis. Among these loci, the locus on chromosome 3q21.1-q26.2 was the most consistent finding providing positive results in both parametric and nonparametric analyses Heterogeneity LOD score (HLOD = 1.90, alpha = 0.45, Non-Parametric LOD score (NPL = 2.1. Conclusion The strongest evidence of linkage was seen for the region on chromosome 3. Interestingly, the same region has recently been reported as the most significant finding in a genome-wide analysis performed with SNP arrays; thus our results independently support the finding on chromosome 3q.

  16. Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes.

    Science.gov (United States)

    Saunders, Colleen J; Jalali Sefid Dashti, Mahjoubeh; Gamieldien, Junaid

    2016-01-01

    Tendinopathy is a multifactorial syndrome characterised by tendon pain and thickening, and impaired performance during activity. Candidate gene association studies have identified genetic factors that contribute to intrinsic risk of developing tendinopathy upon exposure to extrinsic factors. Bioinformatics approaches that data-mine existing knowledge for biological relationships may assist with the identification of candidate genes. The aim of this study was to data-mine functional annotation of human genes and identify candidate genes by ontology-seeded queries capturing the features of tendinopathy. Our BioOntological Relationship Graph database (BORG) integrates multiple sources of genomic and biomedical knowledge into an on-disk semantic network where human genes and their orthologs in mouse and rat are central concepts mapped to ontology terms. The BORG was used to screen all human genes for potential links to tendinopathy. Following further prioritisation, four strong candidate genes (COL11A2, ELN, ITGB3, LOX) were identified. These genes are differentially expressed in tendinopathy, functionally linked to features of tendinopathy and previously implicated in other connective tissue diseases. In conclusion, cross-domain semantic integration of multiple sources of biomedical knowledge, and interrogation of phenotypes and gene functions associated with disease, may significantly increase the probability of identifying strong and unobvious candidate genes in genetic association studies. PMID:26804977

  17. Targeting 160 candidate genes for blood pressure regulation with a genome-wide genotyping array.

    Directory of Open Access Journals (Sweden)

    Siim Sõber

    Full Text Available The outcome of Genome-Wide Association Studies (GWAS has challenged the field of blood pressure (BP genetics as previous candidate genes have not been among the top loci in these scans. We used Affymetrix 500K genotyping data of KORA S3 cohort (n = 1,644; Southern-Germany to address (i SNP coverage in 160 BP candidate genes; (ii the evidence for associations with BP traits in genome-wide and replication data, and haplotype analysis. In total, 160 gene regions (genic region+/-10 kb covered 2,411 SNPs across 11.4 Mb. Marker densities in genes varied from 0 (n = 11 to 0.6 SNPs/kb. On average 52.5% of the HAPMAP SNPs per gene were captured. No evidence for association with BP was obtained for 1,449 tested SNPs. Considerable associations (P50% of HAPMAP SNPs were tagged. In general, genes with higher marker density (>0.2 SNPs/kb revealed a better chance to reach close to significance associations. Although, none of the detected P-values remained significant after Bonferroni correction (P<0.05/2319, P<2.15 x 10(-5, the strength of some detected associations was close to this level: rs10889553 (LEPR and systolic BP (SBP (P = 4.5 x 10(-5 as well as rs10954174 (LEP and diastolic BP (DBP (P = 5.20 x 10(-5. In total, 12 markers in 7 genes (ADRA2A, LEP, LEPR, PTGER3, SLC2A1, SLC4A2, SLC8A1 revealed considerable association (P<10(-3 either with SBP, DBP, and/or hypertension (HYP. None of these were confirmed in replication samples (KORA S4, HYPEST, BRIGHT. However, supportive evidence for the association of rs10889553 (LEPR and rs11195419 (ADRA2A with BP was obtained in meta-analysis across samples stratified either by body mass index, smoking or alcohol consumption. Haplotype analysis highlighted LEPR and PTGER3. In conclusion, the lack of associations in BP candidate genes may be attributed to inadequate marker coverage on the genome-wide arrays, small phenotypic effects of the loci and/or complex interaction with life-style and metabolic parameters.

  18. Nogo Receptor 1 (RTN4R as a candidate gene for schizophrenia: analysis using human and mouse genetic approaches.

    Directory of Open Access Journals (Sweden)

    Ruby Hsu

    Full Text Available BACKGROUND: NOGO Receptor 1 (RTN4R regulates axonal growth, as well as axon regeneration after injury. The gene maps to the 22q11.2 schizophrenia susceptibility locus and is thus a strong functional and positional candidate gene. METHODOLOGY/PRINCIPAL FINDINGS: We evaluate evidence for genetic association between common RTN4R polymorphisms and schizophrenia in a large family sample of Afrikaner origin and screen the exonic sequence of RTN4R for rare variants in an independent sample from the U.S. We also employ animal model studies to assay a panel of schizophrenia-related behavioral tasks in an Rtn4r-deficient mouse model. We found weak sex-specific evidence for association between common RTN4R polymorphisms and schizophrenia in the Afrikaner patients. In the U.S. sample, we identified two novel non-conservative RTN4R coding variants in two patients with schizophrenia that were absent in 600 control chromosomes. In our complementary mouse model studies, we identified a haploinsufficient effect of Rtn4r on locomotor activity, but normal performance in schizophrenia-related behavioral tasks. We also provide evidence that Rtn4r deficiency can modulate the long-term behavioral effects of transient postnatal N-methyl-D-aspartate (NMDA receptor hypofunction. CONCLUSIONS: Our results do not support a major role of RTN4R in susceptibility to schizophrenia or the cognitive and behavioral deficits observed in individuals with 22q11 microdeletions. However, they suggest that RTN4R may modulate the genetic risk or clinical expression of schizophrenia in a subset of patients and identify additional studies that will be necessary to clarify the role of RTN4R in psychiatric phenotypes. In addition, our results raise interesting issues about evaluating the significance of rare genetic variants in disease and their role in causation.

  19. Candidate gene expression affects intramuscular fat content and fatty acid composition in pigs.

    Science.gov (United States)

    Wang, Wei; Xue, Wenda; Jin, Bangquan; Zhang, Xixia; Ma, Fei; Xu, Xiaofeng

    2013-02-01

    The objective of this study was to correlate the expression pattern of candidate genes with the intramuscular fat (IMF) content and fatty acid composition of the Longissimus dorsi muscle of Duroc × Shanzhu commercial crossbred pigs. Animals of both sexes were slaughtered at a body weight of about 90 kg. The IMF content and fatty acid composition of the Longissimus dorsi muscle were measured and correlated with candidate genes mRNA expression (AdPLA, ADRB3, LEPR, MC4R, PPARγ, PPARα, LPL, PEPCK, and SCD). Females presented higher IMF content (p < 0.05) than males. The total saturated fatty acid (SFA) in males was greater (p < 0.01), whereas the total monounsaturated fatty acid (MUFA) (p < 0.01) and polyunsaturated fatty acid (PUFA) (p < 0.05) were lower than in females. The expressions of AdPLA, MC4R, PEPCK, and SCD correlated with the IMF content (p < 0.05). AdPLA showed a positive association with MUFA and a negative association with SFA (p < 0.05). LEPR and MC4R were both positively and significantly associated with C18:3 and C20:0 (p < 0.05). PPARα and PPARγ were negatively correlated with SFA, and PPARγ was positively associated with MUFA (p < 0.05). LPL was positively associated with MUFA and negatively associated with SFA (p < 0.05). PEPCK was negatively correlated with PUFA (p < 0.05). SCD was positively associated with MUFA (p < 0.05). The revealed correlations may confirm that these candidate genes are important for fat deposition and fatty acid composition in pigs, and the evaluation and use of these genes may be useful for improving porcine meat quality. PMID:23275256

  20. Candidate gene analysis using imputed genotypes: cell cycle single-nucleotide polymorphisms and ovarian cancer risk

    DEFF Research Database (Denmark)

    Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A;

    2009-01-01

    existing genotype data, we conducted a combined analysis of five independent studies of invasive epithelial ovarian cancer. Up to 2,120 cases and 3,382 controls were genotyped in the course of two collaborations at a variety of SNPs in 11 cell cycle genes (CDKN2C, CDKN1A, CCND3, CCND1, CCND2, CDKN1B, CDK2......, rs649392, and rs3212891; CDK2 rs2069391, rs2069414, and rs17528736; and CCNE1 rs3218036. These results exemplify the utility of imputation in candidate gene studies and lend evidence to a role of cell cycle genes in ovarian cancer etiology, suggest a reduced set of SNPs to target in additional cases...

  1. Expression analysis of 13 ovine immune response candidate genes in Visna/Maedi disease progression.

    Science.gov (United States)

    Larruskain, Amaia; Bernales, Irantzu; Luján, Lluis; de Andrés, Damián; Amorena, Beatriz; Jugo, Begoña M

    2013-07-01

    Visna/Maedi virus (VMV) is a lentivirus that infects cells of the monocyte/macrophage lineage in sheep. Infection with VMV may lead to Visna/Maedi (VM) disease, which causes a multisystemic inflammatory disorder causing pneumonia, encephalitis, mastitis and arthritis. The role of ovine immune response genes in the development of VM disease is not fully understood. In this work, sheep of the Rasa Aragonesa breed were divided into two groups depending on the presence/absence of VM-characteristic clinical lesions in the aforementioned organs and the relative levels of candidate gene expression, including cytokines and innate immunity loci were measured by qPCR in the lung and udder. Sheep with lung lesions showed differential expression in five target genes: CCR5, TLR7, and TLR8 were up regulated and IL2 and TNFα down regulated. TNFα up regulation was detected in the udder. PMID:23582860

  2. Candidate gene linkage approach to identify DNA variants that predispose to preterm birth

    DEFF Research Database (Denmark)

    Bream, Elise N A; Leppellere, Cara R; Cooper, Margaret E;

    2013-01-01

    Background:The aim of this study was to identify genetic variants contributing to preterm birth (PTB) using a linkage candidate gene approach.Methods:We studied 99 single-nucleotide polymorphisms (SNPs) for 33 genes in 257 families with PTBs segregating. Nonparametric and parametric analyses were...... used. Premature infants and mothers of premature infants were defined as affected cases in independent analyses.Results:Analyses with the infant as the case identified two genes with evidence of linkage: CRHR1 (P = 0.0012) and CYP2E1 (P = 0.0011). Analyses with the mother as the case identified four...... through the infant and/or the mother in the etiology of PTB....

  3. Candidate genes associated with bud dormancy release in blackcurrant (Ribes nigrum L.

    Directory of Open Access Journals (Sweden)

    Hedley Peter E

    2010-09-01

    Full Text Available Abstract Background The detrimental effects of mild winter temperatures on the consistency of cropping of blackcurrant (Ribes nigrum L. in parts of Europe have led to increasing interest in the genetic control of dormancy release in this species. This study examined patterns of gene expression in leaf buds of blackcurrant to identify key differential changes in these profiles around the time of budbreak. Results Using leaf bud tissue of blackcurrant, a cDNA library was generated as a source of blackcurrant ESTs for construction of a custom microarray, which was used to identify differential gene expression during dormancy release. Gene activity was lowest in early stages of dormancy, increasing to reach a maximum around the time of budbreak. Genes with significantly changing expression profiles were clustered and evidence is provided for the transient activity of genes previously associated with dormancy processes in other species. Expression profiling identified candidate genes which were mapped onto a blackcurrant genetic linkage map containing budbreak-related QTL. Three genes, which putatively encode calmodulin-binding protein, beta tubulin and acetyl CoA carboxylase respectively, were found to co-localise with budbreak QTL. Conclusions This study provides insight into the genetic control of dormancy transition in blackcurrant, identifying key changes in gene expression around budbreak. Genetic mapping of ESTs enabled the identification of genes which co-localise with previously-characterised blackcurrant QTL, and it is concluded that these genes have probable roles in release of dormancy and can therefore provide a basis for the development of genetic markers for future breeding deployment.

  4. mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea.

    Science.gov (United States)

    Das, Shouvik; Singh, Mohar; Srivastava, Rishi; Bajaj, Deepak; Saxena, Maneesha S; Rana, Jai C; Bansal, Kailash C; Tyagi, Akhilesh K; Parida, Swarup K

    2016-02-01

    The present study used a whole-genome, NGS resequencing-based mQTL-seq (multiple QTL-seq) strategy in two inter-specific mapping populations (Pusa 1103 × ILWC 46 and Pusa 256 × ILWC 46) to scan the major genomic region(s) underlying QTL(s) governing pod number trait in chickpea. Essentially, the whole-genome resequencing of low and high pod number-containing parental accessions and homozygous individuals (constituting bulks) from each of these two mapping populations discovered >8 million high-quality homozygous SNPs with respect to the reference kabuli chickpea. The functional significance of the physically mapped SNPs was apparent from the identified 2,264 non-synonymous and 23,550 regulatory SNPs, with 8-10% of these SNPs-carrying genes corresponding to transcription factors and disease resistance-related proteins. The utilization of these mined SNPs in Δ (SNP index)-led QTL-seq analysis and their correlation between two mapping populations based on mQTL-seq, narrowed down two (Caq(a)PN4.1: 867.8 kb and Caq(a)PN4.2: 1.8 Mb) major genomic regions harbouring robust pod number QTLs into the high-resolution short QTL intervals (Caq(b)PN4.1: 637.5 kb and Caq(b)PN4.2: 1.28 Mb) on chickpea chromosome 4. The integration of mQTL-seq-derived one novel robust QTL with QTL region-specific association analysis delineated the regulatory (C/T) and coding (C/A) SNPs-containing one pentatricopeptide repeat (PPR) gene at a major QTL region regulating pod number in chickpea. This target gene exhibited anther, mature pollen and pod-specific expression, including pronounced higher up-regulated (∼3.5-folds) transcript expression in high pod number-containing parental accessions and homozygous individuals of two mapping populations especially during pollen and pod development. The proposed mQTL-seq-driven combinatorial strategy has profound efficacy in rapid genome-wide scanning of potential candidate gene(s) underlying trait-associated high-resolution robust QTL(s), thereby

  5. A Multiple Interaction Analysis Reveals ADRB3 as a Potential Candidate for Gallbladder Cancer Predisposition via a Complex Interaction with Other Candidate Gene Variations.

    Science.gov (United States)

    Rai, Rajani; Kim, Jong Joo; Misra, Sanjeev; Kumar, Ashok; Mittal, Balraj

    2015-01-01

    Gallbladder cancer is the most common and a highly aggressive biliary tract malignancy with a dismal outcome. The pathogenesis of the disease is multifactorial, comprising the combined effect of multiple genetic variations of mild consequence along with numerous dietary and environmental risk factors. Previously, we demonstrated the association of several candidate gene variations with GBC risk. In this study, we aimed to identify the combination of gene variants and their possible interactions contributing towards genetic susceptibility of GBC. Here, we performed Multifactor-Dimensionality Reduction (MDR) and Classification and Regression Tree Analysis (CRT) to investigate the gene-gene interactions and the combined effect of 14 SNPs in nine genes (DR4 (rs20576, rs6557634); FAS (rs2234767); FASL (rs763110); DCC (rs2229080, rs4078288, rs7504990, rs714); PSCA (rs2294008, rs2978974); ADRA2A (rs1801253); ADRB1 (rs1800544); ADRB3 (rs4994); CYP17 (rs2486758)) involved in various signaling pathways. Genotyping was accomplished by PCR-RFLP or Taqman allelic discrimination assays. SPSS software version 16.0 and MDR software version 2.0 were used for all the statistical analysis. Single locus investigation demonstrated significant association of DR4 (rs20576, rs6557634), DCC (rs714, rs2229080, rs4078288) and ADRB3 (rs4994) polymorphisms with GBC risk. MDR analysis revealed ADRB3 (rs4994) to be crucial candidate in GBC susceptibility that may act either alone (p ADRB3 rs4994 as candidate influencing GBC susceptibility. PMID:26602921

  6. HVP10 (V-PPase, A CANDIDATE GENE FOR HvNax3 CONTROLLING SODIUM EXCLUSION AND SALINITY TOLERANCE IN BARLEY: MAPPING, SEQUENCE ANALYSIS AND GENE EXPRESSION

    Directory of Open Access Journals (Sweden)

    Shavrukov Yuri

    2012-08-01

    Full Text Available Salinity is a major abiotic stress limiting the production of agricultural plants in Australia and in other countries across the world. Wild relatives of cultivated barley have wider diversity in tolerance to salinity. We previously reported the identification of a major QTL for sodium exclusion (HvNax3 on chromosome 7HS, in a barley mapping population originating from a cross between the Australian feed barley Barque-73 and a Hordeum spontaneum accession, CPI-71284. Initial analysis of an AB-QTL population and F2 recombinants reduced the interval containing HvNax3 from 15.0 cM to 1.3 cM. For fine mapping of this region, four F3 progenies (60-100 individuals in each with different recombination events were genotyped with various CAPS markers and phenotyped for sodium exclusion. The interval was further reduced to 0.4 cM, limiting the number of candidate genes based on rice-barley synteny to five, with the most promising candidate encoding a vacuolar pyrophosphatase proton pump, V-PPase (HVP10 gene. The protein encoded by this gene has been shown to be responsible for establishing an electrochemical gradient across the tonoplast that allows other transporters such as Na+/H+ antiporters to transport sodium into the vacuole, thereby reducing toxic effects of excess Na+ in the cytosol. BLAST analysis of sequences of the complete HVP10 gene from both parents indicated the presence of eight exons and seven introns, with an open reading frame of 4,356 bp. The eight exons were well-conserved with only seven SNPs in the coding regions identified between the two parents but none of the SNPs altered the amino-acid sequence. The differences in Na+ accumulation between the two parents is, therefore, not related to the coding sequence of the HVP10 gene. However, Q-PCR experiments showed that expression of the gene in shoots and in roots of CPI-71284 was two-fold and 24%, respectively, higher than in Barque-73 on the third day following exposure to salt stress

  7. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    LENUS (Irish Health Repository)

    Pangilinan, Faith

    2012-08-02

    AbstractBackgroundNeural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate\\/B12 pathway genes contribute to NTD risk.MethodsA tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate\\/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects.ResultsNearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003–0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing.ConclusionsTo our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the

  8. The gene for the Ellis-van Creveld syndrome is located on chromosome 4p16

    Energy Technology Data Exchange (ETDEWEB)

    Polymeropoulos, M.H.; Ide, S.E. [National Institute of Health, Bethesda, MD (United States); Wright, M. [Univ. of Newcastle Upon Tyne (United Kingdom)] [and others

    1996-07-01

    Ellis-van Creveld syndrome (EVC) is an autosomal recessive disorder characterized by disproportionate dwarfism, polydactyly, and congenital heart disease. This rare disorder is found with increased frequency among the Old Order Amish community in Lancaster County, Pennsylvania. We have used linkage analysis to localize the gene responsible for the EVC phenotype in nine interrelated Amish pedigrees and three unrelated families from Mexico, Ecuador, and Brazil. We now report the linkage for the Ellisvan Creveld syndrome gene to markers on the distal short arm of human chromosome 4, with Z{sub max} = 6.91 at {theta} = 0.02 for marker HOX7, in a region proximal to the FGFR3 gene responsible for the achondroplasia phenotype. 17 refs., 2 figs., 1 tab.

  9. Exclusion of the phosphatidylinositol-specific phospholipase C beta 3 (PLC beta 3) gene as candidate for the multiple endocrine neoplasia type 1 (MEN 1) gene

    NARCIS (Netherlands)

    de Wit, M J; Landsvater, R M; Sinke, R J; Geurts van Kessel, A; Lips, C J; Höppener, J W

    1997-01-01

    Multiple endocrine neoplasia type 1 (MEN 1) is inherited as an autosomal dominant disorder, characterized by hyperplasia and neoplasia in several endocrine organs. The MEN 1 gene, which is most probably a tumor suppressor gene, has been localized to a 900-kb region on chromosome 11q13. The human pho

  10. Exclusion of the nuclear factor-kappa B3 (REL A) gene as candidate for the multiple endocrine neoplasia type 1 (MEN 1) gene

    NARCIS (Netherlands)

    Landsvater, R M; de Wit, M J; Peterson, L F; Sinke, R J; Geurts van Kessel, A; Lips, C J; Höppener, J W

    1997-01-01

    Multiple endocrine neoplasia type 1 (MEN 1) is inherited as an autosomal dominant disorder, characterized by neoplasia and hyperplasia in specific endocrine organs. The MEN 1 gene, which is most probably a tumor suppressor gene, has been localized to a region of approximately 900 kb on chromosome 11

  11. Identification and Evolutionary Analysis of Potential Candidate Genes in a Human Eating Disorder

    Science.gov (United States)

    Mullegama, Saman; Wyckoff, Gerald J.

    2016-01-01

    The purpose of this study was to find genes linked with eating disorders and associated with both metabolic and neural systems. Our operating hypothesis was that there are genetic factors underlying some eating disorders resting in both those pathways. Specifically, we are interested in disorders that may rest in both sleep and metabolic function, generally called Night Eating Syndrome (NES). A meta-analysis of the Gene Expression Omnibus targeting the mammalian nervous system, sleep, and obesity studies was performed, yielding numerous genes of interest. Through a text-based analysis of the results, a number of potential candidate genes were identified. VGF, in particular, appeared to be relevant both to obesity and, broadly, to brain or neural development. VGF is a highly connected protein that interacts with numerous targets via proteolytically digested peptides. We examined VGF from an evolutionary perspective to determine whether other available evidence supported a role for the gene in human disease. We conclude that some of the already identified variants in VGF from human polymorphism studies may contribute to eating disorders and obesity. Our data suggest that there is enough evidence to warrant eGWAS and GWAS analysis of these genes in NES patients in a case-control study. PMID:27088090

  12. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

    Directory of Open Access Journals (Sweden)

    Reusch Thorsten BH

    2011-01-01

    Full Text Available Abstract Background Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L. Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  13. Computational analysis of candidate disease genes and variants for Salt-sensitive hypertension in indigenous Southern Africans

    KAUST Repository

    Tiffin, Nicki

    2010-09-27

    Multiple factors underlie susceptibility to essential hypertension, including a significant genetic and ethnic component, and environmental effects. Blood pressure response of hypertensive individuals to salt is heterogeneous, but salt sensitivity appears more prevalent in people of indigenous African origin. The underlying genetics of salt-sensitive hypertension, however, are poorly understood. In this study, computational methods including text- and data-mining have been used to select and prioritize candidate aetiological genes for salt-sensitive hypertension. Additionally, we have compared allele frequencies and copy number variation for single nucleotide polymorphisms in candidate genes between indigenous Southern African and Caucasian populations, with the aim of identifying candidate genes with significant variability between the population groups: identifying genetic variability between population groups can exploit ethnic differences in disease prevalence to aid with prioritisation of good candidate genes. Our top-ranking candidate genes include parathyroid hormone precursor (PTH) and type-1angiotensin II receptor (AGTR1). We propose that the candidate genes identified in this study warrant further investigation as potential aetiological genes for salt-sensitive hypertension. © 2010 Tiffin et al.

  14. The large-X effect in plants: increased species divergence and reduced gene flow on the Silene X-chromosome.

    Science.gov (United States)

    Hu, Xin-Sheng; Filatov, Dmitry A

    2016-06-01

    The disproportionately large involvement of the X-chromosome in the isolation of closely related species (the large-X effect) has been reported for many animals, where X-linked genes are mostly hemizygous in the heterogametic sex. The expression of deleterious recessive mutations is thought to drive the frequent involvement of the X-chromosome in hybrid sterility, as well as to reduce interspecific gene flow for X-linked genes. Here, we evaluate the role of the X-chromosome in the speciation of two closely related plant species - the white and red campions (Silene latifolia and S. dioica) - that hybridize widely across Europe. The two species evolved separate sexes and sex chromosomes relatively recently (~10(7)  years), and unlike most animal species, most X-linked genes have intact Y-linked homologs. We demonstrate that the X-linked genes show a very small and insignificant amount of interspecific gene flow, while gene flow involving autosomal loci is significant and sufficient to homogenize the gene pools of the two species. These findings are consistent with the hypothesis of the large-X effect in Silene and comprise the first report of this effect in plants. Nonhemizygosity of many X-linked genes in Silene males indicates that exposure of recessive mutations to selection may not be essential for the occurrence of the large-X effect. Several possible causes of the large-X effect in Silene are discussed. PMID:26479725

  15. COL5A1: Genetic mapping and exclusion as candidate gene in families with nail-patella syndrome, tuberous sclerosis 1, hereditary hemorrhagic telangiectasia, and Ehlers-Danlos syndrome type II

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, D.S. [Univ. of Wisconsin Medical School, Madison, WI (United States); Northrup, H.; Au, K.S. [Univ. of Texas Medical School, Houston, TX (United States)] [and others

    1995-02-10

    COL5A1, the gene for the {alpha}1 chain of type V collagen, has been considered a candidate gene for certain diseases based on chromosomal location and/or disease phenotype. We have employed 3{prime}-untranslated region RFLPs to exclude COL5A1 as a candidate gene in families with tuberous sclerosis 1, Ehlers-Danlos syndrome type H, and nail-patella syndrome. In addition, we describe a polymorphic simple sequence repeat (SSR) within a COL5A1 intron. This SSR is used to exclude COL5A1 as a candidate gene in hereditary hemorrhagic telangiectasia (Osler-Rendu-Weber disease) and to add COL5A1 to the existing map of {open_quotes}index{close_quotes} markers of chromosome 9 by evaluation of the COL5A1 locus on the CEPH 40-family reference pedigree set. This genetic mapping places COL5A1 between markers D9S66 and D9S67. 14 refs., 1 fig., 2 tabs.

  16. Distilling a Visual Network of Retinitis Pigmentosa Gene-Protein Interactions to Uncover New Disease Candidates.

    Directory of Open Access Journals (Sweden)

    Daniel Boloc

    Full Text Available Retinitis pigmentosa (RP is a highly heterogeneous genetic visual disorder with more than 70 known causative genes, some of them shared with other non-syndromic retinal dystrophies (e.g. Leber congenital amaurosis, LCA. The identification of RP genes has increased steadily during the last decade, and the 30% of the cases that still remain unassigned will soon decrease after the advent of exome/genome sequencing. A considerable amount of genetic and functional data on single RD genes and mutations has been gathered, but a comprehensive view of the RP genes and their interacting partners is still very fragmentary. This is the main gap that needs to be filled in order to understand how mutations relate to progressive blinding disorders and devise effective therapies.We have built an RP-specific network (RPGeNet by merging data from different sources: high-throughput data from BioGRID and STRING databases, manually curated data for interactions retrieved from iHOP, as well as interactions filtered out by syntactical parsing from up-to-date abstracts and full-text papers related to the RP research field. The paths emerging when known RP genes were used as baits over the whole interactome have been analysed, and the minimal number of connections among the RP genes and their close neighbors were distilled in order to simplify the search space.In contrast to the analysis of single isolated genes, finding the networks linking disease genes renders powerful etiopathological insights. We here provide an interactive interface, RPGeNet, for the molecular biologist to explore the network centered on the non-syndromic and syndromic RP and LCA causative genes. By integrating tissue-specific expression levels and phenotypic data on top of that network, a more comprehensive biological view will highlight key molecular players of retinal degeneration and unveil new RP disease candidates.

  17. Genomic analysis of differentiation between soil types reveals candidate genes for local adaptation in Arabidopsis lyrata.

    Directory of Open Access Journals (Sweden)

    Thomas L Turner

    Full Text Available Serpentine soil, which is naturally high in heavy metal content and has low calcium to magnesium ratios, comprises a difficult environment for most plants. An impressive number of species are endemic to serpentine, and a wide range of non-endemic plant taxa have been shown to be locally adapted to these soils. Locating genomic polymorphisms which are differentiated between serpentine and non-serpentine populations would provide candidate loci for serpentine adaptation. We have used the Arabidopsis thaliana tiling array, which has 2.85 million probes throughout the genome, to measure genetic differentiation between populations of Arabidopsis lyrata growing on granitic soils and those growing on serpentinic soils. The significant overrepresentation of genes involved in ion transport and other functions provides a starting point for investigating the molecular basis of adaptation to soil ion content, water retention, and other ecologically and economically important variables. One gene in particular, calcium-exchanger 7, appears to be an excellent candidate gene for adaptation to low CaratioMg ratio in A. lyrata.

  18. Contribution of chromosomal abnormalities and genes of the major histocompatibility complex to early pregnancy losses

    Directory of Open Access Journals (Sweden)

    Tkach I. R.

    2015-02-01

    Full Text Available Aim. The determination of chromosomal abnormalities in samples from early pregnancy losses and allelic polymorphism of HLA–DRB1 and DQA1 genes in couples with recurrent miscarriage. Methods. Banding cytogenetic and interphase mFISH analysis, DNA extraction by salting method, PCR, agarose gel electrophoresis. Results. Cytogenetic and molecular-cytogenetic investigations of SA material identified karyotype anomalies in 32.4 % of cases with prevalence of autosomal trisomy – 42.65 %, triploidy – 30.38 % and monosomy X – 19.11 %. Complex analysis of frequency and distribution of allelic variants of genes HLA-DRB1 and HLA-DQA1 allowed establishing the alleles DRB1*0301, DRB1*1101-1104 and DQA1*0501 to be aggressor alleles in women with recurrent pregnancy loss (RPL. The cumulative homology of allelic polymorphism of more than 50 % of HLA-DRB1 and HLA-DQA1 loci between partners increases the risk of RPL by almost four times. Conclusion. The detected chromosome aneuploidies in the samples from products of conception and the changes in the major histocompatibility complex genes can cause the failure of a couples reproductive function and can lead to an early fetal loss.

  19. A gene for nystagmus-associated episodic ataxia maps to chromosome 19p

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, P.L.; Root, D.; Gancher, S. [and others

    1994-09-01

    Episodic ataxia (EA) is a rare, autosomal dominant disorder, characterized by attacks of generalized ataxia and relatively normal neurological function between attacks. Onset occurs in childhood or adolescence and persists through adulthood. Penetrance is nearly complete. EA is clinically heterogeneous, including at least two distinct entities: (1) episodes of ataxia and dysarthria lasting hours to days, generally with interictal nystagmus (MIM 108500); (2) episodes of ataxia and dysarthria lasting only minutes, with interictal myokymia (MMM 160120). The EA/nystagmus patients sometimes develop persistent ataxia and cerebellar atrophy. Previously we reported linkage in four EA/myokymia families to a K{sup +} channel gene on chromosome 12p. We excluded this region in a large family with EA/nystagmus. We now report evidence for linkage to chromosome 19p in this and in one other EA/nystagmus family, based on eight microsatellite markers which span approximately 30 cM. The region is flanked distally by D19S209 and proximally by D19S226. All six markers within this region gave positive evidence for linkage; the highest total two-point lod scores occurred wtih D19S221 (3.98 at theta = 0.10) and D19S413 (3.37 at theta = 0.05). Interestingly, Joutel et al. (1993) mapped a gene for familial hemiplegic migraine (FHM) to the region around D19S221. Some individuals in these families have ataxia, cerebellar atrophy and interictal nystagmus, but no episodic ataxia. These results demonstrate that the clinical heterogeneity in EA reflects underlying genetic hetreogeneity. In addition, they suggest that EA/nystagmus and some FHM may represent different mutations in the same gene locus on chromosome 19p.

  20. Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus anatinus): implications for mammalian sex chromosome evolution.

    Science.gov (United States)

    Waters, Paul D; Delbridge, Margaret L; Deakin, Janine E; El-Mogharbel, Nisrine; Kirby, Patrick J; Carvalho-Silva, Denise R; Graves, Jennifer A Marshall

    2005-01-01

    Mammalian sex chromosomes evolved from an ancient autosomal pair. Mapping of human X- and Y-borne genes in distantly related mammals and non-mammalian vertebrates has proved valuable to help deduce the evolution of this unique part of the genome. The platypus, a monotreme mammal distantly related to eutherians and marsupials, has an extraordinary sex chromosome system comprising five X and five Y chromosomes that form a translocation chain at male meiosis. The largest X chromosome (X1), which lies at one end of the chain, has considerable homology to the human X. Using comparative mapping and the emerging chicken database, we demonstrate that part of the therian X chromosome, previously thought to be conserved across all mammals, was lost from the platypus X1 to an autosome. This region included genes flanking the XIST locus, and also genes with Y-linked homologues that are important to male reproduction in therians. Since these genes lie on the X in marsupials and eutherians, and also on the homologous region of chicken chromosome 4, this represents a loss from the monotreme X rather than an additional evolutionary stratum of the human X. PMID:15973504

  1. A defined chromosome 6q fragment (at D6S310) harbors a putative tumor suppressor gene for breast cancer.

    Science.gov (United States)

    Theile, M; Seitz, S; Arnold, W; Jandrig, B; Frege, R; Schlag, P M; Haensch, W; Guski, H; Winzer, K J; Barrett, J C; Scherneck, S

    1996-08-15

    Recent evidence obtained by cytogenetic and molecular studies indicates that in breast cancer chromosome 6q is often affected by genetic changes suggesting the existence of putative tumor suppressor genes (TSGs). However the function of gene(s) on this chromosome in breast cancer suppression is not understood. To substantiate further the presence of breast cancer related TSGs at 6q and to define their location, we first performed microcell-mediated transfer of chromosome 6 to CAL51 breast cancer cells for studying possible suppression of malignant phenotype and secondly, we analysed DNAs from 46 primary breast cancers for loss of constitutive heterozygosity (LOH) using 24 poly-morphic microsatellite markers. The chromosome transfer resulted in loss of tumorigenicity and reversion of other neoplastic properties of the microcell hybrids. Polymorphism analysis of single hybrids revealed that they harbored only a small donor chromosome fragment defined by the marker D6S310 (6q23.3-q25) and flanked by D6S292 and D6S311. The LOH data suggest that four tumor suppressor gene loci mapped to the central and distal portion of 6q may be independently deleted in breast cancer. One of these regions corresponds to the region identified by chromosome transfer. PMID:8761288

  2. LINKAGE MAPPING OF CANDIDATE GENES FOR INDUCED RESISTANCE AND GROWTH PROMOTION BY Trichoderma koningiopsis (Th003 IN TOMATO Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Cotes Prado Alba Marina

    2011-08-01

    Full Text Available Induced systemic resistance (ISR is a mechanism by which plants enhance defenses against any stress condition. ISR and growth promotion are enhanced when tomato (Solanum lycopersicum is inoculated with several strains of Trichoderma ssp. This study aims to genetically map tomato candidate genes involved in ISR and growth promotion induced by the Colombian native isolate Trichoderma koningiopsis Th003. Forty-nine candidate genes previously identified on tomato plants treated with Th003 and T. hamatum T382 strains were evaluated for polymorphisms and 16 of them were integrated on the highly saturated genetic linkage map named “TOMATO EXPEN 2000”. The location of six unigenes was similar to the location of resistance gene analogs (RGAs, defense related ESTs and resistance QTLs previously reported, suggesting new possible candidates for these quantitative trait loci (QTL regions. The candidate gene-markers may be used for future ISR or growth promotion assisted selection in tomato.

  3. Linkage mapping of candidate genes for induce resistance and growth promotion by trichoderma koningiopsis (th003) in tomato solanum lycopersicum

    International Nuclear Information System (INIS)

    Induced systemic resistance (ISR) is a mechanism by which plants enhance defenses against any stress condition. ISR and growth promotion are enhanced when tomato (Solanum lycopersicum) is inoculated with several strains of Trichoderma ssp. this study aims to genetically map tomato candidate genes involved in ISR and growth promotion induced by the Colombian native isolate Trichoderma koningiopsis th003. Forty-nine candidate genes previously identified on tomato plants treated with th003 and T. hamatum T382 strains were evaluated for polymorphisms and 16 of them were integrated on the highly saturated genetic linkage map named TOMATO EXPEN 2000. The location of six unigenes was similar to the location of resistance gene analogs (RGAS), defense related ests and resistance QTLs previously reported, suggesting new possible candidates for these quantitative trait loci (QTL) regions. The candidate gene-markers may be used for future ISR or growth promotion assisted selection in tomato.

  4. Candidate Genes Involved in the Biosynthesis of Triterpenoid Saponins in Platycodon grandiflorum Identified by Transcriptome Analysis

    Science.gov (United States)

    Ma, Chun-Hua; Gao, Zheng-Jie; Zhang, Jia-Jin; Zhang, Wei; Shao, Jian-Hui; Hai, Mei-Rong; Chen, Jun-Wen; Yang, Sheng-Chao; Zhang, Guang-Hui

    2016-01-01

    Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese, and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable. Principal findings: A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80%) were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG, and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant. Conclusion: The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level. PMID:27242873

  5. Harvesting candidate genes responsible for serious adverse drug reactions from a chemical-protein interactome.

    Directory of Open Access Journals (Sweden)

    Lun Yang

    2009-07-01

    Full Text Available Identifying genetic factors responsible for serious adverse drug reaction (SADR is of critical importance to personalized medicine. However, genome-wide association studies are hampered due to the lack of case-control samples, and the selection of candidate genes is limited by the lack of understanding of the underlying mechanisms of SADRs. We hypothesize that drugs causing the same type of SADR might share a common mechanism by targeting unexpectedly the same SADR-mediating protein. Hence we propose an approach of identifying the common SADR-targets through constructing and mining an in silico chemical-protein interactome (CPI, a matrix of binding strengths among 162 drug molecules known to cause at least one type of SADR and 845 proteins. Drugs sharing the same SADR outcome were also found to possess similarities in their CPI profiles towards this 845 protein set. This methodology identified the candidate gene of sulfonamide-induced toxic epidermal necrolysis (TEN: all nine sulfonamides that cause TEN were found to bind strongly to MHC I (Cw*4, whereas none of the 17 control drugs that do not cause TEN were found to bind to it. Through an insight into the CPI, we found the Y116S substitution of MHC I (B*5703 enhances the unexpected binding of abacavir to its antigen presentation groove, which explains why B*5701, not B*5703, is the risk allele of abacavir-induced hypersensitivity. In conclusion, SADR targets and the patient-specific off-targets could be identified through a systematic investigation of the CPI, generating important hypotheses for prospective experimental validation of the candidate genes.

  6. Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Chunhua eMa

    2016-05-01

    Full Text Available Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable.Principal Findings:A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80% were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant.Conclusion:The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.

  7. Lysinuric protein intolerance (LPI) gene maps to the long arm of chromosome 14.

    OpenAIRE

    Lauteala, T; Sistonen, P; Savontaus, M L; Mykkänen, J; Simell, J; Lukkarinen, M; Simell, O.; Aula, P

    1997-01-01

    Lysinuric protein intolerance (LPI) is an autosomal recessive disease characterized by defective transport of cationic amino acids and by hyperammonemia. Linkage analysis in 20 Finnish LPI families assigned the LPI gene locus to the proximal long arm of chromosome 14. Recombinations placed the locus between framework markers D14S72 and MYH7, a 10-cM interval in which the markers D14S742, D14S50, D14S283, and TCRA showed no recombinations with the phenotype. The phenotype was in highly signifi...

  8. A large scale screen for genes (3rd chromosome) related to Wingless signaling pathway

    Institute of Scientific and Technical Information of China (English)

    LIN Xin-da (林欣大); LIN Xin-hua; CHENG Jia-an (程家安)

    2004-01-01

    A wing specific F 1 genetic screen was carried out using the powerful Drosophila genetic system, combined with yeast FRT/FLP and GAL4/UAS system. Form the wing phenotypes and germline clone embryonic cuticle phenotypes observed in these mutant alleles, a number of mutant alleles of known or unknown genes were isolated. Among them, fifteen mutant alleles related to Wingless signal transduction were further isolated; the arm of these mutations located were determined, and their location in the chromosome were roughly mapped.

  9. Acceleration of X-chromosome gene order evolution in the cattle lineage.

    Science.gov (United States)

    Park, Woncheoul; Oh, Hee-Seok; Kim, Heebal

    2013-06-01

    The gene order on the X chromosome of eutherians is generally highly conserved, although an increase in the rate of rearrangement has been reported in the rodent lineage. Conservation of the X chromosome is thought to be caused by selection related to maintenance of dosage compensation. However, we herein reveal that the cattle (Btau4.0) lineage has experienced a strong increase in the rate of X-chromosome rearrangement, much stronger than that previously reported for rodents. We also show that this increase is not matched by a similar increase on the autosomes and cannot be explained by assembly errors. Furthermore, we compared the difference in two cattle genome assemblies: Btau4.0 and Btau6.0 (Bos taurus UMD3.1). The results showed a discrepancy between Btau4.0 and Btau6.0 cattle assembly version data, and we believe that Btau6.0 cattle assembly version data are not more reliable than Btau4.0. PMID:23790974

  10. A linkage and physical map of chromosome 22, and some applications to gene mapping.

    Science.gov (United States)

    Julier, C; Lathrop, G M; Reghis, A; Szajnert, M F; Lalouel, J M; Kaplan, J C

    1988-02-01

    A genetic map of human chromosome 22 has been derived from physical assignments and multilocus linkage analysis. It consists of the loci for the immunoglobulin lambda light-chain variable (IGLV) and immunoglobulin lambda light-chain constant (IGLC) regions, myoglobin (MB), the sis proto-oncogene (SIS), and an arbitrary probe (D22S1). The first RFLPs at the loci for SIS, IGLV, and MB are described. The most likely gene order on the basis of multilocus analysis was cen-(IGLV-IGLC)-D22S1-MB-SIS. This map provides further evidence for localization of the P1 polymorphism of the P blood group to chromosome 22, close to the SIS locus. Analysis of families segregating recessive congenital methemoglobinemia (RCM), a disease in which the cytochrome b5 reductase is defective, as well as of families with cases of hereditary low levels of cytochrome b5 reductase activity, confirmed that the locus responsible for RCM is on chromosome 22. Biochemical studies had already suggested that mutation at the cytochrome b5 reductase locus (DIA1) is responsible for RCM. We found no evidence of genetic heterogeneity between the families segregating RCM and the families exhibiting cases of low cytochrome b5 reductase activity. Linkage analysis indicated that the most probable location of DIA1 lies between MB and SIS. PMID:2893546

  11. Canine candidate genes for dilated cardiomyopathy: annotation of and polymorphic markers for 14 genes

    Directory of Open Access Journals (Sweden)

    van Oost Bernard A

    2007-10-01

    Full Text Available Abstract Background Dilated cardiomyopathy is a myocardial disease occurring in humans and domestic animals and is characterized by dilatation of the left ventricle, reduced systolic function and increased sphericity of the left ventricle. Dilated cardiomyopathy has been observed in several, mostly large and giant, dog breeds, such as the Dobermann and the Great Dane. A number of genes have been identified, which are associated with dilated cardiomyopathy in the human, mouse and hamster. These genes mainly encode structural proteins of the cardiac myocyte. Results We present the annotation of, and marker development for, 14 of these genes of the dog genome, i.e. α-cardiac actin, caveolin 1, cysteine-rich protein 3, desmin, lamin A/C, LIM-domain binding factor 3, myosin heavy polypeptide 7, phospholamban, sarcoglycan δ, titin cap, α-tropomyosin, troponin I, troponin T and vinculin. A total of 33 Single Nucleotide Polymorphisms were identified for these canine genes and 11 polymorphic microsatellite repeats were developed. Conclusion The presented polymorphisms provide a tool to investigate the role of the corresponding genes in canine Dilated Cardiomyopathy by linkage analysis or association studies.

  12. Linkage analysis of bipolar illness with X-chromosome DNA markers: A susceptibility gene in Xq27-q28 cannot be excluded

    Energy Technology Data Exchange (ETDEWEB)

    De bruyn, A.; Raeymaekers, P.; Raes, G. [Univ. of Antwerp (Belgium)] [and others

    1994-12-15

    Transmission studies have supported the presence of a susceptibility gene for bipolar (BP) illness on the X-chromosome. Initial linkage studies with color blindness (CB), glucose-6-phosphate dehydrogenase (G6PD) deficiency, and the blood coagulation factor IX (F9) have suggested that a gene for BP illness is located in the Xq27-q28 region. We tested linkage with several DNA markers located in Xq27-q28 in 2 families, MAD3 and MAD4, that previously were linked to F9, and 7 newly ascertained families of BP probands. Linkage was also examined with the gene encoding the {alpha}3 subunit of the gamma-amino butyric acid receptor (GABRA3), a candidate gene for BP illness located in this region. The genetic data were analyzed with the LOD score method using age-dependent penetrance of an autosomal dominant disease gene and narrow and broad clinical models. In MAD3 and MAD4 the multipoint LOD score data suggested a localization of a BPI gene again near F9. In the 7 new families the overall linkage data excluded the Xq27-q28 region. However, if the families were grouped according to their proband`s phenotype BPI or BPII, a susceptibility gene for BPI disorder at the DXS52-F8 cluster could not be excluded. 48 refs., 2 figs., 3 tabs.

  13. Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes

    OpenAIRE

    Colleen J. Saunders; Mahjoubeh Jalali Sefid Dashti; Junaid Gamieldien

    2016-01-01

    Tendinopathy is a multifactorial syndrome characterised by tendon pain and thickening, and impaired performance during activity. Candidate gene association studies have identified genetic factors that contribute to intrinsic risk of developing tendinopathy upon exposure to extrinsic factors. Bioinformatics approaches that data-mine existing knowledge for biological relationships may assist with the identification of candidate genes. The aim of this study was to data-mine functional annotation...

  14. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    Directory of Open Access Journals (Sweden)

    Pangilinan Faith

    2012-08-01

    Full Text Available Abstract Background Neural tube defects (NTDs are common birth defects (~1 in 1000 pregnancies in the US and Europe that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T and MTHFD1 rs2236225 (R653Q have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk. Methods A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents, including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects. Results Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury and included the known NTD risk factor MTHFD1 R653Q (rs2236225. The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele. Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing. Conclusions To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the stringency of correction are likely to have contributed to real associations failing to survive

  15. Expression studies of the obesity candidate gene FTO in pig

    DEFF Research Database (Denmark)

    Madsen, Majbritt Busk; Birck, Malene Muusfeldt; Fredholm, Merete;

    2010-01-01

    Obesity is an increasing problem worldwide and research on candidate genes in good animal models is highly needed. The pig is an excellent model as its metabolism, organ size, and eating habits resemble that of humans. The present study is focused on the characterization of the fat mass and obesity...... developmental stages. Expression of the FTO transcript was detected in all tissues tested with significantly higher levels in brain tissues (cortex, cerebellum, and hippocampus; P < 0.001). These levels varied through the development and between the specific parts of the brain studied (i.e., frontal cortex and...

  16. The Genetic Basis of Quality of Life in Healthy Swedish Women: A Candidate Gene Approach

    OpenAIRE

    Dounya Schoormans; Jingmei Li; Hatef Darabi; Yvonne Brandberg; Sprangers, Mirjam A. G.; Mikael Eriksson; Zwinderman, Koos H.; Per Hall

    2015-01-01

    Background Quality of life (QoL) is an increasingly important parameter in clinical practice as it predicts mortality and poor health outcomes. It is hypothesized that one may have a genetic predisposition for QoL. We therefore related 139 candidate genes, selected through a literature search, to QoL in healthy females. Methods In 5,142 healthy females, background characteristics (i.e. demographic, clinical, lifestyle, and psychological factors) were assessed. QoL was measured by the EORTC QL...

  17. Computational Systems for Selection and Priorization of Candidate Genes that Underlie Human Hereditary Disease

    Czech Academy of Sciences Publication Activity Database

    Adášková, Jana

    Praha : Ústav informatiky AV ČR, v. v. i. & MATFYZPRESS, 2007 - (Hakl, F.), s. 2-7 ISBN 978-80-7378-019-7. [Doktorandské dny '07 Ústavu informatiky AV ČR, v. v. i.. Malá Úpa (CZ), 17.09.2007-19.09.2007] R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : candidate gene selection * priorization * data mining * text mining * human heredity disease Subject RIV: IN - Informatics, Computer Science

  18. Currently recognized genes for schizophrenia: High-resolution chromosome ideogram representation.

    Science.gov (United States)

    Butler, Merlin G; McGuire, Austen B; Masoud, Humaira; Manzardo, Ann M

    2016-03-01

    A large body of genetic data from schizophrenia-related research has identified an assortment of genes and disturbed pathways supporting involvement of complex genetic components for schizophrenia spectrum and other psychotic disorders. Advances in genetic technology and expanding studies with searchable genomic databases have led to multiple published reports, allowing us to compile a master list of known, clinically relevant, or susceptibility genes contributing to schizophrenia. We searched key words related to schizophrenia and genetics from peer-reviewed medical literature sources, authoritative public access psychiatric websites and genomic databases dedicated to gene discovery and characterization of schizophrenia. Our list of 560 genes were arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms. Genome wide pathway analysis using GeneAnalytics was carried out on the resulting list of genes to assess the underlying genetic architecture for schizophrenia. Recognized genes of clinical relevance, susceptibility or causation impact a broad range of biological pathways and mechanisms including ion channels (e.g., CACNA1B, CACNA1C, CACNA1H), metabolism (e.g., CYP1A2, CYP2C19, CYP2D6), multiple targets of neurotransmitter pathways impacting dopamine, GABA, glutamate, and serotonin function, brain development (e.g., NRG1, RELN), signaling peptides (e.g., PIK3CA, PIK4CA) and immune function (e.g., HLA-DRB1, HLA-DQA1) and interleukins (e.g., IL1A, IL10, IL6). This summary will enable clinical and laboratory geneticists, genetic counselors, and other clinicians to access convenient pictorial images of the distribution and location of contributing genes to inform diagnosis and gene-based treatment as well as provide risk estimates for genetic counseling of families with affected relatives. PMID:26462458

  19. Adjusting breast cancer patient prognosis with non-HER2-gene patterns on chromosome 17.

    Directory of Open Access Journals (Sweden)

    Vassiliki Kotoula

    Full Text Available BACKGROUND: HER2 and TOP2A gene status are assessed for diagnostic and research purposes in breast cancer with fluorescence in situ hybridization (FISH. However, FISH probes do not target only the annotated gene, while chromosome 17 (chr17 is among the most unstable chromosomes in breast cancer. Here we asked whether the status of specifically targeted genes on chr17 might help in refining prognosis of early high-risk breast cancer patients. METHODS: Copy numbers (CN for 14 genes on chr17, 4 of which were within and 10 outside the core HER2 amplicon (HER2- and non-HER2-genes, respectively were assessed with qPCR in 485 paraffin-embedded tumor tissue samples from breast cancer patients treated with adjuvant chemotherapy in the frame of two randomized phase III trials. PRINCIPAL FINDINGS: HER2-genes CN strongly correlated to each other (Spearman's rho >0.6 and were concordant with FISH HER2 status (Kappa 0.6697 for ERBB2 CN. TOP2A CN were not concordant with TOP2A FISH status (Kappa 0.1154. CN hierarchical clustering revealed distinct patterns of gains, losses and complex alterations in HER2- and non-HER2-genes associated with IHC4 breast cancer subtypes. Upon multivariate analysis, non-HER2-gene gains independently predicted for shorter disease-free survival (DFS and overall survival (OS in patients with triple-negative cancer, as compared to luminal and HER2-positive tumors (interaction p = 0.007 for DFS and p = 0.011 for OS. Similarly, non-HER2-gene gains were associated with worse prognosis in patients who had undergone breast-conserving surgery as compared to modified radical mastectomy (p = 0.004 for both DFS and OS. Non-HER2-gene losses were unfavorable prognosticators in patients with 1-3 metastatic nodes, as compared to those with 4 or more nodes (p = 0.017 for DFS and p = 0.001 for OS. CONCLUSIONS: TOP2A FISH and qPCR may not identify the same pathology on chr17q. Non-HER2 chr17 CN patterns may further predict outcome in breast cancer

  20. Shared Pathways Among Autism Candidate Genes Determined by Co-expression Network Analysis of the Developing Human Brain Transcriptome.

    Science.gov (United States)

    Mahfouz, Ahmed; Ziats, Mark N; Rennert, Owen M; Lelieveldt, Boudewijn P F; Reinders, Marcel J T

    2015-12-01

    Autism spectrum disorder (ASD) is a neurodevelopmental syndrome known to have a significant but complex genetic etiology. Hundreds of diverse genes have been implicated in ASD; yet understanding how many genes, each with disparate function, can all be linked to a single clinical phenotype remains unclear. We hypothesized that understanding functional relationships between autism candidate genes during normal human brain development may provide convergent mechanistic insight into the genetic heterogeneity of ASD. We analyzed the co-expression relationships of 455 genes previously implicated in autism using the BrainSpan human transcriptome database, across 16 anatomical brain regions spanning prenatal life through adulthood. We discovered modules of ASD candidate genes with biologically relevant temporal co-expression dynamics, which were enriched for functional ontologies related to synaptogenesis, apoptosis, and GABA-ergic neurons. Furthermore, we also constructed co-expression networks from the entire transcriptome and found that ASD candidate genes were enriched in modules related to mitochondrial function, protein translation, and ubiquitination. Hub genes central to these ASD-enriched modules were further identified, and their functions supported these ontological findings. Overall, our multi-dimensional co-expression analysis of ASD candidate genes in the normal developing human brain suggests the heterogeneous set of ASD candidates share transcriptional networks related to synapse formation and elimination, protein turnover, and mitochondrial function. PMID:26399424

  1. Identification of candidate target genes of pituitary adenomas based on the DNA microarray.

    Science.gov (United States)

    Zhou, Wei; Ma, Chun-Xiao; Xing, Ya-Zhou; Yan, Zhao-Yue

    2016-03-01

    The present study aimed to explore molecular mechanisms involved in pituitary adenomas (PAs) and to discover target genes for their treatment. The gene expression profile GSE4488 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using the Limma package and analyzed by two‑dimensional hierarchical clustering. Gene ontology (GO) and pathway enrichment analyses were performed in order to investigate the functions of DEGs. Subsequently, the protein‑protein interaction (PPI) network was constructed using Cytoscape software. DEGs were then mapped to the connectivity map database to identify molecular agents associated with the underlying mechanisms of PAs. A total of 340 upregulated and 49 downregulated DEGs in PA samples compared with those in normal controls were identified. Hierarchical clustering analysis showed that DEGs were highly differentially expressed, indicating their aptness for distinguishing PA samples from normal controls. Significant gene ontology terms were positive regulation of immune system-associated processes for downregulated DEGs and skeletal system development for upregulated DEGs. Pathways significantly enriched by DEGs included extracellular matrix (ECM)‑receptor interaction, the Hedgehog (Hh) signaling pathway and neuroactive ligand‑receptor interaction. The PPI network was constructed with 117 nodes, 123 edges and CD44 and Gli2 as hub nodes. Furthermore, depudecin, a small molecule drug, was identified to be mechanistically associated with PA. The genes CD44 and Gli2 have important roles in the progression of PAs via ECM‑receptor interaction and the Hh signaling pathway and are therefore potential target genes of PA. In addition, depudecin may be a candidate drug for the treatment of PAs. PMID:26782791

  2. RELATIVE EXPRESSION AND STABILITY OF A CHROMOSOMALLY INTEGRATED AND PLASMID-BORNE MARKER GENE FUSION IN ENVIRONMENTALLY COMPETENT BACTERIA

    Science.gov (United States)

    A xyIE-iceC transcriptional fusion was created by ligating a DNA fragment harboring the cloned xyIE structural gene from the TOL plasmid of Pseudomonas putida mt-2 into the cloned iceC gene of Pseudomonas syringae Cit7. This fusion construct was integrated into chromosome of Pseu...

  3. Localization of the human fibromodulin gene (FMOD) to chromosome 1q32 and completion of the cDNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    Sztrolovics, R.; Grover, J.; Roughley, P.J. [McGill Univ., Montreal (Canada)] [and others

    1994-10-01