WorldWideScience

Sample records for chromophoric dissolved organic

  1. The Biogeochemistry of Chromophoric Dissolved Organic Matter in Coastal Waters

    Science.gov (United States)

    2016-06-07

    The Biogeochemistry of Chromophoric Dissolved Organic Matter in Coastal Waters Robert F. Chen Environmental , Coastal and Ocean Sciences University of...properties to governing physical processes in high energy environments such as coastal seas. In addition, large spatial coverage over a wide range of...optical measurements of CDOM. In order to reliably predict the important photochemical, biological, and chemical processes governing CDOM, and hence its

  2. Chromophoric dissolved organic matter export from U.S. rivers

    Science.gov (United States)

    Spencer, Robert G. M.; Aiken, George R.; Dornblaser, Mark M.; Butler, Kenna D.; Holmes, R. Max; Fiske, Greg; Mann, Paul J.; Stubbins, Aron

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. A robust relationship between CDOM and dissolved organic carbon (DOC) loads is established (e.g., a350 versus DOC; r2 = 0.96, p export from ungauged watersheds. A large variation in CDOM yields was found across the rivers. The two rivers in the north-eastern U.S. (Androscoggin and Penobscot), the Edisto draining into the South Atlantic Bight, and some rivers draining into the Gulf of Mexico (Atchafalaya and Mobile) exhibit the highest CDOM yields, linked to extensive wetlands in these watersheds. If the Edisto CDOM yield is representative of other rivers draining into the South Atlantic Bight, this would result in a CDOM load equivalent to that of the Mississippi from a region of approximately 10% of the Mississippi watershed, indicating the importance of certain regions with respect to the role of terrigenous CDOM in ocean color budgets.

  3. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  4. Photobleaching Kinetics of Chromophoric Dissolved Organic Matter Derived from Mangrove Leaf Litter and Floating Sargassum Colonies

    Science.gov (United States)

    We examined the photoreactivity of chromophoric dissolved organic matter (CDOM) derived from Rhizophora mangle (red mangrove) leaf litter and floating Sargassum colonies as these marine plants can be important contributors to coastal and open ocean CDOM pools, respectively. Mangr...

  5. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  6. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  7. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  8. Production of Chromophoric Dissolved Organic Matter from Mangrove Leaf Litter and Floating Sargassum Colonies

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) strongly absorbs solar radiation in the blue-green and serves as the primary attenuator of water column ultraviolet radiation (UV-R). CDOM interferes with remote sensing of ocean chlorophyll and can control UV-R-induced damage to light...

  9. Sources and transformations of dissolved lignin phenols and chromophoric dissolved organic matter in Otsuchi Bay, Japan

    Directory of Open Access Journals (Sweden)

    Chia-Jung eLu

    2016-06-01

    Full Text Available Dissolved lignin phenols and optical properties of dissolved organic matter (DOM were measured to investigate the sources and transformations of terrigenous DOM (tDOM in Otsuchi Bay, Japan. Three rivers discharge into the bay, and relatively high values of syringyl:vanillyl phenols (0.73 ± 0.07 and cinnamyl:vanillyl phenols (0.33 ± 0.10 indicated large contributions of non-woody angiosperm tissues to lignin and tDOM. The physical mixing of river and seawater played an important role in controlling the concentrations and distributions of lignin phenols and chromophoric DOM (CDOM optical properties in the bay. Lignin phenol concentrations and the CDOM absorption coefficient at 350 nm, a(350, were strongly correlated in river and bay waters. Measurements of lignin phenols and CDOM in bay waters indicated a variety of photochemical and biological transformations of tDOM, including oxidation reactions, photobleaching and a decrease in molecular weight. Photodegradation and biodegradation of lignin and CDOM were investigated in decomposition experiments with river water and native microbial assemblages exposed to natural sunlight or kept in the dark. There was a rapid and substantial removal of lignin phenols and CDOM during the first few days in the light treatment, indicating transformations of tDOM and CDOM can occur soon after discharge of buoyant river water into the bay. The removal of lignin phenols was slightly greater in the dark (34% than in the light (30% during the remaining 59 days of the incubation. Comparison of the light and dark treatments indicated biodegradation was responsible for 67% of total lignin phenol removal during the 62-day incubation exposed to natural sunlight, indicating biodegradation is a dominant removal process in Otsuchi Bay.

  10. Absorption features of chromophoric dissolved organic matter (CDOM and tracing implication for dissolved organic carbon (DOC in Changjiang Estuary, China

    Directory of Open Access Journals (Sweden)

    X. Y. Zhang

    2013-07-01

    Full Text Available Chromophoric dissolved organic matter (CDOM represents the light absorbing fraction of dissolved organic carbon (DOC. Studies have shown that the optical properties of CDOM can be used to infer the distribution and diffusion characteristics of DOC in the estuary and coastal zone. The inversion of DOC concentrations from remote sensing has been implemented in certain regions. In this study we investigate the potential of tracing DOC from CDOM by the measurement of DOC, absorption spectrum of CDOM, Chla concentration, suspended sediment (SS, and salinity from cruises in different seasons around the Changjiang estuary. Our results show that around the Changjiang estuary the absorption coefficients of CDOM in general have the similar spatial and temporal characteristics as that of DOC, but the strength of the correlation between CDOM and DOC varies locally and seasonally. The input of pollutants from outside the estuary, the bloom of phytoplankton in spring, re-suspension of deposited sediment, and light bleaching all contribute to the local and seasonal variation of the correlation between DOC and CDOM. An inversion model for the determination of DOC from CDOM is established, but the stability of model parameters and its application in different environments need further study. We find that relative to the absorption coefficient of CDOM, the fitted parameters of the absorption spectrum of DOM are better indictors for the composition of DOC. In addition, it is found that the terrestrial input of DOC to Changjiang estuary is a typical two-stage dilution process instead of a linear diffusion process.

  11. Predicting dissolved lignin phenol concentrations in the coastal ocean from chromophoric dissolved organic matter (CDOM absorption coefficients

    Directory of Open Access Journals (Sweden)

    Cédric G. Fichot

    2016-02-01

    Full Text Available Dissolved lignin is a well-established biomarker of terrigenous dissolved organic matter (DOM in the ocean, and a chromophoric component of DOM. Although evidence suggests there is a strong linkage between lignin concentrations and chromophoric DOM (CDOM absorption coefficients in coastal waters, the characteristics of this linkage and the existence of a relationship that is applicable across coastal oceans remain unclear. Here, 421 paired measurements of dissolved lignin concentrations (sum of 9 lignin phenols and CDOM absorption coefficients (ag(λ were used to examine their relationship along the river-ocean continuum (0-37 salinity and across contrasting coastal oceans (sub-tropical, temperate, high-latitude. Overall, lignin concentrations spanned four orders of magnitude and revealed a strong, non-linear relationship with ag(λ. The characteristics of the relationship (shape, wavelength dependency, lignin-composition dependency and evidence from degradation indicators were all consistent with lignin being an important driver of CDOM variability in coastal oceans, and suggested physical mixing and long-term photodegradation were important in shaping the relationship. These observations were used to develop two simple empirical models for estimating lignin concentrations from ag(λ with a +/- 20% error relative to measured values. The models are expected to be applicable in most coastal oceans influenced by terrigenous inputs.

  12. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation

    NARCIS (Netherlands)

    Zhang, Y.; Liu, M.; Qin, B.; Feng, S.

    2009-01-01

    Photochemical degradation of chromophoric-dissolved organic matter (CDOM) by UV-B radiation decreases CDOM absorption in the UV region and fluorescence intensity, and alters CDOM composition. CDOM absorption, fluorescence, and the spectral slope indicating the CDOM composition were studied using 0.2

  13. Dynamics of chromophoric dissolved organic matter in Mandovi and Zuari estuaries — A study through in situ and satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Menon, H.B.; Sangekar, N.P.; Lotliker, A.A; Vethamony, P.

    The spatial and temporal distribution of absorption of chromophoric dissolved organic matter at 440 nm (a sub (CDOM) (440)) in the Mandovi and Zuari estuaries situated along the west coast of India, has been analysed. The study was carried out using...

  14. Excitation Emission Matrix Spectra (EEMS) of Chromophoric Dissolved Organic Matter Produced during Microbial Incubation

    Science.gov (United States)

    McDonald, N.; Nelson, N. B.; Parsons, R.

    2013-12-01

    The chromophoric or light-absorbing fraction of dissolved organic matter (CDOM) is present ubiquitously in natural waters and has a significant impact on ocean biogeochemistry, affecting photosynthesis and primary production as well direct and indirect photochemical reactions (Siegel et al., 2002; Nelson et al., 2007). It has been largely researched in the past few decades, however the exact chemical composition remains unknown. Instrumental methods of analysis including simultaneous excitation-emission fluorescence spectra have allowed for further insight into source and chemical composition. While certain excitation-emission peaks have been associated with ';marine' sources, they have not been exclusively linked to bacterial production of CDOM (Coble, 1996; Zepp et al., 2004). In this study, ';grazer diluted' seawater samples (70% 0.2μm filtered water; 30% whole water) were collected at the Bermuda Atlantic Time Series (BATS) site in the Sargasso Sea (31° 41' N; 64° 10' W) and incubated with an amendment of labile dissolved organic carbon (10μM C6H12O6), ammonium (1μM NH4Cl) and phosphate (0.1μM K2HPO4) to facilitate bacterial production. These substrates and concentrations have been previously shown to facilitate optimum bacterial and CDOM production (Nelson et al., 2004). Sample depths were chosen at 1m and 200m as water at these depths has been exposed to UV light (the Subtropical Mode Water at 200m has been subducted from the surface) and therefore has low initial concentrations of CDOM. After the samples were amended, they were incubated at in-situ temperatures in the dark for 72 hours, with bacteria counts, UV-Vis absorption and EEMS measurements taken at 6-8 hour intervals. Dissolved organic carbon (DOC) measurements were collected daily. For the surface water experiment specific bacteria populations were investigated using Fluorescence In-Situ Hybridization (FISH) analysis. Results showed a clear production of bacteria and production of CDOM, which

  15. Chromophoric Dissolved Organic Matter across a Marine Distributed Biological Observatory in the Pacific Arctic Region

    Science.gov (United States)

    Berman, S. L.; Frey, K. E.; Shake, K. L.; Cooper, L. W.; Grebmeier, J. M.

    2014-12-01

    Dissolved organic matter (DOM) plays an important role in marine ecosystems as both a carbon source for the microbial food web (and thus a source of CO2 to the atmosphere) and as a light inhibitor in marine environments. The presence of chromophoric dissolved organic matter (CDOM; the optically active portion of total DOM) can have significant controlling effects on transmittance of sunlight through the water column and therefore on primary production as well as the heat balance of the upper ocean. However, CDOM is also susceptible to photochemical degradation, which decreases the flux of solar radiation that is absorbed. Knowledge of the current spatial and temporal distribution of CDOM in marine environments is thus critical for understanding how ongoing and future changes in climate may impact these biological, biogeochemical, and physical processes. We describe the quantity and quality of CDOM along five key productive transects across a developing Distributed Biological Observatory (DBO) in the Pacific Arctic region. The samples were collected onboard the CCGS Sir Wilfred Laurier in July 2013 and 2014. Monitoring of the variability of CDOM along transects of high productivity can provide important insights into biological and biogeochemical cycling across the region. Our analyses include overall concentrations of CDOM, as well as proxy information such as molecular weight, lability, and source (i.e., autochthonous vs. allochthonous) of organic matter. We utilize these field observations to compare with satellite-derived CDOM concentrations determined from the Aqua MODIS satellite platform, which ultimately provides a spatially and temporally continuous synoptic view of CDOM concentrations throughout the region. Examining the current relationships among CDOM, sea ice variability, biological productivity, and biogeochemical cycling in the Pacific Arctic region will likely provide key insights for how ecosystems throughout the region will respond in future

  16. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    Science.gov (United States)

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, R.G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  17. Photoproduction of hydrogen peroxide in aqueous solution from model compounds for chromophoric dissolved organic matter (CDOM).

    Science.gov (United States)

    Clark, Catherine D; de Bruyn, Warren; Jones, Joshua G

    2014-02-15

    To explore whether quinone moieties are important in chromophoric dissolved organic matter (CDOM) photochemistry in natural waters, hydrogen peroxide (H2O2) production and associated optical property changes were measured in aqueous solutions irradiated with a Xenon lamp for CDOM model compounds (dihydroquinone, benzoquinone, anthraquinone, napthoquinone, ubiquinone, humic acid HA, fulvic acid FA). All compounds produced H2O2 with concentrations ranging from 15 to 500 μM. Production rates were higher for HA vs. FA (1.32 vs. 0.176 mM h(-1)); values ranged from 6.99 to 0.137 mM h(-1) for quinones. Apparent quantum yields (Θ app; measure of photochemical production efficiency) were higher for HA vs. FA (0.113 vs. 0.016) and ranged from 0.0018 to 0.083 for quinones. Dihydroquinone, the reduced form of benzoquinone, had a higher production rate and efficiency than its oxidized form. Post-irradiation, quinone compounds had absorption spectra similar to HA and FA and 3D-excitation-emission matrix fluorescence spectra (EEMs) with fluorescent peaks in regions associated with CDOM.

  18. Characterization and spacial distribution variability of chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary.

    Science.gov (United States)

    Wang, Ying; Zhang, Di; Shen, Zhenyao; Chen, Jing; Feng, Chenghong

    2014-01-01

    The spatial characteristics and the quantity and quality of the chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary, based on the abundance, degree of humification and sources, were studied using 3D fluorescence excitation emission matrix spectra (F-EEMs) with parallel factor and principal component analysis (PARAFAC-PCA). The results indicated that the CDOM abundance decreased and the aromaticity increased from the upstream to the downstream areas of the estuary. Higher CDOM abundance and degrees of humification were observed in the pore water than that in the surface and bottom waters. Two humic-like components (C1 and C3) and one tryptophan-like component (C2) were identified using the PARAFAC model. The separation of the samples by PCA highlighted the differences in the DOM properties. Components C1 and C3 concurrently displayed positive factor 1 loadings with nearly zero factor 2 loadings, while C2 showed highly positive factor 2 loadings. The C1 and C3 were very similar and exhibited a direct relationship with A355 and DOC. The CDOM in the pore water increased along the river to the coastal area, which was mainly influenced by C1 and C3 and was significantly derived from sediment remineralization and deposition from the inflow of the Yangtze River. The CDOM in the surface and bottom waters was dominated by C2, especially in the inflows of multiple tributaries that were affected by intensive anthropogenic activities. The microbial degradation of exogenous wastes from the tributary inputs and shoreside discharges were dominant sources of the CDOM in the surface and bottom waters.

  19. Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China

    Science.gov (United States)

    Wen, Z. D.; Song, K. S.; Zhao, Y.; Du, J.; Ma, J. H.

    2016-02-01

    Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of rivers and terminal lakes within the Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal lakes than rivers waters (p RDA) indicated that the environmental variables total suspended matter (TSM), TN, and electrical conductivity (EC) had a strong correlation with light absorption characteristics, followed by total dissolved solid (TDS) and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. The construction of a correlation between DOC concentration and water quality factors may help contribute to regional estimates of carbon sources and fate for catchment carbon budget assessments.

  20. Parameterization of the light absorption properties of chromophoric dissolved organic matter in the Baltic Sea and Pomeranian lakes

    Science.gov (United States)

    Meler, Justyna; Kowalczuk, Piotr; Ostrowska, Mirosława; Ficek, Dariusz; Zabłocka, Monika; Zdun, Agnieszka

    2016-08-01

    This study presents three alternative models for estimating the absorption properties of chromophoric dissolved organic matter aCDOM(λ). For this analysis we used a database containing 556 absorption spectra measured in 2006-2009 in different regions of the Baltic Sea (open and coastal waters, the Gulf of Gdańsk and the Pomeranian Bay), at river mouths, in the Szczecin Lagoon and also in three lakes in Pomerania (Poland) - Obłęskie, Łebsko and Chotkowskie. The variability range of the chromophoric dissolved organic matter (CDOM) absorption coefficient at 400 nm, aCDOM(400), lay within 0.15-8.85 m-1. The variability in aCDOM(λ) was parameterized with respect to the variability over 3 orders of magnitude in the chlorophyll a concentration Chl a (0.7-119 mg m-3). The chlorophyll a concentration and aCDOM(400) were correlated, and a statistically significant, nonlinear empirical relationship between these parameters was derived (R2 = 0.83). On the basis of the covariance between these parameters, we derived two empirical mathematical models that enabled us to design the CDOM absorption coefficient dynamics in natural waters and reconstruct the complete CDOM absorption spectrum in the UV and visible spectral domains. The input variable in the first model was the chlorophyll a concentration, and in the second one it was aCDOM(400). Both models were fitted to a power function, and a second-order polynomial function was used as the exponent. Regression coefficients for these formulas were determined for wavelengths from 240 to 700 nm at 5 nm intervals. Both approximations reflected the real shape of the absorption spectra with a low level of uncertainty. Comparison of these approximations with other models of light absorption by CDOM demonstrated that our parameterizations were superior (bias from -1.45 to 62 %, RSME from 22 to 220 %) for estimating CDOM absorption in the optically complex waters of the Baltic Sea and Pomeranian lakes.

  1. Study of influencing factors to chromophoric dissolved organic matter absorption properties from fluorescence features in Taihu lake in autumn

    Directory of Open Access Journals (Sweden)

    Chuang-Chun Huang

    2013-04-01

    Full Text Available In order to identify the components of chromophoric dissolved organic matter (CDOM, confirm the influence of components to the absorption coefficient of CDOM (aCDOM, and estimate aCDOM from fluorescence spectra, fluorescence and optical measurements of CDOM were carried out in November 2008. The results indicate that, the primary component of CDOM is humic-like. The secondary component is tryptophan-like, which is the product of phytoplankton and aquatic debris rather than the wastewater treatment drainaged from city. In this study, six fluorophores with multiple excitation-emission matrices (EEMs peaks (A, B, C, N, M, T were identified according to the parallel factor analysis (PARAFAC. The average contribution of each component to the CDOM is 19.93, 18.82, 16.88, 16.39, 12.26, and 15.72%, respectively. Red Shifted phenomenon will happen with the increase of fluorescence intensity for ultraviolet and terrestrially humic-like. Conversely, marine humic-like will appear Reverse Red Shifted with the increase of fluorescence intensity. The primary contributor to the shoulder value of CDOM’s absorption coefficient at 275 nm is phytoplankton productivity, followed by marine humic-like. The main contributors to the shoulder shape are UV humic-like and phytoplankton productivity, followed by marine humic-like and tryptophan-like. A strong correlation between CDOM absorption and fluorescence intensity at emission wavelength of 424 nm and excitation wavelength ranging from 280 to 360 nm was found. The absorption coefficient can be retrieved successfully from the same excitation wavelength’s fluorescence intensity by an exponential model.

  2. Inflow rate-driven changes in the composition and dynamics of chromophoric dissolved organic matter in a large drinking water lake.

    Science.gov (United States)

    Zhou, Yongqiang; Zhang, Yunlin; Jeppesen, Erik; Murphy, Kathleen R; Shi, Kun; Liu, Mingliang; Liu, Xiaohan; Zhu, Guangwei

    2016-09-01

    Drinking water lakes are threatened globally and therefore in need of protection. To date, few studies have been carried out to investigate how the composition and dynamics of chromophoric dissolved organic matter (CDOM) in drinking water lakes are influenced by inflow rate. Such CDOM can lead to unpleasant taste and odor of the water and produce undesirable disinfection byproducts during drinking water treatment. We studied the drinking water Lake Qiandao, China, and found that the concentrations of suspended particulate matter (SPM) in the lake increased significantly with inflow rate (p water safety and requires higher removal efficiency of CDOM during drinking water treatment processes.

  3. Optical and photochemical characterization of chromophoric dissolved organic matter from lakes in Terra Nova Bay, Antarctica. Evidence of considerable photoreactivity in an extreme environment.

    Science.gov (United States)

    De Laurentiis, Elisa; Buoso, Sandro; Maurino, Valter; Minero, Claudio; Vione, Davide

    2013-12-17

    Water samples from shallow lakes located in Terra Nova Bay, Antarctica, were taken in the austral summer season and characterized for chemical composition, optical features, fluorescence excitation-emission matrix (EEM) and photoactivity toward the generation of (•)OH, (1)O2, and (3)CDOM* (triplet states of chromophoric dissolved organic matter). The optical properties suggested that CDOM would be largely of aquagenic origin and possibly characterized by limited photochemical processing before sampling. Moreover, the studied samples were highly photoactive and the quantum yields for the generation of (3)CDOM* and partially of (1)O2 and (•)OH were considerably higher compared to water samples from temperate environments. This finding suggests that water in the studied lakes would have considerable ability to photosensitize the degradation of dissolved compounds during the austral summer, possibly including organic pollutants, also considering that the irradiance conditions of the experiments were not far from those observed on the Antarctic coast during the austral summer.

  4. Absorption and fluorescence properties of chromophoric dissolved organic matter: implications for the monitoring of water quality in a large subtropical reservoir.

    Science.gov (United States)

    Liu, Xiaohan; Zhang, Yunlin; Shi, Kun; Zhu, Guangwei; Xu, Hai; Zhu, Mengyuan

    2014-12-01

    The development of techniques for real-time monitoring of water quality is of great importance for effectively managing inland water resources. In this study, we first analyzed the absorption and fluorescence properties in a large subtropical reservoir and then used a chromophoric dissolved organic matter (CDOM) fluorescence monitoring sensor to predict several water quality parameters including the total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), dissolved organic carbon (DOC), and CDOM fluorescence parallel factor analysis (PARAFAC) components in the reservoir. The CDOM absorption coefficient at 254 nm (a(254)), the humic-like component (C1), and the tryptophan-like component (C3) decreased significantly along a gradient from the northwest to the lake center, northeast, southwest, and southeast region in the reservoir. However, no significant spatial difference was found for the tyrosine-like component (C2), which contributed only four marked peaks. A highly significant linear correlation was found between the a(254) and CDOM concentration measured using the CDOM fluorescence sensor (r(2) = 0.865, n = 76, p fluorescence intensity of C1, suggesting that the real-time monitoring of CDOM concentrations could be used to predict these water quality parameters and trace the humic-like fluorescence substance in clear aquatic ecosystems with DOC fluorescence sensor is a useful tool for on-line water quality monitoring if the empirical relationship between the CDOM concentration measured using the CDOM fluorescence sensor and the water quality parameters is calibrated and validated.

  5. Estimation of chromophoric dissolved organic matter (CDOM) and photosynthetic activity of estuarine phytoplankton using a multiple-fixed-wavelength spectral fluorometer.

    Science.gov (United States)

    Goldman, Emily A; Smith, Erik M; Richardson, Tammi L

    2013-03-15

    The utility of a multiple-fixed-wavelength spectral fluorometer, the Algae Online Analyser (AOA), as a means of quantifying chromophoric dissolved organic matter (CDOM) and phytoplankton photosynthetic activity was tested using algal cultures and natural communities from North Inlet estuary, South Carolina. Comparisons of AOA measurements of CDOM to those by spectrophotometry showed a significant linear relationship, but increasing amounts of background CDOM resulted in progressively higher over-estimates of chromophyte contributions to a simulated mixed algal community. Estimates of photosynthetic activity by the AOA at low irradiance (≈ 80 μmol quanta m(-2) s(-1)) agreed well with analogous values from the literature for the chlorophyte, Dunaliella tertiolecta, but were substantially lower than previous measurements of the maximum quantum efficiency of photosystem II (F(v)/F(m)) in Thalassiosira weissflogii (a diatom) and Rhodomonas salina (a cryptophyte). When cells were exposed to high irradiance (1500 μmol quanta m(-2) s(-1)), declines in photosynthetic activity with time measured by the AOA mirrored estimates of cellular fluorescence capacity using the herbicide 3'-(3, 4-dichlorophenyl)-1',1'-dimethyl urea (DCMU). The AOA shows promise as a tool for the continuous monitoring of phytoplankton community composition, CDOM, and the group-specific photosynthetic activity of aquatic ecosystems.

  6. Process analysis and economics of drinking water production from coastal aquifers containing chromophoric dissolved organic matter and bromide using nanofiltration and ozonation.

    Science.gov (United States)

    Sobhani, R; McVicker, R; Spangenberg, C; Rosso, D

    2012-01-01

    In regions characterized by water scarcity, such as coastal Southern California, groundwater containing chromophoric dissolved organic matter is a viable source of water supply. In the coastal aquifer of Orange County in California, seawater intrusion driven by coastal groundwater pumping increased the concentration of bromide in extracted groundwater from 0.4 mg l⁻¹ in 2000 to over 0.8 mg l⁻¹ in 2004. Bromide, a precursor to bromate formation is regulated by USEPA and the California Department of Health as a potential carcinogen and therefore must be reduced to a level below 10 μg l⁻¹. This paper compares two processes for treatment of highly coloured groundwater: nanofiltration and ozone injection coupled with biologically activated carbon. The requirement for bromate removal decreased the water production in the ozonation process to compensate for increased maintenance requirements, and required the adoption of catalytic carbon with associated increase in capital and operating costs per unit volume. However, due to the absence of oxidant addition in nanofiltration processes, this process is not affected by bromide. We performed a process analysis and a comparative economic analysis of capital and operating costs for both technologies. Our results show that for the case studied in coastal Southern California, nanofiltration has higher throughput and lower specific capital and operating cost, when compared to ozone injection with biologically activate carbon. Ozone injection with biologically activated carbon, compared to nanofiltration, has 14% higher capital cost and 12% higher operating costs per unit water produced while operating at the initial throughput. Due to reduced ozone concentration required to accommodate for bromate reduction, the ozonation process throughput is reduced and the actual cost increase (per unit water produced) is 68% higher for capital cost and 30% higher for operations.

  7. Fluorescence peak integration ratio IC:IT as a new potential indicator tracing the compositional changes in chromophoric dissolved organic matter.

    Science.gov (United States)

    Zhou, Yongqiang; Shi, Kun; Zhang, Yunlin; Jeppesen, Erik; Liu, Xiaohan; Zhou, Qichao; Wu, Huawu; Tang, Xiangming; Zhu, Guangwei

    2017-01-01

    The present study demonstrates that the ratio of fluorescence integration of peak C to peak T (IC:IT) can be used as an indicator tracing the compositional dynamics of chromophoric dissolved organic matter (CDOM). CDOM absorption and fluorescence spectroscopy and stable isotope δ(13)C were determined on a seasonal basis in seventeen Chinese inland waters as well as in a series of mixing and photodegradation experiments in the lab. A strong positive linear correlation was recorded between IC:IT and the ratio of terrestrial humic-like C1 to tryptophan-like C4 (C1:C4) derived by parallel factor analysis. The r(2) for the linear fitting between IC:IT and C1:C4 (r(2)=0.80) was notably higher than between C1:C4 and other indices tested, including the ratio of CDOM absorption at 250nm to 365nm, i.e. a(250):a(365) (r(2)=0.09), spectral slope (S275-295) (r(2)=0.26), spectral slope ratio (SR) (r(2)=0.31), the humification index (HIX) (r(2)=0.47), the recent autochthonous biological contribution index (BIX) (r(2)=0.27), and a fluorescence index (FI370) (r(2)=0.07). IC:IT exhibited larger variability than the remaining six indices and a closer correlation with stable isotope δ(13)C than that observed for a(250):a(365), S275-295, SR, FI370, and BIX during field campaigns. Confirming our field observations, significant correlations were recorded between IC:IT and the remaining six indices, and IC:IT also demonstrated notably larger variability than the six other indices during our wastewater addition experiment. Compared with HIX, eutrophic water addition and photobleaching substantially decreased IC:IT but had no pronounced effect on a(250):a(365), S275-297, SR, FI370, and BIX, further suggesting that IC:IT is the most efficient indicator of the CDOM compositional dynamics.

  8. Assessing chromophoric dissolved organic matter (CDOM) distribution, stocks, and fluxes in Apalachicola Bay using combined field, VIIRS ocean color, and model observations

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ishan D.; D' Sa, Eurico J.; Osburn, Christopher L.; Bianchi, Thomas S.; Ko, Dong S.; Oviedo-Vargas, Diana; Arellano, Ana R.; Ward, Nicholas D.

    2017-03-01

    Understanding the role of estuarine-carbon fluxes is essential to improve estimates of the global carbon budget. Dissolved organic matter (DOM) plays an important role in aquatic carbon cycling. The chromophoric fraction of DOM (CDOM) can be readily detected via in situ and remotely-sensed optical measurements. DOM properties, including CDOM absorption coefficient at 412 nm (ag412) and dissolved organic carbon (DOC) concentrations were examined in Apalachicola Bay, a national estuarine research reserve located in the northeast Gulf of Mexico, using in situ and satellite observations during the spring and fall of 2015. Synoptic and accurate representation of estuarine-scale processes using satellite ocean color imagery necessitates the removal of atmospheric contribu- tion (~90%) to signals received by satellite sensors to successfully link to in situ observations. Three atmospheric correction schemes (e.g., Standard NIR correction, Iterative NIR correction, and SWIR correction) were tested first to find a suitable correction scheme for the VIIRS imagery in low to moderately turbid Apalachicola Bay. The iterative NIR correction performed well, and validation showed high correlation (R2 = 0.95, N = 25) against in situ light measurements. A VIIRS-based CDOM algorithm was developed (R2 = 0.87, N = 9) and validated (R2 = 0.76, N = 20, RMSE = 0.29 m-1) against in situ observations. Subsequently, ag412 was used as a proxy ofDOCinMarch(DOC=1.08+0.94×ag412,R2 =0.88,N=13)andinNovember(DOC= 1.61 + 1.33 × ag412, R2 = 0.83, N = 24) to derive DOC maps that provided synoptic views of DOC distribution, sources, and their transport to the coastal waters during the wet and dry seasons. The estimated DOC stocks were ~3.71 × 106 kg C in March and ~4.07 × 106 kg C in November over an area of ~560 km2. Volume flux (out of the bay) almost doubled for March 24 (735 m3

  9. Spatial variability in chromophoric dissolved organic matter for an artificial coastal lake (Shiwha) and the upstream catchments at two different seasons.

    Science.gov (United States)

    Phong, Diep Dinh; Lee, Yeonjung; Shin, Kyung-Hoon; Hur, Jin

    2014-06-01

    Selected water quality parameters and spectroscopic characteristics of dissolved organic matter (DOM) were examined during two different seasons for an artificial coastal lake (Shiwha Lake in South Korea), which are affected by seawater exchange due to the operation of a tidal power plant and external organic loadings from the upstream catchments. The coastal lake exhibited much lower concentrations of organic matter and nutrients than the upstream sources. The spectroscopic properties of the lake DOM were easily distinguished from those of the catchment sources as revealed by a lower absorption coefficient, lower degree of humification, and higher spectral slopes. The observed DOM properties suggest that the lake DOM may be dominated by smaller molecular size and less condensed structures. For the lake and the upper streams, higher absorption coefficients and fluorescence peak intensities but lower spectral slopes and humification index were found for the premonsoon versus the monsoon season. However, such seasonal differences were less pronounced for the industrial channels in the upper catchments. Three distinctive fluorophore groups including microbial humic-like, tryptophan-like, and terrestrial humic-like fluorescence were decomposed from the fluorescence excitation-emission matrix (EEM) of the DOM samples by parallel factor analysis (PARAFAC) modeling. The microbial humic-like component was the most abundant for the industrial channels, suggesting that the component may be associated with anthropogenic organic pollution. The terrestrial humic-like component was predominant for the upper streams, and its relative abundance was higher for the rainy season. Our principal component analysis (PCA) results demonstrated that exchange of seawater and seasonally variable input of allochthonous DOM plays important roles in determining the characteristics of DOM in the lake.

  10. Effects of nitrate and phosphate supply on chromophoric and fluorescent dissolved organic matter in the Eastern Tropical North Atlantic: a mesocosm study

    Directory of Open Access Journals (Sweden)

    A. N. Loginova

    2015-05-01

    Full Text Available The Eastern Tropical North Atlantic (ETNA is an open ocean region with little input of terrestrial dissolved organic matter (DOM, suggesting that pelagic production has to be the main source of DOM. Inorganic nitrogen (DIN and phosphorus (DIP concentrations affect pelagic production, leading to DOM modifications. The quantitative and qualitative changes in DOM are often estimated by its optical properties. Colored DOM (CDOM is often used to estimate dissolved organic carbon (DOC concentrations by applied techniques, e.g. through remote sensing, whereas DOM properties, such as molecular weight, can be estimated from the slopes of the CDOM absorption spectra (S. Fluorescence properties of CDOM (FDOM allow discriminating between different structural CDOM properties. The investigation of distribution and cycling of CDOM and FDOM was recognized to be important for understanding of physical and biogeochemical processes, influencing DOM. However, little information is available about effects of nutrient variability on CDOM and FDOM dynamics. Here we present results from two mesocosm experiments conducted with a natural plankton community of the ETNA, where effects of DIP ("Varied P" and DIN ("Varied N" supply on optical properties of DOM were studied. CDOM accumulated proportionally to phytoplankton biomass during the experiments. S decreased over time indicating accumulation of high molecular weight DOM. In Varied N, an additional CDOM portion, as a result of bacterial DOM reworking, was determined. It increased the CDOM fraction in DOC proportionally to the supplied DIN. The humic-like FDOM component (Comp.1 was derived by bacteria proportionally to DIN supply. The bound-to-protein amino acid-like FDOM component (Comp.2 was released irrespectively to phytoplankton biomass, but depending on DIP and DIN concentrations, as a part of an overflow mechanism. Under high DIN supply, Comp.2 was removed by bacterial reworking processes, leading to an

  11. Impact of River Damming on the Characteristics of Riverine Chromophoric Dissolved Organic Matter%拦河大坝对河流有色溶解有机质赋存特征的影响初探

    Institute of Scientific and Technical Information of China (English)

    向元婧; 黄清辉

    2014-01-01

    The dissolved organic matter ( DOM) in natural waters plays an important role in global biogeochemical cycles and the microbial loop that is sequestering carbon on a global scale.Chromophoric ( or colored) dissolved organic matter ( CDOM) , a significant fraction of total DOM, absorbs light over a broad range of ultraviolet ( UV) and visible wavelengths.The primary sources of DOM in rivers include surface runoff, wastewater discharge and phytoplankton exudates.It has been reported that the DOM of reservoirs is influenced by the tributary inflow.Res-ervoirs, depending on residence time, can become more lacustrine and significantly alter phytoplankton and plank-tonic bacteria communities and nutrient dynamics but the influence on CDOM is not clear.In this study, we report the spatial dynamics of riverine CDOM in the reaches above and below Three Gorges Dam to provide preliminarily findings on the influence of river impoundment on the characteristics of CDOM.Water samples were collected along five transects from the Xiangxi River estuary (31 km above Three Gorges Dam) to Nanjinguan (38km below Three Gorges Dam) on June 3, 2008.Samples were filtered on site and transported to the laboratory for analysis using ul-traviolet-visible and fluorescence spectroscopy.In situ CDOM concentrations were also determined in the upper rea-ches of the Xiangxi River Bay and the Miaohe section of the Yangtze River.The absorption coefficient for CDOM atλ=355 nm ( a355 ) was measured by UV-vis spectroscopy and the composition of fluorescent components ( FDOM) was analyzed using three-dimensional fluorescence ( EEM) spectroscopy.From the upper reaches of Xiangxi River Bay to the Three Gorges Dam, the absorption coefficient increased from 1.30 m-1 to 5.21 m-1 .Fluorescence in-tensities also increased due to the increase in tyrosine ( protein-like) substances (25%in upper Xiangxi River Bay to 62%near Three Gorges Dam) and decrease in humic-like substances.At Huanglingmiao, just below the

  12. Effect of chromophore-chromophore electrostatic interactions in the NLO response of functionalized organic-inorganic sol-gel materials

    Science.gov (United States)

    Reyes-Esqueda, J.; Darracq, B.; García-Macedo, J.; Canva, M.; Blanchard-Desce, M.; Chaput, F.; Lahlil, K.; Boilot, J. P.; Brun, A.; Lévy, Y.

    2001-10-01

    In the last years, important non-linear optical (NLO) results on sol-gel and polymeric materials have been reported, with values comparable to those found in crystals. These new materials contain push-pull chromophores either incorporated as guest in a high Tg polymeric matrix (doped polymers) or grafted onto the polymeric matrix. These systems present several advantages, however they require significant improvement at the molecular level—by designing optimized chromophores with very large molecular figure of merit, specific to each application targeted. Besides, it was recently stated in polymers that the chromophore-chromophore electrostatic interactions, which are dependent of chromophore concentration, have a strong effect into their NLO properties. This has not been explored at all in sol-gel systems. In this work, the sol-gel route was used to prepare hybrid organic-inorganic thin films with different NLO chromophores grafted into the skeleton matrix. Combining a molecular engineering strategy for getting a larger molecular figure of merit and by controlling the intermolecular dipole-dipole interactions through both: the tuning of the push-pull chromophore concentration and the control of tetraethoxysilane concentration, we have obtained a r33 coefficient around 15 pm/V at 633 nm for the classical DR1 azo-chromophore and a r33 around 50 pm/V at 831 nm for a new optimized chromophore structure.

  13. 藻类内源产生有色溶解有机物的吸收和三维荧光特性研究%Absorption and Fluorescence Properties of Chromophoric Dissolved Organic Matter Produced by Algae

    Institute of Scientific and Technical Information of China (English)

    彭彤; 陆小兰; 苏荣国; 张栋梅

    2015-01-01

    dinoflagellates (Prorocentrum donghaiense and Gym-nodinium)were cultured under laboratory conditions.Variations of optical properties of chromophoric dis-solved organic matter (CDOM)were studied with absorption and fluorescence excitation-emission matrix spec-troscopy(EEM)during growth of marine microalgae in incubation experiment.Absorption spectrum revealed absorption coefficientα(355)(CDOM absorption coefficients at 355 nm)of 6 kinds of marine microalgae above increased by 64.8%,242.3%,535.1%,903.2%,836% and 196.4%,respectively.Simultaneously,the ab-sorption spectral slope(Sg),determined between 270 and 350 nm,representing the size of molecular weight of CDOM and humic-like composition,decreased by 8.7%,34.6%,39.4%,53.1%,46.7%,and 35.7%,re-spectively.Applying parallel factor analysis (PARAFAC)together with EEM got four components of CDOM:C1(Ex/Em=350(260)nm/450 nm),C2 (Ex/Em=260(430)nm/525 nm),C3 (Ex/Em=325 nm/400 nm) and C4(Ex/Em=275 nm/325 nm),which were relative to three humic-like and one protein-like fluorescent components of Nitzschia closterium f .minutissima and Navicula halophile .In incubation experiment,fluo-rescence intensity of these four components during growth of Nitzschia closterium f .minutissima increased by,respectively,8.68,24.9,7.19 and 39.8 times,and those of Navicula halophile increased by 2.64,0.07, 4.39 and 12.4 times,respectively.Significant relationships were found between the fluorescence intensity of four components of CDOM,α(355)and Sg.All results demonstrated that both content and molecular weight of CDOM produced by diatom and dinoflagellate studied in incubation experiment increased,but these two pa-rameters changed more obviously of the diatom than those of dinoflagellate;the proportion of humic-like com-ponents in the composition of CDOM also increased clearly with the growth of marine microalgae,but protein-like fluorescent component had only a slow growth.Furthermore,the absorption spectrum of CDOM produced by different species of algae

  14. DNA-Conjugated Organic Chromophores in DNA Stacking Interactions

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V.; Pedersen, Erik Bjerregaard

    2009-01-01

    Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic ch...... review presents those efforts in the design of intercalators/organic chromophores as oligonucleotide conjugates that form a foundation for the generation of novel nucleic acid architectures...

  15. Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.

    Science.gov (United States)

    Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

    2014-08-01

    The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM.

  16. Dissolved Organic Matter in Freshwaters

    Science.gov (United States)

    Perdue, E. M.; Ritchie, J. D.

    2003-12-01

    Organic matter in freshwaters exists as dissolved molecules, colloids, and particles. It is appropriate to regard these distinctions as dynamic, however, because organic matter can be interconverted readily between these forms by dissolution and precipitation, sorption and desorption, aggregation and disaggregation, etc. Dissolved organic matter (DOM), the subject of this chapter, is defined operationally as the fraction of organic matter in a water sample that passes through a 0.45 μm filter. In the authors' opinion, the scientific literature on organic matter in freshwaters will be better reflected in this review, if data are considered without regard to the manner in which water samples may have been filtered. This more general approach is warranted because: * many submicron colloids and some microorganisms can pass through 0.45 μm filters; * the effective pore size of a 0.45 μm filter is usually unknown, because it is decreased by partial clogging during the filtration of a water sample; * some important studies have been conducted on unfiltered samples or on samples that were filtered through other types of filters; and * some important studies have been conducted on samples that were concentrated with ultrafiltration (UF), nanofiltration (NF), or reverse osmosis (RO) membranes.As methods for fractionation and isolation of organic matter in freshwaters have evolved, and as the intensity of research has waxed and waned in various academic disciplines, a rich and potentially confusing nomenclature has evolved for organic matter in freshwaters. Some of the more commonly encountered descriptors and their associated acronyms, if any, are yellow organic acids (YOAs), aquatic humus, DOM, and natural organic matter (NOM). Regardless of the terminology used in the original literature, the organic matter in freshwaters is referred to as DOM in this review, except when it is necessary to be more specific.

  17. Photonic engineering of hybrid metal-organic chromophores

    CERN Document Server

    Busson, Mickaël P; Stout, Brian; Bonod, Nicolas; Wenger, Jérôme; Bidault, Sébastien; 10.1002/anie.201205995

    2012-01-01

    We experimentally demonstrate control of the absorption and emission properties of individual emitters by photonic antennas in suspension. The method results in a new class of water-soluble chromophores with unprecedented photophysical properties, such as short lifetime, low quantum yield but high brightness.

  18. Evolution of dissolved and particulate chromophoric materials during the VAHINE mesocosm experiment in the New Caledonian coral lagoon (South West Pacific)

    Science.gov (United States)

    Tedetti, M.; Marie, L.; Röttgers, R.; Rodier, M.; Van Wambeke, F.; Helias, S.; Caffin, M.; Cornet-Barthaux, V.; Dupouy, C.

    2015-10-01

    In the framework of the VAHINE project, we investigated the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23 day mesocosm experiment conducted in the South West Pacific at the exit of the New Caledonian coral lagoon (22°29.073 S-166°26.905 E) from 13 January to 4 February 2013. Samples were collected in a mesocosm fertilized with phosphorus at 1, 6 and 12 m depth and in the surrounding waters. Light absorption coefficients of chromophoric dissolved organic matter (CDOM) (ag(λ)), particulate matter (ap(λ)) and CDOM + particulate matter (ag+p(λ)) were measured using a point-source integrating-cavity absorption meter (PSICAM), while fluorescent DOM (FDOM) components were determined from excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC). The evolutions of ag(λ), ap(λ) and ag+p(λ) in the mesocosm were similar to those of total chlorophyll a concentration, Synechococcus spp. and picoeukaryote abundances, bacterial production, particulate organic nitrogen and total organic carbon concentrations, with roughly a decrease from the beginning of the experiment to days 9-10, and an increase from days 9-10 to the end of the experiment. In the surrounding waters, the same trend was observed but the increase was much less pronounced, emphasizing the effect of the phosphorus fertilization on the mesocosm's plankton community. Correlations suggested that both Synechococcus cyanobacteria and heterotrophic bacteria were strongly involved in the production of CDOM and absorption of particulate matter. The increase in phytoplankton activities during the second part of the experiment led to a higher contribution of particulate material in the absorption budget at 442 nm. The three FDOM components identified (tryptophan-, tyrosine- and UVC humic-like fluorophores) did not follow the evolution of CDOM and particulate matter, proving that these were driven by different production

  19. Evolution of dissolved and particulate chromophoric materials during the VAHINE mesocosm experiment in the New Caledonian coral lagoon (South West Pacific

    Directory of Open Access Journals (Sweden)

    M. Tedetti

    2015-10-01

    Full Text Available In the framework of the VAHINE project, we investigated the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23 day mesocosm experiment conducted in the South West Pacific at the exit of the New Caledonian coral lagoon (22°29.073 S–166°26.905 E from 13 January to 4 February 2013. Samples were collected in a mesocosm fertilized with phosphorus at 1, 6 and 12 m depth and in the surrounding waters. Light absorption coefficients of chromophoric dissolved organic matter (CDOM (ag(λ, particulate matter (ap(λ and CDOM + particulate matter (ag+p(λ were measured using a point-source integrating-cavity absorption meter (PSICAM, while fluorescent DOM (FDOM components were determined from excitation-emission matrices (EEMs combined with parallel factor analysis (PARAFAC. The evolutions of ag(λ, ap(λ and ag+p(λ in the mesocosm were similar to those of total chlorophyll a concentration, Synechococcus spp. and picoeukaryote abundances, bacterial production, particulate organic nitrogen and total organic carbon concentrations, with roughly a decrease from the beginning of the experiment to days 9–10, and an increase from days 9–10 to the end of the experiment. In the surrounding waters, the same trend was observed but the increase was much less pronounced, emphasizing the effect of the phosphorus fertilization on the mesocosm's plankton community. Correlations suggested that both Synechococcus cyanobacteria and heterotrophic bacteria were strongly involved in the production of CDOM and absorption of particulate matter. The increase in phytoplankton activities during the second part of the experiment led to a higher contribution of particulate material in the absorption budget at 442 nm. The three FDOM components identified (tryptophan-, tyrosine- and UVC humic-like fluorophores did not follow the evolution of CDOM and particulate matter, proving that these were driven by different

  20. Evolution of dissolved and particulate chromophoric materials during the VAHINE mesocosm experiment in the New Caledonian coral lagoon (south-west Pacific)

    Science.gov (United States)

    Tedetti, Marc; Marie, Lauriane; Röttgers, Rüdiger; Rodier, Martine; Van Wambeke, France; Helias, Sandra; Caffin, Mathieu; Cornet-Barthaux, Véronique; Dupouy, Cécile

    2016-06-01

    In the framework of the VAHINE project, we investigated the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23-day mesocosm experiment conducted in the south-west Pacific at the mouth of the New Caledonian coral lagoon (22°29.073 S-166°26.905 E) from 13 January to 4 February 2013. Samples were collected in a mesocosm fertilized with phosphate at depths of 1, 6 and 12 m and in the surrounding waters. Light absorption coefficients of chromophoric dissolved organic matter (CDOM) [ag(λ)] and particulate matter [ap(λ)] were determined using a point-source integrating-cavity absorption meter (PSICAM), while fluorescent DOM (FDOM) components were determined from excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC). The evolutions of ag(λ) and ap(λ) in the mesocosm were similar to those of total chlorophyll a concentration, Synechococcus spp. and picoeukaryote abundances, bacterial production, particulate organic nitrogen and total organic carbon concentrations, with roughly a decrease from the beginning of the experiment to days 9-10, and an increase from days 9-10 to the end of the experiment. In the surrounding waters, the same trend was observed but the increase was much less pronounced, emphasizing the effect of the phosphate fertilization on the mesocosm's plankton community. Correlations suggested that both Synechococcus cyanobacteria and heterotrophic bacteria were strongly involved in the production of CDOM and absorption of particulate matter. The increase in phytoplankton biomass during the second part of the experiment led to a higher contribution of particulate material in the absorption budget at 442 nm. The three FDOM components identified (tryptophan-, tyrosine- and ultraviolet C (UVC) humic-like fluorophores) did not follow the evolution of CDOM and particulate matter, suggesting they were driven by different production/degradation processes. Finally, the

  1. Cooperative TPA enhancement via through-space interactions in organic nanodots built from dipolar chromophores

    Science.gov (United States)

    Robin, Anne-Claire; Parthasarathy, Venkatakrishnan; Pla-Quintana, Anna; Mongin, Olivier; Terenziani, Francesca; Caminade, Anne-Marie; Majoral, Jean-Pierre; Blanchard-Desce, Mireille

    2010-08-01

    Whereas structure-properties relationships have been widely investigated at the molecular level, supramolecular structure-property relationships have been somewhat overlooked. In many cases, interchromophoric interactions are found to be detrimental (in particular in second-order NLO) and a lot of efforts have been devoted to circumvent and control these effects to achieve efficient NLO materials for electrooptics. At opposite, we have implemented a countermainstream route based on the confinement of push-pull chromophores in close proximity within organic nanodots where both their number and relative position/distance are controlled by covalent attachment onto appropriate organic scaffolds. In such multichromophoric organic superstructures (namely covalent nanoclusters), dipole-dipole interactions can be tuned by playing on the internal architecture (topology, number of chromophoric subunits, length of the covalent linkers) and on the nature and properties (polarity, polarizability) of the chromophoric subunits. Following this strategy, we present the investigation of two series of such organic nanoclusters built from push-pull chromophores where through-space interactions are shown to modify both one-photon (OPA) and two-photon absorption (TPA) of each chromophoric subunits leading to cooperative enhancement of TPA properties and improved transparency.

  2. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter.

    Science.gov (United States)

    Chu, Chiheng; Erickson, Paul R; Lundeen, Rachel A; Stamatelatos, Dimitrios; Alaimo, Peter J; Latch, Douglas E; McNeill, Kristopher

    2016-06-21

    Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify.

  3. Dissolved organic matter photolysis in Canadian arctic thaw ponds

    Science.gov (United States)

    Laurion, Isabelle; Mladenov, Natalie

    2013-09-01

    The abundant thaw lakes and ponds in the circumarctic receive a new pool of organic carbon as permafrost peat soils degrade, which can be exposed to significant irradiance that potentially increases as climate warms and ice cover shortens. Exposure to sunlight is known to accelerate the transformation of dissolved organic matter (DOM) into molecules that can be more readily used by microbes. We sampled the water from two common classes of ponds found in the ice-wedge system of continuous permafrost regions of Canada, polygonal and runnel ponds, and followed the transformation of DOM over 12 days by looking at dissolved organic carbon (DOC) concentration and DOM absorption and fluorescence properties. The results indicate a relatively fast decay of color (3.4 and 1.6% loss d-1 of absorption at 320 nm for the polygonal and runnel pond, respectively) and fluorescence (6.1 and 8.3% loss d-1 of total fluorescent components, respectively) at the pond surface, faster in the case of humic-like components, but insignificant losses of DOC over the observed period. This result indicates that direct DOM mineralization (photochemical production of CO2) is apparently minor in thaw ponds compared to the photochemical transformation of DOM into less chromophoric and likely more labile molecules with a greater potential for microbial mineralization. Therefore, DOM photolysis in arctic thaw ponds can be considered as a catalytic mechanism, accelerating the microbial turnover of mobilized organic matter from thawing permafrost and the production of greenhouse gases, especially in the most shallow ponds. Under a warming climate, this mechanism will intensify as summers lengthen.

  4. Dissolved Organic Nitrogen in Mediterranean Ecosystems

    Institute of Scientific and Technical Information of China (English)

    M.DELGADO-BAQUERIZO; F.COVELO; A.GALLARDO

    2011-01-01

    Dissolved organic nitrogen (DON) in soils has recently gained increasing interest because it may be both a direct N source for plants and the dominant available N form in nutrient-poor soils, however, its prevalence in Mediterranean ecosystems remains unclear. The aims of this study were to i) estimate soil DON in a wide set of Mediterranean ecosystems and compare this levels with those for other ecosystems; ii) describe temporal changes in DON and dissolved inorganic nitrogen (DIN) forms (NH4+ and NO3-), and characterize spatial heterogeneity within plant communities; and iii) study the relative proportion of soil DON and DIN forms as a test of Schimel and Bennett's hypothesis that the prevalence of different N forms follows a gradient of nutrient availability. The study was carried out in eleven plant communities chosen to represent a wide spectrum of Mediterranean vegetation types, ranging from early to late successional status. DON concentrations in the studied Mediterranean plant communities (0-18.2 mg N kg-1) were consistently lower than those found in the literature for other ecosystems. We found high temporal and spatial variability in soil DON for all plant communities. As predicted by the Schimel and Bennett model for nutrient-poor ecosystems, DON dominance over ammonium and nitrate was observed for most plant communities in winter and spring soil samples. However, mineral-N dominated over DON in summer and autumn. Thus, soil water content may have an important effect on DON versus mineral N dominance in Mediterranean ecosystems.

  5. Characterization Of Dissolved Organic Mattter In The Florida Keys Ecosystem

    Science.gov (United States)

    Adams, D. G.; Shank, G. C.

    2009-12-01

    Over the past few decades, Scleractinian coral populations in the Florida Keys have increasingly experienced mortality due to bleaching events as well as microbial mediated illnesses such as black band and white band disease. Such pathologies seem to be most correlated with elevated sea surface temperatures, increased UV exposures, and shifts in the microbial community living on the coral itself. Recent studies indicate that corals’ exposure to UV in the Florida Keys is primarily controlled by the concentration of CDOM (Chromophoric Dissolved Organic Matter) in the water column. Further, microbial community alterations may be linked to changes in concentration and chemical composition of the larger DOM (Dissolved Organic Matter) pool. Our research characterized the spatial and temporal properties of DOM in Florida Bay and along the Keys ecosystems using DOC analyses, in-situ water column optical measurements, and spectral analyses including absorbance and fluorescence measurements. We analyzed DOM characteristics along transects running from the mouth of the Shark River at the southwest base of the Everglades, through Florida Bay, and along near-shore Keys coastal waters. Two 12 hour time-series samplings were also performed at the Seven-Mile Bridge, the primary Florida Bay discharge channel to the lower Keys region. Photo-bleaching experiments showed that the chemical characteristics of the DOM pool are altered by exposure to solar radiation. Results also show that DOC (~0.8-5.8 mg C/L) and CDOM (~0.5-16.5 absorbance coefficient at 305nm) concentrations exhibit seasonal fluctuations in our study region. EEM analyses suggest seasonal transitions between primarily marine (summer) and terrestrial (winter) sources along the Keys. We are currently combining EEM-PARAFAC analysis with in-situ optical measurements to model changes in the spectral properties of DOM in the water column. Additionally, we are using stable δ13C isotopic analysis to further characterize DOM

  6. Composition of dissolved organic matter in groundwater

    Science.gov (United States)

    Longnecker, Krista; Kujawinski, Elizabeth B.

    2011-05-01

    Groundwater constitutes a globally important source of freshwater for drinking water and other agricultural and industrial purposes, and is a prominent source of freshwater flowing into the coastal ocean. Therefore, understanding the chemical components of groundwater is relevant to both coastal and inland communities. We used electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to examine dissolved organic compounds in groundwater prior to and after passage through a sediment-filled column containing microorganisms. The data revealed that an unexpectedly high proportion of organic compounds contained nitrogen and sulfur, possibly due to transport of surface waters from septic systems and rain events. We matched 292 chemical features, based on measured mass:charge ( m/z) values, to compounds stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG). A subset of these compounds (88) had only one structural isomer in KEGG, thus supporting tentative identification. Most identified elemental formulas were linked with metabolic pathways that produce polyketides or with secondary metabolites produced by plants. The presence of polyketides in groundwater is notable because of their anti-bacterial and anti-cancer properties. However, their relative abundance must be quantified with appropriate analyses to assess any implications for public health.

  7. Spatial and seasonal distribution of chromophoric dissolved organic matter in the Upper Paraná River floodplain environments ( Brazil Distribuição espacial e sazonal da matéria orgânica dissolvida cromófora em ambientes da planície de inundação do alto rio Paraná (Brasil

    Directory of Open Access Journals (Sweden)

    Mariana Carolina Teixeira

    2011-12-01

    Full Text Available AIM: Our aim was to identify dissolved organic matter (DOM main sources in environments of the Upper Paraná River floodplain and their seasonal and spatial variation. METHODS: Ultraviolet-visible and fluorescence spectroscopy were utilized. The samples were obtained from November 2007 to September 2008 in six lakes of the floodplain. RESULTS: DOM quality differs among environments and also between rainy and dry season. The environments connected with Paraná River showed a high variation on the allochthonous/autochthonous proportion. Aquatic macrophytes might represent an important contribution to DOM in Garças and Osmar lakes. CONCLUSIONS: In general, environments connected to Paraná River have a greater influence of autochthonous DOC, while the others are most influenced by allochthonous inputs.OBJETIVO: O objetivo deste estudo foi identificar a origem da matéria orgânica dissolvida (MOD em ambientes da planície de inundação do alto rio Paraná e sua variação sazonal e espacial. MÉTODOS: Para tal, foram utilizadas técnicas de espectroscopia ultravioleta-visível e de fluorescência. As amostras foram coletadas no período de novembro de 2007 a setembro de 2008 em seis lagoas da planície de inundação. RESULTADOS: A qualidade da MOD difere entre ambientes e também entre as estações seca e chuvosa. Os ambientes conectados ao rio Paraná apresentaram grande variação na proporção autóctone/alóctone. Macrófitas aquáticas podem representar uma contribuição importante à MOD nas lagoas Garças e Osmar. CONCLUSÕES: Em geral, ambientes conectados ao rio Paraná têm maior influência de COD autóctone, enquanto os demais têm maior influência de COD alóctone.

  8. Explorations of soil microbial processes driven by dissolved organic carbon

    NARCIS (Netherlands)

    Straathof, A.L.

    2015-01-01

    Explorations of soil microbial processes driven by dissolved organic carbon Angela L. Straathof June 17, 2015, Wageningen UR ISBN 978-94-6257-327-7 Abstract Dissolved organic carbon (DOC) is a complex, heterogeneous mixture of C compounds which, as

  9. Size-fractionated production and bioavailability of dissolved organic matter

    DEFF Research Database (Denmark)

    Knudsen-Leerbeck, Helle; Bronk, Deborah A.; Markager, Stiig

    Production and bioavailability of dissolved organic matter was quantified on a time scale of two days from size fractions ranging from bacteria to zooplankton in the York River, Virginia. The goal was to find the main contributor to DOM. Batch incubation experiments were labeled with N15-ammonium...... was mainly in the phytoplankton size fraction, which on average contributed 62 % of total particulate nitrogen and 61 % of total particulate carbon. Up to 5 ± 0.4 μmol dissolved organic nitrogen L-1 and 33 ± 6.2 μmol dissolved organic carbon L-1 was produced during the incubation. Bioavailability...... of phytoplankton produced dissolved organic carbon was 12 ± 1 % and higher than in the presence of bacteria, microzooplankton, or copepods (7 ± 3 %). The pattern for bioavailability of dissolved organic nitrogen was less clear and ranged from 4 – 7 %. This study revealed that phytoplankton was the main contributor...

  10. Dissolved organic carbon release by marine macrophytes

    Directory of Open Access Journals (Sweden)

    C. Barrón

    2012-02-01

    Full Text Available Estimates of dissolved organic carbon (DOC release by marine macrophyte communities (seagrass meadows and macroalgal beds were obtained experimentally using in situ benthic chambers. The effect of light availability on DOC release by macrophyte communities was examined in two communities both by comparing net DOC release under light and dark, and by examining the response of net DOC release to longer-term (days experimental shading of the communities. All most 85% of the seagrass communities and almost all of macroalgal communities examined acted as net sources of DOC. There was a weak tendency for higher DOC fluxes under light than under dark conditions in seagrass meadow. There is no relationship between net DOC fluxes and gross primary production (GPP and net community production (NCP, however, this relationship is positive between net DOC fluxes and community respiration. Net DOC fluxes were not affected by shading of a T. testudinum community in Florida for 5 days, however, shading of a mixed seagrass meadow in the Philippines led to a significant reduction on the net DOC release when shading was maintained for 6 days compared to only 2 days of shading. Based on published and unpublished results we also estimate the global net DOC production by marine macrophytes. The estimated global net DOC flux, and hence export, from marine macrophyte is about 0.197 ± 0.015 Pg C yr−1 or 0.212 ± 0.016 Pg C yr−1 depending if net DOC flux by seagrass meadows was estimated by taking into account the low or high global seagrass area, respectively.

  11. Estimation of the contribution of chromophoric dissolved organic matter to total light absorption by remote sensing in Lake Taihu%太湖有色溶解有机物对水体总吸收贡献的遥感估算

    Institute of Scientific and Technical Information of China (English)

    姜广甲; 马荣华; 段洪涛

    2012-01-01

    Chromophnric dissolved organic matter (CDOM) mainly absorbs light in water which may influence the nature water color in lakes. Its absorption and photochemical degradation products play an important role in the primary productivity of water and carbon cycle. In Lake Taihu, a total of 333 sites were sampled in October 2004, October 2008 , April 2010 and January and March 2011 to analyze the contribution of CDOM to tolal light absorption und estimate [aCDOM/a1] (412 ) from remote sensing. It was found that the average of [ Ocdom/a1] (412) exhibited highly temporal variations during the five cruises. The maximum (0. 369) was determined in 2011 , comparing with all samples in Lake Taihu (0. 295 ±0. 139). The minimum average of [aCDOM\\a1] (412) in the dalaset 201004 was 0. 236 ± 0. 108 , varing from 0.046 to 0.455. No significant difference was observed in the data-set 200410 and 200810. The mean of [aCDOM/a1 ] ( 412) in Zhushan Bay was higher than that in both whole Lake Taihu and Meil lang Bay, For Meiliang Bay, it had almost the same value with the whole lake. A multi-band algorithm was adopted to estimate the [aCDOM/a1] (412) by remote sensing and acceptable results were detected (n =333, RMSE = 34. 60% ). Suspended sediments and pigments had an important impact on determination of [aCDOM/a1] (412) from remote sensing. It was underestimated because of pigments and overestimated as the suspended sediments in water and the latter was worse. Tile results also showed that the CDOM and detritus optically dominate thp water color in Lake Taihu.%有色溶解有机物(CDOM)是决定自然水体水色的主要溶解物质,其吸光能力和光化降解产物对水体初级生产力和碳循环过程具有重要影响.以太湖为研究区,2004年10月、2008年10月、2010年4月和2011年1月和3月共5期实测数据,采集了333个有效样点,分析不同时期CDOM对水体总吸收的贡献,并利用遥感技术估算[aCDOM/a1](412).结

  12. The removal kinetics of dissolved organic matter and the optical clarity of groundwater

    Science.gov (United States)

    Chapelle, Francis H.; Shen, Yuan; Strom, Eric W.; Benner, Ronald

    2016-09-01

    Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d-1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d-1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20-75 μM; 0.26-1 mg L-1) and ultraviolet absorption coefficient values ( a 254 United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.

  13. Dissolved Organic Matter and Emerging Contaminants in Urban Stream Ecosystems

    Science.gov (United States)

    Kaushal, S. S.; Findlay, S.; Groffman, P.; Belt, K.; Delaney, K.; Sides, A.; Walbridge, M.; Mayer, P.

    2009-05-01

    We investigated the effects of urbanization on the sources, bioavailability and forms of natural and anthropogenic organic matter found in streams located in Maryland, U.S.A. We found that the abundance, biaoavailability, and enzymatic breakdown of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP) increased in streams with increasing watershed urbanization suggesting that organic nutrients may represent a growing form of nutrient loading to coastal waters associated with land use change. Organic carbon, nitrogen, and phosphorus in urban streams were elevated several-fold compared to forest and agricultural streams. Enzymatic activities of stream microbes in organic matter decomposition were also significantly altered across watershed land use. Chemical characterization suggested that organic matter in urban streams originated from a variety of sources including terrestrial, sewage, and in-stream transformation. In addition, a characterization of emerging organic contaminants (polyaromatic cyclic hydrocarbons, organochlorine pesticides, and polybrominated diphenyl ether flame retardents), showed that organic contaminants and dissolved organic matter increase with watershed urbanization and fluctuate substantially with changing climatic conditions. Elucidating the emerging influence of urbanization on sources, transport, and in-stream transformation of organic nutrients and contaminants will be critical in unraveling the changing role of organic matter in urban degraded and restored stream ecosystems.

  14. Carbon cycle: Ocean dissolved organics matter

    Science.gov (United States)

    Amon, Rainer M. W.

    2016-12-01

    Large quantities of organic carbon are stored in the ocean, but its biogeochemical behaviour is elusive. Size-age-composition relations now quantify the production of tiny organic molecules as a major pathway for carbon sequestration.

  15. Probing ultrafast \\pi\\pi*/n\\pi* internal conversion in organic chromophores via K-edge resonant absorption

    CERN Document Server

    Wolf, T J A; Cryan, J P; Coriani, S; Squibb, R J; Battistoni, A; Berrah, N; Bostedt, C; Bucksbaum, P; Coslovich, G; Feifel, R; Gaffney, K J; Grilj, J; Martinez, T J; Miyabe, S; Moeller, S P; Mucke, M; Natan, A; Obaid, R; Osipov, T; Plekan, O; Wang, S; Koch, H; Gühr, M

    2016-01-01

    Organic chromophores with heteroatoms possess an important excited state relaxation channel from an optically allowed {\\pi}{\\pi}* to a dark n{\\pi}*state. We exploit the element and site specificity of soft x-ray absorption spectroscopy to selectively follow the electronic change during the {\\pi}{\\pi}*/n{\\pi}* internal conversion. As a hole forms in the n orbital during {\\pi}{\\pi}*/n{\\pi}* internal conversion, the near edge x-ray absorption fine structure (NEXAFS) spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept with the nucleobase thymine, a prototypical heteroatomic chromophore. With the help of time resolved NEXAFS spectroscopy at the oxygen K-edge, we unambiguously show that {\\pi}{\\pi}*/n{\\pi}* internal conversion takes place within (60 \\pm 30) fs. High-level coupled cluster calculations on the isolated molecules used in the experiment confirm the superb electronic structure sensitivity of this new method for excited state investigations.

  16. Dissolved organic matter dynamics in surface waters affected by oil spill pollution: Results from the Serious Game exercise

    Science.gov (United States)

    Gonnelli, M.; Galletti, Y.; Marchetti, E.; Mercadante, L.; Retelletti Brogi, S.; Ribotti, A.; Sorgente, R.; Vestri, S.; Santinelli, C.

    2016-11-01

    Dissolved organic carbon (DOC), chromophoric and fluorescent dissolved organic matter (CDOM and FDOM, respectively) surface distribution was studied during the Serious Game exercise carried out in the Eastern Ligurian Sea, where an oil spill was localized by using satellite images and models. This paper reports the first DOC, CDOM and FDOM data for this area together with an evaluation of fluorescence as a fast and inexpensive tool for early oil spill detection in marine waters. The samples collected in the oil spill showed a fluorescence intensity markedly higher ( 5 fold) than all the other samples. The excitation-emission matrixes, coupled with parallel factor analysis (PARAFAC), allowed for the identification in the FDOM pool of a mixture of polycyclic aromatic hydrocarbons, humic-like and protein-like fluorophores.

  17. Computational Study of Linear and Nonlinear Optical Properties of Single Molecules and Clusters of Organic Electro-Optic Chromophores

    Science.gov (United States)

    Garrett, Kerry

    Organic electro-optic (OEO) materials integrated into silicon-organic hybrid (SOH) devices afford significant improvements in size, weight, power, and bandwidth (SWAP) performance of integrated electronic/photonic systems critical for current and next generation telecommunication, computer, sensor, transportation, and defense technologies. Improvement in molecular first hyperpolarizability, and in turn electro-optic activity, is crucial to further improvement in the performance of SOH devices. The timely preparation of new chromophores with improved molecular first hyperpolarizability requires theoretical guidance; however, common density functional theory (DFT) methods often perform poorly for optical properties in systems with substantial intramolecular charge transfer character. The first part of this dissertation describes the careful evaluation of popular long-range correction (LC) and range-separated hybrid (RSH) density functional theory (DFT) for definition of structure/function relationships crucial for the optimization of molecular first hyperpolarizability, beta. In particular, a benchmark set of well-characterized OEO chromophores is used to compare calculated results with the corresponding experimentally measured linear and nonlinear optical properties; respectively, the wavelength of the peak one-photon absorption energy, lambdamax, and beta. A goal of this work is to systematically determine the amount of exact exchange in LC/RSH-DFT methods required for accurately computing these properties for a variety OEO chromophores. High-level electron correlation (post-Hartree-Fock) methods are also investigated and compared with DFT. Included are results for the computation of beta using second-order Moller-Plesset perturbation theory (MP2) and the double-hybrid method, B2PLYP. The second part of this work transitions from single-molecule studies to computing bulk electronic and nonlinear optical properties of molecular crystals and isotropic ensembles of a

  18. Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties.

    Science.gov (United States)

    McNeill, Kristopher; Canonica, Silvio

    2016-11-09

    Excited triplet states of chromophoric dissolved organic matter ((3)CDOM*) play a major role among the reactive intermediates produced upon absorption of sunlight by surface waters. After more than two decades of research on the aquatic photochemistry of (3)CDOM*, the need for improving the knowledge about the photophysical and photochemical properties of these elusive reactive species remains considerable. This critical review examines the efforts to date to characterize (3)CDOM*. Information on (3)CDOM* relies mainly on the use of probe compounds because of the difficulties associated with directly observing (3)CDOM* using transient spectroscopic methods. Singlet molecular oxygen ((1)O2), which is a product of the reaction between (3)CDOM* and dissolved oxygen, is probably the simplest indicator that can be used to estimate steady-state concentrations of (3)CDOM*. There are two major modes of reaction of (3)CDOM* with substrates, namely triplet energy transfer or oxidation (via electron transfer, proton-coupled electron transfer or related mechanisms). Organic molecules, including several environmental contaminants, that are susceptible to degradation by these two different reaction modes are reviewed. It is proposed that through the use of appropriate sets of probe compounds and model photosensitizers an improved estimation of the distribution of triplet energies and one-electron reduction potentials of (3)CDOM* can be achieved.

  19. Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield, Venezuela

    Science.gov (United States)

    Yamashita, Youhei; Maie, Nagamitsu; BriceñO, Henry; Jaffé, Rudolf

    2010-03-01

    Tropical rivers are an important source of dissolved organic matter (DOM) to coastal oceans. However, temporal and spatial variability of DOM composition and thus its quality in such rivers, on landscape and basin scales, have not been well documented. In this study, we present data on the spatial distribution of DOM quantity and quality based on source, molecular weight, and composition using optical properties including excitation emission matrix fluorescence with parallel factor analysis. We compared such DOM quantity and quality determinations in main river channels and their tributaries for three river systems of the Guayana Shield, Venezuela. Spatial variabilities of DOM parameters were strongly related to differences in the geological settings of the drainage basins and presumably their associated vegetation cover. Linear relationships between quantitative and qualitative DOM parameters were also evident, suggesting that high DOC concentration correlated with chromophoric dissolved organic matter (CDOM) characteristics of higher molecular weight associated with terrestrial sources, while low DOC concentrations correlated with CDOM characteristics of lower molecular weight associated primarily with microbial sources. Such relationships seem to imply that DOM concentrations and their sources/characteristics may be coupled in the studied fluvial systems. In addition, shifts in DOM compositions between terrestrial and microbial signals were observed with changes in water discharge and in watersheds disturbed by gold mining activities. The observed linkages between, and the changes among DOM quantity and quality, suggest that the biogeochemistry of DOM in tropical rivers may be quite sensitive to climatic and land use change.

  20. Do soils loose phosphorus with dissolved organic matter?

    Science.gov (United States)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  1. Production of fluorescent dissolved organic matter in Arctic Ocean sediments

    Science.gov (United States)

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-12-01

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p  0.95, p oceans.

  2. Dissolved organic carbon and dissolved organic nitrogen data collected using bottle in a world wide distribution from 02 September 1998 to 02 November 2003 (NODC Accession 0002403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) data were collected using bottle casts in a world wide distribution. Data were collected from 02...

  3. Photochemical and microbial transformation of terrestrial dissolved organic matter - Lena River vs. rivers in mid and low latitudes

    Science.gov (United States)

    Vähätalo, A. V.; Aarnos, H.; Paolucci, E. M.; Musibono, D. E.; Khan, S. R.; Gelinas, Y.; Shantz, A.; Huang, Q.; Schneider, W.; Rezende, C. E.; Petrescu, E.; Reader, H. E.

    2012-04-01

    The aim of this study was to assess the fate of riverine dissolved organic matter (DOM) in coastal ocean. In that environment after the sedimentation of terrestrial particulate matter and the advective mixing of river water to optically clear marine water, the photochemical transformation of riverine DOM has a large potential for decomposing riverine DOM. For this study, we collected water samples from ten large rivers and carried out laboratory experiments with the river water samples. The potential for the photochemical decomposition of riverine dissolved organic matter was assessed by exposing sterile-filtered river waters to simulated solar radiation. Dark control samples we treated similarly but were not irradiated. The exposures were designed to decompose photochemically chromophoric dissolved organic matter, the major absorber of UV-vis radiation and the primary initiator of the direct photoreactions of DOM. In the end of irradiation, the difference in the concentration of dissolved organic carbon between the irradiated and the dark control sample corresponded to that portion of dissolved organic carbon (DOC) decomposable through direct photoreactions to carbon dioxide. In order to assess the amount of DOC phototransformed into biologically available forms, the irradiated and the dark control water samples received indigenous inoculums of riverine microbes and were incubated in the darkness. After a month, the difference in the concentration of DOC between the irradiated and dark control sample was considered to represent the photoreactive portion of DOC, while the residual DOC made up the DOC resistant to photochemical reactions. The photoreactive portion of DOC varied among rivers and was related to the amount of chromophoric dissolved organic matter in the water samples. The biological decomposition experiments were extended to last up to one year and predictions about the biodegradability of irradiated and dark control DOM were made by fitting a

  4. Novel hybrid organic-inorganic sol-gel materials based on highly efficient heterocyclic push-pull chromophores

    Science.gov (United States)

    Abbotto, Alessandro; Bozio, Renato; Brusatin, Giovanna; Facchetti, Antonio; Guglielmi, Massimo; Innocenzi, Plinio; Meneghetti, Moreno; Pagani, Giorgio A.; Signorini, Raffaella

    1999-10-01

    We report the synthesis of sol-gel materials based on highly efficient heterocycle-based push-pull chromophores showing second- and third-order nonlinear optical activity. We show the proper functionalization of the best performing chromophores and their incorporation into a hybrid organic- inorganic sol-gel matrix. Different types of functionalization of the active molecule have been considered, including hydroxyl and alkoxysilyl end-groups. The functionalization strategy responded to different criteria such as stability and synthetic availability of the final molecular precursors, their solubility, and the used synthetic approach to the sol-gel material. The synthesis of the sol-gel materials has been tuned in order to preserve molecular properties and control important factors such as final concentration of the active dye in the matrix. Both acid- and base-catalyzed sol-gel synthesis has been taken into account. 3-Glycidoxypropyltrimethoxysilane and 3- aminopropyltriethoxysilane have been used as the organically modified alkoxides to prepare the hybrid organic-inorganic matrix. Characterization of the spectroscopic properties of the sol-gel materials is presented.

  5. Potential uptake of dissolved organic matter by seagrasses and macroalgae

    NARCIS (Netherlands)

    Van Engeland, T.; Bouma, T.J.; Morris, E.P.; Brun Murillo, F.G.; Peralta, G.; Lara, M.; Hendriks, I.E.; Soetaert, K.E.R.; Middelburg, J.J.

    2011-01-01

    Dissolved organic nitrogen (DON) acts as a large reservoir of fixed nitrogen. Whereas DON utilization is common in the microbial community, little is known about utilization by macrophytes. We investigated the ability of the coexisting temperate marine macrophytes Zostera noltii, Cymodocea nodosa, a

  6. Inner filter correction of dissolved organic matter fluorescence

    DEFF Research Database (Denmark)

    Kothawala, D.N.,; Murphy, K.R.; Stedmon, Colin

    2013-01-01

    The fluorescence of dissolved organic matter (DOM) is suppressed by a phenomenon of self-quenching known as the inner filter effect (IFE). Despite widespread use of fluorescence to characterize DOM in surface waters, the advantages and constraints of IFE correction are poorly defined. We assessed...

  7. Latitudinal gradients in degradation of marine dissolved organic carbon

    DEFF Research Database (Denmark)

    Arnosti, Carol; Steen, Andrew; Ziervogel, Kai

    2011-01-01

    Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely...... molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing......, such a change could profoundly affect the global carbon cycle....

  8. Chemical composition of dissolved organic nitrogen in the ocean

    Science.gov (United States)

    McCarthy, Matthew; Pratum, Tom; Hedges, John; Benner, Ronald

    1997-11-01

    Fixed nitrogen is one of the main limiting nutrients for primary production in the ocean, where it is biologically available in the form of dissolved inorganic and organic matter. Inorganic nitrogen concentrations are consequently very low in surface waters of temperate ocean gyres, yet fixed nitrogen persists in the form of dissolved organic matter. The small, rapidly cycling organic compounds fundamental to microbial and planktonic growth (such as free amino acids, amines and urea) account for only a minor fraction of total dissolved organic nitrogen (DON). In contrast, the vast majority of DON, especially in the deep ocean, resides in the form of nitrogenous substances that are resistant to biological degradation. These substances, which represent an enormous reservoir of fixed nitrogen, are not readily identified by conventional biochemical techniques, but have been assumed to consist largely of structurally complex macromolecules resulting from the degradation and spontaneous abiotic condensation of biochemical precursors. Here we present 15N NMR measurements that contradict this view. Our results show that most higher-molecular-weight DON in the ocean exists in amide form, rather than as a collection of nitrogen heterocycles that might be indicative of spontaneous condensation products. Because these amides are unlikely to form abiotically, the bulk of the ocean's DON reservoir appears to derive directly from degradation-resistant biomolecules.

  9. Global effects of agriculture on fluvial dissolved organic matter

    DEFF Research Database (Denmark)

    Graeber, Daniel; Boëchat, Iola; Encina, Francisco

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter...... (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial...... DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM...

  10. Will enhanced turbulence in inland waters result in elevated production of autochthonous dissolved organic matter?

    Science.gov (United States)

    Zhou, Yongqiang; Zhou, Jian; Jeppesen, Erik; Zhang, Yunlin; Qin, Boqiang; Shi, Kun; Tang, Xiangming; Han, Xiaoxia

    2016-02-01

    Biological activity in lakes is strongly influenced by hydrodynamic conditions, not least turbulence intensity; which increases the encounter rate between plankter and nutrient patches. To investigate whether enhanced turbulence in shallow and eutrophic lakes may result in elevated biological production of autochthonous chromophoric dissolved organic matter (CDOM), a combination of field campaigns and mesocosm experiments was used. Parallel factor analysis identified seven components: four protein-like, one microbial humic-like and two terrestrial humic-like components. During our field campaigns, elevated production of autochthonous CDOM was recorded in open water with higher wind speed and wave height than in inner bays, implying that elevated turbulence resulted in increased production of autochthonous CDOM. Confirming the field campaign results, in the mesocosm experiment enhanced turbulence resulted in a remarkably higher microbial humic-like C1 and tryptophan-like C3 (pproduction of autochthonous CDOM. This is consistent with the significantly higher mean concentrations of chlorophyll-a (Chl-a) and dissolved organic carbon (DOC) and the enhanced phytoplanktonic alkaline phosphatase activity (PAPA) recorded in the experimental turbulence groups than in the control group (p<0.05). The C:N ratio (from 3.34 to 25.72 with a mean of 13.13±4.08) for the mesocosm CDOM samples further suggested their probable autochthonous origin. Our results have implications for the understanding of CDOM cycling in shallow aquatic ecosystems influenced by wind-induced waves, in which the enhanced turbulence associated with extreme weather conditions may be further stimulated by the predicted global climate change.

  11. Biologically labile photoproducts from riverine non-labile dissolved organic carbon in the coastal waters

    Directory of Open Access Journals (Sweden)

    V. Kasurinen

    2015-06-01

    Full Text Available In order to assess the production of biologically labile photoproducts (BLPs from non-labile riverine dissolved organic carbon (DOC, we collected water samples from ten major rivers, removed labile DOC and mixed the residual non-labile DOC with artificial seawater for microbial and photochemical experiments. Bacteria grew on non-labile DOC with a growth efficiency of 11.5% (mean; range from 3.6 to 15.3%. Simulated solar radiation transformed a part of non-labile DOC into BLPs, which stimulated bacterial respiration and production, but did not change bacterial growth efficiency (BGE compared to the non-irradiated dark controls. In the irradiated water samples, the amount of BLPs stimulating bacterial production depended on the photochemical bleaching of chromophoric dissolved organic matter (CDOM. The apparent quantum yields for BLPs supporting bacterial production ranged from 9.5 to 76 (mean 39 (μmol C mol photons−1 at 330 nm. The corresponding values for BLPs supporting bacterial respiration ranged from 57 to 1204 (mean 320 (μmol C mol photons−1. According to the calculations based on spectral apparent quantum yields and local solar radiation, the annual production of BLPs ranged from 21 (St. Lawrence to 584 (Yangtze mmol C m−2 yr−1 in the plumes of the examined rivers. Complete photobleaching of riverine CDOM in the coastal ocean was estimated to produce 10.7 Mt C BLPs yr−1 from the rivers examined in this study and globally 38 Mt yr−1 (15% of riverine DOC flux from all rivers, which support 4.1 Mt yr−1 of bacterial production and 33.9 Mt yr−1 bacterial respiration.

  12. Carbohydrates in size fractionated dissolved organic matter in a station of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, L.; DeSouza, F.; Bhosle, N.B.

    of the dissolved organic matter (DOM) were collected using Amicon stirred Ultrafiltration Cell, and analysed for dissolved organic carbon (UDOC), total carbohydrates (UTCHO) and neutral sugars (UNS). UDOC concentrations were relatively higher in HMW fraction...

  13. Spectroscopic characterization of dissolved organic matter isolated from rainwater.

    Science.gov (United States)

    Santos, Patrícia S M; Otero, Marta; Duarte, Regina M B O; Duarte, Armando C

    2009-02-01

    Rainwater is a matrix containing extremely low concentrations (in the range of muM C) of dissolved organic carbon (DOC) and for its characterization, an efficient extraction procedure is essential. A recently developed procedure based on adsorption onto XAD-8 and XAD-4 resins in series was used in this work for the extraction and isolation of rainwater dissolved organic matter (DOM). Prior to the isolation and fractionation of DOM, and to obtain sufficient mass for the spectroscopic analyses, individual rainwater samples were batched together according to similar meteorological conditions on a total of three composed samples. The results of the isolation procedure indicated that the resin tandem procedure is not applicable for rainwater DOM since the XAD-4 resin caused samples contamination. On the other hand, the XAD-8 resin allowed DOM recoveries of 39.9-50.5% of the DOC of the original combined samples. This recovered organic fraction was characterized by UV-visible, molecular fluorescence, FTIR-ATR and 1H NMR spectroscopies. The chemical characterization of the rainwater DOM showed that the three samples consist mostly of hydroxylated and carboxylic acids with a predominantly aliphatic character, containing a minor component of aromatic structures. The obtained results suggest that the DOM in rainwater, and consequently in the precursor atmospheric particles, may have a secondary origin via the oxidation of volatile organic compounds from different origins.

  14. Dissolved organic matter fluorescence at wavelength 275/342 nm as a key indicator for detection of point-source contamination in a large Chinese drinking water lake.

    Science.gov (United States)

    Zhou, Yongqiang; Jeppesen, Erik; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Zhu, Guangwei

    2016-02-01

    Surface drinking water sources have been threatened globally and there have been few attempts to detect point-source contamination in these waters using chromophoric dissolved organic matter (CDOM) fluorescence. To determine the optimal wavelength derived from CDOM fluorescence as an indicator of point-source contamination in drinking waters, a combination of field campaigns in Lake Qiandao and a laboratory wastewater addition experiment was used. Parallel factor (PARAFAC) analysis identified six components, including three humic-like, two tryptophan-like, and one tyrosine-like component. All metrics showed strong correlation with wastewater addition (r(2) > 0.90, p water quality in surface drinking water sources.

  15. Radiocatalytic degradation of dissolved organic compounds in wastewater

    Directory of Open Access Journals (Sweden)

    Jiménez-Becerril Jaime

    2016-12-01

    Full Text Available Wastewater containing a high concentration of organic substances was exposed to gamma radiolysis in the presence and absence of a catalyst (TiO2; radiolysis and radiocatalysis were performed by means of continuous and discontinuous irradiation. Dissolved organic carbon (DOC was the parameter used to estimate the concentration of organic compounds without interference by the high mineral content. The data was well fitted to the pseudo-first-order kinetic model of Langmuir-Hinshelwood. From a [DOC]0 = 140 ± 7 mg/L, the higher DOC degradation (74% and apparent rate constant (Kapp = 0.083 h-1 were found using discontinuous radiocatalysis. This process could be an alternative method of treatment of industrial or municipal wastewater

  16. Bioavailability of autochthonous dissolved organic nitrogen in marine plankton communities

    DEFF Research Database (Denmark)

    Knudsen, Helle; Markager, Svend Stiig; Søndergaard, Morten

    The purpose of this study was to investigate the bioavailability of dissolved organic nitrogen (DON) produced during a phytoplankton bloom. The experiments were conducted with natural plankton communities as batch growth experiments over approximately 30 days with nitrogen limitation. Five to six...... times during the exponential and stationary phases of each experimental bloom the bioavailability of DON was measured over 60 days together with DOC and oxygen consumption. The overall aim was to quantify remineralization of the added nitrate. The results showed that maximum 33 % of the added nitrate...

  17. Global effects of agriculture on fluvial dissolved organic matter

    DEFF Research Database (Denmark)

    Graeber, Daniel; Boëchat, Iola; Encina, Francisco;

    2015-01-01

    (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial...... the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.......Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter...

  18. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Directory of Open Access Journals (Sweden)

    Aron eStubbins

    2015-10-01

    Full Text Available Wildfires have produced black carbon (BC since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC. The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon were analyzed for dissolved organic carbon (DOC, colored dissolved organic matter (CDOM, and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254. Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  19. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Science.gov (United States)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  20. Ocean metabolism and dissolved organic matter: How do small dissolved molecules persist in the ocean?

    Science.gov (United States)

    Benner, Ronald

    2010-05-01

    The ocean reservoir of dissolved organic matter (DOM) is among the largest global reservoirs (~700 Pg C) of reactive organic carbon. Marine primary production (~50 Pg C/yr) by photosynthetic microalgae and cyanobacteria is the major source of organic matter to the ocean and the principal substrate supporting marine food webs. The direct release of DOM from phytoplankton and other organisms as well as a variety of other processes, such as predation and viral lysis, contribute to the ocean DOM reservoir. Continental runoff and atmospheric deposition are relatively minor sources of DOM to the ocean, but some components of this material appear to be resistant to decomposition and to have a long residence time in the ocean. Concentrations of DOM are highest in surface waters and decrease with depth, a pattern that reflects the sources and diagenesis of DOM in the upper ocean. Most (70-80%) marine DOM exists as small molecules of low molecular weight (1 kDalton) DOM is relatively enriched in major biochemicals, such as combined neutral sugars and amino acids, and is more bioavailable than low-molecular-weight DOM. The observed relationships among the size, composition, and reactivity of DOM have led to the size-reactivity continuum model, which postulates that diagenetic processes lead to the production of smaller molecules that are structurally altered and resistant to microbial degradation. The radiocarbon content of these small dissolved molecules also indicates these are the most highly aged components of DOM. Chemical signatures of bacteria are abundant in DOM and increase during diagenesis, indicating bacteria are an important source of slowly cycling biochemicals. Recent analyses of DOM isolates by ultrahigh-resolution mass spectrometry have revealed an incredibly diverse mixture of molecules. Carboxyl-rich alicyclic molecules are abundant in DOM, and they appear to be derived from diagenetically-altered terpenoids, such as sterols and hopanoids. Thermally

  1. The composition and degradability of upland dissolved organic matter

    Science.gov (United States)

    Moody, Catherine; Worrall, Fred; Clay, Gareth

    2016-04-01

    In order to assess controls on the degradability of DOM in stream water, samples of dissolved organic matter (DOM) and particulate organic matter (POM) were collected every month for a period of 24 months from an upland, peat-covered catchment in northern England. Each month the degradability of the DOM was assessed by exposing river water to light for up to 24 hours, and the change in the dissolved organic carbon (DOC) concentration in the water was measured. To provide context for the analysis of DOM and its degradability, samples of peat, vegetation, and litter were also taken from the same catchment and analysed. The organic matter samples were analysed by several methods including: elemental analysis (CHN and O), bomb calorimetry, thermogravimetric analysis, pyrolysis GC/MS, ICP-OES, stable isotope analysis (13C and 15N) and 13C solid state nuclear magnetic resonance (NMR). The water samples were analysed for pH, conductivity, absorbance at 400nm, anions, cations, particulate organic carbon (POC) and DOC concentrations. River flow conditions and meteorology were also recorded at the site and included in the analysis of the composition and degradability of DOM. The results of multiple regression models showed that the rates of DOC degradation were affected by the N-alkyl, O-alkyl, aldehyde and aromatic relative intensities, gross heat, OR and C:N. Of these, the N-alkyl relative intensity had the greatest influence, and this in turn was found to be dependent on the rainfall and soil temperature in the week before sampling.

  2. Global effects of agriculture on fluvial dissolved organic matter.

    Science.gov (United States)

    Graeber, Daniel; Boëchat, Iola G; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T; Silva, Ricky C S; von Schiller, Daniel; Zwirnmann, Elke

    2015-11-06

    Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

  3. Nature and transformation of dissolved organic matter in treatment wetlands

    Science.gov (United States)

    Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.

    2001-01-01

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  4. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, Jesus

    2015-03-19

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  5. PbBr-Based Layered Perovskite Organic-Inorganic Superlattice Having Carbazole Chromophore; Hole-Mobility and Quantum Mechanical Calculation.

    Science.gov (United States)

    Era, Masanao; Yasuda, Takeshi; Mori, Kento; Tomotsu, Norio; Kawano, Naoki; Koshimizu, Masanori; Asai, Keisuke

    2016-04-01

    We have successfully evaluated hole mobility in a spin-coated film of a lead-bromide based layered perovskite having carbazole chromophore-linked ammonium molecules as organic layer by using FET measurement. The values of hole mobility, threshold voltage and on/off ratio at room temperature were evaluated.to.be 1.7 x 10(-6) cm2 V-1 s-1, 27 V and 28 V, respectively. However, the spin-coated films on Si substrates were not so uniform compared with those on fused quartz substrates. To improve the film uniformity, we examined the relationship between substrate temperature during spin-coating and film morphology in the layered perovskite spin-coated films. The mean roughness of the spin-coated films on Si substrates was dependent on the substrate temperature. At 353 K, the mean roughness was minimized and the carrier mobility was enhanced by one order of magnitude; the values of hole mobility and threshold voltage were .estimated to be 3.4 x 10(-5) cm2 V-1 s-1, and 22 V at room temperature in a preliminary FET evaluation, respectively. In addition, we determined a crystal structure of the layered perovskite by X-ray diffraction analysis. To gain a better understanding of the observed hole transports, we conducted quantum mechanical calculations using the obtained crystal structure information. The calculated band structure of the layered organic perovskite showed that the valence band is composed of the organic carbazole layer, which confirms that.the measured hole mobility is mainly derived from the organic part of the layered perovskite. Band and hopping transport mechanisms were discussed by calculating the effective masses and transfer integrals for the 2D periodic system of the organic layer in isolation.

  6. Latitudinal gradients in degradation of marine dissolved organic carbon.

    Directory of Open Access Journals (Sweden)

    Carol Arnosti

    Full Text Available Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC. The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars. Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO(2 reservoir, such a change could profoundly affect the global carbon cycle.

  7. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements

    Directory of Open Access Journals (Sweden)

    Paul James Mann

    2016-03-01

    Full Text Available Climate change is causing extensive warming across arctic regions resulting in permafrost degradation, alterations to regional hydrology, and shifting amounts and composition of dissolved organic matter (DOM transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM spectral slope (S275-295 tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of ‘terrestrial humic-like’ versus ‘marine humic-like’ fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350 proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93. Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years. Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the

  8. Photo-production of dissolved inorganic carbon from dissolved organic matter in contrasting coastal waters in the southwestern Taiwan Strait, China

    Institute of Scientific and Technical Information of China (English)

    Weidong Guo; Liyang Yang; Xiangxiang Yu; Weidong Zhai; Huasheng Hong

    2012-01-01

    Photo-production of dissolved inorganic carbon (DIC) from chromophoric dissolved organic matter (CDOM) is an important transformation process in marine carbon cycle,but little is known about this process in Chinese coastal systems.This study investigated an estuarine water sample and a coastal seawater sample from the subtropical waters in southeast of China.Water samples were exposed to natural sunlight and the absorption and fluorescence of CDOM as well as the DIC concentration were measured in the summer of 2009.The estuarine water had higher CDOM level,molecular weight and proportion of humic-like fluorescent components than the seawater that exhibited abundant tryptophan-like fluorescent component.After a 3-day irradiation,the CDOM level decreased by 45% in the estuarine water and 20% in the seawater,accompanied with a decrease in the molecular weight and aromaticity of DOM which was inferred from an incrcase in the absorption spectral slope parameter.The photo-degradation rates of all the five fluorescent components were also notable,in particular two humic-like components (C4 and C5) were removed by 78% and 69% in the estuarine water and by 69% and 56% in the seawater.The estuarine water had a higher photo-production rate of DIC than the seawater (4.4vs.2.5 tmol/(L.day)),in part due to its higher CDOM abundance.The differences in CDOM compositions between the two types of waters might be responsible for the higher susceptibility of the estuarine water to photo-degradation and hence could also affect the photo-production process of DIC.

  9. Photo-production of dissolved inorganic carbon from dissolved organic matter in contrasting coastal waters in the southwestern Taiwan Strait, China.

    Science.gov (United States)

    Guo, Weidong; Yang, Liyang; Yu, Xiangxiang; Zhai, Weidong; Hong, Huasheng

    2012-01-01

    Photo-production of dissolved inorganic carbon (DIC) from chromophoric dissolved organic matter (CDOM) is an important transformation process in marine carbon cycle, but little is known about this process in Chinese coastal systems. This study investigated an estuarine water sample and a coastal seawater sample from the subtropical waters in southeast of China. Water samples were exposed to natural sunlight and the absorption and fluorescence of CDOM as well as the DIC concentration were measured in the summer of 2009. The estuarine water had higher CDOM level, molecular weight and proportion of humic-like fluorescent components than the seawater that exhibited abundant tryptophan-like fluorescent component. After a 3-day irradiation, the CDOM level decreased by 45% in the estuarine water and 20% in the seawater, accompanied with a decrease in the molecular weight and aromaticity of DOM which was inferred from an increase in the absorption spectral slope parameter. The photo-degradation rates of all the five fluorescent components were also notable, in particular two humic-like components (C4 and C5) were removed by 78% and 69% in the estuarine water and by 69% and 56% in the seawater. The estuarine water had a higher photo-production rate of DIC than the seawater (4.4 vs. 2.5 micromol/(L x day)), in part due to its higher CDOM abundance. The differences in CDOM compositions between the two types of waters might be responsible for the higher susceptibility of the estuarine water to photo-degradation and hence could also affect the photo-production process of DIC.

  10. Priming the Dissolved Organic Matter Breakdown in Urban Streams

    Science.gov (United States)

    Parr, T.; Cronan, C. S.; Ohno, T.; Simon, K. S.

    2014-12-01

    Land use and land cover change in the Anthropocene have altered the source, composition, and reactivity of dissolved organic matter (DOM) in aquatic ecosystems around the world. In particular, urbanization increases the abundance of bioavailable DOM in streams. This bioavailable DOM may increase the utilization of less bioavailable pools of DOM via the "priming effect." The priming effect is a phenomenon whereby the addition of a small amount of labile DOM can increase or decrease the breakdown rate of less bioavailable DOM - positive and negative priming respectively. Our research tests priming as one potential mechanism altering DOM composition and increasing its bioavailability in urban streams. We measured DOM degradation during 30-day incubations in samples from a small urban stream and two microbial DOM sources mixed with DOM from a small stream dominated by less microbial allochthonous sources. We assessed priming by looking at observed percent biodegradable dissolved organic carbon (BDOC) vs. endmember predicted BDOC. We also investigated the molecular dynamics of priming using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). Using bulk DOC concentration we found evidence that adding small amounts of DOM from an urban stream could increase BDOC by a factor of two to three. At the molecular level, FT-ICR/MS showed that addition of labile DOM may increase the bioavailability of a variety of compound classes including proteins, lipids, and "black carbon." Furthermore, we observed that what is frequently reported as positive or negative priming may be more accurately understood as the net balance of simultaneous positive and negative priming operating on different DOM pools. Our results highlight an important global mechanism by which human activities may alter the composition and reactivity of DOM in fresh waters. Priming the degradation of allochthonous DOM with autochthonous or novel anthropogenic DOM may alter the organic energy

  11. Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.

    Science.gov (United States)

    Simsek, Halis

    2016-11-01

    Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON.

  12. Combining asymmetrical flow field-flow fractionation with on- and off-line fluorescence detection to examine biodegradation of riverine dissolved and particulate organic matter.

    Science.gov (United States)

    Lee, Sang Tak; Yang, Boram; Kim, Jin-Yong; Park, Ji-Hyung; Moon, Myeong Hee

    2015-08-28

    This study demonstrated that asymmetrical flow field-flow fractionation (AF4) coupled with on-line UV and fluorescence detection (FLD) and off-line excitation-emission matrix (EEM) fluorescence spectroscopy can be employed to analyze the influence of microbial metabolic activity on the consumption and production of freshwater organic matter. With the AF4 system, organic matter is on-line enriched during a focusing/relaxation period, which is an essential process prior to separation. Size-fractionated chromophoric and fluorophoric organic materials were simultaneously monitored during the 30-min AF4 separation process. Two fractions of different sizes (dissolved organic matter (DOM) and particulate organic matter (POM)) of freshwater samples from three locations (up-, mid-, and downstream) along the Han River basin of Korea were incubated with the same inoculum for 14 days to analyze fraction-specific alterations in optical properties using AF4-UV-FLD. A comparison of AF4 fractograms obtained from pre- and post-incubation samples revealed that POM-derived DOM were more susceptible to microbial metabolic activity than was DOM. Preferential microbial consumption of protein-like DOM components concurred with enhanced peaks of chromophoric and humic-like fluorescent components, presumably formed as by-products of microbial processing. AF4-UV-FLD combined with off-line identification of microbially processed components using EEM fluorescence spectroscopy provides a powerful tool to study the relationship between microbial activity and composition as well as biodegradability of DOM and POM-derived DOM from different origins, especially for the analysis of chromophoric and fluorophoric organic matter that are consumed and produced by microbial metabolic activity. The proposed AF4 system can be applied to organic matter in freshwater samples having low concentration range (0.3-2.5ppm of total organic carbon) without a pre-concentration procedure.

  13. Climate Variability, Dissolved Organic Carbon, UV Exposure, and Amphibian Decline

    Science.gov (United States)

    Brooks, P. D.; O'Reilly, C. M.; Diamond, S.; Corn, S.; Muths, E.; Tonnessen, K.; Campbell, D. H.

    2001-12-01

    Increasing levels of UV radiation represent a potential threat to aquatic organisms in a wide range of environments, yet controls on in situ variability on UV exposure are relatively unknown. The primary control on the penetration of UV radiation in surface water environments is the amount of photoreactive dissolved organic carbon (DOC). Consequently, biogeochemical processes that control the cycling of DOC also affect the exposure of aquatic organisms to UV radiation. Three years of monitoring UV extinction and DOC composition in Rocky Mountain, Glacier, Sequoia/ Kings Canyon, and Olympic National Parks demonstrate that the amount of fulvic acid DOC is much more important than the total DOC pool in controlling UV attenuation. This photoreactive component of DOC originates primarily in soil, and is subject both to biogeochemical controls (e.g. temperature, moisture, vegetation, soil type) on production, and hydrologic controls on transport to surface water and consequently UV exposure to aquatic organisms. Both of these controls are positively related to precipitation with greater production and transport associated with higher precipitation amounts. For example, an approximately 20 percent reduction in precipitation from 1999 to 2000 resulted in a 27% - 59% reduction in the amount of photoreactive DOC at three sites in Rocky Mountain National Park. These differences in the amount of hydrophobic DOC result in an increase in UV exposure in the aquatic environment by a factor of 2 or more. Implications of these findings for observed patterns of amphibian decline will be discussed.

  14. Adsorption of Compounds that Mimic Urban Stormwater Dissolved Organic Nitrogen.

    Science.gov (United States)

    Mohtadi, Mehrdad; James, Bruce R; Davis, Allen P

    2017-02-01

      Stormwater runoff carrying nitrogen can accelerate eutrophication. Bioretention facilities are among low impact development systems which are commonly used to manage urban stormwater quality and quantity. They are, however, not designed to remove dissolved organic nitrogen (DON) and may become a net DON exporter. Adsorption of seven organic nitrogenous compounds onto several adsorbents was examined. Batch adsorption study revealed that coal activated carbon (AC) exhibited the best performance in adsorption of the selected organic nitrogenous compounds. The highest adsorption capacity of coal AC was 0.4 mg N/g for pyrrole at an equilibrium concentration of 0.02 mg N/L, while adsorption was not detectable for urea at the same equilibrium concentration. The fastest compound to reach equilibrium adsorption capacity onto the coal AC was pyrrole (1 hour). The adsorption capacity of the coal AC for pyrrole and N-acetyl-d-glucosamine and 1-hour contact time is recommended for designing bioretention systems targeting organic nitrogenous compounds.

  15. Novel D-π-A-π-D type organic chromophores for second harmonic generation and multi-photon absorption applications

    Science.gov (United States)

    Aditya, Pusala; Kumar, Hari; Kumar, Sunil; Rajashekar, Muralikrishna, M.; Muthukumar, V. Sai; Kumar, B. Siva; Sai, S. Siva Sankara; Rao, G. Nageshwar

    2013-06-01

    We report here the optical and non-linear optical properties of six different novel bis-chalcones of D-π-A-π-D derivatives of diarylideneacetone (DBA). These derivatives have been synthesized by Claisen-Schmidt condensation reaction and were well characterized by using FTIR, 1HNMR, 13CNMR, UV-Visible absorption and mass spectroscopic techniques. The optical bandgap for each of the DBA derivatives were determined both experimentally (UV-Visible spectra & Tauc Plot) and theoretically by ab intio DFT calculations using SIESTA software package. They were found to be in close agreement with each other. The Second Harmonic Generation from these organic chromophores were studied by standard Kurtz and Perry Powder SHG method at 1064 nm. They were found to have superior SHG conversion efficiency when compared to urea (standard sample). Further, we investigated the Multi-Photon absorption properties were using conventional open aperture z-scan technique. These DBA derivatives exhibited strong two photon absorption in the order of 1e-11m/W. Hence, these are potential candidate for various photonic applications like optical power limiting, photonic switching and frequency conversion.

  16. Dissolved organic carbon (DOC in Arctic ground ice

    Directory of Open Access Journals (Sweden)

    M. Fritz

    2015-01-01

    Full Text Available Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC and nutrients which have been accumulated in late Pleistocene and Holocene unconsolidated deposits. Their vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change is largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC, dissolved inorganic carbon (DIC and other elements, which are important for ecosystems and carbon cycling. Here we show, using geochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage with a maximum of 28.6 mg L−1 (mean: 9.6 mg L−1. Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly stored in ground ice, especially in ice wedges, even before further degradation. In the Yedoma region ice wedges represent a significant DOC (45.2 Tg and DIC (33.6 Tg pool in permafrost areas and a fresh-water reservoir of 4172 km3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.

  17. Molecular signatures of biogeochemical transformations in dissolved organic matter from ten World Rivers

    Directory of Open Access Journals (Sweden)

    Thomas Riedel

    2016-09-01

    Full Text Available Rivers carry large amounts of dissolved organic matter (DOM to the oceans thereby connecting terrestrial and marine element cycles. Photo-degradation in conjunction with microbial turnover is considered a major pathway by which terrigenous DOM is decomposed. To reveal globally relevant patterns behind this process, we performed photo-degradation experiments and year-long bio-assays on DOM from ten of the largest world rivers that collectively account for more than one-third of the fresh water discharge to the global ocean. We furthermore tested the hypothesis that the terrigenous component in deep ocean DOM may be far higher than biomarker studies suggest, because of the selective photochemical destruction of characteristic biomolecules from vascular plants. DOM was molecularly characterized by a combination of non-targeted ultrahigh-resolution mass spectrometry and quantitative molecular tracer analyses. We show that the reactivity of DOM is globally related to broad catchment properties. Basins that are dominated by forest and grassland export more photo-degradable DOM than other rivers. Chromophoric compounds are mainly vascular plant-derived polyphenols, and partially carry a pyrogenic signature from vegetation fires. These forest and grassland dominated rivers lost up to 50% of dissolved organic carbon (DOC during irradiation, and up to 85% of DOC was lost in total if subsequently bio-incubated for one year. Basins covered by cropland, on the other hand, export DOM with a higher proportion of photo-resistant and bio-available DOM which is enriched in nitrogen. In these rivers, 30% or less of DOC was photodegraded. Consistent with previous studies, we found that riverine DOM resembled marine DOM in its broad molecular composition after extensive degradation, mainly due to almost complete removal of aromatics. More detailed molecular fingerprinting analysis (based on the relative abundance of >4000 DOM molecular formulae, however, revealed

  18. Molecular signatures of biogeochemical transformations in dissolved organic matter from ten World Rivers

    Science.gov (United States)

    Riedel, Thomas; Zark, Maren; Vähätalo, Anssi; Niggemann, Jutta; Spencer, Robert; Hernes, Peter; Dittmar, Thorsten

    2016-09-01

    Rivers carry large amounts of dissolved organic matter (DOM) to the oceans thereby connecting terrestrial and marine element cycles. Photo-degradation in conjunction with microbial turnover is considered a major pathway by which terrigenous DOM is decomposed. To reveal globally relevant patterns behind this process, we performed photo-degradation experiments and year-long bio-assays on DOM from ten of the largest world rivers that collectively account for more than one-third of the fresh water discharge to the global ocean. We furthermore tested the hypothesis that the terrigenous component in deep ocean DOM may be far higher than biomarker studies suggest, because of the selective photochemical destruction of characteristic biomolecules from vascular plants. DOM was molecularly characterized by a combination of non-targeted ultrahigh-resolution mass spectrometry and quantitative molecular tracer analyses. We show that the reactivity of DOM is globally related to broad catchment properties. Basins that are dominated by forest and grassland export more photo-degradable DOM than other rivers. Chromophoric compounds are mainly vascular plant-derived polyphenols, and partially carry a pyrogenic signature from vegetation fires. These forest and grassland dominated rivers lost up to 50% of dissolved organic carbon (DOC) during irradiation, and up to 85% of DOC was lost in total if subsequently bio-incubated for one year. Basins covered by cropland, on the other hand, export DOM with a higher proportion of photo-resistant and bio-available DOM which is enriched in nitrogen. In these rivers, 30% or less of DOC was photodegraded. Consistent with previous studies, we found that riverine DOM resembled marine DOM in its broad molecular composition after extensive degradation, mainly due to almost complete removal of aromatics. More detailed molecular fingerprinting analysis (based on the relative abundance of >4000 DOM molecular formulae), however, revealed clear differences

  19. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production.

    Science.gov (United States)

    Lavonen, E E; Kothawala, D N; Tranvik, L J; Gonsior, M; Schmitt-Kopplin, P; Köhler, S J

    2015-11-15

    Absorbance, 3D fluorescence and ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) were used to explain patterns in the removal of chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) at the molecular level during drinking water production at four large drinking water treatment plants in Sweden. When dissolved organic carbon (DOC) removal was low, shifts in the dissolved organic matter (DOM) composition could not be detected with commonly used DOC-normalized parameters (e.g. specific UV254 absorbance - SUVA), but was clearly observed by using differential absorbance and fluorescence or ESI-FT-ICR-MS. In addition, we took a novel approach by identifying how optical parameters were correlated to the elemental composition of DOM by using rank correlation to connect optical properties to chemical formulas assigned to mass peaks from FT-ICR-MS analyses. Coagulation treatment selectively removed FDOM at longer emission wavelengths (450-600 nm), which significantly correlated with chemical formulas containing oxidized carbon (average carbon oxidation state ≥ 0), low hydrogen to carbon ratios (H/C: average ± SD = 0.83 ± 0.13), and abundant oxygen-containing functional groups (O/C = 0.62 ± 0.10). Slow sand filtration was less efficient in removing DOM, yet selectively targeted FDOM at shorter emission wavelengths (between 300 and 450 nm), which commonly represents algal rather than terrestrial sources. This shorter wavelength FDOM correlated with chemical formulas containing reduced carbon (average carbon oxidation state ≤ 0), with relatively few carbon-carbon double bonds (H/C = 1.32 ± 0.16) and less oxygen per carbon (O/C = 0.43 ± 0.10) than those removed during coagulation. By coupling optical approaches with FT-ICR-MS to characterize DOM, we were for the first time able to confirm the molecular composition of absorbing and fluorescing DOM selectively targeted during drinking

  20. Photomineralization and photomethanification of dissolved organic matter in Saguenay River surface water

    Science.gov (United States)

    Zhang, Y.; Xie, H.

    2015-11-01

    Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a higher degree of mineralization under suboxic conditions than under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr-1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7-8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10-6 mol m-2 yr-1 in the Saguenay River and, by extrapolation, of (1.9-8.1) × 108 mol yr-1 in the global ocean. AQYCH4 changed little with

  1. Association of Dissolved Mercury with Dissolved Organic Carbon in Rivers and Streams: The Role of Watershed Soil Organic Carbon

    Science.gov (United States)

    Stoken, O.; Riscassi, A.; Scanlon, T. M.

    2014-12-01

    Surface waters are an important pathway for the transport of atmospherically deposited mercury (Hg) from terrestrial watersheds. Dissolved Hg (HgD) is thought to be more bioavailable than particulate Hg and has been found to be strongly correlated with dissolved organic carbon (DOC) in numerous watersheds. The ratio of HgD to DOC is highly variable from site to site, which we hypothesize is strongly dependent on local environmental factors such as atmospheric deposition and soil organic carbon (SOC). Sixteen watersheds throughout the United States were used in this study to determine the relationship between the ratio of HgD:DOC, Hg wet deposition, and SOC. The Soil Survey Geographic database (SSURGO) and Northern Circumpolar Soil Carbon Database (NCSCD) were used to determine SOC values while HgD:DOC values were obtained from previous studies. Hg wet deposition was reported by the Mercury Deposition Network. There was no correlation found between atmospheric mercury wet deposition and HgD:DOC (r2 = 0.04; p = 0.44) but SOC was able to explain about 71% of the variation in the HgD:DOC ratio (r2 = 0.71; p Hg adsorbed to SOC does not increase in proportion to SOC at high SOC levels and points towards a Hg supply limitation for adsorption to soils with relatively deep carbon pools. Overall, this study identifies SOC as a first-order control on the association of HgD and DOC and indicates that globally available SOC datasets can be utilized to predict Hg transport in stream systems.

  2. The fate of terrigenous dissolved organic carbon on the Eurasian shelves and export to the North Atlantic

    Science.gov (United States)

    Kaiser, K.; Benner, R.; Amon, R. M. W.

    2017-01-01

    Dissolved lignin phenols, chromophoric dissolved organic matter (CDOM) absorption, and fluorescence were analyzed along cross-slope mooring locations in the Barents, Laptev, and East Siberian Seas to gain a better understanding of terrigenous dissolved organic carbon (tDOC) dynamics in Arctic shelf seas and the Arctic Ocean. A gradient of river water and tDOC was observed along the continental shelf eastward into the East Siberian Sea. Correlations of carbon-normalized yields of lignin-derived phenols supplied by Siberian rivers with river water fractions and known water residence times yielded in situ decay constants of 0.18-0.58 yr-1. Calculations showed ˜50% of annual tDOC discharged by Siberian rivers was mineralized in estuaries and on Eurasian shelves per year indicating extensive removal of tDOC. Bioassay experiments and in situ decay constants indicated a reactivity continuum for tDOC. CDOM parameters and acid/aldehyde ratios of vanillyl (V) and syringyl (S) lignin phenols showed biomineralization was the dominant mechanism for the removal of tDOC. Characteristic ratios of p-hydroxy (P), S, and V phenols (P/V, S/V) also identified shelf regions in the Kara Sea and regions along the Western Laptev Sea shelf where formation of Low Salinity Halocline Waters (LSHW) and Lower Halocline Water (LHW) occurred. The efficient removal of tDOC demonstrates the importance of Eurasian margins as sinks of tDOC derived from the large Siberian Rivers and confirms tDOC mineralization has a major impact on nutrients budgets, air-sea CO2 exchange, and acidification in the Siberian Shelf Seas.

  3. Microbial community structure affects marine dissolved organic matter composition

    Directory of Open Access Journals (Sweden)

    Elizabeth B Kujawinski

    2016-04-01

    Full Text Available Marine microbes are critical players in the global carbon cycle, affecting both the reduction of inorganic carbon and the remineralization of reduced organic compounds back to carbon dioxide. Members of microbial consortia all depend on marine dissolved organic matter (DOM and in turn, affect the molecules present in this heterogeneous pool. Our understanding of DOM produced by marine microbes is biased towards single species laboratory cultures or simplified field incubations, which exclude large phototrophs and protozoan grazers. Here we explore the interdependence of DOM composition and bacterial diversity in two mixed microbial consortia from coastal seawater: a whole water community and a <1.0-μm community dominated by heterotrophic bacteria. Each consortium was incubated with isotopically-labeled glucose for 9 days. Using stable-isotope probing techniques and electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry, we show that the presence of organisms larger than 1.0-μm is the dominant factor affecting bacterial diversity and low-molecular-weight (<1000 Da DOM composition over this experiment. In the <1.0-μm community, DOM composition was dominated by compounds with lipid and peptide character at all time points, confirmed by fragmentation spectra with peptide-containing neutral losses. In contrast, DOM composition in the whole water community was nearly identical to that in the initial coastal seawater. These differences in DOM composition persisted throughout the experiment despite shifts in bacterial diversity, underscoring an unappreciated role for larger microorganisms in constraining DOM composition in the marine environment.

  4. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    Science.gov (United States)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  5. Toward a quantitative and empirical dissolved organic carbon budget for the Gulf of Maine, a semienclosed shelf sea

    Science.gov (United States)

    Balch, William; Huntington, Thomas G.; Aiken, George R.; Drapeau, David; Bowler, Bruce; Lubelczyk, Laura; Butler, Kenna

    2016-01-01

    A time series of organic carbon export from Gulf of Maine (GoM) watersheds was compared to a time series of biological, chemical, bio-optical, and hydrographic properties, measured across the GoM between Yarmouth, NS, Canada, and Portland, ME, U.S. Optical proxies were used to quantify the dissolved organic carbon (DOC) and particulate organic carbon in the GoM. The Load Estimator regression model applied to river discharge data demonstrated that riverine DOC export (and its decadal variance) has increased over the last 80 years. Several extraordinarily wet years (2006–2010) resulted in a massive pulse of chromophoric dissolved organic matter (CDOM; proxy for DOC) into the western GoM along with unidentified optically scattering material (<0.2 μm diameter). A survey of DOC in the GoM and Scotian Shelf showed the strong influence of the Gulf of Saint Lawrence on the DOC that enters the GoM. A deep plume of CDOM-rich water was observed near the coast of Maine which decreased in concentration eastward. The Forel-Ule color scale was derived and compared to the same measurements made in 1912–1913 by Henry Bigelow. Results show that the GoM has yellowed in the last century, particularly in the region of the extension of the Eastern Maine Coastal Current. Time lags between DOC discharge and its appearance in the GoM increased with distance from the river mouths. Algae were also a significant source of DOC but not CDOM. Gulf-wide algal primary production has decreased. Increases in precipitation and DOC discharge to the GoM are predicted over the next century.

  6. Seasonal Variation in the Quality of Dissolved and Particulate Organic Matter Exchanged Between a Salt Marsh and Its Adjacent Estuary

    Science.gov (United States)

    Osburn, C. L.; Mikan, M.; Etheridge, J. R.; Burchell, M. R.; Birgand, F.

    2015-12-01

    Salt marshes are transitional ecosystems between terrestrial and marine environments. Along with mangroves and other vegetated coastal habitats, salt marshes rank among the most productive ecosystems on Earth, with critical global importance for the planet's carbon cycle. Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October of 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components modeled, we used multiple linear regression to identify tracers for recalcitrant DOM; labile soil-derived source DOM; detrital POM; and planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Using the DOM and POM quality results obtained via fluorescence measurements and scaling up to global salt marsh area, we estimated that the potential release of CO2 from the respiration of salt marsh DOC and POC transported to estuaries could be 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.

  7. Toward a quantitative and empirical dissolved organic carbon budget for the Gulf of Maine, a semienclosed shelf sea

    Science.gov (United States)

    Balch, William; Huntington, Thomas; Aiken, George; Drapeau, David; Bowler, Bruce; Lubelczyk, Laura; Butler, Kenna

    2016-02-01

    A time series of organic carbon export from Gulf of Maine (GoM) watersheds was compared to a time series of biological, chemical, bio-optical, and hydrographic properties, measured across the GoM between Yarmouth, NS, Canada, and Portland, ME, U.S. Optical proxies were used to quantify the dissolved organic carbon (DOC) and particulate organic carbon in the GoM. The Load Estimator regression model applied to river discharge data demonstrated that riverine DOC export (and its decadal variance) has increased over the last 80 years. Several extraordinarily wet years (2006-2010) resulted in a massive pulse of chromophoric dissolved organic matter (CDOM; proxy for DOC) into the western GoM along with unidentified optically scattering material (<0.2 µm diameter). A survey of DOC in the GoM and Scotian Shelf showed the strong influence of the Gulf of Saint Lawrence on the DOC that enters the GoM. A deep plume of CDOM-rich water was observed near the coast of Maine which decreased in concentration eastward. The Forel-Ule color scale was derived and compared to the same measurements made in 1912-1913 by Henry Bigelow. Results show that the GoM has yellowed in the last century, particularly in the region of the extension of the Eastern Maine Coastal Current. Time lags between DOC discharge and its appearance in the GoM increased with distance from the river mouths. Algae were also a significant source of DOC but not CDOM. Gulf-wide algal primary production has decreased. Increases in precipitation and DOC discharge to the GoM are predicted over the next century.

  8. The Oxidant Budget of Dissolved Organic Carbon Driven Isotope Excursions

    Science.gov (United States)

    Bristow, T. F.; Kennedy, M. J.

    2008-12-01

    Negative carbon isotope values, falling below the mantle average of about -5 per mil, in carbonate phases of Ediacaran age sedimentary rocks are widely regarded as reflecting negative excursions in the carbon isotopic composition of seawater lasting millions of years. These isotopic signals form the basis of chemostratigraphic correlations between Ediacaran aged sections in different parts of the world, and have been used to track the oxidation of the biosphere. However, these isotopic values are difficult to accommodate within limits prescribed by the current understanding of the carbon cycle, and a hypothetical Precambrian ocean dissolved organic carbon (DOC) pool 100 to 1000 times the size of the modern provides a potential source of depleted carbon not considered in Phanerozoic carbon cycle budgets. We present box model results that show the remineralization of such a DOC pool to drive an isotope excursion of the magnitude observed in the geological record exhausts global budgets of free oxygen and sulfate in 800 k.y. These results are incompatible with the estimated duration of late Ediacaran isotope excursions of more than 10 m.y., as well as geochemical and biological indicators that oceanic sulfate and oxygen levels were maintained or even increased at the same time. Therefore the carbon isotope record is probably not a useful tool for monitoring oxygen levels in the atmosphere and ocean. Covariation between the carbon and oxygen isotope records is often observed during negative excursions and is indicative of local processes or diagenetic overprinting.

  9. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    Science.gov (United States)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.

  10. Dissolved organic matter reduces algal accumulation of methylmercury

    Science.gov (United States)

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  11. Chemodiversity of dissolved organic matter in the Amazon Basin

    Science.gov (United States)

    Gonsior, Michael; Valle, Juliana; Schmitt-Kopplin, Philippe; Hertkorn, Norbert; Bastviken, David; Luek, Jenna; Harir, Mourad; Bastos, Wanderley; Enrich-Prast, Alex

    2016-07-01

    Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajós River areas to characterize the molecular DOM composition and distribution. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur- and nitrogen-containing molecules in this white water river system. Waters from the Tapajós main stem did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary, even after mixing with the main stem of the Amazon River. Beside ubiquitous DOM at average H / C and O / C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.

  12. Ocean warming-acidification synergism undermines dissolved organic matter assembly.

    Science.gov (United States)

    Chen, Chi-Shuo; Anaya, Jesse M; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors--warming and acidification--threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow--even hinder--the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming-acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected.

  13. Ocean warming-acidification synergism undermines dissolved organic matter assembly.

    Directory of Open Access Journals (Sweden)

    Chi-Shuo Chen

    Full Text Available Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors--warming and acidification--threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C is sufficient to slow--even hinder--the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2, and disperse existing gels (35°C. We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming-acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected.

  14. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li Kun [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States) and Northeast Institute of Geography and Agro-ecology, CAS, Harbin 150040 (China)]. E-mail: bx@pssci.umass.edu; Torello, William A. [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States)

    2005-03-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils. - Dissolved organic matter could result in enhanced transport of chemicals applied to turf.

  15. Dissolved organic matter and lake metabolism. Technical progress report, 1 July 1975--30 June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, R. G.

    1976-01-01

    Progress is reported in the following areas of research: interactions of dissolved organic matter with inorganic nutrient cycling; regulation of the photosynthetic and decompositional metabolism of micro- and macroflora; regulatory mechanisms of growth and rates of carbon cycling; and fate of detrital dissolved and particulate organic matter. (HLW)

  16. Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants

    Science.gov (United States)

    A study was carried out to understand the fate of biodegradable dissolved organic nitrogen (BDON) and bioavailable dissolved organic nitrogen (ABDON) along the treatment trains of a wastewater treatment facility (WWTF) equipped with an activated sludge (AS) system and a WWTF equipped with a two-stag...

  17. Selective Sorption of Dissolved Organic Carbon Compounds by Temperate Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jagadamma, Sindhu [ORNL; Mayes, Melanie [ORNL; Phillips, Jana Randolph [ORNL

    2012-01-01

    Physico-chemical sorption of dissolved organic carbon (DOC) on soil minerals is one of the major processes of organic carbon (OC) stabilization in soils, especially in deeper layers. The attachment of C on soil solids is related to the reactivity of the soil minerals and the chemistry of the sorbate functional groups, but the sorption studies conducted without controlling microbial activity may overestimate the sorption potential of soil. This study was conducted to examine the sorptive characteristics of a diverse functional groups of simple OC compounds (D-glucose, L-alanine, oxalic acid, salicylic acid, and sinapyl alcohol) on temperate climate soil orders (Mollisols, Ultisols and Alfisols) with and without biological degradative processes. Equilibrium batch experiments were conducted using 0-100 mg C L-1 at a solid-solution ratio of 1:60 for 48 hrs and the sorption parameters were calculated by Langmuir model fitting. The amount of added compounds that remained in the solution phase was detected by high performance liquid chromatography (HPLC) and total organic C (TOC) analysis. Soil sterilization was performed by -irradiation technique and experiments were repeated to determine the contribution of microbial degradation to apparent sorption. Overall, Ultisols did not show a marked preference for apparent sorption of any of the model compounds, as indicated by a narrower range of maximum sorption capacity (Smax) of 173-527 mg kg soil-1 across compounds. Mollisols exhibited a strong preference for apparent sorption of oxalic acid (Smax of 5290 mg kg soil-1) and sinapyl alcohol (Smax of 2031 mg kg soil-1) over the other compounds. The propensity for sorption of oxalic acid is mainly attributed to the precipitation of insoluble Ca-oxalate due to the calcareous nature of most Mollisol subsoils and its preference for sinapyl alcohol could be linked to the polymerization of this lignin monomer on 2:2 mineral dominated soils. The reactivity of Alfisols to DOC was in

  18. Design, Synthesis and Evaluation of Organic Non-linear Optical Chromophores with Configurationally and Conformationally Locked Polyene Bridges

    Science.gov (United States)

    2007-11-02

    A modular, synthetic scheme was developed for versatile variation of donors, acceptors and polyene bridge length of NLO-chromophores. Configurational...and conformational rigidity of the polyene bridges were realized by making each set of adjacent double and single bond pair part of a fused...cylohexene ring. Substituent effects on the reactions leading to the establishment of the donor, elongation of the fused polyene bridge and the final

  19. Linkage between the temporal and spatial variability of dissolved organic matter and whole stream metabolism

    Directory of Open Access Journals (Sweden)

    S. Halbedel

    2012-12-01

    Full Text Available Dissolved organic matter (DOM is an important resource for microbes, thus affecting the whole stream metabolism. The factors influencing its chemical composition and thereby also its bio-availability are complex and not thoroughly understood. We hypothesized that the whole stream metabolism itself can affect the DOM composition and that the coupling of both is influenced by seasonality and different land use forms. We tested this hypothesis in a comparative study on two pristine forestry streams and on two non-forestry streams. The investigated streams were located in the Harz Mountains (Central Europe, Germany. The whole stream metabolism was measured with a classical two station oxygen change technique and the variability of DOM with fluorescence spectroscopy. We take also into account the geochemical and geophysical characteristic of each stream.

    All streams were clearly net heterotrophic, whereby the non-forestry streams showed a higher primary production in general, which was correlated with irradiance and with the total phosphorus concentration. The whole stream metabolism but also the chromophoric DOM (CDOM showed distinct seasonal patterns. We detected three CDOM component groups (C1, C2, C3 by the use of the parallel-factor-analysis (PARAFAC and found temporarily variable, typical component fingerprints (C1:C2, C1:C3, C3:C2 for CDOM originated from forestry streams and from non-forestry streams. Based on comparative literature studies and correlation analysis with different indices, we demonstrate that two of the components are clearly from terrigenous sources (C1, C3 and one is rather autochthonously (C2 derived. The whole CDOM matrix was dominated by humic like, high molecular-weight substances, followed by humic like, fulfic acids, low molecular-weight substances, and with minor amounts of amino-acids and proteins. We showed for the first time a correlation between the gross primary production (GPP and the autochthonously

  20. Linkage between the temporal and spatial variability of dissolved organic matter and whole-stream metabolism

    Directory of Open Access Journals (Sweden)

    S. Halbedel

    2013-08-01

    Full Text Available Dissolved organic matter (DOM is an important resource for microbes, thus affecting whole-stream metabolism. However, the factors influencing its chemical composition and thereby also its bio-availability are complex and not thoroughly understood. It was hypothesized that whole-stream metabolism is linked to DOM composition and that the coupling of both is influenced by seasonality and different land-use types. We tested this hypothesis in a comparative study on two pristine forestry streams and two non-forestry streams. The investigated streams were located in the Harz Mountains (central Europe, Germany. The metabolic rate was measured with a classical two-station oxygen change technique and the variability of DOM with fluorescence spectroscopy. All streams were clearly net heterotrophic, whereby non-forestry streams showed a higher primary production, which was correlated to irradiance and phosphorus concentration. We detected three CDOM components (C1, C2, C3 using parallel factor (PARAFAC analysis. We compared the excitation and emission maxima of these components with the literature and correlated the PARAFAC components with each other and with fluorescence indices. The correlations suggest that two PARAFAC components are derived from allochthonous sources (C1, C3 and one is derived autochthonously (C2. The chromophoric DOM matrix was dominated by signals of humic-like substances with a highly complex structure, followed by humic-like, fulfic acids, low-molecular-weight substances, and with minor amounts of amino acids and proteins. The ratios of these PARAFAC components (C1 : C2, C1 : C3, C3 : C2 differed with respect to stream types (forestry versus non-forestry. We demonstrated a significant correlation between gross primary production (GPP and signals of autochthonously derived, low-molecular-weight humic-like substances. A positive correlation between P / R (i.e. GPP/daily community respiration and the fluorescence index FI suggests

  1. Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie

    Directory of Open Access Journals (Sweden)

    Rose M. Cory

    2016-04-01

    Full Text Available Hydrogen peroxide (H2O2 has been suggested to influence cyanobacterial community structure and toxicity. However, no study has investigated H2O2 concentrations in freshwaters relative to cyanobacterial blooms when sources and sinks of H2O2 may be highly variable. For example, photochemical production of H2O2 from chromophoric dissolved organic matter (CDOM may vary over the course of the bloom with changing CDOM and UV light in the water column, while microbial sources and sinks of H2O2 may change with community biomass and composition. To assess relationships between H2O2 and harmful algal blooms dominated by toxic cyanobacteria in the western basin of Lake Erie, we measured H2O2 weekly at six stations from June – November, 2014 and 2015, with supporting physical, chemical, and biological water quality data. Nine additional stations across the western, eastern, and central basins of Lake Erie were sampled during August and October, 2015. CDOM sources were quantified from the fluorescence fraction of CDOM using parallel factor analysis (PARAFAC. CDOM concentration and source were significantly correlated with specific conductivity, demonstrating that discharge of terrestrially-derived CDOM from rivers can be tracked in the lake. Autochthonous sources of CDOM in the lake increased over the course of the blooms. Concentrations of H2O2 in Lake Erie ranged from 47 ± 16 nM to 1570 ± 16 nM (average of 371 ± 17 nM; n = 225, and were not correlated to CDOM concentration or source, UV light, or estimates of photochemical production of H2O2 by CDOM. Temporal patterns in H2O2 were more closely aligned with bloom dynamics in the lake. In 2014 and 2015, maximum concentrations of H2O2 were observed prior to peak water column respiration and chlorophyll a, coinciding with the onset of the widespread Microcystis blooms in late July. The spatial and temporal patterns in H2O2 concentrations suggested that production and decay of H2O2 from aquatic

  2. Dissolved organic carbon pools and export from the coastal ocean

    KAUST Repository

    Barrón, Cristina

    2015-10-21

    The distribution of dissolved organic carbon (DOC) concentration across coastal waters was characterized based on the compilation of 3510 individual estimates of DOC in coastal waters worldwide. We estimated the DOC concentration in the coastal waters that directly exchange with open ocean waters in two different ways, as the DOC concentration at the edge of the shelf break and as the DOC concentration in coastal waters with salinity close to the average salinity in the open ocean. Using these estimates of DOC concentration in the coastal waters that directly exchange with open ocean waters, the mean DOC concentration in the open ocean and the estimated volume of water annually exchanged between coastal and open ocean, we estimated a median ± SE (and average ± SE) global DOC export from coastal to open ocean waters ranging from 4.4 ± 1.0 Pg C yr−1 to 27.0 ± 1.8 Pg C yr−1 (7.0 ± 5.8 Pg C yr−1 to 29.0 ± 8.0 Pg C yr−1) depending on the global hydrological exchange. These values correspond to a median and mean median (and average) range between 14.7 ± 3.3 to 90.0 ± 6.0 (23.3 ± 19.3 to 96.7 ± 26.7) Gg C yr−1 per km of shelf break, which is consistent with the range between 1.4 to 66.1 Gg C yr−1 per km of shelf break of available regional estimates of DOC export. The estimated global DOC export from coastal to open ocean waters is also consistent with independent estimates of the net metabolic balance of the coastal ocean. The DOC export from the coastal to the open ocean is likely to be a sizeable flux and is likely to be an important term in the carbon budget of the open ocean, potentially providing an important subsidy to support heterotrophic activity in the open ocean.

  3. Composition of dissolved organic nitrogen in rivers associated with wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Akira, E-mail: akiraw@agr.nagoya-u.ac.jp [Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601 (Japan); Tsutsuki, Kiyoshi [Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan); Inoue, Yudzuru [Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570 (Japan); Maie, Nagamitsu [School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628 (Japan); Melling, Lulie [Tropical Peat Research Laboratory Unit, Chief Minister' s Department, Jalan Badruddin 93400, Kuching, Sarawak (Malaysia); Jaffé, Rudolf [Southeast Environmental Research Center, Florida International University, 3000 NE 151 Str., Marine Sciences Building, North Miami, FL 33181 (United States); Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151 Str., Marine Sciences Building, North Miami, FL 33181 (United States)

    2014-09-15

    As basic information for assessing reactivity and functionality of wetland-associated dissolved organic matter (DOM) based on their composition and structural properties, chemical characteristics of N in ultrafiltered DOM (UDON; > 1 kD) isolated from wetland-associated rivers in three climates (cool-temperate, Hokkaido, Japan; sub-tropical, Florida, USA; tropical, Sarawak, Malaysia) were investigated. The UDON was isolated during dry and wet seasons, or during spring, summer, and autumn. The proportion of UDON present as humic substances, which was estimated as the DAX-8 adsorbed fraction, ranged from 47 to 91%, with larger values in the Sarawak than at the other sites. The yield of hydrolyzable amino acid N ranged 1.24 to 7.01mg g{sup −1}, which correlated positively to the total N content of UDOM and tended to be larger in the order of Florida > Hokkaido > Sarawak samples. X-ray photoelectron N1s spectra of UDON showed a strong negative correlation between the relative abundances of amide/peptide N and primary amine N. The relative abundances of amide/peptide N and primary amine N in the Sarawak samples were smaller (70–76%) and larger (20–23%) respectively compared to those (80–88% and 4–9%) in the Florida and Hokkaido samples. Assuming terminal amino groups and amide N of peptides as major constituents of primary amine N and amide/peptide N, respectively, the average molecular weight of peptides was smaller in the Sarawak samples than that in the Florida and Hokkaido samples. Seasonal variations in UDON composition were scarce in the Sarawak and Florida samples, whereas the distribution of humic substance-N and nonhumic substance-N and compositions of amino acids and N functional groups showed a clear seasonality in the Hokkaido samples. While aromatic N increased from spring to autumn, contributions from fresh proteinaceous materials were also enhanced during autumn, resulting in the highest N content of UDOM for this season. - Highlights: • DON in

  4. Insight into dissolved organic matter fractions in Lake Wivenhoe during and after a major flood.

    Science.gov (United States)

    Aryal, Rupak; Grinham, Alistair; Beecham, Simon

    2016-03-01

    Dissolved organic matter is an important component of biogeochemical processes in aquatic environments. Dissolved organic matter may consist of a myriad of different fractions and resultant processing pathways. In early January 2011, heavy rainfall occurred across South East Queensland, Australia causing significant catchment inflow into Lake Wivenhoe, which is the largest water supply reservoir for the city of Brisbane, Australia. The horizontal and vertical distributions of dissolved organic matter fractions in the lake during the flood period were investigated and then compared with stratified conditions with no catchment inflows. The results clearly demonstrate a large variation in dissolved organic matter fractions associated with inflow conditions compared with stratified conditions. During inflows, dissolved organic matter concentrations in the reservoir were fivefold lower than during stratified conditions. Within the dissolved organic matter fractions during inflow, the hydrophobic and humic acid fractions were almost half those recorded during the stratified period whilst low molecular weight neutrals were higher during the flood period compared to during the stratified period. Information on dissolved organic matter and the spatial and vertical variations in its constituents' concentrations across the lake can be very useful for catchment and lake management and for selecting appropriate water treatment processes.

  5. Using High Spatio-Temporal Optical Remote Sensing to Monitor Dissolved Organic Carbon in the Arctic River Yenisei

    Directory of Open Access Journals (Sweden)

    Pierre-Alexis Herrault

    2016-09-01

    Full Text Available In Arctic regions, a major concern is the release of carbon from melting permafrost that could greatly exceed current human carbon emissions. Arctic rivers drain these organic-rich watersheds (Ob, Lena, Yenisei, Mackenzie, Yukon but field measurements at the outlets of these great Arctic rivers are constrained by limited accessibility of sampling sites. In particular, the highest dissolved organic carbon (DOC fluxes are observed throughout the ice breakup period that occurs over a short two to three-week period in late May or early June during the snowmelt-generated peak flow. The colored fraction of dissolved organic carbon (DOC which absorbs UV and visible light is designed as chromophoric dissolved organic matter (CDOM. It is highly correlated to DOC in large arctic rivers and streams, allowing for remote sensing to monitor DOC concentrations from satellite imagery. High temporal and spatial resolutions remote sensing tools are highly relevant for the study of DOC fluxes in a large Arctic river. The high temporal resolution allows for correctly assessing this highly dynamic process, especially the spring freshet event (a few weeks in May. The high spatial resolution allows for assessing the spatial variability within the stream and quantifying DOC transfer during the ice break period when the access to the river is almost impossible. In this study, we develop a CDOM retrieval algorithm at a high spatial and a high temporal resolution in the Yenisei River. We used extensive DOC and DOM spectral absorbance datasets from 2014 and 2015. Twelve SPOT5 (Take5 and Landsat 8 (OLI images from 2014 and 2015 were examined for this investigation. Relationships between CDOM and spectral variables were explored using linear models (LM. Results demonstrated the capacity of a CDOM algorithm retrieval to monitor DOC fluxes in the Yenisei River during a whole open water season with a special focus on the peak flow period. Overall, future Sentinel2/Landsat8

  6. Dissolved organic matter (DOM) export to a temperate estuary: Seasonal variations and implications of land use

    DEFF Research Database (Denmark)

    Stedmon, C. A.; Markager, S.; Søndergaard, M.;

    2006-01-01

    nutrient inputs to the estuary, dissolved inorganic nitrogen (DIN) and dissolved organic phosphorus dominated the loadings. Although 81% of the nitrogen annually supplied to the estuary was DIN, 83% of the nitrogen exported from the estuary was dissolved organic nitrogen (DON). Results show that increasing......, and the percentage of catchment area used for agriculture. Colored DOM (CDOM) loading measurements were found to be a good predictor of dissolved organic carbon (DOC) loading across the different subcatchments, offering a rapid and inexpensive alternative of operationally monitoring DOC export. For all the dissolved...... the area of the catchment covered by forest and natural pastures would have a positive effect on the trophic status of the estuary, leading to a considerable decrease in the phosphorus loading and a shift in the nitrogen loading from DIN to DON. Such a change in land use would also increase the export...

  7. Determination of the Fate of Dissolved Organic Nitrogen in the Three Wastewater Treatment Plants, Jordan

    Science.gov (United States)

    Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam

    2016-01-01

    This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…

  8. Leaching of dissolved organic and inorganic nitrogen from legume-based grasslands

    DEFF Research Database (Denmark)

    Kusliene, Gedrime; Eriksen, Jørgen; Rasmussen, Jim

    2015-01-01

    Leaching of dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) is a considerable loss pathway in grassland soils. We investigated the white clover (Trifolium repens) contribution to N transport and temporal N dynamics under a pure stand of white clover and white clover...

  9. Dissolved organic nitrogen dominates in European bogs under increasing atmospheric N deposition

    NARCIS (Netherlands)

    Bragazza, L.; Limpens, J.

    2004-01-01

    To assess the effects of increased atmospheric N input on N availability in ombrotrophic peatlands, the relative concentrations of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) were measured in bog waters along a natural gradient of atmospheric N deposition. Six European bog

  10. Cosorption study of organic pollutants and dissolved organic matter in a soil

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Cespedes, F. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain); Fernandez-Perez, M. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain)]. E-mail: mfernand@ual.es; Villafranca-Sanchez, M. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain); Gonzalez-Pradas, E. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain)

    2006-08-15

    In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl{sub 2} aqueous medium at 25 deg. C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L{sup -1}, produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K {sub doc}, has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment. - Cosorption of organic pollutants and DOM.

  11. Influence of dissolved organic matter on dissolved vanadium speciation in the Churchill River estuary (Manitoba, Canada).

    Science.gov (United States)

    Shi, Yong Xiang; Mangal, Vaughn; Guéguen, Céline

    2016-07-01

    Diffusive gradients in thin films (DGT) devices were used to investigate the temporal and spatial changes in vanadium (V) speciation in the Churchill estuary system (Manitoba). Thirty-six DGT sets and 95 discrete water samples were collected at 8 river and 3 estuary sites during spring freshet and summer base flow. Dissolved V concentration in the Churchill River at summer base flow was approximately 5 times higher than those during the spring high flow (27.3 ± 18.9 nM vs 4.8 ± 3.5 nM). DGT-labile V showed an opposite trend with greater values found during the spring high flow (2.6 ± 1.8 nM vs 1.4 ± 0.3 nM). Parallel factor analysis (PARAFAC) conducted on 95 excitation-emission matrix spectra validated four humic-like (C1C4) and one protein-like (C5) fluorescent components. Significant positive relationship was found between protein-like DOM and DGT-labile V (r = 0.53, p Churchill River. Sediment leachates were enriched in DGT-labile V and protein-like DOM, which can be readily released when river sediment began to thaw during spring freshet.

  12. Fluorescence characteristic changes of dissolved organic matter during municipal solid waste composting

    Institute of Scientific and Technical Information of China (English)

    WEI Zi-min; XI Bei-dou; WANG Shi-ping; XU Jing-gang; ZHOU Yu-yan; LIU Hong-liang

    2005-01-01

    Dissolved organic matter(DOM) of municipal solid waste(MSW) consists of minerals, water, ash and humic substances, and is known to enhance plant growth. In this study, inoculating microbes (Z J, MS) were used in municipal solid wastes composting, and composting implemented a industrialized technology. During composting, dissolved organic matter was extracted from the compost and purified. The spectral characteristics of dissolved organic matter was determined by fluorescence emission, excitation, and synchronous spectroscopy. Fluorescence emission, excitation, and synchronous spectra characterized by different relative fluorescent intensities and peaks over time. Fluorescence spectra were similar to that of fulvic acid in sewage sludge, indicating the presence of dissolved organic matter with aromatic structures and a high degree of molecular polymerization. Compared with the controls with no microbial inoculation,the microbe-inoculated treatments exhibited the increase of aromatic polycondensation, in the following order: MS + ZJ > ZJ > MS >CK.

  13. [Sources of dissolved organic carbon and the bioavailability of dissolved carbohydrates in the tributaries of Lake Taihu].

    Science.gov (United States)

    Ye, Lin-Lin; Wu, Xiao-Dong; Kong, Fan-Xiang; Liu, Bo; Yan, De-Zhi

    2015-03-01

    Surface water samples of Yincungang and Chendonggang Rivers were collected from September 2012 to August 2013 in Lake Taihu. Water temperature, Chlorophyll a and bacterial abundance were analyzed, as well as dissolved organic carbon (DOC) concentrations, stable carbon isotope of DOC (Δ13C(DOC)), specific UV absorbance (SUVA254 ) and dissolved carbohydrates concentrations. Δ13C(DOC) ranged from -27.03% per thousand ± 0.30% per thousand to -23.38%per thousand ± 0.20% per thousand, indicating a terrestrial source. Both the autochthonous and allochthonous sources contributed to the carbohydrates pool in the tributaries. Significant differences in PCHO (polysaccharides) and MCHO (monosaccharides) concentrations were observed between spring-summer and autumn-winter (P carbohydrates. PCHO contributed a major fraction to TCHO (total dissolved carbohydrates) in autumn and winter, which could be explained by the accumulation of undegradable PCHO limited by the low water temperature; MCHO contributed a major fraction to TCHO in spring and summer, which might be caused by the transformation from PCHO by microbes at high water temperature.

  14. A New Class of Organic Luminophores With a stilbene Chromophore: 3-Phenylmethylene-1(3-H) Isobenzofuranones

    Science.gov (United States)

    Nikolov, Peter; Fratev, Filip; Minchev, Stoyan

    1983-02-01

    A new class of luminophores with a stilbene chromophore, 3-phenylmethylene-1(3H)-iso-benzofuranones (BPH's), has been investigated. The fluorescence occurs in the region 26000-16000 cm-1, the maximal quantum yield being about 0.6. As a result of substitution or higher polarity of the solvent the ππ* state of the BPH's separates from the fluorescently inactive nπ* state. The S0-S2 absorption transition of the BPH's results from an excitation which is practically localized in the stilbene fragment. The good linear correlation of the fluorescence and absorption maxima and O-O transitions in ethanol with the σp-Hammett constants has been used for an interpretation of the changes in the potential hyperfaces of S0 and S1 states.

  15. Hydrological and biogeochemical Controls on Absorption and Fluorescence of Dissolved Organic Matter in the Northern South China Sea

    Science.gov (United States)

    Guo, Weidong; Wang, Chao; Li, Yan; Li, Yizhen; Song, Guodong; Wang, Lei; Cheng, Yuanyue

    2016-04-01

    Absorption and fluorescence of dissolved organic matter (DOM) were investigated in the northern South China Sea (SCS) and adjacent Kuroshio section of the West Philippine Sea (WPS). Two humic-like (C1, C2) and three protein-like (C3-C5) fluorescent components were identified using parallel factor analysis (PARAFAC). chromophoric DOM (CDOM) and fluorescent DOM (FDOM) in the northern SCS showed similar distribution patterns to the adjacent Kuroshio section and global open ocean, yet exhibited higher values in the whole water column. An isopycnal mixing model was adopted to quantify the difference in CDOM and FDOM in the euphotic zone between the northern SCS and WPS. Results showed that CDOM and humic-like FDOM were mainly modulated by Kuroshio intrusion, while protein-like FDOM were more affected by biological activities. At mid-depth, significant linear relationships between a350, C1, C2 and apparent oxygen utilization (AOU) suggested that CDOM and humic-like FDOM were produced in situ coupled to remineralization of biogenic sinking particle. Excess humic-like FDOM in the intermediate water of northern SCS were determined and more proportion of high molecular weight organic carbon was exported to the open ocean interior. In addition, regional distribution patterns of CDOM and FDOM were also tuned by mesoscale processes in the northern SCS. Different CDOM and FDOM components in the euphotic zone have apparently different responses for changes of biological activity and vertical mixing driven by eddies. Moreover, cold eddy could capture more sinking particles and finally increase the accumulation of bio-refractory CDOM and humic-like FDOM in the dark ocean. Finally, we demonstrated that the ratio of two humic-like FDOM (C1:C2, or peak C:M) may be a good indicator of water mixing, evolution of mesoscale eddies, photochemistry in the upper water and remineralization in the deeper layer.

  16. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    Science.gov (United States)

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolve...

  17. Leaching of Particulate and Dissolved Organic Carbon from Compost Applied to Bioretention Systems

    Science.gov (United States)

    Iqbal, Hamid; Flury, Markus; Mullane, Jessica; Baig, Muhammad

    2015-04-01

    Compost is used in bioretention systems to improve soil quality, to promote plant growth, and to remove metal contaminants from stormwater. However, compost itself, particularly when applied freshly, can be a source of contamination of the stormwater. To test the potential contamination caused by compost when applied to bioretention systems, we continuously leached a compost column with water under unsaturated conditions and characterized dissolved and particulate organic matter in the leachate. Freshly applied, mature compost leached up to 400 mg/L of dissolved organic carbon and 2,000 mg/L of suspended particulate organic carbon. It required a cumulative water flux of 4,000 mm until concentrations of dissolved and particulate organic carbon declined to levels typical for surface waters. Although, dissolved and particulate organic carbon are not contaminants per se, they can facilitate the movement of metals, thereby enhancing the mobility of toxic metals present in stormwater. Therefore, we recommended that compost is washed before it is applied to bioretention systems. Keywords compost; leachate; alkali extract; dissolved organic carbon; flux

  18. Dissolved organic carbon and nitrogen leaching from Scots pine, Norway spruce and silver birch stands in southern Sweden

    OpenAIRE

    Fröberg, Mats; Hansson, Karna; Kleja, Dan Berggren; Alavi, Ghasem

    2011-01-01

    The effects of three common tree species – Scots pine, Norway spruce and silver birch – on leaching of dissolved organic carbon and dissolved nitrogen were studied in an experimental forest with podzolised soils in southern Sweden. We analyzed soil water collected with lysimeters and modeled water fluxes to estimate dissolved C and N fluxes. Specific UV absorbance (SUVA) was analyzed to get information about the quality of dissolved organic matter leached from the different stands. Under the ...

  19. Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes.

    Science.gov (United States)

    Mladenov, N; Sommaruga, R; Morales-Baquero, R; Laurion, I; Camarero, L; Diéguez, M C; Camacho, A; Delgado, A; Torres, O; Chen, Z; Felip, M; Reche, I

    2011-01-01

    Remote lakes are usually unaffected by direct human influence, yet they receive inputs of atmospheric pollutants, dust, and other aerosols, both inorganic and organic. In remote, alpine lakes, these atmospheric inputs may influence the pool of dissolved organic matter, a critical constituent for the biogeochemical functioning of aquatic ecosystems. Here, to assess this influence, we evaluate factors related to aerosol deposition, climate, catchment properties, and microbial constituents in a global dataset of 86 alpine and polar lakes. We show significant latitudinal trends in dissolved organic matter quantity and quality, and uncover new evidence that this geographic pattern is influenced by dust deposition, flux of incident ultraviolet radiation, and bacterial processing. Our results suggest that changes in land use and climate that result in increasing dust flux, ultraviolet radiation, and air temperature may act to shift the optical quality of dissolved organic matter in clear, alpine lakes.

  20. Improved automation of dissolved organic carbon sampling for organic-rich surface waters.

    Science.gov (United States)

    Grayson, Richard P; Holden, Joseph

    2016-02-01

    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyser™ for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L(-1), which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy >95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy >90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands.

  1. Turnover time of fluorescent dissolved organic matter in the dark global ocean

    DEFF Research Database (Denmark)

    Catalá, Teresa Serrano; Reche, Isabel; Fuentes-Lema, Antonio;

    2015-01-01

    Marine dissolved organic matter (DOM) is one of the largest reservoirs of reduced carbon on Earth. In the dark ocean (>200 m), most of this carbon is refractory DOM. This refractory DOM, largely produced during microbial mineralization of organic matter, includes humic-like substances generated i...

  2. Differential recycling of coral and algal dissolved organic matter via the sponge loop

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; Van Oevelen, D.; Struck, U.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.

    2016-01-01

    1. Corals and macroalgae release large quantities of dissolved organic matter (DOM), one ofthe largest sources of organic matter produced on coral reefs. By rapidly taking up DOM andtransforming it into particulate detritus, coral reef sponges are proposed to play a key role intransferring the energ

  3. Comparison of the molecular mass and optical properties of colored dissolved organic material in two rivers and coastal waters by flow field-flow fractionation.

    Science.gov (United States)

    Zanardi-Lamardo, Eliete; Clark, Catherine D; Moore, Cynthia A; Zika, Rod G

    2002-07-01

    Colored dissolved organic material (CDOM) is an important sunlight absorbing substance affecting the optical properties of natural waters. However, little is known about its structural and optical properties mainly due to its complex matrix and the limitation of the techniques available. A comparison of two southwestern Florida rivers [the Caloosahatchee River (CR) and the Shark River (SR)] was done in terms of molecular mass (MM) and diffusion coefficients (D). The novel technique Frit inlet/frit outlet-flow field-flow fractionation (FIFO-FIFFF) with absorbance and fluorescence detectors was used to determine these properties. The SR receives organic material from the Everglades. By contrast, the CR arises from Lake Okeechobee in central Florida, receiving anthropogenic inputs, farming runoff, and natural organics. Both rivers discharge to the Gulf of Mexico. Fluorescence identified, for both rivers, two different MM distributions in low salinity water samples: the first was centered at approximately 1.7 kDa (CR) and approximately 2 kDa (SR); the second centered at approximately 13 kDa for both rivers, which disappeared gradually in the river plumes to below detection limit in coastal waters. Absorbance detected only one MM distribution centered at approximately 2 kDa (CR) and 2.2-2.4 kDa (SR). Fluorescence in general peaked at a lower MM than absorbance, suggesting a different size distribution for fluorophores vs chromophores. A photochemical study showed that, after sunlight, irradiated freshwater samples have similar characteristics to more marine waters, including a shift in MM distribution of chromophores. The differences observed between the rivers in the optical characteristics, MM distributions, and D values suggest that the CDOM sources, physical, and photochemical degradation processes are different for these two rivers.

  4. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    Science.gov (United States)

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed.

  5. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA)

    Science.gov (United States)

    Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.

    2007-01-01

    Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability (<1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short-term variability

  6. Black Carbon in Marine Dissolved Organic Carbon: Abundance and Radiocarbon Measurements in the Global Ocean

    Science.gov (United States)

    Coppola, A. I.; Walker, B. D.; Druffel, E. R. M.

    2014-12-01

    Compound specific radiocarbon analysis is a powerful tool for understanding the cycling of individual components, such as black carbon (BC) produced from biomass burning and fossil fuel combustion, within bulk pools, like the marine dissolved organic carbon pool. Here, we use a solid phase extraction method and a wide range of solvent polarities to concentrate dissolved organic carbon from seawater. Then we isolate BC in sufficient quantities for radiocarbon analysis. We report the radiocarbon age of BC, concentrations and its relative structure, from coastal and open ocean surface samples. We will discuss our progress towards measuring these quantities in dissolved organic carbon collected from the Pacific and Atlantic oceans to understand the fate, transformation and cycling of BC in the world ocean. These measurements are paired with bulk DOC Δ14C profiles, providing insight into the role of BC as a missing sink in the ultra-refractory DOC pool.

  7. Dissolved organic matter and lake metabolism. Technical progress report, 1 July 1976--30 June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, R.G.

    1977-01-01

    Progress is reported on investigations on the qualitative and quantitative cycling of particulate and dissolved organic matter within lakes and their drainage basins. Interactions of dissolved organic matter with inorganic nutrient cycling and regulation of the photosynthetic and decompositional metabolism of micro- and macroflora remain the focal point of these studies. Major efforts were directed towards the sources fates, pathways, and interactions of dissolved organic matter in inorganic chemical cycling; allochthonous sources, metabolism en route, and inputs to the lake systems of increasing stages of eutrophication; and the relationships of these compounds to the nutrient physiology and metabolism of phytoplankton, sessile algae, macrophytes, and bacterial populations. Results of studies carried out in a freshwater lake in Michigan (Lawrence Lake) are reported. 165 references.

  8. Interactions Between Prokaryotes and Dissolved Organic Matter in Marine Waters

    DEFF Research Database (Denmark)

    Traving, Sachia Jo

    organic bound carbon equal in size to atmospheric carbon dioxide. Prokaryotes mediate the fate of a large part of marine DOM, which is their principal source of energy and substrate. However, a large fraction is also left behind in the water column persisting for millennia, and prokaryotes may hold...... the key to understanding the mechanisms controlling the cycling of DOM within marine waters. In the thesis presented here, the aim was to investigate the activity and composition of prokaryotes to determine their functional role in DOM utilization. The thesis incorporates a range of study systems...

  9. Marine methane paradox explained by bacterial degradation of dissolved organic matter

    Science.gov (United States)

    Repeta, Daniel J.; Ferrón, Sara; Sosa, Oscar A.; Johnson, Carl G.; Repeta, Lucas D.; Acker, Marianne; Delong, Edward F.; Karl, David M.

    2016-12-01

    Biogenic methane is widely thought to be a product of archaeal methanogenesis, an anaerobic process that is inhibited or outcompeted by the presence of oxygen and sulfate. Yet a large fraction of marine methane delivered to the atmosphere is produced in high-sulfate, fully oxygenated surface waters that have methane concentrations above atmospheric equilibrium values, an unexplained phenomenon referred to as the marine methane paradox. Here we use nuclear magnetic resonance spectroscopy to show that polysaccharide esters of three phosphonic acids are important constituents of dissolved organic matter in seawater from the North Pacific. In seawater and pure culture incubations, bacterial degradation of these dissolved organic matter phosphonates in the presence of oxygen releases methane, ethylene and propylene gas. Moreover, we found that in mutants of a methane-producing marine bacterium, Pseudomonas stutzeri, disrupted in the C-P lyase phosphonate degradation pathway, methanogenesis was also disabled, indicating that the C-P lyase pathway can catalyse methane production from marine dissolved organic matter. Finally, the carbon stable isotope ratio of methane emitted during our incubations agrees well with anomalous isotopic characteristics of seawater methane. We estimate that daily cycling of only about 0.25% of the organic matter phosphonate inventory would support the entire atmospheric methane flux at our study site. We conclude that aerobic bacterial degradation of phosphonate esters in dissolved organic matter may explain the marine methane paradox.

  10. New approaches to improve the removal of dissolved organic matter and nitrogen in aquaculture

    DEFF Research Database (Denmark)

    von Ahnen, Mathis

    Reducing the environmental impact of aquaculture requires that waste treatment practices are further improved. Currently applied treatment technologies achieve good solids removal and nitrification. Yet discharge of nitrogen (N) and organic matter (OM) from fish farms is still often an important...... issue constraining aquaculture development, especially in sensitive areas. Possibilities for efficient end-of-pipe treatment exist for large intensive recirculating aquaculture systems (RAS), while smaller and especially the technically less advanced fish farms, struggle to reduce nutrient discharge...... methods for removing dissolved N and OM from aquaculture effluents of technically less advanced farms in particular. The work split in two parts. The first part focused on the turnover of dissolved N-compounds (Paper I) and dissolved organic matter (DOM) (Paper II) and in aerobic biofilters operated...

  11. Using 18O as a Tracer of Oxygen in the Photochemical Alteration of Dissolved Organic Matter

    Science.gov (United States)

    Davis, J. A.; Stubbins, A.; Helms, J.; Dias, R. F.; Mopper, K.

    2006-12-01

    The biogeochemical cycling of dissolved organic matter (DOM) in natural waters is affected by numerous processes, including photochemical alteration. Photochemical processes result in the net oxidation and mineralization of DOM concomitant with dissolved oxygen consumption and production of dissolved inorganic carbon (DIC; principally CO2). The photochemical oxygen budget is not well constrained while DIC production accounts for nearly all the dissolved oxygen consumed, conflicting data suggests that more than half of the oxygen consumed is required to account for observed DOM oxidation and hydrogen peroxide production. An alternate source of oxygen is required to balance this budget; water itself may provide the answer. In order to determine the source of oxygen, a number of time series irradiations were performed using Great Dismal Swamp water (southeast Virginia) with 18O enrichments as either dissolved oxygen or water. Early results, upon irradiation in a UV solar simulator, show significant incorporation of 18O-enriched oxygen into high molecular weight (HMW) DOM from both sources. While the majority of the incorporated oxygen originated from the dissolved oxygen, at least 5 percent originated from water. Data will be presented showing the rate and degree of incorporation of 18O-enriched oxygen from both sources as well as the production of 18O-enriched carbon dioxide. The movement of 18O label will be discussed in relation to shifts in spectral qualities, including photobleaching and spectral slope, of the irradiated samples and selective incorporation as detailed by FT-ICRMS.

  12. Improved speciation of dissolved organic nitrogen in natural waters: amide hydrolysis with fluorescence derivatization

    Institute of Scientific and Technical Information of China (English)

    Ryan L.Firnmen; Tamara D.Trouts; Daniel D.Richter Jr.; Dharni Vasudevan

    2008-01-01

    The objective of this study was to improve primary-amine nitrogen (1°-N) quantification in dissolved organic matter (DOM)originating from natural waters where inorganic forms of N, which may cause analytical interference, are commonly encountered.Efforts were targeted at elucidating organic-N structural criteria influencing the response of organic amines to known colorimetric andfluorescent reagents and exploring the use of divalent metal-assisted amide hydrolysis in combination with fluorescence analyses.We found that reaction of o-phthaldialdehyde (OPA) with primary amines is significantly influenced by steric factors, whereasfluorescamine (FLU) lacks sensitivity to steric factors and allows for the detection of a larger suite of organic amines, includingdi- and tri-peptides and sterically hindered 1°-N. Due to the near quantitative recovery of dissolved peptides with the FLU reagent andlack of analytical response to inorganic nitrogen, we proposed that FLU be utilized for the quantification of primary amine nitrogen.In exploring the application of divalent metal promoted peptide hydrolysis to the analysis of organic forms of nitrogen in DOM, wefound that Zn(Ⅱ) reaction increased the total fraction of organic-N detectable by both OPA and FLU reagents. Zn-hydrolysis improvedrecovery of organic-N in natural waters from<5% to 35%. The above method, coupled with standard inorganic-N analyses, allows forenhanced resolution of dissolved organic nitrogen (DON) speciation in natural waters.

  13. Dialysis is superior to anion exchange for removal of dissolved inorganic nitrogen from freshwater samples prior to dissolved organic nitrogen determination

    DEFF Research Database (Denmark)

    Graeber, Daniel; Gücker, Björn; Zwirnmann, Elke;

    2012-01-01

    Dissolved organic nitrogen (DON) is usually determined as the difference between total dissolved nitrogen (TDN) and dissolved inorganic nitrogen (DIN). When applying this approach to samples with high DIN concentrations, there is a risk, that small relative errors in TDN and DIN measurements may...... propagate into high absolute errors of the determined DON concentration. To reduce such errors, two pretreatment methods have been suggested for the removal of DIN prior to the determination of DON: anion-exchange pretreatment (AEP) and dialysis pretreatment (DP). In this study, we tested the suitability...... of AEP and DP for DIN removal in order to increase DON determination accuracy of freshwater samples. The AEP pretreatment performed well for standard compounds, yielding high dissolved organic carbon (DOC) recovery rates and > 99% removal of nitrate, whereas DON recovery rates varied and no removal...

  14. Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank

    Science.gov (United States)

    Seidel, Michael; Beck, Melanie; Riedel, Thomas; Waska, Hannelore; Suryaputra, I. G. N. A.; Schnetger, Bernhard; Niggemann, Jutta; Simon, Meinhard; Dittmar, Thorsten

    2014-09-01

    Seawater circulation in permeable coastal sediments is driven by tidal changes in hydraulic gradients. The resulting submarine groundwater discharge is a source of nutrients and dissolved organic matter (DOM) to the water column. Yet, little is known about the cycling of DOM within tidal sediments, because the molecular DOM characterization remains analytically challenging. One technique that can dissect the multitude of molecules in DOM is ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). To aim at a high resolution DOM analysis we study the seasonal turnover and marine and terrestrial sources of DOM in an intertidal creek bank of the southern North Sea down to 3 m depth and link the biogeochemical processes to FT-ICR-MS data and the analyses of inorganic porewater chemistry, δ13C of solid-phase extracted dissolved organic carbon (SPE-DOC), dissolved black carbon (DBC) and dissolved carbohydrates (DCHO). Increasing concentrations of dissolved Fe, Mn, P, total alkalinity, dissolved nitrogen, DOC and a concomitant decrease of sulfate along the seawater circulation path from the upper tidal flat to the tidal flat margin indicate continuous microbial activity. The relative increase of Si concentrations, unsaturated aliphatics, peptide molecular formulae and isotopically more 13C-enriched SPE-DOC towards the tidal flat margin suggests that remineralization processes mobilize DOM from buried algal (diatoms) and microbial biomass. Porewater in sediments ocean. Porewater DOM accumulating at the low water line is enriched in N and S. We hypothesize that this is partly due to DOM reacting with dissolved sulfide and ammonium which may increase the refractory character of the DOM, hence making it less bioavailable for in situ active microbes.

  15. Dissolved organic sulfur in streams draining forested catchments in southern China

    Institute of Scientific and Technical Information of China (English)

    Zhanyi Wang; Xiaoshan Zhang; Zhangwei Wang; Yi Zhang; Bingwen Li; Rolf Vogt

    2012-01-01

    Dissolved organic sulfur (DOS) is an important fraction for sulfur mobilization in ecosystem.In this work stream waters were sampled in 25 forested sites in southern China to study the dissolved sulfur fractions.Dissolved sulfur was fractionated into dissolved organic sulfur (DOS) and inorganic sulfate (SO42-) for 95 stream water samples.The results showed that the concentration of DOS ranged from 0 to 13.1 mg/L (average 1.3 mg/L) in all the streams.High concentrations of DOS in stream waters were found in the sites with high concentrations of sulfate.DOS constituted less than 60.1% of dissolved sulfur (average 17.9%).Statistical analysis showed that DOS concentration was correlated with SO42- in streams waters and total sulfur in surface layer soils.The results also showed that DOS concentration in stream waters had a seasonal variation,but no trends were found with it.The implication was that the long term sulfur deposition had led the increase of the concentration and fraction of DOS in stream waters in acid rain prevailing regions

  16. A supercritical oxidation system for the determination of carbon isotope ratios in marine dissolved organic carbon

    NARCIS (Netherlands)

    Le Clercq, Martijn; Van der Plicht, Johannes; Meijer, Harro A.J.

    1998-01-01

    An analytical oxidation system employing supercritical oxidation has been developed. It is designed to measure concentration and the natural carbon isotope ratios (C-13, C-14) Of dissolved organic carbon (DOC) and is especially suited for marine samples. The oxidation takes place in a ceramic tube a

  17. Dissolved organic nitrogen dynamics in the North Sea: A time series analysis (1995-2005)

    NARCIS (Netherlands)

    van Engeland, T.; Soetaert, K.; Knuijt, K.; Laane, R.W.P.M.; Middelburg, J.J.

    2010-01-01

    Dissolved organic nitrogen (DON) dynamics in the North Sea was explored by means of long-term time series of nitrogen parameters from the Dutch national monitoring program. Generally, the data quality was good with little missing data points. Different imputation methods were used to verify the robu

  18. Controls of dissolved organic matter quality: Evidence from a large-scale boreal lake survey

    DEFF Research Database (Denmark)

    Kothawala, D.N.; Stedmon, Colin; Müller, R.A.

    2014-01-01

    Inland waters transport large amounts of dissolved organic matter (DOM) from terrestrial environments to the oceans, but DOM also reacts en route, with substantial water column losses by mineralization and sedimentation. For DOM transformations along the aquatic continuum, lakes play an important...

  19. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The res

  20. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams

    DEFF Research Database (Denmark)

    Nimptsch, Jorge; Woelfl, Stefan; Osorio, Sebastian

    2015-01-01

    Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradabilit...

  1. TREATMENT OF URBAN STORMWATER FOR DISSOLVED POLLUTANTS: A COMPARATIVE STUDY OF THREE NATURAL ORGANIC MEDIA

    Science.gov (United States)

    The feasibility of using hard and soft wood tree mulch and processed jute fiber, as filter media, for treating mixtures of dissolved pollutants (toxic organic compounds and heavy metals) in urban stormwater (SW) runoff was evaluated. Copper (Cu), cadmium (Cd), chromium (Cr+6), l...

  2. Effect of dissolved organic matter composition on metal speciation in soil solutions

    NARCIS (Netherlands)

    Ren, Zong Ling; Tella, Marie; Bravin, M.N.; Comans, R.N.J.; Dai, Jun; Garnier, Jean Marie; Sivry, Yann; Doelsch, Emmanuel; Straathof, Angela; Benedetti, M.F.

    2015-01-01

    Knowledge of the speciation of heavy metals and the role of dissolved organic matter (DOM) in soil solution is a key to understand metal mobility and ecotoxicity. In this study, soil column-Donnan membrane technique (SC-DMT) was used to measure metal speciation of Cd, Cu, Ni, Pb, and Zn in eighte

  3. INFLUENCE OF DISSOLVED ORGANIC MATTER ON AGROCHEMICAL PHOTOREACTIONS IN AQUATIC ENVIRONMENTS

    Science.gov (United States)

    Pioneering studies by Don Crosby and co-workers demonstrated that the sunlight-induced dissipation of agrochemicals in water often is strongly affected by natural constituents in the water such as nitrate and dissolved organic matter. In this presentation, the focus is on the rol...

  4. Response to Comment on "Dilution limits dissolved organic carbon utilization in the deep ocean"

    KAUST Repository

    Arrieta, Jesus

    2015-12-18

    Our recent finding that dilution limits dissolved organic carbon (DOC) utilization in the deep ocean has been criticized based on the common misconception that lability equates to rapid and complete utilization. Even when considering the redefinition of recalcitrant DOC recently proposed by Jiao et al., the dilution hypothesis best explains our experimental observations.

  5. Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils

    NARCIS (Netherlands)

    Hanke, A.; Cerli, C.; Muhr, J.; Borken, W.; Kalbitz, K.

    2013-01-01

    Paddy soils are subjected to periodically changing redox conditions. In order to understand better the redox control on long-term carbon turnover, we assessed carbon mineralization and dissolved organic carbon (DOC) of paddy topsoils sampled along a chronosequence spanning 2000 years of rice cultiva

  6. Effect of Dissolved Organic Matter on Basalt Weathering Rates under Flow Conditions

    Science.gov (United States)

    Dontsova, K.; Steefel, C. I.; Chorover, J. D.

    2009-12-01

    Rock weathering is an important aspect of soil formation that is tightly coupled to the progressive colonization of grain surfaces by microorganisms and plant tissue, both of which are associated with the exudation of complexing ligands and reducing equivalents that are incorporated into dissolved organic matter. As part of a larger hillslope experimental study being designed for Biosphere 2 (Oracle, AZ), we seek to determine how the presence and concentration of dissolved organic matter affects the incongruent dissolution rates of basaltic tuff. Saturated flow column experiments are being conducted using plant-derived soluble organic matter solutions of variable concentrations, and comparisons are being made to experiments conducted with malic acid, a low-molecular weight organic acid commonly exuded into the rhizosphere. Dissolved organic matter was extracted from Ponderosa Pine forest floor and was characterized for aqueous geochemical parameters (pH, EC, ion balance, DOC/TN) and also for DOC composition (UV-Vis, FTIR spectroscopy). Column effluents are being analyzed for major and trace cations, anions, silica and organic solutes. Dissolution rates of primary minerals and precipitation rates of secondary phases will be estimated by fitting the data to a numerical reactive transport model, CrunchFlow2007. At the end of the fluid flow experiment, column materials will be analyzed for biogeochemical composition to detect preferential dissolution of specific phases, the precipitation of new ones, and to monitor the associated formation of biofilms. The influence of organic solutions on weathering patterns of basalt will be discussed.

  7. Effect of biostimulation on biodegradation of dissolved organic carbon in biological granular activated carbon filters

    Directory of Open Access Journals (Sweden)

    K. Tihomirova

    2012-03-01

    Full Text Available The addition of labile organic carbon (LOC to enhance the biodegradation rate of dissolved organic carbon (DOC in biological columns was studied. Acetate standard solution (NaAc and LB (Luria Bertrani medium were used as LOC as biostimulants in glass column system used for measurements of biodegradable dissolved organic carbon (BDOC. The addition of LOC related with the increase of total DOC in sample. The concentration of BDOC increased up to 7 and 5 times and was utilized after 24 min. contact time. The biodegradation rate constant was increased at least 8 times during adaptation-biostimulation period. There was a strong positive correlation between the biodegradation rate constant and the concentration of BDOC. Biostimulation period ranged from 24 to 53 h for NaAc biostimulant and from 20 to 168 h for LB. The study has shown that LOC could be used as stimulator to enhance the biodegradation rate of DOC during biofiltration.

  8. Effect of biostimulation on biodegradation of dissolved organic carbon in biological filters

    Directory of Open Access Journals (Sweden)

    K. Tihomirova

    2012-07-01

    Full Text Available The addition of labile organic carbon (LOC to enhance the biodegradation rate of dissolved organic carbon (DOC in biological columns was studied. Acetate standard solution (NaAc and Luria Bertrani (LB medium were used as LOC as biostimulants in glass column system used for measurements of biodegradable dissolved organic carbon (BDOC. The addition of LOC related with the increase of total DOC in sample. The concentration of BDOC increased up to 7 and 5 times and was utilized after 24 min. contact time. The biodegradation rate constant was increased at least 26 times during adaptation-biostimulation period. There was a strong positive correlation between the biodegradation rate constant and the concentration of BDOC. Biostimulation period ranged from 24 to 53 h for NaAc biostimulant and from 20 to 168 h for LB. The study has shown that LOC could be used as stimulator to enhance the biodegradation rate of DOC during biofiltration.

  9. Effects of dissolved organic matter on the growth and pigments synthesis of Spirulina platensis ( Arthrospira )

    Institute of Scientific and Technical Information of China (English)

    MA Zengling; GAO Kunshan; WATANABE Teruo

    2006-01-01

    Excessive accumulation of dissolved organic matter (DOM) in the culture ponds of Spirulina platensis is usually considered to be one of the potential factors affecting the production of S. platensis, however, we are not quite aware of effects of DOM on the growth and pigments synthesis of S. platensis. In the present study, S. platensis was grown in batch or semi-continuous cultures using the filtrate in the culture ponds that had not been renewed for years. It was found that disssolved organic carbon up to 60 mg/L did not bring about an inhibitory effect on the growth of S. platensis, but increased the contents of chlorophyll a and phycocyanin instead. However, further accumulation of dissolved organic matter could decrease the content of chlorophyll a.

  10. PRELIMINARY STUDY ON THE DISSOLVED AND COLLOIDAL ORGANIC CARBON IN THE ZHUJIANG RIVER ESTUARY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper reports data on the dissolved and colloidal organic carbon in the Zhujiang (Pearl) River estuary. DOC concentration was 142 to 239 μmol/L in the freshwater taken in March 1997 from the four Zhujiang River tributaries flowing into the Lingdingyang estuary. High concentration was observed in the Humen tributary located near Guangzhou. The rapidly increased DOC concentration at low salinities (~5) may be attributed to the exchange between macroparticulate and dissolved organic matter during the early stage of estuarine mixing. DOC concentration overall followed the mixing line until salinity ~25, where the Deep Bay is located and where DOC was elevated. This elevated DOC may suggest a local organic matter source from Shenzhen. Using a cross-flow ultrafiltration (CFF) system equipped with a Millipore Prep-scale CFF 1 kD regenerated cellulose membrane, we also separated the colloidal organic matter from the truly dissolved fraction (<1 kD). CFF membranes were carefully evaluated for their applicability (retention characteristics, blank level and mass balance) to separate colloidal organic matter. COC in the study area ranged from 5 to 85 μmol/L, representing ~ 3%-32% of DOC. The highest COC percentage was found at low salinities (< 5) in both winter and summer. Evidence suggests in-situ production of colloidal material at this salinity range. Beyond this point, a very modest removal was observable until high salinities. Again, an increase in COC concentration was shown in the samples taken from the Deep Bay.

  11. Dissolved organic nitrogen transformation in river water: Effects of suspended sediment and organic nitrogen concentration

    Science.gov (United States)

    Xia, Xinghui; Liu, Ting; Yang, Zhifeng; Zhang, Xueqing; Yu, Zhongbo

    2013-03-01

    SummaryHigh suspended sediment (SPS) concentration exists in many Asian rivers. In addition, human activities and climate change can change river runoff, leading to the variation of SPS and pollutant concentrations. In this research, the effects of SPS and dissolved organic nitrogen (DON) concentration on DON transformation in river systems were studied through simulation experiments with samples collected from the Yellow River which is famous for its high SPS concentration. The results indicated that high DON concentration resulted in a longer retention time of NH4+-N and NO2--N in the system due to the inhibition effect of ammonia on nitrification. The re-suspension of sediment accelerated DON transformation, and both the ammonification and nitrification rates increased with SPS concentration. The ammonification rate constants obtained from the first-order kinetics were 0.286, 0.332, 0.538 day-1; the nitrification rate constants obtained from the Logistic model were 0.0018, 0.0038, 0.005 day-1 μmol-1 L-1 for the systems with SPS concentration of 0, 5, 10 g L-1, respectively. Bacteria tended to attach onto SPS, and the specific growth rate in the systems with SPS was approximately two orders of magnitude higher than that without SPS in the first 3 days of cultivation, which resulted in an increase of DON transformation rate with SPS concentration. This study implied that DON transformation rate may be lower in the dry season than that in the wet season, and nitrogen transformation will be affected by the variation of river runoff and SPS concentration.

  12. Nitrogen and dissolved organic carbon (DOC losses from an artificially drained grassland on organic soils

    Directory of Open Access Journals (Sweden)

    B. Tiemeyer

    2014-02-01

    Full Text Available Nitrate-nitrogen (NO3-N as well as dissolved organic carbon (DOC and nitrogen (DON concentrations and losses were studied for three respectively two years in a small catchment dominated by a degraded peatland used as intensive grassland. Concentrations in the shallow groundwater were spatially and temporally very variable with NO3-N being the most dynamic component (7.3 ± 12.5 mg L–1. Average NO3-N concentrations of 10.3 ± 5.4 mg L–1 in the ditch draining the catchment and annual NO3-N losses of 19, 35 and 26 kg ha–1 confirmed drained peatlands as an important source of diffuse N pollution. The highest NO3-N losses occurred during the wettest year. Resulting from concentrations of 2.4 ± 0.8 mg L–1, DON added further 4.5 to 6.4 kg ha–1 to the N losses and thus formed a relevant component of the total N losses. Ditch DOC concentrations of 24.9 ± 5.9 mg L–1 resulted in DOC losses of 66 kg ha–1 in the wet year 2006/07 and 39 kg ha–1 in the dry year 2007/08. Both DOC and N concentrations were governed by hydrological conditions, but NO3-N reacted much faster and clearer on rising discharge rates than DOC which tended to be higher under dryer conditions. In the third year of the study, the superposition of a very wet summer and land use changes from grassland to arable land in a part of the catchment suggests that under re-wetting conditions with a high groundwater table in summer, NO3-N would diminish quickly, while DOC would remain on a similar level. Further intensification of the land use, on the other hand, would increase N losses to receiving water bodies.

  13. Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments

    Science.gov (United States)

    Mazrui, Nashaat M.; Jonsson, Sofi; Thota, Sravan; Zhao, Jing; Mason, Robert P.

    2016-12-01

    The forms of inorganic mercury (HgII) taken up and methylated by bacteria in sediments still remain largely unknown. From pure cultures studies, it has been suggested that dissolved organic matter (DOM) may facilitate the uptake either by acting as a shuttle molecule, transporting the HgII atom to divalent metal transporters, or by binding HgII and then being transported into the cell as a carbon source. Enhanced availability of Hg complexed to DOM has however not yet been demonstrated in natural systems. Here, we show that HgII complexed with DOM of marine origin was up to 2.7 times more available for methylation in sediments than HgII added as a dissolved inorganic complex (HgII(aq)). We argue that the DOM used to complex HgII directly facilitated the bacterial uptake of HgII whereas the inorganic dissolved HgII complex adsorbed to the sediment matrix before forming bioavailable dissolved HgII complexes. We further demonstrate that differences in net methylation in sediments with high and low organic carbon content may be explained by differences in the availability of carbon to stimulate the activity of Hg methylating bacteria rather than, as previously proposed, be due to differences in HgII binding capacities between sediments.

  14. Removal of dissolved organic carbon in pilot wetlands of subsuperficial and superficial flows

    Directory of Open Access Journals (Sweden)

    Ruth M. Agudelo C

    2010-04-01

    Full Text Available Objective: to compare removal of dissolved organic carbon (d o c obtained with pilot wetlands of subsuperficial flow (p h s s and superficial flow (p h s, with Phragmites australis as treatment alternatives for domestic residual waters of small communities and rural areas. Methodology: an exploratory and experimental study was carried out adding 100,12 mg/L of dissolved organic carbon to synthetic water contaminated with Chlorpyrifos in order to feed the wetlands. A total amount of 20 samples were done, 16 of them in four experiments and the other ones in the intervals with no use of pesticides. Samples were taken on days 1, 4, 8, and 11 in the six wetlands, three of them subsuperficial, and three of them superficial. The main variable answer was dissolved organic carbon, measured in the organic carbon analyzer. Results: a high efficiency in the removal of d o c was obtained with the two types of wetlands: 92,3% with subsuperficial flow and 95,6% with superficial flow. Such a high removal was due to the interaction between plants, gravel and microorganisms. Conclusion: although in both types of wetlands the removal was high and similar, it is recommended to use those of subsuperficial flow because in the superficial ones algae and gelatinous bio-films are developed, which becomes favorable to the development of important epidemiologic vectors in terms of public health.

  15. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  16. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Science.gov (United States)

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release.

  17. Challenges in modelling dissolved organic matter dynamics in agricultural soil using DAISY

    DEFF Research Database (Denmark)

    Gjettermann, Birgitte; Styczen, Merete; Hansen, Hans Christian Bruun

    2008-01-01

    Because dissolved organic matter (DOM) plays an important role is terrestrial C-, N- and P-balances and transport of these three components to aquatic environments, there is a need to include it in models. This paper presents the concept of the newly developed DOM modules implemented in the DAISY...... pedotransfer functions taking into account the soil content of organic matter, Al and Fe oxides. The turnover of several organic matter pools including one DOM pool are described by first-order kinetics. The DOM module was tested at field scale for three soil treatments applied after cultivating grass...

  18. Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems.

    Science.gov (United States)

    Tsui, Martin Tsz Ki; Finlay, Jacques C

    2011-07-15

    Stream ecosystems are widely contaminated by mercury (Hg) via atmospheric transport and deposition in watersheds. Dissolved organic carbon (DOC) is well-known to be the dominant ligand for aqueous methylmercury (MeHg), the bioaccumulative form of Hg in aquatic food webs. However, it is less clear if and how the concentration and character (e.g., aromaticity) of DOC influences the availability of dissolved MeHg to stream food webs. In this work, we analyzed total-Hg and/or MeHg concentrations in water, seston, and macroinvertebrates (filter-feeding hydropsychid caddisflies), and other physiochemical properties in 30 streams along a south-north geographic gradient in eastern Minnesota that corresponds to substantial changes in dominant land cover (i.e., agriculture, urban, wetland, and forest). In general, MeHg concentrations in seston and hydropsychids were higher in watersheds with more forest and wetland coverage, and increased with dissolved MeHg concentration. However, we found that the efficiency of MeHg incorporation into the stream food webs (i.e., bioconcentration factors of MeHg in both seston and hydropsychids, BCF(MeHg) = solid MeHg ÷ dissolved MeHg) decreased significantly with DOC concentration and aromaticity, suggesting that MeHg bioavailability to the base of food webs was attenuated at higher levels of terrestrial DOC. Therefore, our findings suggest that there is a dual role of DOC on MeHg cycling in streams: terrestrial DOC acts as the primary carrier ligand of dissolved MeHg for transport into surface waters, yet this aromatic DOC also attenuates dissolved MeHg uptake by aquatic food webs. Thus, consideration of MeHg bioavailability and its environmental regulation could help improve predictive models of MeHg bioaccumulation in stream ecosystems.

  19. A novel aminated polymeric adsorbent for removing refractory dissolved organic matter from landfill leachate treatment plant

    Institute of Scientific and Technical Information of China (English)

    ZHANG Long; LI Aimin; WANG Jinnan; LU Yufei; ZHOU Youdong

    2009-01-01

    Refractory dissolved organic matter (DOM) from landfill leachate treatment plant was with high dissolved organic carbon (DOC) content.An aminated polymeric adsorbent NDA-8 with tertiary amino groups and sufficient mesopore was synthesized, which exhibited high adsorption capacity to the DOM (raw water after coagulation).Resin NDA-8 performed better in the uptake of the DOM than resin DAX-8 and A100.Electrostatic attraction was considered as the decisive interaction between the adsorbent and adsorbate.Special attention was paid to the correlation between porous structure and adsorption capacity.The mesopore of NDA-8 played a crucial role during uptake of the DOM.In general, resin in chloride form performed a higher removal rate of DOC.According to the column adsorption test, total adsorption capacity of NDA-8 was calculated to 52.28 mg DOC/mL wet resin.0.2 mol/L sodium hydroxide solution could regenerate the adsorbent efficiently.

  20. Amount, composition and seasonality of dissolved organic carbon and nitrogen export from agriculture in contrasting climates

    DEFF Research Database (Denmark)

    Graeber, Daniel; Meerhof, Mariana; Zwirnmann, Elke

    2014-01-01

    Agricultural catchments are potentially important but often neglected sources of dissolved organic matter (DOM), of which a large part is dissolved organic carbon (DOC) and nitrogen (DON). DOC is an important source of aquatic microbial respiration and DON may be an important source of nitrogen...... to aquatic ecosystems. However, there is still a lack of comprehensive studies on the amount, composition and seasonality of DOM export from agricultural catchments in different climates. The aim of our study was to assess the amount, composition and seasonality of DOM in a total of four streams in the wet......-temperate and subtropical climate of Denmark and Uruguay, respectively. In each climate, we investigated one stream with extensive agriculture (mostly pasture) and one stream with intensive agriculture (mostly intensively used arable land) in the catchment. We sampled each stream taking grab samples fortnightly for two...

  1. Amount, composition and seasonality of dissolved organic carbon and nitrogen export from agriculture in contrasting climates

    DEFF Research Database (Denmark)

    Graeber, Daniel; Goyenola, Guillermo; Meerhoff, Marianna

    Agricultural catchments are potentially important but often neglected sources of dissolved organic matter (DOM), of which a large part is dissolved organic carbon (DOC) and nitrogen (DON). DOC is an important source of aquatic microbial respiration and DON may be an important source of nitrogen...... to aquatic ecosystems. However, there is still a lack of comprehensive studies on the amount, composition and seasonality of DOM export from agricultural catchments in different climates. The aim of our study was to assess the amount, composition and seasonality of DOM in a total of four streams in the wet......-temperate and subtropical climate of Denmark and Uruguay, respectively. In each climate, we investigated one stream with extensive agriculture (mostly pasture) and one stream with intensive agriculture (mostly intensively used arable land) in the catchment. We sampled each stream taking grab samples fortnightly for two...

  2. Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system

    Science.gov (United States)

    Bianchi, Thomas S.; Thornton, Daniel C. O.; Yvon-Lewis, Shari A.; King, Gary M.; Eglinton, Timothy I.; Shields, Michael R.; Ward, Nicholas D.; Curtis, Jason

    2015-07-01

    The role of priming processes in the remineralization of terrestrially derived dissolved organic carbon (TDOC) in aquatic systems has been overlooked. We provide evidence for TDOC priming using a lab-based microcosm experiment in which TDOC was primed by the addition of 13C-labeled algal dissolved organic carbon (ADOC) or a 13C-labeled disaccharide (trehalose). The rate of TDOC remineralization to carbon dioxide (CO2) occurred 4.1 ± 0.9 and 1.5 ± 0.3 times more rapidly with the addition of trehalose and ADOC, respectively, relative to experiments with TDOC as the sole carbon source over the course of a 301 h incubation period. Results from these controlled experiments provide fundamental evidence for the occurrence of priming of TDOC by ADOC and a simple disaccharide. We suggest that priming effects on TDOC should be considered in carbon budgets for large-river deltas, estuaries, lakes, hydroelectric reservoirs, and continental shelves.

  3. Seasonal changes in the optical properties of dissolved organic matter (DOM) in large Arctic rivers

    DEFF Research Database (Denmark)

    Walker, S.A.; Amon, R.M.; Stedmon, Colin

    Arctic rivers deliver over 10% of the annual global river discharge yet little is known about the seasonal fluctuations in the quantity and quality of terrigenous dissolved organic matter (tDOM). A good constraint on such fluctuations is paramount to understand the role that climate change may have...... on tDOM input to the Arctic Ocean. To understand such changes the optical properties of colored tDOM (tCDOM) were studied. Samples were collected over several seasonal cycles from the six largest Arctic Rivers as part of the PARTNERS project. This unique dataset is the first of its kind capturing...... seasonal trends in Arctic river tCDOM composition. Parallel Factor Analysis was used to decompose the combined tCDOM fluorescence signal into five independent model components. The relationship of individual fluorescence components to dissolved organic carbon, lignin phenol concentrations, and the 14C...

  4. Dissolved rhenium in river waters: Insight into the chemical weathering of fossil organic carbon?

    Science.gov (United States)

    Hilton, Robert; Gaillardet, Jerome

    2010-05-01

    The store of carbon in rock as fossil organic matter represents ~15x1021 g, which is almost 400 times the total amount of carbon present in the oceans and atmosphere. Oxidation of fossil organic carbon (FOC) during chemical weathering returns CO2 that was sequestered from the atmosphere in the geological past, back into the contemporary carbon cycle. Despite this recognition, the natural rates of FOC weathering are poorly constrained in the modern environment, as are the precise controls on its variability. This is primarily due to the difficultly in tracking the dissolved and gaseous carbon produced during FOC weathering, where biology and carbonate weathering mask its influence at a catchment-scale. Here we investigate the use of rhenium (Re) as a tracer of FOC weathering, focusing on a series of mountain catchments in Taiwan. We present dual methodology for determining dissolved Re content in river waters by ICP-MS, using pre-concentration and matrix removal via anion exchange chemistry and by direct analysis through standard-addition. Precision (2sigma) and accuracy at the ppt level are found to be better than 7%. In the 16 sampled catchments, the dissolved Re concentrations span the entire range from the published literature. We investigate the source of dissolved Re in the catchments using measurements of bedrocks and river sediments, and the comparative behavior of Re to major dissolved phases. A preliminary estimate of the Re budget derived from the weathering of FOC is presented, and the implications for the rates of FOC weathering discussed.

  5. In-Stream Reactivity of Dissolved Organic Matter and Nutrients in Proglacial Watersheds

    OpenAIRE

    2013-01-01

    The unique landscape controls and meltwater contributions associated with glacial landcover along the coast of southeast Alaska were examined to better understand in-stream processing of dissolved organic matter (DOM) and nutrients during downstream transport. Specifically, this study paired glacial streams with nearby non-glacial streams and compared differences in landscape controls to: 1) evaluate the impact of glacial landcover and meltwater contributions on in-stream metabolism and uptak...

  6. The dynamics of fluorescent dissolved organic matter in the Paranaguá estuarine system, Southern Brazil

    OpenAIRE

    Paloma Kachel Gusso-Choueri; Rodrigo Brasil Choueri; Ana Teresa Lombardi; Eunice C. Machado

    2011-01-01

    The aim of this study was to investigate the dynamics of the fluorescent dissolved organic matter (FDOM) in Paranaguá Estuarine System (PES) as to infer about the contribution of allochthonous FDOM to the estuarine waters in relation to tidal condition and seasons. Fluorescence spectroscopy was used for such purpose and DOM characterization through fluorescence emission was performed using excitation wavelengths of λex 350 nm and λex 450 nm, the two main fluorescence groups known to...

  7. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters

    Science.gov (United States)

    Repeta, Daniel J.; Quan, Tracy M.; Aluwihare, Lihini I.; Accardi, AmyMarie

    2002-03-01

    The high molecular weight fraction of dissolved organic matter in a suite of lakes, rivers, seawater, and marine sediment interstitial water samples was collected by ultrafiltration and characterized by molecular level and spectroscopic techniques. Proton nuclear magnetic resonance spectra of all samples show a high degree of similarity, with major contributions from carbohydrates, bound acetate, and lipids. Molecular level analyses of neutral sugars show seven monosaccharides, rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose, to be abundant, and to occur in comparable relative amounts in each sample. Previous studies have emphasized the distinctive composition of dissolved humic substances in fresh and marine waters, and have attributed these differences to sources and transformations of organic matter unique to each environment. In contrast we find a large fraction of freshwater high molecular weight dissolved organic matter (HMWDOM; > 1kD) to be indistinguishable from marine HMWDOM in bulk and molecular-level chemical properties. Aquatic HMWDOM is similar in chemical composition to biologically derived acylated heteropolysaccharides isolated from marine algal cultures, suggesting a biological source for some fraction of persistent HMWDOM. High molecular weight DOC contributes 51 ± 26% of the total DOC, and monosaccharides 18 ± 8% of the total HMWDOC in our freshwater samples. These contributions are on average higher and more variable, but not significantly different than for surface seawater (30% and 16% respectively). Biogeochemical processes that produce, accumulate, and recycle DOM may therefore share important similarities and be broadly comparable across a range of environmental settings.

  8. Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea Ecosystem

    Directory of Open Access Journals (Sweden)

    B. Deutsch

    2012-04-01

    Full Text Available To test the hypothesis whether dissolved organic matter (DOM in a high latitude marginal sea is dominated by terrestrial derived matter 10 stations were sampled along the salinity gradient of the central and northern Baltic Sea and were analyzed for concentrations of dissolved organic carbon as well as δ13C values of high molecular weight DOM. Different end-member-mixing models were applied to quantify the influence of terrestrial DOM and to test for conservative versus non-conservative behavior of the terrestrial dissolved organic matter in the different Baltic Sea basins. The share of terrestrial DOM to the total DOM was calculated for each station, ranging from 43 to 83%. This shows the high influence of terrestrial DOM inputs for the Baltic Sea ecosystem. The data also suggest that terrestrial DOM that reaches the open Baltic Sea is not subject to substantial removal anymore. However compared to riverine DOM concentrations our results indicate that substantial amounts of DOM (>50% seems to be removed near the coastline during estuarine mixing. A budget approach yielded residence times for terrestrial DOM of 2.3, 2.7, and 4.1 yr for the Bothnian Bay, the Bothnian Sea and the Baltic Proper.

  9. Riverine Dissolved Organic Matter Degradation Modeled Through Microbial Incubations of Vascular Plant Leachates

    Science.gov (United States)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.

    2015-12-01

    Dissolved organic matter (DOM) contains as much carbon as is in the atmosphere, provides the main link between terrestrial and marine carbon reservoirs, and fuels the microbial food web. The fate and removal of DOM is a result of several complex conditions and processes, including photodegradation, sorption/desorption, dominant vascular plant sources, and microbial abundance. In order to better constrain factors affecting microbial degradation, laboratory incubations were performed using Sacramento River water for microbial inoculums and vascular plant leachates. Four vascular plant sources were chosen based on their dominance in the Sacramento River Valley: gymnosperm needles from Pinus sabiniana (foothill pine), angiosperm dicot leaves from Quercus douglassi (blue oak), angiosperm monocot mixed annual grasses, and angiosperm monocot mixed Schoenoplectus acutus (tule) and Typha spp. (cattails). Three concentrations of microbial inoculum were used for each plant material, ranging from 0.2% to 10%. Degradation was monitored as a function of time using dissolved organic carbon (DOC), UV-Vis absorbance, and fluorescent dissolved organic matter (fDOM), and was compared across vascular plant type and inoculum concentration.

  10. Nitrogen and dissolved organic carbon (DOC) losses from an artificially drained grassland on organic soils

    Science.gov (United States)

    Tiemeyer, B.; Kahle, P.

    2014-08-01

    Nitrate-nitrogen (NO3-N) as well as dissolved organic carbon (DOC) and nitrogen (DON) concentrations and losses were studied for three and two years, respectively, in a small catchment dominated by a degraded peatland used as intensive grassland. Concentrations in the shallow groundwater were spatially and temporally very variable, with NO3-N being the most dynamic component (7.3 ± 12.5 mg L-1) and ranging from 0 to 79.4 mg L-1. Average NO3-N concentrations of 10.3 ± 5.4 mg L-1 (0 to 25.5 mg L-1) in the ditch draining the catchment and annual NO3-N losses of 19, 35 and 26 kg ha-1 confirmed drained peatlands as an important source of diffuse N pollution. The highest NO3-N losses occurred during the wettest year. Resulting from concentration of 2.4 ± 0.8 mg L-1 (0.7 to 6.2 mg L-1), DON added a further 4.5 to 6.4 kg ha-1 to the N losses and thus formed a relevant (15%) component of the total N losses. Ditch DOC concentrations of 24.9 ± 5.9 mg L-1 (13.1 to 47.7 mg L-1) resulted in DOC losses of 66 kg ha-1 in the wet year of 2006/2007 and 39 kg ha-1 in the dry year of 2007/2008. Ditch DOC concentration were lower than the groundwater DOC concentration of 50.6 ± 15.2 mg L-1 (14.9 to 88.5 mg L-1). Both DOC and N concentrations were governed by hydrological conditions, but NO3-N reacted much faster and clearer on rising discharge rates than DOC, which tended to be higher under drier conditions. In the third year of the study, the superposition of a very wet summer and land use changes from grassland to arable land in a part of the catchment suggests that, under re-wetting conditions with a high groundwater table in summer, NO3-N would diminish quickly, while DOC would remain on a similar level. Further intensification of the land use, on the other hand, would increase N losses to receiving water bodies.

  11. Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions.

    Science.gov (United States)

    Miller, Carrie L; Mason, Robert P; Gilmour, Cynthia C; Heyes, Andrew

    2007-04-01

    The complexation of Hg under sulfidic conditions influences its bioavailability for microbial methylation. Neutral dissolved Hg-sulfide complexes are readily available to Hg-methylating bacteria in culture, and thermodynamic models predict that inorganic Hg-sulfide complexes dominate dissolved Hg speciation under natural sulfidic conditions. However, these models have not been validated in the field. To examine the complexation of Hg in natural sulfidic waters, octanol/water partitioning methods were modified for use under environmentally relevant conditions, and a centrifuge ultrafiltration technique was developed. These techniques demonstrated much lower concentrations of dissolved Hg-sulfide complexes than predicted. Furthermore, the study revealed an interaction between Hg, dissolved organic matter (DOM), and sulfide that is not captured by current thermodynamic models. Whereas Hg forms strong complexes with DOM under oxic conditions, these complexes had not been expected to form in the presence of sulfide because of the stronger affinity of Hg for sulfide relative to its affinity for DOM. The observed interaction between Hg and DOM in the presence of sulfide likely involves the formation of a DOM-Hg-sulfide complex or results from the hydrophobic partitioning of neutral Hg-sulfide complexes into the higher-molecular-weight DOM. An understanding of the mechanism of this interaction and determination of complexation coefficients for the Hg-sulfide-DOM complex are needed to adequately assess how our new finding affects Hg bioavailability, sorption, and flux.

  12. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    Science.gov (United States)

    Hunter, W. R.; Battin, T. J.

    2016-08-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.

  13. Association of dissolved mercury with dissolved organic carbon in U.S. rivers and streams: The role of watershed soil organic carbon

    Science.gov (United States)

    Stoken, Olivia M.; Riscassi, Ami L.; Scanlon, Todd M.

    2016-04-01

    Streams and rivers are important pathways for the export of atmospherically deposited mercury (Hg) from watersheds. Dissolved Hg (HgD) is strongly associated with dissolved organic carbon (DOC) in stream water, but the ratio of HgD to DOC is highly variable between watersheds. In this study, the HgD:DOC ratios from 19 watersheds were evaluated with respect to Hg wet deposition and watershed soil organic carbon (SOC) content. On a subset of sites where data were available, DOC quality measured by specific ultra violet absorbance at 254 nm, was considered as an additional factor that may influence HgD:DOC . No significant relationship was found between Hg wet deposition and HgD:DOC, but SOC content (g m-2) was able to explain 81% of the variance in the HgD:DOC ratio (ng mg-1) following the form: HgD:DOC=17.8*SOC-0.41. The inclusion of DOC quality as a secondary predictor variable explained only an additional 1% of the variance. A mathematical framework to interpret the observed power-law relationship between HgD:DOC and SOC suggests Hg supply limitation for adsorption to soils with relatively large carbon pools. With SOC as a primary factor controlling the association of HgD with DOC, SOC data sets may be utilized to predict stream HgD:DOC ratios on a more geographically widespread basis. In watersheds where DOC data are available, estimates of HgD may be readily obtained. Future Hg emissions policies must consider soil-mediated processes that affect the transport of Hg and DOC from terrestrial watersheds to streams for accurate predictions of water quality impacts.

  14. Dissolved organic matter release and retention in ultisols in relation to land use patterns.

    Science.gov (United States)

    Zhang, Qichun; Hou, Changping; Liang, Yingying; Feng, Ying

    2014-07-01

    The application of organic fertilizer to maintain soil fertility and crop yield has been practiced for thousands of years in China. This practice improves soil carbon sequestration, due to the high level of dissolved organic matter (DOM) in organic manure. In this study, batch equilibrium studies were conducted to examine the capacity of three ultisols from areas under different land use patterns to retain dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) extracted from rape cake and chicken manure. The results showed that the amount of DOM removed or released in solution by the soil was a linear function of the initial amount added to the soil-water system; therefore, analysis of sorption isotherms was best conducted using the initial mass isotherm IM method. The ultisol retained, on average, 19.9% of the total DOC and 41.7% of the total DON in solution, suggesting that ultisol has a relatively low DOC adsorption capacity. The ultisol from a bamboo forest was found to have a higher capacity than that from a pear orchard to retain DOC and DON. The adsorption affinities of DOM according to soil type were in the following order: bamboo forest (BF)>tea garden (TG)>pear orchard (PO). These results suggested that the continuous application of high doses of organic manure, particularly rape cake, may saturate the DOC adsorptive sites, thereby permitting increased leaching of DOC and the possibility of ground water contamination. Furthermore, we note that amorphous Fe and Al oxides play an important role in the adsorption capacity of both DOC and DON in ultisols.

  15. Sources, behaviors and degradation of dissolved organic matter in the East China Sea

    Science.gov (United States)

    Chen, Yan; Yang, Gui-Peng; Liu, Li; Zhang, Peng-Yan; Leng, Wei-Song

    2016-03-01

    Concentrations of dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and its major compound classes-total hydrolysable amino acids (THAA) were measured at 4 cross-shelf transects of the East China Sea in July 2011. Surface concentrations of DOC, DIN, DON and THAA at the nearshore stations were mostly in excess of those found at the offshore sites, indicating either substantial autochthonous production or allochthonous inputs from the Changjiang River. The vertical distributions of DOC, DON and THAA showed similar trends with higher values in the surface layer, whereas the elevated concentrations of DIN were observed in the bottom layer. Major constituents of THAA presented in the study area were glycine, serine, alanine, glutamic acid, aspartic acid and valine. The mole percentages of neutral amino acids increased from surface water to bottom water, whereas acidic and hydroxy amino acids decreased with the water depth. Concentrations of DOC and THAA were negatively correlated to the ΔDIN values (the difference between the real concentration and theoretical concentration), respectively, indicating the coupling relation between dissolved organic matter (DOM) remineralization and nutrient regeneration in the water column. The C/N ratios in the water column exhibited different characteristics with elevated values appearing in the surface and bottom layers. Box and whisker plots showed that both degradation index (DI) values and THAA yields displayed a decreasing trend from the surface layer to the bottom layer, implying increasing degradation with the water depth. Our data revealed that glycine and alanine increased in relative abundance with decreasing DI, while tyrosine, valine, phenylalanine and isoleucine increased with increasing DI.

  16. Effects of Total Dissolved Solids on Aquatic Organisms: A Review of Literature and Recommendation for Salmonid Species

    OpenAIRE

    P. K. Weber-Scannell; Duffy, L K; Phyllis K. Weber-Scannell; Duffy, Lawrence K.

    2007-01-01

    Total dissolves solids (TDS) are naturally present in water or are the result of mining or some industrial treatment of water. TDS contain minerals and organic molecules that provide benefits such as nutrients or contaminants such as toxic metals and organic pollutants. Current regulations require the periodic monitoring of TDS, which is a measurement of inorganic salts, organic matter and other dissolved materials in water. Measurements of TDS do not differentiate among ions. The amount of T...

  17. Phase partitioning and solubility of iron in natural seawater controlled by dissolved organic matter

    Science.gov (United States)

    Chen, Min; Wang, Wen-Xiong; Guo, Laodong

    2004-12-01

    The phase partitioning and solubility of Fe as well as its relationship with marine dissolved organic matter (DOM) in different natural seawater and phytoplankton cultures were examined using radiotracer and ultrafiltration techniques to better understand Fe biogeochemical cycling and its biological availability in the ocean. Fe solubility in seawaters was related to the filter's cutoff, with the Fe solubility in the Complexation of organic ligands with Fe appeared to be Fe-specific or Fe preferential. Our results highlight quantitatively the importance of DOM in controlling Fe solubility in seawater. Further studies are needed to elucidate the interrelationship between the biogeochemical cycles of Fe and the chemistry of DOM in the ocean.

  18. Biliprotein maturation: the chromophore attachment.

    Science.gov (United States)

    Scheer, H; Zhao, K-H

    2008-04-01

    Biliproteins are a widespread group of brilliantly coloured photoreceptors characterized by linear tetrapyrrolic chromophores, bilins, which are covalently bound to the apoproteins via relatively stable thioether bonds. Covalent binding stabilizes the chromoproteins and is mandatory for phycobilisome assembly; and, it is also important in biliprotein applications such as fluorescence labelling. Covalent binding has, on the other hand, also considerably hindered biliprotein research because autocatalytic chromophore additions are rare, and information on enzymatic addition by lyases was limited to a single example, an EF-type lyase attaching phycocyanobilin to cysteine-alpha84 of C-phycocyanin. The discovery of new activities for the latter lyases, and of new types of lyases, have reinvigorated research activities in the subject. So far, work has mainly concentrated on cyanobacterial phycobiliproteins. Methodological advances in the process, however, as well as the finding of often large numbers of homologues, opens new possibilities for research on the subsequent assembly/disassembly of the phycobilisome in cyanobacteria and red algae, on the assembly and organization of the cryptophyte light-harvesting system, on applications in basic research such as protein folding, and on the use of phycobiliproteins for labelling.

  19. Dissolved organic matter composition and bioavailability reflect ecosystem productivity in the Western Arctic Ocean

    Science.gov (United States)

    Shen, Y.; Fichot, C. G.; Benner, R.

    2012-12-01

    Dissolved organic carbon (DOC) and total dissolved amino acids (TDAA) were measured in high (Chukchi Sea) and low (Beaufort Sea) productivity regions of the western Arctic Ocean to investigate the composition and bioavailability of dissolved organic matter (DOM). Concentrations and DOC-normalized yields of TDAA in Chukchi surface waters were relatively high, indicating an accumulation of bioavailable DOM. High concentrations and yields of TDAA were also observed in the upper halocline of slope and basin waters, indicating off-shelf transport of bioavailable DOM from the Chukchi Sea. In contrast, concentrations and yields of TDAA in Beaufort surface waters were relatively low, indicting DOM was of limited bioavailability. Concentrations and yields of TDAA in the upper halocline of slope and basin waters were also low, suggesting the Beaufort is not a major source of bioavailable DOM to slope and basin waters. In shelf waters of both systems, elevated concentrations and yields of TDAA were often observed in waters with higher chlorophyll concentrations and productivity. Surface concentrations of DOC were similar (p > 0.05) in the two systems despite the contrasting productivity, but concentrations and yields of TDAA were significantly higher (p productivity in the western Arctic. The occurrence of elevated bioavailable DOM concentrations in the Chukchi Sea implies an uncoupling between the biological production and utilization of DOM and has important implications for sustaining heterotrophic microbial growth and diversity in oligotrophic waters of the central Arctic basins.

  20. Applications of Fluorescence Spectroscopy for dissolved organic matter characterization in wastewater treatment plants

    Science.gov (United States)

    Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles

    2016-04-01

    Dissolved organic matter (DOM) influences wastewater treatment plants efficiency (WTTP): variations in its quality and quantity can induce a foaming phenomenon and a fouling event inside biofiltration processes. Moreover, in order to manage denitrification step (control and optimization of the nitrate recirculation), it is important to be able to estimate biodegradable organic matter quantity before biological treatment. But the current methods used to characterize organic matter quality, like biological oxygen demand are laborious, time consuming and sometimes not applicable to directly monitor organic matter in situ. In the context of MOCOPEE research program (www.mocopee.com), this study aims to assess the use of optical techniques, such as UV-Visible absorbance and more specifically fluorescence spectroscopy in order to monitor and to optimize process efficiency in WWTP. Fluorescence excitation-emission matrix (EEM) spectroscopy was employed to prospect the possibility of using this technology online and in real time to characterize dissolved organic matter in different effluents of the WWTP Seine Centre (240,000 m3/day) in Paris, France. 35 sewage water influent samples were collected on 10 days at different hours. Data treatment were performed by two methods: peak picking and parallel factor analysis (PARAFAC). An evolution of DOM quality (position of excitation - emission peaks) and quantity (intensity of fluorescence) was observed between the different treatment steps (influent, primary treatment, biological treatment, effluent). Correlations were found between fluorescence indicators and different water quality key parameters in the sewage influents. We developed different multivariate linear regression models in order to predict a variety of water quality parameters by fluorescence intensity at specific excitation-emission wavelengths. For example dissolved biological oxygen demand (r2=0,900; p<0,0001) and ammonium concentration (r2=0,898; p<0

  1. Long-term dynamics of dissolved organic carbon: implications for drinking water supply.

    Science.gov (United States)

    Ledesma, José L J; Köhler, Stephan J; Futter, Martyn N

    2012-08-15

    Surface waters are the main source of drinking water in many regions. Increasing organic carbon concentrations are a cause for concern in Nordic countries since both dissolved and particulate organic carbon can transport contaminants and adversely affect drinking water treatment processes. We present a long-term study of dynamics of total (particulate and dissolved) organic carbon (TOC) concentrations in the River Fyris. This river supplies drinking water to approximately 200000 people in Uppsala, Sweden. The River Fyris is a main tributary to Lake Mälaren, which supplies drinking water to approximately 2 million people in the greater Stockholm area. Utilities responsible for drinking water supply in both Uppsala and Stockholm have expressed concerns about possible increases in TOC. We evaluate organic carbon dynamics within the Fyris catchment by calculating areal mass exports using observed TOC concentrations and modeled flows and by modeling dissolved organic carbon (as a proxy for TOC) using the dynamic, process based INCA-C model. Exports of TOC from the catchment ranged from 0.8 to 5.8 g m(-2) year(-1) in the period 1995-2010. The variation in annual exports was related to climatic variability which influenced seasonality and amount of runoff. Exports and discharge uncoupled at the end of 2008. A dramatic increase in TOC concentrations was observed in 2009, which gradually declined in 2010-2011. INCA-C successfully reproduced the intra- and inter-annual variation in concentrations during 1996-2008 and 2010-2011 but failed to capture the anomalous increase in 2009. We evaluated a number of hypotheses to explain the anomaly in 2009 TOC values, ultimately none proved satisfactory. We draw two main conclusions: there is at least one unknown or unmeasured process controlling or influencing surface water TOC and INCA-C can be used as part of the decision-making process for current and future use of rivers for drinking water supply.

  2. Impact of total organic carbon (in sediments) and dissolved organic carbon (in overlying water column) on Hg sequestration by coastal sediments from the central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Chakrabortya, P.; Sharma, B.M.; Babu, P.V.R.; Yao, K.M.; Jaychandran, S.

    Total organic carbon (TOC) (in sediment) and dissolved organic matter (DOM) (in water column) play important roles in controlling the mercury sequestration process by the sediments from the central east coast of India. This toxic metal prefers...

  3. Export of Dissolved Organic Matter, Nutrients and Carbon from Himalayan River System in Central Nepal

    Science.gov (United States)

    Bhatt, M. P.

    2014-12-01

    Chemical weathering is a vital ecosystem process and plays a central role in regulation of global carbon cycles. Weathering from Himalayan landscape supply high amount of major ions, nutrients and suspended sediments to the oceans. Surface water samples were collected from sixteen stations at different altitude along the Langtnag-Narayani Himalayan river system in central Nepal on a monthly basis for one year. This study aims to investigate spatiotemporal variations of dissolved organic matter, nutrients and carbonic species and to evaluate their controlling factors within the basin. The fluxes of these species appeared several fold higher at low elevation than at mid mountains and high elevation Himalaya sites. Seasonality appeared to exert major control on concentrations and fluxes of major solutes along the drainage network. The highest export rate of chemical species corresponded to the monsoon season, followed by the ones corresponding to post-monsoon and pre-monsoon seasons. Carbonate has major control on the flux of major solutes within the basin. The export rate of dissolved organic carbon and total dissolved nitrogen were about three and seventeen times higher respectively at the Narayani basin than its headwater at Langtang basin within the high Himalaya. Nitrate and phosphate export rates in the Narayani basin were 5.07 and 0.34 tons km-2 yr-1 respectively which is several fold higher than the rates in the high Himalaya probably due to input from agricultural activities. The export of dissolved inorganic carbon from the Narayani basin was 101.87 tons km-2 yr-1 of which bicarbonate appeared to be the dominant fraction (94.9%) followed by carbonic acid (4.7%) and carbonate (0.4%). Partial pressure of carbon dioxide (pCO2) resulted under-saturated in the high elevation Himalayan basin and supersaturated at the low elevation Narayani basin. The concentration of pCO2 is considered to be an important factor for regulating weathering rates of any landscape.

  4. Bacterial contribution to dissolved organic matter in eutrophic Lake Kasumigaura, Japan.

    Science.gov (United States)

    Kawasaki, Nobuyuki; Komatsu, Kazuhiro; Kohzu, Ayato; Tomioka, Noriko; Shinohara, Ryuichiro; Satou, Takayuki; Watanabe, Fumiko Nara; Tada, Yuya; Hamasaki, Koji; Kushairi, M R M; Imai, Akio

    2013-12-01

    Incubation experiments using filtered waters from Lake Kasumigaura were conducted to examine bacterial contribution to a dissolved organic carbon (DOC) pool. Bacterial abundance, bacterial production, concentrations of DOC, total dissolved amino acids (TDAA), and total dissolved neutral sugars (TDNS) were monitored during the experiments. Bacterial production during the first few days was very high (20 to 35 μg C liter(-1) day(-1)), accounting for 40 to 70% of primary production. The total bacterial production accounted for 34 to 55% of the DOC loss during the experiment, indicating high bacterial activities in Lake Kasumigaura. The DOC degradation was only 12 to 15%, whereas the degradation of TDAA and TDNS ranged from 30 to 50%, suggesting the preferential usage of TDAA and TDNS. The contribution of bacterially derived carbon to a DOC pool in Lake Kasumigaura was estimated using d-amino acids as bacterial biomarkers and accounted for 30 to 50% of the lake DOC. These values were much higher than those estimated for the open ocean (20 to 30%). The ratio of bacterially derived carbon to bulk carbon increased slightly with time, suggesting that the bacterially derived carbon is more resistant to microbial degradation than bulk carbon. This is the first study to estimate the bacterial contribution to a DOC pool in freshwater environments. These results indicate that bacteria play even more important roles in carbon cycles in freshwater environments than in open oceans and also suggests that recent increases in recalcitrant DOC in various lakes could be attributed to bacterially derived carbon. The potential differences in bacterial contributions to dissolved organic matter (DOM) between freshwater and marine environments are discussed.

  5. Is marine dissolved organic matter the "missing sink" for soil-derived black carbon?

    Science.gov (United States)

    Dittmar, Thorsten; Suryaputra, I. Gusti N. A.; Niggemann, Jutta

    2010-05-01

    The thermal alteration of biomass during wildfires can be an important factor for the stabilization of organic matter in soils. Black carbon, i.e. biochars and soot, is more resistant to biodegradation than unaltered biomass, and it can therefore accumulate in soils and sediments. Our knowledge on the turnover of black carbon is still very fragmentary, and the known loss rates do not account for the estimated production rates. Major loss mechanisms remain unidentified or have been underestimated. Recently, we have identified a major thermogenic component in dissolved organic matter (DOM) of the deep ocean. We hypothesize that black carbon in soils is solubilized over time, probably via microbial interaction, and transported via rivers into the ocean. DOM, one of the largest organic carbon pools on earth, could therefore be an important transport medium of soil-derived black carbon. A case study was performed in the Suwannee River estuary and adjacent oceanic shelf (Florida, USA). The Suwannee River drains extensive wetlands and fire-impacted forests. The fate of dissolved black carbon was traced from the river through its estuary into the open Gulf of Mexico. Black carbon was molecularly quantified as benzenepolycarboxylic acids after nitric acid oxidation via a new UPLC method (ultra-performance liquid chromatography). The molecular analysis was accompanied by optical (excitation-emission matrix fluorescence and absorbance spectroscopy) and elemental characterization of DOM. A major component (approx. 10% on a carbon basis) of Suwannee River DOM could be identified as black carbon. The concentration of black carbon decreased offshore, and on the open ocean only about 1% of DOM could be identified as black carbon. In the deep ocean, the thermogenic component of DOM is higher and approx. 2.4% of DOM. The surface ocean must therefore be an efficient sink for dissolved black carbon. We hypothesize that sunlight may initiate photochemical reactions that cause a loss of

  6. Evolution of Pretreatment Methods for Nanofiltration Membrane Used for Dissolved Organic Matter Removal in Raw Water Supply

    Directory of Open Access Journals (Sweden)

    Sirikul Siriraksophon

    2016-07-01

    Full Text Available Coagulation and microfiltration using polyaluminium chloride (PACl were investigated as a pretreatment process by nanofiltration to reduce dissolved organic matter in both raw water and treated water at water treatment plants. The dissolved organic matter in the raw water supply may be a precursor of carcinogens produced during the disinfection process. Raw water from pumping stations and treated water from Hat Yai Provincial Waterworks Authority, Songkhla Province, Thailand were used as samples for this study. Fractionation of raw water samples by DAX-8 and XAD-4 resin revealed that they contained hydrophilic, transphilic and hydrophobic groups with hydrophilic the major organic component. PACl coagulation resulted in a higher dissolved organic matter removal than microfiltration techniques. A hybrid coagulation-nanofiltration process was studied. This effectively reduced dissolved organic matter as dissolved organic carbon and UV-254 by 86% and 94% respectively. The hybrid coagulation-nanofiltration process reduced dissolved organic carbons of the hydrophobic group more effectively than the hydrophilic group. Chloroform and bromodichloroform were the two major species of the trihalomethane group produced when raw water reacted with chlorine. The hybrid coagulation-nanofiltration process reduced the trihalomethane formation potential (THMFP in raw water samples by up to 90%

  7. Application of isotope dilution method for measuring bioavailability of organic contaminants sorbed to dissolved organic matter (DOM)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Moreno, Laura, E-mail: laura.delgado@eez.csic.es; Wu, Laosheng; Gan, Jay

    2015-08-15

    Natural waters such as surface water and sediment porewater invariably contain dissolved organic matter (DOM). Association of strongly hydrophobic contaminants (HOCs) with DOM leads to decreased toxicity and bioavailability, but bioavailability of DOM-sorbed HOCs is difficult to measure. Current methods to estimate bioavailability of HOCs in water are based on only the freely dissolved concentration (C{sub free}). The ignorance of the exchangeable fraction of HOCs sorbed on DOM may result in an underestimation of the toxicity potential of HOCs to aquatic organisms. Here we explore the applicability of an isotope dilution method (IDM) to measuring the desorption fraction of DOM-sorbed pyrene and bifenthrin and determining their exchangeable pool (E) as an approximation of bioavailability. E values, expressed as percentage of the total concentration, ranged between 0.80 and 0.92% for pyrene and 0.74 and 0.85% for bifenthrin, depending primarily on the amount of chemical in the freely dissolved form. However, between 34 and 78% of the DOM-sorbed pyrene was exchangeable. This fraction ranged between 23% and 82% for bifenthrin. The ability of IDM to predict bioavailability was further shown from a significant relationship (r{sup 2} > 0.72, P < 0.0001) between E and bioaccumulation into Daphnia magna. Therefore, IDM may be used to improve the bioavailability measurement and risk assessment of HOCs in aquatic systems.

  8. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    Science.gov (United States)

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  9. Cu Binding to Iron Oxide-Organic Matter Coprecipitates in Solid and Dissolved Phases

    Science.gov (United States)

    Vadas, T. M.; Koenigsmark, F.

    2015-12-01

    Recent studies indicate that Cu is released from wetlands following storm events. Assymetrical field flow field fractionation (AF4) analyses as well as total and dissolved metal concentration measurements suggest iron oxide-organic matter complexes control Cu retention and release. Coprecipitation products of Fe oxide and organic matter were prepared under conditions similar to the wetland to assess Cu partitioning to and availability from solid phases that settle from solution as well as phases remaining suspended. Cu coprecipitation and sorption to organomineral precipitation solids formed at different Fe:organic carbon (OC) ratios were compared for net Cu removal and extractability. As more humic acid was present during precipitation of Fe, TEM images indicated smaller Fe oxide particles formed within an organic matrix as expected. In coprecipitation reactions, as the ratio of Fe:OC decreased, more Cu was removed from solution at pH 5.5 and below. However, in sorption reactions, there was an inhibition of Cu removal at low OC concentrations. As the pH increased from 5.5 to 7 and as solution phase OC concentration increased, more Cu remained dissolved in both coprecipitation and sorption reactions. The addition of Ca2+, glycine, histidine and citric acid or lowering the pH resulted in more extractable Cu from the coprecipitation compared with the sorption reactions. The variations in Cu extraction were likely due to a combination of a more amorphous structure in CPT products, and the relative abundance of available Fe oxide or OC binding sites. Suspended Fe oxide-organic matter coprecipitates were assessed using AF4 coupled to online TOC analysis and ICP-MS. In laboratory prepared samples, Cu was observed in a mixture of small 1-5 nm colloids of Fe oxide-organic matter precipitates, but the majority was observed in larger organic matter colloids and were not UV absorbing, suggesting more aliphatic carbon materials. In field samples, up to 60% of the dissolved Cu

  10. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil.

    Science.gov (United States)

    Weng, Liping; Temminghoff, Erwin J M; Lofts, Stephen; Tipping, Edward; Van Riemsdijk, Willem H

    2002-11-15

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The results show that the DOM-complexed species is generally more significant for Cu and Pb than for Cd, Zn, and Ni. The ability of two advanced models for ion binding to humic substances, e.g., model VI and NICA-Donnan, in the simulation of metal binding to natural DOM was assessed by comparing the model predictions with the measurements. Using the default parameters of fulvic and humic acid, the predicted concentrations of free metal ions from the solution speciation calculation using the two models are mostly within 1 order of magnitude difference from the measured concentrations, except for Ni and Pb in a few samples. Furthermore, the solid-solution partitioning of the metals was simulated using a multisurface model, in which metal binding to soil organic matter, dissolved organic matter, clay, and iron hydroxides was accounted for using adsorption and cation exchange models (NICA-Donnan, Donnan, DDL, CD-MUSIC). The model estimation of the dissolved concentration of the metals is mostly within 1 order of magnitude difference from those measured except for Ni in some samples and Pb. The solubility of the metals depends mainly on the metal loading over soil sorbents, pH, and the concentration of inorganic ligands and DOM in the soil solution.

  11. State factor relationships of dissolved organic carbon and nitrogen losses from unpolluted temperate forest watersheds

    Science.gov (United States)

    Perakis, S.S.; Hedin, L.O.

    2007-01-01

    We sampled 100 unpolluted, old-growth forested watersheds, divided among 13 separate study areas over 5 years in temperate southern Chile and Argentina, to evaluate relationships among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams. These watersheds provide a unique opportunity to examine broad-scale controls over carbon (C) and nitrogen (N) biogeochemistry in the absence of significant human disturbance from chronic N deposition and land use change. Variations in the ratio dissolved organic carbon (DOC) to nitrogen (DON) in watershed streams differed by underlying soil parent material, with average C:N = 29 for watersheds underlain by volcanic ash and basalt versus C:N = 73 for sedimentary and metamorphic parent materials, consistent with stronger adsorption of low C:N hydrophobic materials by amorphous clays commonly associated with volcanic ash and basalt weathering. Mean annual precipitation was related positively to variations in both DOC (range: 0.2-9.7 mg C/L) and DON (range: 0.008-0.135 mg N/L) across study areas, suggesting that variations in water volume and concentration may act synergistically to influence C and N losses across dry to wet gradients in these forest ecosystems. Dominance of vegetation by broadleaf versus coniferous trees had negligible effects on organic C and N concentrations in comparison to abiotic factors. We conclude that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds. Our results raise the possibility that biotic imprints on watershed C and N losses may be less pronounced in naturally N-poor forests than in areas impacted by land use change and chronic N deposition. Copyright 2007 by the American Geophysical Union.

  12. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.

    Directory of Open Access Journals (Sweden)

    Andreas F Haas

    Full Text Available Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata--Ochrophyta; Amansia rhodantha--Rhodophyta; Halimeda opuntia--Chlorophyta, a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii and a dominant hermatypic coral (Porites lobata. Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h⁻¹ dm⁻², stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h⁻¹ and concomitant oxygen drawdown (0.16±0.05 µmol L⁻¹ h⁻¹ dm⁻². Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence

  13. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet.

    Science.gov (United States)

    Antony, Runa; Grannas, Amanda M; Willoughby, Amanda S; Sleighter, Rachel L; Thamban, Meloth; Hatcher, Patrick G

    2014-06-03

    Polar ice sheets hold a significant pool of the world's carbon reserve and are an integral component of the global carbon cycle. Yet, organic carbon composition and cycling in these systems is least understood. Here, we use ultrahigh resolution mass spectrometry to elucidate, at an unprecedented level, molecular details of dissolved organic matter (DOM) in Antarctic snow. Tens of thousands of distinct molecular species are identified, providing clues to the nature and sources of organic carbon in Antarctica. We show that many of the identified supraglacial organic matter formulas are consistent with material from microbial sources, and terrestrial inputs of vascular plant-derived materials are likely more important sources of organic carbon to Antarctica than previously thought. Black carbon-like material apparently originating from biomass burning in South America is also present, while a smaller fraction originated from soil humics and appears to be photochemically or microbially modified. In addition to remote continental sources, we document signals of oceanic emissions of primary aerosols and secondary organic aerosol precursors. The new insights on the diversity of organic species in Antarctic snowpack reinforce the importance of studying organic carbon associated with the Earth's polar regions in the face of changing climate.

  14. Experimental investigation and modeling of dissolved organic carbon removal by coagulation from seawater.

    Science.gov (United States)

    Jeong, Sanghyun; Sathasivan, Arumugam; Kastl, George; Shim, Wang Geun; Vigneswaran, Saravanamuthu

    2014-01-01

    Coagulation removes colloidal matters and dissolved organic carbon (DOC) which can cause irreversible membrane fouling. However, how DOC is removed by coagulant is not well-known. Jar test was used to study the removal of hydrophobic and hydrophilic DOC fractions at various doses (0.5-8.0 mg-Fe(+3) L(-1)) of ferric chloride (FeCl3) and pH (5.0-9.0). Natural organic matter (NOM) in seawater and treated seawater were fractionated by liquid chromatography-organic carbon detector (LC-OCD). Compared to surface water, the removal of DOC in seawater by coagulation was remarkably different. Majority of DOC could be easily removed with very low coagulant dose (model of Kastl et al. (2004) which assumed that the removal occurred by adsorption of un-dissociated compounds onto ferric hydroxide was formulated and successfully validated against the jar test data.

  15. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification

    Science.gov (United States)

    Lawrence, Gregory B.; Dukett, James E; Houck, Nathan; Snyder, Phillip; Capone, Susan B.

    2013-01-01

    Increasing pH and decreasing Al in surface waters recovering from acidification have been accompanied by increasing concentrations of dissolved organic carbon (DOC) and associated organic acids that partially offset pH increases and complicate assessments of recovery from acidification. To better understand the processes of recovery, monthly chemistry from 42 lakes in the Adirondack region, NY, collected from 1994 to 2011, were used to (1) evaluate long-term changes in DOC and associated strongly acidic organic acids and (2) use the base-cation surplus (BCS) as a chemical index to assess the effects of increasing DOC concentrations on the Al chemistry of these lakes. Over the study period, the BCS increased (p acids.

  16. Compost impacts on dissolved organic carbon and available nitrogen and phosphorus in turfgrass soil.

    Science.gov (United States)

    Wright, Alan L; Provin, Tony L; Hons, Frank M; Zuberer, David A; White, Richard H

    2008-01-01

    Compost application to turfgrass soils may increase dissolved organic C (DOC) levels which affects nutrient dynamics in soil. The objectives of this study were to investigate the influence of compost source and application rate on soil organic C (SOC), DOC, NO(3), and available P during 29 months after a one-time application to St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] turf. Compost sources had variable composition, yet resulted in few differences in SOC, DOC, and NO(3) after applied to soil. Available NO(3) rapidly decreased after compost application and was unaffected by compost source and application rate. Available P increased after compost application and exhibited cyclical seasonal patterns related to DOC. Compost application decreased soil pH relative to unamended soil, but pH increased during the course of the study due to irrigation with sodic water. Increasing the compost application rate increased SOC by 3 months, and levels remained fairly stable to 29 months. In contrast, DOC continued to increase from 3 to 29 months after application, suggesting that compost mineralization and growth of St. Augustinegrass contributed to seasonal dynamics. Dissolved organic C was 75%, 78%, and 101% greater 29 months after application of 0, 80, and 160 Mg compostha(-1), respectively, than before application. Impacts of composts on soil properties indicated that most significant effects occurred within a few months of application. Seasonal variability of SOC, DOC, and available P was likely related to St. Augustinegrass growth stages as well as precipitation, as declines occurred after precipitation events.

  17. Characterization of Rainwater Dissolved Organic Matter by Ultrahigh Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Science.gov (United States)

    Mead, R. N.; Podgorski, D. C.; Mullaugh, K. M.; Avery, B.; Kieber, R. J.; Willey, J. D.; Cooper, W. T.

    2011-12-01

    Rainwater is a complex, heterogeneous mixture of dissolved organic matter (DOM) that remains largely uncharacterized at the molecular level. Rainwater with dissolved organic carbon values ranging from 3 to 450 μM was collected during 40 separate rain events from 2007-2011 that included coastal and terrestrial storms based upon 36 hour back trajectories. Individual rain samples were lypholized and solvent added in preparation for analysis by negative electrospray ionization and atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). This data set is unique in that each rain event was analyzed individually and not combined allowing for unprecedented insight into rainwater DOM at the molecular level on an episodic basis. Unique elemental compositions were assigned for compounds belonging to CHO, CHOS and CHON classes. Data visualization by van Krevelen diagrams showed clear differences in coastal and terrestrial storm events with a majority of coastal storms having high H/C (1.5-2.0) relative to terrestrial storms. Further inspection of the data revealed that rainwater has relatively high O/C (1.4) and low H/C (<0.5) which suggests rainwater DOM is compositionally different than fog water, water soluble organic carbon isolated from aerosols and surface waters.

  18. Dissolved organic matter and lake metabolism. Technical progress report, 1 July 1977--30 June 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, R.G.

    1978-01-01

    Interactions of dissolved organic matter with inorganic nutrient cycling and regulation of the photosynthetic and decompositional metabolism of micro- and macroflora remains the focal point of these studies. Major efforts are directed towards the sources, fates, pathways, and interactions of dissolved organic matter in inorganic chemical cycling; allochthonous sources, metabolism en route, and inputs to the lake systems of increasing stages of eutrophication; and the relationships of these compounds to the nutrient physiology and metabolism of phytoplankton, sessile algae, macrophytes, and bacterial populations of the littoral zones and wetlands of the drainage basin. Analyses of regulatory mechanisms of growth and rates of carbon cycling center on evaluation of quantitative control interactions among the microflora of the pelagial zones of seversal lakes of progressively greater eutrophy, littoral photosynthetic producer-decomposer complex, and allochthonous inorganic--organic influxes and their biotic processing. The underlying thesis is that quantification of the dynamic carbon fluxes among these components and their rate control mechanisms by physical and chemical factors are fundamental to elucidation of the rate functions of lake eutrophication.

  19. Differences in dissolved organic matter between reclaimed water source and drinking water source.

    Science.gov (United States)

    Hu, Hong-Ying; Du, Ye; Wu, Qian-Yuan; Zhao, Xin; Tang, Xin; Chen, Zhuo

    2016-05-01

    Dissolved organic matter (DOM) significantly affects the quality of reclaimed water and drinking water. Reclaimed water potable reuse is an effective way to augment drinking water source and de facto reuse exists worldwide. Hence, when reclaimed water source (namely secondary effluent) is blended with drinking water source, understanding the difference in DOM between drinking water source (dDOM) and reclaimed water source (rDOM) is essential. In this study, composition, transformation, and potential risk of dDOM from drinking water source and rDOM from secondary effluent were compared. Generally, the DOC concentration of rDOM and dissolved organic nitrogen (DON) content in reclaimed water source were higher but rDOM exhibited a lower aromaticity. Besides, rDOM comprises a higher proportion of hydrophilic fractions and more low-molecular weight compounds, which are difficult to be removed during coagulation. Although dDOM exhibited higher specific disinfection byproducts formation potential (SDBPFP), rDOM formed more total disinfection byproducts (DBPs) during chlorination including halomethanes (THMs) and haloacetic acids (HAAs) due to high DOC concentration. Likewise, in consideration of DOC basis, rDOM contained more absolute assimilable organic carbon (AOC) despite showing a lower specific AOC (normalized AOC per unit of DOC). Besides, rDOM exhibited higher biotoxicity including genotoxicity and endocrine disruption. Therefore, rDOM presents a greater potential risk than dDOM does. Reclaimed water source needs to be treated carefully when it is blended with drinking water source.

  20. Assessing the Influences of Urbanization On Dissolved Organic Nitrogen in Stormwater and a Receiving Stream

    Science.gov (United States)

    Lusk, M. G.; Toor, G.

    2013-12-01

    Nitrogen (N) is present in several forms in terrestrial and aquatic systems. In water bodies, N is present in inorganic (NH4, NO3) and organic (both dissolved and particulate) forms. Nitrogen carried via stormwater runoff or leaching from fertilized urban landscapes to water bodies can have detrimental effects on water quality because the inorganic N forms are readily available to phytoplankton. There is growing evidence that a part of the dissolved organic N (DON) may also be bioavailable to phytoplankton. DON in urban stormwater runoff, for example, has been shown to be highly bioavailable. The objective of this research is to characterize the sources and chemical fractionation of organic N in stormwater runoff from an urban residential neighborhood and in streamwater along an urban to rural gradient. We hypothesize that urban stormwater DON will be highly fractionated into labile low-molecular weight fractions and that streamwater DON will become increasingly bioavailable with increased urbanization because of shifts in vegetation patterns and hydrologic flowpaths. To test this hypothesis, we are collecting stormwater runoff from an urban neighborhood near Tampa, Florida and streamwater from both urban and rural sub-basins of the adjacent Alafia River.

  1. Dissolved organic matter and lake metabolism. Technical progress report, 1 July 1978--30 Jun 1979

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, R.G.

    1979-01-01

    Progress is reported in continuing investigations focused on integrated studies of the qualitative and quantitative cycling and metabolism of particulate and dissolved organic carbon in lakes and their inflow sources (surface and subsurface). Emphasis is placed on the sources, fates, and interactions of dissolved and particulate organic matter in relation to: (a) inorganic chemical cycling, (b) allochthonous loading to the lake system, and (c) the coupled nutrient physiology and metabolism of phytoplankton, bacterial populations, macrophytes, and attendant sessile algal-bacterial communities. Regulatory mechanisms of growth and rates of carbon and nutrient cycling are being evaluated among the (a) inorganic-organic influxes of allochthonous sources as they are controlled by wetland-littoral communities, (b) the littoral photosynthetic producer-decomposer complex, and (c) the microflora of the pelagial zone. Quantification of carbon fluxes among these components and control mechanisms is fundamental to elucidation of the rate functions of lake eutrophication. The integrated studies addressing these multifacted objectives are summarized in three summary diagrams.

  2. Black Carbon in Estuarine (Coastal) High-molecular-weight Dissolved Organic Matter

    Science.gov (United States)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Dissolved organic matter (DOM) in the ocean constitutes one of the largest pools of organic carbon in the biosphere, yet much of its composition is uncharacterized. Observations of black carbon (BC) particles (by-products of fossil fuel combustion and biomass burning) in the atmosphere, ice, rivers, soils and marine sediments suggest that this material is ubiquitous, yet the contribution of BC to the ocean s DOM pool remains unknown. Analysis of high-molecular-weight DOM isolated from surface waters of two estuaries in the northwest Atlantic Ocean finds that BC is a significant component of DOM, suggesting that river-estuary systems are important exporters of BC to the ocean through DOM. We show that BC comprises 4-7% of the dissolved organic carbon (DOC) at coastal ocean sites, which supports the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition. Flux calculations suggest that BC could be as important as vascular plant-derived lignin in terms of carbon inputs to the ocean. Production of BC sequesters fossil fuel- and biomass-derived carbon into a refractory carbon pool. Hence, BC may represent a significant sink for carbon to the ocean.

  3. Relevance of dissolved organic nutrients for the Arctic Ocean nutrient budget

    Science.gov (United States)

    Torres-Valdés, Sinhué; Tsubouchi, Takamasa; Davey, Emily; Yashayaev, Igor; Bacon, Sheldon

    2016-06-01

    We ask whether dissolved organic nitrogen (DON) and phosphorus (DOP) could account for previously identified Arctic Ocean (AO) inorganic nutrient budget imbalances. We assess transports to/from the AO by calculating indicative budgets. Marked DON:DOP ratio differences between the Amerasian and Eurasian AO reflect different physical and biogeochemical pathways. DON and DOP are exported to the North Atlantic via Davis Strait potentially being enhanced in transit from Bering Strait. Fram Strait transports are balanced. Barents Sea Opening transports may provide an additional nutrient source to the Barents Sea or may be locked within the wider AO Atlantic Water circulation. Gaps in our knowledge are identified and discussed.

  4. Influence of dissolved organic carbon on the efficiency of P sequestration by a lanthanum modified clay

    DEFF Research Database (Denmark)

    Dithmer, Line; Nielsen, Ulla Gro; Lundberg, Daniel;

    2016-01-01

    A laboratory scale experiment was set up to test the effect of dissolved organic carbon (DOC) as well as ageing of the La–P complex formed during phosphorus (P) sequestration by a La modified clay (Phoslock®). Short term (7 days) P adsorption studies revealed a significant negative effect of added...... DOC on the P sequestration of Phoslock®, whereas a long-term P adsorption experiment revealed that the negative effect of added DOC was reduced with time. The reduced P binding efficiency is kinetic, as evident from solid-state 31P magic-angle spinning (MAS) NMR spectroscopy, who showed that the P...

  5. Hydro-climatic control of composition and transport of dissolved organic matter in an agricultural catchment

    OpenAIRE

    Humbert, Guillaume

    2015-01-01

    The role of dissolved organic matter (DOM) as carbon storage in mineral soil horizons and the impacts of DOM on aquatic ecosystems, either as a source of nutrients, or a vector of pollutants, raise the need to understand its origin, and the mechanisms linked to its transport from soils to stream. This work aims to characterize the temporal and spatial dynamics of the amount and the quality of DOM in soil and stream water, and to identify the controlling factors. It is based on the Kervidy-Nai...

  6. Comparison of absorption properties of colored dissolved organic matter in six different case 2 water bodies

    Science.gov (United States)

    Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Muyimbwa, Dennis; Ssenyonga, Taddeo; Ssebiyonga, Nicolausi; Okullo, Willy; Stamnes, Knut; Stamnes, Jakob J.

    2017-02-01

    Colored Dissolved Organic Matter (CDOM) is one of the main factors controlling the penetration of solar radiation in Case 2 water and affecting satellite-based estimation of ocean color. We present absorption properties of CDOM sampled in 6 water bodies including three in Norway (Røst coastal water, Samnangerfjord, Lysefjord), two in China (Bohai Sea, Lake Namtso), and one in Africa (Lake Victoria). These locations, which range from near the equator to subarctic regions, include water types from oligotrophic to eutrophic, and altitudes from sea level to 4,700 m above sea level.

  7. Temperature dependence of the relationship between pCO2 and dissolved organic carbon in lakes

    KAUST Repository

    Pinho, L.

    2016-02-15

    The relationship between the partial pressure of carbon dioxide (pCO2) and dissolved organic carbon (DOC) concentration in Brazilian lakes, encompassing 225 samples across a wide latitudinal range in the tropics, was tested. Unlike the positive relationship reported for lake waters, which was largely based on temperate lakes, we found no significant relationship for low-latitude lakes (< 33°), despite very broad ranges in both pCO2 and DOC levels. These results suggest substantial differences in the carbon cycling of low-latitude lakes, which must be considered when upscaling limnetic carbon cycling to global scales.

  8. Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils

    Science.gov (United States)

    Fleck, J.A.; Bossio, D.A.; Fujii, R.

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.

  9. Copper(II) binding by dissolved organic matter: importance of the copper-to-dissolved organic matter ratio and implications for the biotic ligand model.

    Science.gov (United States)

    Craven, Alison M; Aiken, George R; Ryan, Joseph N

    2012-09-18

    The ratio of copper to dissolved organic matter (DOM) is known to affect the strength of copper binding by DOM, but previous methods to determine the Cu(2+)-DOM binding strength have generally not measured binding constants over the same Cu:DOM ratios. In this study, we used a competitive ligand exchange-solid-phase extraction (CLE-SPE) method to determine conditional stability constants for Cu(2+)-DOM binding at pH 6.6 and 0.01 M ionic strength over a range of Cu:DOM ratios that bridge the detection windows of copper-ion-selective electrode and voltammetry measurements. As the Cu:DOM ratio increased from 0.0005 to 0.1 mg of Cu/mg of DOM, the measured conditional binding constant ((c)K(CuDOM)) decreased from 10(11.5) to 10(5.6) M(-1). A comparison of the binding constants measured by CLE-SPE with those measured by copper-ion-selective electrode and voltammetry demonstrates that the Cu:DOM ratio is an important factor controlling Cu(2+)-DOM binding strength even for DOM isolates of different types and different sources and for whole water samples. The results were modeled with Visual MINTEQ and compared to results from the biotic ligand model (BLM). The BLM was found to over-estimate Cu(2+) at low total copper concentrations and under-estimate Cu(2+) at high total copper concentrations.

  10. Molecular Selectivity of Brown Carbon Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Roach, Patrick J.; Eckert, Peter A.; Gilles, Mary K.; Wang, Bingbing; Lee, Hyun Ji; Hu, Qichi

    2014-10-21

    Complementary methods of high-resolution mass spectrometry and micro-spectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene (LSOA) and a-pinene (PSOA). Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas were detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl- imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the a-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores.

  11. Characterization of Dissolved Organic Carbon in Deep Groundwater from the Witwatersrand Basin

    Science.gov (United States)

    Pullin, M. J.; Hendrickson, S.; Simon, P.; Sherwood Lollar, B.; Wilkie, K.; Onstott, T. C.; Washton, N.; Clewett, C.

    2013-12-01

    This work describes the isolation, fractionation, and chemical analysis of dissolved organic carbon (DOC) in deep groundwater in the Witwatersrand Basin, South Africa. The groundwater was accessed through mining boreholes in gold and diamond mine shafts. Filtered water samples were collected and preserved for later analysis. In some cases, the organic carbon was also collected on DAX-8 and XAD-4 adsorption resins in situ and then transported to the surface for removal, clean-up, and lyophilization. Solid state C-13 NMR analysis of that organic carbon was conducted. Organic compounds were also isolated from the water using solid phase extraction cartridges for later analysis by GC-MS. Absorbance, fluorescence, and HPLC analyses was were used to analyze the DOC in the filtered water samples. C-14 and C-13 isotopic analysis of the organic carbon was also conducted. Identifiable components of the DOC include both organic acids and amino acids. However, initial results indicate that the majority of the subsurface DOC is a complex heterogeneous mixture with an average molecular weight of approximately 1000 Da, although this DOC is less complex than that found in soils or surface water. Finally, we will discuss possible sources of the organic carbon and its biogeochemical cycling in the subsurface.

  12. Distribution and biological turnover of dissolved organic compounds in the water column of the Black Sea

    Science.gov (United States)

    Mopper, Kenneth; Kieber, David J.

    Water column concentrations and turnover rates were determined for a suite of low molecular weight organic compounds in the Black Sea. The classes of compounds studied included amino acids, simple sugars, α-keto acids, aldehydes, ketones, carboxylic acids, flavins and thiols. Our study yielded some new insights, as well as a few surprising discoveries, regarding the composition and cycling of organic matter in the Black Sea. (1) Uptake rates of organic compounds were from 2 to 4640 times faster in oxic surface waters than in anoxic waters. (2) Sharp maxima or minima in concentrations of organic compounds coincided with zones of enhanced microbial activities, especially in the vicinity of the oxic-suboxic and suboxic-anoxic interfaces. (3) The benthic boundary layer, 300-400 m thick, had a markedly different organic composition and substantially higher concentrations of organic acids, and to a lesser extent sugars and thiols, than the overlying water. (4) A dramatic change in the composition and concentration of dissolved free amino acids occurred in the water column during the cruise and appeared to be related to biological patchiness. (5) Organic thiols constituted a significant portion (e.g. 10-20%) of the total reduced sulfur near the top of the sulfidic zone, and may contribute to the origin of hydrogen sulfide in this zone. (6) Major unknown amine and carbonyl compounds were discovered in the anoxic zone, providing evidence that the Black Sea contains unique anaerobic bacteria with possibly new biochemical pathways.

  13. Co-precipitation of dissolved organic matter by calcium carbonate in Pyramid Lake, Nevada

    Science.gov (United States)

    Leenheer, Jerry A.; Reddy, Michael M.

    2008-01-01

    Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, Nevada, USA. A 400-gram block of precipitated calcium carbonate from the Pyramid Lake shore was dissolved in 8 liters of 10% acetic acid. Particulate matter not dissolved by acetic acid was removed by centrifugation. DOM from the carbonate rock was fractionated into nine portions using evaporation, dialysis, resin adsorption, and selective precipitations to remove acetic acid and inorganic constituents. The calcium carbonate rock contained 0.23% DOM by weight. This DOM was enriched in polycarboxylic proteinaceous acids and hydroxy-acids in comparison with the present lake water. DOM in lake water was composed of aliphatic, alicyclic polycarboxylic acids. These compound classes were found in previous studies to inhibit calcium carbonate precipitation. DOM fractions from the carbonate rock were 14C-age dated at about 3,100 to 3,500 years before present. The mechanism of DOM co-precipitation and/or physical incorporation in the calcium carbonate is believed to be due to formation of insoluble calcium complexes with polycarboxylic proteinaceous acids and hydroxy-acids that have moderately large stability constants at the alkaline pH of the lake. DOM co-precipitation with calcium carbonate and incorporation in precipitated carbonate minerals removes proteinaceous DOM, but nearly equivalent concentrations of neutral and acidic forms of organic nitrogen in DOM remain in solution. Calcium carbonate precipitation during lime softening pretreatment of drinking water may have practical applications for removal of proteinaceous disinfection by-product precursors.

  14. Dissolved organic phosphorus speciation in the waters of the Tamar estuary (SW England)

    Science.gov (United States)

    Monbet, Phil; McKelvie, Ian D.; Worsfold, Paul J.

    2009-02-01

    The speciation of dissolved organic phosphorus (DOP) in the temperate Tamar estuary of SW England is described. Eight stations from the riverine to marine end-members were sampled during four seasonal campaigns in 2007 and the DOP pool in the water column and sediment porewater was characterized and quantified using a flow injection manifold after sequential enzymatic hydrolysis. This enabled the enzymatically hydrolysable phosphorus (EHP) fraction and its component labile monoester phosphates, diester phosphates and a phytase-hydrolysable fraction that includes myo-inositol hexakisphosphate (phytic acid), to be determined and compared with the total DOP, dissolved reactive phosphorus (DRP) and total dissolved phosphorus (TDP) pools. The results showed that the DOP pool in the water column varied temporally and spatially within the estuary (1.1-22 μg L -1) and constituted 6-40% of TDP. The EHP fraction of DOP ranged from 1.1-15 μg L -1 and represented a significant and potentially bioavailable phosphorus fraction. Furthermore the spatial profiles of the three components of the EHP pool generally showed non-conservative behavior along the salinity gradient, with apparent internal estuarine sources. Porewater profiles followed broadly similar trends but were notably higher at the marine station throughout the year. In contrast to soil organic phosphorus profiles, the labile monoester phosphate fraction was the largest component, with diester phosphates also prevalent. Phytic acid concentrations were higher in the lower estuary, possibly due to salinity induced desorption processes. The EHP fraction is not commonly determined in aquatic systems due to the lack of a suitable measurement technique and the Tamar results reported here have important implications for phosphorus biogeochemistry, estuarine ecology and the development of efficient strategies for limiting the effects of phosphorus on water quality.

  15. Dissolved organic matter composition and bioavailability reflect ecosystem productivity in the Western Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Y. Shen

    2012-12-01

    Full Text Available Dissolved organic carbon (DOC and total dissolved amino acids (TDAA were measured in high (Chukchi Sea and low (Beaufort Sea productivity regions of the western Arctic Ocean to investigate the composition and bioavailability of dissolved organic matter (DOM. Concentrations and DOC-normalized yields of TDAA in Chukchi surface waters were relatively high, indicating an accumulation of bioavailable DOM. High concentrations and yields of TDAA were also observed in the upper halocline of slope and basin waters, indicating off-shelf transport of bioavailable DOM from the Chukchi Sea. In contrast, concentrations and yields of TDAA in Beaufort surface waters were relatively low, indicting DOM was of limited bioavailability. Concentrations and yields of TDAA in the upper halocline of slope and basin waters were also low, suggesting the Beaufort is not a major source of bioavailable DOM to slope and basin waters. In shelf waters of both systems, elevated concentrations and yields of TDAA were often observed in waters with higher chlorophyll concentrations and productivity. Surface concentrations of DOC were similar (p > 0.05 in the two systems despite the contrasting productivity, but concentrations and yields of TDAA were significantly higher (p < 0.0001 in the Chukchi than in the Beaufort. Unlike bulk DOC, TDAA concentrations and yields reflect ecosystem productivity in the western Arctic. The occurrence of elevated bioavailable DOM concentrations in the Chukchi Sea implies an uncoupling between the biological production and utilization of DOM and has important implications for sustaining heterotrophic microbial growth and diversity in oligotrophic waters of the central Arctic basins.

  16. Dissolved organic matter composition and bioavailability reflect ecosystem productivity in the Western Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Y. Shen

    2012-07-01

    Full Text Available Dissolved organic carbon (DOC and total dissolved amino acids (TDAA were measured in high (Chukchi Sea and low (Beaufort Sea productivity regions of the Western Arctic Ocean to investigate the composition and bioavailability of dissolved organic matter (DOM. Concentrations and DOC-normalized yields of TDAA in Chukchi surface waters were relatively high, indicating an accumulation of bioavailable DOM. High yields of TDAA were also observed in the upper halocline of slope and basin waters, indicating off-shelf transport of bioavailable DOM from the Chukchi Sea. In contrast, concentrations and yields of TDAA in Beaufort surface waters were relatively low, indicting DOM was of limited bioavailability. Yields of TDAA in the upper halocline of slope and basin waters were also low, suggesting the Beaufort is not a major source of bioavailable DOM to slope and basin waters. In shelf waters of both systems, elevated concentrations and yields of TDAA were often observed in waters with higher chlorophyll concentrations and productivity. Surface concentrations of DOC were similar (p > 0.05 in the two systems despite the contrasting productivity, but concentrations and yields of TDAA were significantly higher (p < 0.0001 in the Chukchi than in the Beaufort. Unlike bulk DOC, TDAA concentrations and yields reflect ecosystem productivity in the Western Arctic. The occurrence of elevated bioavailable DOM concentrations in the Chukchi implies an uncoupling between the biological production and utilization of DOM and has important implications for sustaining heterotrophic microbial growth and diversity in oligotrophic waters of the Central Arctic basins.

  17. Dynamics of dissolved organic carbon in hillslope discharge: Modeling and challenges

    Science.gov (United States)

    Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Barth, Johannes A. C.; Sanda, Martin; Marx, Anne; Jankovec, Jakub

    2017-03-01

    Reliable quantitative prediction of water movement and fluxes of dissolved substances - specifically organic carbon - at both the hillslope and the catchment scales remains a challenge due to complex boundary conditions and soil spatial heterogeneity. In addition, microbially mediated transformations of dissolved organic carbon (DOC) are recognized to determine the balance of DOC in soils. So far, only few studies utilized stable water isotope information in modeling and even fewer linked dissolved carbon fluxes to mixing and/or transport models. In this study, stormflow dynamics of 18O/16O ratios in the water molecules (expressed as δ18O) and DOC were analyzed using a physically-based modeling approach. A one-dimensional dual-continuum vertical flow and transport model was used to simulate the subsurface transport processes in a forest hillslope soil over a period of 2.5 years. The model was applied to describe the transformation of input signals of δ18O and DOC into output signals observed in the hillslope stormflow. To quantify uncertainty associated with the model parameterization, Monte Carlo analysis in conjunction with Latin hypercube sampling was applied. δ18O variations in hillslope discharge and in soil pore water were predicted reasonably well. Despite the complex nature of microbial transformations that caused uncertainty in model parameters and subsequent prediction of DOC transport, the simulated temporal patterns of DOC concentration in stormflow showed similar behavior to that reflected in the observed DOC fluxes. Due to preferential flow, the contribution of the hillslope DOC export was higher than the amounts that are usually found in the available literature.

  18. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures.

    Science.gov (United States)

    Sosa, Oscar A; Gifford, Scott M; Repeta, Daniel J; DeLong, Edward F

    2015-12-01

    The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 μM) or 10x (700 μM) the ocean surface water concentrations yielded positive growth in 4-6% of replicate dilutions, whereas <1% scored positive for growth in non-DOM-amended controls. The majority (71%) of isolates displayed a distinct increase in cell yields when grown in increasing concentrations of HMW DOM. Whole-genome sequencing was used to screen the culture collection for purity and to determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them.

  19. Spatial and temporal variation in dissolved organic carbon composition in a peaty catchment draining a windfarm

    Science.gov (United States)

    Zheng, Ying; Waldron, Susan; Flowers, Hugh

    2015-04-01

    Peatlands are an important terrestrial carbon reserve and a principal source of dissolved organic carbon (DOC) to the fluvial environment (Wallage et al. 2006). Recently it has been observed that DOC concentrations [DOC] in surface waters have increased in Europe and North America (Monteith et al. 2007). This has been attributed primarily to reduced acid deposition. However, land use change can also release C from peat soils. A significant land use change in Scotland is hosting windfarms. Whether windfarm construction causes such impacts has been a research focus, particularly considering fluvial losses, but usually assessing if there are changes in DOC concentration rather than composition. Our study area is a peaty catchment that hosts wind turbines, has peat restoration activities and forest felling and is drained by two streams. We are using UV-visible and fluorescence spectrophotometry to assess if there are differences between the two steams or temporal changes in DOC composition. We will present data from samples collected since February 2014. The parameters we are focusing on are SUVA254, E4/E6 and E2/E4 ratios as these are indicators of DOC aromaticity, humic acid (HA): fulvic acid (FA) ratio and the proportion of humic substances in DOC (Weishaar, 2003; Spencer et al. 2007; Graham et al. 2012). To assess these we have measured UV-visible absorbance spectra from 200 nm to 800 nm. Meanwhile sample fluorescence emission and excitation matrix (EEM) will be applied with the PARAFAC model to obtain more information about the variations in humic substances in this catchment. Our current analysis indicates spatial differences not only in DOC concentration but also in composition. For example, the mainstem draining the windfarm area had a smaller [DOC] but higher E4/E6 and lower E2/E4 ratio values than the tributary draining an area of felled forestry. This may be indicative of more HAs in the mainstem DOC. Seasonal variations have also been observed. Both streams

  20. Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River, Siberia

    Directory of Open Access Journals (Sweden)

    K. E. Frey

    2015-08-01

    Full Text Available The Kolyma River in Northeast Siberia is among the six largest arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport will largely depend upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the optical properties of chromophoric DOM (CDOM from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a ∼ 250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorbance values were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S were found to be useful indicators of DOM quality along the flow-path. In particular, CDOM absorption at 254 nm showed a strong relationship with dissolved organic carbon (DOC concentrations across all water types (r2 = 0.958, p SR of CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. The heterogeneity of environmental characteristics and extensive continuous permafrost of the Kolyma River basin combine to make this a critical region to investigate and monitor. With ongoing and future permafrost degradation, peat and yedoma deposits throughout the

  1. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    Science.gov (United States)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  2. New nutrients exert fundamental control on dissolved organic carbon accumulation in the surface Atlantic Ocean

    Science.gov (United States)

    Romera-Castillo, Cristina; Letscher, Robert T.; Hansell, Dennis A.

    2016-09-01

    The inventories of carbon residing in organic matter dissolved in the ocean [dissolved organic carbon (DOC)] and in the atmosphere as CO2 are of the same order of magnitude, such that small changes in the DOC pool could have important consequences in atmospheric carbon and thus climate. DOC in the global ocean is largely formed in the sunlit euphotic zone, but identifying predictable controls on that production is an important yet unrealized goal. Here, we use a testable and causative correlation between the net production of DOC and the consumption of new nutrients in the euphotic zone of the Atlantic Ocean. We demonstrate that new nutrients introduced to the euphotic zone by upwelling in divergence zones and by winter convective overturn of the water column, and the primary production associated with those nutrients, are the ultimate driver of DOC distributions across the Atlantic basins. As new nutrient input will change with a changing climate, the role of DOC in the ocean’s biological pump should likewise be impacted.

  3. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2000-01-01

    Experiments on aqueous TiO{sub 2} photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO{sub 2} photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  4. Effects of compositional changes on reactivity continuum and decomposition kinetics of lake dissolved organic matter

    Science.gov (United States)

    Mostovaya, Alina; Koehler, Birgit; Guillemette, François; Brunberg, Anna-Kristina; Tranvik, Lars J.

    2016-07-01

    To address the link between the composition and decomposition of freshwater dissolved organic matter (DOM), we manipulated the DOM from three boreal lakes using preincubations with UV light to cleave large aromatic molecules and polyvinylpyrrolidone (PVP) to remove colored phenolic compounds. Subsequently, we monitored the dissolved organic carbon (DOC) loss over 4 months of microbial degradation in the dark to assess how compositional changes in DOM affected different aspects of the reactivity continuum, including the distribution of the apparent decay coefficients. We observed profound effects on decomposition kinetics, with pronounced shifts in the relative share of rapidly and more slowly decomposing fractions of the DOM. In the UV-exposed treatment initial apparent decay coefficient k0 was almost threefold higher than in the control. Significantly higher relative DOC loss in the UV-exposed treatment was sustained for 2 months of incubation, after which decay coefficients converged with those in the control. The PVP removed compounds with absorbance and fluorescence characteristics representative of aromatic compounds, which led to slower decomposition, compared to that in the control. Our results demonstrate the reactivity continuum underlying the decomposition of DOM in freshwaters and highlight the importance of intrinsic properties of DOM in determining its decomposition kinetics.

  5. Effect of Soil Passage and Ozonation on Dissolved Organic Carbon and Microbial Quantification in Wastewater

    KAUST Repository

    Ahmed, Elaf A.

    2013-05-01

    Water quality data are presented from a laboratory bench scale soil columns study, to simulate an aquifer recharge system injected with MBR wastewater effluent. This study investigates the effect of soil filtration and ozonation on the dissolved organic carbon and bacterial count in the wastewater. Flow Cytometry was used to quantify microorganisms in water samples. Other analytical tests were conducted as well, such as seven anions, fluorescence spectroscopy (FEEM), ultraviolet absorption (UV 254 nm) and dissolved organic carbon measurement (DOC). Influent in this study was injected into two identical soil columns. One of the columns was injected with treated wastewater combined with ozonation called SC1, The second column was injected with treated wastewater only and called SC2. Passing the wastewater through a deeper depth in the soil column showed a reduction in the DOC concentration. Removal of DOC was 53.7 % in SC1 and 53.8 % in SC2. UV 254 nm results demonstrated that the majority of the UV absorbing compounds were removed after the first 30 cm in the soil columns. FEEM results revealed that soil column treatment only doesn\\'t remove humic-like and fulvic-like substances. However, combining soil column treatment with ozonation was capable of removing humic-like, fulvic-like and protein-like substances from the wastewater. Flow Cytometry results showed a bacteria removal of 52.5 %-89.5 % in SC1 which was higher than SC2 removal of 29.1 %-56.5 %.

  6. Selection of magnetic anion exchange resins for the removal of dissolved organic and inorganic matters

    Institute of Scientific and Technical Information of China (English)

    Qiongjie Wang; Aimin Li; Jinnan Wang; Chengdong Shuang

    2012-01-01

    Four magnetic anion exchange resins (MAERs) were used as adsorbents to purify drinking water.The effect of water quality (pH,temperature,ionic strength,etc.) on the performance of MAER for the removal of dissolved organic matter (DOM) was also investigated.Among the four studied MAERs,the strong base resin named NDMP-1 with high water content and enhanced exchange capacity exhibited the highest removal rate of dissolved organic carbon (DOC) (48.9% removal rate) and UV-absorbing substances (82.4% removal rate) with a resin dose of 10 mL/L after 30 min of contact time.The MAERs could also effectively remove inorganic matter such as sulfate,nitrate and fluoride.Because of the higher specific UV absorbance (SUVA) value,the DOM in the raw water was found to be removed more effectively than that in the clarified water by NDMP resin.The temperature showed a weak influence on the removal of DOC from 6 to 26℃,while a relatively strong one at 36℃.The removal of DOM by NDMP was also affected to some extent by the pH value.Moreover,increasing the sulfate concentration in the raw water could decrease the removal rates of DOC and UV-absorbing substances.

  7. Experimental evidence of dust-induced shaping of surface dissolved organic matter in the oligotrophic ocean

    Science.gov (United States)

    Pulido-Villena, Elvira; Djaoudi, Kahina; Barani, Aude; Charrière, Bruno; Delmont, Anne; Hélias-Nunige, Sandra; Marc, Tedetti; Wambeke France, Van

    2016-04-01

    Recent research has shown that dust deposition may impact the functioning of the microbial loop. On one hand, it enhances bacterial mineralization of dissolved organic matter (DOM), and so may limit the carbon export. On the other hand, the interaction between heterotrophic bacteria and DOM in the surface ocean can increase the residence time of DOM, promoting its export and sequestration in the deep ocean. The main goal of this study was to experimentally assess whether the bacterial response to dust deposition is prone to have an effect on the residence time of the DOM pool by modifying its bioavailability. The bacterial degradation of DOM was followed on dust-amended and control treatments during long-term incubations. Dissolved organic carbon concentration decreased by 9 μmol L-1 over the course of the experiment in both control and dust-enriched conditions, with no significant differences between treatments. However, significant differences in DOM optical properties appeared at the latest stage of the incubations suggesting an accumulation of DOM of high molecular weight in the dust-amended treatment. At the end of the incubations, the remaining water was filtered and re-used as a new culture medium for a bacterial natural assemblage. Bacterial abundance and production was lower in the treatment previously submitted to dust enrichment, suggesting a decrease in DOM lability after a dust deposition event. These preliminary results point to a new link between dust and ocean carbon cycle through the modification of the residence time of the DOM pool.

  8. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2001-01-01

    Experiments on aqueous TiO{sup 2} photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO{sup 2} photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5{approx}3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs.

  9. Removal of fluorescence and ultraviolet absorbance of dissolved organic matter in reclaimed water by solar light.

    Science.gov (United States)

    Wu, Qianyuan; Li, Chao; Wang, Wenlong; He, Tao; Hu, Hongying; Du, Ye; Wang, Ting

    2016-05-01

    Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter (DOM) was investigated in this study. Solar light significantly decreased the UV254 absorbance and fluorescence (FLU) intensity of reclaimed water. However, its effect on the dissolved organic carbon (DOC) value of reclaimed water was very limited. The decrease in the UV254 absorbance intensity and FLU excitation-emission matrix regional integration volume (FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV254 absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV254 absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV254 and FLU intensity were independent of light intensity. The peaks of the UV254 absorbance and FLU intensity with an apparent molecular weight (AMW) of 100Da to 2000Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change.

  10. Removal and transformation of dissolved organic matter in secondary effluent during granular activated carbon treatment

    Institute of Scientific and Technical Information of China (English)

    Liang-liang WEI; Qing-liang ZHAO; Shuang XUE; Ting JIA

    2008-01-01

    This paper focused on the removal and transformation of the dissolved organic matter (DOM) in secondary effluent during the granular activated carbon (GAC) treatment. Using XAD-8/XAD-4 resins, DOM was fractionated into five classes:hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N) and hydrophilic fraction (HPI). Subsequently, the water quality parameters of dissolved organic carbon (DOC), absorbance of ultraviolet light at 254 nm (UV-254), specific ultraviolet light absorbance (SUVA) and trihalomethane formation potential (THMFP) were analyzed for the unfractionated and fractionated water samples. The results showed that the order of the DOC removal with respect to DOM fractions was observed to be HPI>HPO-A>HPO-N>TPI-A>TPI-N. During the GAC treatment, the THMFP of the unfractionated water samples decreased from 397.4 μg/L to 176.5 μg/L, resulting in a removal efficiency of 55.6%. The removal order of the trihalomethanes (THMs) precursor was as follows: HPO-A>TPI-A>TPI-N>HPO-N>HPI. By the GAC treatment, the specific THMFP of HPO-A, TPI-A, TPI-N and the original unfractionated water samples had a noticeable decrease, while that of HPO-N and HPI showed a converse trend. The Fourier transform infrared (FTIR) results showed that the hydroxide groups, carboxylic acids, aliphatie C-H were significantly reduced by GAC treatment.

  11. Distinct optical chemistry of dissolved organic matter in urban pond ecosystems.

    Science.gov (United States)

    McEnroe, Nicola A; Williams, Clayton J; Xenopoulos, Marguerite A; Porcal, Petr; Frost, Paul C

    2013-01-01

    Urbanization has the potential to dramatically alter the biogeochemistry of receiving freshwater ecosystems. We examined the optical chemistry of dissolved organic matter (DOM) in forty-five urban ponds across southern Ontario, Canada to examine whether optical characteristics in these relatively new ecosystems are distinct from other freshwater systems. Dissolved organic carbon (DOC) concentrations ranged from 2 to 16 mg C L(-1) across the ponds with an average value of 5.3 mg C L(-1). Excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) modelling showed urban pond DOM to be characterized by microbial-like and, less importantly, by terrestrial derived humic-like components. The relatively transparent, non-humic DOM in urban ponds was more similar to that found in open water, lake ecosystems than to rivers or wetlands. After irradiation equivalent to 1.7 days of natural solar radiation, DOC concentrations, on average, decreased by 38% and UV absorbance decreased by 25%. Irradiation decreased the relative abundances of terrestrial humic-like components and increased protein-like aspects of the DOM pool. These findings suggest that high internal production and/or prolonged exposure to sunlight exerts a distinct and significant influence on the chemistry of urban pond DOM, which likely reduces its chemical similarity with upstream sources. These properties of urban pond DOM may alter its biogeochemical role in these relatively novel aquatic ecosystems.

  12. Shift in the chemical composition of dissolved organic matter in the Congo River network

    Science.gov (United States)

    Lambert, Thibault; Bouillon, Steven; Darchambeau, François; Massicotte, Philippe; Borges, Alberto V.

    2016-09-01

    The processing of terrestrially derived dissolved organic matter (DOM) during downstream transport in fluvial networks is poorly understood. Here, we report a dataset of dissolved organic carbon (DOC) concentrations and DOM composition (stable carbon isotope ratios, absorption and fluorescence properties) acquired along a 1700 km transect in the middle reach of the Congo River basin. Samples were collected in the mainstem and its tributaries during high-water (HW) and falling-water (FW) periods. DOC concentrations and DOM composition along the mainstem were found to differ between the two periods because of a reduced lateral mixing between the central water masses of the Congo River and DOM-rich waters from tributaries and also likely because of a greater photodegradation during FW as water residence time (WRT) increased. Although the Cuvette Centrale wetland (one of the world's largest flooded forests) continuously releases highly aromatic DOM in streams and rivers of the Congo Basin, the downstream transport of DOM was found to result in an along-stream gradient from aromatic to aliphatic compounds. The characterization of DOM through parallel factor analysis (PARAFAC) suggests that this transition results from (1) the losses of aromatic compounds by photodegradation and (2) the production of aliphatic compounds by biological reworking of terrestrial DOM. Finally, this study highlights the critical importance of the river-floodplain connectivity in tropical rivers in controlling DOM biogeochemistry at a large spatial scale and suggests that the degree of DOM processing during downstream transport is a function of landscape characteristics and WRT.

  13. Hydrologic Controls on Dissolved Organic Matter Mobilization and Transport within Undisturbed Soils

    Science.gov (United States)

    Xu, N.; Saiers, J.

    2007-12-01

    Dissolved organic matter (DOM) in soils plays an important role in the transport of nutrients and contaminants through the terrestrial environment. Subsurface pathways deliver a significant portion of carbon to streams that drain forested and agricultural watersheds. Although the importance of rainfall events to the DOM soil-water flux is well known, the hydrologic factors that govern this flux have not been fully examined. The primary purpose of this study is to investigate the soil and rainfall characteristics controlling the mobilization and transport of DOM in undisturbed soils. Intact soil columns including topsoil and subsoil layers were taken from the Harvard forest in Petersham, MA. Unsaturated flow conditions were maintained by applying suction to the bottom of the soil columns. The columns were irrigated by series of interrupted rainfall events using the same total volume of artificial rain water. Preliminary experiments showed continuous leaching of DOM (measured by dissolved organic carbon) with an initial peak in concentration that coincided with the passage of the wetting front. The leached DOM was also characterized by UV absorbance, fluorescence spectroscopy in the emission mode, and additional spectroscopic derived indexes such as the humification index. Ongoing column experiments are focusing on the effects of rainfall intensity, frequency, and rainfall history on DOM mobilization and transport through natural, structured soils. These investigations can elucidate the influence of factors that are associated with climate change on DOC dynamics. Results of our analyses should also provide insight into the mechanisms that govern DOM mobilization in soils.

  14. New nutrients exert fundamental control on dissolved organic carbon accumulation in the surface Atlantic Ocean.

    Science.gov (United States)

    Romera-Castillo, Cristina; Letscher, Robert T; Hansell, Dennis A

    2016-09-20

    The inventories of carbon residing in organic matter dissolved in the ocean [dissolved organic carbon (DOC)] and in the atmosphere as CO2 are of the same order of magnitude, such that small changes in the DOC pool could have important consequences in atmospheric carbon and thus climate. DOC in the global ocean is largely formed in the sunlit euphotic zone, but identifying predictable controls on that production is an important yet unrealized goal. Here, we use a testable and causative correlation between the net production of DOC and the consumption of new nutrients in the euphotic zone of the Atlantic Ocean. We demonstrate that new nutrients introduced to the euphotic zone by upwelling in divergence zones and by winter convective overturn of the water column, and the primary production associated with those nutrients, are the ultimate driver of DOC distributions across the Atlantic basins. As new nutrient input will change with a changing climate, the role of DOC in the ocean's biological pump should likewise be impacted.

  15. Dissolved organic matter in the Florida everglades: Implications for ecosystem restoration

    Science.gov (United States)

    Aiken, G.R.; Gilmour, C.C.; Krabbenhoft, D.P.; Orem, W.

    2011-01-01

    Dissolved organic matter (DOM) in the Florida Everglades controls a number of environmental processes important for ecosystem function including the absorption of light, mineral dissolution/precipitation, transport of hydrophobic compounds (e.g., pesticides), and the transport and reactivity of metals, such as mercury. Proposed attempts to return the Everglades to more natural flow conditions will result in changes to the present transport of DOM from the Everglades Agricultural Area and the northern conservation areas to Florida Bay. In part, the restoration plan calls for increasing water flow throughout the Everglades by removing some of the manmade barriers to flow in place today. The land- and water-use practices associated with the plan will likely result in changes in the quality, quantity, and reactivity of DOM throughout the greater Everglades ecosystem. The authors discuss the factors controlling DOM concentrations and chemistry, present distribution of DOM throughout the Everglades, the potential effects of DOM on key water-quality issues, and the potential utility of dissolved organic matter as an indicator of success of restoration efforts. Copyright ?? 2011 Taylor & Francis Group, LLC.

  16. Molecular evidence for abiotic sulfurization of dissolved organic matter in marine shallow hydrothermal systems

    Science.gov (United States)

    Gomez-Saez, Gonzalo V.; Niggemann, Jutta; Dittmar, Thorsten; Pohlabeln, Anika M.; Lang, Susan Q.; Noowong, Ann; Pichler, Thomas; Wörmer, Lars; Bühring, Solveig I.

    2016-10-01

    Shallow submarine hydrothermal systems are extreme environments with strong redox gradients at the interface of hot, reduced fluids and cold, oxygenated seawater. Hydrothermal fluids are often depleted in sulfate when compared to surrounding seawater and can contain high concentrations of hydrogen sulfide (H2S). It is well known that sulfur in its various oxidation states plays an important role in processing and transformation of organic matter. However, the formation and the reactivity of dissolved organic sulfur (DOS) in the water column at hydrothermal systems are so far not well understood. We investigated DOS dynamics and its relation to the physicochemical environment by studying the molecular composition of dissolved organic matter (DOM) in three contrasting shallow hydrothermal systems off Milos (Eastern Mediterranean), Dominica (Caribbean Sea) and Iceland (North Atlantic). We used ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to characterize the DOM on a molecular level. The molecular information was complemented with general geochemical data, quantitative dissolved organic carbon (DOC) and DOS analyses as well as isotopic measurements (δ2H, δ18O and F14C). In contrast to the predominantly meteoric fluids from Dominica and Iceland, hydrothermal fluids from Milos were mainly fed by recirculating seawater. The hydrothermal fluids from Milos were enriched in H2S and DOS, as indicated by high DOS/DOC ratios and by the fact that >90% of all assigned DOM formulas that were exclusively present in the fluids contained sulfur. In all three systems, DOS from hydrothermal fluids had on average lower O/C ratios (0.26-0.34) than surrounding surface seawater DOS (0.45-0.52), suggesting shallow hydrothermal systems as a source of reduced DOS, which will likely get oxidized upon contact with oxygenated seawater. Evaluation of hypothetical sulfurization reactions suggests DOM reduction and sulfurization during seawater

  17. Significant anaerobic production of fluorescent dissolved organic matter in the deep East Sea (Sea of Japan)

    Science.gov (United States)

    Kim, Jeonghyun; Kim, Guebuem

    2016-07-01

    The distribution of fluorescent dissolved organic matter (FDOM) in the East Sea (Sea of Japan) was examined by excitation-emission matrix spectroscopy with parallel factor analysis (PARAFAC). Humic-like FDOM (FDOMH) increased with depth and was significantly correlated with Apparent Oxygen Utilization (AOU), indicating that FDOMH in the deep water is mainly produced by oxidation of organic matter. In addition, a surprisingly large excess of FDOMH relative to that expected from the observed AOU was found from 1000 m to the bottom (up to 3500 m). Based on the high-resolution geographical distribution and characteristics of FDOM in the East Sea, we conclude that this excess likely originates from anaerobic FDOMH production in subsurface bottom sediments. This FDOMH flux accounts for 8-15% of the total FDOM production in the water column. Our results suggest that anaerobic activities in subsurface sediments are an important hidden source of FDOM in the ocean.

  18. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Stedmon, Colin; Kragh, Theis

    2011-01-01

    A fraction of dissolved organic matter (DOM) is able to fluoresce. This ability has been used in the present study to investigate the characteristics and distribution of different DOM fractions. A unique global dataset revealed seven different fluorescent fractions of DOM: two humic-like, four...... in the surface layer indicate the quantitative importance of photochemical degradation as a sink of the humic-like compounds. In the dark ocean (below 200 m), significant linear relationships between humic-like DOM fluorescence and microbial activity (apparent oxygen utilization, NO3- and PO43-) were found....... These observations imply a link to dark ocean microbial remineralization and indicate that the major source of humic-like compounds is microbial turnover of organic matter. The results of the present study show that the distribution of the humic-like DOM fractions is a balance between supply from continental run off...

  19. Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition

    Science.gov (United States)

    Thieme, Lisa; Graeber, Daniel; Kaupenjohann, Martin; Siemens, Jan

    2016-08-01

    Freezing can affect concentrations and spectroscopic properties of dissolved organic matter (DOM) in water samples. Nevertheless, water samples are regularly frozen for sample preservation. In this study we tested the effect of different freezing methods (standard freezing at -18 °C and fast-freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow, litter leachate and soil solution samples were analyzed for DOC concentrations, UV-vis absorption and fluorescence excitation-emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at -18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties of DOM.

  20. Changes in dissolved organic carbon of soil amendments with aging: effect on pesticide adsorption behavior.

    Science.gov (United States)

    Cox, Lucia; Fernandes, M Conceicao; Zsolnay, Adam; Hermosín, M Carmen; Cornejo, Juan

    2004-09-01

    The effect of aging in the soil of three organic amendments (OAs), one liquid (LF) and two solid ones (SF and AL), has been investigated and related to changes in soil adsorption of metalaxyl and tricyclazole. LF and AL have very high dissolved organic carbon (DOC) contents with low humification index values, whereas SF has a low DOC content but the highest amounts of highly humified material. All OAs increased the adsorption of tricyclazole, whereas adsorption of metalaxyl decreased in soils amended with LF and AL, due to competition with DOC for mineral adsorption sites. With aging, DOC from SF amended soils is not significantly affected and neither is adsorption behavior. On the contrary, the great reduction of DOC from LF and AL with aging has been shown to affect adsorption of metalaxyl and tricyclazole, and this effect is dependent on the pesticide, the nature of the DOC, and the type of soil, in particular its clay mineralogy.

  1. Dissolved organic phosphorus (DOP) and its potential role for ecosystem nutrition

    Science.gov (United States)

    Brödlin, Dominik; Hagedorn, Frank; Kaiser, Klaus

    2016-04-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known about the fluxes of dissolved organic phosphorus (DOP) forms and their role in the P cycle. However, there is evidence that DOP is composed of some plant-derived organic phosphorus compounds, such as phytate, which are less mobile and prone to be sorbed to mineral surfaces, whereas microbial-derived compounds like nucleic acids and simple phospho-monoester may represent more mobile forms of soil phosphorus. In our study, we estimated fluxes, composition, and bioavailability of DOP along a gradient in phosphorus availability at five sites on silicate bedrock across Germany (Bad Brückenau, Conventwald, Vessertal, Mitterfels and Lüss) and at a calcareous site in Switzerland (Schänis). Soil solution was collected at 0 down to 60 to 150 cm soil depth at different intervals. Since most solutions had very low P concentrations (phytate-like P (phytate), diester-like P (nucleic acids), monoester-like P (glucose-6-phosphate), and pyrophosphate of bulk molybdate unreactive phosphorus (MUP). First results from the enzymatic assay indicated that monoester-like P and diester-like P were the most prominent form of the hydrolysable DOP constituents. In leachates from the organic layer, there was a high enzymatic activity for monoester-like P, indicating high recycling efficiency and rapid hydrolysis of labile DOP constituents. DOP was the dominating P form in soil solution at some of the sites, with a greater contribution to total dissolved P in winter than in summer. Concentrations of DOP decreased along the phosphorus availability gradient from less to the more developed forest ecosystems.

  2. Nutrient and dissolved organic carbon removal from natural waters using industrial by-products.

    Science.gov (United States)

    Wendling, Laura A; Douglas, Grant B; Coleman, Shandel; Yuan, Zheng

    2013-01-01

    Attenuation of excess nutrients in wastewater and stormwater is required to safeguard aquatic ecosystems. The use of low-cost, mineral-based industrial by-products with high Ca, Mg, Fe or Al content as a solid phase in constructed wetlands potentially offers a cost-effective wastewater treatment option in areas without centralised water treatment facilities. Our objective was to investigate use of water treatment residuals (WTRs), coal fly ash (CFA), and granular activated carbon (GAC) from biomass combustion in in-situ water treatment schemes to manage dissolved organic carbon (DOC) and nutrients. Both CaO- and CaCO(3)-based WTRs effectively attenuated inorganic N species but exhibited little capacity for organic N removal. The CaO-based WTR demonstrated effective attenuation of DOC and P in column trials, and a high capacity for P sorption in batch experiments. Granular activated carbon proved effective for DOC and dissolved organic nitrogen (DON) removal in column trials, but was ineffective for P attenuation. Only CFA demonstrated effective removal of a broad suite of inorganic and organic nutrients and DOC; however, Se concentrations in column effluents exceeded Australian and New Zealand water quality guideline values. Water treated by filtering through the CaO-based WTR exhibited nutrient ratios characteristic of potential P-limitation with no potential N- or Si-limitation respective to growth of aquatic biota, indicating that treatment of nutrient-rich water using the CaO-based WTR may result in conditions less favourable for cyanobacterial growth and more favourable for growth of diatoms. Results show that selected industrial by-products may mitigate eutrophication through targeted use in nutrient intervention schemes.

  3. Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines

    Science.gov (United States)

    Stedmon, Colin A.; Thomas, David N.; Papadimitriou, Stathys; Granskog, Mats A.; Dieckmann, Gerhard S.

    2011-09-01

    Sea ice plays a dynamic role in the air-sea exchange of CO2. In addition to abiotic inorganic carbon fluxes, an active microbial community produces and remineralizes organic carbon, which can accumulate in sea ice brines as dissolved organic matter (DOM). In this study, the characteristics of DOM fluorescence in Antarctic sea ice brines from the western Weddell Sea were investigated. Two humic-like components were identified, which were identical to those previously found to accumulate in the deep ocean and represent refractory material. Three amino-acid-like signals were found, one of which was unique to the brines and another that was spectrally very similar to tryptophan and found both in seawater and in brine samples. The tryptophan-like fluorescence in the brines exhibited intensities higher than could be explained by conservative behavior during the freezing of seawater. Its fluorescence was correlated with the accumulation of nitrogen-rich DOM to concentrations up to 900 μmol L-1 as dissolved organic carbon (DOC) and, thus, potentially represented proteins released by ice organisms. A second, nitrogen-poor DOM fraction also accumulated in the brines to concentrations up to 200 μmol L-1 but was not correlated with any of the fluorescence signals identified. Because of the high C:N ratio and lack of fluorescence, this material is thought to represent extracellular polymeric substances, which consist primarily of polysaccharides. The clear grouping of the DOM pool into either proteinaceous or carbohydrate-dominated material indicates that the production and accumulation of these two subpools of DOM in sea ice brines is, to some extent, decoupled.

  4. Selective incorporation of dissolved organic matter (DOM) during sea ice formation

    DEFF Research Database (Denmark)

    Müller, Susan; Vähätalo, Anssi V.; Stedmon, Colin

    2013-01-01

    This study investigated the incorporation of DOM from seawater into b2 day-old sea ice in tanks filled with seawater alone or amended with DOM extracted from the microalga, Chlorella vulgaris. Optical properties, including chromophoric DOM (CDOM) absorption and fluorescence, as well...

  5. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    Science.gov (United States)

    Oestreich, W.K.; Ganju, Neil Kamal; Pohlman, John; Suttles, Steven

    2016-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of

  6. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    Science.gov (United States)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  7. Litter leachate sources for streamwater dissolved organic matter in an oak woodland catchment

    Science.gov (United States)

    Dyda, R. Y.; Hernes, P. J.; Flores, S. C.; O'Geen, A. T.; Dahlgren, R. A.; Spencer, R.

    2009-12-01

    Streamwater dissolved organic matter (DOM) is derived from a variety of sources, but until recently was largely thought to originate from degraded soil organic matter (SOM) pools. However, recent investigations of dissolved organic carbon (DOC) have called into question the idea that DOM in streams is derived primarily from aged SOM. Evidence includes riverine DOC 14C ages (~5 years) that are much younger than SOM within the catchment as well as the riverine particulate organic matter (POM) pool (decades to 100’s of years). Molecular fractionation due to litter leaching in the laboratory and sorption to mineral surfaces can completely account for the degraded molecular signatures observed in dissolved lignin compositions within the DOM pool. To evaluate whether these processes hold true under environmental conditions, we conducted a leaching incubation experiment using litters and degraded “duff” litters (estimated 2-5 yrs of degradation) from four vegetation types (live and blue oak leaves, foothill pine needles, and mixed annual grasses) in an oak woodland ecosystem in the foothills of the Sierra mountains of California. Litters and duffs were placed on sieves within funnels throughout the catchment, and leachates were collected during each rainfall event from Dec. 1, 2006 through May 31, 2007. On a bulk carbon basis, duff material yielded the greatest flux of DOC and weighted average carbon normalized lignin yields and ratios of syringyl and cinnamyl phenols to vanillyl phenols were remarkably similar to that observed in the stream, indicating that processes such as sorption may not be the driving force behind the composition observed. However, elevated ratios of acid to aldehyde compounds of the syringyl and vanillyl phenols in the stream relative to the weighted average of the litter leachate as well as the litter and duff materials indicates that some modification of the lignin phenols. Areal yields of DOM are up to two orders of magnitude greater than

  8. Negative effect of dissolved organic compounds on settling behavior of synthetic monominerals in red mud

    Institute of Scientific and Technical Information of China (English)

    王梦; 胡慧萍; 刘锦伟; 陈启元

    2016-01-01

    Hydration grossular and hematite monominerals were synthesized. The effects of dissolved organic compounds (including sodium formate, sodium acetate, sodium oxalate, sodium salicylate or disodium phthalate) on the settling performance of hydration grossular or hematite slurries were studied. The settling of the slurries was also investigated with the addition of sodium polyacrylate (PAAS) or hydroxamated polyacrylamide flocculant (HCPAM). The adsorption mechanism of organic compounds on monominerals surfaces was studied by FT-IR and XPS, respectively. A deterioration in settling is observed in order of disodium phthalate>sodium salicylate>sodium oxalate>sodium formate (or sodium acetate). Moreover, PAAS can efficiently eliminate the negative effects of organic compounds on the settling performance of the hydration grossular slurry. HCPAM can efficiently eliminate the negative effects of sodium formate, sodium acetate and sodium oxalate on the settling performance of the hematite slurry, but it only partially improves the settling performance of hematite slurry containing sodium salicylate or disodium phthalate. FT-IR and XPS results show that organic compounds are physically adsorbed on hydration grossular surface, and chemisorptions of organic compounds occur on hematite surface with a bidentate chelating complex.

  9. A proteomic fingerprint of dissolved organic carbon and of soil particles.

    Science.gov (United States)

    Schulze, Waltraud X; Gleixner, Gerd; Kaiser, Klaus; Guggenberger, Georg; Mann, Matthias; Schulze, Ernst-Detlef

    2005-01-01

    Mass spectrometry-based proteomics was applied to analyze proteins isolated from dissolved organic matter (DOM). The focal question was to identify the type and biological origin of proteins in DOM, and to describe diversity of protein origin at the level of higher taxonomic units, as well as to detect extracellular enzymes possibly important in the carbon cycle. Identified proteins were classified according to their phylogenetic origin and metabolic function using the National Center for Biotechnology Information (NCBI) protein and taxonomy database. Seventy-eight percent of the proteins in DOM from the lake but less than 50% in forest soil DOM originated from bacteria. In a deciduous forest, the number of identified proteins decreased from 75 to 28 with increasing soil depth and decreasing total soil organic carbon content. The number of identified proteins and taxonomic groups was 50% higher in winter than in summer. In spruce forest, number of proteins and taxonomic groups decreased by 50% on a plot where trees had been girdled a year before and carbohydrate transport to roots was terminated. After girdling, proteins from four taxonomic groups remained as compared to nine taxonomic groups in healthy forest. Enzymes involved in degradation of organic matter were not identified in free soil DOM. However, cellulases and laccases were found among proteins extracted from soil particles, indicating that degradation of soil organic matter takes place in biofilms on particle surfaces. These results demonstrate a novel application of proteomics to obtain a "proteomic fingerprint" of presence and activity of organisms in an ecosystem.

  10. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [EcoAnalytica, Haegersten (Sweden)

    2011-12-15

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca{sup 2+} associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved.

  11. Using polyacrylate-coated SPME fibers to quantify sorption of polar and ionic organic contaminants to dissolved organic carbon.

    Science.gov (United States)

    Haftka, Joris J-H; Scherpenisse, Peter; Jonker, Michiel T O; Hermens, Joop L M

    2013-05-07

    A passive sampling method using polyacrylate-coated solid-phase microextraction (SPME) fibers was applied to determine sorption of polar and ionic organic contaminants to dissolved organic carbon (DOC). The tested contaminants included pharmaceuticals, industrial chemicals, hormones, and pesticides and represented neutral, anionic, and cationic structures. Prior to the passive sampler application, sorption of the chemicals to the fibers was characterized. This was needed in order to accurately translate concentrations measured in fibers to freely dissolved aqueous concentrations during the sorption tests with DOC. Sorption isotherms of neutral compounds to the fiber were linear, whereas isotherms of basic chemicals covered a nonlinear and a linear range. Sorption of acidic and basic compounds to the fiber was pH-dependent and was dominated by sorption of the neutral sorbate species. Fiber- and DOC-water partition coefficients of neutral compounds were both linearly related to octanol-water partition coefficients (log Kow). The results of this study show that polyacrylate fibers can be used to quantify sorption to DOC of neutral and ionic contaminants, having multiple functional groups and spanning a wide hydrophobicity range (log Kow = 2.5-7.5).

  12. A photochemically resistant component in riverine dissolved black carbon

    Science.gov (United States)

    Dittmar, Thorsten; Riedel, Thomas; Niggemann, Jutta; Vähätalo, Anssi

    2015-04-01

    Rivers transport combustion-derived dissolved black carbon (DBC) to the oceans at an annual flux that is much higher than required to balance the oceanic inventory of DBC. To resolve this mismatch we studied the long-term stability of DBC in ten major world rivers that together account for approximately 1/3 of the global freshwater discharge to the oceans. Riverine DBC was remarkably resistant against microbial degradation, but decomposition of nearly all chromophoric dissolved organic matter under extensive irradiation with simulated sunlight removed almost 80% of DBC. Photochemically transformed DBC was further microbially decomposed by more than 10% in a subsequent one-year long bioassay. Based on these findings, on a global scale, the estimated riverine flux of microbially degraded and photo-resistant DBC is sufficient to replenish the oceans with DBC and likely contributes to the dissolved organic matter pool that persists in the oceans and sequesters carbon for centuries to millennia.

  13. Dissolved organic matter transport reflects hillslope to stream connectivity during snowmelt in a montane catchment

    Science.gov (United States)

    Burns, Margaret A.; Barnard, Holly R.; Gabor, Rachel S.; McKnight, Diane M.; Brooks, Paul D.

    2016-06-01

    Dissolved organic matter (DOM) transport is a key biogeochemical linkage across the terrestrial-aquatic interface in headwater catchments, and quantifying the biological and hydrological controls on DOM composition provides insight into DOM cycling at the catchment scale. We evaluated the mobility of DOM components during snowmelt in a montane, semiarid catchment. DOM composition was evaluated on a near-daily basis within the soil and the stream during snowmelt, and was compared to groundwater samples using a site-specific parallel factor analysis (PARAFAC) model derived from soil extracts. The fluorescent component loadings in the interstitial soil water and in the groundwater were significantly different and did not temporally change during snowmelt. In the stream, a transition occurred during snowmelt from fluorescent DOM with higher contributions of amino acid-like components indicative of groundwater to higher humic-like contributions indicative of soil water. Furthermore, we identified a humic-like fluorescent component in the soil water and the stream that is typically only observed in extracted water soluble organic matter from soil which may suggest hillslope to stream connectivity over very short time scales. Qualitative interpretations of changes in stream fluorescent DOM were supported by two end-member mixing analyses of conservative tracers. After normalizing fluorescent DOM loadings for dissolved organic carbon (DOC) concentration, we found that the peak in DOC concentration in the stream was driven by the nonfluorescent fraction of DOM. This study demonstrated how PARAFAC analysis can be used to refine our conceptual models of runoff generation sources, as well as provide a more detailed understanding of stream chemistry dynamics.

  14. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon

    Science.gov (United States)

    O'Donnell, Jonathan A.; Aiken, George R.; Swanson, David K.; Panda, Santosh; Butler, Kenna D.; Baltensperger, Andrew P.

    2016-12-01

    Recent climate change in the Arctic is driving permafrost thaw, which has important implications for regional hydrology and global carbon dynamics. Permafrost is an important control on groundwater dynamics and the amount and chemical composition of dissolved organic matter (DOM) transported by high-latitude rivers. The consequences of permafrost thaw for riverine DOM dynamics will likely vary across space and time, due in part to spatial variation in ecosystem properties in Arctic watersheds. Here we examined watershed controls on DOM composition in 69 streams and rivers draining heterogeneous landscapes across a broad region of Arctic Alaska. We characterized DOM using bulk dissolved organic carbon (DOC) concentration, optical properties, and chemical fractionation and classified watersheds based on permafrost characteristics (mapping of parent material and ground ice content, modeling of thermal state) and ecotypes. Parent material and ground ice content significantly affected the amount and composition of DOM. DOC concentrations were higher in watersheds underlain by fine-grained loess compared to watersheds underlain by coarse-grained sand or shallow bedrock. DOC concentration was also higher in rivers draining ice-rich landscapes compared to rivers draining ice-poor landscapes. Similarly, specific ultraviolet absorbance (SUVA254, an index of DOM aromaticity) values were highest in watersheds underlain by fine-grained deposits or ice-rich permafrost. We also observed differences in hydrophobic organic acids, hydrophilic compounds, and DOM fluorescence across watersheds. Both DOC concentration and SUVA254 were negatively correlated with watershed active layer thickness, as determined by high-resolution permafrost modeling. Together, these findings highlight how spatial variations in permafrost physical and thermal properties can influence riverine DOM.

  15. Dissolved organic carbon ameliorates the effects of UV radiation on a freshwater fish

    Energy Technology Data Exchange (ETDEWEB)

    Manek, Aditya K., E-mail: aditya.manek@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada); Ferrari, Maud C.O. [Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, S7N 5B4 SK (Canada); Chivers, Douglas P.; Niyogi, Som [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada)

    2014-08-15

    Anthropogenic activities over the past several decades have depleted stratospheric ozone, resulting in a global increase in ultraviolet radiation (UVR). Much of the negative effects of UVR in aquatic systems is minimized by dissolved organic carbon (DOC) which is known to attenuate UVR across the water column. The skin of many fishes contains large epidermal club cells (ECCs) that are known to play a role in innate immune responses and also release chemical alarm cues that warn other fishes of danger. This study investigated the effects of in vivo UVR exposure to fathead minnows (Pimephales promelas), under the influence of two sources of DOC: Sigma Aldrich humic acid, a coal based commercial source of DOC and Luther Marsh natural organic matter, a terrigenous source of DOC. Specifically, we examined ECC investment and physiological stress responses and found that fish exposed to high UVR, in the presence of either source of DOC, had higher ECC investment than fish exposed to high UVR only. Similarly, exposure to high UVR under either source of DOC, reduced cortisol levels relative to that in the high UVR only treatment. This indicates that DOC protects fish from physiological stress associated with UVR exposure and helps maintain production of ECC under conditions of UVR exposure. - Highlights: • We examined the combined effect of UV radiation and Dissolved Organic Carbon on fish. • Physiological stress response and epidermal club cell investment were measured. • Fish exposed to high UVR and DOC had higher ECC investment and reduced cortisol levels. • DOC plays a role in protecting fish from physiological stress and maintains ECC production.

  16. Biochar amendment to soil changes dissolved organic matter content and composition.

    Science.gov (United States)

    Smebye, Andreas; Alling, Vanja; Vogt, Rolf D; Gadmar, Tone C; Mulder, Jan; Cornelissen, Gerard; Hale, Sarah E

    2016-01-01

    Amendments of biochar, a product of pyrolysis of biomass, have been shown to increase fertility of acidic soils by enhancing soil properties such as pH, cation-exchange-capacity and water-holding-capacity. These parameters are important in the context of natural organic matter contained in soils, of which dissolved organic matter (DOM) is the mobile and most bioavailable fraction. The effect of biochar on the content and composition of DOM in soils has received little research attention. This study focuses on the effects of amendments of two different biochars to an acidic acrisol and a pH-neutral brown soil. A batch experiment showed that mixing biochar with the acrisols at a 10 wt.% dose increased the pH from 4.9 to 8.7, and this resulted in a 15-fold increase in the dissolved organic carbon concentration (from 4.5 to 69 mg L(-1)). The pH-increase followed the same trend as the release of DOM in the experiment, causing higher DOM solubility and desorption of DOM from mineral sites. The binding to biochar of several well-characterised reference DOM materials was also investigated and results showed a higher sorption of aliphatic DOM to biochar than aromatic DOM, with DOM-water partitioning coefficients (Kd-values) ranging from 0.2 to 590 L kg(-1). A size exclusion occurring in biochar's micropores, could result in a higher sorption of smaller aliphatic DOM molecules than larger aromatic ones. These findings indicate that biochar could increase the leaching of DOM from soil, as well as change the DOM composition towards molecules with a larger size and higher aromaticity.

  17. Photochemical generation of reactive species upon irradiation of rainwater: negligible photoactivity of dissolved organic matter.

    Science.gov (United States)

    Albinet, Alexandre; Minero, Claudio; Vione, Davide

    2010-07-15

    This paper focuses on the study of the photochemical activity of dissolved organic matter present in rainwater. Formation rates of the reactive species hydroxyl radical (OH(*)), singlet oxygen ((1)O(2)) and dissolved organic matter triplet states ((3)DOM()) were determined by irradiation (UV-A) of wet-only rainwater samples collected in Turin (Italy) in the presence of specific scavengers (benzene, furfuryl alcohol and phenol, respectively). Photo-formation rates of OH(*) ( approximately 3.10(-)(11)Ms(-)(1)) and (1)O(2) ( approximately 10(-)(14)Ms(-)(1)) were lower (1 or 2 orders of magnitude) or largely lower (4 to 10 orders of magnitude) than those determined for fog and cloud samples in previous studies. (3)DOM() formation rate values were either negligible or quite low ( approximately 10(-)(12)Ms(-)(1)) by comparison with those evaluated for surface water samples. Deduced steady-state [OH(*)] were in the same range as those reported for fog samples in the literature (8.7.10(-)(16) to 1.5.10(-)(15)M), while [(1)O(2)] was often several orders of magnitude lower and, therefore, could be considered as negligible. Nitrite (NO(2)(-)) constituted the main source of OH(*) (69 + or - 21 to 138 + or - 36%), and the deduced contribution of DOM was low or nil. All the results obtained in this study tend to demonstrate that DOM (including HUmic LIke Substances, HULIS) present in rainwater is poorly or not photoactive. Therefore, there could be considerable difference between rainwater DOM (HULIS included) and the organic matter present in surface waters, particularly the humic substances, as far as the photochemical activity is concerned.

  18. Seasonal Changes in Estuarine Dissolved Organic Matter Due to Variations in Discharge, Flushing Times and Wind-driven Mixing Events

    Science.gov (United States)

    Dixon, Jennifer Louise

    Estuaries are highly productive habitats that transport and transform organic matter (OM), experience large changes in ionic composition and act as a transition zone between terrestrial and marine environments (Paerl et al. 1998; Markager et al. 2011; Osburn et al. 2012). OM source and matrix effects (such as salinity and pH) influence the chemical structure of DOM in estuaries and therefore affect its bioavailability, photo-reactivity, and its overall fate in these systems (Jaffe et al. 2004; Boyd et al. 2010; Pace et al. 2012; Osburn et al. 2012; Cawley et al. 2013). Within estuaries, dissolved organic matter (DOM) is a heterogeneous mixture of aromatic and aliphatic compounds, and its composition in aquatic systems varies spatially and temporally with source (Bauer and Bianchi 2011). However, the main source of DOM in estuaries, rivers and other aquatic systems, originates from vascular plant detritus, soil humus, older fossil (i.e., petrogenic) organic carbon, black carbon, marine OM and in situ production (Hedges 2002; Houghton 2007; Bauer and Bianchi 2011). Chromophoric dissolved organic matter (CDOM), the light absorbing fraction of DOM, can be characterized using optical methods such as absorption and fluorescence spectroscopy (e.g. Coble, 1996; Stedmon and Markager, 2003). By analyzing the spatial and temporal variability of DOM and CDOM within estuaries, information pertaining to OM source and fate across the freshwater-marine continuum can be obtained. These methods offer an inexpensive, non-destructive means for obtaining sensitive measurements of a diverse group of organic compounds. By using this technology to analyze the spatial and temporal variability of CDOM within estuaries, information pertaining to OM source and fate across the freshwater-marine continuum can be obtained (Fellman et al. 2011; Osburn et al. 2012; Murphy et al. 2014). Chemical biomarkers are also routinely used to identify DOM sources in coastal waters. Examples are carbon stable

  19. Spatial distribution of soils determines export of nitrogen and dissolved organic carbon from an intensively managed agricultural landscape

    DEFF Research Database (Denmark)

    Wohlfart, T; Exbrayat, J-F; Schelde, Kirsten;

    2012-01-01

    catchment mainly consist of sandy soil types besides organic soils along the streams. The aim of the study was to characterise the relative influence of soil type and land use on stream water quality. Nine snapshot sampling campaigns were undertaken during the growing season of 2009. Total dissolved...... nitrogen (TDN), nitrate (NO3−), ammonium nitrogen and dissolved organic carbon (DOC) concentrations were measured, and dissolved organic nitrogen (DON) was calculated for each grabbed sample. Electrical conductivity, pH and flow velocity were measured during sampling. Statistical analyses showed......% to TDN. Multiple-linear regression analyses performed between chemical data and landscape characteristics showed a significant negative influence of organic soils on instream N concentrations and corresponding losses in spite of their overall minor share of the agricultural land (12.9%). On the other...

  20. Treatment of dissolved perchlorate, nitrate, and sulfate using zero-valent iron and organic carbon.

    Science.gov (United States)

    Liu, YingYing; Ptacek, Carol J; Blowes, David W

    2014-05-01

    Waters containing ClO and dissolved NO, derived from detonated explosives and solid propellants, often also contain elevated concentrations of other dissolved constituents, including SO. Four column experiments, containing mixtures of silica sand, zero-valent Fe (ZVI) and organic C (OC) were conducted to evaluate the potential for simultaneous removal of NO, SO and ClO. Initially, the flow rate was maintained at 0.5 pore volumes (PV) d and then decreased to 0.1 PV d after 100 PV of flow. Nitrate concentrations decreased from 10.8 mg L (NO-N) to trace levels through NO reduction to NH using ZVI alone and through denitrification using OC. Observations from the mixture of ZVI and OC suggest a combination of NO reduction and denitrification. Up to 71% of input SO (24.5 ± 3.5 mg L) was removed in the column containing OC, and >99.7% of the input ClO (857 ± 63 μg L) was removed by the OC- and (ZVI + OC)-containing columns as the flow rate was maintained at 0.1 PV d. Nitrate and ClO removal followed first-order and zero-order rates, respectively. Nitrate >2 mg L (NO-N) inhibited ClO removal in the OC-containing column but not in the (ZVI + OC)-containing column. Sulfate did not inhibit ClO degradation within any of the columns.

  1. The effect of iron on the biodegradation of natural dissolved organic matter

    Science.gov (United States)

    Xiao, Yi-Hua; Hoikkala, Laura; Kasurinen, Ville; Tiirola, Marja; Kortelainen, Pirkko; Vähätalo, Anssi V.

    2016-10-01

    Iron (Fe) may alter the biodegradation of dissolved organic matter (DOM), by interacting with DOM, phosphorus (P), and microbes. We isolated DOM and a bacterial community from boreal lake water and examined bacterial growth on DOM in laboratory experiments. Fe was introduced either together with DOM (DOM-Fe) or into bacterial suspension, which led to the formation of insoluble Fe precipitates on bacterial surfaces (Fe coating). In the latter case, the density of planktonic bacteria was an order of magnitude lower than that in the corresponding treatment without introduced Fe. The association of Fe with DOM decreased bacterial growth, respiration, and growth efficiency compared with DOM alone at the ambient concentration of dissolved P (0.16 µmol L-1), indicating that DOM-associated Fe limited the bioavailability of P. Under a high concentration (21 µmol L-1) of P, bacterial biomass and respiration were similar or several times higher in the treatment where DOM was associated with Fe than in a corresponding treatment without Fe. Based on the next generation sequencing of 16S rRNA genes, Caulobacter dominated bacterial communities grown on DOM-Fe. This study demonstrated that association of Fe with a bacterial surface or P reduces bacterial growth and the consumption of DOM. In contrast, DOM-Fe is bioavailable and bound Fe can even stimulate bacterial growth on DOM when P is not limiting.

  2. Influence of Dissolved Organic Matter on Tetracycline Bioavailability to an Antibiotic-Resistant Bacterium.

    Science.gov (United States)

    Chen, Zeyou; Zhang, Yingjie; Gao, Yanzheng; Boyd, Stephen A; Zhu, Dongqiang; Li, Hui

    2015-09-15

    Complexation of tetracycline with dissolved organic matter (DOM) in aqueous solution could alter the bioavailability of tetracycline to bacteria, thereby alleviating selective pressure for development of antibiotic resistance. In this study, an Escherichia coli whole-cell bioreporter construct with antibiotic resistance genes coupled to green fluorescence protein was exposed to tetracycline in the presence of DOM derived from humic acids. Complexation between tetracycline and DOM diminished tetracycline bioavailability to E. coli, as indicated by reduced expression of antibiotic resistance genes. Increasing DOM concentration resulted in decreasing bioavailability of tetracycline to the bioreporter. Freely dissolved tetracycline (not complexed with DOM) was identified as the major fraction responsible for the rate and magnitude of antibiotic resistance genes expressed. Furthermore, adsorption of DOM on bacterial cell surfaces inhibited tetracycline diffusion into the bioreporter cells. The magnitude of the inhibition was related to the amount of DOM adsorbed and tetracycline affinity for the DOM. These findings provide novel insights into the mechanisms by which the bioavailability of tetracycline antibiotics to bacteria is reduced by DOM present in water. Agricultural lands receiving livestock manures commonly have elevated levels of both DOM and antibiotics; the DOM could suppress the bioavailability of antibiotics, hence reducing selective pressure on bacteria for development of antibiotic resistance.

  3. Short-term dynamics of North Sea bacterioplankton-dissolved organic matter coherence on molecular level

    Directory of Open Access Journals (Sweden)

    Judith eLucas

    2016-03-01

    Full Text Available Remineralisation and transformation of dissolved organic matter (DOM by marine microbes shape the DOM composition and thus, have large impact on global carbon and nutrient cycling. However, information on bacterioplankton-DOM interactions on a molecular level is limited. We examined the variation of bacterial community composition at Helgoland Roads (North Sea in relation to variation of molecular DOM composition and various environmental parameters on short-time scales. Surface water samples were taken daily over a period of twenty days. Bacterial community and molecular DOM composition were assessed via 16S rRNA gene tag sequencing and ultrahigh resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS, respectively. Environmental conditions were driven by a coastal water influx during the first half of the sampling period and the onset of a summer phytoplankton bloom towards the end of the sampling period. These phenomena led to a distinct grouping of bacterial communities and DOM composition which was particularly influenced by total dissolved nitrogen concentration, temperature and salinity, as revealed by distance-based linear regression analyses. Bacterioplankton-DOM interaction was demonstrated in strong correlations between specific bacterial taxa and particular DOM molecules, thus, suggesting potential specialization on particular substrates. We propose that a combination of high resolution techniques, as used in this study, may provide substantial information on substrate generalists and specialists and thus, contribute to prediction of bacterial community composition variation.

  4. Fluorescent dissolved organic matter in the continental shelf waters of western Bay of Bengal

    Indian Academy of Sciences (India)

    N V H K Chari; P Sudarsana Rao; Nittala S Sarma

    2013-10-01

    Fluorescent dissolved organic matter (FDOM) of southwestern Bay of Bengal surface water during southwest monsoon consisted five fluorophores, three humic-like and two protein-like. The humification index (HIX) and humic fluorophores, viz., visible (C), marine (M) and UV (A) humic-likes indicated, better than biogeochemical constituents analyzed, that the northern-half region of the study area which is closer to the head bay (less salinity) is distinctly more terrestrially influenced. Similarly, the southernhalf region (less dissolved oxygen) is indicated as more in situ influenced. This region is enriched with tyrosine protein-like fluorophore (B), an indicator of bacterial metabolism in some of its samples due to upwelled water. Although chlorophyll is less in this (southern) region, the fluorescence based biological index (BIX) which is an index of recent phytoplankton production is about the same in the two regions, and the lower chlorophyll of southern region is attributed to greater grazing pressure. Fluorescence properties, e.g., BIX are more informative about phytoplankton production than chlorophyll .

  5. Analysis of Dissolved Organic Nutrients in the Interstitial Water of Natural Biofilms.

    Science.gov (United States)

    Tsuchiya, Yuki; Eda, Shima; Kiriyama, Chiho; Asada, Tomoya; Morisaki, Hisao

    2016-07-01

    In biofilms, the matrix of extracellular polymeric substances (EPSs) retains water in the interstitial region of the EPS. This interstitial water is the ambient environment for microorganisms in the biofilms. The nutrient condition in the interstitial water may affect microbial activity in the biofilms. In the present study, we measured the concentrations of dissolved organic nutrients, i.e., saccharides and proteins, contained in the interstitial water of biofilms formed on the stones. We also analyzed the molecular weight distribution, chemical species, and availability to bacteria of some saccharides in the interstitial water. Colorimetric assays showed that the concentrations of saccharides and proteins in the biofilm interstitial water were significantly higher (ca. 750 times) than those in the surrounding lake waters (p interstitial waters were mainly of low molecular-weight saccharides such as glucose and maltose, while proteins in the interstitial water were high molecular-weight proteins (over 7000 Da). Bacterial growth and production of EPS occurred simultaneously with the decrease in the low molecular-weight saccharide concentrations when a small portion of biofilm suspension was inoculated to the collected interstitial water, suggesting that the dissolved saccharides in the interstitial water support bacterial growth and formation of biofilms.

  6. Biochemical Composition of Dissolved Organic Matter Released During Experimental Diatom Blooms

    Science.gov (United States)

    Mannino, Antonio; Harvey, H. Rodger

    2002-01-01

    An axenic culture of Skeletonema costatum was grown to late-log phase to examine the molecular weight distribution and the biochemical composition of high molecular weight dissolved organic matter released in the absence of actively growing bacteria. A second culture was grown in a 5 m(exp 3) mesocosm and placed in darkness for a period of 51 days to examine the impact of phytoplankton bloom dynamics and microbial decomposition on dissolved (DOM) and particulate organic matter (POM) composition. DOM was separated using tangential-flow ultrafiltration into three nominal size fractions: LDOM (less than 1 kDa DOM), HDOM (1-30 kDa) and VHDOM (30 kDa-0.2 micron) and characterized. Both axenic and mesocosm diatom blooms released 28-33% of net primary production as dissolved organic carbon (DOC). In the axenic culture, HDOM and LDOM each comprised about half of the diatom-released DOC with less than l% as VHDOM. Diatoms from both experiments released carbohydrate-rich high molecular weight DOM. Much of the axenic diatom-released high molecular weight DOC could be chemically characterized (61% of HDOM and 78% of VHDOM) with carbohydrates as the primary component (45% of HDOM and 55% of VHDOM). Substantial amounts of hydrolyzable amino acids (16% of HDOM and 22% of VHDOM) and small amounts of lipids (less than 1%) were also released. Proportions of recognizable biochemical components in DOM produced in the mesocosm bloom were lower compared to the axenic culture. The presence of bacterial fatty acids and peptidoglycan-derived D-amino acids within high molecular weight fractions from the mesocosm bloom revealed that bacteria contributed a variety of macromolecules to DOM during the growth and decay of the diatom bloom. Release of significant amounts of DOC by diatoms demonstrates that DOM excretion is an important component of phytoplankton primary production. Similarities in high molecular weight DOM composition in marine waters and diatom cultures highlight the importance

  7. The effect of drain blocking on dissolved organic carbon under the peak flow conditions

    Science.gov (United States)

    zhang, zhuoli

    2014-05-01

    There are numerous studies that have shown increasing dissolved organic carbon (DOC) concentration down stream of upland peat catchments (eg. Worrall et al., 2007; Clark et al., 2007; Gibson et al., 200). In the UK, upland peat soils are both an important water source and an important carbon store, therefore, the transportation of DOC from soil to the aquatic system remains a critical part of the impact that upland peat environments have on wider society. The majority of the DOC is delivered from the peat soil during the peak flow events (Clark et al., 2008), however, most of the storm events analysis has been developed for organo-mineral soil rather than for peat soil catchments. Worrall et al., (2007) suggested that drain blocking as a potential method for controlling DOC release from peat soil. An events analysis was conducted on the drain blocking data collected from 2008 to 2010 from Cronkley Fell (UK National grid reference NY 83800 26996). A total of 756 peak flow events were chosen to access the impact of drain blocking on DOC concentration and flux during the events. The data was analysed by the combination of principal components analysis (PCA) and end member mixing analysis (EMMA). The results showed that during the peak flow events, the effects of drain blocking was minimised by the rapid flushing of the event water: the DOC concentration on storm events increased after blocking rather than decreased; DOC flux did decrease after blocking but rather as a result of the increased volume of the event water. Worrall, F., Armstrong, A., Holden, J., 2007. Short term impact of peat drain blocking on water color, dissolved organic carbon concentration and water table depth. Journal of Hydrology 337,315-325 Clark, J.M., Lane, S.N., Chapman, P.J., Adamson, J.K., 2007. Export of dissolved organic carbon from an upland peat during storm events: Implication for flux estimates. Journal of Hydrology 347, 438-447. Aitkenhead, J.A., McDowell, W. H., 2000. Soil C: N ratio

  8. Linkages between the circulation and distribution of dissolved organic matter in the White Sea, Arctic Ocean

    Science.gov (United States)

    Pavlov, Alexey K.; Stedmon, Colin A.; Semushin, Andrey V.; Martma, Tõnu; Ivanov, Boris V.; Kowalczuk, Piotr; Granskog, Mats A.

    2016-05-01

    The White Sea is a semi-enclosed Arctic marginal sea receiving a significant loading of freshwater (225-231 km3 yr-1 equaling an annual runoff yield of 2.5 m) and dissolved organic matter (DOM) from river run-off. We report discharge weighed values of stable oxygen isotope ratios (δ18O) of -14.0‰ in Northern Dvina river for the period 10 May-12 October 2012. We found a significant linear relationship between salinity (S) and δ18O (δ18O=-17.66±0.58+0.52±0.02×S; R2=0.96, N=162), which indicates a dominant contribution of river water to the freshwater budget and little influence of sea ice formation or melt. No apparent brine additions from sea-ice formation is evident in the White Sea deep waters as seen from a joint analysis of temperature (T), S, δ18O and aCDOM(350) data, confirming previous suggestions about strong tidal induced vertical mixing in winter being the likely source of the deep waters. We investigated properties and distribution of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in the White Sea basin and coastal areas in summer. We found contrasting DOM properties in the inflowing Barents Sea waters and White Sea waters influenced by terrestrial runoff. Values of absorption by CDOM at 350 nm (aCDOM(350)) and DOC (exceeding 10 m-1 and 550 μmol l-1, respectively) in surface waters of the White Sea basin are higher compared to other river-influenced coastal Arctic domains. Linear relationship between S and CDOM absorption, and S and DOC (DOC=959.21±52.99-25.80±1.79×S; R2=0.85; N=154) concentrations suggests conservative mixing of DOM in the White Sea. The strongest linear correlation between CDOM absorption and DOC was found in the ultraviolet (DOC=56.31±2.76+9.13±0.15×aCDOM(254); R2=0.99; N=155), which provides an easy and robust tool to trace DOC using CDOM absorption measurements as well as remote sensing algorithms. Deviations from this linear relationship in surface waters likely indicate contribution from

  9. The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation – A review

    Directory of Open Access Journals (Sweden)

    Djamel Ghernaout

    2014-07-01

    Full Text Available This review discusses the hydrophilic/hydrophobic ratio as a function of the hydrophilic and hydrophobic contents removal by coagulation process. It is well established that coagulation process could bring a reduction in dissolved organic carbon of around 30–60% by increasing the coagulant dose and optimising reaction pH, in which large organic molecules with hydrophobic property was removed preferentially. Furthermore, the literature affirmed that the greater removal of UV-absorbing substances indicates that alum coagulation preferentially removed the hydrophobic fraction of the total organic carbon. For the hydrophobic fraction, it needs to be removed entirely without its transformation into hydrophilic fractions by coagulation process avoiding pre-chlorination/pre-oxidation due to the risk of organic molecules fragmentation. Determining the exact numerical values of the hydrophilic/hydrophobic ratio for raw water and treated water at different stages of the treatment processes in a water treatment plant, as for the DCO/DBO5 ratio in the case of wastewater treatment, would help on more focusing on OM control and removal.

  10. Characterization of biochars and dissolved organic matter phases obtained upon hydrothermal carbonization of Elodea nuttallii.

    Science.gov (United States)

    Poerschmann, J; Weiner, B; Wedwitschka, H; Zehnsdorf, A; Koehler, R; Kopinke, F-D

    2015-01-01

    The invasive aquatic plant Elodea nuttallii was subjected to hydrothermal carbonization at 200 °C and 240 °C to produce biochar. About 58% w/w of the organic carbon of the pristine plant was translocated into the solid biochar irrespectively of the operating temperature. The process water rich in dissolved organic matter proved a good substrate for biogas production. The E. nuttallii plants showed a high capability of incorporating metals into the biomass. This large inorganic fraction which was mainly transferred into the biochar (except sodium and potassium) may hamper the prospective application of biochar as soil amendment. The high ash content in biochar (∼ 40% w/w) along with its relatively low content of organic carbon (∼ 36% w/w) is associated with low higher heating values. Fatty acids were completely hydrolyzed from lipids due to hydrothermal treatment. Low molecular-weight carboxylic acids (acetic and lactic acid), phenols and phenolic acids turned out major organic breakdown products.

  11. A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean

    Science.gov (United States)

    Medeiros, Patricia M.; Seidel, Michael; Niggemann, Jutta; Spencer, Robert G. M.; Hernes, Peter J.; Yager, Patricia L.; Miller, William L.; Dittmar, Thorsten; Hansell, Dennis A.

    2016-05-01

    Marine dissolved organic matter (DOM) contains one of the largest exchangeable organic carbon pools on Earth. Riverine input represents an important source of DOM to the oceans, yet much remains to be learned about the fate of the DOM linking terrestrial to oceanic carbon cycles through rivers at the global scale. Here we use ultrahigh-resolution mass spectrometry to identify 184 molecular formulae that are indicators of riverine inputs (referred to as t-Peaks) and to track their distribution in the deep North Atlantic and North Pacific Oceans. The t-Peaks were found to be enriched in the Amazon River, to be highly correlated with known tracers of terrigenous input, and to be observed in all samples from four different rivers characterized by vastly different landscapes and vegetation coverage spanning equatorial (Amazon and Congo), subtropical (Altamaha), and Arctic (Kolyma) regions. Their distribution reveals that terrigenous organic matter is injected into the deep ocean by the global meridional overturning circulation, indicating that a fraction of the terrigenous DOM introduced by rivers contributes to the DOM pool observed in the deep ocean and to the storage of terrigenous organic carbon. This novel molecular approach can be used to further constrain the transfer of DOM from land to sea, especially considering that Fourier transform ion cyclotron resonance mass spectrometer analysis is becoming increasingly frequent in studies characterizing the molecular composition of DOM in lakes, rivers, and the ocean.

  12. Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils.

    Science.gov (United States)

    Ward, Collin P; Cory, Rose M

    2016-04-05

    Photochemical degradation of dissolved organic matter (DOM) to carbon dioxide (CO2) and partially oxidized compounds is an important component of the carbon cycle in the Arctic. Thawing permafrost soils will change the chemical composition of DOM exported to arctic surface waters, but the molecular controls on DOM photodegradation remain poorly understood, making it difficult to predict how inputs of thawing permafrost DOM may alter its photodegradation. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigated changes in the chemical composition of each DOM source following sunlight exposure. Permafrost and organic mat DOM had similar lability to photomineralization despite substantial differences in initial chemical composition. Concurrent losses of carboxyl moieties and shifts in chemical composition during photodegradation indicated that photodecarboxylation could account for 40-90% of DOM photomineralized to CO2. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic moieties with antioxidant properties. These results suggest that photodegradation will likely continue to be an important control on DOM fate in arctic freshwaters as the climate warms and permafrost soils thaw.

  13. Coextracted dissolved organic carbon has a suppressive effect on the acetylcholinesterase inhibition assay.

    Science.gov (United States)

    Neale, Peta A; Escher, Beate I

    2013-07-01

    The acetylcholinesterase (AChE) inhibition assay is frequently applied to detect organophosphates and carbamate pesticides in different water types, including dissolved organic carbon (DOC)-rich wastewater and surface water. The aim of the present study was to quantify the effect of coextracted DOC from different water samples on the commonly used enzyme-based AChE inhibition assay. Approximately 40% to 70% of DOC is typically recovered by solid-phase extraction, and this comprises not only organic micropollutants but also natural organic matter. The inhibition of the water extracts in the assay differed greatly from the expected mixture effects based on chemical analysis of organophosphates and carbamates. Binary mixture experiments with the known AChE inhibitor parathion and the water extracts showed reduced toxicity in comparison with predictions using the mixture models of concentration addition and independent action. In addition, the extracts and reference organic matter had a suppressive effect on a constant concentration of parathion. The present study thus indicated that concentrations of DOC as low as 2 mg carbon/L can impair the AChE inhibition assay and, consequently, that only samples with a final DOC concentration of less than 2 mgC /L are suitable for this assay. To check for potential suppression in environmental samples, standard addition experiments using an AChE-inhibiting reference compound are recommended.

  14. Dissolved Organic Carbon Determination Using FIA and Photo-Fenton Reaction

    Directory of Open Access Journals (Sweden)

    Kondo Márcia M.

    2002-01-01

    Full Text Available The FIA-photo-Fenton system is based on the flow oxidation of the organic matter. A small amount of the sample containing H2O2 is injected into the acidic flow solution of Fe2+, which passes through a tubular PTFE reactor irradiated with UV light. The generated CO2 is quantified by a conductometric detector and is directly proportional to the dissolved organic carbon concentration in the sample. The optimization studies were performed using EDTA solutions. The average recovery of organic carbon was 83% with a relative standard deviation of 3.7% using a 1:5 molar ratio of Fe2+:H2O2, pH 2.0, 100 muL of sample injection and a liquid flow of 1 mL min-1. After optimization, the DOC concentration was quantified using 13 different organic compounds, where the average recovery was 90%. The rate of the analysis was in average 50 samples hour-1.

  15. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran oceans.

    Science.gov (United States)

    Sperling, E A; Peterson, K J; Laflamme, M

    2011-01-01

    The mid-Ediacaran Mistaken Point biota of Newfoundland represents the first morphologically complex organisms in the fossil record. At the classic Mistaken Point localities the biota is dominated by the enigmatic group of "fractally" branching organisms called rangeomorphs. One of the few exceptions to the rangeomorph body plan is the fossil Thectardis avalonensis, which has been reconstructed as an upright, open cone with its apex in the sediment. No biological affinity has been suggested for this fossil, but here we show that its body plan is consistent with the hydrodynamics of the sponge water-canal system. Further, given the habitat of Thectardis beneath the photic zone, and the apparent absence of an archenteron, movement, or a fractally designed body plan, we suggest that it is a sponge. The recognition of sponges in the Mistaken Point biota provides some of the earliest body fossil evidence for this group, which must have ranged through the Ediacaran based on biomarkers, molecular clocks, and their position on the metazoan tree of life, in spite of their sparse macroscopic fossil record. Should our interpretation be correct, it would imply that the paleoecology of the Mistaken Point biota was dominated by sponges and rangeomorphs, organisms that are either known or hypothesized to feed in large part on dissolved organic carbon (DOC). The biology of these two clades gives insight into the structure of the Ediacaran ocean, and indicates that a non-uniformitarian mechanism delivered labile DOC to the Mistaken Point seafloor.

  16. Temporal dynamics of dissolved combined neutral sugars and the quality of dissolved organic matter in the Northwestern Sargasso Sea

    Science.gov (United States)

    Goldberg, Stuart J.; Carlson, Craig A.; Hansell, Dennis A.; Nelson, Norm B.; Siegel, David A.

    2009-05-01

    The dynamics of dissolved combined neutral sugars (DCNS) were assessed in the upper 250 m at the Bermuda Atlantic Time-series Study (BATS) site between 2001 and 2004. Our results reveal a regular annual pattern of DCNS accumulation with concentrations increasing at a rate of 0.009-0.012 μmol C L -1 d -1 in the surface 40 m from March to July and reaching maximum mean concentrations of 2.2-3.3 μmol C L -1. Winter convective mixing (between January and March) annually exported surface-accumulated DCNS to the upper mesopelagic zone (100-250 m), as concentrations increased there by 0.3-0.6 μmol C L -1. The exported DCNS was subsequently removed over a period of weeks following restratification of the water column. Vertical and temporal trends in DCNS yield (% of DOC) supported its use as a diagenetic indicator of DOM quality. Higher DCNS yields in surface waters suggested a portion of the DOM accumulated relatively recently compared to the more recalcitrant material of the upper mesopelagic that had comparably lower yields. DCNS yields and mol% neutral sugar content, together, indicated differences in the diagenetic state of the surface-accumulated and deep pools of DOM. Seasonally accumulated, recently produced DOM with higher DCNS yields was characterized by elevated mol% of galactose and mannose+xylose levels. Conversely, more recalcitrant DOM from depths >100 m had lower DCNS yields but higher mol% of glucose. Lower DCNS yields and elevated mol% glucose were also observed in the surface waters during winter convective mixing, indicating an entrainment of a diagenetically altered DOM pool into the upper 100 m. A multivariate statistical analysis confirms the use of DCNS as an index of shifts in DOM quality at this site.

  17. Seasonal Variability in Dissolved Organic Matter Quantity and Composition from the Yukon River Basin

    Science.gov (United States)

    Spencer, R. G.; Aiken, G. R.; Wickland, K. P.; Striegl, R. G.; Hernes, P. J.

    2007-12-01

    The Yukon River basin (YRB) is one of the largest in North America draining an area of 855 x 103 km2 in northwestern Canada and central Alaska and is a major source of terrigenous organic matter to the eastern Bering Sea and Arctic Ocean. The Yukon is also a relatively pristine catchment draining a vast area of taiga that is exceptionally susceptible to climatic change. Dissolved organic matter (DOM) plays a fundamental role in ecosystem biogeochemistry and is ubiquitous in aquatic systems. Samples were collected over a five year period from 2001 to 2005 from a number of locations and at different points in the hydrologic regime throughout the YRB. Sample locations represented different locations on the mainstream of the Yukon River, as well as tributaries ranging from organic rich black waters draining permafrost impacted watersheds to those dominated by glacial melt waters and groundwater. Dissolved organic carbon (DOC) concentrations were observed to vary greatly from 1.5 to 26.1 mgCL-1 depending on source waters and time of year. Specific UV absorbance at 254 nm (SUVA) was also determined and ranged from to 1.3 to 4 highlighting the range in dissolved aromatic carbon content from different sources within the YRB. The hydrophobic acid (HPOA) fraction of the DOM was isolated from samples by XAD-8 resin adsorption for further investigation of DOM composition. The HPOA fraction represented 32 to 57 % of the total DOC for the range of samples studied. SUVA values from the HPOA fraction were higher than the unfractionated water samples (2.5 to 4.4) indicating a higher aromatic content for the HPOA fractions relative to the unfractionated DOM. However, the HPOA SUVA showed a good correlation to the unfractionated water samples SUVA (r2 = 0.84, pgymnosperms and woody and non-woody vascular plant materials, respectively. In addition, acid to aldehyde ratios of vanillyl and syringyl phenols can indicate the degree of oxidation and have been shown to increase with

  18. Drivers of fluorescent dissolved organic matter in the global epipelagic ocean

    DEFF Research Database (Denmark)

    Catalá, T.S.; Álvarez-Salgado, X. A.; Otero, J.

    2016-01-01

    Fluorescent dissolved organic matter (FDOM) in open surface waters (oceans was analysed by excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC). A four-component PARAFAC model was fit to the EEMs, which included two humic......- (C1 and C2) and two amino acid-like (C3 and C4) components previously identified in ocean waters. Generalizedadditive models (GAMs) were used to explore the environmental factors that drive the global distribution of these PARAFAC components. The explained variance for the humic-like components...... and the two humic-like PARAFAC components suggest that their distribution are biologically controlled. Compared with the dark ocean (> 200 m), the relationships of C1 and C2 with AOU indicate a higher C1/AOU and C2/AOU ratios of the humic-like substances in the dark ocean than in the surface ocean where a net...

  19. Dissolved Organic Carbon Cycling in Forested Watersheds: A Carbon Isotope Approach

    Science.gov (United States)

    Schiff, S. L.; Aravena, R.; Trumbore, S. E.; Dillon, P. J.

    1990-12-01

    Dissolved organic carbon (DOC) is important in the acid-base chemistry of acid-sensitive freshwater systems; in the complexation, mobility, persistence, and toxicity of metals and other pollutants; and in lake carbon metabolism. Carbon isotopes (13C and 14C) are used to study the origin, transport, and fate of DOC in a softwater catchment in central Ontario. Precipitation, soil percolates, groundwaters, stream, beaver pond, and lake waters, and lake sediment pore water were characterized chemically and isotopically. In addition to total DOC, isotopic measurements were made on the humic and fulvic DOC fractions. The lake is a net sink for DOC. Δ14C results indicate that the turnover time of most of the DOC in streams, lakes, and wetlands is fast, less than 40 years, and on the same time scale as changes in acidic deposition. DOC in groundwaters is composed of older carbon than surface waters, indicating extensive cycling of DOC in the upper soil zone or aquifer.

  20. The source and distribution of thermogenic dissolved organic matter in the ocean

    Science.gov (United States)

    Dittmar, T.; Suryaputra, I. G. N. A.; Paeng, J.

    2009-04-01

    Thermogenic organic matter (ThOM) is abundant in the environment. ThOM is produced at elevated temperature and pressure in deep sediments and earth's crust, and it is also a residue of fossil fuel and biomass burning ("black carbon"). Because of its refractory character, it accumulates in soils and sediments and, therefore, may sequester carbon from active cycles. It was hypothesized that a significant component of marine dissolved organic matter (DOM) might be thermogenic. Here we present a detailed data set on the distribution of thermogenic DOM in major water masses of the deep and surface ocean. In addition, several potential sources of thermogenic DOM to the ocean were investigated: active seeps of brine fluids in the deep Gulf of Mexico, rivers, estuaries and submarine groundwaters. Studies on deep-sea hydrothermal vents and aerosol deposition are ongoing. All DOM samples were isolated from seawater via solid phase extraction (SPE-DOM). ThOM was quantified in the extracts as benzene-polycarboxylic acids (BPCAs) after nitric acid oxidation via high-performance liquid chromatography and diode array detection (HPLC-DAD). BPCAs are produced exclusively from fused ring systems and are therefore unambiguous molecular tracers for ThOM. In addition to BPCA determination, the molecular composition and structure of ThOM was characterized in detail via ultrahigh resolution mass spectrometry (FT-ICR-MS). All marine and river DOM samples yielded significant amounts of BPCAs. The cold seep system in the deep Gulf of Mexico, but also black water rivers (like the Suwannee River) were particularly rich in ThOM. Up to 10% of total dissolved organic carbon was thermogenic in both systems. The most abundant BPCA was benzene-pentacarboxylic acid (B5CA). The molecular composition of BPCAs and the FT-ICR-MS data indicate a relatively small number (5-8) of fused aromatic rings per molecule. Overall, the molecular BPCA patterns were very similar independent of the source of Th

  1. Littoral zones as sources of biodegradable dissolved organic carbon in lakes

    Science.gov (United States)

    Stets, E.G.; Cotner, J.B.

    2008-01-01

    A survey of 12 lakes in Minnesota, USA, was conducted to examine the factors controlling variability in biodegradable dissolved organic carbon (BDOC) concentration. The principal question addressed was whether BDOC concentration was more strongly related to lake trophic status or morphometric parameters. BDOC concentration was determined by incubating filtered lake water for a period of 15 months and fitting an exponential decay curve to measured DOC concentrations. BDOC concentrations varied from 73 to 427 mmol C.L-1 and composed 15%-63% of the total DOC pool. There were no significant correlations between BDOC and measures of lake trophic status. Instead, BDOC was most closely associated with the percentage of lake area covered by littoral zone, suggesting a significant source of BDOC from aquatic macrophytes and lake surface sediments. ?? 2008 NRC.

  2. Ortho-para spin conversion of Ps by paramagnetic O2 dissolved in organic compounds

    Directory of Open Access Journals (Sweden)

    Zgardzińska Bożena

    2015-12-01

    Full Text Available The o-Ps mean lifetime value in liquids decreases in the presence of the paramagnetic oxygen molecules via the ortho-para conversion process. This effect was observed for several organic samples composed of carbon and hydrogen atoms differing in the arrangement of atoms forming the molecule, e.g. n-alkanes, alcohols, branched isomer of alkane, cycloalkane. The usually observed tendency of the o-Ps lifetime value to be an increasing function of temperature (in the case of measurements performed in vacuum changes to a decreasing one in the presence of O2 dissolved in the sample. The difference between the o-Ps lifetimes measured in samples in vacuum and in the presence of O2 increases with the distance from the melting point. The ortho-para constant rate λconv was estimated to be ~130 μs−1 at 300 K for three compounds investigated.

  3. Phototransformation of pesticides in prairie potholes: effect of dissolved organic matter in triplet-induced oxidation.

    Science.gov (United States)

    Karpuzcu, M Ekrem; McCabe, Andrew J; Arnold, William A

    2016-02-01

    Photochemical reactions involving a variety of photosensitizers contribute to the abiotic transformation of pesticides in prairie pothole lakes (PPLs). Despite the fact that triplet excited state dissolved organic matter (DOM) enhances phototransformation of pesticides by acting as a photosensitizer, it may also decrease the overall phototransformation rate through various mechanisms. In this study, the effect of DOM on the phototransformation of four commonly applied pesticides in four different PPL waters was investigated under simulated sunlight using photoexcited benzophenone-4-carboxylate as the oxidant with DOM serving as an anti-oxidant. For atrazine and mesotrione, a decrease in phototransformation rates was observed, while phototransformations of metolachlor and isoproturon were not affected by DOM inhibition. Phototransformation rates and the extent of inhibition/enhancement by DOM varied spatially and temporally across the wetlands studied. Characterization of DOM from the sites and different seasons suggested that the DOM type and variations in the DOM structure are important factors controlling phototransformation rates of pesticides in PPLs.

  4. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater

    DEFF Research Database (Denmark)

    Christensen, Jette B.; Jensen, Dorthe Lærke; Grøn, Christian

    1998-01-01

    Samples of dissolved organic carbon (DOG) were obtained from landfill leachate-polluted groundwater at Vejen Landfill, Denmark. The humic acids, fulvic acids and the hydrophilic fraction were isolated and purified. Based on DOC measurements, the fulvic acid fraction predominated, accounting...... for about 60% of the total amount of DOC with an apparent molecular weight of about 1800 Da. The hydrophilic fraction constituted about 30% of the total amount of DOC with an apparent molecular weight of about 2100 Da, and the humic acid fraction made up about 10% of the total amount of DOC with an apparent...... molecular weight of about 2600 Da. The elemental compositions of the humic acids, fulvic acids and the hydrophilic fraction were in the ranges typical for humic substances from other origins. The O/C ratios for humic acids, fulvic acids and the hydrophilic fraction were similar in the leachate...

  5. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    DEFF Research Database (Denmark)

    Goncalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid

    2016-01-01

    Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys...... were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (f(mw)), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait...... was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential...

  6. Dissolved Organic Matter Dynamics in two Suburban Catchments in NE England

    Science.gov (United States)

    Baker, A.; Simpson, E.; Bryant, C.

    2005-12-01

    Recent advances in fluorescence spectrophotometry enable rapid and optically precise analysis of river dissolved organic matter (DOM). In this study we investigate the potential of detecting river pollution associated with urban expansion (cross connected sewerage; overloading of combined sewer overflows (CSOs), land use change) using fluorescence and absorbance spectrophotometry, paired with conventional geochemistry, microbiological analyses and 14C/13C isotope fingerprinting of dissolved organic matter, in two small, rural-urban fringe catchments in NE England over the period 2002-present. In the United Kingdom, `suburbia' (post 1945AD) is distinguished by separate sewerage systems and associated issues of cross connections. Results indicate: (1) suburban catchments have a seasonal trend in DOM fluorescence, with a maximum of tryptophan-like fluorescence in summer low flow, indicative of an increased proportion of cross connected sewer inputs, with a statistically significant inverse relationship with discharge. Older `urban' catchments with CSOs exhibit an opposite seasonality, with combined sewerage overflows occurring in winter at high flow due to CSO discharge. (2) Sampling cross connected storm drains for both Escherichia coli. and fluorescence demonstrates a statistically significant relationship. This finding matches laboratory microbial cultures, which have demonstrated that a wide range of environmentally relevant microbes exhibit tryptophan-like fluorescence, and suggests that when coliforms dominate a river or wastewater microbial community then fluorescence intensity could potentially be employed to monitor faecal coliforms in urban waters. (3) 14C/13C fingerprinting of DOM in three contrasting sub-catchments separates urban and industrial DOM sources through positive 13C and `old' 14C.

  7. Uncoupling of bacterial and terrigenous dissolved organic matter dynamics in decomposition experiments.

    Directory of Open Access Journals (Sweden)

    Daniel P R Herlemann

    Full Text Available The biodegradability of terrigenous dissolved organic matter (tDOM exported to the sea has a major impact on the global carbon cycle, but our understanding of tDOM bioavailability is fragmentary. In this study, the effects of preparative tDOM isolation on microbial decomposition were investigated in incubation experiments consisting of mesocosms containing mesohaline water from the Baltic Sea. Dissolved organic carbon (DOC consumption, molecular DOM composition, bacterial activities, and shifts in bacterial community structure were compared between mesocosms supplemented with riverine tDOM, either as filtered, particle-free river water or as a concentrate obtained by lyophilization/tangential ultrafiltration, and those containing only Baltic Sea water or river water. As shown using ultra-high-resolution mass spectrometry (15 Tesla Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS covering approximately 4600 different DOM compounds, the three DOM preparation protocols resulted in distinct patterns of molecular DOM composition. However, despite DOC losses of 4-16% and considerable bacterial production, there was no significant change in DOM composition during the 28-day experiment. Moreover, tDOM addition affected neither DOC degradation nor bacterial dynamics significantly, regardless of the tDOM preparation. This result suggested that the introduced tDOM was largely not bioavailable, at least on the temporal scale of our experiment, and that the observed bacterial activity and DOC decomposition mainly reflected the degradation of unknown, labile, colloidal and low-molecular weight DOM, both of which escape the analytical window of FT-ICR-MS. In contrast to the different tDOM preparations, the initial bacterial inoculum and batch culture conditions determined bacterial community succession and superseded the effects of tDOM addition. The uncoupling of tDOM and bacterial dynamics suggests that mesohaline bacterial communities

  8. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams.

    Science.gov (United States)

    Nimptsch, Jorge; Woelfl, Stefan; Osorio, Sebastian; Valenzuela, Jose; Ebersbach, Paul; von Tuempling, Wolf; Palma, Rodrigo; Encina, Francisco; Figueroa, David; Kamjunke, Norbert; Graeber, Daniel

    2015-12-15

    Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradability are unknown. The aim of this study was thus to investigate the inputs of anthropogenic DOM from land-based aquaculture to the predominantly pristine river systems of North Patagonia. We hypothesized, that i) DOM exported from land-based aquaculture mainly consists of protein-like fluorescence (tyrosine and tryptophan) released from fish feces and food remains, and that ii) this DOM is highly degradable and therefore rapidly turned-over within the receiving streams. In the North Patagonian region we conducted a screening of ten land-based aquacultures and an intensive sampling campaign for one aquaculture. This was combined with longitudinal transects and a degradation experiment in order to couple the composition of DOM exported from land-based aquacultures to its degradability in streams. We measured dissolved organic carbon (DOC) concentration by high-temperature catalytic oxidation and DOM composition by fluorescence spectroscopy and parallel factor analysis. In the effluent of the ten screened aquacultures and in the repeated sampling of one aquaculture, we consistently found an increase of DOC concentrations and a dominance of protein-like fluorescence. The protein-like fluorescence rapidly disappeared downstream of the aquacultures, and in the degradation experiment. 21% of the DOC export from the repeatedly sampled aquaculture resulted from food addition and 76% from fish production. We conclude that large amounts of degradable DOM are exported from land-based aquacultures. This probably has strong effects on the ecological structure and function of North Patagonian streams, and similarly affected streams worldwide.

  9. Small scale variability of transport and composition of dissolved organic matter in the subsoil

    Science.gov (United States)

    Leinemann, Timo; Kalbitz, Karsten; Mikutta, Robert; Guggenberger, Georg

    2016-04-01

    Dissolved organic matter (DOM) is the most mobile fraction of carbon in the soil and connects the carbon-rich topsoil with the subsoil where translocated OM may get stabilized. The water flux in soil is highly heterogeneous, both temporarily and spatially. We, therefore, hypothesize that at high flow velocities, DOM can bypass possible mineral binding sites and microorganisms, thus leading to less degraded DOM under high flow velocities. To address this question, we investigated water and DOM fluxes in situ using segmented suction plates (4 x 4 segments on 24 x 24 cm) installed into three soil observatories at three depths (10 cm, 50 cm, and 150 cm) in a Podzolic Cambisol under Beech (Fagus sylvatica) near Hannover, Germany. To follow the transport of carbon from the litter layer through the soil, an in situ 13C-labelling experiment has been conducted in January 2015. Concentration of dissolved organic carbon (DOC) and DOM composition was analyzed using high temperature combustion and photometric methods. The amount of transported DOC decreased by ca. 80% from 10 to 50 cm depth and by 40% from 50 to 150 cm depth. Different flow patterns existed at the centimeter scale, which were stable over time for individual suction plate segments. The specific UV280 nm absorbance of DOM decreased with increasing soil depth. This indicates a selective loss of aromatic compounds. The influence of different flow regimes on the DOM quality became apparent in the subsoil samples (>50 cm depth) showing a correlation of increasing UV280 nm absorbance with increasing water flux. Together with juvenile DO14C up to 150 cm depth this can be an indication for the importance of preferential flow on carbon transport to subsoil.

  10. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems

    Science.gov (United States)

    Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.

    2016-01-01

    Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in

  11. Temporal patterns of dissolved organic matter biodegradability are similar across three rivers of varying size

    Science.gov (United States)

    Coble, Ashley A.; Marcarelli, Amy M.; Kane, Evan S.; Toczydlowski, David; Stottlemyer, Robert

    2016-06-01

    Dissolved organic matter (DOM) composition may be an important determinant of its fate in freshwaters, but little is known about temporal variability in DOM composition and the biodegradability of DOM in northern temperate watersheds. We measured biodegradable dissolved organic carbon (BDOC) via incubation assays and DOM composition using optical indices on 11 dates in three Lake Superior tributaries. Percent BDOC (%BDOC) and BDOC concentrations were seasonally synchronous across these watersheds, despite that they vary in size by orders of magnitude (1.7 to 3400 km2). Relative to %BDOC, BDOC concentrations were more tightly constrained among sites on any given date. BDOC also varied within seasons; for example, %BDOC on two different dates in winter were among the highest (29% and 54%) and lowest (0%) values observed for each site (overall %BDOC range: 0 to 72%). DOM composition varied the most among tributaries during a summer storm event when BDOC (both as percent and concentration) was elevated but was remarkably similar among tributaries during fall, spring, and winter. Multivariate models identified humic-like and tryptophan-like fluorophores as predictors of %BDOC, but DOM composition only described 21% of the overall variation in %BDOC. Collectively, these three rivers exported ~18 Gg C yr-1 as DOC and ~2 Gg C yr-1 as BDOC, which corresponded to 9 to 17% of annual DOC exported in biodegradable form. Our results suggest much of the C exported from these northern temperate watersheds may be biodegradable within 28 days and that large pulses of labile DOM can be exported during storm events and spring snowmelt.

  12. Dissolved organic nitrogen (DON) losses from nested artificially drained lowland catchments with contrasting soil types

    Science.gov (United States)

    Tiemeyer, Bärbel; Kahle, Petra; Lennartz, Bernd

    2010-05-01

    Artificial drainage is a common practice to improve moisture and aeration conditions of agricultural land. It shortens the residence time of water in the soil and may therefore contribute to the degradation of peatlands as well as to the still elevated level of diffuse pollution of surface water bodies, particularly if flow anomalies like preferential flow cause a further acceleration of water and solute fluxes. Especially in the case of nitrate, artificially drained sub-catchments are found to control the catchment-scale nitrate losses. However, it is frequently found that nitrate losses and nitrogen field balances do not match. At the same time, organic fertilizers are commonly applied and, especially in lowland catchments, organic soils have been drained for agricultural use. Thus, the question arises whether dissolved organic nitrogen (DON) forms an important component of the nitrogen losses from artificially drained catchments. However, in contrast to nitrate and even to dissolved organic carbon (DOC), this component is frequently overlooked, especially in nested catchment studies with different soil types and variable land use. Here, we will present data from a hierarchical water quantity and quality measurement programme in the federal state Mecklenburg-Vorpommern (North-Eastern Germany). The monitoring programme in the pleistocene lowland catchment comprises automatic sampling stations at a collector drain outlet (4.2 ha catchment), at a ditch draining arable land on mineral soils (179 ha), at a ditch mainly draining grassland on organic soils (85 ha) and at a brook with a small rural catchment (15.5 km²) of mixed land use and soil types. At all sampling stations, daily to weekly composite samples were taken, while the discharge and the meteorological data were recorded continuously. Water samples were analyzed for nitrate-nitrogen, ammonium-nitrogen and total nitrogen. We will compare two years: 2006/07 was a very wet year (P = 934 mm) with a high summer

  13. Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols

    Science.gov (United States)

    Schmitt-Kopplin, P.; Liger-Belair, G.; Koch, B. P.; Flerus, R.; Kattner, G.; Harir, M.; Kanawati, B.; Lucio, M.; Tziotis, D.; Hertkorn, N.; Gebefügi, I.

    2012-04-01

    Atmospheric aerosols impose direct and indirect effects on the climate system, for example, by absorption of radiation in relation to cloud droplets size, on chemical and organic composition and cloud dynamics. The first step in the formation of Organic primary aerosols, i.e. the transfer of dissolved organic matter from the marine surface into the atmosphere, was studied. We present a molecular level description of this phenomenon using the high resolution analytical tools of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and nuclear magnetic resonance spectroscopy (NMR). Our experiments confirm the chemoselective transfer of natural organic molecules, especially of aliphatic compounds from the surface water into the atmosphere via bubble bursting processes. Transfer from marine surface water to the atmosphere involves a chemical gradient governed by the physicochemical properties of the involved molecules when comparing elemental compositions and differentiating CHO, CHNO, CHOS and CHNOS bearing compounds. Typical chemical fingerprints of compounds enriched in the aerosol phase were CHO and CHOS molecular series, smaller molecules of higher aliphaticity and lower oxygen content, and typical surfactants. A non-targeted metabolomics analysis demonstrated that many of these molecules corresponded to homologous series of oxo-, hydroxy-, methoxy-, branched fatty acids and mono-, di- and tricarboxylic acids as well as monoterpenes and sugars. These surface active biomolecules were preferentially transferred from surface water into the atmosphere via bubble bursting processes to form a significant fraction of primary organic aerosols. This way of sea spray production leaves a selective biological signature of the surface water in the corresponding aerosol that may be transported into higher altitudes up to the lower atmosphere, thus contributing to the formation of secondary organic aerosol on a global scale or transported laterally with

  14. Different effects of plant-derived dissolved organic matter (DOM) and urea on the priming of soil organic carbon.

    Science.gov (United States)

    Qiu, Qingyan; Wu, Lanfang; Ouyang, Zhu; Li, Binbin; Xu, Yanyan

    2016-03-01

    Soil organic carbon (SOC) mineralization is important for the regulation of the global climate and soil fertility. Decomposition of SOC may be significantly affected by the supply of plant-derived labile carbon (C). To investigate the impact of plant-derived dissolved organic matter (DOM) and urea (N) additions on the decomposition of native SOC as well as to elucidate the underlying mechanisms of priming effects (PEs), a batch of incubation experiments was conducted for 250 days by application of (13)C-labeled plant-derived DOM and urea to soils. The direction of PE induced by the addition of DOM was different from the addition of N, i.e. it switched from negative to positive in DOM-amended soils, whereas in the N-treated soil it switched from positive to negative. Adding DOM alone was favorable for soil C sequestration (59 ± 5 mg C per kg soil), whereas adding N alone or together with DOM accelerated the decomposition of native SOC, causing net C losses (-62 ± 4 and -34 ± 31 mg C per kg soil, respectively). These findings indicate that N addition and its interaction with DOM are not favorable for soil C sequestration. Adding DOM alone increased the level of dissolved organic carbon (DOC), but it did not increase the level of soil mineral N. Changes in the ratio of microbial biomass carbon (MBC) to microbial biomass nitrogen (MBN) and microbial metabolic quotient (qCO2) after the addition of DOM and N suggest that a possible shift in the microbial community composition may occur in the present study. Adding DOM with or without N increased the activities of β-glucosidase and urease. Changes in the direction and magnitude of PE were closely related to changes in soil C and N availability. Soil C and N availability might influence the PE through affecting the microbial biomass and extracellular enzyme activity as well as causing a possible shift in the microbial community composition.

  15. Effect of catchment land use and soil type on the concentration, quality, and bacterial degradation of riverine dissolved organic matter

    DEFF Research Database (Denmark)

    Autio, Iida; Soinne, Helena; Helin, Janne;

    2016-01-01

    of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5–9 % of the DOC and 45 % of the DON were degraded by the bacterial......We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations...... communities within 2–3 months. Simultaneously, the proportion of humic-like compounds in the DOM pool increased. Bioavailable DON accounted for approximately one-third of the total bioavailable dissolved nitrogen, and thus, terrestrial DON can markedly contribute to the coastal plankton dynamics and support...

  16. High Frequency Monitoring of the Quantity and Quality of Dissolved Organic Matter Flux Between Salt Marshes and Plum Island Sound, MA

    Science.gov (United States)

    Zhao, Y.; Raymond, P.

    2012-12-01

    Salt marshes are highly productive continental margin ecosystems, due to abundant solar radiation, water, and nutrients provided by tidal water. The unique bi-directional water movement introduced by tidal effect has a major impact on the formation and productivity of salt marsh and the material exchange between salt marsh and adjacent estuary. As a major term in carbon, energy, and nutrient budget for aquatic ecosystem, dissolved organic matter (DOM) has broad impact on food webs, carbon cycle, and nutrient retention/release. The frequency and period of DOM measurement is greatly increased by the use of reagent-free, low-cost, and reliable measurement with fluorescent and UV sensors measuring the chromophoric fraction of total DOM. Although fluorescent sensors can only measure concentration, UV absorbance in a wide spectral range (200nm-380nm) could potentially provide information on DOM composition. With the help of accurate direct real time water flux measurement and lab analysis of lability, DON, and 3D excitation emission matrix spectroscopy (EEMs), a database of DOM quantity and quality exchanged between several comparative salt marshes and Plum Island Sound, MA could be established to study the dynamics of DOM behavior in the salt marsh-estuary system. Understanding DOM source and fate is very important for evaluating the role of salt marsh in the carbon cycle and food web in coastal and global scale because coastal carbon cycling represents up to 21% of the ocean's primary production (Jahnke 2008). In addition, the approaches outlined in this proposal have broad applicability to study DOM quantity and quality in the material exchange theme between systems.

  17. Unraveling the chromophoric disorder of poly(3-hexylthiophene)

    CERN Document Server

    Thiessen, Alexander; Adachi, Takuji; Steiner, Florian; Bout, David Vanden; Lupton, John M

    2015-01-01

    The spectral breadth of conjugated polymers gives these materials a clear advantage over other molecular compounds for organic photovoltaic applications and is a key factor in recent efficiencies topping 10%. But why do excitonic transitions, which are inherently narrow, lead to absorption over such a broad range of wavelengths in the first place? Using single-molecule spectroscopy, we address this fundamental question in a model material, poly(3-hexylthiophene). Narrow zero-phonon lines from single chromophores are found to scatter over 200nm, an unprecedented inhomogeneous broadening which maps the ensemble. The giant red-shift between solution and bulk films arises from energy transfer to the lowest-energy chromophores in collapsed polymer chains which adopt a highly-ordered morphology. We propose that the extreme energetic disorder of chromophores is structural in origin. This structural disorder on the single-chromophore level may actually enable the high degree of polymer chain ordering found in bulk fi...

  18. Dissolved organic matter conformation and its interaction with pyrene as affected by water chemistry and concentration.

    Science.gov (United States)

    Pan, Bo; Ghosh, Saikat; Xing, Baoshan

    2008-03-01

    Water chemistry and concentration of dissolved organic matter (DOM) have been reported to affect DOM conformation and binding properties with hydrophobic organic contaminants (HOCs). However, relationship between DOM conformation and its binding properties remains unclear. We designed a multibag equilibration system (MBES) to investigate the variation of carbon-normalized sorption coefficients (K(DOC)) of pyrene at different DOM concentrations based on an identical free solute concentration at different pHs and in the presence of Al ions. In addition, we studied the conformation of DOM under different conditions via atomic force microscopy (AFM) imaging, dynamic light scattering, and zeta potential measurements. Zeta potential measurements indicated that intra- and intermolecular interaction was facilitated at low pH or with the presence of Al ions, and a more organized molecular aggregate (such as a micelle-like structure) could form, thus, enhancing K(DOC). As DOM concentration increased, DOM molecular aggregation was promoted in a way reducing K(DOC). This research is a first attempt to correlate DOM conformation with K(DOC). Aggregation of DOM molecules resulting from increased zeta potential (less negative) generally led to an increased K(DOC). Further study in this area will provide valuable information on HOC-DOM interactions, thus, leading to more accurate predictions of K(DOC).

  19. Does co-extracted dissolved organic carbon cause artefacts in cell-based bioassays?

    Science.gov (United States)

    Neale, Peta A; Escher, Beate I

    2014-08-01

    Bioanalytical tools are increasingly being employed for water quality monitoring, with applications including samples that are rich in natural organic matter (or dissolved organic carbon, DOC), such as wastewater. While issues associated with co-extracted DOC have been identified for chemical analysis and for bioassays with isolated enzymes, little is known about its effect on cell-based bioassays. Using mixture experiments as diagnostic tools, this study aims to assess whether different molecular weight fractions of wastewater-derived DOC adversely affect cell-based bioassays, specifically the bioluminescence inhibition test with the bacteria Vibrio fischeri, the combined algae assay with Pseudokirchneriella subcapitata and the human cell line AREc32 assay for oxidative stress. DOC did not cause suppressive effects in mixtures with reference compounds. Binary mixtures further indicated that co-extracted DOC did not disturb cell-based bioassays, while slight deviations from toxicity predictions for low molecular weight fractions may be partially due to the availability of natural components to V. fischeri, in addition to organic micropollutants.

  20. Effect of size-fractionation dissolved organic matter on the mobility of prometryne in soil.

    Science.gov (United States)

    Chen, Guang; Lin, Chao; Chen, Liang; Yang, Hong

    2010-05-01

    Import of organic materials in the form of compost, sludge or plant residues introduces large amounts of dissolved organic matter (DOM) into soils. DOM as a dynamic soil component affects the behaviors of organic pollutants. Different DOM constituents may affect herbicide action in a different way. However, the process of interaction between the distinct DOM-fractions and herbicides is largely unknown. In this study, DOM was separated by size-fractionation into three molecular size groups: MW14000 Da. Effects of DOM-fractions on prometryne sorption/desorption and mobility were analyzed using approaches of batch experiments, soil column and soil thin-layer chromatography. Application of varied DOM-fractions at 50mg DOCL(-1) to the soil reduced the sorption and increased desorption of prometryne. DOM-fraction with MW>14000 Da appeared most effective in prometryne mobilization in the soil than any other fractions. Finally, DOM-fractions were characterized by chemical analyses, fourier transformed infrared spectroscopy (FT-IR) and excitation-emission matrices (EEMs) fluorescence spectroscopy. Our studies revealed that the high-molecular weight fraction contained more aromatic framework and unsaturated structure that was most likely the dominant factor modulating the behavior of prometryne in soils.

  1. Review and suggestions for estimating particulate organic carbon and dissolved organic carbon inventories in the ocean using remote sensing data

    Institute of Scientific and Technical Information of China (English)

    PAN Delu; LIU Qiong; BAI Yan

    2014-01-01

    Dissolved organic carbon (DOC) and particulate organic carbon (POC) are basic variables for the ocean carbon cycle. Knowledge of the distribution and inventory of these variables is important for a better es-timation and understanding of the global carbon cycle. Owing to its considerable advantages in spatial and temporal coverage, remote sensing data provide estimates of DOC and POC inventories, which are able to give a synthetic view for the distribution and transportation of carbon pools. To estimate organic car-bon inventories using remote sensing involves integration of the surface concentration and vertical profile models, and the development of these models is critical to the accuracy of estimates. Hence, the distribu-tion and control factors of DOC and POC in the ocean first are briefly summarized, and then studies of DOC and POC inventories and flux estimations are reviewed, most of which are based on field data and few of which consider the vertical distributions of POC or DOC. There is some research on the estimation of POC inventory by remote sensing, mainly in the open ocean, in which three kinds of vertical profile models have been proposed:the uniform, exponential decay, and Gauss models. However, research on remote-sensing estimation of the DOC inventory remains lacking. A synthetic review of approaches used to estimate the or-ganic carbon inventories is offered and the future development of methods is discussed for such estimates using remote sensing data in coastal waters.

  2. Effects of dissolved organic matter from sewage sludge on the atrazine sorption by soils

    Institute of Scientific and Technical Information of China (English)

    LING Wanting; XU Jianming; GAO Yanzheng

    2005-01-01

    The effects of dissolved organic matter (DOM), water soluble organic matter derived from sewage sludge, on the sorption of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-trazine) by soils were studied using a batch equilibrium technique. Six paddy soils, chosen so as to have different organic carbon contents, were experimented in this investigation. Atrazine sorption isotherms on soils were described by the linear equation, and the distribution coefficients without DOM (Kd) or with DOM (Kd*) were obtained. Generally, the values of Kd*/Kd initially insoil-solution system form. Critical concentrations of DOM (DOMnp) were obtained where the value of Kd* was equal to Kd. The presence of DOM with concentrations lower than DOMnp promoted atrazine sorption on soils (Kd* > Kd), whereas the presence of DOM with concentrations higher than DOMnp tended to inhibit atrazine sorption (Kd* < Kd). Interestingly, DOMnp for tested soils was negatively correlated to the soil organic carbon content, and the maximum of Kd*/Kd (i.e.Kmax) correlated positively with the maximum of DOM sorption on soil (Xmax). Further investigations showed that the presence of hydrophobic fraction of DOM evidently promoted the atrazine sorption on soils, whereas the presence of hydrophilic DOM fraction obviously tended to inhibit the atrazine sorption. Interactions of soil surfaces with DOM and its fractions were suggested to be the major processes determining atrazine sorption on soils. The results of this work provide a reference to the agricultural use of organic amendment such as sewage sludge for improving the availability of atrazine in soils.

  3. Land Cover and Nutrient Loads Explain Changes in Enzymatic Processing of Stream Dissolved Organic Matter

    Science.gov (United States)

    Hosen, J. D.; Febria, C.; McDonough, O.; Palmer, M.

    2012-12-01

    Anthropogenic land use has been shown to alter organic matter composition as well as its processing, export, and retention in headwater streams. Human activities also increase stream nutrient loading and in turn organic matter processing by heterotrophic microbial communities. Using microbial extracellular enzyme activity (EEA) assays combined with dissolved organic matter (DOM) fluorescence spectroscopy, we investigated the interaction between catchment land use, nutrient limitation, heterotrophic microbial communities, and carbon processing in five forested and three urbanized Coastal Plain headwater streams (Maryland, USA). EEA measures microbial production of heterotrophic extracellular enzymes, including aminopeptidase, which facilitates the breakdown of organic nitrogen and phosphatase which facilitates breakdown of organic phosphate. DOM fluorescence spectroscopy enables rapid quantification of different organic matter fluorophores (e.g., amino acid-, humic acid-, and fulvic acid-like). Excitation-emission matrices (EEMs) of DOM fluorescence can be coupled with parallel factor analysis (PARAFAC) for detailed quantitative analysis. Samples were collected quarterly from May 2011 to July 2012 and characterized using both EEA and EEM. We show that significant differences in stream EEA are explained by DOM fluorescence, land cover, and inorganic nutrient inputs. Specifically, urbanized sites were characterized by relatively low ortho-phosphate concentrations, high inorganic nitrogen concentrations, high phosphatase EEA, and greater amino acid-like DOM fluorescence. Aminopeptidase activity increased with increasing amino acid-like DOM fluorescence (i.e., a labile form of DOM for microbes) in forested streams. By contrast aminopeptidase activity did not respond to increasing amino acid-like fluorescence in urbanized streams. This points to a difference in limitation in inorganic nutrients between stream types. Thus, we hypothesize that stream microbial communities

  4. The Effects of Acid Rock Drainage (ARD) on Fluorescent Dissolved Organic Matter (DOM)

    Science.gov (United States)

    Lee, R. H.; Gabor, R. S.; SanClements, M.; McKnight, D. M.

    2011-12-01

    Located in the Rocky Mountains of central Colorado, the catchments drained by the headwaters of the Snake River are dominated by metal- and sulfide-rich bedrock. The breakdown of these minerals results in acidic metal-rich waters in the Snake (pH ~3) that persist until the confluence with Deer Creek (pH ~7). Previous research has been conducted examining the interactions of acid-rock drainage (ARD) and dissolved organic matter (DOM), but the effects of ARD on DOM production is not as well understood. In a synoptic study, samples of creek water were collected at evenly spaced intervals along the length of a tributary to the Snake River which drains an area with ARD. At each sampling location, water samples were collected and pH, conductivity, and temperature were measured. Water samples were analyzed for metal chemistry, and the DOM was analyzed with UV-Vis and fluorescence spectroscopy. The character of the DOM was described using PARAFAC and index calculations. This work demonstrates that the introduction of acid and dissolved metal species has notable effects on DOM composition. Preliminary data suggests that the introduction of acid drainage is responsible for the formation of a fluorophore not accounted for in the Cory and McKnight PARAFAC model. Both high concentrations of heavy metals (e.g. zinc) and the novel fluorophore are present downstream from a mining site, which indicates it as a possible source of both species. The data suggest a link between the introduction of fluorophores in acidic waters and acidophile populations at the source of the acid rock drainage.

  5. Dissolved organic compounds in reused process water for steam-assisted gravity drainage oil sands extraction.

    Science.gov (United States)

    Kawaguchi, Hideo; Li, Zhengguo; Masuda, Yoshihiro; Sato, Kozo; Nakagawa, Hiroyuki

    2012-11-01

    The in situ oil sands production method called steam-assisted gravity drainage (SAGD) reuses process wastewater following treatment. However, the treatment and reuse processes concentrate contaminants in the process water. To determine the concentration and dynamics of inorganic and organic contaminants, makeup water and process water from six process steps were sampled at a facility employing the SAGD process in Alberta, Canada. In the groundwater used for the makeup water, the total dissolved organic carbon (DOC) content was 4 mg/L. This significantly increased to 508 mg/L in the produced water, followed by a gradual increase with successive steps in subsequent water treatments. The concentrations and dynamics of DOC constituents in the process water determined by gas chromatography-mass spectrometry showed that in the produced water, volatile organic compounds (VOCs) such as acetone (33.1 mg/L) and 2-butanone (13.4 mg/L) predominated, and there were significant amounts of phenolic compounds (total 9.8 mg/L) and organic acids including naphthenic acids (NAs) corresponding to the formula C(n)H(2n+Z)O(X) for combinations of n = 4 to 18, Z = 0 and -2, and X = 2 to 4 (53 mg/L) with trace amounts of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene and phenanthrene. No organic contaminants, except for saturated fatty acids, were detected in the groundwater. The concentration of DOC in the recycled water was 4.4-fold higher than that in the produced water. Likewise, the total concentrations of phenols and organic acids in the recycled water were 1.7- and 4.5-fold higher than in the produced water, whereas the total concentrations of VOCs and PAHs in the recycled water were reduced by over 80%, suggesting that phenols and organic acids are selectively concentrated in the process water treatment. This comprehensive chemical analysis thus identified organic constituents that were concentrated in the process water and which interfere with subsequent

  6. Release dynamics of dissolved organic matter in soil amended with biosolids

    Science.gov (United States)

    Trifonov, Pavel; Ilani, Talli; Arye, Gilboa

    2014-05-01

    Among the soil organic matter (SOM) components, dissolved organic matter (DOM) is the link between the solid phase and the soil solution. Previous studies emphasize the turnover of dissolved organic carbon (DOC) and nitrogen (DON) in soils as major pathways of element cycling. In addition to DOM contribution to carbon, nitrogen and other nutrient budgets, it also influence soil biological activity, reduces metal-ion toxicity, increase the transport of some compounds and contribute to the mineral weathering. Amending soils with biosolids originated from sludge have become very popular in the recent years. Those additions significantly affect the quantity and the composition of the DOM in agricultural soils. It should be noted that under most irrigation habitants, the soil is subjected to drying and re-wetting cycles, inducing a complex changes of soil structure, aggregation, SOM quality and micro-flora. However, most studies that addressed the above issues (directly or indirectly) are engaged with soils under cover of naturally occurring forests of relatively humid areas rather than agricultural soils in arid areas. In the current study we examined the DOC and DON release dynamic of sand and loess soils sampled from the Negev Desert of Israel. Each one of the soils were mixing with 5% (w/w) of one of the biosolids and packed into a Plexiglass column (I.d. 5.2 cm, L=20 cm). The flow-through experiments were conducted under low (1 ml/min) or high (10 ml/min) flow rates in a continuous or interrupted manner. The leachates were collected in time intervals equivalent to about 0.12 pore volume of a given soil-biosolids mixture. The established leaching curves of DOC, DON, NO3-, NH4+ and Cl- are analyzed by water flow and solute transport model for saturate (continuous runs) or variably saturate water flow conditions (interrupted runs). The chemical equilibrium or non-equilibrium (i.e. equilibrium and/or kinetics adsorption/desorption) versions of the convection dispersion

  7. The role of dissolved organic matters in the aquatic photodegradation of atenolol

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Ji, Yuefei; Zhou, Lei; Zhang, Ya [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Yang, Xi, E-mail: yangxi@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The main reactive species in the photosensitization between atenolol and DOMs is {center_dot}OH. Black-Right-Pointing-Pointer Dissolved organic matter (DOM) can quench {center_dot}OH and screen light. Black-Right-Pointing-Pointer High yield of {center_dot}OH was observed with iron ions and DOM coexisting under irradiation. Black-Right-Pointing-Pointer SRFA can promote addition of {center_dot}OH on aromatic ring. - Abstract: Atenolol (ATL) is a photostable and hydrolysis resistant beta-blocker and has been frequently detected in natural water. In this study, mechanism on aquatic photodegradation of ATL was investigated with an emphasis on the role of dissolved organic matters (DOMs) as well as other natural water compositions (nitrate, bicarbonate and ferric ions). Significant acceleration of photodegradtion of ATL was observed in the presence of each DOMs added, namely Suwannee River Fulvic Acid (SRFA), Suwannee River Humic Acid (SRHA), Nordic Lake Fulvic Acid (NOFA) and Nordic Lake Humic Acid (NOHA). Hydroxyl radical ({center_dot}OH) was determined as the main reactive species in this process, instead of singlet oxygen or excited triplet of DOM. Addition of these four DOMs all inhibited photodegradation of ATL in nitrate solutions through reducing nitrated-derived {center_dot}OH and screening photons absorbed by nitrate. No loss of ATL was detected in bicarbonate solution with or without DOMs. Bicarbonate exhibited a scavenger of {center_dot}OH derived from DOMs. However, in the presence of iron species, photodegradation of ATL was significantly enhanced by the addition of each DOM, due to the high yield of {center_dot}OH in the photoprocess of Fe(III)-DOM complex. The photoproducts distribution of ATL demonstrated that SRFA promote the hydroxylation on aromatic ring in the presence of nitrate and reduce the ketone moiety to alcohol in the system of ferric ions. Our findings indicate that DOMs should be considered in

  8. Leaching of chloride, sulphate, heavy metals, dissolved organic carbon and phenolic organic pesticides from contaminated concrete.

    Science.gov (United States)

    Van Praagh, M; Modin, H

    2016-10-01

    Concrete samples from demolition waste of a former pesticide plant in Sweden were analysed for total contents and leachate concentrations of potentially hazardous inorganic substances, TOC, phenols, as well as for pesticide compounds such as phenoxy acids, chlorophenols and chlorocresols. Leachates were produced by means of modified standard column leaching tests and pH-stat batch tests. Due to elevated contents of chromium and lead, as well as due to high chloride concentrations in the first leachate from column tests at L/S 0.1, recycling of the concrete as a construction material in groundworks is likely to be restricted according to Swedish guidelines. The studied pesticide compounds appear to be relatively mobile at the materials own pH>12, 12, 9 and 7. Potential leaching of pesticide residues from recycled concrete to ground water and surface water might exceed water quality guidelines for the remediation site and the EU Water Framework Directive. Results of this study stress the necessity to systematically study the mechanism behind mobility of organic contaminants from alkaline construction and demolition wastes rather than rely on total content limit values.

  9. Sorption of dissolved organic matter and its effects on the atrazine sorption on soils

    Institute of Scientific and Technical Information of China (English)

    LING Wan-ting; WANG Hai-zhen; XU Jian-ming; GAO Yan-zheng

    2005-01-01

    The dissolved organic matter(DOM), water soluble organic matter derived from sewage sludge was separated into hydrophobic fraction(Ho) and hydrophilic fraction(Hi). The sorption of DOM and its fractions on soils and the effects of DOM sorption on a nonionic pesticide(atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-trazine)) distribution between soil and water were investigated using a batch equilibrium technique. The total DOM sorption on soils described by the Langmuir equation reached saturation as the DOMconcentration increased. The sorption of Ho fit the Freundlich model. In contrast, a negative retention evidently occurred as adding Hi at higher level in tested soils. The sorption of Ho dominated the total DOM sorption and the release of soil organic matter(SOM). Effects of DOM on the atrazine sorption by soils were DOM-concentration dependent and dominated by the interaction of atrazine, DOM, and soil solids. Generally, the presence of DOM with lower concentration promoted atrazine sorption on soils, namely the apparent partitioning constant( K; ) for atrazine sorption in the presence of DOM was larger than the distribution constant ( Kd ) without DOM; whereas the presence of DOM with higher concentration inhibited atrazine sorption(i. e., K; < Kd ) . The overall effects of DOM on atrazine sorption in soils might be related to the DOM sorption and the release of soil intrinsic organic matter into aqueous solution. The sorption of Ho on soils promoted the atrazine sorption on soil, while the release of SOM by Hi and the competitive sorption between Hi and atrazine on soil surface led to a decrease of atrazine sorption. Information provided in this work may contribute to a better understanding of the DOM sorption and its impacts on the contaminant soil-water distribution.

  10. Water Dynamics and Its Role in Structural Hysteresis of Dissolved Organic Matter.

    Science.gov (United States)

    Conte, Pellegrino; Kucerik, Jiri

    2016-03-01

    Knowledge of structural dynamics of dissolved organic matter (DOM) is of paramount importance for understanding DOM stability and role in the fate of solubilized organic and inorganic compounds (e.g., nutrients and pollutants), either in soils or aquatic systems. In this study, fast field cycling (FFC) (1)H NMR relaxometry was applied to elucidate structural dynamics of terrestrial DOM, represented by two structurally contrasting DOM models such as Suwanee River (SRFA) and Pahokee peat (PPFA) fulvic acids purchased by the International Humic Substance Society. Measurement of NMR relaxation rate of water protons in heating-cooling cycles revealed structural hysteresis in both fulvic acids. In particular, structural hysteresis was related to the delay in re-establishing water network around fulvic molecules as a result of temperature fluctuations. The experiments revealed that the structural temperature dependency and hysteresis were more pronounced in SRFA than in PPFA. This was attributed to the larger content of hydrogel-like structure in SRFA stabilized, at a larger extent, by H-bonds between carboxylic and phenolic groups. Moreover, results supported the view that terrestrial DOM consist of a hydrophobic rigid core surrounded by progressively assembling amphiphilic and polar molecules, which form an elastic structure that can mediate reactivity of the whole DOM.

  11. Optical characterization of dissolved organic matter in the Amazon River Plume and the adjacent deep ocean

    Science.gov (United States)

    Cao, F.; Medeiros, P. M.; Miller, W. L.

    2012-12-01

    The Amazon River is the largest river in the world and a major source of terrestrially-derived organic matter to the Atlantic Ocean, accounting for ~ 20% of the global freshwater discharge. To document the quantity and quality of the colored dissolved organic matter (CDOM) in the Amazon River Plume (ARP), the optical properties (absorption and fluorescence intensity) of the CDOM were investigated in water samples collected during two cruises conducted at periods of low (Sep/2011) and high (Jul/2012) river discharge. Excitation emission matrix fluoresces combined with parallel factor analysis (EEMS-PARAFAC) was used to determine the composition of the CDOM, and four components were identified: two terrestrial humic-like components (C1 and C4), one marine humic-like component (C3), and one autochthonous tryptophan-like component (C2). This agrees with results of mass spectrometry analysis that showed a distinction among DOM composition found in river, plume, and open ocean water. Correlation analysis between the fluorescence components and salinity in the ARP suggests that humic-like fluorescent components can be used to trace DOM mixing behavior in the ARP and adjacent waters.

  12. Direct and indirect photolysis of triclocarban in the presence of dissolved organic matter

    Directory of Open Access Journals (Sweden)

    Tamara D. Trouts

    2015-05-01

    Full Text Available Abstract Photolysis is an important attenuation pathway for the removal of wastewater effluent organic micropollutants from surface waters. In this work, direct and indirect processes leading to the degradation of the disinfectant, triclocarban were studied. Photo-irradiation experiments were conducted in water collected from Old Woman Creek (OWC a tributary of Lake Erie near Huron, OH, USA and in solutions of fulvic acids isolated from the Suwannee River, Georgia, USA (SRFA, Old Woman Creek (OWCFA and Pony Lake, Antarctica (PLFA. Photodegradation of triclocarban proceeded faster in the presence of all three fulvic acids relative to deionized water. PLFA, an autochthonous dissolved organic matter (DOM was found to be more reactive than the other fulvic acids, while the mostly allochthonous SRFA exhibited the lowest reactivity toward triclocarban. The later observation can be in part explained by anti-oxidant moieties present in SRFA. Photosensitized triclocarban degradation in whole water DOM from OWC was entirely attributable to the fulvic acid fraction and suggests that this component is the most photo-reactive fraction of the DOM. Anoxic and methanol-quenched experiments revealed unexpected results whereby the former suggests oxidation through reaction with triplet DOM, while the later is indicative of reaction with photo-generated hydroxyl radicals. It is possible that methanol can quench excited DOM species, which would shut down the triplet oxidation pathway. Finally, we observed no enhancement of triclocarban-photosensitized degradation through the addition of iron.

  13. Spatial Dependence of Reduced Sulfur in Everglades Dissolved Organic Matter Controlled by Sulfate Enrichment.

    Science.gov (United States)

    Poulin, Brett A; Ryan, Joseph N; Nagy, Kathryn L; Stubbins, Aron; Dittmar, Thorsten; Orem, William H; Krabbenhoft, David P; Aiken, George R

    2017-03-01

    Sulfate inputs to the Florida Everglades stimulate sulfidic conditions in freshwater wetland sediments that affect ecological and biogeochemical processes. An unexplored implication of sulfate enrichment is alteration of the content and speciation of sulfur in dissolved organic matter (DOM), which influences the reactivity of DOM with trace metals. Here, we describe the vertical and lateral spatial dependence of sulfur chemistry in the hydrophobic organic acid (HPOA) fraction of DOM from unimpacted and sulfate-impacted Everglades wetlands using X-ray absorption spectroscopy and ultrahigh-resolution mass spectrometry. Spatial variation in DOM sulfur content and speciation reflects the degree of sulfate enrichment and resulting sulfide concentrations in sediment pore waters. Sulfur is incorporated into DOM predominantly as highly reduced species in sulfidic pore waters. Sulfur-enriched DOM in sediment pore waters exchanges with overlying surface waters and the sulfur likely undergoes oxidative transformations in the water column. Across all wetland sites and depths, the total sulfur content of DOM correlated with the relative abundance of highly reduced sulfur functionality. The results identify sulfate input as a primary determinant on DOM sulfur chemistry to be considered in the context of wetland restoration and sulfur and trace metal cycling.

  14. Dissolved organic nitrogen in urban streams: Biodegradability and molecular composition studies.

    Science.gov (United States)

    Lusk, Mary G; Toor, Gurpal S

    2016-06-01

    A portion of the dissolved organic nitrogen (DON) is biodegradable in water bodies, yet our knowledge of the molecular composition and controls on biological reactivity of DON is limited. Our objective was to investigate the biodegradability and molecular composition of DON in streams that drain a gradient of 19-83% urban land use. Weekly sampling over 21 weeks suggested no significant relationship between urban land use and DON concentration. We then selected two streams that drain 28% and 83% urban land use to determine the biodegradability and molecular composition of the DON by coupling 5-day bioassay experiments with high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Both urban streams contained a wide range of N-bearing biomolecular formulas and had >80% DON in lignin-like compounds, with only 5-7% labile DON. The labile DON consisted mostly of lipid-and protein-like structures with high H/C and low O/C values. Comparison of reactive formulas and formed counterparts during the bioassay experiments indicated a shift toward more oxygenated and less saturated N-bearing DON formulas due to the microbial degradation. Although there was a little net removal (5-7%) of organic-bound N over the 5-day bioassay, there was some change to the carbon skeleton of DON compounds. These results suggest that DON in urban streams contains a complex mixture of compounds such as lipids, proteins, and lignins of variable chemical structures and biodegradability.

  15. Microscale characterization of dissolved organic matter production and uptake in marine microbial mat communities

    Science.gov (United States)

    Paerl, H. W.; Bebout, B. M.; Joye, S. B.; Des Marais, D. J.

    1993-01-01

    Intertidal marine microbial mats exhibited biologically mediated uptake of low molecular weight dissolved organic matter (DOM), including D-glucose, acetate, and an L-amino acid mixture at trace concentrations. Uptake of all compounds occurred in darkness, but was frequently enhanced under natural illumination. The photosystem 2 inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) generally failed to inhibit light-stimulated DOM uptake. Occasionally, light plus DCMU-amended treatments led to uptake rates higher than light-incubated samples, possibly due to phototrophic bacteria present in subsurface anoxic layers. Uptake was similar with either 3H- or 14C-labeled substrates, indicating that recycling of labeled CO2 via photosynthetic fixation was not interfering with measurements of light-stimulated DOM uptake. Microautoradiographs showed a variety of pigmented and nonpigmented bacteria and, to a lesser extent, cyanobacteria and eucaryotic microalgae involved in light-mediated DOM uptake. Light-stimulated DOM uptake was often observed in bacteria associated with sheaths and mucilage surrounding filamentous cyanobacteria, revealing a close association of organisms taking up DOM with photoautotrophic members of the mat community. The capacity for dark- and light-mediated heterotrophy, coupled to efficient retention of fixed carbon in the mat community, may help optimize net production and accretion of mats, even in oligotrophic waters.

  16. Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter

    Science.gov (United States)

    Kamjunke, Norbert; Nimptsch, Jorge; Harir, Mourad; Herzsprung, Peter; Schmitt-Kopplin, Philippe; Neu, Thomas R.; Graeber, Daniel; Osorio, Sebastian; Valenzuela, Jose; Carlos Reyes, Juan; Woelfl, Stefan; Hertkorn, Norbert

    2017-03-01

    Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures. Aquacultures released large quantities of readily bioavailable metabolites (primarily carbohydrates and peptides/proteins, and lipids), causing the organic matter downstream of all the investigated aquacultures to deviate strongly from the highly processed, polydisperse and molecularly heterogeneous DOM found in pristine rivers. However, the upstream individual catchment DOM signatures remained distinguishable at the downstream sites. The benthic algal biovolume decreased and the bacterial biovolume and production increased downstream of the aquacultures, shifting stream ecosystems to a more heterotrophic state and thus impairing the ecosystem health. The bacterial DOM degradation rates explain the attenuation of aquaculture DOM within the subsequent stream reaches. This knowledge may aid the development of improved waste processing facilities and may help to define emission thresholds to protect sensitive stream ecosystems.

  17. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds

    Science.gov (United States)

    Perakis, Steven S.; Hedin, Lars O.

    2002-01-01

    Conceptual and numerical models of nitrogen cycling in temperate forests assume that nitrogen is lost from these ecosystems predominantly by way of inorganic forms, such as nitrate and ammonium ions. Of these, nitrate is thought to be particularly mobile, being responsible for nitrogen loss to deep soil and stream waters. But human activities-such as fossil fuel combustion, fertilizer production and land-use change-have substantially altered the nitrogen cycle over large regions, making it difficult to separate natural aspects of nitrogen cycling from those induced by human perturbations. Here we report stream chemistry data from 100 unpolluted primary forests in temperate South America. Although the sites exhibit a broad range of environmental factors that influence ecosystem nutrient cycles (such as climate, parent material, time of ecosystem development, topography and biotic diversity), we observed a remarkably consistent pattern of nitrogen loss across all forests. In contrast to findings from forests in polluted regions, streamwater nitrate concentrations are exceedingly low, such that nitrate to ammonium ratios were less than unity, and dissolved organic nitrogen is responsible for the majority of nitrogen losses from these forests. We therefore suggest that organic nitrogen losses should be considered in models of forest nutrient cycling, which could help to explain observations of nutrient limitation in temperate forest ecosystems.

  18. Impact of exotic and inherent dissolved organic matter on sorption of phenanthrene by soils.

    Science.gov (United States)

    Gao, Yanzheng; Xiong, Wei; Ling, Wanting; Wang, Xiaorong; Li, Qiuling

    2007-02-09

    The impacts of exotic and inherent dissolved organic matter (DOM) on phenanthrene sorption by six zonal soils of China, chosen so as to have different soil organic carbon (SOC) contents, were investigated using a batch technique. The exotic DOM was extracted from straw waste. In all cases, the sorption of phenanthrene by soils could be well described by the linear equation. The presence of inherent DOM in soils was found to impede phenanthrene sorption, since the apparent distribution coefficients (K(d)(*)) for phenanthrene sorption by deionized water-eluted soils were 3.13-21.5% larger than the distribution coefficients (K(d)) by control soils. Moreover, the enhanced sorption of phenanthrene by eluted versus control soils was in positive correlation with SOC contents. On the other hand, it was observed that the influence of exotic DOM on phenanthrene sorption was related to DOM concentrations. The K(d)(*) values for sorption of phenanthrene in the presence of exotic DOM increased first and decreased thereafter with increasing the added DOM concentrations (0-106mgDOC/L). The K(d)(*) values at a low exotic DOM concentration ( or =52mgDOC/L) of added exotic DOM clearly impeded the distribution of phenanthrene between soil and water. The effects of exotic and inherent DOM on phenanthrene sorption by soils may primarily be described as 'cumulative sorption', association of phenanthene with DOM in solution, and modified surface nature of soil solids due to DOM binding.

  19. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid; Azetsu-Scott, Kumiko; Dodd, Paul A.; Stedmon, Colin A.

    2016-09-01

    Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (fmw), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait and EGS, a robust correlation between visible wavelength fluorescence and fmw was apparent, suggesting it as a reliable tracer of polar waters. However, a pattern was observed which linked the organic matter characteristics to the origin of polar waters. At depth in Davis Strait, visible wavelength FDOM was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential of designing in situ multi-channel DOM fluorometers to trace the freshwater origins and decipher water mass mixing dynamics in the region without laborious samples analyses.

  20. Impacts of Polar Changes on the UV-induced Mineralization of Terrigenous Dissolved Organic Matter.

    Science.gov (United States)

    Sulzberger, Barbara; Arey, J Samuel

    2016-07-05

    Local climates in the Northern and Southern Hemisphere are influenced by Arctic Amplification and by interactions of the Antarctic ozone hole with climate change, respectively. Polar changes may affect hydroclimatic conditions in temperate regions, for example, by increasing the length and intensity of precipitation events at Northern Hemisphere midlatitudes. Additionally, global warming has led to the thawing of ancient permafrost soils, particularly in Arctic regions, due to Arctic Amplification. Both heavy precipitation events and thawing of permafrost are increasing the net transfer of terrestrially derived dissolved organic matter (DOM) from land to surface waters. In aquatic ecosystems, UV-induced oxidation of terrigenous DOM (tDOM) produces atmospheric CO2 and this process is one of several mechanisms by which natural organic matter in aquatic and soil environments may play an important role in climate feedbacks. The Arctic is particularly affected by these processes: for example, melting of Arctic sea ice allows solar UV radiation to penetrate into the ice-free Arctic Ocean and to cause photochemical reactions that result in bleaching and mineralization of tDOM. Open questions, in addition to those shown in the Graphical Abstract, remain regarding the resulting contributions of tDOM photomineralization to CO2 production and global warming.

  1. Effects of dissolved organic matter from sewage sludge on sorption of tetrabromobisphenol A by soils

    Institute of Scientific and Technical Information of China (English)

    SUN Zhaohai; MAO Li; XIAN Qiming; YU Yijun; LI Hui; YU Hongxia

    2008-01-01

    Sorption of tetrabromobisphenol A (TBBPA) by soil influences its fate and transport in the environment. The presence of dissolved organic matter (DOM) may complicate the sorption process in soil. The effects of DOM from sewage sludge on TBBPA sorption by three soils were investigated using batch equilibration experiments in the study. DOM was observed to be sorbed on the soils and the isotherms could be fitted by the Langmuir model. The effects of DOM on TBBPA sorption were dependent on the characteristics of soils and the concentrations of DOM present. TBBPA sorption by Henan (HN) soil (sandy loam) and Liaoning (LN) soil (loamy clay) was promoted in the presence of DOM at low concentration (≤ 90 mg organic carbon (OC)/L), and the sorption was promoted by HN soil and inhibited by LN soil at DOM added concentration of 180 mg OC/L. TBBPA sorption by Guangxi (GX) soil (silt loam) was always inhibited in the presence of DOM. It was also found that the amount of TBBPA sorbed decreased with the increase in the solution pH value in the absence of DOM. The influencing mechanisms of DOM on the sorption of TBBPA by soils were also discussed.

  2. Atmospheric fluxes of organic matter to the Mediterranean Sea: contribution to the elemental C: N: P ratios of surface dissolved organic matter

    Science.gov (United States)

    Djaoudi, Kahina; Barani, Aude; Hélias-Nunige, Sandra; Van Wambeke, France; Pulido-Villena, Elvira

    2016-04-01

    It has become increasingly apparent that atmospheric transport plays an important role in the supply of macro- and micro-nutrients to the surface ocean. This atmospheric input is especially important in oligotrophic regions where the vertical supply from the subsurface is low particularly during the stratification period. Compared to its inorganic counterpart, the organic fraction of atmospheric deposition and its impact on surface ocean biogeochemistry has been poorly explored. In the ocean, carbon export to depth (and therefore, its long term storage with presumed consequences on climate) occurs both through particle sedimentation and through the transfer of dissolved organic matter (DOM) via diffusion or convection. DOM export from the surface ocean represents up to 50% of total organic carbon flux to the deep ocean in oligotrophic regions such as the Mediterranean Sea. The efficiency of this C export pathway depends, among others, on the elemental C: N: P ratios of surface DOM which might be affected by the relative contribution of microbial processes and allochthonous sources. This work reports a one-year time-series (April 2015-April 2016) of simultaneous measurements of (1) total (dry + wet) atmospheric fluxes of organic carbon, organic nitrogen, and organic phosphorus and (2) concentration of dissolved organic carbon, dissolved organic nitrogen, and dissolved organic phosphate at the surface layer (0-200 m) in the NW Mediterranean Sea. Atmospheric and oceanic surveys were conducted at the Frioul and ANTARES sites, respectively, operated by the long-term observation network MOOSE (Mediterranean Oceanic Observation System for the Environment).

  3. Molecular selectivity of brown carbon chromophores.

    Science.gov (United States)

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey A; Roach, Patrick; Eckert, Peter; Gilles, Mary K; Wang, Bingbing; Lee, Hyun Ji Julie; Hu, Qichi

    2014-10-21

    Complementary methods of high-resolution mass spectrometry and microspectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene SOA (LSOA) and α-pinene SOA (PSOA). The LSOA compounds readily formed adducts with Na(+) under electrospray ionization conditions, with only a small fraction of compounds detected in the protonated form. In contrast, a significant fraction of PSOA compounds appeared in the protonated form because of their increased molecular rigidity. Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas was detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl-imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the α-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores.

  4. Assessment of the Impact of Climate Change and Land Management Change on Soil Organic Carbon Content, Leached Carbon Rates and Dissolved Organic Carbon Concentrations

    NARCIS (Netherlands)

    Stergiadi, Maria; de Nijs, Ton; van der Perk, Marcel; Bonten, Luc

    2014-01-01

    Climate change is projected to significantly affect the concentrations and mobility of contaminants, such as metals and pathogens, in soil, groundwater and surface water. Climate- and land management-induced changes in soil organic carbon and dissolved organic carbon levels may promote the transport

  5. Land management impacts on dairy-derived dissolved organic carbon in ground water

    Science.gov (United States)

    Chomycia, J.C.; Hernes, P.J.; Harter, T.; Bergamaschi, B.A.

    2008-01-01

    Dairy operations have the potential to elevate dissolved organic carbon (DOC) levels in ground water, where it may interact with organic and inorganic contaminants, fuel denitrification, and may present problems for drinking water treatment. Total and percent bioavailable DOC and total and carbon-specific trihalomethane (THM) formation potential (TTHMFP and STHMFP, respectively) were determined for shallow ground water samples from beneath a dairy farm in the San Joaquin Valley, California. Sixteen wells influenced by specific land management areas were sampled over 3 yr. Measured DOC concentrations were significantly elevated over the background as measured at an upgradient monitoring well, ranging from 13 to 55 mg L-1 in wells downgradient from wastewater ponds, 8 to 30 mg L-1 in corral wells, 5 to 12 mg L-1 in tile drains, and 4 to 15 mg L-1 in wells associated with manured fields. These DOC concentrations were at the upper range or greatly exceeded concentrations in most surface water bodies used as drinking water sources in California. DOC concentrations in individual wells varied by up to a factor of two over the duration of this study, indicating a dynamic system of sources and degradation. DOC bioavailability over 21 d ranged from 3 to 10%, comparable to surface water systems and demonstrating the potential for dairy-derived DOC to influence dissolved oxygen concentrations (nearly all wells were hypoxic to anoxic) and denitrification. TTHMFP measurements across all management units ranged from 141 to 1731 ??g L-1, well in excess of the maximum contaminant level of 80 ??g L-1 established by the Environmental Protection Agency. STHMFP measurements demonstrated over twofold variation (???4 to ???8 mmol total THM/mol DOC) across the management areas, indicating the dependence of reactivity on DOC composition. The results indicate that land management strongly controls the quantity and quality of DOC to reach shallow ground water and hence should be considered

  6. Environmental drivers of dissolved organic matter molecular composition in the Delaware Estuary

    Science.gov (United States)

    Osterholz, Helena; Kirchman, David L.; Niggemann, Jutta; Dittmar, Thorsten

    2016-11-01

    Estuaries as connectors of freshwater and marine aquatic systems are hotspots of biogeochemical element cycling. In one of the best studied temperate estuaries, the Delaware Estuary (USA), we investigated the variability of dissolved organic matter (DOM) over five sampling cruises along the salinity gradient in August and November of 3 consecutive years. Dissolved organic carbon (DOC) concentrations were more variable in the upper reaches of the estuary (245±49 µmol L-1) than at the mouth of the estuary (129±14 µmol L-1). Bulk DOC decreased conservatively along the transect in November but was non-conservative with increased DOC concentrations mid-estuary in August. Detailed analysis of the solid-phase extractable DOM pool via ultrahigh resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) revealed compositional differences at the molecular level that were not reflected in changes in concentration. Besides the mixing of terrestrial and marine endmember signatures, river discharge levels and biological activity were found to impact DOM molecular composition. DOM composition changed less between August and November than along the salinity gradient. Relative contributions of presumed photolabile DOM compounds did not reveal non-conservative behavior indicative of photochemical processing; suggesting that on the timescales of estuarine mixing photochemical removal of molecules plays a minor role in the turbid Delaware Bay. Overall, a large portion of molecular formulae overlapped between sampling campaigns and persisted during estuarine passage. Extending the analysis to the structural level via the fragmentation of molecular masses in the FT-ICR-MS cell, we found that the relative abundance of isomers along the salinity gradient did not change, indicating a high structural similarity of aquatic DOM independent of the origin. These results point towards a recalcitrant character of the DOM supplied by the Delaware

  7. Land management impacts on dairy-derived dissolved organic carbon in ground water.

    Science.gov (United States)

    Chomycia, Jill C; Hernes, Peter J; Harter, Thomas; Bergamaschi, Brian A

    2008-01-01

    Dairy operations have the potential to elevate dissolved organic carbon (DOC) levels in ground water, where it may interact with organic and inorganic contaminants, fuel denitrification, and may present problems for drinking water treatment. Total and percent bioavailable DOC and total and carbon-specific trihalomethane (THM) formation potential (TTHMFP and STHMFP, respectively) were determined for shallow ground water samples from beneath a dairy farm in the San Joaquin Valley, California. Sixteen wells influenced by specific land management areas were sampled over 3 yr. Measured DOC concentrations were significantly elevated over the background as measured at an upgradient monitoring well, ranging from 13 to 55 mg L(-1) in wells downgradient from wastewater ponds, 8 to 30 mg L(-1) in corral wells, 5 to 12 mg L(-1) in tile drains, and 4 to 15 mg L(-1) in wells associated with manured fields. These DOC concentrations were at the upper range or greatly exceeded concentrations in most surface water bodies used as drinking water sources in California. DOC concentrations in individual wells varied by up to a factor of two over the duration of this study, indicating a dynamic system of sources and degradation. DOC bioavailability over 21 d ranged from 3 to 10%, comparable to surface water systems and demonstrating the potential for dairy-derived DOC to influence dissolved oxygen concentrations (nearly all wells were hypoxic to anoxic) and denitrification. TTHMFP measurements across all management units ranged from 141 to 1731 microg L(-1), well in excess of the maximum contaminant level of 80 microg L(-1) established by the Environmental Protection Agency. STHMFP measurements demonstrated over twofold variation ( approximately 4 to approximately 8 mmol total THM/mol DOC) across the management areas, indicating the dependence of reactivity on DOC composition. The results indicate that land management strongly controls the quantity and quality of DOC to reach shallow

  8. Effect of dissolved organic matter on the toxicity of chlorotoluron to Triticum aestivum

    Institute of Scientific and Technical Information of China (English)

    SONG Ning-hui; YANG Zhi-min; ZHOU Li-xian; WU Xin; YANG Hong

    2006-01-01

    Response of two wheat cultivars (Triticum aestivum cv. YM 158 and NM 9) to the herbicide chlorotoluron and the effect of two forms of dissolved organic matter on the chlorotoluron toxicity to the plants were characterized. Treatment with chlorotoluron at 10-50 μg/ml inhibited the seed germination and a dose-response was observed. The inhibition of seed germination was correlated to the depression of α-amylase activities. To identify whether chlorotoluron induced oxidative damage to wheat plants, the malondlaldehyde (MDA) content and electrolyte leakage were measured. Results showed that both MDA content and electrolyte leakage in the chlorotoluron-treated roots significantly increased. Activities of several key enzymes were measured that operate in citric acid cycle and carbohydrate metabolic pathway. Inhibited activities of citrate synthase and NADP-isocitrate dehydrogenase were observed in the chlorotoluron-treated roots as compared to control plants. We also examined malate dehydrogenase and phosphoenolpyruvate carboxylase in wheat roots exposed to 30 μg/ml chlorotoluron. However, none of the enzymes showed significant changes in activities. Application of 160 μg/ml dissolved organic matter (DOM) extracted from non-treated sludge(NTS)and heat-expanded sludge (HES) in the medium with 30 μg/ml chlorotoluron induced an additive inhibition of seed germination and plant growth. The inhibition of growth due to the DOM treatment was associated with the depression of activities of α-amylase, citrate synthase and NADP-isocitrate dehydrogenase, as well as the increase in malondlaldehyde content and electrolyte leakage. These results suggested that the presence of DOM might enhance the uptake and accumulation of chlorotoluron, and thus resulted in greater toxicity in wheat plants. The two forms of DOM exhibited differences in regulation of chlorotoluron toxicity to the wheat plants.Treatments with DOM-NTS induced greater toxicity to plants as compared to those with

  9. Optical assessment of colored dissolved organic matter and its related parameters in dynamic coastal water systems

    Science.gov (United States)

    Shanmugam, Palanisamy; Varunan, Theenathayalan; Nagendra Jaiganesh, S. N.; Sahay, Arvind; Chauhan, Prakash

    2016-06-01

    Prediction of the curve of the absorption coefficient of colored dissolved organic matter (CDOM) and differentiation between marine and terrestrially derived CDOM pools in coastal environments are hampered by a high degree of variability in the composition and concentration of CDOM, uncertainties in retrieved remote sensing reflectance and the weak signal-to-noise ratio of space-borne instruments. In the present study, a hybrid model is presented along with empirical methods to remotely determine the amount and type of CDOM in coastal and inland water environments. A large set of in-situ data collected on several oceanographic cruises and field campaigns from different regional waters was used to develop empirical methods for studying the distribution and dynamics of CDOM, dissolved organic carbon (DOC) and salinity. Our validation analyses demonstrated that the hybrid model is a better descriptor of CDOM absorption spectra compared to the existing models. Additional spectral slope parameters included in the present model to differentiate between terrestrially derived and marine CDOM pools make a substantial improvement over those existing models. Empirical algorithms to derive CDOM, DOC and salinity from remote sensing reflectance data demonstrated success in retrieval of these products with significantly low mean relative percent differences from large in-situ measurements. The performance of these algorithms was further assessed using three hyperspectral HICO images acquired simultaneously with our field measurements in productive coastal and lagoon waters on the southeast part of India. The validation match-ups of CDOM and salinity showed good agreement between HICO retrievals and field observations. Further analyses of these data showed significant temporal changes in CDOM and phytoplankton absorption coefficients with a distinct phase shift between these two products. Healthy phytoplankton cells and macrophytes were recognized to directly contribute to the

  10. Boreal forest riparian zones regulate stream sulfate and dissolved organic carbon.

    Science.gov (United States)

    Ledesma, José L J; Futter, Martyn N; Laudon, Hjalmar; Evans, Christopher D; Köhler, Stephan J

    2016-08-01

    In boreal forest catchments, solute transfer to streams is controlled by hydrological and biogeochemical processes occurring in the riparian zone (RZ). However, RZs are spatially heterogeneous and information about solute chemistry is typically limited. This is problematic when making inferences about stream chemistry. Hypothetically, the strength of links between riparian and stream chemistry is time-scale dependent. Using a ten-year (2003-2012) dataset from a northern Swedish catchment, we evaluated the suitability of RZ data to infer stream dynamics at different time scales. We focus on the role of the RZ versus upslope soils in controlling sulfate (SO4(2)(-)) and dissolved organic carbon (DOC). A priori, declines in acid deposition and redox-mediated SO4(2)(-) pulses control sulfur (S) fluxes and pool dynamics, which in turn affect dissolved organic carbon (DOC). We found that the catchment is currently a net source of S, presumably due to release of the S pool accumulated during the acidification period. In both, RZ and stream, SO4(2-) concentrations are declining over time, whereas DOC is increasing. No temporal trends in SO4(2-) and DOC were observed in upslope mineral soils. SO4(2-) explained the variation of DOC in stream and RZ, but not in upslope mineral soil. Moreover, as SO4(2-) decreased with time, temporal variability of DOC increased. These observations indicate that: (1) SO4(2-) is still an important driver of DOC trends in boreal catchments and (2) RZ processes control stream SO4(2-) and subsequently DOC independently of upslope soils. These phenomena are likely occurring in many regions recovering from acidification. Because water flows through a heterogeneous mosaic of RZs before entering the stream, upscaling information from limited RZ data to the catchment level is problematic at short-time scales. However, for long-term trends and annual dynamics, the same data can provide reasonable representations of riparian processes and support

  11. Dissolved organic carbon in rainwater from areas heavily impacted by sugar cane burning

    Science.gov (United States)

    Coelho, C. H.; Francisco, J. G.; Nogueira, R. F. P.; Campos, M. L. A. M.

    This work reports on rainwater dissolved organic carbon (DOC) from Ribeirão Preto (RP) and Araraquara over a period of 3 years. The economies of these two cities, located in São Paulo state (Brazil), are based on agriculture and related industries, and the region is strongly impacted by the burning of sugar cane foliage before harvesting. Highest DOC concentrations were obtained when air masses traversed sugar cane fields burned on the same day as the rain event. Significant increases in the DOC volume weighted means (VWM) during the harvest period, for both sites, and a good linear correlation ( r = 0.83) between DOC and K (a biomass burning marker) suggest that regional scale organic carbon emissions prevail over long-range transport. The DOC VWMs and standard deviations were 272 ± 22 μmol L -1 ( n = 193) and 338 ± 40 μmol L -1 ( n = 80) for RP and Araraquara, respectively, values which are at least two times higher than those reported for other regions influenced by biomass burning, such as the Amazon. These high DOC levels are discussed in terms of agricultural activities, particularly the large usage of biogenic fuels in Brazil, as well as the analytical method used in this work, which includes volatile organic carbon when reporting DOC values. Taking into account rainfall volume, estimated annual rainwater DOC fluxes for RP (4.8 g C m -2 yr -1) and Araraquara (5.4 g C m -2 yr -1) were close to that previously found for the Amazon region (4.8 g C m -2 yr -1). This work also discusses whether previous calculations of the global rainwater carbon flux may have been underestimated, since they did not consider large inputs from biomass combustion sources, and suffered from a possible analytical bias.

  12. Characteristics and role of groundwater dissolved organic matter on arsenic mobilization and poisoning in Bangladesh

    Science.gov (United States)

    Tareq, Shafi M.; Maruo, Masahiro; Ohta, Keiichi

    The fluorescence and molecular weight characteristics of dissolved organic matter (DOM) in groundwater of Bangladesh were investigated to evaluate its multiple roles on arsenic (As) mobilization and poisoning. Fluorescence properties of DOM were measured in groundwater samples collected from two As contaminated areas of Bangladesh (Faridpur at the Ganges floodplain and Sonargaon at the Meghna floodplain) from different locations and depths. The three dimensional excitation-emission matrix (3DEEM) fluorescence spectra of groundwater samples showed two characteristic peaks around Ex/Em = 335-365 nm/435-480 nm for fulvic-like peaks and peak at around Ex/Em = 275-290 nm/310-335 nm for the protein-like materials. The similarity of fluorescence spectra of groundwater and surface water of both the study areas with high intensity of fluorescence and its strong correlation with DOC reflect the in situ generation of fluorescent DOM from sedimentary organic matter (SOM) and recent recharge of terrestrial labile organic carbon into shallow aquifer. High performance size-exclusion chromatography (HPSEC) analysis of DOM shows positive correlations between fluorescence intensities (FI) of small molecular fractions (0.65 kDa) and As concentrations, with the signatures of protein-like peaks of DOM in groundwater. This result provides new evidence that small molecular weight fraction of DOM in groundwater of Bangladesh can play an important role on As mobilization and toxicity. In addition, high concentration of fluorescence materials in DOM of As contaminated groundwater of Bangladesh may pose a threat to public health.

  13. Enhanced kinetics of solid-phase microextraction and biodegradation of polycyclic aromatic hydrocarbons in the presence of dissolved organic matter

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.; Ortega-Calvo, J.J.

    2008-01-01

    The uptake kinetics of fluorene, phenanthrene, fluoranthene, pyrene, and benzo[e]pyrene by solid-phase microextraction fibers was studied in the presence of dissolved organic matter (DOM) obtained from sediment pore water and resulted in increased fiber absorption and desorption rate coefficients. C

  14. The coupled mobilizations and transport of dissolved organic matter and metals (Cu and Zn) in soil columns

    NARCIS (Netherlands)

    Zhao, L.Y.L.; Schulin, R.; Weng, L.P.; Nowack, B.

    2007-01-01

    Dissolved organic carbon (DOC) is a key component involved in metal displacement in soils. In this study, we investigated the concentration profiles of soil-borne DOC, Cu and Zn at various irrigation rates with synthetic rain water under quasi steady-state conditions, using repacked soil columns wit

  15. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae

    NARCIS (Netherlands)

    Mueller, B.; den Haan, J.; Visser, P.M.; Vermeij, M.J.A.; van Duyl, F.C.

    2016-01-01

    Turf algae increasingly dominate benthic communities on coral reefs. Given their abundance and high dissolved organic carbon (DOC) release rates, turf algae are considered important contributors to the DOC pool on modern reefs. The release of photosynthetically fixed carbon as DOC generally, but not

  16. The response of dissolved organic carbon (DOC) and the ecosystem carbon balance to experimental drought in a temperate shrubland

    DEFF Research Database (Denmark)

    Sowerby, A.; Emmett, B.A.; Williams, D.;

    2010-01-01

    Climate change has been proposed as a driver of carbon (C) loss from the large pool of C held in soils. Aqueous (dissolved organic carbon, DOC) and gaseous (soil respiration or net ecosystem CO2 exchange) forms of C loss from soils have been considered. Under some climate change scenarios, gaseou...

  17. Nature, origin and average age of estuarine ultrafiltered dissolved organic matter as determined by molecular and carbon isotope characterization

    NARCIS (Netherlands)

    van Heemst, JDH; Megens, L; Hatcher, PG; de Leeuw, JW

    2000-01-01

    The Ems-Dollart estuary (on the border of the Netherlands and Germany) was chosen for a pilot study to characterize ultrafiltered dissolved organic matter (UDOM) in estuarine systems. UDOM samples were taken from four locations with salinities varying from 0.43 to 20 parts per thousand. The UDOM in

  18. Earthworms change the quantity and composition of dissolved organic carbon and reduce greenhouse gas emissions during composting

    NARCIS (Netherlands)

    Nigussie, Abebe; Bruun, Sander; Neergaard, de Andreas; Kuijper, Thomas

    2017-01-01

    Dissolved organic carbon (DOC) has recently been proposed as an indicator of compost stability. We assessed the earthworms' effect on DOC content and composition during composting, and linked compost stability to greenhouse gas emissions and feeding ratio. Earthworms reduced total DOC content, in

  19. Benthic fluxes of dissolved organic nitrogen in the Lower St. Lawrence Estuary and implications for selective organic matter degradation

    Directory of Open Access Journals (Sweden)

    M. Alkhatib

    2013-05-01

    Full Text Available The distribution of dissolved organic nitrogen (DON and carbon (DOC in sediment pore waters was determined at nine locations along the St. Lawrence Estuary and in the Gulf of St. Lawrence. The study area is characterized by gradients in the sedimentary particulate organic matter (POM reactivity, bottom water oxygen concentrations, as well as benthic respiration rates. Based on pore water profiles we estimated the benthic diffusive fluxes of DON and DOC. Our results show that DON fluxed out of the sediments at significant rates (110 to 430 μmol m−2 d−1. DON fluxes were positively correlated with sedimentary POM reactivity and sediment oxygen exposure time (OET, suggesting direct links between POM quality, aerobic remineralization and the release of DON to the water column. DON fluxes were on the order of 30% to 64% of the total benthic inorganic fixed N loss due to denitrification, and often exceeded the diffusive nitrate fluxes into the sediments. Hence they represented a large fraction of the total benthic N exchange. This result is particularly important in light of the fact that DON fluxes are usually not accounted for in estuarine and coastal zone nutrient budgets. The ratio of the DON to nitrate flux increased from 0.6 in the Lower Estuary to 1.5 in the Gulf. In contrast to DON, DOC fluxes did not show any significant spatial variation along the Laurentian Channel (LC between the Estuary and the Gulf (2100 ± 100μmol m−2 d−1, suggesting that production and consumption of labile DOC components proceed at similar rates, irrespective of the overall benthic characteristics and the reactivity of POM. As a consequence, the molar C/N ratio of dissolved organic matter (DOM in pore water and the overlying bottom water varied significantly along the transect, with lowest C/N in the Lower Estuary (5–6 and highest C/N (> 10 in the Gulf. We observed large differences between the C/N of pore water DOM with respect to POM, and the degree of

  20. Modeling the Dynamics and Export of Dissolved Organic Matter in the Northeastern U.S. Continental Shelf

    Science.gov (United States)

    Druon, J.N.; Mannino, A.; Signorini, Sergio R.; McClain, Charles R.; Friedrichs, M.; Wilkin, J.; Fennel, K.

    2009-01-01

    Continental shelves are believed to play a major role in carbon cycling due to their high productivity. Particulate organic carbon (POC) burial has been included in models as a carbon sink, but we show here that seasonally produced dissolved organic carbon (DOC) on the shelf can be exported to the open ocean by horizontal transport at similar rates (1-2 mol C/sq m/yr) in the southern U.S. Mid-Atlantic Bight (MAB). The dissolved organic matter (DOM) model imbedded in a coupled circulation-biogeochemical model reveals a double dynamics: the progressive release of dissolved organic nitrogen (DON) in the upper layer during summer increases the regenerated primary production by 30 to 300%, which, in turns ; enhances the DOC production mainly from phytoplankton exudation in the upper layer and solubilization of particulate organic matter (POM) deeper in the water column. This analysis suggests that DOM is a key element for better representing the ecosystem functioning and organic fluxes in models because DOM (1) is a major organic pool directly related to primary production, (2) decouples partially the carbon and nitrogen cycles (through carbon excess uptake, POM solubilization and DOM mineralization) and (3) is intimately linked to the residence time of water masses for its distribution and export.

  1. Predicting Copper Speciation in Estuarine Waters-Is Dissolved Organic Carbon a Good Proxy for the Presence of Organic Ligands?

    Science.gov (United States)

    Pearson, Holly B C; Comber, Sean D W; Braungardt, Charlotte; Worsfold, Paul J

    2017-02-21

    A new generation of speciation-based aquatic environmental quality standards (EQS) for metals have been developed using models to predict the free metal ion concentration, the most ecologically relevant form, to set site-specific values. Some countries such as the U.K. have moved toward this approach by setting a new estuarine and marine water EQS for copper, based on an empirical relationship between copper toxicity to mussels (Mytilus sp.) and ambient dissolved organic carbon (DOC) concentrations. This assumes an inverse relationship between DOC and free copper ion concentration owing to complexation by predominantly organic ligands. At low DOC concentrations, the new EQS is more stringent, but above 162 μM DOC it is higher than the previous value. However, the relationship between DOC and copper speciation is poorly defined in estuarine waters. This research discusses the influence of DOC from different sources on copper speciation in estuaries and concludes that DOC is not necessarily an accurate predictor of copper speciation. Nevertheless, the determination of ligand strength and concentrations by Competitive Ligand Exchange Adsorptive Cathodic Stripping Voltammetry enabled the prediction of the free metal ion concentration within an order of magnitude for estuarine waters by using a readily available metal speciation model (Visual MINTEQ).

  2. The Role of Dissolved Organic Carbon and Preadaptation in the Biotransformation of Trace Organic Chemicals during Aquifer Recharge and Recovery

    KAUST Repository

    Ouf, Mohamed

    2012-05-01

    Aquifer recharge and recovery (ARR) is a low-cost and environmentally-friendly treatment technology which uses conventionally treated wastewater effluent for groundwater recharge and subsequent recovery for agricultural, industrial or drinking water uses. This study investigated the effect of different dissolved organic carbon (DOC) composition in wastewater effluent on the fate of trace organic chemicals (TOrCs) during ARR. Four biologically active columns were setup receiving synthetic wastewater effluent with varying DOC compositions. The difference in DOC composition triggered variations in the microbial community’s diversity and hence its ability to degrade TOrCs. It was found that the presence of protein-like DOC enhances the removal of DOC in comparison with the presence of humic-like DOC. On the other hand, the presence of humic-like DOC, which is more difficult to degrade, improved the removal of several degradable TOrCs. Other column experiments were also carried out to investigate the role of previous and continuous exposure to TOrCs in their removal. The use of soil pre-exposed to low concentrations of TOrCs and DOC provided better removal of both DOC and TOrCs. The findings of this study suggest that the presence of more humic-like DOC in the effluent enhances the biotransformation of TOrCs during ARR. In addition, long exposure to both DOC and TOrCs increases the degree of their removal over time

  3. Rapid accretion of dissolved organic carbon in the Springs of Florida: the most organic-poor natural waters

    Directory of Open Access Journals (Sweden)

    C. M. Duarte

    2010-07-01

    Full Text Available The concentration of dissolved organic carbon (DOC in groundwater emanating as spring discharge at several locations in Florida, USA, and the net rate of DOC increase in the downstream receiving waters were measured as part of a larger investigation of carbon dynamics in flowing waters. Springs with high discharge (>2.8 m3 s−1 were found to be the most organic-poor natural waters yet reported (13 ±1.6 μmol C L−1, while springs with lesser discharge exhibited somewhat higher DOC concentrations (values ranging from 30 to 77 μmol C L−1. DOC concentrations increased rapidly downstream from the point of spring discharge, with the calculated net areal input rate of DOC ranging from 0.04 to 1.64 mol C m−2 d−1 across springs. Rates of DOC increase were generally greater in those springs with high discharge rates. These input rates compare favorably with values reported for gross primary production in these macrophyte-dominated spring systems, assuming that 17% of macrophyte primary production is lost, on average, as DOC. The measures reported here are possible only because of the remarkably low DOC levels in the up-surging groundwaters and the short residency times of the water in the spring-runs themselves.

  4. Three-dimensional fluorescence characteristics of dissolved organic matter produced by Prorocentrum donghaiense Lu

    Institute of Scientific and Technical Information of China (English)

    ZHAO Weihong; WANG Jiangtao; CHEN Meimei

    2009-01-01

    Filtration and cross-flow ultrafiltration techniques were used to separate culture media of Prorocentrum donghaiense at the exponential growth, stationary and decline stages into <0.45 μm filtrate, 100 kDa-0.45 μm, 10-100 kDa and 1-10 kDa retentate and <1 kDa ultrafiltrate fractions. The fluorescence properties of different molecular weights of dissolved organic matter (DOM) were measured by excitation-emission matrix spectra. Protein-like and humic-like fluorophores were observed in the DOM produced by P. donghaiense. The central positions of protein-like fluorophores showed a red shift with prolonged growth duration, shifting from tyrosine-like properties at the exponential growth stage to tryptophan-like properties at the stationary and decline stages. The excitation wavelengths of protein-like fluorophores exhibited some change in the exponential growth and stationary stages with increased molecular size, but showed little change in the decline stage. However, the emission wavelengths in the decline stage exhibited a blue shift. Very distinct C type and A type peaks in humic-like fluorophores were observed. With a prolonged culture time, the intensities of both of the peaks became strong and the excitation wavelengths of peak A showed a red shift, while the A:C ratios fell. More than 94% of fluorescent DOM was in the lower than 1 kDa molecular weight fraction.

  5. Terpenoids as major precursors of dissolved organic matter in landfill leachates, surface water, and groundwater

    Science.gov (United States)

    Leenheer, J.A.; Nanny, M.A.; McIntyre, C.

    2003-01-01

    13C NMR analyses of hydrophobic dissolved organic matter (DOM) fractions isolated from a landfill leachate contaminated groundwater near Norman, OK; the Colorado River aqueduct near Los Angeles, CA; Anaheim Lake, an infiltration basin for the Santa Ana River in Orange County, CA; and groundwater from the Tomago Sand Beds, near Sydney, Australia, found branched methyl groups and quaternary aliphatic carbon structures that are indicative of terpenoid hydrocarbon precursors. Significant amounts of lignin precursors, commonly postulated to be the major source of DOM, were found only in trace quantities by thermochemolysis/gas chromatography/mass spectrometry of the Norman Landfill and Tomago Sand Bed hydrophobic DOM fractions. Electrospray/tandem mass spectrometry of the Tomago Sand Bed hydrophobic acid DOM found an ion series differing by 14 daltons, which is indicative of aliphatic and aryl-aliphatic polycarboxylic acids. The product obtained from ozonation of the resin acid, abietic acid, gave a similar ion series. Terpenoid precursors of DOM are postulated to be derived from resin acid paper sizing agents in the Norman Landfill, algal and bacterial terpenoids in the Colorado River and Anaheim Lake, and terrestrial plant terpenoids in the Tomago Sand Beds.

  6. Photodegradation of estrone enhanced by dissolved organic matter under simulated sunlight

    KAUST Repository

    Caupos, Emilie

    2011-05-01

    In the present work the degradation of estrone (E1) a natural estrogenic hormone has been studied under simulated solar irradiation. The photodegradation of E1 has been investigated in the absence and in the presence of 7.7-8.9 mg L-1 of dissolved organic carbon (DOC), under solar light simulation with irradiance approximating that of the sun. DOC extracts from different origins have been used. Half-lives ranging between 3.9 h and 7.9 h were observed. Results indicated that E1 was photodegraded even in the absence of DOC. The presence of DOC was found to enhance the degradation of E1. Experiments performed with the addition of reactive species scavengers (azide ions and 2-propanol) have shown that these two species play a significant role in the photodegradation. Some experiments have been performed with a DOC previously submitted to solar irradiation. Changes in optical and physico-chemical properties of DOC strongly affect its photoinductive properties, and hence its efficiency on E1 degradation. A part of the study consisted in the investigation of photoproducts structures. Five photoproducts were shown by chromatographic analysis: one arising from direct photolysis and the four others from DOC photoinduced degradation. © 2011 Elsevier Ltd.

  7. Impact of dissolved organic matter on bioavailability of chlorotoluron to wheat.

    Science.gov (United States)

    Song, Ning Hui; Zhang, Shuang; Hong, Min; Yang, Hong

    2010-03-01

    Chlorotoluron (Chl) is a phenylurea herbicide and is widely used for controlling weeds. While it has brought great benefits to crop production, it has also resulted in contamination to ecosystem. In this study, we investigated accumulation of chlorotoluron (Chl) and biological responses of wheat plants as affected by dissolved organic matter (DOM). Wheat seedlings grown under 10 mg kg(-1) Chl for 4 d showed a low level of chlorophyll accumulation and damage to plasma membrane. The growth was inhibited by exposure of chlorotoluron. Treatment with 50 mg DOC kg(-1) DOM derived either from sludge (DOM-SL) or straw (DOM-ST) attenuated the chlorotoluron toxicity to plants. Both DOMs decreased activities of catalase, peroxidase and superoxide dismutase in Chl-treated seedlings. However, an increased glutathione S-transferases activity was observed under the same condition. Wheat plants treated with Chl in the presence of DOM accumulated less Chl than those treated with Chl alone. Moreover, in the presence of DOM, bioconcentration factor (BCF) decreased whereas translocation factors increased. Analyses with FT-IR spectra confirmed the regulatory role of DOMs in reducing Chl accumulation in wheat.

  8. Effect of molecular weight of dissolved organic matter on toxicity and bioavailability of copper to lettuce.

    Science.gov (United States)

    Wang, Xudong; Chen, Xianni; Liu, Shuai; Ge, Xizu

    2010-01-01

    To clarify the effects of molecular weight of dissolved organic matter (DOM) on the toxicity and bioavailability of copper (Cu) to plants, DOM extracted from chicken manure was ultra-filtered into four fractions according to their molecular weights by means of sequential-stage ultrafiltration technique. Lettuce seeds were germinated by being exposed to the solutions containing Cu2+ with or without different fractions of DOM. The concentration of copper in roots, leaves, sprouts and the length of roots were investigated. The results showed that not all fractions of DOM could improve copper availability or toxicity. The fraction of DOM with larger molecular weight more than 1 kDa had higher complexation stability with Cu2+ and caused lower concentration of free Cu2+ ion in the solution of copper plus the fraction, resulting in lower availability and toxicity of copper to lettuce, but the fraction with molecular weight less than 1 kDa had the opposite function. Therefore, the molecular weight of 1 kDa may be the division point to determine DOM to increase or decrease copper availability and toxicity.

  9. Seasonal variations of dissolved organic carbon in precipitation over urban and forest sites in central Poland.

    Science.gov (United States)

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2015-07-01

    Spatial and temporal variability of carbon species in rainwater (bulk deposition) was studied for the first time at two sites located in urban area of Poznań City and protected woodland area (Jeziory), in central Poland, between April and December 2013. The mean concentration of total carbon (TC) for the first site was 5.86 mg L(-1), whereas for the second, 5.21 mg L(-1). Dissolved organic carbon (DOC) concentration accounted for, on average, 87 and 91 % of total carbon in precipitation at urban and non-urban sites, respectively. Significant changes in TC concentrations in rainwater were observed at both sites, indicating that atmospheric transformation, transport, and removal mechanisms of carbonaceous particles were affected by seasonal fluctuations in biogenic/anthropogenic emission and meteorological conditions (i.e., precipitation height and type, atmospheric transport). During the warm season, the DOC concentration in rainwater was mostly influenced by mixed natural and anthropogenic sources. In contrast, during the cold season, the DOC concentration significantly increased mainly as a result of anthropogenic activities, i.e., intensive coal combustion, domestic wood burning, high-temperature processes, etc. In addition, during the winter measurements, significant differences in mean DOC concentration (Kruskal-Wallis test, p urban and non-urban sites. These data imply that carbonaceous compounds are of crucial importance in atmospheric chemistry and should be considered as an important parameter while considering wet deposition, reactions with different substances, especially over polluted environments.

  10. Characterization of Optical Attenuation by Colored Dissolved Organic Matter (CDOM) in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash

    2016-02-01

    Optical properties of colored dissolved organic matter (CDOM) control the downward irradiance in the ultraviolet and visible range of the electromagnetic radiation. CDOM is a strong absorber in shorter wavelengths (ultraviolet light) with steeper spectral slopes in the open ocean. Despite the importance of CDOM in understanding physical and biogeochemical processes in the marine environment, in situ measurements of optical properties in the Red Sea are sparse. This study comprises CDOM absorption from two different instruments (i.e. a spectrophotometer and WET Labs ac-s sensor), and assesses the variations in optical properties of CDOM in the Red Sea using data collected in 2014 and 2015. Three global inversion algorithms (Garver-Siegel-Maritorena model - GSM, Quasi-Analytical Algorithm - QAA, and the Constrained Linear-Matrix inversion model - CLM) were applied to recent data collected in the Red Sea, providing the comparison at five key selected wavelengths (412, 443, 490, 510, and 555 nm) demonstrated that in situ aCDOM values were higher than the values predicted from the three inversion algorithms and leads to underestimating in situ measurements. This finding is consistent with the conclusion of Brewin et al. (2015) that overestimation of chlorophyll in the Red Sea could be due to excessive CDOM.

  11. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter

    Science.gov (United States)

    Findlay, S.E.G.; Sinsabaugh, R. L.; Sobczak, W.V.; Hoostal, M.

    2003-01-01

    Hyporheic sediment bacterial communities were exposed to dissolved organic matter (DOM) from a variety of sources to assess the interdependence of bacterial metabolism and community composition. Experiments ranged from small-scale core perfusions with defined compounds (glucose, bovine serum albumin) to mesocosms receiving natural leaf leachate or water from different streams. Response variables included bacterial production, oxygen consumption, extracellular enzyme activity, and community similarity as manifest by changes in banding patterns of randomly amplified polymorphic DNA (RAPD). All DOM manipulations generated responses in at least one metabolic variable. Additions of both labile and recalcitrant materials increased either oxygen consumption, production, or both depending on background DOM. Enzyme activities were affected by both types of carbon addition with largest effects from the labile mixture. Cluster analysis of RAPD data showed strong divergence of communities exposed to labile versus recalcitrant DOM. Additions of leaf leachate to mesocosms representing hyporheic flow-paths caused increases in oxygen consumption and some enzyme activities with weaker effects on production. Community structure yeas strongly affected; samples from the leachate-amended mesocosms clustered separately from the control samples. In mesocosms receiving water from streams ranging in DOC (0.5-4.5 mg L-1), there were significant differences in bacterial growth, oxygen consumption, and enzyme activities. RAPD analysis showed strongest clustering of samples by stream type with more subtle effects of position along the flowpaths. Responses in community metabolism were always accompanied by shifts in community composition, suggesting carbon supply affects both functional and structural attributes of hyporheic bacterial communities.

  12. Effect of Composting on Dissolved Organic Matter in Animal Manure and Its Binding with Cu

    Directory of Open Access Journals (Sweden)

    Fengsong Zhang

    2012-01-01

    Full Text Available The agricultural application of raw animal manure introduces large amounts of dissolved organic matter (DOM into soil and would increase transport of heavy metals such as Cu which are widely present in animal manure. The purpose of this research was to evaluate the evolution of DOM from pig and cattle manures during composting through excitation-emission matrix (EEM fluorescence spectroscopy and the binding ability of DOM toward copper (Cu ions with the aid of fluorescence quenching titration. The excitation-emission matrix spectra indicated that tyrosine-like, tryptophan-like, and soluble microbial byproduct-like fluorescence decreased significantly, while humic-like and fulvic-like fluorescence increased and became the main peaks in composted manure DOM. Fluorescence quenching titration showed that the complexing capacities of pig and cattle manure DOM decreased after composting. Correlation analysis confirmed that complexing capacity of DOM positively and significantly correlates with tyrosine-like and soluble microbial byproduct-like materials which mostly degraded after composting. These results would suggest that the ability of manure DOM to complex with Cu is inhibited as a result of reduced protein-like materials after composting.

  13. Comparing Modeled and Measured Mercury Speciation in Contaminated Groundwater: Importance of Dissolved Organic Matter Composition.

    Science.gov (United States)

    Richard, Jan-Helge; Bischoff, Cornelia; Biester, Harald

    2016-07-19

    In addition to analytical speciation, reliable Hg species modeling is crucial for predicting the mobility and toxicity of Hg, but geochemical speciation codes have not yet been tested for their prediction accuracy. Our study compares analyses of Hg species in highly Hg-contaminated groundwater (Hgtot: 0.02-4 μmol·L(-1)) at three sites with predictions of Hg speciation obtained from three geochemical codes (WHAM, Visual MINTEQ, PHREEQC) with and without implementation of Hg complexation by dissolved organic matter (DOM). Samples were analyzed for chemical composition, elemental, inorganic, and DOM-bound Hg (Hg(0), Hginorg, HgDOM). Hg-DOM complexation was modeled using three approaches: binding to humic/fulvic acids, binding to thiol-groups, or a combination of both. Results of Hg(0) modeling were poor in all scenarios. Prediction accuracy for Hginorg and HgDOM strongly depended on the assumed DOM composition. Best results were achieved when weaker binding sites, simulated by WHAMs DOM submodel, were combined with strongly binding thiol groups. Indications were found that thiol-DOM ratios in groundwater are likely to be lower than in surface water, highlighting the need for analytical thiol quantification in groundwater DOM. This study shows that DOM quality is a crucial parameter for prediction of Hg speciation in groundwater by means of geochemical modeling.

  14. Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry.

    Science.gov (United States)

    Dilling, Jörg; Kaiser, Klaus

    2002-12-01

    In this study, we tested a simple and rapid method for the estimation of carbon in the hydrophobic fraction of dissolved organic matter (DOM) of different origin (spruce, pine, and beech litter) in soil water. The method is based on the fact that the hydrophobic fraction of DOM contains almost entirely the aromatic moieties of DOM. Thus, it showed a clearly distinct light absorption at 260 nm compared to the hydrophilic fraction. This light absorption was directly proportional to the concentration of the hydrophobic fraction. Moreover, it was independent of the concentration of the hydrophilic fraction. We compared the concentrations of hydrophobic DOM estimated by the UV method with those of the conventional fractionation using chromatographic columns of XAD-8 macroporous resin and found an excellent agreement between the two methods for both solutions from laboratory sorption experiments and field samples of forest floor leachates and subsoil porewaters. In addition, the absorption at 260 nm of hydrophobic DOM proved to be independent of pH values ranging from 2.0 to 6.5. Compared to the conventional chromatographic fractionation, the method using the UV absorption at 260 nm is less time consuming, needs a much smaller sample volume, and showed a better reproducibility. However, its use is restricted to water samples of low nitrate (< 25 mg L(-1)) and Fe (< 5 mg L(-1)) concentrations and, probably, with the hydrophobic fraction dominated by aromatic compounds deriving from degradation of lignin.

  15. Influence of dissolved organic carbon on the efficiency of P sequestration by a lanthanum modified clay.

    Science.gov (United States)

    Dithmer, Line; Nielsen, Ulla Gro; Lundberg, Daniel; Reitzel, Kasper

    2016-06-15

    A laboratory scale experiment was set up to test the effect of dissolved organic carbon (DOC) as well as ageing of the La-P complex formed during phosphorus (P) sequestration by a La modified clay (Phoslock(®)). Short term (7 days) P adsorption studies revealed a significant negative effect of added DOC on the P sequestration of Phoslock(®), whereas a long-term P adsorption experiment revealed that the negative effect of added DOC was reduced with time. The reduced P binding efficiency is kinetic, as evident from solid-state (31)P magic-angle spinning (MAS) NMR spectroscopy, who showed that the P binding did not change in the presence of DOC. (31)P MAS NMR also reveals that up to 26% of the sequestered phosphate is as loosely bound redox-sensitive P species on the surface of rhabdophane (LaPO4 · nH2O, n ≤ 3). The ratio between the loosely bound P and lanthanum phosphate did not change with time, however both NMR and La LIII-extended x-ray absorption fine structure (EXAFS) spectroscopy shows a transformation of lanthanum phosphate from the initially formed rhabdophane towards the more stable monazite (LaPO4). Furthermore, the effect of natural DOC on the P binding capacity was tested using water and pore water from 16 Danish lakes. Whilst DOC has an immediate negative impact on P binding in the lake water, with time this effect is reduced.

  16. Variations in dissolved organic nitrogen concentration in biofilters with different media during drinking water treatment.

    Science.gov (United States)

    Zhang, Huining; Zhang, Kefeng; Jin, Huixia; Gu, Li; Yu, Xin

    2015-11-01

    Dissolved organic nitrogen (DON) is potential precursor of disinfection byproducts (DBPs), especially nitrogenous DBPs. In this study, we investigated the impact of biofilters on DON concentration changes in a drinking water plant. A small pilot plant was constructed next to a sedimentation tank in a drinking water plant and included activated carbon, quartz sand, anthracite, and ceramsite biofilters. As the biofilter layer depth increased, the DON concentration first decreased and then increased, and the variation in DON concentration differed among the biofilters. In the activated carbon biofilter, the DON concentration was reduced by the largest amount in the first part of the column and increased by the largest amount in the second part of the column. The biomass in the activated carbon filter was less than that in the quartz sand filter in the upper column. The heterotrophic bacterial proportion among bacterial flora in the activated carbon biofilter was the largest, which might be due to the significant reduction in DON in the first part of the column. Overall, the results indicate that the DON concentration in biofiltered water can be controlled via the selection of appropriate biofilter media. We propose that a two-layer biofilter with activated carbon in the upper layer and another media type in the lower layer could best reduce the DON concentration.

  17. Multi-chamber microbial desalination cell for improved organic matter and dissolved solids removal from wastewater.

    Science.gov (United States)

    Pradhan, Harapriya; Ghangrekar, M M

    2014-01-01

    A five-chamber microbial desalination cell (MDC) with anode, cathode, one central desalination chamber and two concentrate chambers separated by ion exchange membranes was operated in batch mode for more than 60 days. The performance of the MDC was evaluated for chemical oxygen demand (COD) removal, total dissolved solids (TDS) removal and energy production. An average COD removal of 81 ± 2.1% was obtained using acetate-fed wastewater as substrate in the anodic chamber inoculated with mixed anaerobic sludge. TDS removals of 58, 70 and 78% were observed with salt concentration of 8, 20 and 30 g/L, respectively, in the middle desalination chamber. The MDC produced a maximum power output of 16.87 mW/m(2) during polarization. The highest Coulombic efficiency of 12 ± 2.4% was observed in this system using mixed anaerobic sludge as inoculum. The system effectively demonstrated capability for simultaneous organic matter removal and desalination along with power generation.

  18. Dissolved Organic Carbon Dynamics Along Terrestrial-aquatic Flowpaths in a Catchment Dominated by Sandy Soils

    Science.gov (United States)

    Wickland, K.; Walker, J. F.; Hood, K.; Butler, K. D.

    2015-12-01

    Aquatic systems receive significant amounts of terrestrially-derived dissolved organic carbon (DOC) from their watersheds. The amount and nature received depends on terrestrial carbon source strength, processing and losses of carbon during transport, and hydrologic connectivity between terrestrial and aquatic systems. While much research has been done on terrestrial DOC dynamics along terrestrial-aquatic flowpaths, there is still considerable uncertainty in many areas including the importance of different carbon sources, microbial metabolism and sorption of DOC, and processing of carbon in groundwater. Here we investigate DOC dynamics in soils, groundwater, and stream waters at the USGS Water, Energy, and Biogeochemical (WEBB) Program research site in northern Wisconsin. This site is well-suited for studying DOC dynamics as soils are sandy and homogenous with small DOC sorption potential, and previous work has characterized the hydrology of the region in detail. We collected water samples over two years from soil pit lysimeters along a series of hillslope transects, from shallow and deep groundwater wells, and from a first-order stream receiving these waters. We measured DOC concentration, DOC optical properties, and biodegradability of DOC. Combined with historical DOC and companion water chemistry data we characterize DOC generation and loss along the following flowpaths: 1) infiltration through the unsaturated zone to the groundwater table, 2) shallow groundwater flow, and 3) long groundwater flowpaths of different origin (lake-derived vs. terrestrial-derived water).

  19. pH modeling for maximum dissolved organic matter removal by enhanced coagulation

    Institute of Scientific and Technical Information of China (English)

    Jiankun Xie; Dongsheng Wang; John van Leeuwen; Yanmei Zhao; Linan Xing; Christopher W. K. Chow

    2012-01-01

    Correlations between raw water characteristics and pH after enhanced coagulation to maximize dissolved organic matter (DOM)removal using four typical coagulants (FeCl3,Al2(SO4)3,polyaluminum chloride (PAC1) and high performance polyaluminum chloride (HPAC)) without pH control were investigated.These correlations were analyzed on the basis of the raw water quality and the chemical and physical fractionations of DOM of thirteen Chinese source waters over three seasons.It was found that the final pH after enhanced coagulation for each of the four coagulants was influenced by the content of removable DOM (i.e.hydrophobic,and higher apparent molecular weight (AMW) DOM),the alkalinity and the initial pH of raw water.A set of feed-forward semi-empirical models relating the final pH after enhanced coagulation for each of the four coagulants with the raw water characteristics were developed and optimized based on correlation analysis.The established models were preliminarily validated for prediction purposes,and it was found that the deviation between the predicted data and actual data was low.This result demonstrated the potential for the application of these models in practical operation of drinking water treatment plants.

  20. Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Chu Wenhai, E-mail: 1world1water@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 (China); Gao Naiyun [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 (China); Deng Yang, E-mail: yang.deng@upr.edu [Department of Civil Engineering and Surveying, University of Puerto Rico, P.O. Box 9041, Mayaguez, Puerto Rico, 00681-9041 (Puerto Rico)

    2010-01-15

    The stability of haloacetamides (HAcAms) such as dichloroacetamide (DCAcAm) and trichloroacetamide (TCAcAm) was studied under different experimental conditions. The yield of HAcAms during aspartic acid (Asp) chlorination was measured at different molar ratio of chlorine atom to nitrogen atom (Cl/N), pH and dissolved organic carbon (DOC) mainly consisted of humic acid (HA) mixture. Ascorbic acid showed a better capacity to prevent the decay of DCAcAm and TCAcAm than the other two dechlorinating agents, thiosulfate and sodium sulfite. Lower Cl/N favored the DCAcAm formation, implying that breakpoint chlorination might minimize its generation. The pH decrease could lower the concentration of DCAcAm but favored dichloroacetonitrile (DCAN) formation. DCAcAm yield was sensitive to the DOC due to higher chlorine consumption caused by HA mixture. Two possible pathways of DCAcAm formation during Asp chlorination were proposed. Asp was an important precursor of DCAN, DCAcAm and dichloroacetic acid (DCAA), and thus removal of Asp before disinfection may be a method to prevent the formation of DCAcAm, DCAN and DCAA.

  1. Characterization of fluorescent-dissolved organic matter and identification of specific fluorophores in textile effluents.

    Science.gov (United States)

    Li, Wentao; Xu, Zixiao; Wu, Qian; Li, Yan; Shuang, Chendong; Li, Aimin

    2015-03-01

    This study focused on the characterization of fluorescent-dissolved organic matter and identification of specific fluorophores in textile effluents. Samples from different textile wastewater treatment plants were characterized by high-performance liquid chromatography and size exclusion chromatography as well as fluorescence excitation-emission matrix spectra. Despite the highly heterogeneous textile effluents, the fluorescent components and their physicochemical properties were found relatively invariable, which is beneficial for the combination of biological and physicochemical treatment processes. The humic-like substance with triple-excitation peaks (excitation (Ex) 250, 310, 365/emission (Em) 460 nm) presented as the specific fluorescence indicator in textile effluents. It was also the major contributor to UV absorbance at 254 nm and resulted in the brown color of biologically treated textile effluents. By spectral comparison, the specific fluorophore in textile effluents could be attributed to the intermediate structure of azo dyes 1-amino-2-naphthol, which was transferred into the special humic-like substances during biological treatment.

  2. Quantifying tropical peatland dissolved organic carbon (DOC) using UV-visible spectroscopy.

    Science.gov (United States)

    Cook, Sarah; Peacock, Mike; Evans, Chris D; Page, Susan E; Whelan, Mick J; Gauci, Vincent; Kho, Lip Khoon

    2017-02-27

    UV-visible spectroscopy has been shown to be a useful technique for determining dissolved organic carbon (DOC) concentrations. However, at present we are unaware of any studies in the literature that have investigated the suitability of this approach for tropical DOC water samples from any tropical peatlands, although some work has been performed in other tropical environments. We used water samples from two oil palm estates in Sarawak, Malaysia to: i) investigate the suitability of both single and two-wavelength proxies for tropical DOC determination; ii) develop a calibration dataset and set of parameters to calculate DOC concentrations indirectly; iii) provide tropical researchers with guidance on the best spectrophotometric approaches to use in future analyses of DOC. Both single and two-wavelength model approaches performed well with no one model significantly outperforming the other. The predictive ability of the models suggests that UV-visible spectroscopy is both a viable and low cost method for rapidly analyzing DOC in water samples immediately post-collection, which can be important when working at remote field sites with access to only basic laboratory facilities.

  3. Impact of Wetland Decline on Decreasing Dissolved Organic Carbon Concentrations along the Mississippi River Continuum

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Shuiwang; He, Yuxiang; Kaushal, Sujay S.; Bianchi, Thomas S.; Ward, Nicholas D.; Guo, Laodong

    2017-01-09

    Prior to discharging to the ocean, large rivers constantly receive inputs of dissolved organic carbon (DOC) from tributaries or fringing floodplains and lose DOC via continuous in situ processing along distances that span thousands of kilometers. Current concepts predicting longitudinal changes in DOC mainly focus on in situ processing or exchange with fringing floodplain wetlands, while effects of heterogeneous watershed characteristics are generally ignored. We analyzed results from a 17-year time-series of DOC measurements made at seven sites and three expeditions along the entire Mississippi River main channel with DOC measurements made every 17 km. The results show a clear downstream decrease in DOC concentrations that was consistent throughout the entire study period. Downstream DOC decreases were primarily (~63–71%) a result of constant dilutions by low-DOC tributary water controlled by watershed wetland distribution, while in situ processing played a secondary role. We estimate that from 1780 to 1980 wetland loss due to land-use alterations caused a ca. 58% decrease in in DOC concentrations in the tributaries of the Mississippi River. DOC reductions caused by watershed wetland loss likely impacted the capacity for the river to effectively remove nitrogen via denitrification, which can further exacerbate coastal hypoxia. These findings highlight the importance of watershed wetlands in regulating DOC longitudinally along the headland to ocean continuum of major rivers.

  4. Effect of dissolved organic matter on mercury release from water body

    Institute of Scientific and Technical Information of China (English)

    Yutao Zhang; Xi Chen; Yongkui Yang; Dingyong Wang; Xiao Liu

    2011-01-01

    Dissolved organic matter (DOM) plays an important role in the process of mercury release from water body. In this study, the influence of DOM from different sources (DOMR, DOMs and DOMH, extracted from rice straw, compost and humic soil respectively)on mercury reduction was investigated. The molecular weight distribution and chemical composition of DOM from each source were determined using ultrafiltration membrane technique and elemental analysis respectively. The result showed that mercury release from DOM-added samples was much lower than the control; the lowest mercury release flux was observed in the treatment of DOMH,25.02% of the control, followed by DOMs and DOMR, 62.46% and 64.95% of the control, respectively. The higher saturation degree and lower molecular weight of DOMH was responsible for the highest inhibition degree on the mercury release. The link between DOMH, concentration and mercury flux was also estimated and the result showed that mercury flux was increased with DOMH at lower concentration, while decreased with DOMH at higher concentration. Different mechanism dominated the influence of DOM on mercury release with variation of DOM concentration.

  5. Hydrology controls dissolved organic matter export and composition in an Alpine stream and its hyporheic zone.

    Science.gov (United States)

    Fasching, Christina; Ulseth, Amber J; Schelker, Jakob; Steniczka, Gertraud; Battin, Tom J

    2016-03-01

    Streams and rivers transport dissolved organic matter (DOM) from the terrestrial environment to downstream ecosystems. In light of climate and global change it is crucial to understand the temporal dynamics of DOM concentration and composition, and its export fluxes from headwaters to larger downstream ecosystems. We monitored DOM concentration and composition based on a diurnal sampling design for 3 years in an Alpine headwater stream. We found hydrologic variability to control DOM composition and the coupling of DOM dynamics in the streamwater and the hyporheic zone. High-flow events increased DOM inputs from terrestrial sources (as indicated by the contributions of humic- and fulvic-like fluorescence), while summer baseflow enhanced the autochthonous imprint of DOM. Diurnal and seasonal patterns of DOM composition were likely induced by biological processes linked to temperature and photosynthetic active radiation (PAR). Floods frequently interrupted diurnal and seasonal patterns of DOM, which led to a decoupling of streamwater and hyporheic water DOM composition and delivery of aromatic and humic-like DOM to the streamwater. Accordingly, DOM export fluxes were largely of terrigenous origin as indicated by optical properties. Our study highlights the relevance of hydrologic and seasonal dynamics for the origin, composition and fluxes of DOM in an Alpine headwater stream.

  6. Molecular characterization of dissolved organic matter through a desalination process by high resolution mass spectrometry.

    Science.gov (United States)

    Cortés-Francisco, Nuria; Caixach, Josep

    2013-09-01

    The effect of different water treatments such as ultrafiltration (UF) and reverse osmosis (RO) on dissolved organic matter (DOM) is still unknown. Electrospray ionization Fourier transform orbitrap mass spectrometry has been used to provide valuable information of marine DOM evolution through a desalination process on a molecular scale. In the present manuscript, the characterization of four real composite water samples from a desalination pilot plant installed in the coast of Barcelona (Spain) has been carried out. The sampling was performed on each point of the pilot plant: raw seawater (RSW), UF effluent, brine RO and permeate RO. The mass spectra of the different samples show several thousand peaks, however for the present screening study, only the mass range m/z 200-500 and the main signals in this mass range (relative intensities ≥1%) have been considered. The analysis of RSW and UF samples reveal that there is little effect on DOM by the UF pilot. However, when the water is treated on the RO an important change on DOM has been observed. The recurring periodical patterns found in RSW and UF are lost in Permeate RO sample. Compounds with more aliphatic character, with higher H/C ratio (H/Cav 1.72) are present in the Permeate and some of them have been tentatively identified as fatty acids.

  7. Evaluating Activated Carbon Adsorption of Dissolved Organic Matter and Micropollutants Using Fluorescence Spectroscopy.

    Science.gov (United States)

    Shimabuku, Kyle K; Kennedy, Anthony M; Mulhern, Riley E; Summers, R Scott

    2017-02-14

    Dissolved organic matter (DOM) negatively impacts granular activated carbon (GAC) adsorption of micropollutants and is a disinfection byproduct precursor. DOM from surface waters, wastewater effluent, and 1 kDa size fractions were adsorbed by GAC and characterized using fluorescence spectroscopy, UV-absorption, and size exclusion chromatography (SEC). Fluorescing DOM was preferentially adsorbed relative to UV-absorbing DOM. Humic-like fluorescence (peaks A and C) was selectively adsorbed relative to polyphenol-like fluorescence (peaks T and B) potentially due to size exclusion effects. In the surface waters and size fractions, peak C was preferentially removed relative to peak A, whereas the reverse was found in wastewater effluent, indicating that humic-like fluorescence is associated with different compounds depending on DOM source. Based on specific UV-absorption (SUVA), aromatic DOM was preferentially adsorbed. The fluorescence index (FI), if interpreted as an indicator of aromaticity, indicated the opposite but exhibited a strong relationship with average molecular weight, suggesting that FI might be a better indicator of DOM size than aromaticity. The influence of DOM intermolecular interactions on adsorption were minimal based on SEC analysis. Fluorescence parameters captured the impact of DOM size on the fouling of 2-methylisoborneol and warfarin adsorption and correlated with direct competition and pore blockage indicators.

  8. Molecular Composition and Photochemical Reactivity of Size-Fractionated Dissolved Organic Matter.

    Science.gov (United States)

    Maizel, Andrew C; Remucal, Christina K

    2017-02-21

    The photochemical production of reactive species, such as triplet dissolved organic matter ((3)DOM) and singlet oxygen ((1)O2), contributes to the degradation of aquatic contaminants and is related to an array of DOM structural characteristics, notably molecular weight. In order to relate DOM molecular weight, optical properties, and reactive species production, Suwannee River (SRFA) and Pony Lake fulvic acid (PLFA) isolates are fractionated by sequential ultrafiltration, and the resultant fractions are evaluated in terms of molecular composition and photochemical reactivity. UV-visible measurements of aromaticity increase with molecular weight in both fulvic acids, while PLFA molecular weight fractions are shown to be structurally similar by Fourier-transform ion cyclotron resonance mass spectrometry. In addition, Bray-Curtis dissimilarity analysis of formulas identified in the isolates and their size fractions reveal that SRFA and PLFA have distinct molecular compositions. Quantum yields of (3)DOM, measured by electron and energy transfer probes, and (1)O2 decreased with molecular weight. Decreasing [(3)DOM]ss with molecular weight is shown to derive from elevated quenching in high molecular weight fractions, rather than increased (3)DOM formation. This work has implications for the photochemistry of waters undergoing natural or engineered treatment processes that alter DOM molecular weight, such as photooxidation and biological degradation.

  9. Compositions and constituents of freshwater dissolved organic matter isolated by reverse osmosis.

    Science.gov (United States)

    Zhang, Yulong; Huang, Wen; Ran, Yong; Mao, Jingdong

    2014-08-15

    Dissolved organic matter (DOM) from riverine and lacustrine water was isolated using a reverse osmosis (RO) system. Solid-state (13)C nuclear magnetic resonance ((13)C NMR) was used to quantitatively evaluate the compositions and constituents of DOM, which are compared with previous investigations on marine DOM. Results indicated that concentration factor (CF) was a key metric controlling yield and sorption of DOM on the RO system. The sorption was likely non-selective, based on the (13)C NMR and δ(13)C analyses. Carbohydrates and lipids accounted for 25.0-41.5% and 30.2-46.3% of the identifiable DOM, followed by proteins (18.2-19.8%) and lignin (7.17-12.8%). The freshwater DOM contained much higher alkyl and aromatic C but lower alkoxyl and carboxyl C than marine DOM. The structural difference was not completely accounted for by using structure of high molecular weight (HMW) DOM, suggesting a size change involved in transformations of DOM during the transport from rivers to oceans.

  10. Estimation of Biochemical Oxygen Demand Based on Dissolved Organic Carbon, UV Absorption, and Fluorescence Measurements

    Directory of Open Access Journals (Sweden)

    Jihyun Kwak

    2013-01-01

    Full Text Available Determination of 5-d biochemical oxygen demand (BOD5 is the most commonly practiced test to assess the water quality of surface waters and the waste loading. However, BOD5 is not a good parameter for the control of water or wastewater treatment processes because of its long test period. It is very difficult to produce consistent and reliable BOD5 results without using careful laboratory quality control practices. This study was performed to develop software sensors to predict the BOD5 of river water and wastewater. The software sensors were based on the multiple regression analysis using the dissolved organic carbon (DOC concentration, UV light absorbance at 254 nm, and synchronous fluorescence spectra. River water samples and wastewater treatment plant (WWTP effluents were collected at 1-hour interval to evaluate the feasibility of the software sensors. In short, the software sensors developed in this study could well predict the BOD5 of river water (r=0.78 and for the WWTP effluent (r=0.90.

  11. Effect of dissolved organic matter on adsorption and desorption of mercury by soils

    Institute of Scientific and Technical Information of China (English)

    YANG Yongkui; LIANG Li; WANG Dingyong

    2008-01-01

    Effects of dissolved organic matter (DOM) on adsorption and desorption of Hg were investigated in two kinds of soils, Xanthi-Udic Ferralosols (XUF) and Typic Purpli-Udic Cambosols (TPUC). The DOM was obtained from humus soil (DOMH), rice straw (DOMR), and pig manure (DOMP). The presence of DOM obviously reduced Hg maximum adsorption capacity with up to 40% decreases over the control, being an order of DOMH (250.00 mg/kg) (270.27 mg/kg) (312.50 mg/kg)

  12. Carbon monoxide photoproduction: implications for photoreactivity of Arctic permafrost-derived soil dissolved organic matter.

    Science.gov (United States)

    Hong, Jun; Xie, Huixiang; Guo, Laodong; Song, Guisheng

    2014-08-19

    Apparent quantum yields of carbon monoxide (CO) photoproduction (AQY(CO)) for permafrost-derived soil dissolved organic matter (SDOM) from the Yukon River Basin and Alaska coast were determined to examine the dependences of AQY(CO) on temperature, ionic strength, pH, and SDOM concentration. SDOM from different locations and soil depths all exhibited similar AQY(CO) spectra irrespective of soil age. AQY(CO) increased by 68% for a 20 °C warming, decreased by 25% from ionic strength 0 to 0.7 mol L(-1), and dropped by 25-38% from pH 4 to 8. These effects combined together could reduce AQY(CO) by up to 72% when SDOM transits from terrestrial environemnts to open-ocean conditions during summer in the Arctic. A Michaelis-Menten kinetics characterized the influence of SDOM dilution on AQY(CO) with a very low substrate half-saturation concentration. Generalized global-scale relationships between AQY(CO) and salinity and absorbance demostrate that the CO-based photoreactivity of ancient permaforst SDOM is comparable to that of modern riverine DOM and that the effects of the physicochemical variables revealed here alone could account for the seaward decline of AQY(CO) observed in diverse estuarine and coastal water bodies.

  13. Dissolved organic carbon reduces the toxicity of copper to germlings of the macroalgae, Fucus vesiculosus.

    Science.gov (United States)

    Brooks, Steven J; Bolam, Thi; Tolhurst, Laura; Bassett, Janice; La Roche, Jay; Waldock, Mike; Barry, Jon; Thomas, Kevin V

    2008-05-01

    This study investigates the effects of waterborne copper exposure on germling growth in chemically defined seawater. Germlings of the macroalgae, Fucus vesiculosus were exposed to a range of copper and dissolved organic carbon (DOC as humic acid) concentrations over 14 days. Germling growth was found to be a sensitive indicator of copper exposure with total copper (TCu) and labile copper (LCu) EC(50) values of approximately 40 and 20 microg/L, respectively, in the absence of added DOC. The addition of DOC into the exposure media provided germlings with protection against copper toxicity, with an increased TCu EC(50) value of 117.3 microg/L at a corrected DOC (cDOC from humic acid only) concentration of 2.03 mg/L. The LCu EC(50) was not affected by a cDOC concentration of 1.65 mg/L or less, suggesting that the LCu concentration not the TCu concentration was responsible for inhibiting germling growth. However, at a cDOC concentration of approximately 2mg/L an increase in the LCu EC(50) suggests that the LCu concentration may play a role in the overall toxicity to the germlings. This is contrary to current understanding of aquatic copper toxicity and possible explanations for this are discussed.

  14. Effect of dissolved organic matter on ammonium sorption kinetics and equilibrium to Chinese clinoptilolite.

    Science.gov (United States)

    Zhang, Ying; Bi, Erping

    2012-01-01

    In the in-situ remediation of ammonium (NH4+) in groundwater by a sequential reactive barrier filled with zeolite, it is of great importance to understand the mechanisms of NH4+ sorption to zeolite. In this study, the effect of dissolved natural organic matter on NH4+ sorption to natural Chinese clinoptilolite was studied by batch experiments taking humic acid (HA) as a model substance. The surface of clinoptilolite was characterized by scanning electronic microscopy (SEM). A needle cluster of sorbed HA could be observed on the surface of the clinoptilolite. The negative effect of HA on NH4+ sorption is thought to be their competition for sorption sites, the surface coverage and blockage of the pores of clinoptilolite by HA. The fitting results of kinetic sorption data indicated that the rate-controlling step for NH4+ sorption by clinoptilolite in both NH4+ and NH4+ + HA systems is the heterogeneous chemisorption. The existence of HA (10 mg/L) significantly reduced the initial sorption rate of NH4+, but the effect of a further concentration increase of HA was slight. The effect of HA on maximum sorption capacity was found to be insignificant in the experiments. A high aqueous Ca2+ concentration can decrease the negative effect of HA on NH4+ sorption by precipitation of calcium humate.

  15. Freeze-thaw Effects on Sorption/Desorption of Dissolved Organic Carbon in Wetland Soils

    Institute of Scientific and Technical Information of China (English)

    YU Xiaofei; ZHANG Yuxia; ZHAO Hongmei; LU Xianguo; WANG Guoping

    2010-01-01

    The effects of freeze-thaw cycles on sorption/desorption of dissolved organic carbon (DOC) in two wetland soils and one reclaimed wetland soil were investigated. DOC concentrations added were 0-600 mg/L. Laboratory in-cubations of sorption/desorption of DOC had been carried out at -15℃ for 10 h, and then at +5℃ for 13 h. Soil sam-ples were refrozen and thawed subsequently for 5 cycles. Initial Mass model was used to describe sorption behavior of DOC. The results indicate that freeze-thaw cycles can significantly increase the sorption capacity of DOC and reduce the desorption capacity of DOC in the three soils. The freeze-thaw effects on desorption of DOC in soils increase with the increasing freeze-thaw cycles. The conversion of natural wetlands to soybean farmland can decrease the sorption capacity and increase the desorption capacity of DOC in soils. Global wanning and reclamation may increase DOC re-lease, and subsequently increase the loss of carbon and the emission of greenhouse gas.

  16. Climate change and dissolved organic carbon export to the Gulf of Maine

    Science.gov (United States)

    Huntington, Thomas G.; Balch, William M.; Aiken, George R.; Sheffield, Justin; Luo, Lifeng; Roesler, Collin S.; Camill, Philip

    2016-10-01

    Ongoing climate change is affecting the concentration, export (flux), and timing of dissolved organic carbon (DOC) exported to the Gulf of Maine (GoM) through changes in hydrologic regime. DOC export was calculated for water years 1950 through 2013 for 20 rivers and for water years 1930 through 2013 for 14 rivers draining to the GoM. DOC export was also estimated for the 21st century based on climate and hydrologic modeling in a previously published study. DOC export was calculated by using the regression model LOADEST to fit seasonally adjusted concentration discharge (C-Q) relations. Our results are an analysis of the sensitivity of DOC export to changes in hydrologic conditions over time since land cover and vegetation were held constant over time. Despite large interannual variability, all rivers had increasing DOC export during winter and these trends were significant (p climate model and greenhouse gas emission scenario that affected future river discharge through effects on precipitation and evapotranspiration. The most consistent result was a significant increase in DOC export in winter in all model-by-emission scenarios. DOC export was projected to decrease during the summer in all model-by-emission scenarios, with statistically significant decreases in half of the scenarios.

  17. Adsorption and desorption of dissolved organic matter by carbon nanotubes: Effects of solution chemistry.

    Science.gov (United States)

    Engel, Maya; Chefetz, Benny

    2016-06-01

    Increasing use of carbon nanotubes (CNTs) has led to their introduction into the environment where they can interact with dissolved organic matter (DOM). This study focuses on solution chemistry effects on DOM adsorption/desorption processes by single-walled CNTs (SWCNTs). Our data show that DOM adsorption is controlled by the attachment of DOM molecules to the SWCNTs, and that the initial adsorption rate is dependent on solution parameters. Adsorbed amount of DOM at high ionic strength was limited, possibly due to alterations in SWCNT bundling. Desorption of DOM performed at low pH resulted in additional DOM adsorption, whereas at high pH, adsorbed DOM amount decreased. The extent of desorption conducted at increased ionic strength was dependent on pre-adsorbed DOM concentration: low DOM loading stimulated additional adsorption of DOM, whereas high DOM loading facilitated release of adsorbed DOM. Elevated ionic strength and increased adsorbed amount of DOM reduced the oxidation temperature of the SWCNTs, suggesting that changes in the assembly of the SWCNTs had occurred. Moreover, DOM-coated SWCNTs at increased ionic strength provided fewer sites for atrazine adsorption. This study enhances our understanding of DOM-SWCNT interactions in aqueous systems influenced by rapid changes in salinity, and facilitates potential use of SWCNTs in water-purification technologies.

  18. Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide.

    Science.gov (United States)

    Dalrymple, Renée M; Carfagno, Amy K; Sharpless, Charles M

    2010-08-01

    Various aquatic dissolved organic matter (DOM) samples produce singlet oxygen (1O2) and hydrogen peroxide (H2O2) with quantum yields of 0.59 to 4.5% (1O2 at 365 nm) and 0.017 to 0.053% (H2O2, 300-400 nm integrated). The two species' yields have opposite pH dependencies and strong, but opposite, correlations with the E2/E3 ratio (A254 divided by A365). Linear regressions allow prediction of both quantum yields from E2/E3 in natural water samples with errors ranging from -3% to 60%. Experimental evidence and kinetic calculations indicate that less than six percent of the H2O2 is produced by reaction between 1O2 and DOM. The inverse relationship between the 1O2 and H2O2 yields is thus best explained by a model in which precursors to these species are populated competitively. A model is presented, which proposes that important precursors to H2O2 may be either charge-transfer or triplet states of DOM.

  19. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages

    Institute of Scientific and Technical Information of China (English)

    HUO Shouliang; XI Beidou; YU Haichan; HE Liansheng; FAN Shilei; LIU Hongliang

    2008-01-01

    The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic acid (HA), fulvic acid (FA), and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The analytical results of fluorescence excitation-emission matrix spectroscopy (EEMs) revealed that the fluorescence peaks were protein-like fluorescence for young landfill leachate, while the fluorescence peaks for medium and old landfill leachate were humic-like and fulvic-like fluorescence, respectively. Elemental analysis showed that carbon, hydrogen, and nitrogen content decreased with landfill age, while the oxygen content increased. Moreover, the nitrogen content in these isolated fractions followed: HA > HyI > FA. The results of elemental analysis, FT-IR, and fluorescence EEMs also confirmed that aromatic carbons and portions of aliphatic functional groups were more abundant in leachate samples with increasing landfill age.

  20. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation

    Science.gov (United States)

    Hansen, Angela; Kraus, Tamara; Pellerin, Brian; Fleck, Jacob; Downing, Bryan D.; Bergamaschi, Brian

    2016-01-01

    Advances in spectroscopic techniques have led to an increase in the use of optical properties (absorbance and fluorescence) to assess dissolved organic matter (DOM) composition and infer sources and processing. However, little information is available to assess the impact of biological and photolytic processing on the optical properties of original DOM source materials. We measured changes in commonly used optical properties and indices in DOM leached from peat soil, plants, and algae following biological and photochemical degradation to determine whether they provide unique signatures that can be linked to original DOM source. Changes in individual optical parameters varied by source material and process, with biodegradation and photodegradation often causing values to shift in opposite directions. Although values for different source materials overlapped at the end of the 111-day lab experiment, multivariate statistical analyses showed that unique optical signatures could be linked to original DOM source material even after degradation, with 17 optical properties determined by discriminant analysis to be significant (p<0.05) in distinguishing between DOM source and environmental processing. These results demonstrate that inferring the source material from optical properties is possible when parameters are evaluated in combination even after extensive biological and photochemical alteration.

  1. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao-Song [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Xi, Bei-Dou, E-mail: hexs82@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Cui, Dong-Yu [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Liu, Yong [Guangdong Key Laboratory of Agro-Environmental Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Tan, Wen-Bin; Pan, Hong-Wei; Li, Dan [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China)

    2014-03-01

    Highlights: • Electron transfer capability (ETC) of compost-derived DOM was investigated. • Composting treatment increased the ETC of DOM from municipal solid wastes. • The ETC increase related to humic matter, and molecule weight, and N and S content. - Abstract: Dissolved organic matter (DOM) can mediate electron transfer and change chemical speciation of heavy metals. In this study, the electron transfer capability (ETC) of compost-derived DOM was investigated through electrochemical approaches, and the factors influencing the ETC were studied using spectral and elemental analysis. The results showed that the electron accepting capacity (EAC) and electron donating capacity (EDC) of compost-derived DOM were 3.29–40.14 μmol{sub e−} (g C){sup −1} and 57.1– 346.07 μmol{sub e−} (g C){sup −1}, respectively. Composting treatment increased the fulvic- and humic-like substance content, oxygenated aliphatic carbon content, lignin-derived aromatic carbon content, molecule weight, and N and S content of DOM, but decreased the aliphatic carbon content and the C and H content. This conversion increased the EDC and EAC of the DOM during composting.

  2. Fluorescence-based proxies for lignin in freshwater dissolved organic matter

    Science.gov (United States)

    Hernes, Peter J.; Bergamaschi, Brian A.; Eckard, Robert S.; Spencer, Robert G.M.

    2009-01-01

    Lignin phenols have proven to be powerful biomarkers in environmental studies; however, the complexity of lignin analysis limits the number of samples and thus spatial and temporal resolution in any given study. In contrast, spectrophotometric characterization of dissolved organic matter (DOM) is rapid, noninvasive, relatively inexpensive, requires small sample volumes, and can even be measured in situ to capture fine-scale temporal and spatial detail of DOM cycling. Here we present a series of cross-validated Partial Least Squares models that use fluorescence properties of DOM to explain up to 91% of lignin compositional and concentration variability in samples collected seasonally over 2 years in the Sacramento River/San Joaquin River Delta in California, United States. These models were subsequently used to predict lignin composition and concentration from fluorescence measurements collected during a diurnal study in the San Joaquin River. While modeled lignin composition remained largely unchanged over the diurnal cycle, changes in modeled lignin concentrations were much greater than expected and indicate that the sensitivity of fluorescence-based proxies for lignin may prove invaluable as a tool for selecting the most informative samples for detailed lignin characterization. With adequate calibration, similar models could be used to significantly expand our ability to study sources and processing of DOM in complex surface water systems.

  3. Concentration, sources and flux of dissolved organic carbon of precipitation at Lhasa city, the Tibetan Plateau

    Science.gov (United States)

    Li, C.

    2015-12-01

    Dissolved organic carbon (DOC) plays important role in climate system, but few data are available on the Tibetan Plateau (TP). In this study 89 precipitation samples were collected at Lhasa, the largest city of southern Tibet, from March to December 2013. The average concentration and wet deposition fluxes of DOC was 1.10 mg C/L and 0.62 g C m-2.yr-1, respectively. Seasonally, low DOC concentration and high flux appeared during monsoon period, which were in line with heavy precipitation amount, reflecting dilution effect of precipitation for the DOC. Compared to other regions, the values of Lhasa were lower than those of large cites (e.g. Beijing and Seoul) mainly because of less air pollution of Lhasa. The relationship between DOC and ion analysis showed that DOC of Lhasa was derived mainly from the natural sources, followed by burning activities. Furthermore, △14C value of DOC indicated that fossil combustion contributed around 20% of the precipitation DOC of Lhasa, indicating that the atmosphere of Lhasa has been influenced by vehicle emissions. Therefore, although atmosphere of Lhasa is relatively clean, pollutants emitted from local sources cannot be ignored.

  4. Linkages between the circulation and distribution of dissolved organic matter in the White Sea, Arctic Ocean

    DEFF Research Database (Denmark)

    Pavlov, Alexey K.; Stedmon, Colin A.; Semushin, Andrey V.

    2016-01-01

    or melt. No apparent brine additions from sea-ice formation is evident in the White Sea deep waters as seen from a joint analysis of temperature (T), S, δ18O and aCDOM(350) data, confirming previous suggestions about strong tidal induced vertical mixing in winter being the likely source of the deep waters......The White Sea is a semi-enclosed Arctic marginal sea receiving a significant loading of freshwater (225-231 km3 yr-1 equaling an annual runoff yield of 2.5 m) and dissolved organic matter (DOM) from river run-off. We report discharge weighed values of stable oxygen isotope ratios (δ18O) of -14.......0‰ in Northern Dvina river for the period 10 May-12 October 2012. We found a significant linear relationship between salinity (S) and δ18O (δ18O=-17.66±0.58+0.52±0.02×S; R2=0.96, N=162), which indicates a dominant contribution of river water to the freshwater budget and little influence of sea ice formation...

  5. Spectroscopic Evidence of Anthropogenic Compounds Extraction from Polymers by Fluorescent Dissolved Organic Matter in Natural Water

    Science.gov (United States)

    Miranda, M.; Trojzuck, A.; Voss, D.; Gassmann, S.; Zielinski, O.

    2016-04-01

    FDOM is one of the most important carriers of anthropogenic compounds in natural waters. It can combine with environmental contaminants and polymers to form diverse chemical structures. To this end, here a microfluidic chip was designed for the analysis of these changes in fluorescent dissolved organic matter (FDOM) fingerprints due to thermal treatment and varying time intervals of exposure. Excitation Emission Matrix Spectroscopy (EEMS) approach was utilized to detect and identify the inherent compounds in sampled FDOM. Strong direct correlations were founded, Spearman rank correlation values (ρ = 0.85 at α = 0.1, n = 4) and linear correlation R2 = 0.8359 were noted between thermal treatment pattern 2 and fluorescence intensity of samples. Materials, acrylic based glue and cyclic olefin copolymer (COC) polymer, used to design the microfluidic sensor were determined to possess unique spectral features in the ultraviolet to green spectrum using EEMS. The study therefore provides an insight on methods to identify contaminants in natural waters. This underlines the potential of optical sensors providing measurements at fast intervals, enabling environmental monitoring.

  6. Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau

    Institute of Scientific and Technical Information of China (English)

    WANG Liying; WU Fengchang; ZHANG Runyu; LI Wen; LIAO Haiqing

    2009-01-01

    With XAD-series and ion exchange resins, dissolved organic matter (DOM) from Lake Hongfeng in Southwestern China Plateau was isolated into 6 fractions, i.e., humic acid (HA), fulvic acid (FA), hydrophobic neutrals (HON), hydrophilic acids (HIA), hydrophilic bases (HIB) and hydrophilic neutrals (HIN). Those fractions were characterized by high performance size exclusion chromatography, fluorescence spectroscopy and UV absorbance. Among the 6 fractions, FA was predominant and accounted for 51% of the total DOM. The hydrophobic fractions had larger molecular weight (1688--2355 Da) than hydrophilic fractions (1338--1928 Da). A strong correlation was observed between specific UV absorbance at 280 nm, E2/E3 (absorbance at 250 nm to 365 nm), and the molecular weight for DOM fractions. UV-Vis fulvic-like fluorescence peaks were found in all fractions. Protein-like fluorescence peaks existed in HON may indicate that microbial activity was severely in Lake Hongfeng. There was a significant relationship between fluorescence intensities and specific UV absorbance at 254 nm for those DOM fractions, suggesting their similar luminescence characteristics. The values of fluorescence index (?450/500) indicated that hydrophobic fractions may derive from terrestrial sources, in contrast to the hydrophilic fractions from microbial and terrestrial origins. Those results suggest that there were inter-relationships between molecular weight, fluorescence and absorbance characteristics, and also subtle consistencies between the hydrophilic and hydrophobic properties and sources for the 6 fractions from Lake Hongfeng.

  7. Effect of Dissolved Organic Matter on Chlorotoluron Sorption and Desorption in Soils

    Institute of Scientific and Technical Information of China (English)

    YANG Hong; WU Xin; ZHOU Li-Xiang; YANG Zhi-Min

    2005-01-01

    A batch equilibrium techniques was used to examine the effect of dissolved organic matter (DOM) extracted from both non-treated sludge (NTS) and heat-expanded sludge (HES) on the sorption and desorption of chlorotoluron (3-(3-chloro-p-tolyl)-1,1-dimethylurea) in two types of soils, a yellow fluvo-aquic and a red soil from China. Without DOM,sorption of chlorotoluron was significantly greater (P < 0.05) in the red soil than in the yellow fluvo-aquic soil. However,with DOM the effect was dependent on the soil type and nature of DOM. Chlorotoluron sorption was lower in the yellow fluvo-aquic soil than in the red soil, suggesting that with the same DOM levels the yellow fluvo-aquic soil had a lower sorption capacity for this herbicide. Application of DOM from both NTS and HES led to a general decrease in sorption to the soils and an increase in desorption from the soils. Desorption of chlorotoluron also significantly increased (P < 0.05)with an increase in the DOM concentration. Additionally, for sorption and desorption, at each DOM treatment level the NTS treatments were significantly lower (P < 0.05) than the HES treatments. This implied that non-treated sludge had a greater effect on the sorption and desorption of chlorotoluron than heat-expanded sludge.

  8. Roxarsone binding to soil-derived dissolved organic matter: Insights from multi-spectroscopic techniques.

    Science.gov (United States)

    Fu, Qing-Long; He, Jian-Zhou; Blaney, Lee; Zhou, Dong-Mei

    2016-07-01

    The fate and transport of roxarsone (ROX), a widely used organoarsenic feed additive, in soil is significantly influenced by the ubiquitous presence of soil-derived dissolved organic matter (DOM). In this study, fluorescence quenching titration and two-dimensional correlation spectroscopy (2D-COS) were employed to study ROX binding to DOM. Binding mechanisms were revealed by fluorescence lifetime measurement and Fourier transform infrared spectroscopy (FTIR). Humic- and protein-like fluorophores were identified in the excitation-emission matrix and synchronous fluorescence spectra of DOM. The conditional stability constant (log KC) for ROX binding to DOM was found to be 5.06, indicating that ROX was strongly bound to DOM. The binding order of ROX to DOM fluorophores revealed by 2D-COS followed the sequence of protein-like fluorophore ≈ the longer wavelength excited humic-like (L-humic-like) fluorophore > the shorter wavelength excited humic-like (S-humic-like) fluorophore. 2D-COS resolved issues with peak overlapping and allowed further exploration of the interaction between ROX and DOM. Results of fluorescence lifetime and FTIR spectra demonstrated that ROX interacted with DOM through the hydroxyl, amide II, carboxyl, aliphatic CH, and NO2 groups, yielding stable DOM-ROX complexes. The strong interaction between ROX and DOM implies that DOM plays an important role in the environmental fate of ROX in soil.

  9. Photobleaching-induced changes in photosensitizing properties of dissolved organic matter

    KAUST Repository

    Niu, Xi-Zhi

    2014-12-01

    Photosensitizing properties of different dissolved organic matter (DOM) were investigated according to their performance in singlet oxygen (1O2), triplet state of DOM (3DOM*), and hydroxyl radical (·OH) productions. The photobleaching of DOM solutions after irradiation was characterized by fluorescence excitation-emission matrix and UV-Vis spectroscopy. The photosensitizing properties of pre-irradiated DOM solutions were changed in a sunlight simulator. The performance of DOMs in photosensitized degradation of several contaminants was investigated. For a 20h exposure, the observed degradation rate constant (kobs) of some contaminants decreased as a function of exposure time, and highly depended on the properties of both DOM and contaminant. Degradation of contaminants with lower kobs was more susceptible to DOM photobleaching-induced decrease in kobs. Under the current experimental conditions, the photobleaching-induced decrease of DOM photo-reactivity in contaminant degradation was mainly attributed to indirect phototransformation of DOM caused by the interactions between photo-inductive DOM moieties and photochemically-produced reactive species. Reactive contaminants can inhibit DOM indirect photobleaching by scavenging reactive species, photosensitized degradation of these contaminants exhibited a stable kobs as a result. This is the first study to report DOM photobleaching-induced changes in the simultaneous DOM photosensitized degradation of contaminants and the inhibitory effect of reactive contaminants on DOM photobleaching.

  10. Theoretical investigation of nonlinear properties of electrooptical chromophores

    Institute of Scientific and Technical Information of China (English)

    Zhou Yu-fang; Zhuang De-xin

    2004-01-01

    Organic electrooptical (EO) chromophores are now gaining more attention because the property of organic photorefrative (PR) materials could be controlled by doped EO chromophores. In this paper, nonlinear optical (NLO) properties of a new group of organic electrooptical chromophores, synthesized recently in our laboratory, were elucidated theoretically with the quantum chemical density functional theory (DFT) and the intermediate neglect of differential overlap Hamilton and the configuration interaction (INDO/CI), as well as semiemperical Austin Model 1 (AM1) methods. The electronic transition intensity, dipole moment and the second- order polarizability were obtained. The results show this group of chrormophores possess appropriate optical absorption property and good electrooptical property and optical activity. The second-order polarizabilities βare as large as the order of 10-29 to 10-28 ESU, indicating the promising applications in the future. The physical mechanism of NLO is discussed by means of molecular orbital and electronic charge distribution.

  11. Dissolved organic matter in the ocean: recalcitrant or simply too diverse for bio-degradation?

    Science.gov (United States)

    Kattner, Gerhard; Koch, Boris P.

    2010-05-01

    The amount of carbon in the dissolved organic matter (DOM) pool in the ocean is estimated to be 700 Pg C, whereas the particulate marine organic carbon accounts only for about 30 Pg C. Dissolved organic carbon (DOC) is almost as much as the amount of carbon in atmospheric CO2 (~800 Pg) or terrestrial biomass (~610 Pg). The majority of DOC in the ocean has an average age of 4000 to 6000 years. Thus, DOM must be extremely resistant against biotic and abiotic degradation and remineralization and/or unusable for microorganisms. However, the mechanisms of generation of recalcitrant DOM are still unclear. DOM is produced by primary producers, is actively released or originates from a huge variety of biological and chemical processes. This originally labile DOM is transformed to semi-labile and finally to recalcitrant DOM. These transformations proceed on time scales of days to month and probably over very long periods of time. Without knowledge on molecular structures it is impossible to discern why DOM is so resistant against biotic and abiotic decomposition. Tools for the chemical characterization of DOM in the ocean are limited, and thus, the molecular structure of marine DOM remains largely unknown. The present molecular level determination of DOM in seawater is essentially restricted to carbohydrates, amino acids, lipids and aminosugars. These compounds represent less than 10% of the open ocean DOC, and because they are usually determined after considerable chemical treatment the chemical structure they are embedded is also unknown. Other data on molecular level characterization are obtained by the combination of analytical techniques with various methods of isolation and fractionation of DOM such as solid phase extraction and ultrafiltration. However, it has to be considered that only a method-dependent fraction can be isolated from the total DOM. In the past few years, Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) enabled to determine the

  12. Hydro-climatic control of stream dissolved organic carbon in headwater catchment

    Science.gov (United States)

    Humbert, Guillaume; Jaffrezic, Anne; Fovet, Ophélie; Gruau, Gérard; Durand, Patrick

    2014-05-01

    Dissolved organic matter (DOM) is a key form of the organic matter linking together the water and the carbon cycles and interconnecting the biosphere (terrestrial and marine) and the soil. At the landscape scale, land use and hydrology are the main factors controlling the amount of DOM transferred from soils to the stream. In an intensively cultivated catchment, a recent work using isotopic composition of DOM as a marker has identified two different sources of DOM. The uppermost soil horizons of the riparian wetland appear as a quasi-infinite source while the topsoil of the hillslope forms a limited one mobilized by water-table rise and exported to the stream across the upland-riparian wetland-stream continuum. In addition to the exportation of DOM via water fluxes, climatic factors like temperature and precipitation regulate the DOM production by influencing microbial activity and soil organic matter degradation. The small headwater catchment (5 km²) of Kervidy-Naizin located in Brittany is part of the Environment Research Observatory (ORE) AgrHys. Weather and the hydro-chemistry of the stream, and the groundwater levels are daily recorded since 1993, 2000 and 2001 respectively. Over 13 contrasted hydrological years, the annual flow weighted mean concentration of dissolved organic carbon (DOC) is 5.6 mg.L-1 (sd = 0.7) for annual precipitation varying from 488mm to 1327mm and annual mean temperatures of 11°C (sd = 0.6). Based on this considerable dataset and this annual variability, we tried to understand how the hydro-climatic conditions determinate the stream DOC concentrations along the year. From the fluctuations of water table depth, each hydrologic year has been divided into three main period: i) progressive rewetting of the riparian wetland soils, ii) rising and holding high of the water table in the hillslope, iii) drawdown of the water-table, with less and less topsoil connected to the stream. Within each period base flow and storm flow data were first

  13. Storm dissolved organic matter : surface and sub-surface erosion controls its composition

    Science.gov (United States)

    Denis, Marie; Jeanneau, Laurent; Gruau, Gérard; Petitjean, Patrice; Pierson-Wickmann, Anne-Catherine

    2016-04-01

    In headwater catchments, flood events are responsible for exportation of the major part of DOM (dissolved organic matter) during the hydrological year. During these hot moments, the increased flow at the outlet is accompanied with an increase of DOM concentrations, implying the mobilisation of additional DOM sources which could have a different composition than DOM exported during base-flow. Molecular analysis performed on samples coming from the outlet of the Kervidy-Naizin catchment, an agricultural catchment located in France (Critical Zone Observatory AgrHyS) revealed a modification in the distribution of lignin compounds during flood events. This DOM, less biodegraded, could be produced by partition between particulate and dissolved phases when the soil/water ratio is low, that is to say when soil particles are isolated in water. The evolution of DOM composition during storm events has been assumed to reflect a combination of in-stream and in-soil erosion processes. So how soil erosion could be responsible for production of less degraded DOM? And is the composition of soil DOM modified during a storm event? Those questions were investigated during two flood events, by sampling soil solutions with high frequency in riparian soils equipped with zero-tension lysimeters in the Kervidy-Naizin catchment. In the same time stream DOM was sampled at the outlet of the watershed and runoff were investigated. Samples have been filtered at 0.2μm, analysed for DOC and freeze-dried for molecular analysis (thermally assisted hydrolysis methylation - gas chromatography / mass spectrometry). The hydraulic gradient was monitored every 15 minutes using piezometers implemented in the riparian soils and higher up in the toposequence. At the beginning of the events, hydraulic gradient increased rapidly and stayed high during several days. Modification of DOM composition in soil solution were recorded during the hydraulic gradient rise with an increase in the proportion of less

  14. Poultry manure runoff and its influence on fluorescence characteristics of dissolved organic matter (DOM)

    Science.gov (United States)

    Singh, S.; Dutta, S.; Inamdar, S. P.

    2013-12-01

    Land application of poultry manure as a substitute for synthetic fertilizer is a common practice in states like Delaware which have a surplus of this animal waste. However, this practice can generate large amounts of labile DOM and nutrients in agricultural runoff that can cause eutrophication of downstream aquatic ecosystems. We determined the concentrations of dissolved organic carbon (DOC) and dissolved inorganic nitrogen (DIN) and the quality of DOM for a cropland receiving poultry manure in the coastal plain soils of Delaware. Manure was applied at the rate of 9 Mg ha-1 in the spring (March 10) of 2010 to an agricultural field planted in corn. Sampling was performed for surface runoff and soil waters at four landscape positions - field edge, upper and lower riparian zones and the stream. Sampling was conducted for eight storm events, one before manure application and seven after (March through July spanning over 100 days). DOM quality was characterized using spectrofluorometric techniques and the development of a site-specific PARAFAC model. DOC and DIN concentrations in surface runoff ranged from 18.1 to 77.2 mg/l and 4.2 to 22.6 mg/l, respectively. The percent of protein-like and humic-like DOM in surface runoff ranged between 3.9 to 23.5% and 12.3 to 41.6%, respectively. Highest concentrations of DOC and DIN were observed at the field edge and lowest in the stream. Protein-like and humic-like DOM decreased from the field edge to stream in surface runoff and soil waters. Temporally, both humic-like and protein-like DOM showed significant increases in storm runoff following manure application. After manure application, humic-like DOM increased by 70% while protein-like DOM increased by more than 200% in surface runoff indicating elevated content of labile DOM in poultry manure. These concentrations remained high for more than 60 days following manure application. Protein-like DOM was significantly correlated with nitrate-nitrogen (r = 0.43; p < 0

  15. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept.

    Science.gov (United States)

    Raymond, Peter A; Saiers, James E; Sobczak, William V

    2016-01-01

    Hydrological precipitation and snowmelt events trigger large "pulse" releases of terrestrial dissolved organic matter (DOM) into drainage networks due to an increase in DOM concentration with discharge. Thus, low-frequency large events, which are predicted to increase with climate change, are responsible for a significant percentage of annual terrestrial DOM input to drainage networks. These same events are accompanied by marked and rapid increases in headwater stream velocity; thus they also "shunt" a large proportion of the pulsed DOM to downstream, higher-order rivers and aquatic ecosystems geographically removed from the DOM source of origin. Here we merge these ideas into the "pulse-shunt concept" (PSC) to explain and quantify how infrequent, yet major hydrologic events may drive the timing, flux, geographical dispersion, and regional metabolism of terrestrial DOM. The PSC also helps reconcile long-standing discrepancies in C cycling theory and provides a robust framework for better quantifying its highly dynamic role in the global C cycle. The PSC adds a critical temporal dimension to linear organic matter removal dynamics postulated by the river continuum concept. It also can be represented mathematically through a model that is based on stream scaling approaches suitable for quantifying the important role of streams and rivers in the global C cycle. Initial hypotheses generated by the PSC include: (1) Infrequent large storms and snowmelt events account for a large and underappreciated percentage of the terrestrial DOM flux to drainage networks at annual and decadal time scales and therefore event statistics are equally important to total discharge when determining terrestrial fluxes. (2) Episodic hydrologic events result in DOM bypassing headwater streams and being metabolized in large rivers and exported to coastal systems. We propose that the PSC provides a framework for watershed biogeochemical modeling and predictions and discuss implications to

  16. Advanced Residuals Analysis for Determining the Number of PARAFAC Components in Dissolved Organic Matter.

    Science.gov (United States)

    Cuss, Chad W; Guéguen, Céline; Andersson, Per; Porcelli, Don; Maximov, Trofim; Kutscher, Liselott

    2016-02-01

    Parallel factor analysis (PARAFAC) has facilitated an explosion in research connecting the fluorescence properties of dissolved organic matter (DOM) to its functions and biogeochemical cycling in natural and engineered systems. However, the validation of robust PARAFAC models using split-half analysis requires an oft unrealistically large number (hundreds to thousands) of excitation-emission matrices (EEMs), and models with too few components may not adequately describe differences between DOM. This study used self-organizing maps (SOM) and comparing changes in residuals with the effects of adding components to estimate the number of PARAFAC components in DOM from two data sets: MS (110 EEMs from nine leaf leachates and headwaters) and LR (64 EEMs from the Lena River). Clustering by SOM demonstrated that peaks clearly persisted in model residuals after validation by split-half analysis. Plotting the changes to residuals was an effective method for visualizing the removal of fluorophore-like fluorescence caused by increasing the number of PARAFAC components. Extracting additional PARAFAC components via residuals analysis increased the proportion of correctly identified size-fractionated leaf leachates from 56.0 ± 0.8 to 75.2 ± 0.9%, and from 51.7 ± 1.4 to 92.9 ± 0.0% for whole leachates. Model overfitting was assessed by considering the correlations between components, and their distributions amongst samples. Advanced residuals analysis improved the ability of PARAFAC to resolve the variation in DOM fluorescence, and presents an enhanced validation approach for assessing the number of components that can be used to supplement the potentially misleading results of split-half analysis.

  17. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export.

    Science.gov (United States)

    Olefeldt, David; Roulet, Nigel T

    2014-10-01

    Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2-3 g C m(-2) ) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m(-2) ), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and

  18. Abiotic Dissolved Organic Matter-Mineral Interaction in the Karstic Floridan Aquifer

    Science.gov (United States)

    Jin, J.; Zimmerman, A.

    2007-12-01

    Dissolved organic matter (DOM)-mineral interaction (e.g. adsorption, desorption, mineral dissolution) in groundwater is a significant factor controlling geochemical, environmental and microbial processes and may be helpful in efforts to track groundwater sources or contaminant fate. Despite its importance, the dynamics and consequences of these abiotic interactions remain poorly understood, largely due to the inaccessibility and heterogeneity of the subsurface, as well as the chemical complexity of DOM. This study models the OM-mineral interactions that takes place in the Floridan aquifer through laboratory adsorption-desorption experiments using DOM (groundwater, river water, soil extracts) and carbonate minerals (calcite, dolomite) collected in north Florida. High performance liquid chromatography-size exclusion chromatography (HPLC-SEC) and UV-fluorescence excitation-emission matrix (EEM) spectrophotometry was used to examine the organic compound types exhibiting preferential affinity for carbonate minerals. Our results show that the DOM-carbonate adsorption/desorption isotherms are well described by the Freundlich model. Freundlich exponents (average value: 0.6488) less than one indicated a filling of adsorption sites. Minerals from Ocala tend to have higher adsorption affinity as well as adsorption capacity than those from Suwannee River Basin; however, both were found to have mineral dissolution. Two fluorescent signals, indicative of a fulvic-like (at excitation wavelength 295-310 nm, emission 400-420 nm) and a protein-like (275/345nm) moiety, were detected in DOM. A reduction in the fulvic-like peak intensity occurred following carbonate adsorption while the protein-like peaks remain almost unchanged indicating the preferential adsorption of fulvic acids. HPLC-SEC results (DOM properties as a function of molecular weight) will be discussed. The chemical properties of DOM in environmental groundwater samples will also be presented and evaluated in light of

  19. The mysteriously variable half-life of dissolved organic matter in aquatic ecosystems: artefact or insight?

    Science.gov (United States)

    Evans, Chris; Fovet, Ophelie; Jones, Tim; Jones, Davey; Moldan, Filip; Futter, Martyn

    2016-04-01

    Dissolved organic matter (DOM) fluxes from land to water represent an important loss term in the terrestrial carbon balance, a major pathway in the global carbon cycle, a significant influence on aquatic light, nutrient and energy regimes, and an important concern for drinking water production. Although freshwaters are now recognised as zones of active carbon cycling, rather than passive conduits for carbon transport, evidence regarding the magnitude of, and controls on, DOM cycling in aquatic systems is incomplete and in some cases seemingly contradictory, with DOM 'half-lives' ranging from a few days to many years. Bringing together experimental, isotopic, catchment mass balance and modelling data, we suggest that apparently conflicting results can be reconciled through understanding of differences in: i) the terrestrial sources of DOM within heterogeneous landscapes, and consequent differences in its reactivity and stoichiometry; ii) experimental methodologies (i.e. which reactions are actually being measured), and iii) the extent of prior transformation of DOM upstream of the point of study. We argue that rapid photo-degradation, particularly of peat-derived DOM, is a key process in headwaters, whilst apparently slow DOM turnover in downstream, agriculturally-influenced lakes and rivers can partly be explained by the offsetting effect of in situ DOM production. This production appears to be strongly constrained by nutrient supply, thus linking DOM turnover and composition to the supply of inorganic nutrient inputs from diffuse agricultural pollution, and also providing a possible mechanistic link between aquatic DOM production and terrestrial DOM breakdown via the mineralisation and re-assimilation of organic nutrients. A more complete conceptual understanding of these interlinked processes will provide an improved understanding of the sources and fate of aquatic DOM, its role in the global carbon cycle, and the impact of anthropogenic activities, for example

  20. The Removal of Terrestrial Dissolved Organic Matter in Coastal Regions by Photo-Flocculation Process

    Science.gov (United States)

    Abdulla, H. A.; Mopper, K.

    2015-12-01

    The fate of terrestrial dissolved organic matter (tDOM) as it moves to open ocean was the focus of many studies for the last three decades, most of these studies were focused on three major removal processes: 1) Photochemical mineralization of tDOM (conversion to inorganic forms); 2) Microbial oxidation; and 3) Mixing-induced flocculation. Based on recent estimations, the combination of theses removal processes accounts for ~20-35% of the loss of tDOM in estuaries and coastal regions; which is far from closing the gap between the riverine fluxes of tDOM and the amount of tDOM detected in the open ocean. In a preliminary experiment to determine if photo-flocculation indeed occurs at pH values and ionic strengths found in estuaries. A 0.1-μm filtered riverine was diluted 1:1 with artificial seawater and MilliQ water to yield final salinities ranging from 0 - 15; the pH of the saline samples was ranged from 6-8. Photo-flocculation was observed for all salinities, with particles organic carbon (POC) values ranged from 3.2 to 8.5% of the original DOC. Interestingly, the composition of the Photo-flocculated particles in the saline samples was markedly different from the zero salinity samples as shown in their FT-IR spectra. The photo-flocculated particles that formed in the saline samples appear to be rich in carbohydrate and amide functionalities (protein-like), while containing insignificant deprotonated carboxylate. While the flocs that formed in freshwater (salinity zero) are richer in deprotonated carboxyl groups, and relatively depleted in carbohydrate functionality.

  1. Impact of dissolved organic matter on the photolysis of the ionizable antibiotic norfloxacin

    Institute of Scientific and Technical Information of China (English)

    Chen Liang; Huimin Zhao; Minjie Deng; Xie Quan; Shuo Chen; Hua Wang

    2015-01-01

    Norfloxacin (NOR),an ionizable antibiotic frequently used in the aquaculture industry,has aroused public concern due to its persistence,bacterial resistance,and environmental ubiquity.Therefore,we investigated the photolysis of different species of NOR and the impact of a ubiquitous component of natural water-dissolved organic matter (DOM),which has a special photochemical activity and normally acts as a sensitizer or inhibiter in the photolysis of diverse organics; furthermore,scavenging experiments combined with electron paramagnetic resonance (EPR) were performed to evaluate the transformation of NOR in water.The results demonstated that NOR underwent direct photolysis and self-sensitized photolysis via hydroxyl radical (·OH) and singlet oxygen (1O2) based on the scavenging experiments.In addition,DOM was found to influence the photolysis of different NOR species,and its impact was related to the concentration of DOM and type of NOR species.Photolysis of cationic NOR was photosensitized by DOM at low concentration,while zwitterionic and anionic NOR were photoinhibited by DOM,where quenching of ·OH predominated according to EPR experiments,accompanied by possible participation of excited triplet-state NOR and 1O2.Photo-intermediate identification of different NOR species in solutions with/without DOM indicated that NOR underwent different photodegradation pathways including dechlorination,cleavage of the piperazine side chain and photooxidation,and DOM had little impact on the distribution but influenced the concentration evolution of photolysis intermediates.The results implied that for accurate ecological risk assessment of emerging ionizable pollutants,the impact of DOM on the environmental photochemical behavior of all dissociated species should not be ignored.

  2. Dissolved organic matter: Fractional composition and sorbability by the soil solid phase (Review of literature)

    Science.gov (United States)

    Karavanova, E. I.

    2013-08-01

    The behavior of dissolved organic matter (DOM) in soils under varying environmental conditions represents a poorly studied aspect of the problem of organic matter loss from soils. The equilibrium and sustainable development of ecosystems in the northern latitudes are largely determined by the balance between the formation of DOM, its accumulation in the lower soil horizons, and its input with runoff into surface waters. The residence time, retention strength in the soil, and thermodynamic and biochemical stabilities depend on the localization of DOM in the pore space and its chemical structure. Amphiphilic properties represent a valuable diagnostic parameter, which can be used to predict the behavior of DOM in the soil. Acidic components of hydrophobic and hydrophilic nature constitute the major portion of DOM in forest soils of the temperate zone. The hydrophilic fraction includes short-chain aliphatic carboxylic acids, hydrocarbons, and amino acids and is poorly sorbed by the solid phase. However, the existence of this fraction in soil solution is also limited both in space (in the finest pores) and time because of higher accessibility to microbial degradation. The hydrophilic fraction composes the major portion of labile DOM in soils. The hydrophobic fraction consists of soluble degradation products of lignin; it is enriched in structural ortho-hydroxybenzene fragments, which ensure its selective sorption and strong retention in soils. Sorption is favored by low pH values (3.5-5), the high ionic strength of solution, the heavy texture and fine porous structure of soil, the high contents of oxalate- and dithionite-soluble iron (and aluminum) compounds, and hydrological conditions characterized by slow water movement. The adsorbed DOM is chemically and biochemically recalcitrant and significantly contributes to the humus reserves in the low mineral horizons of soils.

  3. Sulfamethazine Sorption to Soil: Vegetative Management, pH, and Dissolved Organic Matter Effects.

    Science.gov (United States)

    Chu, Bei; Goyne, Keith W; Anderson, Stephen H; Lin, Chung-Ho; Lerch, Robert N

    2013-01-01

    Elucidating veterinary antibiotic interactions with soil is important for assessing and mitigating possible environmental hazards. The objectives of this study were to investigate the effects of vegetative management, soil properties, and >1000 Da dissolved organic matter (DOM) on sulfamethazine (SMZ) behavior in soil. Sorption experiments were performed over a range of SMZ concentrations (2.5-50 μmol L) using samples from three soils (Armstrong, Huntington, and Menfro), each planted to one of three vegetation treatments: agroforestry buffers strips (ABS), grass buffer strips (GBS), and row crops (RC). Our results show that SMZ sorption isotherms are well fitted by the Freundlich isotherm model (log = 0.44-0.93; Freundlich nonlinearity parameter = 0.59-0.79). Further investigation of solid-to-solution distribution coefficients () demonstrated that vegetative management significantly ( GBS > RC). Multiple linear regression analyses indicated that organic carbon (OC) content, pH, and initial SMZ concentration were important properties controlling SMZ sorption. Study of the two most contrasting soils in our sample set revealed that increasing solution pH (pH 6.0-7.5) reduced SMZ sorption to the Armstrong GBS soil, but little pH effect was observed for the Huntington GBS soil containing 50% kaolinite in the clay fraction. The presence of DOM (150 mg L OC) had little significant effect on the Freundlich nonlinearity parameter; however, DOM slightly reduced SMZ values overall. Our results support the use of vegetative buffers to mitigate veterinary antibiotic loss from agroecosystems, provide guidance for properly managing vegetative buffer strips to increase SMZ sorption, and enhance understanding of SMZ sorption to soil.

  4. Seasonal Variation in Dissolved Organic Matter Composition and Photoreactivity within a Small Sub-arctic Stream.

    Science.gov (United States)

    Guerard, J.; Osborne, R.

    2015-12-01

    Dissolved organic matter (DOM) is a complex heterogeneous mixture, ubiquitous to all natural surface waters, uniquely composed of source inputs specific to spatial, temporal, and ecological circumstances. In arctic and sub-arctic regions, elucidating DOM composition and reactivity is complicated by seasonal variations. These include changes in productivity and source inputs to the water column, as well as winter overflow events that may contribute allochthonous organic material. DOM from a small boreal stream in a watershed of discontinuous permafrost in the Goldstream Valley of interior Alaska was isolated by solid-phase extraction (PPL) at multiple points during the year - late spring, late summer, and in the winter during an active overflow event. Compositional characteristics of each of the isolates were characterized by SPR-W5-WATERGATE 1H NMR spectroscopy, specific UV-Vis absorbance, and excitation emission matrix (EEM) fluorescence spectroscopy and compared against end-member reference DOM isolates. Kinetics of photobleaching experiments reveal the influence of compositional differences among the isolated DOMs on their chemical reactivity, and offer insight into potential differences in their source materials and ecological function throughout the year. Photobleaching studies were conducted using a variety of reactive species quenchers or sensitizers in order to assess susceptibility of oxidative transformation mechanisms on the different DOM isolates, which were then analyzed by 1H NMR, UV-Vis degradation kinetics, and parallel factor analysis (PARAFAC) of fluorescence EEMs. Better understanding of the seasonal variations of boreal DOM character and function on a molecular level is critical to assessing alterations in its ecological role and cycling in the face of current and future ecosystem perturbations in arctic and sub-arctic regions.

  5. Comparison of PoraPak Rxn RP and XAD-2 adsorbents for monitoring dissolved hydrophobic organic contaminants.

    Science.gov (United States)

    Omara, Mark; Holsen, Thomas M; Xia, Xiaoyan; Pagano, James J; Crimmins, Bernard S; Hopke, Philip K

    2014-11-01

    Accurate determination of the levels of dissolved hydrophobic organic contaminants (HOCs) is an important step in estimating the dynamics of their inputs and losses in aqueous systems. This study explores an alternative method for efficiently sampling dissolved HOCs while mitigating a number of sampling artifacts associated with traditional methods. The adsorption characteristics of a new polymeric resin, PoraPak Rxn RP (PPR), were assessed using sorption isotherm experiments and fixed bed adsorption studies. The adsorption capacities and breakthrough times for four model contaminants (phenol, p-nitrophenol, naphthalene, and 2,4,6-tribromophenol) were proportional to the contaminant's hydrophobicity. The ability of PPR to isolate dissolved polychlorinated biphenyls (PCBs) in real samples was compared with that of XAD-2, a well-known macroporous polymer that suffers from high background contamination. The results indicated that the PPR resin can be effectively used for monitoring HOCs, with low ∑PCB levels in blanks, decreasing solvent use, and reducing extraction times.

  6. Natural Diet of Coral-Excavating Sponges Consists Mainly of Dissolved Organic Carbon (DOC)

    Science.gov (United States)

    Mueller, Benjamin; de Goeij, Jasper M.; Vermeij, Mark J. A.; Mulders, Yannick; van der Ent, Esther; Ribes, Marta; van Duyl, Fleur C.

    2014-01-01

    Coral-excavating sponges are the most important bioeroders on Caribbean reefs and increase in abundance throughout the region. This increase is commonly attributed to a concomitant increase in food availability due to eutrophication and pollution. We therefore investigated the uptake of organic matter by the two coral-excavating sponges Siphonodictyon sp. and Cliona delitrix and tested whether they are capable of consuming dissolved organic carbon (DOC) as part of their diet. A device for simultaneous sampling of water inhaled and exhaled by the sponges was used to directly measure the removal of DOC and bacteria in situ. During a single passage through their filtration system 14% and 13% respectively of the total organic carbon (TOC) in the inhaled water was removed by the sponges. 82% (Siphonodictyon sp.; mean±SD; 13±17 μmol L−1) and 76% (C. delitrix; 10±12 μmol L−1) of the carbon removed was taken up in form of DOC, whereas the remainder was taken up in the form of particulate organic carbon (POC; bacteria and phytoplankton) despite high bacteria retention efficiency (72±15% and 87±10%). Siphonodictyon sp. and C. delitrix removed DOC at a rate of 461±773 and 354±562 μmol C h−1 respectively. Bacteria removal was 1.8±0.9×1010 and 1.7±0.6×1010 cells h−1, which equals a carbon uptake of 46.0±21.2 and 42.5±14.0 μmol C h−1 respectively. Therefore, DOC represents 83 and 81% of the TOC taken up by Siphonodictyon sp. and C. delitrix per hour. These findings suggest that similar to various reef sponges coral-excavating sponges also mainly rely on DOC to meet their carbon demand. We hypothesize that excavating sponges may also benefit from an increasing production of more labile algal-derived DOC (as compared to coral-derived DOC) on reefs as a result of the ongoing coral-algal phase shift. PMID:24587253

  7. "Spring break" of Dissolved Organic Matter above the Arctic Circle: New Hints on Source and Composition

    Science.gov (United States)

    Teisserenc, R.; Myers-Pigg, A.; Louchouarn, P.; Gandois, L.; Tananaev, N.; Le Dantec, T.; Gascoin, S.; Probst, J. L.

    2014-12-01

    The Arctic Ocean, on a volume basis, receives the largest input of terrestrial organic matter of all ocean basins. These inputs come from the most important stock of soil organic carbon (OC) on Earth, estimated around 1700 Pg OC, which is well preserved in permafrost (from patchy to continuous). Arctic watersheds are experiencing unprecedented climate warming, and future warming is projected to be stronger at high latitudes. As a result, we can expect an increase in active layer depth and a decrease of permafrost extent in the near future. These shifts will affect the riverine contributions of terrestrial organic matter to the coastal and oceanic carbon pools. Until recently, few data existed about dissolved organic carbon (DOC) fluxes in Siberian rivers, particularly during the spring freshet. Further, there is still a dearth of information about the source and degradation state of this DOC in Arctic rivers through their hydrographs. To address this issue, we intensively sampled two spring flood periods in a small Canadian river (Great Whale river) and the largest Arctic river (Yenisei) at their outlet in order to get information on the source and state ("freshness") of mobilized DOC during these active flood periods. Combining geographical information data (GIS) and biogeochemical analysis (elemental, isotopic and molecular) we were able to discern dynamic ecosystem linkages. DOC concentration increased 4-9 fold in each river from low flow to peak flow. Molecular characteristics of this DOC are extremely variable during the flood event, ranging from old, altered DOC to fresh, labile DOC. We observed a partition of this quality between DOC and POC, with fresher DOC coming mostly from the leaching of softwoods during peak flow. Snow cover is variable along the period with snow-free area of the watershed imparting the greatest influence on DOC composition within the river. These results confirm that DOC dynamics during the spring flood are complex and much different

  8. Isotopic investigations of dissolved organic N in soils identifies N mineralization as a major sink process

    Science.gov (United States)

    Wanek, Wolfgang; Prommer, Judith; Hofhansl, Florian

    2016-04-01

    Dissolved organic nitrogen (DON) is a major component of transfer processes in the global nitrogen (N) cycle, contributing to atmospheric N deposition, terrestrial N losses and aquatic N inputs. In terrestrial ecosystems several sources and sinks contribute to belowground DON pools but yet are hard to quantify. In soils, DON is released by desorption of soil organic N and by microbial lysis. Major losses from the DON pool occur via sorption, hydrological losses and by soil N mineralization. Sorption/desorption, lysis and hydrological losses are expected to exhibit no 15N fractionation therefore allowing to trace different DON sources. Soil N mineralization of DON has been commonly assumed to have no or only a small isotope effect of between 0-4‰, however isotope fractionation by N mineralization has rarely been measured and might be larger than anticipated. Depending on the degree of 15N fractionation by soil N mineralization, we would expect DON to become 15N-enriched relative to bulk soil N, and dissolved inorganic N (DIN; ammonium and nitrate) to become 15N-depleted relative to both, bulk soil N and DON. Isotopic analyses of soil organic N, DON and DIN might therefore provide insights into the relative contributions of different sources and sink processes. This study therefore aimed at a better understanding of the isotopic signatures of DON and its controls in soils. We investigated the concentration and isotopic composition of bulk soil N, DON and DIN in a wide range of sites, covering arable, grassland and forest ecosystems in Austria across an altitudinal transect. Isotopic composition of ammonium, nitrate and DON were measured in soil extracts after chemical conversion to N2O by purge-and-trap isotope ratio mass spectrometry. We found that delta15N values of DON ranged between -0.4 and 7.6‰, closely tracking the delta15N values of bulk soils. However, DON was 15N-enriched relative to bulk soil N by 1.5±1.3‰ (1 SD), and inorganic N was 15N

  9. Dissolved Organic Carbon Cycling and Transformation Dynamics in A Northern Forested Peatland

    Science.gov (United States)

    Tfaily, M. M.; Lin, X.; Chanton, P. R.; Steinweg, J.; Esson, K.; Kostka, J. E.; Cooper, W. T.; Schadt, C. W.; Hanson, P. J.; Chanton, J.

    2013-12-01

    Peatlands sequester one-third of all soil carbon and currently act as major sinks of atmospheric carbon dioxide. The ability to predict or simulate the fate of stored carbon in response to climatic disruption remains hampered by our limited understanding of the controls of carbon turnover and the composition and functioning of peatland microbial communities. A combination of advanced analytical chemistry and microbiology approaches revealed that organic matter reactivity and microbial community dynamics were closely coupled in an extensive field dataset compiled at the S1 bog site established for the SPRUCE program, Marcell Experimental Forest (MEF). The molecular composition and decomposition pathways of dissolved organic carbon (DOC) were contrasted using parallel factor (PARAFAC)-modeled excitation emission fluorescence spectroscopy (EEMS) and FT-ICR MS. The specific UV absorbance (SUVA) at 254 nm was calculated as an indicator of aromaticity. Fluorescence intensity ratios (BIX and FI) were used to infer the relative contributions from solid phase decomposition and microbial production. Distributions of bulk DOC, its stable (δ13C) and radioactive (Δ14C) isotopic composition were also utilized to infer information on its dynamics and transformation processes. Strong vertical stratification was observed in organic matter composition, the distribution of mineralization products (CO2, CH4), respiration rates, and decomposition pathways, whereas smaller variations were observed between sites. A decline in the aromaticity of pore water DOC was accompanied by an increase in microbially-produced DOC. Solid phase peat, on the other hand, became more humified and highly aromatic with depth. These observations were consistent with radiocarbon data that showed that the radiocarbon signatures of microbial respiration products in peat porewaters more closely resemble those of DOC rather than solid peat, indicating that carbon from recent photosynthesis is fueling the

  10. Landscape scale controls on the vascular plant component of dissolved organic carbon across a freshwater delta

    Science.gov (United States)

    Eckard, Robert S.; Hernes, Peter J.; Bergamaschi, Brian A.; Stepanauskas, Ramunas; Kendall, Carol

    2007-01-01

    Lignin phenol concentrations and compositions were determined on dissolved organic carbon (DOC) extracts (XAD resins) within the Sacramento-San Joaquin River Delta (the Delta), the tidal freshwater portion of the San Francisco Bay Estuary, located in central California, USA. Fourteen stations were sampled, including the following habitats and land-use types: wetland, riverine, channelized waterway, open water, and island drains. Stations were sampled approximately seasonally from December, 1999 through May, 2001. DOC concentrations ranged from 1.3 mg L-1 within the Sacramento River to 39.9 mg L-1 at the outfall from an island drain (median 3.0 mg L-1), while lignin concentrations ranged from 3.0 μL-1 within the Sacramento River to 111 μL-1 at the outfall from an island drain (median 11.6 μL-1). Both DOC and lignin concentrations varied significantly among habitat/land-use types and among sampling stations. Carbon-normalized lignin yields ranged from 0.07 mg (100 mg OC)-1 at an island drain to 0.84 mg (100 mg OC)-1 for a wetland (median 0.36 mg (100 mg OC)-1), and also varied significantly among habitat/land-use types. A simple mass balance model indicated that the Delta acted as a source of lignin during late autumn through spring (10-83% increase) and a sink for lignin during summer and autumn (13-39% decrease). Endmember mixing models using S:V and C:V signatures of landscape scale features indicated strong temporal variation in sources of DOC export from the Delta, with riverine source signatures responsible for 50% of DOC in summer and winter, wetland signatures responsible for 40% of DOC in summer, winter, and late autumn, and island drains responsible for 40% of exported DOC in late autumn. A significant negative correlation was observed between carbon-normalized lignin yields and DOC bioavailability in two of the 14 sampling stations. This study is, to our knowledge, the first to describe organic vascular plant DOC sources at the level of localized

  11. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  12. Significant portion of dissolved organic Fe complexes in fact is Fe colloids

    NARCIS (Netherlands)

    Boye, Marie; Nishioka, Jun; Croot, Peter; Laan, Patrick; Timmermans, Klaas R.; Strass, Volker H.; Takeda, Shigenobu; Baar, Hein J.W. de

    2010-01-01

    Vertical distributions of iron and iron binding ligands were determined in 2 size classes (dissolved < 0.2 μm, soluble < 200 kDa, e.g., ~ 0.03 μm) in the Southern Ocean. Colloidal iron and complexing capacity (> 200 kDa–< 0.2 μm) were inferred as the difference between the dissolved and soluble frac

  13. Roles of iron in light-induced transformations of dissolved organic matter

    Science.gov (United States)

    Sulzberger, B.; Durisch-Kaiser, E.

    2009-04-01

    Light-induced transformations of dissolved organic matter (DOM) play an important role with regard to DOM optical properties and bioavailability and thus carbon cycling. There exist several pathways of DOM phototransformations, depending on DOM chemical composition and on environmental factors such as the presence of iron. In iron-abundant aquatic systems, light-induced transformations of DOM may proceed via photolysis of Fe(III)-DOM complexes and/or via attack by hydroxyl radicals (OH) that are formed in the Fenton reaction (oxidation of Fe(II) by hydrogen peroxide), in addition to direct phototransformation of colored dissolved organic matter (CDOM), which is part of DOM. This paper will present results from laboratory studies with model systems and natural water samples, combined with mathematical kinetic modeling, that demonstrate the importance of photolysis of Fe(III)-DOM complexes, both in solution and at the surface of Fe(III) (hydr)oxides, in overall DOM phototransformations in the presence of iron. Photochemical studies with high-molecular-weight (HMW) and low-molecular-weight (LMW) DOM fractions from both freshwater and marine systems further indicate that LMW compounds are more reactive towards light-induced Fe(II) formation than HMW compounds. This higher reactivity of LMW materials in photochemical reduction of Fe(III) may be rationalized by more efficient photolysis of Fe(III) complexes with LMW ligands, as compared to HMW ligands, possibly due to a higher content of carboxyl functional groups contained in aquatic LMW DOM. Results from a bioavailability study with various DOM fractions from the River Tagliamento, a semi-natural, iron-abundant river in Italy, revealed that photochemical transformations drastically decreased the bioavailability of initially bioreactive LMW compounds, while that of HMW compounds did not change. These findings may be due to the higher photoreactivity of LMW compounds in the presence of iron, as indicated by a higher net

  14. Understanding and modelling the variability in Dissolved Organic Carbon concentrations in catchment drainage

    Science.gov (United States)

    Coleman, Martin; Waldron, Susan; Scott, Marian; Drew, Simon

    2013-04-01

    Our knowledge of dynamic natural habitats could be improved through the deployment of automated sensor technology. Dissolved organic carbon concentrations, [DOC], are of interest to water companies as purification removes this pool and currently in environmental science, due in part to rising DOC levels and also as respiration of this C pool can lead to an increased CO2 efflux. Manual sampling of catchment drainage systems has revealed seasonal patterns in DOC (Williams, P.J.L., 1995) and that hydrological events export most DOC(Raymond, P.A. and J.E. Saiers, 2010). However, manual sampling precludes detailed characterisation of the dynamic fluctuation of DOC over shorter but important time periods e.g. immediately prior to an event; the transition from base flow to a surface run-off dominated system as surface flow pathways defrost. Such insight is only gained through deployment of continuous-monitoring equipment. Since autumn 2010 we have deployed an S::CAN Spectrolyser (which from absorbance gives a measurement of [DOC]) in a 7.5 kilometre squared peaty catchment draining Europe's largest windfarm, Whitelee. Since autumn 2011, we have an almost complete time series of [DOC] every 30. Here [DOC] has ranged from 12.2 to 58.4 mg/l C and during event flow DOC had a maximum variation of 23.5 mg/l within a single day. Simultaneously with the Spectrolyser, we have logged stage height, pH and conductivity using an In-Situ Inc MD Troll 9000. Generally there is an inverse relationship between [DOC] and both pH and conductivity, but a positive relationship (albeit with seasonal differences) with [DOC] and stage height, from which we can infer hydrological changes in the source of the DOC. Here, in addition to presenting the time series of the data, and a more accurate export budget estimate, I will explore statistical methods for the handling of large datasets. Trends in the data of such large and dynamic data sets are challenging to model. Simple relationships with stage

  15. Cationic complexation with dissolved organic matter: Insights from molecular dynamics computer simulations and NMR spectroscopy

    Science.gov (United States)

    Kalinichev, A. G.; Xu, X.; Kirkpatrick, R.

    2006-12-01

    Dissolved organic matter (DOM) is ubiquitous in soil and surface water and plays many important geochemical and environmental roles acting as a proton donor/acceptor and pH buffer and interacting with metal ions, minerals and organic species to form water-soluble and water-insoluble complexes of widely differing chemical and biological stabilities. There are strong correlations among the concentration of DOM and the speciation, solubility and toxicity of many trace metals in soil and water due to metal-DOM interaction. DOM can also significantly negatively affect the performance of nanofiltration and reverse osmosis membranes used industrially for water purification and desalination, being one of the major causes of a so-called `membrane bio- fouling'. The molecular scale mechanisms and dynamics of the DOM interactions with metals and membranes are, however, quite poorly understood. Methods of computational molecular modeling, combined with element- specific nuclear magnetic resonance (NMR) spectroscopy, can serve as highly effective tools to probe and quantify on a fundamental molecular level the DOM interactions with metal cations in aqueous solutions, and to develop predictive models of the molecular mechanisms responsible for the metal-DOM complexation in the environment. This paper presents the results of molecular dynamics (MD) computer simulations of the interaction of DOM with dissolved Na+, Cs+, Mg2+, and Ca2+. Na+ forms only very weak outer-sphere complexes with DOM. These results and the results of other recent molecular modeling efforts (e.g., Sutton et al., Environmental Toxicology and Chemistry, 24, 1902-1911, 2005), clearly indicate that both the structural and dynamic aspects of the cation-DOM complexation follow a simple trend in terms of the charge/size ratio for the ions. Due to the competition between ion hydration in bulk aqueous solution and adsorption of these cations by the negatively charged DOM functional groups (primarily carboxylate

  16. Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching.

    Science.gov (United States)

    Carstea, Elfrida M; Baker, Andy; Bieroza, Magdalena; Reynolds, Darren M; Bridgeman, John

    2014-09-15

    The fluorescence intensity of dissolved organic matter (DOM) in aqueous samples is known to be highly influenced by temperature. Although several studies have demonstrated the effect of thermal quenching on the fluorescence of DOM, no research has been undertaken to assess the effects of temperature by combining fluorescence excitation - emission matrices (EEM) and parallel factor analysis (PARAFAC) modelling. This study further extends previous research on thermal quenching by evaluating the impact of temperature on the fluorescence of DOM from a wide range of environmental samples, in the range 20 °C - 0 °C. Fluorescence intensity increased linearly with respect to temperature decrease at all temperatures down to 0 °C. Results showed that temperature affected the PARAFAC components associated with humic-like and tryptophan-like components of DOM differently, depending on the water type. The terrestrial humic-like components, C1 and C2 presented the highest thermal quenching in rural water samples and the lowest in urban water samples, while C3, the tryptophan-like component, and C4, a reprocessed humic-like component, showed opposite results. These results were attributed to the availability and abundance of the components or to the degree of exposure to the heat source. The variable thermal quenching of the humic-like components also indicated that although the PARAFAC model generated the same components across sites, the DOM composition of each component differed between them. This study has shown that thermal quenching can provide additional information on the characteristics and composition of DOM and highlighted the importance of correcting fluorescence data collected in situ.

  17. Dissolved Organic Matter Composition and Microbial Diversity In The Lake Tahoe Basin, Sierra Nevada, California.

    Science.gov (United States)

    Aluwihare, L.; Goldberg, S. J.; Ball, G. I.; Mendoza, W. G.; Simpson, A.; Kharbush, J.; Nelson, C. E.

    2014-12-01

    Dissolved organic matter (DOM) inputs into high elevation lakes of the Sierra Nevada, California are seasonally segregated, and this enables an examination of the dominant compositional features and microbial responses associated with allochthonous versus autochthonous DOM inputs. Furthermore, because lakes within this watershed have very different hydraulic residence times, extending from days (e.g., Upper Angora Lake) to centuries (Lake Tahoe), the Tahoe Basin represents an ideal experimental system in which to characterize long-lived DOM. We used a variety of analytical tools, including elemental, stable isotope and radiocarbon measurements, nuclear magnetic resonance (NMR) spectroscopy, comprehensive 2D gas chromatography coupled to time of flight (TOF) mass spectrometry and fluorescence measurements, to characterize solid phase extracted (SPE) DOM, and in some cases, whole DOM. Our data show that DOM with typical terrestrial characteristics is quickly removed in lakes with >annual water residence time, leaving behind SPE DOM that is extremely N-rich, with a functional group distribution that is consistent with protein. Furthermore, our radiocarbon measurements estimate a 100-200 year residence time for the N-rich DOM accumulating in Lake Tahoe. All of the analytical techniques distinguish samples based on lake water residence time, which indicates that the lacustrine reactor plays an important role in determining the composition of DOM that accumulates on long timescales. We also examined temporal variations in the microbial community of Lake Tahoe to identify taxa that may be involved in processing DOM from distinct sources. Our results confirm the importance of DOM as a currency for carbon and nitrogen exchange between different compartments of the terrestrial ecosystem and argue for its inclusion in models that examine the response of lake ecosystems to global change.

  18. Fate of allochthonous dissolved organic carbon in lakes: a quantitative approach.

    Directory of Open Access Journals (Sweden)

    Paul C Hanson

    Full Text Available Inputs of dissolved organic carbon (DOC to lakes derived from the surrounding landscape can be stored, mineralized or passed to downstream ecosystems. The balance among these OC fates depends on a suite of physical, chemical, and biological processes within the lake, as well as the degree of recalcintrance of the allochthonous DOC load. The relative importance of these processes has not been well quantified due to the complex nature of lakes, as well as challenges in scaling DOC degradation experiments under controlled conditions to the whole lake scale. We used a coupled hydrodynamic-water quality model to simulate broad ranges in lake area and DOC, two characteristics important to processing allochthonous carbon through their influences on lake temperature, mixing depth and hydrology. We calibrated the model to four lakes from the North Temperate Lakes Long Term Ecological Research site, and simulated an additional 12 'hypothetical' lakes to fill the gradients in lake size and DOC concentration. For each lake, we tested several mineralization rates (range: 0.001 d(-1 to 0.010 d(-1 representative of the range found in the literature. We found that mineralization rates at the ecosystem scale were roughly half the values from laboratory experiments, due to relatively cool water temperatures and other lake-specific factors that influence water temperature and hydrologic residence time. Results from simulations indicated that the fate of allochthonous DOC was controlled primarily by the mineralization rate and the hydrologic residence time. Lakes with residence times 6 years mineralized approximately 60% of the DOC. DOC fate in lakes can be determined with a few relatively easily measured factors, such as lake morphometry, residence time, and temperature, assuming we know the recalcitrance of the DOC.

  19. The relationship between dissolved organic carbon quality and mercury transport in a boreal watershed

    Science.gov (United States)

    Ghorpade, S.; Heyes, A.; Gilmour, C. C.; Oswald, C. J.

    2009-12-01

    Mercury (Hg) transport through terrestrial environments is governed predominantly by its association with dissolved organic carbon (DOC). The relationship between DOC and Hg concentrations has been demonstrated in terrestrial and aquatic environments, however, little is known about the role of DOC quality in Hg binding and transport. We are applying three methods to characterize the relationship between DOC quality and Hg binding throughout the watershed: molecular weight size fractionation, specific ultraviolet absorbance (SUVA) measurements, and lignin phenol analysis. This presentation reports on the relationship between Hg binding and molecular weight fractionation, and DOC quality as indicated by SUVA. This study is being conducted in the METAALICUS watershed located at the Experimental Lakes Area, Canada. This boreal Canadian Shield watershed was labeled with stable Hg isotopes for a six year period from 2001 to 2006, allowing recently deposited Hg to be separated from Hg that has resided in the watershed for much longer periods. We hypothesize that molecular weight of DOC is an important factor controlling Hg transport, as low molecular weight fractions have higher mobility and are expected to play a more important role in transporting Hg within watersheds. Centrifuge ultrafiltration through various molecular weight specific filters, ranging from 3 to 30 kilodaltons, has been applied to lysimeter, soil leachate and water column samples. Preliminary results indicate that newly deposited Hg is more favorably associated with low molecular weight DOC complexes in upland samples. We also hypothesize that the character of DOC will vary spatially and temporally, which preliminary SUVA measurements support. In this presentation we will also describe spatial and temporal patterns in the relationship between Hg binding and DOC quality in this watershed.

  20. Modeling the production, decomposition, and transport of dissolved organic carbon in boreal soils

    Science.gov (United States)

    Fan, Zhaosheng; Neff, Jason C.; Wickland, Kimberly P.

    2010-01-01

    The movement of dissolved organic carbon (DOC) through boreal ecosystems has drawn increased attention because of its potential impact on the feedback of OC stocks to global environmental change in this region. Few models of boreal DOC exist. Here we present a one-dimensional model with simultaneous production, decomposition, sorption/desorption, and transport of DOC to describe the behavior of DOC in the OC layers above the mineral soils. The field-observed concentration profiles of DOC in two moderately well-drained black spruce forest sites (one with permafrost and one without permafrost), coupled with hourly measured soil temperature and moisture, were used to inversely estimate the unknown parameters associated with the sorption/desorption kinetics using a global optimization strategy. The model, along with the estimated parameters, reasonably reproduces the concentration profiles of DOC and highlights some important potential controls over DOC production and cycling in boreal settings. The values of estimated parameters suggest that humic OC has a larger potential production capacity for DOC than fine OC, and most of the DOC produced from fine OC was associated with instantaneous sorption/desorption whereas most of the DOC produced from humic OC was associated with time-dependent sorption/desorption. The simulated DOC efflux at the bottom of soil OC layers was highly dependent on the component and structure of the OC layers. The DOC efflux was controlled by advection at the site with no humic OC and moist conditions and controlled by diffusion at the site with the presence of humic OC and dry conditions.

  1. Dissolved Organic Carbon Influences Microbial Community Composition and Diversity in Managed Aquifer Recharge Systems

    KAUST Repository

    Li, D.

    2012-07-13

    This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones.

  2. Drivers of fluorescent dissolved organic matter in the global epipelagic ocean

    KAUST Repository

    Catalá, T. S.

    2016-03-24

    Fluorescent dissolved organic matter (FDOM) in open surface waters (< 200 m) of the Atlantic, Pacific, and Indian oceans was analysed by excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC). A four-component PARAFAC model was fit to the EEMs, which included two humic- (C1 and C2) and two amino acid-like (C3 and C4) components previously identified in ocean waters. Generalized-additive models (GAMs) were used to explore the environmental factors that drive the global distribution of these PARAFAC components. The explained variance for the humic-like components was substantially larger (> 70%) than for the amino acid-like components (< 35%). The environmental variables exhibiting the largest effect on the global distribution of C1 and C2 were apparent oxygen utilisation followed by chlorophyll a. Positive non-linear relationships between both predictor variables and the two humic-like PARAFAC components suggest that their distribution are biologically controlled. Compared with the dark ocean (> 200 m), the relationships of C1 and C2 with AOU indicate a higher C1/AOU and C2/AOU ratios of the humic-like substances in the dark ocean than in the surface ocean where a net effect of photobleaching is also detected. C3 (tryptophan-like) and C4 (tyrosine-like) variability was mostly dictated by salinity (S), by means of positive non-linear relationships, suggesting a primary physical control of their distributions at the global surface ocean scale that could be related to the changing evaporation-precipitation regime. Remarkably, bacterial biomass (BB) only contributed to explain a minor part of the variability of C1 and C4.

  3. Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii.

    Science.gov (United States)

    Li, Tingqiang; Liang, Chengfeng; Han, Xuan; Yang, Xiaoe

    2013-05-01

    Pot experiments were conducted to investigate the role of dissolved organic matter (DOM) in the Cd speciation in the rhizosphere of hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii and its effects on Cd mobility. After growing HE S. alfredii, the rhizosphere soil solution pH of heavily polluted soil (HPS) and slightly polluted soil (SPS) was reduced by 0.49 and 0.40 units, respectively, due to enhanced DOC derived from root exudation. The total Cd concentration in soil solution decreased significantly but the decrease accounted for less than 1% of the total Cd uptake in the shoots of HE S. alfredii. Visual MINTEQ speciation predicted that Cd-DOM complexes were the dominant Cd species in soil solutions after the growth of S. alfredii for both soils, followed by the free metal Cd(2+) species. However, Cd-DOM complexes fraction in the rhizosphere soil solution of HE S. alfredii (89.1% and 74.6% for HPS and SPS, respectively) were much greater than NHE S. alfredii (82.8% and 64.7% for HPS and SPS, respectively). Resin equilibration experiment results indicated that DOM from the rhizosphere (R-DOM) of both ecotypes of S. alfredii had the ability to form complexes with Cd, whereas the degree of complexation was significantly higher for HE-R-DOM (79-89%) than NHE-R-DOM (63-74%) in the undiluted sample. The addition of HE-R-DOM significantly (P<0.05) increased the solubility of four Cd minerals while NHE-R-DOM was not as effective at the same concentration. It was concluded that DOM in the rhizosphere of hyperaccumulating ecotype of S. alfredii could significantly increase Cd mobility through the formation of soluble DOM-metal complexes.

  4. Mass and UV-visible spectral fingerprints of dissolved organic matter: sources and reactivity

    Directory of Open Access Journals (Sweden)

    Heather Erin Reader

    2015-10-01

    Full Text Available Advanced analytical techniques have revealed a high degree of complexity in the chemical makeup of dissolved organic matter (DOM. This has opened the door for a deeper understanding of the role of DOM in the aquatic environment. However, the expense, analytical cost, and challenges related to interpretation of the large datasets generated by these methods limit their widespread application. Optical methods, such as absorption and fluorescence spectroscopy are relatively inexpensive and easy to implement, but lack the detailed information available in more advanced methods. We were able to directly link the analysis of absorption spectra to the mass spectra of DOM using an in-line detector system coupled to multivariate data analysis. Monthly samples were taken from three river mouths in Sweden for one year. One subset of samples was exposed to photochemical degradation and another subset was exposed to long-term (4 months biological degradation. A principle component analysis was performed on the coupled absorption-mass spectra data. Loading spectra for each principle component show distinct fingerprints for both reactivity (i.e. photochemical, biological degradation and source (i.e. catchment land cover, temperature, hydrology. The fingerprints reveal mass-to-charge values that contribute to optical signals and characteristics seen in past studies, and emphasise the difficulties in interpreting changes in bulk CDOM characteristics resulting from multiple catchment processes. The approach provides a potential simple method for using optical indicators as tracers for more complex chemical processes both with regards to source material for DOM and the past reactive processing of DOM.

  5. Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions

    Science.gov (United States)

    Hawkes, Jeffrey A.; Hansen, Christian T.; Goldhammer, Tobias; Bach, Wolfgang; Dittmar, Thorsten

    2016-02-01

    Marine dissolved organic matter (DOM) is a large (660 Pg) pool of reduced carbon that is subject to thermal alteration in hydrothermal systems and sedimentary basins. In natural high-temperature hydrothermal systems, DOM is almost completely removed, but the mechanism and temperature dependence of this removal have not been studied to date. We investigated molecular-level changes to DOM that was solid-phase extracted (SPE-DOM) from the deep ocean of the North Pacific Ocean. This complex molecular mixture was experimentally exposed to temperatures between 100 and 380 °C over the course of two weeks in artificial seawater, and was then characterised on a molecular level via ultrahigh-resolution Fourier-transform ion cyclotron mass spectrometry (FT-ICR-MS). Almost 93% of SPE-DOM was removed by the treatment at 380 °C, and this removal was accompanied by a consistent pattern of SPE-DOM alteration across the temperatures studied. Higher molecular weight and more oxygen rich compounds were preferentially removed, suggesting that decarboxylation and dehydration of carboxylic acid and alcohol groups are the most rapid degradation mechanisms. Nitrogen containing compounds followed the same overall trends as those containing just C, H and O up to 300 °C. Above this temperature, the most highly altered samples contained very little of the original character of marine DOM, instead being mainly composed of very low intensity N- and S- containing molecules with a high H/C ratio (>1.5). Our results suggest that abiotic hydrothermal alteration of SPE-DOM may already occur at temperatures above 68 °C. Our experiments were conducted without a sedimentary or mineral phase, and demonstrate that profound molecular alteration and almost complete removal of marine SPE-DOM requires nothing more than heating in a seawater matrix.

  6. Seasonal variations in concentration and composition of dissolved organic carbon in Tokyo Bay

    Directory of Open Access Journals (Sweden)

    A. Kubo

    2014-07-01

    Full Text Available Concentrations of recalcitrant and bioavailable dissolved organic carbon (DOC and their seasonal variations were investigated at three stations in Tokyo Bay, Japan, and in two freshwater sources flowing into the bay to evaluate the significance of DOC degradation for the carbon budget in coastal waters and carbon export to the open ocean. Recalcitrant DOC (RDOC was differentiated from bioavailable DOC (BDOC as a remnant of DOC after 150 days of bottle incubation. On average, RDOC accounted for 78% of the total DOC in Shibaura sewage treatment plant (STP effluent, 67% in the upper Arakawa River water, 66% in the lower Arakawa River water, and 78% in surface bay water. RDOC concentrations were higher than BDOC at all stations. In freshwater environments, RDOC concentrations were almost constant throughout the year. In the bay, RDOC was higher during spring and summer than during autumn and winter. The relative abundance of RDOC in the bay derived from phytoplankton, terrestrial, and open oceanic waters was estimated to be 9%, 33%, and 58%, respectively, by multiple regression analysis of RDOC, salinity, and chl a. In addition, comparison with previous data from 1972 revealed that concentrations of RDOC and BDOC have decreased by 33% and 74% at freshwater sites and 39% and 76% at Tokyo Bay, while the ratio of RDOC to DOC has increased. The change in DOC concentration and composition was probably due to increased amounts of sewage treatment plant effluent entering the system. Tokyo Bay exported DOC, mostly RDOC, to the open ocean because of remineralization of BDOC.

  7. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon.

    Science.gov (United States)

    Sexton, Philip F; Norris, Richard D; Wilson, Paul A; Pälike, Heiko; Westerhold, Thomas; Röhl, Ursula; Bolton, Clara T; Gibbs, Samantha

    2011-03-17

    'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (∼65-34 million years (Myr) ago). The most extreme hyperthermal was the ∼170 thousand year (kyr) interval of 5-7 °C global warming during the Palaeocene-Eocene Thermal Maximum (PETM, 56 Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs, and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon. Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (∼40 kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was re-sequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM. Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources, but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.

  8. Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon.

    Science.gov (United States)

    Deininger, A; Faithfull, C-L; Bergström, A-K

    2017-01-31

    Global change has increased inorganic nitrogen (N) and dissolved organic carbon (DOC; i.e. 'browning') inputs to northern hemisphere boreal lakes. However, we do not know how phytoplankton in nutrient poor lake ecosystems of different DOC concentration respond to increased N availability. Here, we monitored changes in phytoplankton production, biomass and community composition in response to whole lake inorganic N fertilization in six boreal unproductive Swedish lakes divided into three lake pairs (control, N enriched) at three DOC levels (low, medium, high), with one reference year (2011) and two impact years (2012, 2013). We found that phytoplankton biomass and production decreased with DOC concentration before N fertilization. Further, phytoplankton community composition also differed with respect to DOC, with a dominance of non-flagellated autotrophs at low DOC towards an increasing dominance of flagellated autotrophs with increased lake DOC concentration. The N fertilization increased phytoplankton biomass and production in all lakes, but did not affect phytoplankton community composition. However, the net response in biomass and production to N fertilization declined with increasing DOC, implying that the lake DOC concentration is critical in order to infer phytoplankton responses to N fertilization, and that the system switches from being primarily nutrient limited to becoming increasingly light limited with increased DOC concentration. In conclusion, our results show that browning will reduce phytoplankton production and biomass and influence phytoplankton community composition, whereas increased inorganic N loadings from deposition, forestry or other land use will primarily enhance phytoplankton biomass and production. Together, any change in the landscape that enhances inorganic N availability will increase phytoplankton production and biomass, but the positive effects of N will be much weaker or even neutralized in browner lakes as caused by light

  9. Export of dissolved organic carbon from an upland peatland during storm events: Implications for flux estimates

    Science.gov (United States)

    Clark, Joanna M.; Lane, Stuart N.; Chapman, Pippa J.; Adamson, John K.

    2007-12-01

    SummaryMost of the dissolved organic carbon (DOC) exported from catchments is transported during storm events. Accurate assessments of DOC fluxes are essential to understand long-term trends in the transport of DOC from terrestrial to aquatic systems, and also the loss of carbon from peatlands to determine changes in the source/sink status of peatland carbon stores. However, many long-term monitoring programmes collect water samples at a frequency (e.g. weekly/monthly) less than the time period of a typical storm event (typically organo-mineral soils have shown that both concentration and flux of DOC increases during storm events, lower frequency monitoring could result in substantial underestimation of DOC flux as the most dynamic periods of transport are missed. However, our intensive monitoring study in a UK upland peatland catchment showed a contrasting response to these previous studies. Our results showed that (i) DOC concentrations decreased during autumn storm events and showed a poor relationship with flow during other seasons; and that (ii) this decrease in concentrations during autumn storms caused DOC flux estimates based on weekly monitoring data to be over-estimated, rather than under-estimated, because of over rather than under estimation of the flow-weighted mean concentration used in flux calculations. However, as DOC flux is ultimately controlled by discharge volume, and therefore rainfall, and the magnitude of change in discharge was greater than the magnitude of decline in concentrations, DOC flux increased during individual storm events. The implications for long-term DOC trends are therefore contradictory, as increased rainfall could increase flux but cause an overall decrease in DOC concentrations from peatland streams. Care needs to be taken when interpreting long-term trends in DOC flux rather than concentration; as flux is calculated from discharge estimates, and discharge is controlled by rainfall, DOC flux and rainfall/discharge will

  10. Dissolved organic carbon reduces uranium toxicity to the unicellular eukaryote Euglena gracilis.

    Science.gov (United States)

    Trenfield, Melanie A; Ng, Jack C; Noller, Barry; Markich, Scott J; van Dam, Rick A

    2012-05-01

    The influence of dissolved organic carbon (DOC), in the form of Suwannee River fulvic acid (SRFA), on uranium (U) toxicity to the unicellular eukaryote, Euglena gracilis (Z strain), was investigated at pH 6. In a background medium without SRFA, exposure of E. gracilis to 57 μg L(-1) U resulted in a 50% reduction in growth (IC(50)). The addition of 20 mg L(-1) DOC (as SRFA), reduced U toxicity 4 to 5-fold (IC(50) increased to 254 μg L(-1) U). This reduction in toxicity was also evident at more sensitive effect levels with a 10% reduction in growth (IC(10)) occurring at 5 μg L(-1) U in the background medium and at 17 μg L(-1) U in the SRFA medium, respectively. This amelioration of toxicity with the addition of SRFA was linked to a decrease in the bioavailability of U, with geochemical speciation modelling predicting 84% of U would be complexed by SRFA. The decrease in bioavailability of U in the presence of SRFA was also evident from the 11-14 fold reduction in the cellular concentration of U compared to that of E. gracilis in the background medium. Stepwise multiple linear regression analyses indicated that UO(2)(2+) alone explained 51% of the variation in measured U toxicity to E. gracilis. Preliminary U exposures to E. gracilis in the presence of a reactive oxygen species probe, suggest exposure to ≥60 μg L(-1) U may induce oxidative stress, but this endpoint was not considered to be a sensitive biological indicator.

  11. Sponge exhalent seawater contains a unique chemical profile of dissolved organic matter

    Directory of Open Access Journals (Sweden)

    Cara L. Fiore

    2017-01-01

    Full Text Available Sponges are efficient filter feeders, removing significant portions of particulate and dissolved organic matter (POM, DOM from the water column. While the assimilation and respiration of POM and DOM by sponges and their abundant microbial symbiont communities have received much attention, there is virtually no information on the impact of sponge holobiont metabolism on the composition of DOM at a molecular-level. We applied untargeted and targeted metabolomics techniques to characterize DOM in seawater samples prior to entering the sponge (inhalant reef water, in samples exiting the sponge (exhalent seawater, and in samples collected just outside the reef area (off reef seawater. Samples were collected from two sponge species, Ircinia campana and Spheciospongia vesparium, on a near-shore hard bottom reef in the Florida Keys. Metabolic profiles generated from untargeted metabolomics analysis indicated that many more compounds were enhanced in the exhalent samples than in the inhalant samples. Targeted metabolomics analysis revealed differences in diversity and concentration of metabolites between exhalent and off reef seawater. For example, most of the nucleosides were enriched in the exhalent seawater, while the aromatic amino acids, caffeine and the nucleoside xanthosine were elevated in the off reef water samples. Although the metabolic profile of the exhalent seawater was unique, the impact of sponge metabolism on the overall reef DOM profile was spatially limited in our study. There were also no significant differences in the metabolic profiles of exhalent water between the two sponge species, potentially indicating that there is a characteristic DOM profile in the exhalent seawater of Caribbean sponges. Additional work is n