WorldWideScience

Sample records for chromogenic assays pcr

  1. An interlaboratory study on efficient detection of Shiga toxin-producing Escherichia coli O26, O103, O111, O121, O145, and O157 in food using real-time PCR assay and chromogenic agar.

    Science.gov (United States)

    Hara-Kudo, Yukiko; Konishi, Noriko; Ohtsuka, Kayoko; Iwabuchi, Kaori; Kikuchi, Rie; Isobe, Junko; Yamazaki, Takumiko; Suzuki, Fumie; Nagai, Yuhki; Yamada, Hiroko; Tanouchi, Atsuko; Mori, Tetsuya; Nakagawa, Hiroshi; Ueda, Yasufumi; Terajima, Jun

    2016-08-02

    To establish an efficient detection method for Shiga toxin (Stx)-producing Escherichia coli (STEC) O26, O103, O111, O121, O145, and O157 in food, an interlaboratory study using all the serogroups of detection targets was firstly conducted. We employed a series of tests including enrichment, real-time PCR assays, and concentration by immunomagnetic separation, followed by plating onto selective agar media (IMS-plating methods). This study was particularly focused on the efficiencies of real-time PCR assays in detecting stx and O-antigen genes of the six serogroups and of IMS-plating methods onto selective agar media including chromogenic agar. Ground beef and radish sprouts samples were inoculated with the six STEC serogroups either at 4-6CFU/25g (low levels) or at 22-29CFU/25g (high levels). The sensitivity of stx detection in ground beef at both levels of inoculation with all six STEC serogroups was 100%. The sensitivity of stx detection was also 100% in radish sprouts at high levels of inoculation with all six STEC serogroups, and 66.7%-91.7% at low levels of inoculation. The sensitivity of detection of O-antigen genes was 100% in both ground beef and radish sprouts at high inoculation levels, while at low inoculation levels, it was 95.8%-100% in ground beef and 66.7%-91.7% in radish sprouts. The sensitivity of detection with IMS-plating was either the same or lower than those of the real-time PCR assays targeting stx and O-antigen genes. The relationship between the results of IMS-plating methods and Ct values of real-time PCR assays were firstly analyzed in detail. Ct values in most samples that tested negative in the IMS-plating method were higher than the maximum Ct values in samples that tested positive in the IMS-plating method. This study indicates that all six STEC serogroups in food contaminated with more than 29CFU/25g were detected by real-time PCR assays targeting stx and O-antigen genes and IMS-plating onto selective agar media. Therefore, screening

  2. Evaluation of robot automated chromogenic substrate LAL endotoxin assay method for pharmaceutical products testing.

    Science.gov (United States)

    Tsuji, K; Martin, P A

    1985-01-01

    The robot automated chromogenic substrate LAL assay method was evaluated for endotoxin testing using three lots each of 12 pharmaceutical products. As many as 216 assays, including automated standard curve construction and sample preparation, can be performed in a single day of unattended operation. The method is linear (r greater than .99) in the range of 0 to 0.2 EU/ml. The precision of the method determined by assaying a lot of calcium gluconate for four days was 6%, 10%, and 10% for within an assay block, between assay blocks, and between assay days, respectively. Recovery of endotoxin when spiked into products ranged from 81% to 110% and was within the statistical variation (2 sigma limit) of the method. The endotoxin levels detected in a biological raw material by the chromogenic substrate assay method correlated well with that of the gel-clot LAL assay method. The endotoxin content of the majority of the pharmaceutical products tested was well below the sensitivity of both the chromogenic substrate and the gel clot LAL assay methods.

  3. Quantitative digital image analysis of chromogenic assays for high throughput screening of alpha-amylase mutant libraries.

    Science.gov (United States)

    Shankar, Manoharan; Priyadharshini, Ramachandran; Gunasekaran, Paramasamy

    2009-08-01

    An image analysis-based method for high throughput screening of an alpha-amylase mutant library using chromogenic assays was developed. Assays were performed in microplates and high resolution images of the assay plates were read using the Virtual Microplate Reader (VMR) script to quantify the concentration of the chromogen. This method is fast and sensitive in quantifying 0.025-0.3 mg starch/ml as well as 0.05-0.75 mg glucose/ml. It was also an effective screening method for improved alpha-amylase activity with a coefficient of variance of 18%.

  4. Specific, sensitive, precise, and rapid functional chromogenic assay of activated first complement component (C1) in plasma

    DEFF Research Database (Denmark)

    Munkvad, S; Jespersen, J; Sidelmann, Johannes Jakobsen;

    1990-01-01

    by using an amidolytic rate assay with a chromogenic substrate. We have optimized the assay conditions with respect to incubation time, concentration of antiserum to C1-inh, ionic strength, and pH. Our method determines specifically the concentration in plasma of free activated C1, not complexes...

  5. Analytical assays based on chromogenic and fluorogenic chemosensors for the detection of cyanide

    Directory of Open Access Journals (Sweden)

    Vanderléia Gava Marini

    2010-06-01

    Full Text Available Cyanide (CN– is an anion well–known for its toxicity, being a chemical agent often related to cases of homicide and suicide. Despite being responsible for the toxicity of many animals and plants, it is used in several industrial activities, with innumerous implications in terms of the environment. Due to its high toxicity, the maximum level of CN– concentration allowed by the World Health Organization in potable water is 1.7 µmol/L. This low concentration limit requires methods of visual detection and quantitative determination which are ever more sensitive, simple, reliable, and economical. Advancements in the field of chromogenic and fluorogenic chemosensors for anionic analytes have led to the development of several methodologies for the detection of CN–. Therefore, this review aims to present the main strategies that have been used in the study of quantitative and naked–eye detection of CN– by means of chromogenic and fluorogenic chemosensors. Aspects related to CN–, such as its reactivity, toxicity, applications, and implications in different domains of knowledge, are presented. Recent work involving the development of chemosensors for CN– based on acid–base reactions, chemodosimeters, chromoreactands, and competition assays is also described. In addition, recent studies that make use of nanotechnology to develop strategies for the detection of CN– are also discussed, as well as the prospects envisioned in this field.

  6. High-throughput screening of carbohydrate-degrading enzymes using novel insoluble chromogenic substrate assay kits

    DEFF Research Database (Denmark)

    Schückel, Julia; Kracun, Stjepan Kresimir; Willats, William George Tycho

    2016-01-01

    of CAZymes exist in nature (especially in microorganisms) and hundreds of thousands have been cataloged and described in the carbohydrate active enzyme database (CAZy). However, the rate of discovery of putative enzymes has outstripped our ability to biochemically characterize their activities. One reason...... kit based on insoluble chromogenic substrates is described here. Two distinct substrate types were produced: Chromogenic Polymer Hydrogel (CPH) substrates (made from purified polysaccharides and proteins) and Insoluble Chromogenic Biomass (ICB) substrates (made from complex biomass materials). Both...

  7. Chromogenic platform based on recombinant Drosophila melanogaster acetylcholinesterase for visible unidirectional assay of organophosphate and carbamate insecticide residues

    Energy Technology Data Exchange (ETDEWEB)

    Han Zheng [Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1018 Jinqi Road, Shanghai 201403 (China); Chi Chensen [School of Life Science and Biotechnology, Bor Luh Food Safety Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Bai Bing; Liu Gang; Rao Qinxiong [Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1018 Jinqi Road, Shanghai 201403 (China); Peng Shaojie [Institute of Shanghai Food and Drug Supervision, 615 Liuzhou Road, Shanghai 200233 (China); Liu Hong [Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan West Road, Shanghai 200336 (China); Zhao Zhihui [Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1018 Jinqi Road, Shanghai 201403 (China); Zhang Dabing [School of Life Science and Biotechnology, Bor Luh Food Safety Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Wu Aibo, E-mail: wuaibo@saas.sh.cn [Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1018 Jinqi Road, Shanghai 201403 (China)

    2012-03-30

    Highlight: Black-Right-Pointing-Pointer A visible chromogenic platform for rapid analysis of OP and CM insecticide residues was developed. Black-Right-Pointing-Pointer The assay has the capabilities of both qualitative measurement and quantitative analysis. Black-Right-Pointing-Pointer The sensitivity, capabilities of resisting interferences and storage stability were desirable. Black-Right-Pointing-Pointer Matrix effects were acceptable and detection performance was satisfactory in real application. - Abstract: In this study we propose a chromogenic platform for rapid analysis of organophosphate (OP) and carbamate (CM) insecticide residues, based on recombinant Drosophila melanogaster acetylcholinesterase (R-DmAChE) as enzyme and indoxyl acetate as substrate. The visible chromogenic strip had the advantages identical to those of commonly used lateral flow assays (LFAs) with utmost simplicity in sample loading and result observation. After optimization, depending on the color intensity (CI) values, the well-established assay has the capabilities of both qualitative measurement via naked eyes and quantitative analysis by colorimetric reader with the desirable IC{sub 50} values against the tested six insecticides (0.06 {mu}g mL{sup -1} of carbofuran, 0.28 {mu}g mL{sup -1} of methomyl, 0.03 {mu}g mL{sup -1} of dichlorvos, 31.6 {mu}g mL{sup -1} of methamidophos, 2.0 {mu}g mL{sup -1} of monocrotophos, 6.3 {mu}g mL{sup -1} of omethoate). Acceptable matrix effects and satisfactory detection performance were confirmed by in-parallel LC-MS/MS analysis in different vegetable varieties at various spiked levels of 10{sup -3} to 10{sup 1} {mu}g g{sup -1}. Overall, the testified suitability and applicability of this novel platform meet the requirements for practical use in food safety management and environmental monitoring, especially in the developing world.

  8. Detection of Eperythrozoon wenyoni by PCR assay

    Institute of Scientific and Technical Information of China (English)

    Jian WANG; Yutao ZHU; Jianhua QIN; Fumei ZHANG; Yuelan ZHAO

    2009-01-01

    The objective of this research was to develop a detection method for Eperythrozoon wenyoni infection using polymerase chain reaction (PCR) assay technique. A pair of primers was designed and synthesized according to the conservative sequence 16S rRNA. The PCR assay was performed with the primers. A 985-bp fragment was amplified by using PCR. The amplified fragments with the expected size were identified by EcoR I restriction digestion. The crossing-reaction, specific-reaction and duplicate-reaction indicated that the PCR method is a specific, sensitive, fast and effective method for diagnosing E. Wenyoni infection at group level.

  9. Quantitative real-time RT-PCR and chromogenic in situ hybridization

    DEFF Research Database (Denmark)

    Rosa, Fabíola E; Silveira, Sara M; Silveira, Cássia G T;

    2009-01-01

    . METHODS: To elucidate the molecular profile of HER-2 status, mRNA and protein expression in 75 invasive breast carcinomas were analyzed by real time quantitative RT-PCR (qRT-PCR) and IHC, respectively. Amplifications were evaluated in 43 of these cases by CISH and in 11 by FISH. RESULTS: The concordance...

  10. Patients with deep venous thrombosis and thrombophilia risk factors have a specific prolongation of the lag time in a chromogenic thrombin generation assay

    NARCIS (Netherlands)

    Haas, F.J.L.M.; Kluft, C.; Biesma, D.H.; Schutgens, R.E.G.

    2011-01-01

    The objective of the present study was to evaluate the influence of thrombophilia risk factors on variables of a chromogenic thrombin generation assay (ETP) in a setting with acute deep venous thrombosis (DVT) and non-DVT patients. In 152 outpatients suspected for DVT, the results of thrombophilia i

  11. Endotoxin Detection in Pharmaceuticals and Medical Devices with Kinetic-QCL, a Kinetic-Quantitative Chromogenic Limulus Amebocyte Lysate Assay.

    Science.gov (United States)

    Berzofsky, Ronald N.

    1995-01-01

    The observation that endotoxin caused gelation in extracts of Limulus amebocytes has been expanded to the development of an in vitro kinetic, quantitative chromogenic LAL assay (Kinetic-QCL) for the detection of endotoxin in aqueous fluids. Within the last 15 years, the use of Limulus amebocyte lysate to detect and control the presence of pyrogenic substances in pharmaceuticals and medical devices has gained wide international acceptance. Both the United States and European Pharmacopoeias contain descriptions of and requirements for the LAL Bacterial Endotoxin Test. Both pharmacopoeias have begun to remove the rabbit pyrogen test requirement in a majority of drug monographs and have substituted endotoxin limits to be determined by LAL. The use of LAL has proved invaluable in controlling the level of endotoxin in finished product. The endotoxin contribution of raw materials and packaging material can be monitored as well. In-process testing at critical production steps can identify additional sources of endotoxin contamination, and depyrogenation processes can be validated by quantitating the degradation of endotoxin challenges. The speed, reproducibility, sensitivity, and economics of the Kinetic-QCL assay, in conjunction with the ppropriate equipment and software, over both the in vivo rabbit pyrogen test and the more traditional LAL gel-clot assay allow a more in-depth approach to the control of endotoxin in pharmaceuticals and medical devices.

  12. Ninhydrin-sodium molybdate chromogenic analytical probe for the assay of amino acids and proteins

    Science.gov (United States)

    Anantharaman, Shivakumar; Padmarajaiah, Nagaraja; Al-Tayar, Naef Ghllab Saeed; Shrestha, Ashwinee Kumar

    2017-02-01

    A sensitive method has been proposed for the quantification of amino acids and proteins using ninhydrin and sodium molybdate as chromogenic substrates in citrate buffer of pH 5.6. A weak molybdate-hydrindantin complex plays the role in the formation of Ruhemann's purple. The linear response for the amino acid, amino acid mixture and Bovine serum albumin is between 0.999 and 66.80 μM, 1.52 and 38 μM and 5 and 100 μg/L, respectively. The molar absorptivity of the individual amino acid by the proposed reaction extends from 0.58 × 104 to 2.86 × 104 M- 1 cm- 1. The linearity equations for the proposed ninhydrin-molybdate for amino acid mixture is Abs = 0.021 × Conc (μM) - 0.002. The applicability of the proposed method has been justified in food and biological samples in conjunction with Kjeldahl method.

  13. Measurement Uncertainty of Chromogenic LAL Assays: Reaction Time and Proportion of Endotoxin and LAL Reagent Affect Release of p-Nitroaniline.

    Science.gov (United States)

    Ostronoff, Celina Silva; Lourenço, Felipe Rebello

    2015-01-01

    Limulus Amebocyte Lysate (LAL) assays are widely used for detection and quantification of bacterial endotoxins in pharmaceuticals and medical devices. However, there are only a few studies on the measurement uncertainty of LAL assays. The aim of this work was to identify and quantify the main sources of measurement uncertainty for end point and kinetic-chromogenic LAL assays. Response surface methodology was used to study how the release of p-nitroaniline (pNA) is affected by reaction time and proportion of endotoxin and LAL reagent in end point and kinetic-chromogenic LAL assays, respectively. Increased release of pNA was observed when reaction time was increased. In addition, if different volumes of sample (or endotoxin standard) and LAL reagent are used, the pNA release rate will be affected. These results may be due to the increased interaction between the bacterial endotoxin and LAL-activated enzyme. Final measurement uncertainties (95% confidence interval) were 90-120% and 90-127% of bacterial endotoxin content for end point and kinetic-chromogenic assays, respectively. These values are reasonable for the scope of the method and allow the application of these measurement uncertainties in routine analysis of pharmaceuticals and medical devices.

  14. Calibrated user-friendly reverse transcriptase-PCR assay

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Rammer, P;

    1998-01-01

    We report a competitive reverse transcriptase-PCR (RT-PCR) assay and a calibrated user-friendly RT-PCR assay (CURT-PCR) for epidermal growth factor receptor (EGFR) mRNA. A calibrator was prepared from isolated rat liver RNA, and the amount of EGFR mRNA was determined by competitive RT-PCR. In CUR...

  15. High-throughput screening of carbohydrate-degrading enzymes using novel insoluble chromogenic substrate assay kits

    DEFF Research Database (Denmark)

    Schückel, Julia; Kracun, Stjepan Kresimir; Willats, William George Tycho

    2016-01-01

    for this is that advances in genome and transcriptome sequencing, together with associated bioinformatics tools allow for rapid identification of candidate CAZymes, but technology for determining an enzyme's biochemical characteristics has advanced more slowly. To address this technology gap, a novel high-throughput assay...

  16. Real-Time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei

    Science.gov (United States)

    2005-10-01

    1 Real - time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei Vipin K. Rastogi1, Tu-chen Cheng1, Lisa Collins1 and Jennifer Bagley2 1...A 3. DATES COVERED - 4. TITLE AND SUBTITLE Real - time PCR (RT-PCR) Assays for Burkholderia mallei and B.pseudomallei 5a. CONTRACT NUMBER 5b...risk. There is currently no real - time PCR assay for detection of both of these pathogens. Primers and probes corresponding to specific genomic regions

  17. Development and Validation of a HPV-32 Specific PCR Assay

    Directory of Open Access Journals (Sweden)

    Leigh Janet

    2009-06-01

    Full Text Available Abstract Background Human Papillomavirus-32 (HPV-32 has traditionally been associated with focal-epithelial-hyperplasia (FEH. It is also present in 58% of oral warts of HIV-positive individuals whose prevalence is increasing. Current methods for the detection of HPV-32 are labor-intensive and insensitive so the goal of this work was to develop a highly sensitive and easy to use specific polymerase chain reaction (PCR assay. Materials and methods An HPV-32 L1 specific PCR assay was developed and optimized. The sensitivity and specificity was compared to previous assays utilized for detection (PGMY and MY09/11 PCR with dot blot hybridization using cloned HPV-32 L1, the closely related HPV-42 L1 as well as clinical samples (oral swabs and fluids from 89 HIV-positive subjects. Results The HPV-32 specific PCR assay showed improved sensitivity to 5 copies of HPV-32 as compared to the PGMY PCR, MY09/11 PCR and dot blot which had a limit of detection of approximately 3,000 copies. Using the HPV-32 dot blot hybridization assay as the gold standard, the HPV-32 specific PCR assay has a sensitivity of 95.8% and 88.9% by sample and subject, respectively, and specificity was 87.8% and 58.8% by sample and subject, respectively. The low sensitivity is due to the HPV-32 specific PCR assays ability to detect more HPV-32 positive samples and may be the new gold standard. Conclusion Due to the ease, sensitivity, and specificity the HPV-32 specific PCR assay is superior to previous assays and is ideal for detection of HPV-32 in large cohorts. This assay provides an excellent tool to study the natural history of HPV-32 infection and the development of oral warts.

  18. Specific PCR and real-time PCR assays for detection and quantitation of 'Candidatus Phytoplasma phoenicium'.

    Science.gov (United States)

    Jawhari, Maan; Abrahamian, Peter; Sater, Ali Abdel; Sobh, Hana; Tawidian, Patil; Abou-Jawdah, Yusuf

    2015-02-01

    Almond witches' broom (AlmWB) is a fast-spreading lethal disease of almond, peach and nectarine associated with 'Candidatus Phytoplasma phoenicium'. The development of PCR and quantitative real-time PCR (qPCR) assays for the sensitive and specific detection of the phytoplasma is of prime importance for early detection of 'Ca. P. phoenicium' and for epidemiological studies. The developed qPCR assay herein uses a TaqMan(®) probe labeled with Black Hole Quencher Plus. The specificity of the PCR and that of the qPCR detection protocols were tested on 17 phytoplasma isolates belonging to 11 phytoplasma 16S rRNA groups, on samples of almond, peach, nectarine, native plants and insects infected or uninfected with the phytoplasma. The developed assays showed high specificity against 'Ca. P. phoenicium' and no cross-reactivity against any other phytoplasma, plant or insect tested. The sensitivity of the developed PCR and qPCR assays was similar to the conventional nested PCR protocol using universal primers. The qPCR assay was further validated by quantitating AlmWB phytoplasma in different hosts, plant parts and potential insect vectors. The highest titers of 'Ca. P. phoenicium' were detected in the phloem tissues of stems and roots of almond and nectarine trees, where they averaged from 10(5) to 10(6) genomic units per nanogram of host DNA (GU/ng of DNA). The newly developed PCR and qPCR protocols are reliable, specific and sensitive methods that are easily applicable to high-throughput diagnosis of AlmWB in plants and insects and can be used for surveys of potential vectors and alternative hosts.

  19. Multiplex PCR Assay for Identification of Human Diarrheagenic Escherichia coli

    OpenAIRE

    2003-01-01

    A multiplex PCR assay for the identification of human diarrheagenic Escherichia coli was developed. The targets selected for each category were eae for enteropathogenic E. coli, stx for Shiga toxin-producing E. coli, elt and est for enterotoxigenic E. coli, ipaH for enteroinvasive E. coli, and aggR for enteroaggregative E. coli. This assay allowed the categorization of a diarrheagenic E. coli strain in a single reaction tube.

  20. Automated 5 ' nuclease PCR assay for identification of Salmonella enterica

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey; Ahrens, Peter; Rådström, P.

    2000-01-01

    A simple and ready-to-go test based on a 5' nuclease (TaqMan) PCR technique was developed for identification of presumptive Salmonella enterica isolates. The results were compared with those of conventional methods. The TaqMan assay was evaluated for its ability to accurately detect 210 S. enterica...... isolates, including 100 problematic "rough" isolates. An internal positive control was designed to use the same Salmonella primers for amplification of a spiked nonrelevant template (116 bp) in the sample tube. The PCR test correctly identified all the Salmonella strains by resulting in positive end...... Salmonella strains tested resulted in positive FAM and TET signals. In addition, it was found that the complete PCR mixture, predispensed in microwell plates, could be stored for up to 3 months at -20 degrees C, Thus, the diagnostic TaqMan assay developed can be a useful and simple alternative method...

  1. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri.

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    Full Text Available Droplet digital polymerase chain reaction (ddPCR is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001. Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications.

  2. Novel PCR assay for determining the genetic sex of mice.

    Science.gov (United States)

    McFarlane, L; Truong, V; Palmer, J S; Wilhelm, D

    2013-01-01

    A number of studies require the determination of the genetic sex of mouse embryos before sexual differentiation and/or of mutant mice that display partial or complete sex reversal. The majority of current methods for sexing by PCR involve multiplexing of 2 primer pairs. We have developed a novel sexing PCR using a single primer pair that amplifies fragments from the X and the Y chromosome with a clear size difference between the respective amplicons. This assay provides a rapid and reliable method to identify the genetic sex of mice across different mouse strains.

  3. Comparison of Clot-based, Chromogenic, and Fluorescence Assays for Measurement of Factor VIII Inhibitors in the U.S. Hemophilia Inhibitor Research Study

    Science.gov (United States)

    Miller, Connie H.; Rice, Anne S.; Boylan, Brian; Shapiro, Amy D.; Lentz, Steven R.; Wicklund, Brian M.; Kelly, Fiona M.; Soucie, J. Michael

    2015-01-01

    Summary Background Detection and validation of inhibitors (antibodies) to hemophilia treatment products are important for clinical care, evaluation of product safety, and assessment of population trends. Methods Centralized monitoring for factor VIII (FVIII) inhibitors was conducted for patients in the Hemophilia Inhibitor Research Study using a previously reported modified Nijmegen-Bethesda clotting assay (NBA), a chromogenic Bethesda assay (CBA), and a novel fluorescence immunoassay (FLI). Results NBA and CBA were performed on 1005 specimens and FLI on 272 specimens. CBA was negative on 880/883 specimens (99.7%) with Nijmegen-Bethesda units (NBU)<0.5 and positive on 42/42 specimens (100%) with NBU≥2.0 and 43/80 specimens (53.8%) with NBU 0.5–1.9. Among specimens with positive NBA and negative CBA, 58.1% were FLI-negative, 12.9% had evidence of lupus anticoagulant, and 35.5% had non-time-dependent inhibition. CBA and FLI were positive on 72.4% and 100% of 1.0–1.9 NBU specimens and 43.1% and 50.0% of 0.5–0.9 NBU specimens. FLI detected antibodies in 98.0% of CBA-positive and 81.6% of NBA-positive specimens (P=0.004). Among 21 new inhibitors detected by NBA, 5 (23.8%) with 0.7–1.3 NBU did not react in CBA or FLI. Among previously positive patients with 0.5–1.9 NBU, 7/25 (28%) were not CBA or FLI positive. FLI was positive on 36/169 NBU-negative specimens (21.3%). Conclusions FVIII specificity could not be demonstrated by CBA or FLI for 26% of inhibitors of 0.5–1.9 NBU; such results must be interpreted with caution. Low titer inhibitors detected in clot-based assays should always be repeated, with consideration given to evaluating their reactivity with FVIII using more specific assays. PMID:23601690

  4. Multiplex real-time PCR assay for Legionella species.

    Science.gov (United States)

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies.

  5. An optimized one-tube, semi-nested PCR assay for Paracoccidioides brasiliensis detection

    Directory of Open Access Journals (Sweden)

    Amanda de Faveri Pitz

    2013-12-01

    Full Text Available Introduction Herein, we report a one-tube, semi-nested-polymerase chain reaction (OTsn-PCR assay for the detection of Paracoccidioides brasiliensis. Methods We developed the OTsn-PCR assay for the detection of P. brasiliensis in clinical specimens and compared it with other PCR methods. Results The OTsn-PCR assay was positive for all clinical samples, and the detection limit was better or equivalent to the other nested or semi-nested PCR methods for P. brasiliensis detection. Conclusions The OTsn-PCR assay described in this paper has a detection limit similar to other reactions for the molecular detection of P. brasiliensis, but this approach is faster and less prone to contamination than other conventional nested or semi-nested PCR assays.

  6. Optimized PCR assay for detection of white spot syndrome virus (WSSV).

    Science.gov (United States)

    Nunan, Linda M; Lightner, Donald V

    2011-01-01

    A rapid PCR assay for detection of white spot syndrome virus (WSSV) was developed based on the nested PCR procedure described by Lo et al. (1996) and outlined as the recommended PCR diagnostic assay in the Manual of Diagnostic Tests for Aquatic Animals published by the Office of International Epizootics (OIE, 2009). The optimized procedure incorporated the second step primers used in the nested WSSV PCR. By adjusting the annealing temperature and shortening the cycling times, this modified assay is substantially faster and as sensitive as the recommended OIE protocol. The modified PCR test was compared directly to the two-step nested PCR protocol and a modified nested procedure. The sensitivity of the published assay was determined by template dilutions of semi-purified WSSV virions that had been quantitated using real-time PCR for detection of WSSV. Various isolates were tested using the modified procedure, to ensure that the assay was able to detect WSSV from different geographical locations.

  7. Comparison of Chromogenic Media to BD GeneOhm Methicillin-Resistant Staphylococcus aureus (MRSA) PCR for Detection of MRSA in Nasal Swabs▿

    OpenAIRE

    Bischof, Larry J.; Lapsley, Linda; Fontecchio, Karen; Jacosalem, Dollie; Young, Carol; Hankerd, Rosemary; Newton, Duane W.

    2009-01-01

    To select a method for detecting methicillin-resistant Staphylococcus aureus (MRSA) in nasal swabs, we compared BD GeneOhm MRSA PCR and various culture media (mannitol salt agar with cefoxitin, MRSASelect, CHROMagar MRSA, and Spectra MRSA). While PCR detection of MRSA was more rapid, MRSASelect and Spectra MRSA demonstrated performance equivalent to that of PCR with maximal detection at 24 h.

  8. Comparison of a PCR assay in whole blood and serum specimens for canine brucellosis diagnosis.

    Science.gov (United States)

    Keid, L B; Soares, R M; Vasconcellos, S A; Salgado, V R; Megid, J; Richtzenhain, L J

    2010-07-17

    The performance of a serum PCR assay was compared with that of a blood PCR assay for the diagnosis of canine brucellosis caused by Brucella canis in 72 dogs. The dogs were classified into three groups (infected, non-infected and suspected brucellosis) according to the results of blood culture and serological tests. The sensitivities of blood PCR and serum PCR were, respectively, 97.14 per cent and 25.71 per cent. The specificities of both were 100 per cent. In the group of dogs with suspected brucellosis, three were positive by blood PCR and none was positive by serum PCR. Serum PCR showed little value for the direct diagnosis of canine brucellosis as the assay had low diagnostic sensitivity and fewer positive dogs were detected by this test than by blood culture, blood PCR, rapid slide agglutination test (RSAT) and RSAT with 2-mercaptoethanol.

  9. Chromogenic smart materials

    Directory of Open Access Journals (Sweden)

    Carl M. Lampert

    2004-03-01

    Full Text Available Smart materials cover a wide and developing range of technologies. A particular type of smart material, known as chromogenics, can be used for large area glazing in buildings, automobiles, planes, and for certain types of electronic display. These technologies consist of electrically-driven media including electrochromism, suspended particle electrophoresis, polymer dispersed liquid crystals, electrically heated thermotropics, and gaschromics.

  10. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Pilatti, Marcia M.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: marciapilatti@yahoo.com.br, e-mail: antero@cdtn.br; Ferreira, Sidney A. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com

    2009-07-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with {sup 32}P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  11. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    Science.gov (United States)

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  12. Immuno-PCR assay for sensitive detection of proteins in real time

    Science.gov (United States)

    The immuno-PCR (IPCR) assay combines the versatility and robustness of immunoassays with the exponential signal amplification power of the polymerase chain reaction (PCR). Typically, IPCR allows a 10–1,000-fold increase in sensitivity over the analogous enzyme-linked immunosorbent assay (ELISA). Thi...

  13. Pre-Clinical Testing of a Real-Time PCR Assay for Diahhreal Disease Agent Cryptosporidium

    Science.gov (United States)

    2014-05-16

    testing strategy is in line with current OIVDES thinking and is sufficient to support a pre- market notification application. Investigational device...PCR detection - the student conducted an experiment to determine the LOD of a PCR assay using spiked stool samples and QIAGEN viral RNA kit...Nucleic acid preparation and real time PCR detection assay using spiked stool samples and QIAGEN viral RNA kit on ETEC ST1b. Ran test without aid as a

  14. The international standard ISO/TS 21872-1 to study the occurence of total and pathogenic Vibrio parahaemolyticus and Vibrio cholerae in seafood: ITS improvement by use of a chromogenic medium and PCR.

    Science.gov (United States)

    Rosec, Jean-Philippe; Causse, Véronique; Cruz, Barbara; Rauzier, Jean; Carnat, Laurence

    2012-07-02

    During two surveys conducted in 2008 and 2009, the culture method described in the international standard ISO/TS 21872-1 was applied to the detection of Vibrio parahaemolyticus and Vibrio cholerae in 112 living bivalve mollusc samples, with a chromogenic medium used in addition to the TCBS agar, as second selective isolation medium and for enumeration of V. parahaemolyticus and V. cholerae by surface inoculation. A PCR method for detection of these 2 Vibrio species and the hemolysin genes tdh and trh, was applied in parallel. In 2009, the survey was extended to finfish fillets and crustaceans. PCR was also used for species confirmation of characteristic colonies. The identity of the PCR products, specifically targeting V. parahaemolyticus, was checked by sequencing. Occurrence of V. parahaemolyticus and V. cholerae isolates in living bivalve molluscs ranged from 30.4% to 32.6% and from 1.4% to 4.7% respectively. In frozen crustaceans (2009 survey) V. parahaemolyticus and V. cholerae isolates were respectively found in 45% and 10% of the samples. No V. parahaemolyticus or V. cholerae was detected in frozen fish fillets, neither by the ISO method nor by PCR. In 2009, enteropathogenic V. parahaemolyticus (trh+) was isolated from 4 out of 43 oyster samples while the trh gene was present in V. alginolyticus strains and in samples where V. parahaemolyticus was not detected (9 over 112 samples). The ISO method failed to isolate V. parahaemolyticus in 44% to 53% of the living bivalve molluscs where PCR detected the toxR gene specific of V. parahaemolyticus (Vp-toxR). Our results highlighted the need for a revision of the ISO/TS 21872-1 standard, at least, for analysis of living bivalve molluscs, and confirmed the increasing concern of enteropathogenic V. parahaemolyticus in French bivalve molluscs. Enrichment at 41.5°C was questioned and some reliable solutions for the improvement of the ISO/TS 21872-1 method, such as the PCR method for screening of positive samples and

  15. Detection of Hepatitis B Virus DNA by Duplex Scorpion Primer-based PCR Assay

    Institute of Scientific and Technical Information of China (English)

    KONG De-Ming孔德明; SHEN Han-Xi沈含熙; MI Huai-Feng宓怀风

    2004-01-01

    The application of a new fiuorogenic probe-based PCR assay (PCR duplex scorpion primer assay) to the detection of Hepatitis B virus (HBV) DNA in human sera was described. Duplex scorpion primer is a modified variant of duplex Amplifluor, and the incorporation of a PCR stopper between probe and primer sequences improve the detection specificity and sensitivity. Combined with PCR amplification, this probe can give unambiguous positive results for the reactions initiated with more than 20 HBV molecules. In addition, the particular unimolecular probing mechanism of this probe makes the use of short target-specific probe sequence possible, which will render this probe applicable in some specific systems.

  16. Performance of MycAssay Aspergillus DNA real-time PCR assay compared with the galactomannan detection assay for the diagnosis of invasive aspergillosis from serum samples.

    Science.gov (United States)

    Danylo, Alexis; Courtemanche, Chantal; Pelletier, René; Boudreault, Alexandre A

    2014-08-01

    Invasive aspergillosis (IA) is a major problem in the immunocompromised population, and its diagnosis is difficult due to the low sensitivity of available tests. Detection of Aspergillus nucleic acid by polymerase chain reaction (PCR) in serum samples is a promising diagnostic tool; however, use of multiple "in-house" methods precludes standardization. The first commercial PCR assay, MycAssay Aspergillus (Myconostica, Ltd), became available recently, and its performance in the diagnosis of IA was evaluated and compared with the galactomannan (GM) assay. Serum samples obtained from patients with hematological cancer were tested retrospectively with MycAssay Aspergillus PCR. Per-episode and per-test analyses were undertaken with 146 sera from 35 hematological patients. Sixteen patients had proven or probable IA and 19 had possible or no IA. In per-episode analysis, MycAssay Aspergillus had a sensitivity of 43.8% (95% confidence interval [CI], 19.8%-70.1%) and a specificity of 63.2% (95% CI, 38.4%-83.7%) for IA diagnosis. In per-test analyses, MycAssay Aspergillus had a lower specificity than the GM assay (83.3% vs. 93.1%, P = 0.04). The addition of PCR to routine clinical practice would have permitted the diagnosis of one additional probable IA in our cohort. Use of PCR instead of GM assay would have delayed the diagnosis in two cases. Aspergillus DNA detection by PCR with serum specimens using MycAssay showed a lower specificity than the GM assay and was associated with a low sensitivity for IA diagnosis. More studies are needed to determine the exact role of MycAssay in IA diagnosis in patients with hematological malignancy.

  17. A Trio of Human Molecular Genetics PCR Assays

    Science.gov (United States)

    Reinking, Jeffrey L.; Waldo, Jennifer T.; Dinsmore, Jannett

    2013-01-01

    This laboratory exercise demonstrates three different analytical forms of the polymerase chain reaction (PCR) that allow students to genotype themselves at four different loci. Here, we present protocols to allow students to a) genotype a non-coding polymorphic Variable Number of Tandem Repeat (VNTR) locus on human chromosome 5 using conventional…

  18. Fast detection of Noroviruses using a real-time PCR assay and automated sample preparation

    Directory of Open Access Journals (Sweden)

    Schmid Michael

    2004-06-01

    Full Text Available Abstract Background Noroviruses (NoV have become one of the most commonly reported causative agents of large outbreaks of non-bacterial acute gastroenteritis worldwide as well as sporadic gastroenteritis in the community. Currently, reverse transcriptase polymerase chain reaction (RT-PCR assays have been implemented in NoV diagnosis, but improvements that simplify and standardize sample preparation, amplification, and detection will be further needed. The combination of automated sample preparation and real-time PCR offers such refinements. Methods We have designed a new real-time RT-PCR assay on the LightCycler (LC with SYBR Green detection and melting curve analysis (Tm to detect NoV RNA in patient stool samples. The performance of the real-time PCR assay was compared with that obtained in parallel with a commercially available enzyme immunoassay (ELISA for antigen detection by testing a panel of 52 stool samples. Additionally, in a collaborative study with the Baden-Wuerttemberg State Health office, Stuttgart (Germany the real-time PCR results were blindly assessed using a previously well-established nested PCR (nPCR as the reference method, since PCR-based techniques are now considered as the "gold standard" for NoV detection in stool specimens. Results Analysis of 52 clinical stool samples by real-time PCR yielded results that were consistent with reference nPCR results, while marked differences between the two PCR-based methods and antigen ELISA were observed. Our results indicate that PCR-based procedures are more sensitive and specific than antigen ELISA for detecting NoV in stool specimens. Conclusions The combination of automated sample preparation and real-time PCR provided reliable diagnostic results in less time than conventional RT-PCR assays. These benefits make it a valuable tool for routine laboratory practice especially in terms of rapid and appropriate outbreak-control measures in health-care facilities and other settings.

  19. Development of a PCR assay suitable for Campylobacter spp. mass screening programs in broiler production

    DEFF Research Database (Denmark)

    Bang, Dang Duong; Pedersen, Karl; Madsen, Mogens

    2001-01-01

    culture techniques since 1998. However, using conventional culture methods is time consuming and laborious, and therefore a Polymerase Chain Reaction (PCR) Campylobacter detection assay suitable for mass screening of cloacal swab samples from broilers was developed. By comparing the PCR detection...... with conventional culture methods, significantly more samples were found positive for Campylobacter with the PCR method. The PCR method is rapid, sensitive and suitable for mass screening for Campylobacter in poultry. Using this PCR method Campylobacter can be detected within 15 h. Notably, the method can...

  20. Design of a multiplex PCR assay for the simultaneous detection and confirmation of Neisseria gonorrhoeae.

    LENUS (Irish Health Repository)

    O'Callaghan, Isabelle

    2010-05-01

    To improve the detection of Neisseria gonorrhoeae by designing a multiplex PCR assay using two N gonorrhoeae-specific genes as targets, thereby providing detection and confirmation of a positive result simultaneously.

  1. Performance Assessment of Human and Cattle Associated Quantitative Real-time PCR Assays - slides

    Science.gov (United States)

    The presentation overview is (1) Single laboratory performance assessment of human- and cattle associated PCR assays and (2) A Field Study: Evaluation of two human fecal waste management practices in Ohio watershed.

  2. Comparative evaluation of a chromogenic agar medium-PCR protocol with a conventional method for isolation of Vibrio parahaemolyticus strains from environmental and clinical samples.

    Science.gov (United States)

    Canizalez-Roman, Adrian; Flores-Villaseñor, Héctor; Zazueta-Beltran, Jorge; Muro-Amador, Secundino; León-Sicairos, Nidia

    2011-02-01

    Screening for pathogenic Vibrio parahaemolyticus has become routine in certain areas associated with food-borne outbreaks. This study is an evaluation of the CHROMagar Vibrio (CV) medium-PCR protocol and the conventional method (TCBS (thiosulfate-citrate-bile salts-sucrose) agar plus biochemical and Wagatsuma agar tests) for detection of V. parahaemolyticus in shrimp, water, sediment, and stool samples collected for biosurveillance in an endemic area of northwestern Mexico. A total of 131 environmental and clinical samples were evaluated. The CV medium-PCR protocol showed a significantly improved ability (P TDH) in developing countries. In our results, Wagatsuma agar showed low sensitivity (65.4% at 24 h and 75.6% at 48 h) and specificity (52.4% at 48 h) for identifying V. parahaemolyticus positive for TDH. Overall, our data support the use of the CV medium-PCR protocol in place of the conventional method (TCBS-biochemical tests-Wagatsuma agar) for detection of pathogenic V. parahaemolyticus, both in terms of effectiveness and cost efficiency.

  3. Development of a real-time PCR assay for quantification of Citrobacter rodentium.

    Science.gov (United States)

    Sagaidak, Sofia; Taibi, Amel; Wen, Bijun; Comelli, Elena M

    2016-07-01

    Molecular tools to quantify Citrobacter rodentium are not available. We developed a quantitative PCR assay targeting the espB gene. This assay is specific, has a linearity range of about 6.7×10(1) to 6.7×10(6)cells/PCR reaction (92% efficiency) and a detection limit of about 10(4)cells/g wet feces.

  4. A quadruplex PCR (qxPCR) assay for adulteration in dairy products.

    Science.gov (United States)

    Agrimonti, Caterina; Pirondini, Andrea; Marmiroli, Marta; Marmiroli, Nelson

    2015-11-15

    This study describes the development of a quadruplex quantitative Real Time PCR (qxPCR) based on SYBR®GreenER chemistry, for rapid identification of DNA of cow, goat, sheep and buffalo in dairy products, and for quantification of cow DNA in these products. The platform was applied to: (i) mixes of milks at fixed percentages; (ii) cheeses prepared with the same mixes; (iii) commercial dairy products. The methodology enabled the detection of DNA from cow in mixes of milk and cheeses with a limit of detection (LOD) of 0.1%. When applied to commercial dairy products the qxPCR gave results comparable with each single-plex Real Time PCR. A good correlation (R(2)>0.9) between peaks' area of derivative of melting curves of amplicons and percentages of cow milk in milk mixes and cheeses, allows for an estimation of cow DNA in a dynamic range varying from 0.1-5% to 1-25%.

  5. A multiplex real-time PCR assay for routine diagnosis of bacterial vaginosis

    NARCIS (Netherlands)

    Kusters, J. G.; Reuland, E. A.; Bouter, S.; Koenig, P.; Dorigo-Zetsma, J. W.

    2015-01-01

    A semi-quantitative multiplex PCR assay for the diagnosis of bacterial vaginosis (BV) was evaluated in a prospective study in a population of Dutch women with complaints of abnormal vaginal discharge. The PCR targets Gardnerella vaginalis, Atopobium vaginae, Megasphaera phylotype 1, Lactobacillus cr

  6. Validation of real time PCR assays for use in routine diagnostics of pig diarrhoea

    DEFF Research Database (Denmark)

    Ståhl, Marie; Hjulsager, Charlotte Kristiane; Breum, Solvej Østergaard

    At the National Veterinary Institute in Denmark we want to optimize routine diagnostic analyses by screening samples simultaneously for several agents by real time PCR. Here we present the validation of real time PCR assays for E. coli F4. E coli F18 and Lawsonia intracellularis2 in pig feces...

  7. Development of a multiplex PCR assay detecting 52 autosomal SNPs

    DEFF Research Database (Denmark)

    Sanchez Sanchez, Juan Jose; Phillips, C.; Børsting, Claus

    2006-01-01

    be performed. The SNPforID consortium (www.snpforid.org) was established in 2003 with the principal goal of developing a SNP-based system of DNA analysis that would have comparable discrimination power and ease of use to those of existing short tandem repeat (STR) based techniques. Here, we describe a strategy...... for amplifying 52 genomic DNA fragments, each containing one SNP, in a single tube, and accurately genotyping the PCR product mixture using two single base extension reactions. This multiplex approach reduces the cost of SNP genotyping and requires as little as 0.5 ng of genomic DNA to detect 52 SNPs. We used...

  8. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, R P; Langlois, R G; Nasarabadi, S; Benett, W J; Colston, B W; Johnson, D C; Brown, S B; Stratton, P L; Milanovich, F P

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flow cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.

  9. Evaluation of 11 PCR assays for species-level identification of Campylobacter jejuni and Campylobacter coli

    DEFF Research Database (Denmark)

    On, Stephen L.W.; Jordan, Penelope J.

    2003-01-01

    We examined the sensitivity and specificity of 11 PCR assays described for the species identification of Campylobacter jejuni and Campylobacter coli by using 111 type, reference, and field strains of C. jejuni, C. coli, and Campylobacter lari. For six assays, an additional 21 type strains...

  10. A pentaplex PCR assay for detection and characterization of Vibrio vulnificus and Vibrio parahaemolyticus isolates.

    Science.gov (United States)

    Bhattacharyya, N; Hou, A

    2013-09-01

    Vibrio parahaemolyticus and Vibrio vulnificus are the leading causes of seafood-related illnesses and also can cause wound infections. These bacteria often co-exist in marine and estuarine environments. However, there have been no reported protocols that can detect and characterize (i.e. pathogenic or nonpathogenic) them in a single PCR. In this study, we developed a pPCR assay with a combination of two species-specific and three pathogenic-specific PCR primers to simultaneously detect virulent (viuB in V. vulnificus and tdh/trh in V. parahaemolyticus) and nonvirulent (vvhA in V. vulnificus and tlh in V. parahaemolyticus) markers of the two species in bacterial isolates. The assay was validated by three methods. First, the pPCR was used to characterize 300 bacterial isolates consisting of seven reference strains and 293 environmental strains isolated from the Gulf of Mexico water. Results were compared with characterizations based on single-gene PCR amplifications and previously published multiplex PCR protocols. Second, 51 isolates characterized with the pPCR were analysed by 16S rRNA sequencing to confirm any false-negative/positive reaction. Finally, the effectiveness of the assay for heterogeneous bacterial samples was validated. The pPCR correctly characterized isolates from the Gulf with an efficiency of 96·6-98·7%.

  11. How to evaluate PCR assays for the detection of low-level DNA

    DEFF Research Database (Denmark)

    Banch-Clausen, Frederik; Urhammer, Emil; Rieneck, Klaus

    2015-01-01

    distribution describing parameters for singleplex real-time PCR-based detection of low-level DNA. The model was tested against experimental data of diluted cell-free foetal DNA. Also, the model was compared with a simplified formula to enable easy predictions. The model predicted outcomes that were......High sensitivity of PCR-based detection of very low copy number DNA targets is crucial. Much focus has been on design of PCR primers and optimization of the amplification conditions. Very important are also the criteria used for determining the outcome of a PCR assay, e.g. how many replicates...... are needed and how many of these should be positive or what amount of template should be used? We developed a mathematical model to obtain a simple tool for quick PCR assay evaluation before laboratory optimization and validation procedures. The model was based on the Poisson distribution and the Binomial...

  12. Quantitative assay of photoinduced DNA strand breaks by real-time PCR.

    Science.gov (United States)

    Wiczk, Justyna; Westphal, Kinga; Rak, Janusz

    2016-09-05

    Real-time PCR (qPCR) - a modern methodology primarily used for studying gene expression has been employed for the quantitative assay of an important class of DNA damage - single strand breaks. These DNA lesions which may lead to highly cytotoxic double strand breaks were quantified in a model system where double stranded DNA was sensitized to UV photons by labeling with 5-bromo-2'-deoxyuridine. The amount of breaks formed due to irradiation with several doses of 320nm photons was assayed by two independent methods: LC-MS and qPCR. A very good agreement between the relative damage measured by the two completely different analytical tools proves the applicability of qPCR for the quantitative analysis of SSBs. Our results suggest that the popularity of the hitherto underestimated though accurate and site-specific technique of real-time PCR may increase in future DNA damage studies.

  13. Viability-qPCR for detecting Legionella: Comparison of two assays based on different amplicon lengths.

    Science.gov (United States)

    Ditommaso, Savina; Giacomuzzi, Monica; Ricciardi, Elisa; Zotti, Carla M

    2015-08-01

    Two different real-time quantitative PCR (PMA-qPCR) assays were applied for quantification of Legionella spp. by targeting a long amplicon (approx 400 bp) of 16S rRNA gene and a short amplicon (approx. 100 bp) of 5S rRNA gene. Purified DNA extracts from pure cultures of Legionella spp. and from environmental water samples were quantified. Application of the two assays to quantify Legionella in artificially contaminated water achieved that both assays were able to detect Legionella over a linear range of 10 to 10(5) cells ml(-1). A statistical analysis of the standard curves showed that both assays were linear with a good correlation coefficient (R(2) = 0.99) between the Ct and the copy number. Amplification with the reference assay was the most effective for detecting low copy numbers (1 bacterium per PCR mixture). Using selective quantification of viable Legionella by the PMA-qPCR method we obtained a greater inhibition of the amplification of the 400-bp 16S gene fragment (Δlog(10) = 3.74 ± 0.39 log(10) GU ml(-1)). A complete inhibition of the PCR signal was obtained when heat-killed cells in a concentration below 1 × 10(5) cells ml(-1) were pretreated with PMA. Analysing short amplicon sizes led to only 2.08 log reductions in the Legionella dead-cell signal. When we tested environmental water samples, the two qPCR assays were in good agreement according to the kappa index (0.741). Applying qPCR combined with PMA treatment, we also obtained a good agreement (kappa index 0.615). The comparison of quantitative results shows that both assays yielded the same quantification sensitivity (mean log = 4.59 vs mean log = 4.31).

  14. A Highly Sensitive Telomerase Activity Assay that Eliminates False-Negative Results Caused by PCR Inhibitors

    Directory of Open Access Journals (Sweden)

    Hidenobu Yaku

    2013-09-01

    Full Text Available An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR on magnetic beads (MBs and subsequent application of cycling probe technology (CPT is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGGn-3' of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity.

  15. A quantitative real-time RT-PCR assay for mature C. albicans biofilms

    Directory of Open Access Journals (Sweden)

    Dongari-Bagtzoglou Anna

    2011-05-01

    Full Text Available Abstract Background Fungal biofilms are more resistant to anti-fungal drugs than organisms in planktonic form. Traditionally, susceptibility of biofilms to anti-fungal agents has been measured using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxyanilide (XTT assay, which measures the ability of metabolically active cells to convert tetrazolium dyes into colored formazan derivatives. However, this assay has limitations when applied to high C. albicans cell densities because substrate concentration and solubility are limiting factors in the reaction. Because mature biofilms are composed of high cell density populations we sought to develop a quantitative real-time RT-PCR assay (qRT-PCR that could accurately assess mature biofilm changes in response to a wide variety of anti-fungal agents, including host immune cells. Results The XTT and qRT-PCR assays were in good agreement when biofilm changes were measured in planktonic cultures or in early biofilms which contain lower cell densities. However, the real-time qRT-PCR assay could also accurately quantify small-medium size changes in mature biofilms caused by mechanical biomass reduction, antifungal drugs or immune effector cells, that were not accurately quantifiable with the XTT assay. Conclusions We conclude that the qRT-PCR assay is more accurate than the XTT assay when measuring small-medium size effects of anti-fungal agents against mature biofilms. This assay is also more appropriate when mature biofilm susceptibility to anti-fungal agents is tested on complex biological surfaces, such as organotypic cultures.

  16. A duplex real-time RT-PCR assay for profiling inhibitors of four dengue serotypes.

    Science.gov (United States)

    Gong, Edwin Yunhao; Smets, Alexandra; Verheyen, Nick; Clynhens, Marleen; Gustin, Emmanuel; Lory, Pedro; Kraus, Guenter

    2013-01-01

    We have developed a duplex real-time RT-PCR assay for profiling antiviral inhibitors of four dengue virus (DENV) serotypes. In this assay, the primers and the probe for amplifying DENV were designed in the conserved regions of the genome after aligned more than 300 nucleotide sequences of four dengue serotypes deposited in the GeneBank. To discriminate the antiviral activity from the cytotoxicity of compounds, a housekeeping gene of the Vero cells, β-actin, was used to design the primers and the probe for the second set of PCR as an internal control, which is used to normalize the RNA levels of dengue-specific PCR due to the cellular toxicity of test compounds. For compound profiling, the duplex PCR is performed using LightCycler(®) in a single tube to simultaneously amplify both the dengue target gene and the Vero cell housekeeping gene from the compound-treated Vero cell lysates. This assay was validated against a panel of reference compounds. The results show that the universal primers and probe in this duplex RT-PCR assay can efficiently amplify all four dengue serotypes and that the PCR efficiency for both the dengue target gene and the Vero cells β-actin gene is 100%.

  17. Development and Application of Nested PCR Assay for Detection of Dairy Cattle-Derived Cyclospora sp.

    Institute of Scientific and Technical Information of China (English)

    XIAO Shu-min; LI Guo-qing; LI Wei-hua; ZHOU Rong-qiong; YANG Jian-wei

    2007-01-01

    To develop a nested PCR assay for the detection of cattle-derived Cyclospora sp.,two pairs of primers were designed on the basis of the cattle-derived Cyclospora sp.sequences.These primers selectively amplified a 168-bp DNA fragment of the 18S rRNA gene of cattle-derived Cyclospora sp.With these primers,a nested PCR assay for the detection of cattlederived Cyclospora sp.was developed.The nested PCR assay was specific and there is no cross-reaction with other parasites,such as Eimeria spp.,Cryptosporidium spp.,Giardia sp.,Toxoplasma sp.,Trichuris sp.and cattle ciliate.The assay was able to detect as low as 2.85 x 10-2 fg of the control positive DNA.The results of the detection of clinical samples indicated that the assay coincided with microscopic examination.The results show that the nested PCR assay will be an effective tool for the detection of Cyclospora sp.in cattle feces.

  18. Molecular surveillance of true nontypeable Haemophilus influenzae: an evaluation of PCR screening assays.

    Directory of Open Access Journals (Sweden)

    Michael J Binks

    Full Text Available BACKGROUND: Unambiguous identification of nontypeable Haemophilus influenzae (NTHi is not possible by conventional microbiology. Molecular characterisation of phenotypically defined NTHi isolates suggests that up to 40% are Haemophilus haemolyticus (Hh; however, the genetic similarity of NTHi and Hh limits the power of simple molecular techniques such as PCR for species discrimination. METHODOLOGY/PRINCIPAL FINDINGS: Here we assess the ability of previously published and novel PCR-based assays to identify true NTHi. Sixty phenotypic NTHi isolates, classified by a dual 16S rRNA gene PCR algorithm as NTHi (n = 22, Hh (n = 27 or equivocal (n = 11, were further characterised by sequencing of the 16S rRNA and recA genes then interrogated by PCR-based assays targeting the omp P2, omp P6, lgtC, hpd, 16S rRNA, fucK and iga genes. The sequencing data and PCR results were used to define NTHi for this study. Two hpd real time PCR assays (hpd#1 and hpd#3 and the conventional iga PCR assay were equally efficient at differentiating study-defined NTHi from Hh, each with a receiver operator characteristic curve area of 0.90 [0.83; 0.98]. The hpd#1 and hpd#3 assays were completely specific against a panel of common respiratory bacteria, unlike the iga PCR, and the hpd#3 assay was able to detect below 10 copies per reaction. CONCLUSIONS/SIGNIFICANCE: Our data suggest an evolutionary continuum between NTHi and Hh and therefore no single gene target could completely differentiate NTHi from Hh. The hpd#3 real time PCR assay proved to be the superior method for discrimination of NTHi from closely related Haemophilus species with the added potential for quantification of H. influenzae directly from specimens. We suggest the hpd#3 assay would be suitable for routine NTHi surveillance and to assess the impact of antibiotics and vaccines, on H. influenzae carriage rates, carriage density, and disease.

  19. Development of a real-time SYBR Green PCR assay for the rapid detection of Dermatophilus congolensis.

    Science.gov (United States)

    García, Alfredo; Martínez, Remigio; Benitez-Medina, José Manuel; Risco, David; Garcia, Waldo Luis; Rey, Joaquín; Alonso, Juan Manuel; Hermoso de Mendoza, Javier

    2013-01-01

    Methods such as real time (RT)-PCR have not been developed for the rapid detection and diagnosis of Dermatophilus (D.) congolensis infection. In the present study, a D. congolensis-specific SYBR Green RT-PCR assay was evaluated. The detection limit of the RT-PCR assay was 1 pg of DNA per PCR reaction. No cross-reaction with nucleic acids extracted from Pseudomonas aeruginosa, Mycobacterium tuberculosis, Staphylococcus aureus, or Austwickia chelonae was observed. Finally, the RT-PCR assay was used to evaluate clinical samples collected from naturally infected animals with D. congolensis. The results showed that this assay is a fast and reliable method for diagnosing dermatophilosis.

  20. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S-H; Tsai, M-H; Lin, C-W [Department of Biotechnology, College of Health Science, Asia University, Wufeng, Taichung, Taiwan (China); Yang, T-C; Chuang, P-H [Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan (China); Tsai, I-S; Lu, H-C [Nanotechnology Research Center, Feng Chia University, Taichung, Taiwan (China); Wan Lei; Lin, Y-J [Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Lai, C-H [Department of Microbiology and Immunology, China Medical University, Taichung, Taiwan (China)], E-mail: cwlin@mail.cmu.edu.tw

    2008-10-08

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  1. Detection of bovine herpesvirus 4 glycoprotein B and thymidine kinase DNA by PCR assays in bovine milk

    NARCIS (Netherlands)

    Wellenberg, G.J.; Verstraten, E.; Belak, S.; Verschuren, S.B.E.; Rijsewijk, F.A.M.; Peshev, R.; Oirschot, van J.T.

    2001-01-01

    A polymerase chain reaction (PCR) assay was developed to detect bovine herpesvirus 4 (BHV4) glycoprotein B (gB) DNA, and a nested-PCR assay was modified for the detection of BHV4 thymidine kinase (TK) DNA in bovine milk samples. To identify false-negative PCR results, internal control templates were

  2. A PCR-high-resolution melt assay for rapid differentiation of nontypeable Haemophilus influenzae and Haemophilus haemolyticus.

    Science.gov (United States)

    Pickering, Janessa; Binks, Michael J; Beissbarth, Jemima; Hare, Kim M; Kirkham, Lea-Ann S; Smith-Vaughan, Heidi

    2014-02-01

    We have developed a PCR-high-resolution melt (PCR-HRM) assay to discriminate nontypeable Haemophilus influenzae (NTHi) colonies from Haemophilus haemolyticus. This method is rapid and robust, with 96% sensitivity and 92% specificity compared to the hpd#3 assay. PCR-HRM is ideal for high-throughput screening for NTHi surveillance and clinical trials.

  3. Temperature Switch PCR (TSP: Robust assay design for reliable amplification and genotyping of SNPs

    Directory of Open Access Journals (Sweden)

    Mather Diane E

    2009-12-01

    Full Text Available Abstract Background Many research and diagnostic applications rely upon the assay of individual single nucleotide polymorphisms (SNPs. Thus, methods to improve the speed and efficiency for single-marker SNP genotyping are highly desirable. Here, we describe the method of temperature-switch PCR (TSP, a biphasic four-primer PCR system with a universal primer design that permits amplification of the target locus in the first phase of thermal cycling before switching to the detection of the alleles. TSP can simplify assay design for a range of commonly used single-marker SNP genotyping methods, and reduce the requirement for individual assay optimization and operator expertise in the deployment of SNP assays. Results We demonstrate the utility of TSP for the rapid construction of robust and convenient endpoint SNP genotyping assays based on allele-specific PCR and high resolution melt analysis by generating a total of 11,232 data points. The TSP assays were performed under standardised reaction conditions, requiring minimal optimization of individual assays. High genotyping accuracy was verified by 100% concordance of TSP genotypes in a blinded study with an independent genotyping method. Conclusion Theoretically, TSP can be directly incorporated into the design of assays for most current single-marker SNP genotyping methods. TSP provides several technological advances for single-marker SNP genotyping including simplified assay design and development, increased assay specificity and genotyping accuracy, and opportunities for assay automation. By reducing the requirement for operator expertise, TSP provides opportunities to deploy a wider range of single-marker SNP genotyping methods in the laboratory. TSP has broad applications and can be deployed in any animal and plant species.

  4. Simultaneous Detection of Three Arboviruses Using a Triplex RT-PCR Enzyme Hybridization Assay

    Institute of Scientific and Technical Information of China (English)

    Dan Dong; Shi-hong Fu; Li-hua Wang; Zhi Lv; Tai-yuan Li; Guo-dong Liang

    2012-01-01

    Arboviruses represent a serious problem to public health and agriculture worldwide.Fast,accurate identification of the viral agents of arbovirus-associated disease is essential for epidemiological surveillance and laboratory investigation.We developed a cost-effective,rapid,and highly sensitive one-step "triplex RT-PCR enzyme hybridization"assay for simultaneous detections of Japanese Encephallitis virus (JEV,Flaviviridae)Getah virus (GETV,Togaviridae),and Tahyna virus (TAHV,Bunyaviridae) using three pairs of primers to amplify three target sequences in one RT-PCR reaction.The analytical sensitivity of this assay was 1 PFU/mL for JEV,10PFU/mL for GETV,and 10 PFU/mL for TAHV.This assay is significantly more rapid and less expensive than the traditional serological detection and single RT-PCR reaction methods.When “triplex RT-PCR enzyme hybridization” was applied to 29 cerebrospinal fluid(CSF)samples that were JEV-positive by normal RT-PCR assay,all samples were strongly positive for JEV,but negative for GETV and TAHV,demonstrating a good sensitivity,specificity,and performance at CSF specimen detection.

  5. Detection of Genitourinary Tract Chlamydia trachomatis Infection In Urine specimens by PCR Assay

    Institute of Scientific and Technical Information of China (English)

    李洪霞; 温泉; 夏迎华; 张林

    2001-01-01

    Objective: To compare the sensitivity and specificity of the cervical/urethral swabs with voided urine specimens for the detection of genitourinary tract infection with Chlamydia trachomatis and determine whether urine specimens can replace the cervical/urethral swabs in detection of C. trachomatis. Methods: The matched cervical/urethral swabs and voided urine specimens were collected from 569 patients of STD clinics.Polymerase chain reaction (PCR) assay specific for C. trachomatis plasmid DNA and rapid antigen testing (Clear view assay) was used to detect C. trachomatis. Standard criteria that defined """"true"""" positive included: 1) positive PCR results both in cervical/urethral swab and voided urine specimen or 2) positive voided urine results both by PCR assay and clear view test or 3)positive results in both PCR assay of cervical/urethral swab and clear view test of voided urine. For statistical analysis, the chi-square test was used. Results: The prevalence of C. trachomatis in patients with symptoms was 12.1% (28/231) in women and 10.4%(10/96) in men, with no significant difference between them (x2=0.21,P>0.05). The prevalence of C. trachomatis in patients with no symptoms was 11.0% (11/100) in women and 15.5% (22/142) in men, with a significant difference existing between them. (x2=4.0, P0.05) existed between PCR testing of swabs (sensitivity 87.3 %; specificity 99.2 %) and PCR testing of urine (sensitivity 88.7%; specificity 98.8%). As for clear view assay, sensitivity was 60.6% and specificity was 100%. Conclusions: PCR assay is superior to clear view in detecting C. trachomatis. Although both PCR testing of swabs and PCR testing of urine specimens both have high sensitivity and specificity, urine specimen testing is more cost-effective, practical and noninvasive. Thus urine specimens can take the place of the swabs in PCR testing for chlamydia.

  6. Quantitative Analysis of Epstein-Barr Virus Load by Using a Real-Time PCR Assay

    OpenAIRE

    1999-01-01

    To measure the virus load in patients with symptomatic Epstein-Barr virus (EBV) infections, we used a real-time PCR assay to quantify the amount of EBV DNA in blood. The real-time PCR assay could detect from 2 to over 107 copies of EBV DNA with a wide linear range. We estimated the virus load in peripheral blood mononuclear cells (PBMNC) from patients with symptomatic EBV infections. The mean EBV-DNA copy number in the PBMNC was 103.7 copies/μg of DNA in patients with EBV-related lymphoprolif...

  7. Real-time PCR assay for rapid qualitative and quantitative detection of Entamoeba histolytica.

    Science.gov (United States)

    Orosz, Erika; Perkátai, Katalin; Kapusinszky, Beatrix; Farkas, Agnes; Kucsera, István

    2012-12-01

    Simple real-time PCR assay with one set of primer and probe for rapid, sensitive qualitative and quantitative detection of Entamoeba histolytica has been used. Consensus sequences were used to amplify a species-specific region of the 16S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be a perfect match for the 16S rRNA gene of Entamoeba species, while the acceptor probe sequence was designed for Entamoeba histolytica, which allowed differentiation. The performed characteristics of the real-time PCR assay were compared with ELISA antigen and microscopical detection from 77 samples of individuals with suspected clinical diagnosis of imported E. histolytica infection. Stool and liver abscess pus samples were examined with analytical sensitivity of 5 parasites per PCR reaction. The melting curve means Tms (standard deviation) in clinical isolates were 54°C. The real-time assay was 100% sensitive and specific for differentiation of Entamoeba histolytica, compared with conventional ELISA or microscopy. This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of Entamoeba histolytica. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed.

  8. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    Science.gov (United States)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  9. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus and PCV2 (DNA virus from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29% and TGEV (11.7% preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  10. Development and comparison of a real-time PCR assay for detection of Dichelobacter nodosus with culturing and conventional PCR: harmonisation between three laboratories

    DEFF Research Database (Denmark)

    Frosth, Sara; Slettemeås, Jannice S.; Jørgensen, Hannah J.

    2012-01-01

    a TaqMan-based real-time PCR assay for detection of D. nodosus and to compare its performance with culturing and conventional PCR. METHODS: A D. nodosus-specific TaqMan based real-time PCR assay targeting the 16S rRNA gene was designed. The inclusivity and exclusivity (specificity) of the assay...... was tested using 55 bacterial and two fungal strains. To evaluate the sensitivity and harmonisation of results between different laboratories, aliquots of a single DNA preparation were analysed at three Scandinavian laboratories. The developed real-time PCR assay was compared to culturing by analysing 126...... is fundamental to diagnosis of footrot, but D. nodosus should also be detected to confirm the diagnosis. PCR-based detection using conventional PCR has been used at our institutes, but the method was laborious and there was a need for a faster, easier-to-interpret method. The aim of this study was to develop...

  11. Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification.

    Science.gov (United States)

    Kanthaswamy, S; Premasuthan, A; Ng, J; Satkoski, J; Goyal, V

    2012-03-01

    In the United States, human forensic evidence collected from crime scenes is usually comingled with biomaterial of canine and feline origins. Knowledge of the concentration of nuclear DNA extracted from a crime scene biological sample and the species from which the sample originated is essential for DNA profiling. The ability to accurately detect and quantify target DNA in mixed-species samples is crucial when target DNA may be overwhelmed by non-target DNA. We have designed and evaluated a species-specific (human, dog and cat) nuclear DNA identification assay based on the TaqMan(®) quantitative real-time PCR (qPCR) technology that can simultaneously detect and measure minute quantities of DNA specific to either humans, dogs and/or cats. The fluorogenic triplex assay employs primers and hydrolysis probes that target the human TH01 locus as well as the dog and cat Melanocortin 1 Receptor (MC1R) sequences in a species-specific manner. We also demonstrate that the assay is a highly sensitive, reliable and robust method for identifying and quantifying mixed-species templates of human-dog-cat origin with as little as 0.4 pg of human and cat nuclear DNA, respectively, and 4.0 pg of dog nuclear DNA.

  12. Comparison of histopathology and PCR based assay for detection of experimentally induced toxoplasmosis in murine model

    Institute of Scientific and Technical Information of China (English)

    Vikrant Sudan; A K Tewari; R Singh; Harkirat Singh

    2015-01-01

    Objective:To compare histopathology and PCR based detection in diagnosis of experimentally induced toxoplasmosis of RH human strain of the parasite in murine models. Methods:A comparison of histopathology and PCR based detection was done to diagnose experimentally induced toxoplasmosis in ten inbred swiss albino mice after intraperitoneal inoculation of 100 tachyzoites of laboratory mantained human RH strain of the parasite. Tissue samples from lung, liver, spleen, brain, heart and kidney were taken and processed for histopathological examination while all the samples also were subjected to PCR, using primers directed to the multicopy of SAG 3 gene, in dublicates. Results: Histopathology revealed presence of tachyzoites only in liver while along with lung, liver, spleen and brain tissue yielded desired positive PCR amplicons. Conclusions:The SAG 3 based PCR is able to diagnose toxoplasmosis in those tissues which are declared negative by histopathological assay.

  13. Techniques for minimizing the effects of PCR inhibitors in the chytridiomycosis assay.

    Science.gov (United States)

    Kosch, T A; Summers, K

    2013-03-01

    Chytridiomycosis is an amphibian disease of global conservation concern that is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Since the discovery of Bd in 1998, several methods have been used for detection of Bd; among these polymerase chain reaction (PCR) from skin swabs is accepted as the best method due to its noninvasiveness, high sensitivity and ease of use. However, PCR is not without problems - to be successful, this technique is dependent upon the presence of nondegraded DNA template and reaction contents that are free from inhibitors. Here, we report on an investigation of several techniques aimed at improving the reliability of the Bd PCR assay by minimizing the effects of humic acid (HA), a potent PCR inhibitor. We compared the effectiveness of four DNA extraction kits (DNeasy, QIAamp DNA Stool, PowerLyzer Power Soil and PrepMan Ultra) and four PCR methods (Amplitaq Gold, bovine serum albumin, PowerClean DNA Clean-up and inhibitor resistant Taq Polymerase). The results of this and previous studies indicate that chytridiomycosis studies that use PCR methods for disease detection may be significantly underestimating the occurrence of Bd. Our results suggest that to minimize the inhibitory effects of HA, DNeasy should be used for sample DNA extraction and Amplitaq Gold with bovine serum albumin should be used for the Bd PCR assay. We also outline protocols tested, show the results of our methods comparisons and discuss the pros and cons of each method.

  14. Validity of a PCR assay in CSF for the diagnosis of neurocysticercosis

    Science.gov (United States)

    Campoverde, Alfredo; Romo, Matthew L.; García, Lorena; Piedra, Luis M.; Pacurucu, Mónica; López, Nelson; Aguilar, Jenner; López, Sebastian; Vintimilla, Luis C.; Toral, Ana M.; Peña-Tapia, Pablo

    2017-01-01

    Objective: To prospectively evaluate the validity of a PCR assay in CSF for the diagnosis of neurocysticercosis (NC). Methods: We conducted a multicenter, prospective case-control study, recruiting participants from 5 hospitals in Cuenca, Ecuador, from January 2015 to February 2016. Cases fulfilled validated diagnostic criteria for NC. For each case, a neurosurgical patient who did not fulfill the diagnostic criteria for NC was selected as a control. CT and MRI, as well as a CSF sample, were collected from both cases and controls. The diagnostic criteria to identify cases were used as a reference standard. Results: Overall, 36 case and 36 control participants were enrolled. PCR had a sensitivity of 72.2% (95% confidence interval [CI] 54.8%–85.8%) and a specificity of 100.0% (95% CI 90.3%–100.0%). For parenchymal NC, PCR had a sensitivity of 42.9% (95% CI 17.7%–71.1%), and for extraparenchymal NC, PCR had a sensitivity of 90.9% (95% CI 70.8%–98.9%). Conclusions: This study demonstrated the usefulness of this PCR assay in CSF for the diagnosis of NC. PCR may be particularly helpful for diagnosing extraparenchymal NC when neuroimaging techniques have failed. Classification of evidence: This study provides Class III evidence that CSF PCR can accurately identify patients with extraparenchymal NC. PMID:28105460

  15. Detection of Cryptococcus neoformans DNA in Tissue Samples by Nested and Real-Time PCR Assays

    Science.gov (United States)

    Bialek, Ralf; Weiss, Michael; Bekure-Nemariam, Kubrom; Najvar, Laura K.; Alberdi, Maria B.; Graybill, John R.; Reischl, Udo

    2002-01-01

    Two PCR protocols targeting the 18S rRNA gene of Cryptococcus neoformans were established, compared, and evaluated in murine cryptococcal meningitis. One protocol was designed as a nested PCR to be performed in conventional block thermal cyclers. The other protocol was designed as a quantitative single-round PCR adapted to LightCycler technology. One hundred brain homogenates and dilutions originating from 20 ICR mice treated with different azoles were examined. A fungal burden of 3 × 101 to 2.9 × 104 CFU per mg of brain tissue was determined by quantitative culture. Specific PCR products were amplified by the conventional and the LightCycler methods in 86 and 87 samples, respectively, with products identified by DNA sequencing and real-time fluorescence detection. An analytical sensitivity of 1 CFU of C. neoformans per mg of brain tissue and less than 10 CFU per volume used for extraction was observed for both PCR protocols, while homogenates of 70 organs from mice infected with other fungi were PCR negative. Specificity testing was performed with genomic DNA from 31 hymenomycetous fungal species and from the ustilaginomycetous yeast Malassezia furfur, which are phylogenetically related to C. neoformans. Twenty-four strains, including species of human skin flora like M. furfur and Trichosporon spp., were PCR negative. Amplification was observed with Cryptococcus amylolentus, Filobasidiella depauperata, Cryptococcus laurentii, and five species unrelated to clinical specimens. LightCycler PCR products from F. depauperata and Trichosporon faecale could be clearly discriminated by melting curve analysis. The sensitive and specific nested PCR assay as well as the rapid and quantitative LightCycler PCR assay might be useful for the diagnosis and monitoring of human cryptococcal infections. PMID:11874894

  16. Translation of a laboratory-validated equine herpesvirus-1 specific real-time PCR assay into an insulated isothermal polymerase chain reaction (iiPCR) assay for point-of-need diagnosis using POCKIT™ nucleic acid analyzer.

    Science.gov (United States)

    Balasuriya, Udeni B R; Lee, Pei-Yu Alison; Tsai, Yun-Long; Tsai, Chuan-Fu; Shen, Yu-Han; Chang, Hsiao-Fen Grace; Skillman, Ashley; Wang, Hwa-Tang Thomas; Pronost, Stéphane; Zhang, Yan

    2017-03-01

    Equine herpesvirus myeloencephalopathy (EHM), a major problem for the equine industry in the United States, is caused by equine herpesvirus-1 (EHV-1). In addition, EHV-1 is associated with upper respiratory disease, abortion, and chorioretinal lesions in horses. Here we describe the development and evaluation of an inexpensive, user-friendly insulated isothermal PCR (iiPCR) method targeting open reading 30 (ORF30) to detect both neuropathogenic and non-neuropathogenic strains on the field-deployable POCKIT™ device for point-of-need detection of EHV-1. The analytical sensitivity of the EHV-1 iiPCR assay was 13 genome equivalents per reaction. The assay did not cross react with ten non-target equine viral pathogens. Performance of the EHV-1 iiPCR assay was compared to two previously described real-time PCR (qPCR) assays in two laboratories by using 104 archived clinical samples. All 53 qPCR-positive and 46 of the 51 qPCR-negative samples tested positive and negative, respectively, by the iiPCR. The agreement between the two assays was 95.19% (confidence interval 90.48-99.90%) with a kappa value of 0.90. In conclusion, the newly developed EHV-1 iiPCR assay is robust to provide specificity and sensitivity comparable to qPCR assays for the detection of EHV-1 nucleic acid in clinical specimens.

  17. DEVELOPMENT OF HOMOLOGOUS VIRAL INTERNAL CONTROLS FOR USE IN RT-PCR ASSAYS OF WATERBORNE ENTERIC VIRUSES

    Science.gov (United States)

    Enteric viruses often contaminate water sources causing frequent outbreaks of gastroenteritis. Reverse transcription-polymerase chain reaction (RT-PCR) assays are commonly used for detection of human enteric viruses in environmental and drinking water samples. RT-PCR provides ...

  18. Promising Nucleic Acid Lateral Flow Assay Plus PCR for Shiga Toxin-Producing Escherichia coli.

    Science.gov (United States)

    Terao, Yoshitaka; Takeshita, Kana; Nishiyama, Yasutaka; Morishita, Naoki; Matsumoto, Takashi; Morimatsu, Fumiki

    2015-08-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) is a frequent cause of foodborne infections, and methods for rapid and reliable detection of STEC are needed. A nucleic acid lateral flow assay (NALFA) plus PCR was evaluated for detecting STEC after enrichment. When cell suspensions of 45 STEC strains, 14 non-STEC strains, and 13 non-E. coli strains were tested with the NALFA plus PCR, all of the STEC strains yielded positive results, and all of the non-STEC and non-E. coli strains yielded negative results. The lower detection limit for the STEC strains ranged from 0.1 to 1 pg of genomic DNA (about 20 to 200 CFU) per test, and the NALFA plus PCR was able to detect Stx1- and Stx2-producing E. coli strains with similar sensitivities. The ability of the NALFA plus PCR to detect STEC in enrichment cultures of radish sprouts, tomato, raw ground beef, and beef liver inoculated with 10-fold serially diluted STEC cultures was comparable to that of a real-time PCR assay (at a level of 100 to 100,000 CFU/ml in enrichment culture). The bacterial inoculation test in raw ground beef revealed that the lower detection limit of the NALFA plus PCR was also comparable to that obtained with a real-time PCR assay that followed the U.S. Department of Agriculture guidelines. Although further evaluation is required, these results suggest that the NALFA plus PCR is a specific and sensitive method for detecting STEC in a food manufacturing plant.

  19. Determining lower limits of detection of digital PCR assays for cancer-related gene mutations

    Directory of Open Access Journals (Sweden)

    Coren A. Milbury

    2014-09-01

    Full Text Available Digital PCR offers very high sensitivity compared to many other technologies for processing molecular detection assays. Herein, a process is outlined for determining the lower limit of detection (LoD of two droplet-based digital PCR assays for point mutations of the epidermal growth factor receptor (EGFR gene. Hydrolysis probe mutation-detection assays for EGFR p.L858R and p.T790M mutations were characterized in detail. Furthermore, sixteen additional cancer-related mutation assays were explored by the same approach. For the EGFR L8585R assay, the assay sensitivity is extremely good, and thus, the LoD is limited by the amount of amplifiable DNA that is analyzed. With 95% confidence limits, the LoD is one mutant in 180,000 wild-type molecules for the evaluation of 3.3 μg of genomic DNA, and detection of one mutant molecule in over 4 million wild-type molecules was achieved when 70 million copies of DNA were processed. The measured false-positive rate for the EGFR L8585R assay is one in 14 million, which indicates the theoretical LoD if an unlimited amount of DNA is evaluated. For the EFGR T790M assay, the LoD is one mutant in 13,000 for analysis of a 3.3 μg sample of genomic DNA, and the dPCR assay limit sensitivity approaches one mutant in 22,000 wild-type molecules.

  20. Evaluation of Various Campylobacter-Specific Quantitative PCR (qPCR) Assays for Detection and Enumeration of Campylobacteraceae in Irrigation Water and Wastewater via a Miniaturized Most-Probable-Number–qPCR Assay

    Science.gov (United States)

    Banting, Graham S.; Braithwaite, Shannon; Scott, Candis; Kim, Jinyong; Jeon, Byeonghwa; Ashbolt, Nicholas; Ruecker, Norma; Tymensen, Lisa; Charest, Jollin; Pintar, Katarina; Checkley, Sylvia

    2016-01-01

    ABSTRACT Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)–quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053–1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease prevention related to food and water exposures. IMPORTANCE The results of this study demonstrate the importance of assay validation upon data interpretation of environmental monitoring for Campylobacter when using molecular biology-based assays. Previous studies describing

  1. Novel PCR Assays Complement Laser Biosensor-Based Method and Facilitate Listeria Species Detection from Food.

    Science.gov (United States)

    Kim, Kwang-Pyo; Singh, Atul K; Bai, Xingjian; Leprun, Lena; Bhunia, Arun K

    2015-09-08

    The goal of this study was to develop the Listeria species-specific PCR assays based on a house-keeping gene (lmo1634) encoding alcohol acetaldehyde dehydrogenase (Aad), previously designated as Listeria adhesion protein (LAP), and compare results with a label-free light scattering sensor, BARDOT (bacterial rapid detection using optical scattering technology). PCR primer sets targeting the lap genes from the species of Listeria sensu stricto were designed and tested with 47 Listeria and 8 non-Listeria strains. The resulting PCR primer sets detected either all species of Listeria sensu stricto or individual L. innocua, L. ivanovii and L. seeligeri, L. welshimeri, and L. marthii without producing any amplified products from other bacteria tested. The PCR assays with Listeria sensu stricto-specific primers also successfully detected all species of Listeria sensu stricto and/or Listeria innocua from mixed culture-inoculated food samples, and each bacterium in food was verified by using the light scattering sensor that generated unique scatter signature for each species of Listeria tested. The PCR assays based on the house-keeping gene aad (lap) can be used for detection of either all species of Listeria sensu stricto or certain individual Listeria species in a mixture from food with a detection limit of about 10⁴ CFU/mL.

  2. A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae

    Science.gov (United States)

    Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...

  3. Pediatric visceral leishmaniasis diagnosis in Tunisia: comparative study between optimised PCR assays and parasitological methods

    Directory of Open Access Journals (Sweden)

    Kaouech E.

    2008-06-01

    Full Text Available There has been a steady increase of visceral leishmaniasis during the past 20 years in Tunisia. In this study, we assess the value of two optimised PCR versus those of classical methods for the diagnosis of human visceral leishmaniasis. 106 samples were collected from 53 cases of pediatric visceral leishmaniasis. Peripheral blood and bone marrow samples were analysed both by parasitological methods (direct examination, leukocytoconcentration (LCC and culture and by PCR methods with two primer pair (R221/R332 and Lei 70L/Lei 70R. We diagnosed visceral leishmaniasis in all patients: 44 cases were diagnosed by culture (83%, 42 by direct examination of bone marrow (79%, 17 by LCC (32%, and 53 positive cases with both PCR assays (R221/R332 and/or Lei 70L/Lei 70R (100%. Regarding each PCR assay, for blood samples, the difference between the sensitivities of PCR Lei 70L/Lei 70R (86,8% and PCR R221/R332 (17% is statistically significant with p-value 0.025. For bone marrow, the sensitivities of the two PCR methods were respectively 96,2% (Lei 70L/Lei 70R and 75,5% (R221/R332. On the whole, PCR Lei 70L/Lei 70R was more effective than PCR R221/R332 and conventional methods for the two biological samples. Moreover, the requirement of less invasive sample using blood has the advantage of being repeatable for screening and for post therapeutic monitoring.

  4. Evaluation of a novel PCR-based diagnostic assay for detection of Mycobacterium tuberculosis in sputum samples.

    Science.gov (United States)

    Maher, M; Glennon, M; Martinazzo, G; Turchetti, E; Marcolini, S; Smith, T; Dawson, M T

    1996-01-01

    We report on a PCR-based assay we have developed for the detection of Mycobacterium tuberculosis in sputum samples. One hundred sputum specimens, which included 34 culture-positive and 66 culture-negative specimens, were evaluated with this system. Of the 34 culture-positive specimens, 31 were PCR positive, and 60 of the culture-negative specimens were PCR negative. An internal standard has been included in the assay system to monitor PCR inhibition and to confirm the reliability of the PCR assay. PMID:8862607

  5. Detection of pork adulteration by highly-specific PCR assay of mitochondrial D-loop.

    Science.gov (United States)

    Karabasanavar, Nagappa S; Singh, S P; Kumar, Deepak; Shebannavar, Sunil N

    2014-02-15

    We describe a highly specific PCR assay for the authentic identification of pork. Accurate detection of tissues derived from pig (Sus scrofa) was accomplished by using newly designed primers targeting porcine mitochondrial displacement (D-loop) region that yielded an unique amplicon of 712 base pairs (bp). Possibility of cross-amplification was precluded by testing as many as 24 animal species (mammals, birds, rodent and fish). Suitability of PCR assay was confirmed in raw (n = 20), cooked (60, 80 and 100 °C), autoclaved (121 °C) and micro-oven processed pork. Sensitivity of detection of pork in other species meat using unique pig-specific PCR was established to be at 0.1%; limit of detection (LOD) of pig DNA was 10 pg (pico grams). The technique can be used for the authentication of raw, processed and adulterated pork and products under the circumstances of food adulteration related disputes or forensic detection of origin of pig species.

  6. Development of Quantitative Real-time PCR Assays for Different Clades of “Candidatus Accumulibacter”

    Science.gov (United States)

    Zhang, An Ni; Mao, Yanping; Zhang, Tong

    2016-05-01

    We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants.

  7. Validation of an ultrasensitive digital droplet PCR assay for HIV-2 plasma RNA quantification

    Directory of Open Access Journals (Sweden)

    Jean Ruelle

    2014-11-01

    Full Text Available Introduction: Low or undetectable plasma viral load (VL using current qPCR assays is common for HIV-2 patients. Digital PCR is an emerging technology enabling more precision and reproducibility than qPCR at low DNA/RNA copy numbers. Available data related to digital droplet PCR (ddPCR, Bio-Rad underscore issues linked to the threshold definition of positivity, coupled to the specificity of low copy results (1. Materials and Methods: A RT-PCR protocol was set up using the One-Step RT-ddPCR Kit for Probes on the QX200 platform (Bio-Rad, Hercules, CA in an accredited environment (ISO15189:2012 norm. Parameters tested were in line with the digital MIQE guidelines (2. Inter-run coefficient of variation (CV was established using synthetic RNA controls diluted in HIV-negative plasma. The ddPCR assay was compared to a qRT-PCR previously used in routine (LOQ 50 cop/mL (3 using 46 clinical samples and the NIBSC international HIV-2 RNA standard. Results: The optimal PCR efficiency and the best separation between positive and negative droplets were obtained with a mixture containing 0.5 mM manganese acetate, 700 nM primers and 250 nM of the 5’FAM-probe. Using a manual threshold to define positivity, 7.74% of negative controls (n=168 were scored as positive due to one positive droplet. The presence of two positive droplets or more was not observed for negative controls. Serial dilutions of a positive control showed excellent linearity (R2=0.999 and enabled us to define a limit of quantification of two positives droplets, which corresponds to 0.14 copies/μL in the reaction mixture and to seven copies per mL of plasma. The inter-run coefficient of variation was 3.37% at a mean value of 4,468 cop/mL, 19.59% at 416 cop/mL and 32.28% at 8 cop/mL. The NIBSC standard of 1,000 IU was quantified 1,400 copies by ddPCR and close to 5,000 copies by qPCR (delta log superior to 0.5. Among 46 clinical samples, 22 were undetectable with both qPCR and ddPCR, 12 were

  8. Duplex real-time PCR assay for rapid detection of ampicillin-resistant Enterococcus faecium.

    Science.gov (United States)

    Mohn, Stein Christian; Ulvik, Arve; Jureen, Roland; Willems, Rob J L; Top, Janetta; Leavis, Helen; Harthug, Stig; Langeland, Nina

    2004-02-01

    Rapid and accurate identification of carriers of resistant microorganisms is an important aspect of efficient infection control in hospitals. Traditional identification methods of antibiotic-resistant bacteria usually take at least 3 to 4 days after sampling. A duplex real-time PCR assay was developed for rapid detection of ampicillin-resistant Enterococcus faecium (ARE). Primers and probes that are used in this assay specifically detected the D-Ala-D-Ala ligase gene of E. faecium and the modified penicillin-binding protein 5 gene (pbp5) carrying the Glu-to-Val substitution at position 629 (Val-629) in a set of 129 tested E. faecium strains with known pbp5 sequence. Presence of the Val-629 in the strain set from 11 different countries was highly correlated with ampicillin resistance. In a screening of hospitalized patients, the real-time PCR assay yielded a sensitivity and a specificity for the detection of ARE colonization of 95% and 100%, respectively. The results were obtained 4 h after samples were harvested from overnight broth of rectal swab samples, identifying both species and the resistance marker mutation in pbp5. This novel assay reliably identifies ARE 2 to 3 days more quickly than traditional culture methods, thereby increasing laboratory throughput, making it useful for rectal screening of ARE. The assay demonstrates the advantages of real-time PCR for detection of nosocomial pathogens.

  9. Strategies to develop strain-specific PCR based assays for probiotics.

    Science.gov (United States)

    Treven, P

    2015-01-01

    Since health benefits conferred by probiotics are strain-specific, identification to the strain level is mandatory to allow the monitoring of the presence and the abundance of specific probiotic in a product or in a gastrointestinal tract. Compared to standard plate counts, the reduced duration of the assays and higher specificity makes PCR-based methods (standard PCR and quantitative PCR) very appropriate for detection or quantification of probiotics. Development of strain-specific assay consists of 4 main stages: (1) strain-specific marker identification; (2) construction of potential strain-specific primers; (3) validation on DNA from pure cultures of target and related strains; and (4) validation on spiked samples. The most important and also the most challenging step is the identification of strain-specific sequences, which can be subsequently targeted by specific primers or probes. Such regions can be identified on sequences derived from 16S-23S internally transcribed spacers, randomly amplified polymorphic DNA, representational difference analysis and suppression subtractive hybridisation. Already known phenotypic or genotypic characteristics of the target strain can also be used to develop the strain-specific assay. However, the initial stage of strain-specific assay development can be replaced by comparative genomics analysis of target genome with related genomes in public databases. Advances in whole genome sequencing (WGS) have resulted in a cost reduction for bacterial genome sequencing and consequently have made this approach available to most laboratories. In the present paper I reviewed the available literature on PCR and qPCR assays developed for detection of a specific probiotic strain and discussed future WGS and comparative genomics-based approaches.

  10. Development of a novel real-time qPCR assay for the dual detection of canine and phocine distemper virus

    DEFF Research Database (Denmark)

    Nielsen, Linette Buxbom; Hjulsager, Charlotte Kristiane; Larsen, Helene

    conventional PCR assays with real-time PCR assays to obtain a uniform assay palette. The present work describes the development of a novel real-time RT-qPCR assay for the dual detection of canine and phocine distemper virus. The assay is relevant for the future detection of outbreaks of canine distemper virus...

  11. Single rapid TaqMan fluorogenic probe based PCR assay that detects all four dengue serotypes.

    Science.gov (United States)

    Warrilow, David; Northill, Judith A; Pyke, Alyssa; Smith, Greg A

    2002-04-01

    Public health laboratories require rapid diagnosis of dengue outbreaks for application of measures such as vector control. We have developed a rapid single fluorogenic probe-based polymerase chain reaction assay for the detection of all four dengue serotypes (FUDRT-PCR). The method employs primers and probe that are complementary to the evolutionarily conserved 3' untranslated region of the dengue genome. The assay detected viral RNA of strains of all four dengue serotypes but not of the flaviviruses Japanese encephalitis virus, Murray Valley encephalitis virus, Kunjin, Stratford, West Nile, Alfuy or Yellow fever. When compared to an existing nested-PCR assay for the detection of dengue on clinical samples, FUDRT-PCR detected dengue 1 (100%, n=14), dengue 2 (85%, n=13), dengue 3 (64%, n=14) and dengue 4 (100%, n=3) with the indicated sensitivities. FUDRT-PCR enables diagnosis of acute dengue infection in four hours from sample receipt. In addition, a single-test procedure should result in a reduction in the number of tests performed with considerable cost savings for diagnostic laboratories.

  12. Diagnosis of Genus Helicobacter through a hemi-nested PCR assay o

    Directory of Open Access Journals (Sweden)

    Heping Qin

    2016-05-01

    Full Text Available The present study aimed to establish a genus-specific PCR-based assay to detect helicobacters using 16S rRNA gene as the target template. We designed the hemi-nested primers based on sequences of 16S rRNA gene of 34 types of Helicobacter species. The inclusivity, sensitivity, and specificity of the PCR assay using these primers were examined in three different models, comprising feces simulated samples, BLAB/c mice infection model and clinic patients samples. The detection sensitivity of Helicobacter pylori, Helicobacter hepaticus and Helicobacter bilis strains from feces simulated samples was all 102 CFU/ml. We successfully detected H. hepaticus and H. bilis in the liver, cecum and feces of experimentally infected mice. H. pylori was successfully detected in the feces samples from 3 patients infected with H. pylori while not in the feces samples from 3 healthy human. However, the C97/C05–C97/C98 PCR assay detected H. pylori in the 2 positive samples. Due to the PCR assay’s excellent inclusivity, high sensitivity and specificity it may be used to detect the presence of Helicobacters.

  13. Development of a versatile and stable internal control system for RT-qPCR assays.

    Science.gov (United States)

    Felder, Eva; Wölfel, Roman

    2014-11-01

    RT-qPCR, an established method for the detection of RNA viruses, requires internal RNA controls for the correct interpretation of PCR results. Robust and versatile RT-PCR controls can be achieved for example by packaging RNA into a virus-derived protein shell. In this study a MS2-based internal control system was developed, that allows stable and universal packing of different RNAs into non-infectious, non-lytic MS2-based viral like particles (VLPs). Two competitive internal controls for a hantavirus assay and a Crimean-Congo Hemorrhagic Fever Virus (CCHFV) assay were cloned for the expression of VLPs. The expression of VLPs containing the RNA of interest could be induced with arabinose in Escherichia coli. The VLPs proved to be temperature resistant and could be frozen and thawed several times without degradation. Distinction of IC RNA from the target RNA was facilitated by a clear shift in the melting temperature or by specific hybridization signals. Furthermore, target and IC PCR amplification could be easily distinguished by their size in gel-electrophoretic analyses. Limits of detection were determined, demonstrating that the application of the IC did not reduce the sensitivity of the target RT-qPCR reactions. The system can be adapted to nearly any required sequence, resulting in a highly flexible method with broad range applications.

  14. FungiQuant: A broad-coverage fungal quantitative real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Liu Cindy M

    2012-11-01

    Full Text Available Abstract Background Fungal load quantification is a critical component of fungal community analyses. Limitation of current approaches for quantifying the fungal component in the human microbiome suggests the need for new broad-coverage techniques. Methods We analyzed 2,085 18S rRNA gene sequences from the SILVA database for assay design. We generated and quantified plasmid standards using a qPCR-based approach. We evaluated assay coverage against 4,968 sequences and performed assay validation following the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE guidelines. Results We designed FungiQuant, a TaqMan® qPCR assay targeting a 351 bp region in the fungal 18S rRNA gene. Our in silico analysis showed that FungiQuant is a perfect sequence match to 90.0% of the 2,617 fungal species analyzed. We showed that FungiQuant’s is 100% sensitive and its amplification efficiencies ranged from 76.3% to 114.5%, with r2-values of >0.99 against the 69 fungal species tested. Additionally, FungiQuant inter- and intra-run coefficients of variance ranged from Conclusions FungiQuant has comprehensive coverage against diverse fungi and is a robust quantification and detection tool for delineating between true fungal detection and non-target human DNA.

  15. Novel and sensitive qPCR assays for the detection and identification of aspergillosis causing species.

    Science.gov (United States)

    Paholcsek, Melinda; Leiter, Eva; Markovics, Arnold; Biró, Sándor

    2014-09-01

    Despite concerted efforts, diagnosis of aspergillosis is still a great challenge to clinical microbiology laboratories. Along with the requirement for high sensitivity and specificity, species-specific identification is important. We developed rapid, sensitive and species-specific qPCR assays using the TaqMan technology for the detection and identification of Aspergillus fumigatus and Aspergillus terreus. The assays were designed to target orthologs of the Streptomyces factor C gene that are only found in a few species of filamentous fungi. Fungi acquired this gene through horizontal gene transfer and divergence of the gene allows identification of species. The assays have potential as a molecular diagnosis tool for the early detection of fungal infection caused by Aspergillus fumigatus and Aspergillus terreus, which merits future diagnostic studies. The assays were sensitive enough to detect a few genomic equivalents in blood samples.

  16. Comparison of cell-based and PCR-based assays as methods for measuring infectivity of Tulane virus.

    Science.gov (United States)

    Shan, Lei; Yang, David; Wang, Dapeng; Tian, Peng

    2016-05-01

    In this study, we used Tulane virus (TV) as a surrogate for HuNoV to evaluate for correlation between two cell-based assays and three PCR-based assays. Specifically, the cell-based plaque and TCID50 assays measure for infectious virus particles, while the PCR-based RNase exposure, porcine gastric mucin in-situ-capture qRT-PCR (PGM-ISC-qRT-PCR), and antibody in-situ-capture qRT-PCR (Ab-ISC-qRT-PCR) assays measure for an amplicon within encapsidated viral genome. Ten batches of viral stocks ranging from 3.41 × 10(5) to 6.67 × 10(6) plaque forming units (PFUs) were used for side by side comparison with PFU as a reference. The results indicate that one PFU was equivalent to 6.69 ± 2.34 TCID50 units, 9.75 ± 10.87 RNase-untreated genomic copies (GCs), 2.87 ± 3.05 RNase-treated GCs, 0.07 ± 0.07 PGM-ISC-qRT-PCR GCs, and 0.52 ± 0.39 Ab-ISC-qRT-PCR GCs. We observed that while the cell-based assays were consistent with each other, the TCID50 assay was more sensitive than the plaque assay. In contrast, the PCR-based assays were not always consistent with the cell-based assays. The very high variations in GCs as measured by both ISC-RT-qPCR assays made them difficult to correlate against the relatively small variations (<20-fold) in the PFUs or TCID50 units as measured by the cell-based assays.

  17. Development of a real-time PCR assay for the direct detection of Candida species causing Vulvovaginal candidiasis.

    Science.gov (United States)

    Tardif, Keith D; Schlaberg, Robert

    2017-01-25

    Identification of Candida species by traditional methods can be time-consuming and have limited analytical sensitivity. We developed a multiplex real-time PCR assay for detection and differentiation of Candida species causing vulvovaginal candidiasis (VVC). Overall, this PCR assay is a powerful diagnostic tool offering superior accuracy, sensitivity, and specificity.

  18. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    OpenAIRE

    Damodar Paudel; Richard Jarman; Kriengsak Limkittikul; Chonticha Klungthong; Supat Chamnanchanunt; Ananda Nisalak; Robert Gibbons; Watcharee Chokejindachai

    2011-01-01

    Background : Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conven...

  19. Rapid identification of Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii with a multiplex PCR assay.

    Science.gov (United States)

    Chen, Te-Li; Lee, Yi-Tzu; Kuo, Shu-Chen; Yang, Su-Pen; Fung, Chang-Phone; Lee, Shou-Dong

    2014-09-01

    Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii are clinically relevant members of the Acinetobacter calcoaceticus-A. baumannii (Acb) complex and important nosocomial pathogens. These three species are genetically closely related and phenotypically similar; however, they differ in their epidemiology, antibiotic resistance and pathogenicity. In this study, we investigated the use of a multiplex PCR-based assay designed to detect internal fragments of the 16S-23S rRNA intergenic region and the gyrB and recA genes. The assay was capable of differentiating A. baumannii, A. nosocomialis and A. pittii in a reliable manner. In 23 different reference strains and 89 clinical isolates of Acinetobacter species, the assay accurately identified clinically relevant Acb complex species except those 'between 1 and 3' or 'close to 13TU'. None of the non-Acb complex species was misidentified. In an analysis of 1034 positive blood cultures, the assay had a sensitivity of 92.4 % and specificity of 98.2 % for Acb complex identification. Our results show that a single multiplex PCR assay can reliably differentiate clinically relevant Acb complex species. Thus, this method may be used to better understand the clinical differences between infections caused by these species.

  20. A real-time PCR assay for the detection of atypical strains of Chlamydiaceae from pigeons.

    Directory of Open Access Journals (Sweden)

    Aleksandar Zocevic

    Full Text Available Recent evidence of the occurrence of atypical Chlamydiaceae strains in pigeons, different from the established Chlamydiaceae, requires the development of a specific and rapid detection tool to investigate their prevalence and significance. Here is described a new real-time PCR assay that allows specific detection of atypical Chlamydiaceae from pigeons. The assay has been used to assess the dissemination of these strains in field samples collected from Parisian pigeon populations in 2009. The results suggest a limited dissemination compared to the usually higher prevalence of Chlamydia psittaci that is the main species associated with avian chlamydiosis.

  1. Validation of a sensitive PCR assay for the detection of Chelonid fibropapilloma-associated herpesvirus in latent turtle infections.

    Science.gov (United States)

    Alfaro-Núñez, Alonzo; Gilbert, M Thomas P

    2014-09-01

    The Chelonid fibropapilloma-associated herpesvirus (CFPHV) is hypothesized to be the causative agent of fibropapillomatosis, a neoplastic disease in sea turtles, given its consistent detection by PCR in fibropapilloma tumours. CFPHV has also been detected recently by PCR in tissue samples from clinically healthy (non exhibiting fibropapilloma tumours) turtles, thus representing presumably latent infections of the pathogen. Given that template copy numbers of viruses in latent infections can be very low, extremely sensitive PCR assays are needed to optimize detection efficiency. In this study, efficiency of several PCR assays designed for CFPHV detection is explored and compared to a method published previously. The results show that adoption of a triplet set of singleplex PCR assays outperforms other methods, with an approximately 3-fold increase in detection success in comparison to the standard assay. Thus, a new assay for the detection of CFPHV DNA markers is presented, and adoption of its methodology is recommended in future CFPHV screens among sea turtles.

  2. A LightCycler real-time PCR hybridization probe assay for detecting food-borne thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Perelle, S.; Josefsen, Mathilde Hartmann; Hoorfar, Jeffrey

    2004-01-01

    Cycler real-time PCR assay (LC-PCR), which used fluorescent hybridization probes was developed. The test incorporated an internal amplification control co-amplified with the 16S rRNA gene of Campylobacter to monitor potential PCR inhibitors and ensure successful amplifications. The specificity study involving...

  3. The development of a qualitative real-time RT-PCR assay for the detection of hepatitis C virus

    NARCIS (Netherlands)

    Clancy, A.; Crowley, B.; Niesters, H.; Herra, C.

    2008-01-01

    Real-time polymerase chain reaction (PCR) represents a favourable option for the detection of hepatitis C virus (HCV). A real-time reverse transcriptase PCR (RT-PCR) assay was developed as a qualitative diagnostic screening method for the detection of HCV using the ABI PRISM 7500 Sequence Detection

  4. Evaluation of a PCR assay for identification and differentiation of Campylobacter fetus subspecies

    DEFF Research Database (Denmark)

    Hum, S.; Quinn, K.; Brunner, J.

    1997-01-01

    and macrorestriction profiling using pulsed field gel electrophoresis. Procedure The results of identification of 99 bacterial strains as determined by conventional phenotyping or by polymerase chain reaction were compared. Two of these were type strains of C fetus subsp fetus and C fetus subsp venerealis...... by traditional phenotypic methods and the PCR assay was found to be 80.8%. The polymerase chain reaction proved to be a reliable technique for the species and subspecies identification of C fetus; equivocal results were obtained in only two instances. Initial misidentifications by conventional phenotyping...... methods were attributed to methodological differences used in various laboratories. Conclusion Our results indicate that misidentification of C fetus in routine diagnostic laboratories may be relatively common. The PCR assay evaluated gave rapid and reproducible results and is thus a valuable adjunctive...

  5. Testing the feasibility of DNA typing for human identification by PCR and an oligonucleotide ligation assay

    Energy Technology Data Exchange (ETDEWEB)

    Delahunty, C.; Ankener, W.; Deng, Qiang [Univ. of Washington, Seattle, WA (United States)] [and others

    1996-06-01

    The use of DNA typing in human genome analysis is increasing and finding widespread application in the area of forensic and paternity testing. In this report, we explore the feasibility of typing single nucleotide polymorphisms (SNPs) by using a semiautomated method for analyzing human DNA samples. In this approach, PCR is used to amplify segments of human DNA containing a common SNP. Allelic nucleotides in the amplified product are then typed by a calorimetric implementation of the oligonucleotide ligation assay (OLA). The results of the combined assay, PCR/OLA, are read directly by a spectrophotometer; the absorbances are compiled and the genotypes are automatically determined. A panel of 20 markers has been developed for DNA typing and has been tested using a sample panel from the CEPH pedigrees (CEPH parents). The results of this typing, as well as the potential to apply this method to larger populations, are discussed. 62 refs., 2 figs., 4 tabs.

  6. A diagnostic PCR assay for the detection of an Australian epidemic strain of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Murphy Anna

    2010-07-01

    Full Text Available Abstract Background Chronic lung infection with the bacterium Pseudomonas aeruginosa is one of the hallmarks of cystic fibrosis (CF and is associated with worsening lung function, increased hospitalisation and reduced life expectancy. A virulent clonal strain of P. aeruginosa (Australian epidemic strain I; AES-I has been found to be widespread in CF patients in eastern Australia. Methods Suppression subtractive hybridization (SSH was employed to identify genetic sequences that are present in the AES-I strain but absent from the sequenced reference strain PAO1. We used PCR to evaluate the distribution of several of the AES-I loci amongst a collection of 188 P. aeruginosa isolates which was comprised of 35 AES-I isolates (as determined by PFGE, 78 non-AES-I CF isolates including other epidemic CF strains as well as 69 P. aeruginosa isolates from other clinical and environmental sources. Results We have identified a unique AES-I genetic locus that is present in all 35 AES-I isolates tested and not present in any of the other 153 P. aeruginosa strains examined. We have used this unique AES-I locus to develop a diagnostic PCR and a real-time PCR assay to detect the presence of P. aeruginosa and AES-I in patient sputum samples. Conclusions We have developed diagnostic PCR assays that are 100% sensitive and 100% specific for the P. aeruginosa strain AES-I. We have also shown that Whatman FTA® Elute cards may be used with PCR-based assays to rapidly detect the presence of P. aeruginosa strains in CF sputum.

  7. Real-time immuno-PCR assay for detecting PCBs in soil samples.

    Science.gov (United States)

    Chen, Han-Yu; Zhuang, Hui-Sheng

    2009-06-01

    A fast and robust assay, based on immuno-polymerase chain reaction (IPCR) techniques, was developed for the detection of polychlorinated biphenyls (PCBs) in soil samples. Real-time IPCR (rt-IPCR) is a powerful technique that combines enzyme-linked immunosorbent assay (ELISA) with the specificity and sensitivity of PCR. In our assay, indirect ELISAs based on immobilization of PCB37 hapten-ovalbumin conjugates was used for evaluation of the immune response. The effect of optimal reagent concentrations to reduce background fluorescence was also investigated. Using the optimized assay, the linear sensitivity range of the assay covered more than six orders of magnitude, and the minimum detection limits reached 5 fg ml(-1) antigen. Rt-IPCR was tested for its cross-reactivity profiles using four selected congeners and four Aroclor products. The assays were highly specific for congeners but less specific for Aroclor1242. We took four soil samples to validate the method, and the results were confirmed by gas chromatography/mass spectrometry (GC/MS). The rt-IPCR results for soil samples correlated well with the concentrations of PCBs obtained by GC/MS (r = 0.99, n = 6). These data indicate that this highly specific, sensitive, and robust assay can be modified for detecting PCB compounds in the environment.

  8. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    Directory of Open Access Journals (Sweden)

    Damodar Paudel

    2011-01-01

    Full Text Available Background : Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti. Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively was almost comparable to those (81% and 74% of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87% was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus.

  9. Development of PCR assays for detection of Trichomonas vaginalis in urine specimens.

    Science.gov (United States)

    Bandea, Claudiu I; Joseph, Kahaliah; Secor, Evan W; Jones, Laurie A; Igietseme, Joseph U; Sautter, Robert L; Hammerschlag, Margaret R; Fajman, Nancy N; Girardet, Rebecca G; Black, Carolyn M

    2013-04-01

    Trichomonas vaginalis infections are usually asymptomatic or can result in nonspecific clinical symptoms, which makes laboratory-based detection of this protozoan parasite essential for diagnosis and treatment. We report the development of a battery of highly sensitive and specific PCR assays for detection of T. vaginalis in urine, a noninvasive specimen, and development of a protocol for differentiating among Trichomonas species that commonly infect humans.

  10. Discrimination between E. granulosus sensu stricto, E. multilocularis and E. shiquicus Using a Multiplex PCR Assay

    OpenAIRE

    Cong-Nuan Liu; Zhong-Zi Lou; Li Li; Hong-Bin Yan; David Blair; Meng-Tong Lei; Jin-Zhong Cai; Yan-Lei Fan; Jian-Qiu Li; Bao-Quan Fu; Yu-Rong Yang; McManus, Donald P; Wan-Zhong Jia

    2015-01-01

    Background Infections of Echinococcus granulosus sensu stricto (s.s), E. multilocularis and E. shiquicus are commonly found co-endemic on the Qinghai-Tibet plateau, China, and an efficient tool is needed to facilitate the detection of infected hosts and for species identification. Methodology/Principal Findings A single-tube multiplex PCR assay was established to differentiate the Echinococcus species responsible for infections in intermediate and definitive hosts. Primers specific for E. gra...

  11. Development of a multiplex reverse transcription-PCR assay for simultaneous detection of garlic viruses

    Institute of Scientific and Technical Information of China (English)

    HU Xin-xi; LEI Yan; WANG Pei; TANG Lin-fei; HE Chang-zheng; SONG Yong; XIONG Xing-yao; NIE Xian-zhou

    2015-01-01

    A preliminary screening for garlic viruses in garlic plants in Hunan, China, using existing monoplex (simplex) reverse tran-scription-polymerase chain reaction (RT-PCR) procedures detected four viruses/virus groups. These viruses/virus groups were Onion yel ow dwarf virus (OYDV), Leek yel ow stripe virus (LYSV), Shal ot latent virus (SLV) and al exiviruses (e.g., garlic viruses A, B, C, D, E, X). Sequence analysis of the projected al exivirus amplicons revealed the al exivirus in the infected garlic plants was Garlic virus D (GarV-D), which shared 92–97%sequence identities with various isolates from the world. A multiplex RT-PCR (mRT-PCR) was therefore developed to simultaneously detect and differentiate the four viruses/virus groups. To achieve this, four primer pairs targeting al exiviruses, OYDV, LYSV and SLV were designed. The anticipated amplicon sizes are 183 bp (al exiviruses), 265 bp (OYDV), 404 bp (LYSV) and 592 bp (SLV), respectively. Al primer pairs produced virus-speciifc fragments in both simplex and multiplex formats, thus conifrming the efifcacy of the newly developed mRT-PCR for detection of these viruses. The mRT-PCR further was evaluated by applying it to garlic plant samples col ected in two geographic locations in Hunan. Al exiviruses, OYDV, LYSV and SLV were detected in 50.9, 40.3, 28.3 and 58.5%of leaf samples, respectively;and mixed infections with two or more viruses accounted for 54%of the garlic samples. The results obtained by mRT-PCR were conifrmed by simplex RT-PCR assays. In conclusion, this newly devel-oped mRT-PCR provides a rapid, sensitive and reliable method for the detection and identiifcation of major garlic viruses.

  12. Quantitative multiplex real-time PCR assay for shrimp allergen: comparison of commercial master mixes and PCR platforms in rapid cycling.

    Science.gov (United States)

    Eischeid, Anne C; Kasko, Sasha M

    2015-01-01

    Real-time PCR has been used widely in numerous fields. In food safety, it has been applied to detection of microbes and other contaminants, including food allergens. Interest in rapid (fast) cycling real-time PCR has grown because it yields results in less time than does conventional cycling. However, fast cycling can adversely affect assay performance. Here we report on tests of commercial master mixes specifically designed for fast real-time PCR using a shrimp allergen assay we previously developed and validated. The objective of this work was to determine whether specialized commercial master mixes lead to improved assay performance in rapid cycling. Real-time PCR assays were carried out using four different master mixes and two different rapid cycling protocols. Results indicated that specialized master mixes did yield quality results. In many cases, linear ranges spanned up to 7 orders of magnitude, R(2) values were at least 0.95, and reaction efficiencies were within or near the optimal range of 90 to 110%. In the faster of the two rapid cycling protocols tested, assay performance and PCR amplification were markedly better for the shorter PCR product. In conclusion, specialized commercial master mixes were effective as part of rapid cycling protocols, but conventional cycling as used in our previous work is more reliable for the shrimp assay tested.

  13. A quantitative PCR (TaqMan assay for pathogenic Leptospira spp

    Directory of Open Access Journals (Sweden)

    Symonds Meegan L

    2002-07-01

    Full Text Available Abstract Background Leptospirosis is an emerging infectious disease. The differential diagnosis of leptospirosis is difficult due to the varied and often "flu like" symptoms which may result in a missed or delayed diagnosis. There are over 230 known serovars in the genus Leptospira. Confirmatory serological diagnosis of leptospirosis is usually made using the microscopic agglutination test (MAT which relies on the use of live cultures as the source of antigen, often performed using a panel of antigens representative of local serovars. Other techniques, such as the enzyme linked immunosorbent assay (ELISA and slide agglutination test (SAT, can detect different classes of antibody but may be subject to false positive reactions and require confirmation of these results by the MAT. Methods The polymerase chain reaction (PCR has been used to detect a large number of microorganisms, including those of clinical significance. The sensitivity of PCR often precludes the need for isolation and culture, thus making it ideal for the rapid detection of organisms involved in acute infections. We employed real-time (quantitative PCR using TaqMan chemistry to detect leptospires in clinical and environmental samples. Results and Conclusions The PCR assay can be applied to either blood or urine samples and does not rely on the isolation and culture of the organism. Capability exists for automation and high throughput testing in a clinical laboratory. It is specific for Leptospira and may discriminate pathogenic and non-pathogenic species. The limit of detection is as low as two cells.

  14. Molecular diagnosis of Kingella kingae osteoarticular infections by specific real-time PCR assay.

    Science.gov (United States)

    Cherkaoui, Abdessalam; Ceroni, Dimitri; Emonet, Stéphane; Lefevre, Yan; Schrenzel, Jacques

    2009-01-01

    Kingella kingae is an emerging pathogen that is recognized as a causative agent of septic arthritis and osteomyelitis, primarily in infants and children. The bacterium is best detected by rapid inoculation in blood culture systems or by real-time PCR assays. Pathogenesis of the agent was linked recently to the production of a potent cytotoxin, known as RTX, which is toxic to a variety of human cell types. The locus encoding the RTX toxin is thought to be a putative virulence factor, and is, apparently, essential for inducing cytotoxic effects on respiratory epithelial, synovial and macrophage-like cells. Herein, we describe a novel real-time PCR assay that targets the RTX toxin gene and illustrate its use in two clinical cases. The assay exhibited a sensitivity of 30 c.f.u., which is 10-fold more sensitive than a previously published semi-nested broad-range 16S rRNA gene PCR, and showed no cross-reactivity with several related species and common osteoarticular pathogens.

  15. Rapid PCR-based assay for Sclerotinia sclerotiorum detection on soybean seeds

    Directory of Open Access Journals (Sweden)

    Edilaine Mauricia Gelinski Grabicoski

    2015-02-01

    Full Text Available Caused by Sclerotinia sclerotiorum, white mold is an important seed-transmitted disease of soybean (Glycine max. Incubation-based methods available for the detection and quantification of seed-borne inoculum such as the blotter test, paper roll and Neon-S assay are time-consuming, laborious, and not always sensitive. In this study, we developed and evaluated a molecular assay for the detection of S. sclerotiorum in soybean seeds using a species-specific PCR (polymerase chain reaction primer set and seed soaking (without DNA extraction for up to 72 h. The PCR products were amplified in all the samples infected with the pathogen, but not in the other samples of plant material or the other seed-borne fungi DNA. The minimum amount of DNA detected was 10 pg, or one artificially infested seed in a 400-seed sample (0.25 % fungal incidence and one naturally infected seed in a 300-seed sample (0.33 % incidence. The PCR-based assay was rapid (< 9 h, did not require DNA extraction and was very sensitive.

  16. A pentaplex PCR assay for the detection and differentiation of Shigella species.

    Science.gov (United States)

    Ojha, Suvash Chandra; Yean Yean, Chan; Ismail, Asma; Singh, Kirnpal-Kaur Banga

    2013-01-01

    The magnitude of shigellosis in developing countries is largely unknown because an affordable detection method is not available. Current laboratory diagnosis of Shigella spp. is laborious and time consuming and has low sensitivity. Hence, in the present study, a molecular-based diagnostic assay which amplifies simultaneously four specific genes to identify invC for Shigella genus, rfc for S. flexneri, wbgZ for S. sonnei, and rfpB for S. dysenteriae, as well as one internal control (ompA) gene, was developed in a single reaction to detect and differentiate Shigella spp. Validation with 120 Shigella strains and 37 non-Shigella strains yielded 100% specificity. The sensitivity of the PCR was 100 pg of genomic DNA, 5.4 × 10(4) CFU/ml, or approximately 120 CFU per reaction mixture of bacteria. The sensitivity of the pentaplex PCR assay was further improved following preincubation of the stool samples in gram-negative broth. A preliminary study with 30 diarrhoeal specimens resulted in no cross-reaction with other non-Shigella strains tested. We conclude that the developed pentaplex PCR assay is robust and can provide information about the four target genes that are essential for the identification of the Shigella genus and the three Shigella species responsible for the majority of shigellosis cases.

  17. A Pentaplex PCR Assay for the Detection and Differentiation of Shigella Species

    Directory of Open Access Journals (Sweden)

    Suvash Chandra Ojha

    2013-01-01

    Full Text Available The magnitude of shigellosis in developing countries is largely unknown because an affordable detection method is not available. Current laboratory diagnosis of Shigella spp. is laborious and time consuming and has low sensitivity. Hence, in the present study, a molecular-based diagnostic assay which amplifies simultaneously four specific genes to identify invC for Shigella genus, rfc for S. flexneri, wbgZ for S. sonnei, and rfpB for S. dysenteriae, as well as one internal control (ompA gene, was developed in a single reaction to detect and differentiate Shigella spp. Validation with 120 Shigella strains and 37 non-Shigella strains yielded 100% specificity. The sensitivity of the PCR was 100 pg of genomic DNA, 5.4 × 104 CFU/ml, or approximately 120 CFU per reaction mixture of bacteria. The sensitivity of the pentaplex PCR assay was further improved following preincubation of the stool samples in Gram-negative broth. A preliminary study with 30 diarrhoeal specimens resulted in no cross-reaction with other non-Shigella strains tested. We conclude that the developed pentaplex PCR assay is robust and can provide information about the four target genes that are essential for the identification of the Shigella genus and the three Shigella species responsible for the majority of shigellosis cases.

  18. A PCR-based assay for discriminating Cervus and Rangifer (Cervidae) antlers with mitochondrial DNA polymorphisms.

    Science.gov (United States)

    Kim, Young Hwa; Kim, Eung Soo; Ko, Byong Seob; Oh, Seung-Eun; Ryuk, Jin-Ah; Chae, Seong Wook; Lee, Hye Won; Choi, Go Ya; Seo, Doo Won; Lee, Mi Young

    2012-07-01

    This study describes a method for discriminating Rangifer antlers from true Cervus antlers using agarose gel electrophoresis, capillary electrophoresis, quantitative real-time PCR, and allelic discrimination. Specific primers labeled with fluorescent tags were designed to amplify fragments from the mitochondrial D-loop genes for various Cervus subspecies and Rangifer tarandus differentially. A 466-bp fragment that was observed for both Cervus and Rangifer antlers served as a positive control, while a 270-bp fragment was specifically amplified only from Rangifer antlers. Allelic discrimination was used to differentiate between Cervus and Rangifer antlers, based on the amplification of specific alleles for both types of antlers. These PCR-based assays can be used for forensic and quantitative analyses of Cervus and Rangifer antlers in a single step, without having to obtain any sequence information. In addition, multiple PCR-based assays are more accurate and reproducible than a single assay for species-specific analysis and are especially useful in this study for the identification of original Cervus deer products from fraudulent Rangifer antlers.

  19. Comparison of two real-time PCR assays for the detection of malaria parasites from hemolytic blood samples - Short communication.

    Science.gov (United States)

    Hagen, Ralf Matthias; Hinz, Rebecca; Tannich, Egbert; Frickmann, Hagen

    2015-06-01

    We compared the performance of an in-house and a commercial malaria polymerase chain reaction (PCR) assay using freeze-thawed hemolytic blood samples. A total of 116 freeze-thawed ethylenediamine tetraacetic acid (EDTA) blood samples of patients with suspicion of malaria were analyzed by an in-house as well as by a commercially available real-time PCR. Concordant malaria negative PCR results were reported for 39 samples and malaria-positive PCR results for 67 samples. The in-house assay further detected one case of Plasmodium falciparum infection, which was negative in the commercial assay as well as five cases of P. falciparum malaria and three cases of Plasmodium vivax malaria, which showed sample inhibition in the commercial assay. The commercial malaria assay was positive in spite of a negative in-house PCR result in one case. In all concordant results, cycle threshold values of P. falciparum-positive samples were lower in the commercial PCR than in the in-house assay. Although Ct values of the commercial PCR kit suggest higher sensitivity in case of concordant results, it is prone to inhibition if it is applied to hemolytic freeze-thawed blood samples. The number of misidentifications was, however, identical for both real-time PCR assays.

  20. RT-qPCR-based microneutralization assay for human cytomegalovirus using fibroblasts and epithelial cells.

    Science.gov (United States)

    Wang, Xiao; Peden, Keith; Murata, Haruhiko

    2015-12-16

    Human cytomegalovirus (HCMV) is a leading cause of congenital infection that can result in serious disabilities in affected children. To facilitate HCMV vaccine development, a microscale neutralization assay based on reverse transcription quantitative PCR (RT-qPCR) was developed to quantify HCMV-neutralizing antibodies. Our approach relies on the generation of crude lysates from virus-infected cells that are amenable to direct analysis by RT-qPCR, thereby circumventing rate-limiting procedures associated with sample RNA extraction and purification. By serial passaging of the laboratory HCMV strain AD169 in epithelial cells (ARPE-19), a revertant virus with restored epithelial cell tropism, designated AD169(wt131), was obtained. AD169 and AD169(wt131) were evaluated in both epithelial cells (ARPE-19) and fibroblasts (MRC-5) by one-step RT-qPCR targeting the immediate-early gene IE1 transcript of HCMV. Expression kinetics indicated that RT-qPCR assessment could be conducted as early as 6h post-infection. Human serum samples (n=30) from healthy donors were tested for HCMV-specific IgG using a commercially available ELISA and for HCMV-neutralizing activity using our RT-qPCR-based neutralization assay. In agreement with the ELISA results, higher neutralizing activity was observed in the HCMV IgG seropositive group when compared with the HCMV IgG seronegative group. In addition, HCMV IgG seropositive human sera exhibited higher neutralizing titers using epithelial cells compared with using fibroblasts (geometric mean titers of 344 and 8 in ARPE-19 cells and MRC-5 cells, respectively). Our assay was robust to variation in input virus dose. In addition, a simple lysis buffer containing a non-ionic detergent was successfully demonstrated to be a less costly alternative to commercial reagents for cell-lysate preparation. Thus, our rapid HCMV neutralization assay may be a straightforward and flexible high-throughput tool for measuring antibody responses induced by vaccination

  1. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays.

    Science.gov (United States)

    Kimura, Yasumasa; Soma, Takahiro; Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J L; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.

  2. Detection of mandarin in orange juice by single-nucleotide polymorphism qPCR assay.

    Science.gov (United States)

    Aldeguer, Miriam; López-Andreo, María; Gabaldón, José A; Puyet, Antonio

    2014-02-15

    A dual-probe real time PCR (qPCR) DNA-based analysis was devised for the identification of mandarin in orange juice. A single nucleotide polymorphism at the trnL-trnF intergenic region of the chloroplast chromosome was confirmed in nine orange (Citrus sinensis) and thirteen commercial varieties of mandarin, including Citrus reticulata and Citrus unshiu species and a mandarin × tangelo hybrid. Two short minor-groove binding fluorescent probes targeting the polymorphic sequence were used in the dual-probe qPCR, which allowed the detection of both species in single-tube reactions. The similarity of PCR efficiencies allowed a simple estimation of the ratio mandarin/orange in the juice samples, which correlated to the measured difference of threshold cycle values for both probes. The limit of detection of the assay was 5% of mandarin in orange juice, both when the juice was freshly prepared (not from concentrate) or reconstituted from concentrate, which would allow the detection of fraudulently added mandarin juice. The possible use of the dual-probe system for quantitative measurements was also tested on fruit juice mixtures. qPCR data obtained from samples containing equal amounts of mandarin and orange juice revealed that the mandarin target copy number was approximately 2.6-fold higher than in orange juice. The use of a matrix-adapted control as calibrator to compensate the resulting C(T) bias allowed accurate quantitative measurements to be obtained.

  3. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  4. Cell culture-Taqman PCR assay for evaluation of Cryptosporidium parvum disinfection.

    Science.gov (United States)

    Keegan, Alexandra R; Fanok, Stella; Monis, Paul T; Saint, Christopher P

    2003-05-01

    Cryptosporidium parvum represents a challenge to the water industry and a threat to public health. In this study, we developed a cell culture-quantitative PCR assay to evaluate the inactivation of C. parvum with disinfectants. The assay was validated by using a range of disinfectants in common use in the water industry, including low-pressure UV light (LP-UV), ozone, mixed oxidants (MIOX), and chlorine. The assay was demonstrated to be reliable and sensitive, with a lower detection limit of a single infectious oocyst. Effective oocyst inactivation was achieved (>2 log(10) units) with LP-UV (20 mJ/cm(2)) or 2 mg of ozone/liter (for 10 min). MIOX and chlorine treatments of oocysts resulted in minimal effective disinfection, with disinfection systems for drinking water and recycled water.

  5. Rapid detection of equine influenza virus H3N8 subtype by insulated isothermal RT-PCR (iiRT-PCR) assay using the POCKIT™ Nucleic Acid Analyzer.

    Science.gov (United States)

    Balasuriya, Udeni B R; Lee, Pei-Yu Alison; Tiwari, Ashish; Skillman, Ashley; Nam, Bora; Chambers, Thomas M; Tsai, Yun-Long; Ma, Li-Juan; Yang, Pai-Chun; Chang, Hsiao-Fen Grace; Wang, Hwa-Tang Thomas

    2014-10-01

    Equine influenza (EI) is an acute, highly contagious viral respiratory disease of equids. Currently, equine influenza virus (EIV) subtype H3N8 continues to be the most important respiratory pathogen of horses in many countries around the world. The need to achieve a rapid diagnosis and to implement effective quarantine and movement restrictions is critical in controlling the spread of EIV. In this study, a novel, inexpensive and user-friendly assay based on an insulated isothermal RT-PCR (iiRT-PCR) method on the POCKIT™, a field-deployable device, was described and validated for point-of-need detection of EIV-H3N8 in clinical samples. The newly established iiRT-PCR assay targeting the EIV HA3 gene was evaluated for its sensitivity using in vitro transcribed (IVT) RNA, as well as ten-fold serial dilutions of RNA extracted from the prototype H3N8 strain A/equine/Miami/1/63. Inclusivity and exclusivity panels were tested for specificity evaluation. Published real-time RT-PCR (rRT-PCR) assays targeting the NP and HA3 genes were used as the reference standards for comparison of RNA extracted from field strains and from nasal swab samples collected from experimentally infected horses, respectively. Limit of detection with a 95% probability (LoD95%) was estimated to be 11copies of IVT RNA. Clinical sensitivity analysis using RNA prepared from serial dilutions of a prototype EIV (Miami 1/63/H3N8) showed that the iiRT-PCR assay was about 100-fold more sensitive than the rRT-PCR assay targeting the NP gene of EIV subtype H3N8. The iiRT-PCR assay identified accurately fifteen EIV H3N8 strains and two canine influenza virus (CIV) H3N8 strains, and did not cross-react with H6N2, H7N7, H1N1 subtypes or any other equine respiratory viral pathogens. Finally, 100% agreement was found between the iiRT-PCR assay and the universal influenza virus type A rRT-PCR assay in detecting the EIV A/equine/Kentucky/7/07 strain in 56 nasal swab samples collected from experimentally inoculated

  6. A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection

    Directory of Open Access Journals (Sweden)

    Van Neste Leander

    2012-06-01

    Full Text Available Abstract Background PSA-directed prostate cancer screening leads to a high rate of false positive identifications and an unnecessary biopsy burden. Epigenetic biomarkers have proven useful, exhibiting frequent and abundant inactivation of tumor suppressor genes through such mechanisms. An epigenetic, multiplex PCR test for prostate cancer diagnosis could provide physicians with better tools to help their patients. Biomarkers like GSTP1, APC and RASSF1 have demonstrated involvement with prostate cancer, with the latter two genes playing prominent roles in the field effect. The epigenetic states of these genes can be used to assess the likelihood of cancer presence or absence. Results An initial test cohort of 30 prostate cancer-positive samples and 12 cancer-negative samples was used as basis for the development and optimization of an epigenetic multiplex assay based on the GSTP1, APC and RASSF1 genes, using methylation specific PCR (MSP. The effect of prostate needle core biopsy sample volume and age of formalin-fixed paraffin-embedded (FFPE samples was evaluated on an independent follow-up cohort of 51 cancer-positive patients. Multiplexing affects copy number calculations in a consistent way per assay. Methylation ratios are therefore altered compared to the respective singleplex assays, but the correlation with patient outcome remains equivalent. In addition, tissue-biopsy samples as small as 20 μm can be used to detect methylation in a reliable manner. The age of FFPE-samples does have a negative impact on DNA quality and quantity. Conclusions The developed multiplex assay appears functionally similar to individual singleplex assays, with the benefit of lower tissue requirements, lower cost and decreased signal variation. This assay can be applied to small biopsy specimens, down to 20 microns, widening clinical applicability. Increasing the sample volume can compensate the loss of DNA quality and quantity in older samples.

  7. Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR.

    Science.gov (United States)

    Truong, Andrew S; Lochbaum, Christian A; Boyce, Matthew W; Lockett, Matthew R

    2015-11-17

    Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.

  8. Evaluation of real-time RT-PCR assays for detection and quantification of norovirus genogroups I and II.

    Science.gov (United States)

    Rupprom, Kitwadee; Chavalitshewinkoon-Petmitr, Porntip; Diraphat, Pornphan; Kittigul, Leera

    2017-02-20

    Noroviruses are the leading cause of acute gastroenteritis in humans. Real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) is a promising molecular method for the detection of noroviruses. In this study, the performance of three TaqMan real-time RT-PCR assays was assessed, which were one commercially available real-time RT-PCR kit (assay A: Norovirus Real Time RT-PCR kit) and two in-house real-time RT-PCR assays (assay B: LightCycler RNA Master Hybprobe and assay C: RealTime ready RNA Virus Master). Assays A and B showed higher sensitivity than assay C for norovirus GI, while they all had the same sensitivity (10(3) DNA copies/mL) for GII DNA standard controls. Assay B had the highest efficiency for both genogroups. No cross-reactivity was observed among GI and GII noroviruses, rotavirus, hepatitis A virus, and poliovirus. The detection rates of these assays in GI and GII norovirus-positive fecal samples were not significantly different. However, the mean quantification cycle (Cq) value of assay B for GII was lower than assays A and C with statistical significance (P-value, 0.000). All three real-time RT-PCR assays could detect a variety of noroviruses including GI.2, GII.2, GII.3, GII.4, GII.6, GII.12, GII.17, and GII.21. This study suggests assay B as a suitable assay for the detection and quantification of noroviruses GI and GII due to good analytical sensitivity and higher performance to amplify norovirus on DNA standard controls and clinical samples.

  9. Development of a real-time SYBR Green PCR assay for the rapid detection of Dermatophilus congolensis

    Science.gov (United States)

    Martínez, Remigio; Benitez-Medina, José Manuel; Risco, David; García, Waldo Luis; Rey, Joaquín; Alonso, Juan Manuel; de Mendoza, Javier Hermoso

    2013-01-01

    Methods such as real time (RT)-PCR have not been developed for the rapid detection and diagnosis of Dermatophilus (D.) congolensis infection. In the present study, a D. congolensis-specific SYBR Green RT-PCR assay was evaluated. The detection limit of the RT-PCR assay was 1 pg of DNA per PCR reaction. No cross-reaction with nucleic acids extracted from Pseudomonas aeruginosa, Mycobacterium tuberculosis, Staphylococcus aureus, or Austwickia chelonae was observed. Finally, the RT-PCR assay was used to evaluate clinical samples collected from naturally infected animals with D. congolensis. The results showed that this assay is a fast and reliable method for diagnosing dermatophilosis. PMID:23820221

  10. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Directory of Open Access Journals (Sweden)

    Huali Huang

    Full Text Available Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L. DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  11. Reproducibility of Digital PCR Assays for Circulating Tumor DNA Analysis in Advanced Breast Cancer

    Science.gov (United States)

    Hrebien, Sarah; O’Leary, Ben; Beaney, Matthew; Schiavon, Gaia; Fribbens, Charlotte; Bhambra, Amarjit; Johnson, Richard; Turner, Nicholas

    2016-01-01

    Circulating tumor DNA (ctDNA) analysis has the potential to allow non-invasive analysis of tumor mutations in advanced cancer. In this study we assessed the reproducibility of digital PCR (dPCR) assays of circulating tumor DNA in a cohort of patients with advanced breast cancer and assessed delayed plasma processing using cell free DNA preservative tubes. We recruited a cohort of 96 paired samples from 71 women with advanced breast cancer who had paired blood samples processed either immediately or delayed in preservative tubes with processing 48–72 hours after collection. Plasma DNA was analysed with multiplex digital PCR (mdPCR) assays for hotspot mutations in PIK3CA, ESR1 and ERBB2, and for AKT1 E17K. There was 94.8% (91/96) agreement in mutation calling between immediate and delayed processed tubes, kappa 0.88 95% CI 0.77–0.98). Discordance in mutation calling resulted from low allele frequency and likely stochastic effects. In concordant samples there was high correlation in mutant copies per ml plasma (r2 = 0.98; pprocessed tubes, although overall quantification of total cell free plasma DNA had similar prognostic effects in immediate (HR 3.6) and delayed (HR 3.0) tubes. There was moderate agreement in changes in allele fraction between sequential samples in quantitative mutation tracking (r = 0.84, p = 0.0002). Delayed processing of samples using preservative tubes allows for centralized ctDNA digital PCR mutation screening in advanced breast cancer. The potential of preservative tubes in quantitative mutation tracking requires further research. PMID:27760227

  12. Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

    Science.gov (United States)

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes. PMID:22558339

  13. Cutaneous and visceral leishmaniasis co-infection in dogs from Rio de Janeiro, Brazil: evaluation by specific PCR and RFLP-PCR assays

    Directory of Open Access Journals (Sweden)

    Marize Quinhones Pires

    2014-04-01

    Full Text Available Introduction During a diagnostic evaluation of canine visceral leishmaniasis (VL, two of seventeen dogs were found to be co-infected by Leishmania (Viannia braziliensis and Leishmania (Leishmania chagasi. Methods Specific polymerase chain reaction (PCR and restriction fragment length polymorphism-PCR (RFLP-PCR assays were performed. Results PCR assays for Leishmania subgenus identification followed by RFLP-PCR analysis in biopsies from cutaneous lesions and the spleen confirmed the presence of Leishmania (Viannia braziliensis and Leishmania (Leishmania chagasi in those fragments. Conclusions This report reinforces the importance of using serological and molecular techniques in the epidemiological surveillance of canine populations in endemic areas in which both diseases are known to co-exist. In such cases, a reassessment of the control measures is required.

  14. Detection of Nicotiana DNA in Tobacco Products Using a Novel Multiplex Real-Time PCR Assay.

    Science.gov (United States)

    Korchinski, Katie L; Land, Adrian D; Craft, David L; Brzezinski, Jennifer L

    2016-07-01

    Establishing that a product contains tobacco is a requirement for the U.S. Food and Drug Administration's regulation and/or prosecution of tobacco products. Therefore, a multiplex real-time PCR method was designed to determine if Nicotiana (tobacco) DNA is present in tobacco products. The PCR method simultaneously amplifies a 73 bp fragment of the cytochrome P450 monoxygenase CYP82E4 gene and 66 bp fragment in the nia-1 gene for nitrate reductase, which are detected using dual-labeled TaqMan probes. The assay is capable of detecting approximately 7.8 pg purified tobacco DNA, with a similar sensitivity for either gene target while incorporating an internal positive control (IPC). DNA was extracted from prepared tobacco products-including chewing tobacco, pipe tobacco, and snuff-or from the cut fill (no wrapper) of cigarettes and cigars. Of the 13 products analyzed, 12 were positive for both tobacco-specific markers and the IPC. DNA was also extracted from the fill of five varieties of herbal cigarettes, which were negative for both tobacco-specific gene targets and positive for the IPC. Our method expands on current assays by introducing a multiplex reaction, targeting two sequences in two different genes of interest, incorporating an IPC into the reaction, and lowering the LOD and LOQ while increasing the efficiency of the PCR.

  15. Sensitivity of PCR assays for murine gammaretroviruses and mouse contamination in human blood samples.

    Directory of Open Access Journals (Sweden)

    Li Ling Lee

    Full Text Available Gammaretroviruses related to murine leukemia virus (MLV have variously been reported to be present or absent in blood from chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME patients and healthy controls. Using subjects from New York State, we have investigated by PCR methods whether MLV-related sequences can be identified in nucleic acids isolated from whole blood or from peripheral blood mononuclear cells (PBMCs or following PBMC culture. We have also passaged the prostate cancer cell line LNCaP following incubation with plasma from patients and controls and assayed nucleic acids for viral sequences. We have used 15 sets of primers that can effectively amplify conserved regions of murine endogenous and exogenous retrovirus sequences. We demonstrate that our PCR assays for MLV-related gag sequences and for mouse DNA contamination are extremely sensitive. While we have identified MLV-like gag sequences following PCR on human DNA preparations, we are unable to conclude that these sequences originated in the blood samples.

  16. Novel Luminex Assay for Telomere Repeat Mass Does Not Show Well Position Effects Like qPCR.

    Directory of Open Access Journals (Sweden)

    Muhammad G Kibriya

    Full Text Available Telomere length is a potential biomarker of aging and risk for age-related diseases. For measurement of relative telomere repeat mass (TRM, qPCR is typically used primarily due to its low cost and low DNA input. But the position of the sample on a plate often impacts the qPCR-based TRM measurement. Recently we developed a novel, probe-based Luminex assay for TRM that requires ~50ng DNA and involves no DNA amplification. Here we report, for the first time, a comparison among TRM measurements obtained from (a two singleplex qPCR assays (using two different primer sets, (b a multiplex qPCR assay, and (c our novel Luminex assay. Our comparison is focused on characterizing the effects of sample positioning on TRM measurement. For qPCR, DNA samples from two individuals (K and F were placed in 48 wells of a 96-well plate. For each singleplex qPCR assay, we used two plates (one for Telomere and one for Reference gene. For the multiplex qPCR and the Luminex assay, the telomere and the reference genes were assayed from the same well. The coefficient of variation (CV of the TRM for Luminex (7.2 to 8.4% was consistently lower than singleplex qPCR (11.4 to 14.9% and multiplex qPCR (19.7 to 24.3%. In all three qPCR assays the DNA samples in the left- and right-most columns showed significantly lower TRM than the samples towards the center, which was not the case for the Luminex assay (p = 0.83. For singleplex qPCR, 30.5% of the variation in TL was explained by column-to-column variation and 0.82 to 27.9% was explained by sample-to-sample variation. In contrast, only 5.8% of the variation in TRM for the Luminex assay was explained by column-to column variation and 50.4% was explained by sample-to-sample variation. Our novel Luminex assay for TRM had good precision and did not show the well position effects of the sample that were seen in all three of the qPCR assays that were tested.

  17. Detection of four important Eimeria species by multiplex PCR in a single assay.

    Science.gov (United States)

    You, Myung-Jo

    2014-06-01

    The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1-5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl.

  18. Comparison of the conventional multiplex RT-PCR, real time RT-PCR and Luminex xTAG® RVP fast assay for the detection of respiratory viruses.

    Science.gov (United States)

    Choudhary, Manohar L; Anand, Siddharth P; Tikhe, Shamal A; Walimbe, Atul M; Potdar, Varsha A; Chadha, Mandeep S; Mishra, Akhilesh C

    2016-01-01

    Detection of respiratory viruses using polymerase chain reaction (PCR) is sensitive, specific and cost effective, having huge potential for patient management. In this study, the performance of an in-house developed conventional multiplex RT-PCR (mRT-PCR), real time RT-PCR (rtRT-PCR) and Luminex xTAG(®) RVP fast assay (Luminex Diagnostics, Toronto, Canada) for the detection of respiratory viruses was compared. A total 310 respiratory clinical specimens predominantly from pediatric patients, referred for diagnosis of influenza A/H1N1pdm09 from August 2009 to March 2011 were tested to determine performance characteristic of the three methods. A total 193 (62.2%) samples were detected positive for one or more viruses by mRT-PCR, 175 (56.4%) samples by real time monoplex RT-PCR, and 138 (44.5%) samples by xTAG(®) RVP fast assay. The overall sensitivity of mRT-PCR was 96.9% (95% CI: 93.5, 98.8), rtRT-PCR 87.9% (95% CI: 82.5, 92.1) and xTAG(®) RVP fast was 68.3% (95% CI: 61.4, 74.6). Rhinovirus was detected most commonly followed by respiratory syncytial virus group B and influenza A/H1N1pdm09. The monoplex real time RT-PCR and in-house developed mRT-PCR are more sensitive, specific and cost effective than the xTAG(®) RVP fast assay.

  19. Utility of Pooled HIV RNA RT-PCR Assay in Diagnosing Acute HIV Infections

    Institute of Scientific and Technical Information of China (English)

    张麒; 蒋岩; 刘全忠

    2004-01-01

    Abstract: The P24 antigen test, HIV RNA PCR test,HIV isolation/culture and fourth-generation HIV uniform Ag/Ab assay are being utilized in diagnosing acute HIV infection in different labs. Many factors limit the use of screening for acute HIV in high-risk populations, in blood donors and during voluntary HIV testing, including, cost, technique, sensitivity and specificity. In this review we explore a new NAAT method which involves HIV RNA RT-PCR on pooled samples. This technique is able to screen for acute infections in a large testing volume and may he used as a screening method in high-risk populations and blood donors.

  20. Development of a new ultra sensitive real-time PCR assay (ultra sensitive RTQ-PCR for the quantification of HBV-DNA

    Directory of Open Access Journals (Sweden)

    Varaklioti Agoritsa

    2010-03-01

    Full Text Available Abstract Background Improved sensitivity of HBV-DNA tests is of critical importance for the management of HBV infection. Our aim was to develop and assess a new ultra sensitive in-house real-time PCR assay for HBV-DNA quantification (ultra sensitive RTQ-PCR. Results Previously used HBV-DNA standards were calibrated against the WHO 1st International Standard for HBV-DNA (OptiQuant® HBV-DNA Quantification Panel, Accrometrix Europe B.V.. The 95% and 50% HBV-DNA detection end-point of the assay were 22.2 and 8.4 IU/mL. According to the calibration results, 1 IU/mL equals 2.8 copies/mL. Importantly the clinical performance of the ultra sensitive real-time PCR was tested similar (67% to the Procleix Ultrio discriminatory HBV test (dHBV (70% in low-titer samples from patients with occult Hepatitis B. Finally, in the comparison of ultra sensitive RTQ-PCR with the commercially available COBAS TaqMan HBV Test, the in-house assay identified 94.7% of the 94 specimens as positive versus 90.4% identified by TaqMan, while the quantitative results that were positive by both assay were strongly correlated (r = 0.979. Conclusions We report a new ultra sensitive real time PCR molecular beacon based assay with remarkable analytical and clinical sensitivity, calibrated against the WHO 1st International standard.

  1. Development of A PCR-ELISA Assay for the Detection of Campylobacter jejuni%空肠弯曲杆菌PCR-ELISA检测方法的建立

    Institute of Scientific and Technical Information of China (English)

    唐梦君; 周生; 张小燕; 唐修君; 蒲俊华; 高玉时

    2013-01-01

    A polymerase chain reaction (PCR) assay was developed based on a solution-hybridization colorimetric end-point detection format (PCR-ELISA) for the detection of C.jejuni.PCR primers were designed to target gyrA gene.Digoxygenin-labelled probes were investigated for the detection of biotin-labelled PCR products from C.jejuni using the PCR-ELISA format.The specificity of the assay was investigated.The results showed that only expected fragments of C.jejuni strains were successfully amplified,whereas the Escherichia coli,Salmonella,L.rnonocytogenes and a range of unrelated organisms were negative.The PCR-ELISA assay and probes were demonstrated to be specific for C.jejuni.The detection threshold value is 2 fg.The sensitivity of the PCR-ELISA assay was demonstrated to be 10-fold more sensitive than a gel-based PCR method using the same primers.The detection limit of feces simulated samples was 50 cfu/mL.Results of detecting C.jejuni in one hundred samples in feces in chicken showed that positive rate was 69% by PCR-ELISA methods whereas it was 60% by PCR.This PCR-ELISA assay is sensitive,specific and has the potential to apply in the field of risk assessment of food-borne pathogens and of the large-scale detection researches.%针对空肠弯曲杆菌(Campylobacter jejuni)旋转酶基因(gyrA gene)设计特异性引物和探针,将生物素和地高辛分别标记上游引物5'端和核酸探针3 '端,并对反应条件进行优化,建立空肠弯曲杆菌PCR-ELISA检测方法.结果表明:该方法能特异的检测空肠弯曲杆菌基因组DNA,检测阈值为2fg,敏感性是常规PCR的10倍.对模拟泄殖腔样本进行检测,检测限为50 cfu/mL.对100份临床样品进行检测,PCR和PCR-ELISA方法阳性检出率分别为60%和69%.

  2. Assessing the performance capabilities of LRE-based assays for absolute quantitative real-time PCR.

    Directory of Open Access Journals (Sweden)

    Robert G Rutledge

    Full Text Available BACKGROUND: Linear regression of efficiency or LRE introduced a new paradigm for conducting absolute quantification, which does not require standard curves, can generate absolute accuracies of +/-25% and has single molecule sensitivity. Derived from adapting the classic Boltzmann sigmoidal function to PCR, target quantity is calculated directly from the fluorescence readings within the central region of an amplification profile, generating 4-8 determinations from each amplification reaction. FINDINGS: Based on generating a linear representation of PCR amplification, the highly visual nature of LRE analysis is illustrated by varying reaction volume and amplification efficiency, which also demonstrates how LRE can be used to model PCR. Examining the dynamic range of LRE further demonstrates that quantitative accuracy can be maintained down to a single target molecule, and that target quantification below ten molecules conforms to that predicted by Poisson distribution. Essential to the universality of optical calibration, the fluorescence intensity generated by SYBR Green I (FU/bp is shown to be independent of GC content and amplicon size, further verifying that absolute scale can be established using a single quantitative standard. Two high-performance lambda amplicons are also introduced that in addition to producing highly precise optical calibrations, can be used as benchmarks for performance testing. The utility of limiting dilution assay for conducting platform-independent absolute quantification is also discussed, along with the utility of defining assay performance in terms of absolute accuracy. CONCLUSIONS: Founded on the ability to exploit lambda gDNA as a universal quantitative standard, LRE provides the ability to conduct absolute quantification using few resources beyond those needed for sample preparation and amplification. Combined with the quantitative and quality control capabilities of LRE, this kinetic-based approach has the

  3. Ready to use dry-reagent PCR assays for the four common bacterial pathogens using switchable lanthanide luminescence probe system.

    Science.gov (United States)

    Lehmusvuori, A; Soikkeli, M; Tuunainen, E; Seppä, T; Spangar, A; Rantakokko-Jalava, K; von Lode, P; Karhunen, U; Soukka, T; Wittfooth, S

    2015-11-01

    Ready to use dry-reagent PCR assays for Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas spp. and for broad-range bacteria detection were developed. The assays were based on novel switchable lanthanide probes that provide sensitive target DNA detection with exceptionally high signal-to-background ratio, thus enabling clear discrimination between positive and negative results. For example, sensitivity of three S. aureus and two S. pneumonia bacteria (colony forming units) per PCR assay was measured with fluorescence signal more than 30 times over the background signal level. The rapid and easy-to-use assays are suitable for routine clinical diagnostics without molecular biology expertise and facilities.

  4. Real-Time PCR Assay for the Identification of the Brown Marmorated Stink Bug (Halyomorpha halys

    Directory of Open Access Journals (Sweden)

    Manpreet K Dhami

    2016-02-01

    Full Text Available The brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae, is a gregarious crop pest that has rapidly spread across the world in the last two decades. It is an excellent hitchhiker species, especially as an over-wintering adult. During this period it is often associated with non-biological commodities such as shipping containers and machinery that travel long distances. Inadequate identification keys and similarity to common species has assisted its spread across Europe, while accurate identification from immature stages or eggs is not possible. We developed a real-time TaqMan PCR assay for the accurate and sensitive detection of the brown marmorated stink bug from all life stages. The assay performance against required diagnostic criterion and within a quarantine framework are described.

  5. Design and analysis of Q-RT-PCR assays for haematological malignancies using mixed effects models

    DEFF Research Database (Denmark)

    Bøgsted, Martin; Mandrup, Charlotte; Petersen, Anders;

    research use and needs qualit control for accuracy and precision. Especially the identification of experimental variations and statistical analysis has recently created discussions. The standard analytical technique is to use the Delta-Delta-Ct method. Although this method accounts for sample specific...... variations such as RNA purification, it does not account for other experimental effects as variations in cDNA synthesis, amplification efficiency and assay variations. To obtain an assessment of the accuracy and precision of the assays a novel approach for the statistical analysis of Q-RT-PCR has been...... developed based on a linear mixed effects model for factorial designs. The model consists of an analysis of variance where the variation of each fixed effect of interest and identified experimental and biological nuisance variations are split. Hereby it accounts for varying efficiency, inhomogeneous...

  6. Validation of a sensitive PCR assay for the detection of Chelonid fibropapilloma-associated herpesvirus in latent turtle infections

    DEFF Research Database (Denmark)

    Alfaro Nuñez, Luis Alonso; Gilbert, M Thomas P

    2014-01-01

    , efficiency of several PCR assays designed for CFPHV detection is explored and compared to a method published previously. The results show that adoption of a triplet set of singleplex PCR assays outperforms other methods, with an approximately 3-fold increase in detection success in comparison to the standard......The Chelonid fibropapilloma-associated herpesvirus (CFPHV) is hypothesized to be the causative agent of fibropapillomatosis, a neoplastic disease in sea turtles, given its consistent detection by PCR in fibropapilloma tumours. CFPHV has also been detected recently by PCR in tissue samples from...... clinically healthy (non exhibiting fibropapilloma tumours) turtles, thus representing presumably latent infections of the pathogen. Given that template copy numbers of viruses in latent infections can be very low, extremely sensitive PCR assays are needed to optimize detection efficiency. In this study...

  7. Multiplex real-time PCR assay for rapid detection of methicillin-resistant staphylococci directly from positive blood cultures.

    Science.gov (United States)

    Wang, Hye-Young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok; Uh, Young; Lee, Hyeyoung

    2014-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 10(3) CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene.

  8. Reduce microRNA RT-qPCR Assay Costs by More Than 10-fold Without Compromising Results

    DEFF Research Database (Denmark)

    Goldrick, Marianna; Busk, Peter Kamp; Lepovitz, Lance

    2013-01-01

    This white paper describes a detailed protocol for carrying out qPCR-based microRNA analysis for only ~$0.39 per assay, a cost-savings of >90% compared to commonly used alternative methods.......This white paper describes a detailed protocol for carrying out qPCR-based microRNA analysis for only ~$0.39 per assay, a cost-savings of >90% compared to commonly used alternative methods....

  9. Novel wide-range quantitative nested real-time PCR assay for Mycobacterium tuberculosis DNA: development and methodology.

    Science.gov (United States)

    Takahashi, Teruyuki; Tamura, Masato; Asami, Yukihiro; Kitamura, Eiko; Saito, Kosuke; Suzuki, Tsukasa; Takahashi, Sachiko Nonaka; Matsumoto, Koichi; Sawada, Shigemasa; Yokoyama, Eise; Takasu, Toshiaki

    2008-05-01

    Previously, we designed an internally controlled quantitative nested real-time (QNRT) PCR assay for Mycobacterium tuberculosis DNA in order to rapidly diagnose tuberculous meningitis. This technique combined the high sensitivity of nested PCR with the accurate quantification of real-time PCR. In this study, we attempted to improve the original QNRT-PCR assay and newly developed the wide-range QNRT-PCR (WR-QNRT-PCR) assay, which is more accurate and has a wider detection range. For use as an internal-control "calibrator" to measure the copy number of M. tuberculosis DNA, an original new-mutation plasmid (NM-plasmid) was developed. It had artificial random nucleotides in five regions annealing specific primers and probes. The NM-plasmid demonstrated statistically uniform amplifications (F = 1.086, P = 0.774) against a range (1 to 10(5)) of copy numbers of mimic M. tuberculosis DNA and was regarded as appropriate for use as a new internal control in the WR-QNRT-PSR assay. In addition, by the optimization of assay conditions in WR-QNRT-PCR, two-step amplification of target DNA was completely consistent with the standard curve of this assay. Due to the development of the NM-plasmid as the new internal control, significantly improved quantitative accuracy and a wider detection range were realized with the WR-QNRT-PCR assay. In the next study, we will try to use this novel assay method with actual clinical samples and examine its clinical usefulness.

  10. Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays

    DEFF Research Database (Denmark)

    Iftner, Thomas; Germ, Liesje; Swoyer, Ryan

    2009-01-01

    methods has not been well characterized. Clinically, cytology is used to establish possible HPV infection. We evaluated the sensitivity and specificity of HPV multiplex PCR assays compared to those of the testing scheme of the Hybrid Capture II (HCII) assay followed by an HPV PCR/line hybridization assay......Human papillomavirus (HPV) DNA genotyping is an essential test to establish efficacy in HPV vaccine clinical trials and HPV prevalence in natural history studies. A number of HPV DNA genotyping methods have been cited in the literature, but the comparability of the outcomes from the different...... (HCII-LiPA v2). SurePath residual samples were split into two aliquots. One aliquot was subjected to HCII testing followed by DNA extraction and LiPA v2 genotyping. The second aliquot was shipped to a second laboratory, where DNA was extracted and HPV multiplex PCR testing was performed. Comparisons...

  11. Determining the analytical specificity of PCR-based assays for the diagnosis of IA: What is Aspergillus?

    Science.gov (United States)

    Morton, C Oliver; White, P Lewis; Barnes, Rosemary A; Klingspor, Lena; Cuenca-Estrella, Manuel; Lagrou, Katrien; Bretagne, Stéphane; Melchers, Willem; Mengoli, Carlo; Caliendo, Angela M; Cogliati, Massimo; Debets-Ossenkopp, Yvette; Gorton, Rebecca; Hagen, Ferry; Halliday, Catriona; Hamal, Petr; Harvey-Wood, Kathleen; Jaton, Katia; Johnson, Gemma; Kidd, Sarah; Lengerova, Martina; Lass-Florl, Cornelia; Linton, Chris; Millon, Laurence; Morrissey, C Orla; Paholcsek, Melinda; Talento, Alida Fe; Ruhnke, Markus; Willinger, Birgit; Donnelly, J Peter; Loeffler, Juergen

    2016-10-07

    A wide array of PCR tests has been developed to aid the diagnosis of invasive aspergillosis (IA), providing technical diversity but limiting standardisation and acceptance. Methodological recommendations for testing blood samples using PCR exist, based on achieving optimal assay sensitivity to help exclude IA. Conversely, when testing more invasive samples (BAL, biopsy, CSF) emphasis is placed on confirming disease, so analytical specificity is paramount. This multicenter study examined the analytical specificity of PCR methods for detecting IA by blind testing a panel of DNA extracted from a various fungal species to explore the range of Aspergillus species that could be detected, but also potential cross reactivity with other fungal species. Positivity rates were calculated and regression analysis was performed to determine any associations between technical specifications and performance. The accuracy of Aspergillus genus specific assays was 71.8%, significantly greater (P PCR assay targeting the rRNA genes (P = .0011). Conversely, there was a significant association between rRNA PCR targets and false positivity (P = .0032). To conclude current Aspergillus PCR assays are better suited for detecting A. fumigatus, with inferior detection of most other Aspergillus species. The use of an Aspergillus genus specific PCR assay targeting the rRNA genes is preferential.

  12. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    Science.gov (United States)

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels.

  13. Sources of blood meals of sylvatic Triatoma guasayana near Zurima, Bolivia, assayed with qPCR and 12S cloning.

    Directory of Open Access Journals (Sweden)

    David E Lucero

    2014-12-01

    Full Text Available In this study we compared the utility of two molecular biology techniques, cloning of the mitochondrial 12S ribosomal RNA gene and hydrolysis probe-based qPCR, to identify blood meal sources of sylvatic Chagas disease insect vectors collected with live-bait mouse traps (also known as Noireau traps. Fourteen T. guasayana were collected from six georeferenced trap locations in the Andean highlands of the department of Chuquisaca, Bolivia.We detected four blood meals sources with the cloning assay: seven samples were positive for human (Homo sapiens, five for chicken (Gallus gallus and unicolored blackbird (Agelasticus cyanopus, and one for opossum (Monodelphis domestica. Using the qPCR assay we detected chicken (13 vectors, and human (14 vectors blood meals as well as an additional blood meal source, Canis sp. (4 vectors.We show that cloning of 12S PCR products, which avoids bias associated with developing primers based on a priori knowledge, detected blood meal sources not previously considered and that species-specific qPCR is more sensitive. All samples identified as positive for a specific blood meal source by the cloning assay were also positive by qPCR. However, not all samples positive by qPCR were positive by cloning. We show the power of combining the cloning assay with the highly sensitive hydrolysis probe-based qPCR assay provides a more complete picture of blood meal sources for insect disease vectors.

  14. Comparison of a commercial real-time PCR assay, RealCycler® PJIR kit, progenie molecular, to an in-house real-time PCR assay for the diagnosis of Pneumocystis jirovecii infections.

    Science.gov (United States)

    Guillaud-Saumur, Thibaud; Nevez, Gilles; Bazire, Amélie; Virmaux, Michèle; Papon, Nicolas; Le Gal, Solène

    2017-04-01

    We compared the RealCycler® PJIR kit (Progenie Molecular), available in Europe, to an in-house real-time PCR assay for the diagnosis of Pneumocystis jirovecii infections. Excellent agreement was found (concordance rate, 97.4%; Cohen's kappa, 0.918>0.8) showing that this commercial assay represents an alternative method for the diagnosis of P. jirovecii infections.

  15. Duplex Quantitative PCR Assay for Detection of Haemophilus influenzae That Distinguishes Fucose- and Protein D-Negative Strains.

    Science.gov (United States)

    de Gier, Camilla; Pickering, Janessa L; Richmond, Peter C; Thornton, Ruth B; Kirkham, Lea-Ann S

    2016-09-01

    We have developed a specific Haemophilus influenzae quantitative PCR (qPCR) that also identifies fucose-negative and protein D-negative strains. Analysis of 100 H. influenzae isolates, 28 Haemophilus haemolyticus isolates, and 14 other bacterial species revealed 100% sensitivity (95% confidence interval [CI], 96% to 100%) and 100% specificity (95% CI, 92% to 100%) for this assay. The evaluation of 80 clinical specimens demonstrated a strong correlation between semiquantitative culture and the qPCR (P < 0.001).

  16. Rapid semi-automated quantitative multiplex tandem PCR (MT-PCR assays for the differential diagnosis of influenza-like illness

    Directory of Open Access Journals (Sweden)

    Dwyer Dominic E

    2010-05-01

    Full Text Available Abstract Background Influenza A, including avian influenza, is a major public health threat in developed and developing countries. Rapid and accurate detection is a key component of strategies to contain spread of infection, and the efficient diagnosis of influenza-like-illness is essential to protect health infrastructure in the event of a major influenza outbreak. Methods We developed a multiplexed PCR (MT-PCR assay for the simultaneous diagnosis of respiratory viruses causing influenza-like illness, including the specific recognition of influenza A haemagglutinin subtypes H1, H3, and H5. We tested several hundred clinical specimens in two diagnostic reference laboratories and compared the results with standard techniques. Results The sensitivity and specificity of these assays was higher than individual assays based on direct antigen detection and standard PCR against a range of control templates and in several hundred clinical specimens. The MT-PCR assays provided differential diagnoses as well as potentially useful quantitation of virus in clinical samples. Conclusions MT-PCR is a potentially powerful tool for the differential diagnosis of influenza-like illness in the clinical diagnostic laboratory.

  17. Development of a PCR Assay to detect Papillomavirus Infection in the Snow Leopard

    Directory of Open Access Journals (Sweden)

    Eng Curtis

    2011-07-01

    Full Text Available Abstract Background Papillomaviruses (PVs are a group of small, non-encapsulated, species-specific DNA viruses that have been detected in a variety of mammalian and avian species including humans, canines and felines. PVs cause lesions in the skin and mucous membranes of the host and after persistent infection, a subset of PVs can cause tumors such as cervical malignancies and head and neck squamous cell carcinoma in humans. PVs from several species have been isolated and their genomes have been sequenced, thereby increasing our understanding of the mechanism of viral oncogenesis and allowing for the development of molecular assays for the detection of PV infection. In humans, molecular testing for PV DNA is used to identify patients with persistent infections at risk for developing cervical cancer. In felids, PVs have been isolated and sequenced from oral papillomatous lesions of several wild species including bobcats, Asian lions and snow leopards. Since a number of wild felids are endangered, PV associated disease is a concern and there is a need for molecular tools that can be used to further study papillomavirus in these species. Results We used the sequence of the snow leopard papillomavirus UuPV1 to develop a PCR strategy to amplify viral DNA from samples obtained from captive animals. We designed primer pairs that flank the E6 and E7 viral oncogenes and amplify two DNA fragments encompassing these genes. We detected viral DNA for E6 and E7 in genomic DNA isolated from saliva, but not in paired blood samples from snow leopards. We verified the identity of these PCR products by restriction digest and DNA sequencing. The sequences of the PCR products were 100% identical to the published UuPV1 genome sequence. Conclusions We developed a PCR assay to detect papillomavirus in snow leopards and amplified viral DNA encompassing the E6 and E7 oncogenes specifically in the saliva of animals. This assay could be utilized for the molecular

  18. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    Science.gov (United States)

    Hasanpour, Mojtaba; Najafi, Akram

    2017-03-28

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (Tm) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains.

  19. Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays.

    Science.gov (United States)

    Iftner, Thomas; Germ, Liesje; Swoyer, Ryan; Kjaer, Susanne Kruger; Breugelmans, J Gabrielle; Munk, Christian; Stubenrauch, Frank; Antonello, Joseph; Bryan, Janine T; Taddeo, Frank J

    2009-07-01

    Human papillomavirus (HPV) DNA genotyping is an essential test to establish efficacy in HPV vaccine clinical trials and HPV prevalence in natural history studies. A number of HPV DNA genotyping methods have been cited in the literature, but the comparability of the outcomes from the different methods has not been well characterized. Clinically, cytology is used to establish possible HPV infection. We evaluated the sensitivity and specificity of HPV multiplex PCR assays compared to those of the testing scheme of the Hybrid Capture II (HCII) assay followed by an HPV PCR/line hybridization assay (HCII-LiPA v2). SurePath residual samples were split into two aliquots. One aliquot was subjected to HCII testing followed by DNA extraction and LiPA v2 genotyping. The second aliquot was shipped to a second laboratory, where DNA was extracted and HPV multiplex PCR testing was performed. Comparisons were evaluated for 15 HPV types common in both assays. A slightly higher proportion of samples tested positive by the HPV multiplex PCR than by the HCII-LiPA v2 assay. The sensitivities of the multiplex PCR assay relative to those of the HCII-LiPA v2 assay for HPV types 6, 11, 16, and 18, for example, were 0.806, 0.646, 0.920, and 0.860, respectively; the specificities were 0.986, 0.998, 0.960, and 0.986, respectively. The overall comparability of detection of the 15 HPV types was quite high. Analyses of DNA genotype testing compared to cytology results demonstrated a significant discordance between cytology-negative (normal) and HPV DNA-positive results. This demonstrates the challenges of cytological diagnosis and the possibility that a significant number of HPV-infected cells may appear cytologically normal.

  20. Physical lysis only (PLO) methods suitable as rapid sample pretreatment for qPCR assay.

    Science.gov (United States)

    Wang, Xiaofang; Lee, Byung-Tae; Son, Ahjeong

    2014-10-01

    Quantitative PCR (qPCR) enables rapid and sensitive gene quantification and is widely used in genomics, such as biological, medical, environmental, and food sciences. However, sample pretreatment requires the use of conventional DNA extraction kits which are time-consuming and labor intensive. In this study, we investigated four physical lysis only (PLO) methods which are rapid and could serve as alternatives to conventional DNA extraction kits. These PLO methods are bead mill, heating, sonication, and freeze-thaw. Using ethidium bromide-based assay, their performance was evaluated and compared. The effects of cell debris and its removal were also investigated. Bead mill method without cell debris removal appeared to yield the best qPCR results among the four PLO methods. In addition, bead mill method also performed better than conventional DNA extraction kits. It is probably due to the substantial loss of DNA material during the extensive purification of the conventional DNA extraction kits. The bead mill method has been demonstrated to successfully quantify 10(2) to 10(7) copies of the PAH-RHDα gene of Pseudomonas putida.

  1. The development and application of the two real-time RT-PCR assays to detect the pathogen of HFMD.

    Directory of Open Access Journals (Sweden)

    Aili Cui

    Full Text Available Large-scale Hand, Foot, and Mouth Disease (HFMD outbreaks have frequently occurred in China since 2008, affecting more than one million children and causing several hundred children deaths every year. The pathogens of HFMD are mainly human enteroviruses (HEVs. Among them, human enterovirus 71 (HEV71 and coxsackievirus A16 (CVA16 are the most common pathogens of HFMD. However, other HEVs could also cause HFMD. To rapidly detect HEV71 and CVA16, and ensure detection of all HEVs causing HFMD, two real-time hybridization probe-based RT-PCR assays were developed in this study. One is a multiplex real-time RT-PCR assay, which was developed to detect and differentiate HEV71 specifically from CVA16 directly from clinical specimens within 1-2 h, and the other is a broad-spectrum real-time RT-PCR assay, which targeted almost all HEVs. The experiments confirmed that the two assays have high sensitivity and specificity, and the sensitivity was up to 0.1 TCID50/ml for detection of HEVs, HEV71, and CVA16, respectively. A total of 213 clinical specimens were simultaneously detected by three kinds of assays, including the two real-time RT-PCR assays, direct conventional RT-PCR assay, and virus isolation assay on human rhabdomyosarcoma cells (RD cells. The total positive rate of both HEV71 and CVA16 was 69.48% with real-time RT-PCR assay, 47.42% with RT-PCR assay, and 34.58% with virus isolation assay. One HFMD clinical specimen was positive for HEV, but negative for HEV71 or CVA16, which was identified as Echovirus 11 (Echo11 by virus isolation, RT-PCR, and sequencing for the VP1 gene. The two real-time RT-PCR assays had been applied in 31 provincial HFMD labs to detect the pathogens of HFMD, which has contributed to the rapid identification of the pathogens in the early stages of HFMD outbreaks, and helped to clarify the etiologic agents of HFMD in China.

  2. Development of a caseinase assay for PCR independent detection of esp gene carriage among enterococci

    Science.gov (United States)

    Dada, Ayokunle Christopher; Asmat, Ahmad; Lee, Yook Heng; Usup, Gires

    2013-11-01

    Currently, there is no known relationship between caseinase and carriage of esp gene. Also, no breakpoints exist for phenotypic assays that are used to infer virulence characteristics among Enterococci. In the present study, caseinase activity was measured by a radial diffusion assay for 113 enterococci isolates. A standard curve with predictive r2 value of 0.939 was produced by dispensing several doubling dilutions of proteinase K into 3% skimmed milk agar wells. Caseinase activity for all tested enterococci was subsequently converted into proteinase K activity, using the obtained chart. Caseinase activity ranged from 1.74 × 10-8 to 4.47 × 10-7ug/ml and 6.37 × 10-8 to 8.82 × 10-8 ug/ml per colony of environmental and clinical enterocococci tested, proportionate to proteinase K activity. Caseinase activity among environmental strains was five-fold higher than was observed among clinical strains. Fishers exact test revealed significant associations between esp gene carriage and caseinase activity (diameter on skimmed milk, z=8 to 13mm) at p<0.1. However, the probability of association was strongest at z=13 mm (p=0.033) suggesting a range of diameter cut-offs that was exclusive to and may be used to predict the presence of environmental enterococci strains harbouring esp gene. Results obtained from sensitivity analysis showed increasing assay sensitivity from cut-off of 9 mm (61.54%) up to 84.62% (13 mm). Specificity of the caseinase assay slightly decreased from 50% to 42.86% as cut-off increased from 9 to 13 mm. The caseinase assay described here potentially proves useful in preliminary PCR independent screening of environmental enterococci isolates for the detection of strains which carry the esp gene known to increase the severity of enterococcal infections.

  3. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    . In conclusion, a rapid, sensitive, and reproducible quantitative PCR assay for P. carinii f. sp. carinii has been developed and is applicable to in vivo as well as in vitro systems. The assay should prove useful for conducting studies in which quantification of organism burden or growth assessment is critical...

  4. A molecular-beacon-based asymmetric PCR assay for easy visualization of amplicons in the diagnosis of trichomoniasis.

    Science.gov (United States)

    Sonkar, Subash C; Sachdev, Divya; Mishra, Prashant K; Kumar, Anita; Mittal, Pratima; Saluja, Daman

    2016-12-15

    The currently available nucleic acid amplification tests (NAATs) for trichomoniasis are accurate, quick and confirmative with superior sensitivity than traditional culture-based microbiology assays. However, these assays are associated with problems of carry over contamination, false positive results, requirement of technical expertise for performance and detection of end product. Hence, a diagnostic assay with easy visualization of the amplified product will be profitable. An in-house, rapid, sensitive, specific molecular-beacon-based PCR assay, using primers against pfoB gene of Trichomonas vaginalis, was developed and evaluated using dry ectocervical swabs (n=392) from symptomatic females with vaginal discharge. Total DNA was isolated and used as template for the PCR assays. The performance and reproducibility of PCR assay was evaluated by composite reference standard (CRS). For easy visualization of the amplified product, molecular-beacon was designed and amplicons were visualized directly using fluorescent handheld dark reader or by Micro-Plate Reader. Molecular-beacons are single-stranded hairpin shaped nucleic acid probes composed of a stem, with fluorophore/quencher pair and a loop region complementary to the desired DNA. The beacon-based PCR assay designed in the present study is highly specific as confirmed by competition experiments and extremely sensitive with detection limit of 20fg of genomic DNA (3-4 pathogens). The minimum infrastructure requirement and ease to perform the assay makes this method highly useful for resource poor countries for better disease management.

  5. Detection of Zika Virus in Desiccated Mosquitoes by Real-Time Reverse Transcription PCR and Plaque Assay

    Science.gov (United States)

    Savage, Harry M.

    2017-01-01

    We assayed Zika virus–infected mosquitoes stored at room temperature for <30 days for live virus by using plaque assay and virus RNA by using real-time reverse transcription PCR. Viable virus was detected in samples stored <10 days, and virus RNA was detected in samples held for 30 days. PMID:28075325

  6. Triplex PCR assay for the rapid identification of 3 major Vibrio species, Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio fluvialis.

    Science.gov (United States)

    Vinothkumar, Kittappa; Bhardwaj, Ashima Kushwaha; Ramamurthy, Thandavarayan; Niyogi, Swapan Kumar

    2013-08-01

    A triplex PCR assay was developed for the identification of 3 major Vibrio spp., Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio fluvialis by targeting their haemolysin, haem-utilizing, and central regulatory genes, respectively. This simple, rapid, sensitive, and specific assay using cell lysates from 227 samples established its usefulness in research and epidemiology.

  7. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

    NARCIS (Netherlands)

    Agren, J.; Hamidjaja, R.A.; Hansen, T.; Ruuls, R.C.; Thierry, S.; Vigre, H.; Janse, I.; Sundström, A.; Segerman, B.; Koene, M.G.J.; Löfström, Ch.; Rotterdam, van B.; Derzelle, S.

    2013-01-01

    Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of B. anthracis. While most of the developed assays rely o

  8. Evaluation of a novel PCR-based assay for detection and identification of Chlamydia trachomatis serovars in cervical specimens.

    NARCIS (Netherlands)

    Quint, K.D.; Porras, C.; Safaeian, M.; Gonzalez, P.; Hildesheim, A.; Quint, W.G.V.; Doorn, L.J. van; Silva, S.; Melchers, W.J.G.; Schiffman, M.; Rodriguez, A.C.; Wacholder, S.; Freer, E.; Cortes, B.; Herrero, R.

    2007-01-01

    The aims of this study were to compare a novel PCR-based Chlamydia trachomatis detection and genotyping (Ct-DT) assay with the FDA-approved, commercially available C. trachomatis detection Hybrid Capture 2 (HC2) assay and to investigate the C. trachomatis serovar distribution among young women in a

  9. Simultaneous Detection of CDC Category "A" DNA and RNA Bioterrorism Agents by Use of Multiplex PCR & RT-PCR Enzyme Hybridization Assays

    Directory of Open Access Journals (Sweden)

    Kelly J. Henrickson

    2009-10-01

    Full Text Available Assays to simultaneously detect multiple potential agents of bioterrorism are limited. Two multiplex PCR and RT-PCR enzyme hybridization assays (mPCR-EHA, mRT-PCR-EHA were developed to simultaneously detect many of the CDC category “A” bioterrorism agents. The “Bio T” DNA assay was developed to detect: Variola major (VM, Bacillus anthracis (BA, Yersinia pestis (YP, Francisella tularensis (FT and Varicella zoster virus (VZV. The “Bio T” RNA assay (mRT-PCR-EHA was developed to detect: Ebola virus (Ebola, Lassa fever virus (Lassa, Rift Valley fever (RVF, Hantavirus Sin Nombre species (HSN and dengue virus (serotypes 1-4. Sensitivity and specificity of the 2 assays were tested by using genomic DNA, recombinant plasmid positive controls, RNA transcripts controls, surrogate (spiked clinical samples and common respiratory pathogens. The analytical sensitivity (limit of detection (LOD of the DNA asssay for genomic DNA was 1×100~1×102 copies/mL for BA, FT and YP. The LOD for VZV whole organism was 1×10-2 TCID50/mL. The LOD for recombinant controls ranged from 1×102~1×103copies/mL for BA, FT, YP and VM. The RNA assay demonstrated LOD for RNA transcript controls of 1×104~1×106 copies/mL without extraction and 1×105~1×106 copies/mL with extraction for Ebola, RVF, Lassa and HSN. The LOD for dengue whole organisms was ~1×10-4 dilution for dengue 1 and 2, 1×104 LD50/mL and 1×102 LD50/mL for dengue 3 and 4. The LOD without extraction for recombinant plasmid DNA controls was ~1×103 copies/mL (1.5 input copies/reaction for Ebola, RVF, Lassa and HSN. No cross-reactivity of primers and probes used in both assays was detected with common respiratory pathogens or between targeted analytes. Clinical sensitivity was estimated using 264 surrogate clinical samples tested with the BioT DNA assay and 549 samples tested with the BioT RNA assay. The clinical specificity is 99.6% and 99.8% for BioT DNA assay and BioT RNA assay, respectively. The

  10. Development of molecular approach based on PCR assay for detection of histamine producing bacteria.

    Science.gov (United States)

    Wongsariya, Karn; Bunyapraphatsara, Nuntavan; Yasawong, Montri; Chomnawang, Mullika Traidej

    2016-01-01

    Histamine fish poisoning becomes highly concern not only in public health but also economic aspect. Histamine is produced from histidine in fish muscles by bacterial decarboxylase enzyme. Several techniques have been developed to determine the level of histamine in fish and their products but the effective method for detecting histamine producing bacteria is still required. This study was attempted to detect histamine producing bacteria by newly developed PCR condition. Histamine producing bacteria were isolated from scombroid fish and determined the ability to produce histamine of isolated bacteria by biochemical and TLC assays. PCR method was developed to target the histidine decarboxylase gene (hdc). The result showed that fifteen histamine producing bacterial isolates and three standard strains produced an amplicon at the expected size of 571 bp after amplified by PCR using Hdc_2F/2R primers. Fifteen isolates of histamine producing bacteria were classified as M. morganii, E. aerogenes, and A. baumannii. The lowest detection levels of M. morganii and E. aerogenes were 10(2) and 10(5) Cfu/mL in culture media and 10(3) and 10(6) Cfu/mL in fish homogenates, respectively. The limit of detection by this method was clearly shown to be sensitive because the primers could detect the presence of M. morganii and E. aerogenes before the histamine level reached the regulation level at 50 ppm. Therefore, this PCR method exhibited the potential efficiency for detecting the hdc gene from histamine producing bacteria and could be used to prevent the proliferation of histamine producing bacteria in fish and fish products.

  11. Evaluation of single and double-locus real-time PCR assays for methicillin-resistant Staphylococcus aureus (MRSA surveillance

    Directory of Open Access Journals (Sweden)

    Arielly Haya

    2010-04-01

    Full Text Available Abstract Background Methicillin-resistant Staphylococcus aureus (MRSA is a human pathogen, representing an infection control challenge. Conventional MRSA screening takes up to three days, therefore development of rapid detection is essential. Real time-PCR (rt-PCR is the fastest method fulfilling this task. All currently published or commercially available rt-PCR MRSA assays relay on single or double-locus detection. Double-locus assays are based on simultaneous detection of mecA gene and a S. aureus-specific gene. Such assays cannot be applied on clinical samples, which often contain both coagulase-negative staphylococci (CoNS and S. aureus, either of which can carry mecA. Single-locus assays are based on detection of the staphylococcal cassette chromosome mec (SCCmec element and the S. aureus-specific orfX gene, assuming that it is equivalent to mecA detection. Findings Parallel evaluation of several published single and double-locus rt-PCR MRSA assays of 150 pure culture strains, followed by analysis of 460 swab-derived clinical samples which included standard identification, susceptibility testing, followed by PCR detection of staphylococcal suspected isolates and in-PCR mixed bacterial populations analysis indicated the following findings. Pure cultures analysis indicated that one of the single-locus assay had very high prevalence of false positives (Positive predictive value = 77.8% and was excluded from further analysis. Analysis of 460 swab-derived samples indicated that the second single-locus assay misidentified 16 out of 219 MRSA's and 13 out of 90 methicillin-sensitive S. aureus's (MSSA were misidentified as MRSA's. The double-locus detection assay misidentified 55 out of 90 MSSA's. 46 MSSA containing samples were misidentified as MRSA and 9 as other than S. aureus ending with low positive predicted value ( Conclusion The results indicate that high prevalence of false-positive and false-negative reactions occurs in such assays.

  12. Discrimination between E. granulosus sensu stricto, E. multilocularis and E. shiquicus Using a Multiplex PCR Assay.

    Directory of Open Access Journals (Sweden)

    Cong-Nuan Liu

    2015-09-01

    Full Text Available Infections of Echinococcus granulosus sensu stricto (s.s, E. multilocularis and E. shiquicus are commonly found co-endemic on the Qinghai-Tibet plateau, China, and an efficient tool is needed to facilitate the detection of infected hosts and for species identification.A single-tube multiplex PCR assay was established to differentiate the Echinococcus species responsible for infections in intermediate and definitive hosts. Primers specific for E. granulosus, E. multilocularis and E. shiquicus were designed based on sequences of the mitochondrial NADH dehydrogenase subunit 1 (nad1, NADH dehydrogenase subunit 5 (nad5 and cytochrome c oxidase subunit 1 (cox1 genes, respectively. This multiplex PCR accurately detected Echinococcus DNA without generating nonspecific reaction products. PCR products were of the expected sizes of 219 (nad1, 584 (nad5 and 471 (cox1 bp. Furthermore, the multiplex PCR enabled diagnosis of multiple infections using DNA of protoscoleces and copro-DNA extracted from fecal samples of canine hosts. Specificity of the multiplex PCR was 100% when evaluated using DNA isolated from other cestodes. Sensitivity thresholds were determined for DNA from protoscoleces and from worm eggs, and were calculated as 20 pg of DNA for E. granulosus and E. shiquicus, 10 pg of DNA for E. multilocularis, 2 eggs for E. granulosus, and 1 egg for E. multilocularis. Positive results with copro-DNA could be obtained at day 17 and day 26 after experimental infection of dogs with larval E. multilocularis and E. granulosus, respectively.The multiplex PCR developed in this study is an efficient tool for discriminating E. granulosus, E. multilocularis and E. shiquicus from each other and from other taeniid cestodes. It can be used for the detection of canids infected with E. granulosus s.s. and E. multilocularis using feces collected from these definitive hosts. It can also be used for the identification of the Echinococcus metacestode larva in intermediate

  13. Improved PCR assay for the species-specific identification and quantitation of Legionella pneumophila in water.

    Science.gov (United States)

    Cho, Min Seok; Ahn, Tae-Young; Joh, Kiseong; Lee, Eui Seok; Park, Dong Suk

    2015-11-01

    Legionellosis outbreak is a major global health care problem. However, current Legionella risk assessments may be compromised by uncertainties in Legionella detection methods, infectious dose, and strain infectivity. These limitations may place public health at significant risk, leading to significant monetary losses in health care. However, there are still unmet needs for its rapid identification and monitoring of legionellae in water systems. Therefore, in the present study, a primer set was designed based on a LysR-type transcriptional regulator (LTTR) family protein gene of Legionella pneumophila subsp. pneumophila str. Philadelphia 1 because it was found that this gene is structurally diverse among species through BLAST searches. The specificity of the primer set was evaluated using genomic DNA from 6 strains of L. pneumophila, 5 type strains of other related Legionella species, and other 29 reference pathogenic bacteria. The primer set used in the PCR assay amplified a 264-bp product for only targeted six strains of L. pneumophila. The assay was also able to detect at least 1.39 × 10(3) copies/μl of cloned amplified target DNA using purified DNA or 7.4 × 10(0) colony-forming unit per reaction when using calibrated cell suspension. In addition, the sensitivity and specificity of this assay were confirmed by successful detection of Legionella pneumophila in environmental water samples.

  14. Development and validation of two SYBR green PCR assays and a multiplex real-time PCR for the detection of Shiga toxin-producing Escherichia coli in meat.

    Science.gov (United States)

    Brusa, Victoria; Galli, Lucía; Linares, Luciano H; Ortega, Emanuel E; Lirón, Juan P; Leotta, Gerardo A

    2015-12-01

    Shiga toxin-producing Escherichia coli (STEC) are recognized as food-borne pathogens. We developed and validated two SYBR green PCR (SYBR-PCR) and a real-time multiplex PCR (RT-PCR) to detect stx1 and stx2 genes in meat samples, and compared these techniques in ground beef samples from retail stores. One set of primers and one hydrolysis probe were designed for each stx gene. For RT-PCR, an internal amplification control (IAC) was used. All PCR intra-laboratory validations were performed using pure strains and artificially contaminated ground beef samples. A total of 50 STEC and 30 non-STEC strains were used. Naturally contaminated ground beef samples (n=103) were obtained from retail stores and screened with SYBR-PCR and RT-PCR, and stx-positive samples were processed for STEC isolation. In the intra-laboratory validation, each PCR obtained a 1×10(2) CFU mL(-1) limit of detection and 100% inclusivity and exclusivity. The same results were obtained when different laboratory analysts in alternate days performed the assay. The level of agreement obtained with SYBR-PCR and RT-PCR was kappa=0.758 and 0.801 (P<0.001) for stx1 and stx2 gene detection, respectively. Two PCR strategies were developed and validated, and excellent performance with artificially contaminated ground beef samples was obtained. However, the efforts made to isolate STEC from retail store samples were not enough. Only 11 STEC strains were isolated from 35 stx-positive ground beef samples identically detected by all PCRs. The combination of molecular approaches based on the identification of a virulence genotypic profile of STEC must be considered to improve isolation.

  15. Development of a multiplex real-time PCR assay for the rapid diagnosis of neonatal late onset sepsis.

    Science.gov (United States)

    van den Brand, Marre; Peters, Remco P H; Catsburg, Arnold; Rubenjan, Anna; Broeke, Ferdi J; van den Dungen, Frank A M; van Weissenbruch, Mirjam M; van Furth, A Marceline; Kõressaar, Triinu; Remm, Maido; Savelkoul, Paul H M; Bos, Martine P

    2014-11-01

    The diagnosis of late onset sepsis (LOS), a severe condition with high prevalence in preterm infants, is hampered by the suboptimal sensitivity and long turnaround time of blood culture. Detection of the infecting pathogen directly in blood by PCR would provide a much more timely result. Unfortunately, PCR-based assays reported so far are labor intensive and often lack direct species identification. Therefore we developed a real-time multiplex PCR assay tailored to LOS diagnosis which is easy-to-use, is applicable on small blood volumes and provides species-specific results within 4h. Species-specific PCR assays were selected from literature or developed using bioinformatic tools for the detection of the most prevalent etiologic pathogens: Enterococcus faecalis, Staphylococcus aureus, Staphylococcus spp., Streptococcus agalactiae, Escherichia coli, Pseudomonas aeruginosa, Klebsiella spp. and Serratia marcescens. The PCR assays showed 100% specificity, full coverage of the target pathogens and a limit of detection (LOD) of ≤10CFUeq./reaction. These LOD values were maintained in the multiplex format or when bacterial DNA was isolated from blood. Clinical evaluation showed high concordance between the multiplex PCR and blood culture. In conclusion, we developed a multiplex PCR that allows the direct detection of the most important bacterial pathogens causing LOS in preterm infants.

  16. Development of a multiplex PCR assay for detection and discrimination of Theileria annulata and Theileria sergenti in cattle.

    Science.gov (United States)

    Junlong, Liu; Li, Youquan; Liu, Aihong; Guan, Guiquan; Xie, Junren; Yin, Hong; Luo, Jianxun

    2015-07-01

    Aim to construct a simple and efficient diagnostic assay for Theileria annulata and Theileria sergenti, a multiplex polymerase chain reaction (PCR) method was developed in this study. Following the alignment of the related sequences, two primer sets were designed specific targeting on T. annulata cytochrome b (COB) gene and T. sergenti internal transcribed spacer (ITS) sequences. It was found that the designed primers could react in one PCR system and generating amplifications of 818 and 393 base pair for T. sergenti and T. annulata, respectively. The standard genomic DNA of both species Theileria was serial tenfold diluted for testing the sensitivity, while specificity test confirmed both primer sets have no cross-reaction with other Theileria and Babesia species. In addition, 378 field samples were used for evaluation of the utility of the multiplex PCR assay for detection of the pathogens infection. The detection results were compared with the other two published PCR methods which targeting on T. annulata COB gene and T. sergenti major piroplasm surface protein (MPSP) gene, respectively. The developed multiplex PCR assay has similar efficient detection with COB and MPSP PCR, which indicates this multiplex PCR may be a valuable assay for the epidemiological studies for T. annulata and T. sergenti.

  17. A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses.

    Science.gov (United States)

    Shi, Xiju; Liu, Xuming; Wang, Qin; Das, Amaresh; Ma, Guiping; Xu, Lu; Sun, Qing; Peddireddi, Lalitha; Jia, Wei; Liu, Yanhua; Anderson, Gary; Bai, Jianfa; Shi, Jishu

    2016-10-01

    Mixed infection with different pathogens is common in swine production systems especially under intensive production conditions. Quick and accurate detection and differentiation of different pathogens are necessary for epidemiological surveillance, disease management and import and export controls. In this study, we developed and validated a panel of multiplex real-time PCR/RT-PCR assays composed of four subpanels, each detects three common swine pathogens. The panel detects 12 viruses or viral serotypes, namely, VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU and SIV. Correlation coefficients (R(2)) and PCR amplification efficiencies of all singular and triplex real-time PCR reactions are within the acceptable range. Comparison between singular and triplex real-time PCR assays of each subpanel indicates that there is no significant interference on assay sensitivities caused by multiplexing. Specificity tests on 226 target clinical samples or 4 viral strains and 91 non-target clinical samples revealed that the real-time PCR panel is 100% specific, and there is no cross amplification observed. The limit of detection of each triplex real-time PCR is less than 10 copies per reaction for DNA, and less than 16 copies per reaction for RNA viruses. The newly developed multiplex real-time PCR panel also detected different combinations of co-infections as confirmed by other means of detections.

  18. A PCR-RFLP assay to detect and type cytolethal distending toxin (cdt) genes in Campylobacter hyointestinalis

    Science.gov (United States)

    HATANAKA, Noritoshi; KAMEI, Kazumasa; SOMROOP, Srinuan; AWASTHI, Sharda Prasad; ASAKURA, Masahiro; MISAWA, Naoaki; HINENOYA, Atsushi; YAMASAKI, Shinji

    2016-01-01

    Campylobacter hyointestinalis is considered as an emerging zoonotic pathogen. We have recently identified two types of cytolethal distending toxin (cdt) gene in C. hyointestinalis and designated them as Chcdt-I and Chcdt-II. In this study, we developed a PCR-restriction fragment length polymorphism (RFLP) assay that can differentiate Chcdt-I from Chcdt-II. When the PCR-RFLP assay was applied to 17 other Campylobacter strains and 25 non-Campylobacter strains, PCR products were not obtained irrespective of their cdt gene-possession, indicating that the specificity of the PCR-RFLP assay was 100%. In contrast, when the PCR-RFLP assay was applied to 35 C. hyointestinalis strains including 23 analyzed in the previous study and 12 newly isolated from pigs and bovines, all of them showed the presence of cdt genes. Furthermore, a restriction digest by EcoT14-I revealed that 29 strains contained both Chcdt-I and Chcdt-II and 6 strains contained only Chcdt-II, showing 100% sensitivity. Unexpectedly, however, PCR products obtained from 7 C. hyointestinalis strains were not completely digested by EcoT14-I. Nucleotide sequence analysis revealed that the undigested PCR product was homologous to cdtB but not to Chcdt-IB or Chcdt-IIB, indicating the presence of another cdt gene-variant. Then, we further digested the PCR products with DdeI in addition to EcoT14-I, showing that all three cdt genes, including a possible new Chcdt variant, could be clearly differentiated. Thus, the PCR-RFLP assay developed in this study is a valuable tool for evaluating the Chcdt gene-profile of bacteria. PMID:27916784

  19. Validation of a quantitative real-time PCR assay for HTLV-1 proviral load in peripheral blood mononuclear cells.

    Science.gov (United States)

    Rosadas, Carolina; Cabral-Castro, Mauro Jorge; Vicente, Ana Carolina Paulo; Peralta, José Mauro; Puccioni-Sohler, Marzia

    2013-11-01

    The objective of this study was to validate a TaqMan real-time PCR assay for HTLV-1 proviral load detection in peripheral blood mononuclear cells. TARL-2 cells were used to generate a standard curve. Peripheral blood mononuclear cell gDNA from 27 seropositive and 23 seronegative samples was analyzed. The sensitivity, specificity, accuracy, precision, dynamic range of the standard curve and qPCR efficiency were evaluated. All of the positive samples amplified the target gene. All of the negative samples amplified only the control gene (β-actin). The assay presented 100% specificity and sensibility. The intra- and inter-assay variability was 2.4% and 2.2%, respectively. The qPCR efficiency, slope and correlation coefficients (r2) were all acceptable. The limit of detection was 1 copy/rxn. This assay can reliably quantify HTLV-1 proviral load.

  20. Detection of virulence, antibiotic resistance and toxin (VAT) genes in Campylobacter species using newly developed multiplex PCR assays.

    Science.gov (United States)

    Laprade, Natacha; Cloutier, Michel; Lapen, David R; Topp, Edward; Wilkes, Graham; Villemur, Richard; Khan, Izhar U H

    2016-05-01

    Campylobacter species are one of the leading causes of bacterial gastroenteritis in humans worldwide. This twofold study was sought to: i) develop and optimize four single-tube multiplex PCR (mPCR) assays for the detection of six virulence (ciaB, dnaJ, flaA, flaB, pldA and racR), three toxin (cdtA, cdtB and cdtC) and one antibiotic resistance tet(O) genes in thermophilic Campylobacter spp. and ii) apply and evaluate the developed mPCR assays by testing 470 previously identified C. jejuni, C. coli and C. lari isolates from agricultural water. In each mPCR assay, a combination of two or three sets of primer pairs for virulence, antibiotic resistance and toxin (VAT) genes was used and optimized. Assay 1 was developed for the detection of dnaJ, racR and cdtC genes with expected amplification sizes of 720, 584 and 182bp. Assay 2 generated PCR amplicons for tet(O) and cdtA genes of 559 and 370bp. Assay 3 amplified cdtB ciaB, and pldA genes with PCR amplicon sizes of 620, 527 and 385bp. Assay 4 was optimized for flaA and flaB genes that generated PCR amplicons of 855 and 260bp. The primer pairs and optimized PCR protocols did not show interference and/or cross-amplification with each other and generated the expected size of amplification products for each target VAT gene for the C. jejuni ATCC 33291 reference strain. Overall, all ten target VAT genes were detected at a variable frequency in tested isolates of thermophilic Campylobacter spp. where cdtC, flaB, ciaB, cdtB, cdtA and pldA were commonly detected compared to the flaA, racR, dnaJ and tet(O) genes which were detected with less frequency. The developed mPCR assays are simple, rapid, reliable and sensitive tools for simultaneously assessing potential pathogenicity and antibiotic resistance profiling in thermophilic Campylobacter spp. The mPCR assays will be useful in diagnostic and analytical settings for routine screening of VAT characteristics of Campylobacter spp. as well as being applicable in epidemiological

  1. Evaluation of a gp63-PCR based assay as a molecular diagnosis tool in canine leishmaniasis in Tunisia.

    Directory of Open Access Journals (Sweden)

    Souheila Guerbouj

    Full Text Available A gp63PCR method was evaluated for the detection and characterization of Leishmania (Leishmania (L. parasites in canine lymph node aspirates. This tool was tested and compared to other PCRs based on the amplification of 18S ribosomal genes, a L. infantum specific repetitive sequence and kinetoplastic DNA minicircles, and to classical parasitological (smear examination and/or culture or serological (IFAT techniques on a sample of 40 dogs, originating from different L. infantum endemic regions in Tunisia. Sensitivity and specificity of all the PCR assays were evaluated on parasitologically confirmed dogs within this sample (N = 18 and control dogs (N = 45 originating from non-endemic countries in northern Europe and Australia. The gp63 PCR had 83.5% sensitivity and 100% specificity, a performance comparable to the kinetoplast PCR assay and better than the other assays. These assays had comparable results when the gels were southern transferred and hybridized with a radioactive probe. As different infection rates were found according to the technique, concordance of the results was estimated by (κ test. Best concordance values were between the gp63PCR and parasitological methods (74.6%, 95% confidence intervals CI: 58.8-95.4% or serology IFAT technique (47.4%, 95% CI: 23.5-71.3%. However, taken together Gp63 and Rib assays covered most of the samples found positive making of them a good alternative for determination of infection rates. Potential of the gp63PCR-RFLP assay for analysis of parasite genetic diversity within samples was also evaluated using 5 restriction enzymes. RFLP analysis confirmed assignment of the parasites infecting the dogs to L. infantum species and illustrated occurrence of multiple variants in the different endemic foci. Gp63 PCR assay thus constitutes a useful tool in molecular diagnosis of L. infantum infections in dogs in Tunisia.

  2. Evaluation of a gp63–PCR Based Assay as a Molecular Diagnosis Tool in Canine Leishmaniasis in Tunisia

    Science.gov (United States)

    Guerbouj, Souheila; Djilani, Fattouma; Bettaieb, Jihene; Lambson, Bronwen; Diouani, Mohamed Fethi; Ben Salah, Afif; Ben Ismail, Riadh; Guizani, Ikram

    2014-01-01

    A gp63PCR method was evaluated for the detection and characterization of Leishmania (Leishmania) (L.) parasites in canine lymph node aspirates. This tool was tested and compared to other PCRs based on the amplification of 18S ribosomal genes, a L. infantum specific repetitive sequence and kinetoplastic DNA minicircles, and to classical parasitological (smear examination and/or culture) or serological (IFAT) techniques on a sample of 40 dogs, originating from different L. infantum endemic regions in Tunisia. Sensitivity and specificity of all the PCR assays were evaluated on parasitologically confirmed dogs within this sample (N = 18) and control dogs (N = 45) originating from non–endemic countries in northern Europe and Australia. The gp63 PCR had 83.5% sensitivity and 100% specificity, a performance comparable to the kinetoplast PCR assay and better than the other assays. These assays had comparable results when the gels were southern transferred and hybridized with a radioactive probe. As different infection rates were found according to the technique, concordance of the results was estimated by (κ) test. Best concordance values were between the gp63PCR and parasitological methods (74.6%, 95% confidence intervals CI: 58.8–95.4%) or serology IFAT technique (47.4%, 95% CI: 23.5–71.3%). However, taken together Gp63 and Rib assays covered most of the samples found positive making of them a good alternative for determination of infection rates. Potential of the gp63PCR-RFLP assay for analysis of parasite genetic diversity within samples was also evaluated using 5 restriction enzymes. RFLP analysis confirmed assignment of the parasites infecting the dogs to L. infantum species and illustrated occurrence of multiple variants in the different endemic foci. Gp63 PCR assay thus constitutes a useful tool in molecular diagnosis of L. infantum infections in dogs in Tunisia. PMID:25153833

  3. Comparison of PCR-ELISA and LightCycler real-time PCR assays for detecting Salmonella spp. in milk and meat samples

    DEFF Research Database (Denmark)

    Perelle, Sylvie; Dilasser, Françoise; Malorny, Burkhard

    2004-01-01

    In a previous study, we reported the performance of a PCR assay amplifying 285-bp of the invA gene of Salmonella spp. through an international ring-trial involving four participating laboratories [Int. J. Food Microbiol. 89 (2003) 241]. Based on the validated set of primers and recent advancement...

  4. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    Science.gov (United States)

    Riedel, Timothy E.; Zimmer-Faust, Amity G.; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T.; Ebentier, Darcy L.; Byappanahalli, Muruleedhara N.; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B.; Griffith, John F.; Holden, Patricia A.; Shanks, Orin C.; Weisberg, Stephen B.; Jay, Jennifer A.

    2014-01-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.

  5. Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples.

    Science.gov (United States)

    Irenge, Léonid M; Durant, Jean-François; Tomaso, Herbert; Pilo, Paola; Olsen, Jaran S; Ramisse, Vincent; Mahillon, Jacques; Gala, Jean-Luc

    2010-11-01

    A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.

  6. DEVELOPMENT OF SEMI-QUANTITATIVE PCR ASSAYS FOR THE DETECTION AND ENUMERATION OF GAMBIERDISCUS SPECIES (GONYAULACALES, DINOPHYCEAE)(1).

    Science.gov (United States)

    Vandersea, Mark W; Kibler, Steven R; Holland, William C; Tester, Patricia A; Schultz, Thomas F; Faust, Maria A; Holmes, Michael J; Chinain, Mirelle; Wayne Litaker, R

    2012-08-01

    Ciguatera fish poisoning (CFP) is a serious health problem in tropical regions and is caused by the bioaccumulation of lipophilic toxins produced by dinoflagellates in the genus Gambierdiscus. Gambierdiscus species are morphologically similar and are difficult to distinguish from one another even when using scanning electron microscopy. Improved identification and detection methods that are sensitive and rapid are needed to identify toxic species and investigate potential distribution and abundance patterns in relation to incidences of CFP. This study presents the first species-specific, semi-quantitative polymerase chain reaction (qPCR) assays that can be used to address these questions. These assays are specific for five Gambierdiscus species and one undescribed ribotype. The assays utilized a SYBR green format and targeted unique sequences found within the SSU, ITS, and the D1/D3 LSU ribosomal domains. Standard curves were constructed using known concentrations of cultured cells and 10-fold serial dilutions of rDNA PCR amplicons containing the target sequence for each specific assay. Assay sensitivity and accuracy were tested using DNA extracts purified from known concentrations of multiple Gambierdiscus species. The qPCR assays were used to assess Gambierdiscus species diversity and abundance in samples collected from nearshore areas adjacent to Ft. Pierce and Jupiter, Florida USA. The results indicated that the practical limit of detection for each assay was 10 cells per sample. Most interestingly, the qPCR analysis revealed that as many as four species of Gambierdiscus were present in a single macrophyte sample.

  7. Diagnostic efficacy of a real time-PCR assay for Chlamydia trachomatis infection in infertile women in north India

    Directory of Open Access Journals (Sweden)

    Benu Dhawan

    2014-01-01

    Full Text Available Background & objectives: Little is known about the prevalence of Chlamydia trachomatis infection in Indian women with infertility. To improve the diagnosis of C. trachomatis infection in developing countries, there is an urgent need to establish cost-effective molecular test with high sensitivity and specificity. This study was conducted to determine the diagnostic utility of a real time-PCR assay for detention of C. trachomatis infection in infertile women attending an infertility clinic in north India. The in house real time-PCR assay was also compared with a commercial real-time PCR based detection system. Methods: Endocervical swabs, collected from 200 infertile women were tested for C. trachomatis by three different PCR assays viz. in-house real time-PCR targeting the cryptic plasmid using published primers, along with omp1 gene and cryptic plasmid based conventional PCR assays. Specimens were also subjected to direct fluorescence assay (DFA and enzyme immunoassay (EIA Performance of in-house real time-PCR was compared with that of COBAS Taqman C. trachomatis Test, version 2.0 on all in-house real time-PCR positive sample and 30 consecutive negative samples. Results: C. trachomatis infection was found in 13.5 per cent (27/200 infertile women by in-house real time-PCR, 11.5 per cent (23/200 by cryptic plasmid and/or omp1 gene based conventional PCR, 9 per cent (18/200 by DFA and 6.5 per cent (7/200 by EIA. The in-house real time-PCR exhibited a sensitivity and specificity of 100 per cent, considering COBAS Taqman CT Test as the gold standard. The negative and positive predictive values of the in-house real time-PCR were 100 per cent. The in-house real time-PCR could detect as low as 10 copies of C. trachomatis DNA per reaction. Interpretation & conclusions: In-house real time-PCR targeting the cryptic plasmid of C. trachomatis exhibited an excellent sensitivity and specificity similar to that of COBAS Taqman CT Test, v2.0 for detection of C

  8. Identification of campylobacteria isolated from Danish broilers by phenotypic tests and species-specific PCR assays

    DEFF Research Database (Denmark)

    Wainø, M.; Bang, Dang Duong; Lund, Marianne;

    2003-01-01

    campylobacterial cultures, 108 Campylobacter jejuni cultures and 351 campylobacterial cultures other than Camp. jejuni were subjected to various species-specific PCR assays. On the basis of the genotypic tests, it was demonstrated that Camp. jejuni and Camp. coli constituted approx. 99% of all cultures, while...... other species identified were Helicobacter pullorum, Camp. lari and Camp. upsaliensis. However, 29% of the 309 Camp. coli cultures identified by phenotypic tests were hippurate-variable or negative Camp. jejuni cultures, whereas some Camp. lari cultures and unspeciated campylobacter cultures belonged...... and Impact of the Study: Future phenotypic test schemes should be designed to allow a more accurate differentiation of Campylobacter and related species. Preferably, the phenotypic tests should be supplemented with a genotypic strategy to disclose the true campylobacterial species diversity in broilers....

  9. Validation of a multiplex PCR assay for the forensic identification of Indian crocodiles.

    Science.gov (United States)

    Meganathan, Poorlin Ramakodi; Dubey, Bhawna; Jogayya, Kothakota Naga; Haque, Ikramul

    2011-09-01

    A dependable and efficient wildlife species identification system is essential for swift dispensation of the justice linking wildlife crimes. Development of molecular techniques is befitting the need of the time. The forensic laboratories often receive highly ill-treated samples for identification purposes, and thus, validation of any novel methodology is necessary for forensic usage. We validate a novel multiplex polymerase chain reaction assay, developed at this laboratory for the forensic identification of three Indian crocodiles, Crocodylus palustris, Crocodylus porosus, and Gavialis gangeticus, following the guidelines of Scientific Working Group on DNA Analysis Methods. The multiplex PCR was tested for its specificity, reproducibility, sensitivity, and stability. This study also includes the samples treated with various chemical substances and exposed to various environmental regimes. The result of this validation study promises this technique to be an efficient identification tool for Indian crocodiles and therefore is recommended for forensic purposes.

  10. Evaluation of IFN-γ polymorphism+874 T/A in patients with recurrent tonsillitis by PCR real time mismatch amplification mutation assay (MAMA real time PCR).

    Science.gov (United States)

    Bergallo, Massimiliano; Gambarino, Stefano; Loiacono, Elisa; Vergano, Luca; Galliano, Ilaria; Montanari, Paola; Astegiano, Sara; Tavormina, Paolo; Tovo, Pier-Angelo

    2015-02-01

    Interferon gamma (IFN-γ) is an important cytokine that plays a crucial role in the balance between normal and pathological immune response. Defect of IFN-γ can give a predisposition to infectious disease, autoimmune pathologies and tumours. Different polymorphisms in this gene have been described, in particular the single nucleotide polymorphism (SNP)+874∗T/A that may affect IFN-γ gene expression. Several techniques can be used for the detection of SNPs. In this work two PCR Real Time assays were developed, an Amplification Refractory Mutation System (ARMS) and a Mismatch Amplification Mutation Assay (MAMA). Twenty-seven samples from patients (tonsillectomy) and 85 from donor's blood bank were considered. As a result, 78/85 controls (91.7%) and 25/27 patients (92.6%) were heterozygosis, considering the ARMS-PCR; 55/85 (64.7%) and 14/27 (51.9%) were heterozygosis using MAMA-PCR assay. Fourteen of 85 (16.5%) and 8/27 (29.6%) were homozygosis A, 16/85 (18.8%) and 5/27 (18.5%) presented homozygosis T, taking into account the MAMA-PCR. There are statistically difference between the two assay with p<0.0001 at Chi-square test. Our preliminary data suggest that tonsillectomy patients had a statistical trend to possess the low IFN-γ polymorphism when compared with control subject (p=0.3) but is not statistically significant. In conclusion the Real time MAMA-PCR assay has several advantages over other SNP identification techniques such as rapidity, reliability, easily to perform in one working day and applicable in clinical molecular diagnostic laboratories, although sequencing remains the gold standard.

  11. Improved PCR-Based Detection of Soil Transmitted Helminth Infections Using a Next-Generation Sequencing Approach to Assay Design

    Science.gov (United States)

    Pilotte, Nils; Papaiakovou, Marina; Grant, Jessica R.; Bierwert, Lou Ann; Llewellyn, Stacey; McCarthy, James S.; Williams, Steven A.

    2016-01-01

    Background The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world’s most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. Methodology/Principal Findings Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. Conclusions/Significance The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other

  12. CRISPR is an optimal target for the design of specific PCR assays for salmonella enterica serotypes Typhi and Paratyphi A.

    Directory of Open Access Journals (Sweden)

    Laetitia Fabre

    Full Text Available BACKGROUND: Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms. METHODOLOGY: Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats, as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers. PRINCIPAL FINDINGS: We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species. CONCLUSIONS: The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples.

  13. A duplex PCR assay for the detection of Ralstonia solanacearum phylotype II strains in Musa spp.

    Directory of Open Access Journals (Sweden)

    Gilles Cellier

    Full Text Available Banana wilt outbreaks that are attributable to Moko disease-causing strains of the pathogen Ralstonia solanacearum (Rs remain a social and economic burden for both multinational corporations and subsistence farmers. All known Moko strains belong to the phylotype II lineage, which has been previously recognized for its broad genetic basis. Moko strains are paraphyletic and are distributed among seven related but distinct phylogenetic clusters (sequevars that are potentially major threats to Musaceae, Solanaceae, and ornamental crops in many countries. Although clustered within the Moko IIB-4 sequevar, strains of the epidemiologically variant IIB-4NPB do not cause wilt on Cavendish or plantain bananas; instead, they establish a latent infection in the vascular tissues of plantains and demonstrate an expanded host range and high aggressiveness toward Solanaceae and Cucurbitaceae. Although most molecular diagnostic methods focus on strains that wilt Solanaceae (particularly potato, no relevant protocol has been described that universally detects strains of the Musaceae-infecting Rs phylotype II. Thus, a duplex PCR assay targeting Moko and IIB-4NPB variant strains was developed, and its performance was assessed using an extensive collection of 111 strains representing the known diversity of Rs Moko-related strains and IIB-4NPB variant strains along with certain related strains and families. The proposed diagnostic protocol demonstrated both high accuracy (inclusivity and exclusivity and high repeatability, detected targets on either pure culture or spiked plant extracts. Although they did not belong to the Moko clusters described at the time of the study, recently discovered banana-infecting strains from Brazil were also detected. According to our comprehensive evaluation, this duplex PCR assay appears suitable for both research and diagnostic laboratories and provides reliable detection of phylotype II Rs strains that infect Musaceae.

  14. Performance of a real-time PCR assay for the rapid identification of Mycobacterium species.

    Science.gov (United States)

    Wang, Hye-young; Kim, Hyunjung; Kim, Sunghyun; Kim, Do-kyoon; Cho, Sang-Nae; Lee, Hyeyoung

    2015-01-01

    Mycobacteria cause a variety of illnesses that differ in severity and public health implications. The differentiation of Mycobacterium tuberculosis (MTB) from nontuberculous mycobacteria (NTM) is of primary importance for infection control and choice of antimicrobial therapy. The diagnosis of diseases caused by NTM is difficult because NTM species are prevalent in the environment and because they have fastidious properties. In the present study, we evaluated 279 clinical isolates grown in liquid culture provided by The Catholic University of Korea, St. Vincent's Hospital using real-time PCR based on mycobacterial rpoB gene sequences. The positive rate of real-time PCR assay accurately discriminated 100% (195/195) and 100% (84/84) between MTB and NTM species. Comparison of isolates identified using the MolecuTech REBA Myco-ID(®) and Real Myco-ID® were completely concordant except for two samples. Two cases that were identified as mixed infection (M. intracellulare-M. massiliense and M. avium-M. massiliense co-infection) by PCRREBA assay were only detected using M. abscessus-specific probes by Real Myco-ID(®). Among a total of 84 cases, the most frequently identified NTM species were M. intracellulare (n=38, 45.2%), M. avium (n=18, 23.7%), M. massiliense (n=10, 13.2%), M. fortuitum (n=5, 6%), M. abscessus (n=3, 3.9%), M. gordonae (n=3, 3.9%), M. kansasii (n=2, 2.4%), M. mucogenicum (n=2, 2.4%), and M. chelonae (n= 1, 1.2%). Real Myco-ID(®) is an efficient tool for the rapid detection of NTM species as well as MTB and sensitive and specific and comparable to conventional methods.

  15. Development of a GeXP-multiplex PCR assay for the simultaneous detection and differentiation of six cattle viruses

    Science.gov (United States)

    Xie, Zhixun; Xie, Zhiqin; Deng, Xianwen; Xie, Liji; Huang, Li; Luo, Sisi; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Wang, Sheng; Liu, Jiabo; Pang, Yaoshan

    2017-01-01

    Foot-and-mouth disease virus (FMDV), Bluetongue virus (BTV), Vesicular stomatitis Virus (VSV), Bovine viral diarrheal (BVDV), Bovine rotavirus (BRV), and Bovine herpesvirus 1 (IBRV) are common cattle infectious viruses that cause a great economic loss every year in many parts of the world. A rapid and high-throughput GenomeLab Gene Expression Profiler (GeXP) analyzer-based multiplex PCR assay was developed for the simultaneous detection and differentiation of these six cattle viruses. Six pairs of chimeric primers consisting of both the gene-specific primer and a universal primer were designed and used for amplification. Then capillary electrophoresis was used to separate the fluorescent labeled PCR products according to the amplicons size. The specificity of GeXP-multiplex PCR assay was examined with samples of the single template and mixed template of six viruses. The sensitivity was evaluated using the GeXP-multiplex PCR assay on serial 10-fold dilutions of ssRNAs obtained via in vitro transcription. To further evaluate the reliability, 305 clinical samples were tested by the GeXP-multiplex PCR assay. The results showed that the corresponding virus specific fragments of genes were amplified. The detection limit of the GeXP-multiplex PCR assay was 100 copies/μL in a mixed sample of ssRNAs containing target genes of six different cattle viruses, whereas the detection limit for the Gexp-mono PCR assay for a single target gene was 10 copies/μL. In detection of viruses in 305 clinical samples, the results of GeXP were consistent with simplex real-time PCR. Analysis of positive samples by sequencing demonstrated that the GeXP-multiplex PCR assay had no false positive samples of nonspecific amplification. In conclusion, this GeXP-multiplex PCR assay is a high throughput, specific, sensitive, rapid and simple method for the detection and differentiation of six cattle viruses. It is an effective tool that can be applied for the rapid differential diagnosis of clinical

  16. A real time PCR assay on blood for diagnosis of invasive candidiasis in immunocompromised patient

    Directory of Open Access Journals (Sweden)

    Mohsen Ashrafi

    2015-01-01

    Results: From 2009 to 2011, 72 patients with hematologic malignancies and bone marrow transplant recipients were evaluated for IC. The female to male ratio was 27:45; the mean age was 32.1 years. The most common malignancy in this patient was acute myeloid leukemia (AML (27.8% and acute lymphoblastic leukemia (ALL (26.4%. Out of 72 patients, 11 patients (15.3% had positive real time PCR /probe results. Based on the melting temperature (Tm analysis, 5 (45.4% C. krusei, 3 (27.2% C. tropicalis, 2 (18.1% C. parapsilosis and 1 C. albicans (9% were identified. According to the revised EORTC / MSG, 1 patient (9% and 10 patients (91% were defined as proven and possible groups of IC, respectively. The mortality rate in proven and possible IC patient was found 54.5%. Conclusion: The established Real-time PCR/FRET probe assay is an appropriate diagnostic tool for the detection of Candida species DNA and the management of patients suffering from hematologic malignancies and bone marrow recipient are at risk for IC.

  17. Lyophilized standards for the calibration of real time PCR assay for hepatitis C virus RNA

    Institute of Scientific and Technical Information of China (English)

    WANG Lu-nan; WU Jian-min; DENG Wei; SHEN Zi-yu; CHEN Wen-xiang; LI Jin-ming

    2006-01-01

    Background Since October 1997, an international standard for hepatitis C virus (HCV) nucleic acid amplification technology assay, 96/790, has been available. We compared a series of lyophilized standards with known HCV RNA concentrations against the international standard in fluorescence quantitative PCR detection.Methods A series of lyophilized sera were calibrated by ROCHE COBAS AMPLICOR HCV Monitor test against the international standard and sent to various manufacturers to analyse the samples using their own kits.Then calibration curves from the series were compared with that obtained from the external standard calibration curve with the manufacture's series.Results The standard calibration curve with the series of lyophilized serum showed an excellent correlation(R2>0.98), slope and intercept that were similar to those from the manufacture's series. When the standard calibration curve from the series of lyophilized standards were used to define the values of the given sample,lower coefficients of variation between kits from different manufactures were obtained.Conclusion The results showed that the lyophilized standards could be used to setup the standard calibration curve for clinical HCV RNA quantitative PCR detection.

  18. Duplex Real-Time RT-PCR Assays for the Detection and Typing of Epizootic Haemorrhagic Disease Virus

    Science.gov (United States)

    Viarouge, Cyril; Breard, Emmanuel; Zientara, Stephan; Vitour, Damien; Sailleau, Corinne

    2015-01-01

    Epizootic haemorrhagic disease virus (EHDV) may cause severe clinical episodes in some species of deer and sometimes in cattle. Laboratory diagnosis provides a basis for the design and timely implementation of disease control measures. There are seven distinct EHDV serotypes, VP2 coding segment 2 being the target for serotype specificity. This paper reports the development and validation of eight duplex real-time RT-PCR assays to simultaneously amplify the EHDV target (S9 for the pan-EHDV real-time RT-PCR assay and S2 for the serotyping assays) and endogenous control gene Beta-actin. Analytical and diagnostic sensitivity and specificity, inter- and intra-assay variation and efficiency were evaluated for each assay. All were shown to be highly specific and sensitive. PMID:26161784

  19. Utility of IgM ELISA, TaqMan real-time PCR, reverse transcription PCR, and RT-LAMP assay for the diagnosis of Chikungunya fever.

    Science.gov (United States)

    Reddy, Vijayalakshmi; Ravi, Vasanthapuram; Desai, Anita; Parida, Manmohan; Powers, Ann M; Johnson, Barbara W

    2012-11-01

    Chikungunya fever a re-emerging infection with expanding geographical boundaries, can mimic symptoms of other infections like dengue, malaria which makes the definitive diagnosis of the infection important. The present study compares the utility of four laboratory diagnostic methods viz. IgM capture ELISA, an in house reverse transcription PCR for the diagnosis of Chikungunya fever, TaqMan real-time PCR, and a one step reverse transcription-loop mediated isothermal amplification assay (RT-LAMP). Out of the 70 serum samples tested, 29 (41%) were positive for Chikungunya IgM antibody by ELISA and 50 (71%) samples were positive by one of the three molecular assays. CHIKV specific nucleic acid was detected in 33/70 (47%) by reverse transcription PCR, 46/70 (66%) by TaqMan real-time PCR, and 43/70 (62%) by RT-LAMP assay. A majority of the samples (62/70; 89%) were positive by at least one of the four assays used in the study. The molecular assays were more sensitive for diagnosis in the early stages of illness (2-5 days post onset) when antibodies were not detectable. In the later stages of illness, the IgM ELISA is a more sensitive diagnostic test. In conclusion we recommend that the IgM ELISA be used as an initial screening test followed one of the molecular assays in samples that are collected in the early phase of illness and negative for CHIKV IgM antibodies. Such as approach would enable rapid confirmation of the diagnosis and implementation of public health measures especially during outbreaks.

  20. Development and evaluation of multiplex PCR assays for rapid detection of virulence-associated genes in Arcobacter species.

    Science.gov (United States)

    Whiteduck-Léveillée, Jenni; Cloutier, Michel; Topp, Edward; Lapen, David R; Talbot, Guylaine; Villemur, Richard; Khan, Izhar U H

    2016-02-01

    As the pathogenicity of Arcobacter species might be associated with various virulence factors, this study was aimed to develop and optimize three single-tube multiplex PCR (mPCR) assays that can efficiently detect multiple virulence-associated genes (VAGs) in Arcobacter spp. including the Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii, respectively. The recognized target virulence factors used in the study were fibronectin binding protein (cj1349), filamentous hemagglutinin (hecA), hemolysin activation protein (hecB), hemolysin (tlyA), integral membrane protein virulence factor (mviN), invasin (ciaB), outer membrane protein (irgA) and phospholipase (pldA). Identical results were obtained between singleplex PCR and mPCR assays and no cross- and/or non-specific amplification products were obtained when tested against other closely related bacterial species. The sensitivities of these three mPCR assays were ranging from 1ngμL(-1) to 100ngμL(-1) DNA. The developed assays with combinations of duplex or triplex PCR primer pairs of VAGs were further evaluated and validated by applying them to isolates of the A. butzleri, A. cryaerophilus and A. skirrowii recovered from fecal samples of human and animal origins. The findings revealed that the distribution of the ciaB (90%), mviN (70%), tlyA (50%) and pldA (45%) genes among these target species was significantly higher than the hecA (16%), hecB (10%) and each of irgA and cj1349 (6%) genes, respectively. The newly developed mPCR assays can be used as rapid technique and useful markers for the detection, prevalence and profiling of VAGs in the Arcobacter spp. Moreover, these assays can easily be performed with a high throughput to give a presumptive identification of the causal pathogen in epidemiological investigation of human infections.

  1. Development of a rapid PCR assay specific for Staphylococcus saprophyticus and application to direct detection from urine samples.

    Science.gov (United States)

    Martineau, F; Picard, F J; Ménard, C; Roy, P H; Ouellette, M; Bergeron, M G

    2000-09-01

    Staphylococcus saprophyticus is one of the most frequently encountered microorganisms associated with acute urinary tract infections (UTIs) in young, sexually active female outpatients. Conventional identification methods based on biochemical characteristics can efficiently identify S. saprophyticus, but the rapidities of these methods need to be improved. Rapid and direct identification of this bacterium from urine samples would be useful to improve time required for the diagnosis of S. saprophyticus infections in the clinical microbiology laboratory. We have developed a PCR-based assay for the specific detection of S. saprophyticus. An arbitrarily primed PCR amplification product of 380 bp specific for S. saprophyticus was sequenced and used to design a set of S. saprophyticus-specific PCR amplification primers. The PCR assay was specific for S. saprophyticus when tested with DNA from 49 gram-positive and 31 gram-negative bacterial species. This assay was also able to amplify efficiently DNA from all 60 strains of S. saprophyticus from various origins tested. This assay was adapted for direct detection from urine samples. The sensitivity levels achieved with urine samples was 19 CFU with 30 cycles of amplification and 0.5 CFU with 40 cycles of amplification. This PCR assay for the specific detection of S. saprophyticus is simple and rapid (approximately 90 min, including the time for urine specimen preparation).

  2. Comparison of three multiplex PCR assays for the detection of respiratory viral infections: evaluation of xTAG respiratory virus panel fast assay, RespiFinder 19 assay and RespiFinder SMART 22 assay

    Directory of Open Access Journals (Sweden)

    Dabisch-Ruthe Mareike

    2012-07-01

    Full Text Available Abstract Background A broad spectrum of pathogens is causative for respiratory tract infections, but symptoms are mostly similar. Therefore, the identification of the causative viruses and bacteria is only feasible using multiplex PCR or several monoplex PCR tests in parallel. Methods The analytical sensitivity of three multiplex PCR assays, RespiFinder-19, RespiFinder-SMART-22 and xTAG-Respiratory-Virus-Panel-Fast-Assay (RVP, were compared to monoplex real-time PCR with quantified standardized control material. All assays include the most common respiratory pathogens. Results To compare the analytical sensitivity of the multiplex assays, samples were inoculated with 13 different quantified viruses in the range of 101 to 105 copies/ml. Concordant results were received for rhinovirus, whereas the RVP detected influenzavirus, RSV and hMPV more frequently in low concentrations. The RespiFinder-19 and the RespiFinder-SMART-22 showed a higher analytical sensitivity for adenoviruses and coronaviruses, whereas the RVP was incapable to detect adenovirus and coronavirus in concentrations of 104 copies/ml. The RespiFinder-19 and RespiFinder-SMART-22A did not detect influenzaviruses (104 copies/ml and RSV (103 copies/ml. The detection of all 13 viruses in one sample was only achieved using monoplex PCR. To analyze possible competitive amplification reactions between the different viruses, samples were further inoculated with only 4 different viruses in one sample. Compared to the detection of 13 viruses in parallel, only a few differences were found. The incidence of respiratory viruses was compared in tracheal secretion (TS samples (n = 100 of mechanically ventilated patients in winter (n = 50 and summer (n = 50. In winter, respiratory viruses were detected in 32 TS samples (64% by RespiFinder-19, whereas the detection rate with RVP was only 22%. The most frequent viruses were adenovirus (32% and PIV-2 (20%. Multiple infections were detected

  3. Comparison of conventional PCR, multiplex PCR, and loop-mediated isothermal amplification assays for rapid detection of Arcobacter species.

    Science.gov (United States)

    Wang, Xiaoyu; Seo, Dong Joo; Lee, Min Hwa; Choi, Changsun

    2014-02-01

    This study aimed to develop a loop-mediated isothermal amplification (LAMP) method for the rapid detection of Arcobacter species. Specific primers targeting the 23S ribosomal RNA gene were used to detect Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii. The specificity of the LAMP primer set was assessed using DNA samples from a panel of Arcobacter and Campylobacter species, and the sensitivity was determined using serial dilutions of Arcobacter species cultures. LAMP showed a 10- to 1,000-fold-higher sensitivity than multiplex PCR, with a detection limit of 2 to 20 CFU per reaction in vitro. Whereas multiplex PCR showed cross-reactivity with Campylobacter species, the LAMP method developed in this study was more sensitive and reliable than conventional PCR or multiplex PCR for the detection of Arcobacter species.

  4. Improved diagnostic PCR assay for Actinobacillus pleuropneumoniae based on the nucleotide sequence of an outer membrane lipoprotein

    DEFF Research Database (Denmark)

    Gram, Trine; Ahrens, Peter

    1998-01-01

    The gene (omlA) coding for an outer membrane protein of Actinobacillus pleuropneumoniae serotypes 1 and 5 has been described earlier and has formed the basis for development of a specific PCR assay, The corresponding regions of all 12 A. pleuropneumoniae reference strains of biovar 1 were sequenc...... and sensitivity of this PCR compared to those of culture suggest the use of this PCR for routine identification of A. pleuropneumoniae.......The gene (omlA) coding for an outer membrane protein of Actinobacillus pleuropneumoniae serotypes 1 and 5 has been described earlier and has formed the basis for development of a specific PCR assay, The corresponding regions of all 12 A. pleuropneumoniae reference strains of biovar 1 were sequenced...... species related to A. pleuropneumoniae or isolated from pigs were assayed. They were all found negative in the PCR, as were tonsil cultures from 50 pigs of an A. pleuropneumoniae-negative herd. The sensitivity assessed by agarose gel analysis of the PCR product was 10(2) CFU/PCR test tube. The specificity...

  5. Development of a nested PCR assay to detect the pathogenic free-living amoeba Naegleria fowleri.

    Science.gov (United States)

    Réveiller, Fabienne L; Cabanes, Pierre-André; Marciano-Cabral, Francine

    2002-05-01

    Naegleria fowleri is the causative agent of primary amoebic meningoencephalitis, a fatal disease of the central nervous system that is acquired while swimming or diving in freshwater. A cDNA clone designated Mp2C15 obtained from N. fowleri was used as a probe to distinguish N. fowleri from other free-living amoebae. The Mp2C15 probe hybridized to genomic DNA from pathogenic N. fowleri and antigenically related non-pathogenic N. lovaniensis. Mp2C15 was digested with the restriction enzyme XbaI, resulting in two fragments, Mp2C15.G and Mp2C15.P. Four species of Naegleria and four species of Acanthamoeba were examined for reactivity with Mp2C15.P. Mp2C15.P was specific for N. fowleri and was used in the development of a nested PCR assay which is capable of detecting as little as 5 pg of N. fowleri DNA or five intact N. fowleri amoebae. In summary, a rapid, sensitive, and specific assay for the detection of N. fowleri was developed.

  6. Rapid and sensitive detection of Feline immunodeficiency virus using an insulated isothermal PCR-based assay with a point-of-need PCR detection platform.

    Science.gov (United States)

    Wilkes, Rebecca Penrose; Kania, Stephen A; Tsai, Yun-Long; Lee, Pei-Yu Alison; Chang, Hsiu-Hui; Ma, Li-Juan; Chang, Hsiao-Fen Grace; Wang, Hwa-Tang Thomas

    2015-07-01

    Feline immunodeficiency virus (FIV) is an important infectious agent of cats. Clinical syndromes resulting from FIV infection include immunodeficiency, opportunistic infections, and neoplasia. In our study, a 5' long terminal repeat/gag region-based reverse transcription insulated isothermal polymerase chain reaction (RT-iiPCR) was developed to amplify all known FIV strains to facilitate point-of-need FIV diagnosis. The RT-iiPCR method was applied in a point-of-need PCR detection platform--a field-deployable device capable of generating automatically interpreted RT-iiPCR results from nucleic acids within 1 hr. Limit of detection 95% of FIV RT-iiPCR was calculated to be 95 copies standard in vitro transcription RNA per reaction. Endpoint dilution studies with serial dilutions of an ATCC FIV type strain showed that the sensitivity of lyophilized FIV RT-iiPCR reagent was comparable to that of a reference nested PCR. The established reaction did not amplify any nontargeted feline pathogens, including Felid herpesvirus 1, feline coronavirus, Feline calicivirus, Feline leukemia virus, Mycoplasma haemofelis, and Chlamydophila felis. Based on analysis of 76 clinical samples (including blood and bone marrow) with the FIV RT-iiPCR, test sensitivity was 97.78% (44/45), specificity was 100.00% (31/31), and agreement was 98.65% (75/76), determined against a reference nested-PCR assay. A kappa value of 0.97 indicated excellent correlation between these 2 methods. The lyophilized FIV RT-iiPCR reagent, deployed on a user-friendly portable device, has potential utility for rapid and easy point-of-need detection of FIV in cats.

  7. Development of a neutralization assay for influenza virus using an endpoint assessment based on quantitative reverse-transcription PCR.

    Directory of Open Access Journals (Sweden)

    Belete Teferedegne

    Full Text Available A microneutralization assay using an ELISA-based endpoint assessment (ELISA-MN is widely used to measure the serological response to influenza virus infection and vaccination. We have developed an alternative microneutralization assay for influenza virus using a quantitative reverse transcription PCR-based endpoint assessment (qPCR-MN in order to improve upon technical limitations associated with ELISA-MN. For qPCR-MN, infected MDCK-London cells in 96-well cell-culture plates are processed with minimal steps such that resulting samples are amenable to high-throughput analysis by downstream one-step quantitative reverse transcription PCR (qRT-PCR; SYBR Green chemistry with primers targeting a conserved region of the M1 gene of influenza A viruses. The growth curves of three recent vaccine strains demonstrated that the qRT-PCR signal detected at 6 hours post-infection reflected an amplification of at least 100-fold over input. Using ferret antisera, we have established the feasibility of measuring virus neutralization at 6 hours post-infection, a duration likely confined to a single virus-replication cycle. The neutralization titer for qPCR-MN was defined as the highest reciprocal serum dilution necessary to achieve a 90% inhibition of the qRT-PCR signal; this endpoint was found to be in agreement with ELISA-MN using the same critical reagents in each assay. qPCR-MN was robust with respect to assay duration (6 hours vs. 12 hours. In addition, qPCR-MN appeared to be compliant with the Percentage Law (i.e., virus neutralization results appear to be consistent over an input virus dose ranging from 500 to 12,000 TCID(50. Compared with ELISA-MN, qPCR-MN might have inherent properties conducive to reducing intra- and inter-laboratory variability while affording suitability for automation and high-throughput uses. Finally, our qRT-PCR-based approach may be broadly applicable to the development of neutralization assays for a wide variety of viruses.

  8. Real time TaqMan RT-PCR assay for the detection of Cucumber green mottle mosaic virus.

    Science.gov (United States)

    Hongyun, Chen; Wenjun, Zhao; Qinsheng, Gu; Qing, Chen; Shiming, Lin; Shuifang, Zhu

    2008-05-01

    A real time reverse-transcription polymerase chain reaction (RT-PCR) was developed for efficient detection of Cucumber green mottle mosaic virus (CGMMV). The method was designed to use a duo-primer system with a TaqMan probe targeting the conserved sequence in 3' noncoding region (NCR) of CGMMV to detect isolates of this virus collected in China. The sensitivity of the real time RT-PCR assay was 0.13 pg of total RNA or 50 molecules of RNA transcripts. This level of sensitivity indicated that the one step real time RT-PCR developed in the present study could be used for routine testing assays. The real time RT-PCR method could assist in the implementation of quarantine measures for prevention and control of the disease caused by CGMMV.

  9. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and Lactobacillus fermentum in cocoa bean fermentation.

    Science.gov (United States)

    Schwendimann, Livia; Kauf, Peter; Fieseler, Lars; Gantenbein-Demarchi, Corinne; Miescher Schwenninger, Susanne

    2015-08-01

    To monitor dominant species of lactic acid bacteria during cocoa bean fermentation, i.e. Lactobacillus plantarum and Lactobacillus fermentum, a fast and reliable culture-independent qPCR assay was developed. A modified DNA isolation procedure using a commercial kit followed by two species-specific qPCR assays resulted in 100% sensitivity for L. plantarum and L. fermentum. Kruskal-Wallis and post-hoc analyses of data obtained from experiments with cocoa beans that were artificially spiked with decimal concentrations of L. plantarum and L. fermentum strains allowed the calculation of a regression line suitable for the estimation of both species with a detection limit of 3 to 4 Log cells/g cocoa beans. This process was successfully tested for efficacy through the analyses of samples from laboratory-scale cocoa bean fermentations with both the qPCR assay and a culture-dependent method which resulted in comparable results.

  10. Preclinical detection of porcine circovirus type 2 infection using an ultrasensitive nanoparticle DNA probe-based PCR assay.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available Porcine circovirus type 2 (PCV2 has emerged as one of the most important pathogens affecting swine production globally. Preclinical identification of PCV2 is very important for effective prophylaxis of PCV2-associated diseases. In this study, we developed an ultrasensitive nanoparticle DNA probe-based PCR assay (UNDP-PCR for PCV2 detection. Magnetic microparticles coated with PCV2 specific DNA probes were used to enrich PCV2 DNA from samples, then gold nanoparticles coated with PCV2 specific oligonucleotides were added to form a sandwich nucleic acid-complex. After the complex was formed, the oligonucleotides were released and characterized by PCR. This assay exhibited about 500-fold more sensitive than conventional PCR, with a detection limit of 2 copies of purified PCV2 genomic DNA and 10 viral copies of PCV2 in serum. The assay has a wide detection range for all of PCV2 genotypes with reliable reproducibility. No cross-reactivity was observed from the samples of other related viruses including porcine circovirus type 1, porcine parvovirus, porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus and classical swine fever virus. The positive detection rate of PCV2 specific UNDP-PCR in 40 preclinical field samples was 27.5%, which appeared greater than that by conventional and real-time PCR and appeared application potency in evaluation of the viral loads levels of preclinical infection samples. The UNDP-PCR assay reported here can reliably rule out false negative results from antibody-based assays, provide a nucleic acid extraction free, specific, ultrasensitive, economic and rapid diagnosis method for preclinical PCV2 infection in field, which may help prevent large-scale outbreaks.

  11. Multiplex real-time PCR assay for detection and classification of Klebsiella pneumoniae carbapenemase gene (bla KPC) variants.

    Science.gov (United States)

    Chen, Liang; Mediavilla, José R; Endimiani, Andrea; Rosenthal, Marnie E; Zhao, Yanan; Bonomo, Robert A; Kreiswirth, Barry N

    2011-02-01

    Carbapenem resistance mediated by plasmid-borne Klebsiella pneumoniae carbapenemases (KPC) is an emerging problem of significant clinical importance in Gram-negative bacteria. Multiple KPC gene variants (bla(KPC)) have been reported, with KPC-2 (bla(KPC-2)) and KPC-3 (bla(KPC-3)) associated with epidemic outbreaks in New York City and various international settings. Here, we describe the development of a multiplex real-time PCR assay using molecular beacons (MB-PCR) for rapid and accurate identification of bla(KPC) variants. The assay consists of six molecular beacons and two oligonucleotide primer pairs, allowing for detection and classification of all currently described bla(KPC) variants (bla(KPC-2) to bla(KPC-11)). The MB-PCR detection limit was 5 to 40 DNA copies per reaction and 4 CFU per reaction using laboratory-prepared samples. The MB-PCR probes were highly specific for each bla(KPC) variant, and cross-reactivity was not observed using DNA isolated from several bacterial species. A total of 457 clinical Gram-negative isolates were successfully characterized by our MB-PCR assay, with bla(KPC-3) and bla(KPC-2) identified as the most common types in the New York/New Jersey metropolitan region. The MB-PCR assay described herein is rapid, sensitive, and specific and should be useful for understanding the ongoing evolution of carbapenem resistance in Gram-negative bacteria. As novel bla(KPC) variants continue to emerge, the MB-PCR assay can be modified in response to epidemiologic developments.

  12. Multi-Fluorescence Real-Time PCR Assay for Detection of RIF & INH Resistance of M. tuberculosis

    Directory of Open Access Journals (Sweden)

    Jingfu ePeng

    2016-04-01

    Full Text Available Background: Failure to early detect multidrug-resistant tuberculosis (MDR-TB results in treatment failure and poor clinical outcomes, and highlights the need to rapidly detect resistance to rifampicin (RIF and isoniazid (INHMethods: In Multi-Fluorescence quantitative Real-Time PCR (MF-qRT-PCR assay, 10 probes labeled with 4 kinds of fluorophores were designed to detect the mutations in regions of rpoB, katG, mabA-inhA, oxyR-ahpC and rrs. The efficiency of MF-qRT-PCR assay was tested using 261 bacterial isolates and 33 clinical sputum specimens. Among these samples, 227 Mycobacterium tuberculosis isolates were analyzed using drug susceptibility testing (DST, DNA sequencing and MF-qRT-PCR assay.Results: Compared with DST, MF-qRT-PCR sensitivity and specificity for RIF-resistance were 94.6% and 100%, respectively. And the detection sensitivity and specificity for INH-resistance were 85.9% and 95.3%, respectively. Compared with DNA sequencing, the sensitivity and specificity of our assay were 97.2% and 100% for RIF-resistance and 97.9% and 96.4% for INH-resistance. Compared with Phenotypic strain identification, MF-qRT-PCR can distinguish 227 Mycobacterium tuberculosis complexes (MTC from 34 Non-tuberculous mycobacteria (NTM isolates with 100% accuracy rate.Conclusions: MF-qRT-PCR assay was an efficient, accurate, reliable and easy-operated method for detection of RIF and INH-resistance, and distinction of MTC and NTM of clinical isolates.

  13. Detection of respiratory viruses using a multiplex real-time PCR assay in Germany, 2009/10.

    Science.gov (United States)

    Bierbaum, Sibylle; Forster, Johannes; Berner, Reinhard; Rücker, Gerta; Rohde, Gernot; Neumann-Haefelin, Dieter; Panning, Marcus

    2014-04-01

    The aim of this study was to determine the prevalence of respiratory viruses and to prospectively evaluate the performance of the fast-track diagnostics (FTD) respiratory pathogens multiplex PCR assay shortly after the 2009/10 influenza pandemic. Highly sensitive monoplex real-time PCR assays served as references. Discrepant results were further analyzed by the xTAG RVP Fast assay. A total of 369 respiratory samples from children and adults were collected prospectively in Germany from December 2009 until June 2010. The sensitivity and specificity of the FTD assay after resolution of discrepant results was 92.2 % and 99.5 %, respectively. Lowest specificity of the FTD assay was observed for human bocavirus. Multiple detections were recorded in 33/369 (8.9 %) of the samples by monoplex PCR and in 43/369 (11.7 %) using the FTD assay. The most prevalent viruses were respiratory syncytial virus and human metapneumovirus. Only pandemic influenza virus A/H1N1 (2009), and not seasonal influenza virus, was detected. Viruses other than influenza virus accounted for the majority of acute respiratory infections. The FTD assay can be easily implemented in general diagnostic laboratories and facilitate the optimization of patient-management schemes.

  14. A SYBR Green RT-PCR assay in single tube to detect human and bovine noroviruses and control for inhibition

    Directory of Open Access Journals (Sweden)

    Saegerman Claude

    2008-08-01

    Full Text Available Abstract Background Noroviruses are single-stranded RNA viruses belonging to the family Caliciviridae. They are a major cause of epidemic and sporadic gastroenteritis in humans and clinical signs and lesions of gastroenteritis were reported in bovines. Due to their genetic proximity, potential zoonotic transmission or animal reservoir can be hypothesized for noroviruses. RT-PCR has become the "gold standard" for the detection of noroviruses in faecal and environmental samples. With such samples, the control for inhibition of the reaction during amplification and detection is crucial to avoid false negative results, which might otherwise not be detected. The aim of the reported method is to detect, with a SYBR Green technology, a broad range of noroviruses with a control for inhibition. Results A SYBR Green real-time RT-PCR assay was developed making use of a foreign internal RNA control added in the same tube. This assay is able to detect human and bovine noroviruses belonging to genogroups I, II and III and to distinguish between norovirus and internal control amplicons using melting curve analysis. A 10-fold dilution of samples appears to be the method of choice to remove inhibition. This assay was validated with human and bovine stool samples previously tested for norovirus by conventional RT-PCR. Conclusion This SYBR Green real-time RT-PCR assay allows the detection of the most important human and bovine noroviruses in the same assay, and avoids false negative results making use of an internal control. Melting curves allow the discrimination between the internal control and norovirus amplicons. It gives preliminary information about the species of origin. The sensitivity of the developed assay is higher than conventional RT-PCR and a 10-fold dilution of samples showed a better efficiency and reproducibility to remove RT-PCR inhibition than addition of bovine serum albumin.

  15. Development of A Real-Time PCR Assay for Plasmodiophora brassicae and Its Detection in Soil Samples

    Institute of Scientific and Technical Information of China (English)

    LI Jin-ping; LI Yan; SHI Yan-xia; XIE Xue-wen; Chai A-li; LI Bao-ju

    2013-01-01

    A SYBR Green I real-time PCR assay was developed to detect and quantify Plasmodiophora brassicae ribosomal DNA (rDNA) and internal transcribed spacer (ITS). A pair of primers PBF1/PBR1 was designed based on the conservative region of rDNA-ITS of P. brassicae. The positive plasmid pB12 was obtained and used as the template to create standard curve. The specificity, sensitivity, and reproducibility of real-time PCR were evaluated respectively. Naturally and artificially infested soil samples containing different concentrations of P. brassicae were detected. The results demonstrated that standard curve established by recombinant plasmid was shown a fine linear relationship between threshold cycle and template concentration. The melting curve was specific with the correlation coefficient of 0.995 and that the amplification efficiency was 93.8%. The detection limit of P. brassicae genomic DNA was approximately 40 copies per 25μL. The sensitivity of the assay was at least 100-fold higher than conventional PCR. Only DNA from P. brassicae could be amplified and detected using this assay, suggesting the highly specific of this assay. The coefficient of variation was less than 3%, indicating the PCR method revealed high reproducibility. The detection limit in soil samples corresponded to 1 000 resting spores g-1 soil. Bait plants were used to validate the real-time PCR assay. This developed real-time PCR assay allows for fast and sensitive detection of P. brassicae in soil and should be useful in disease management and pest interception so as to prevent further spread of P. brassicae.

  16. Development and Validation of a Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Three Papaya Viruses

    OpenAIRE

    Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-01-01

    Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplif...

  17. Development and application of multiplex PCR assays for detection of virus-induced respiratory disease complex in dogs

    Science.gov (United States)

    PIEWBANG, Chutchai; RUNGSIPIPAT, Anudep; POOVORAWAN, Yong; TECHANGAMSUWAN, Somporn

    2016-01-01

    Canine infectious respiratory disease complex (CIRDC) viruses have been detected in dogs with respiratory illness. Canine influenza virus (CIV), canine parainfluenza virus (CPIV), canine distemper virus (CDV), canine respiratory coronavirus (CRCoV), canine adenovirus type 2 (CAdV-2) and canine herpesvirus 1 (CaHV-1), are all associated with the CIRDC. To allow diagnosis, two conventional multiplex polymerase chain reactions (PCR) were developed to simultaneously identify four RNA and two DNA viruses associated with CIRDC. The two multiplex PCR assays were then validated on 102 respiratory samples collected from 51 dogs with respiratory illness by sensitivity and specificity determination in comparison to conventional simplex PCR and a rapid three-antigen test kit. All six viruses were detected in either individual or multiple infections. The developed multiplex PCR assays had a >87% sensitivity and 100% specificity compared to their simplex counterpart. Compared to the three-antigen test kit, the multiplex PCR assays yielded 100% sensitivity and more than 83% specificity for detection of CAdV-2 and CDV, but not for CIV. Therefore, the developed multiplex PCR modalities were able to simultaneously diagnose a panel of CIRDC viruses and facilitated specimen collection through being suitable for use of nasal or oral samples. PMID:27628592

  18. Comparison of Real-Time Multiplex Human Papillomavirus (HPV) PCR Assays with INNO-LiPA HPV Genotyping Extra Assay▿

    OpenAIRE

    Else, Elizabeth A.; Swoyer, Ryan; Zhang, Yuhua; Taddeo, Frank J.; Bryan, Janine T.; Lawson, John; Van Hyfte, Inez; Roberts, Christine C.

    2011-01-01

    Real-time type-specific multiplex human papillomavirus (HPV) PCR assays were developed to detect HPV DNA in samples collected for the efficacy determination of the quadrivalent HPV (type 6, 11, 16, and 18) L1 virus-like particle (VLP) vaccine (Gardasil). Additional multiplex (L1, E6, and E7 open reading frame [ORF]) or duplex (E6 and E7 ORF) HPV PCR assays were developed to detect high-risk HPV types, including HPV type 31 (HPV31), HPV33, HPV35, HPV39, HPV45, HPV51, HPV52, HPV56, HPV58, and H...

  19. Further evaluation of an updated PCR assay for the detection of Schistosoma mansoni DNA in human stool samples

    Directory of Open Access Journals (Sweden)

    Luciana I Gomes

    2009-12-01

    Full Text Available A previously reported sensitive PCR assay for the detection of Schistosoma mansoni DNA was updated and evaluated. Changes in the DNA extraction method, including the use of a worldwide available commercial kit and the inclusion of additional quality control measures, increased the robustness of the test, as confirmed by the analysis of 67 faecal samples from an endemic area in Brazil. The PCR assay is at hand as a proven, reliable diagnostic test for the control of schistosomiasis in specific settings.

  20. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    OpenAIRE

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok; Uh, Young; Lee, Hyeyoung

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylo...

  1. Comparison of a PCR serotyping assay, Check&Trace assay for Salmonella, and Luminex Salmonella serotyping assay for the characterization of Salmonella enterica identified from fresh and naturally contaminated cilantro.

    Science.gov (United States)

    Jean-Gilles Beaubrun, J; Ewing, L; Jarvis, K; Dudley, K; Grim, C; Gopinath, G; Flamer, M-L; Auguste, W; Jayaram, A; Elmore, J; Lamont, M; McGrath, T; Hanes, D E

    2014-09-01

    Salmonella enterica isolated from fresh cilantro samples collected through the USDA/AMS Microbiological Data Program (MDP) were used to compare a PCR serotyping assay against the Check&Trace assay and the Luminex (BioPlex) Salmonella serotyping assay. The study was conducted to evaluate the effectiveness of the three methods for serotyping Salmonella from both enrichment broth cultures and pure Salmonella cultures. In this investigation, Salmonella spp. serotyping was conducted using 24 h enrichment broth cultures and pure Salmonella cultures from cilantro samples, with the PCR serotyping assay. Conversely, the Check&Trace and Luminex for Salmonella assays required pure cultures for Salmonella serotyping. The cilantro samples contained S. enterica serovar Montevideo, Newport, Saintpaul, and Tennessee, identified by the PCR serotyping assay and Check&Trace for Salmonella, but the Luminex assay only identified two of the four serotypes of the cilantro samples. The anticipated impact from this study is that the PCR serotyping assay provides a time- and cost-effective means for screening, identifying and serotyping Salmonella using DNA extracted from 24 h enrichment cilantro samples.

  2. Development and application of two independent real-time PCR assays to detect clinically relevant Mucorales species.

    Science.gov (United States)

    Springer, Jan; Goldenberger, Daniel; Schmidt, Friderike; Weisser, Maja; Wehrle-Wieland, Elisabeth; Einsele, Hermann; Frei, Reno; Löffler, Jürgen

    2016-03-01

    PCR-based detection of Mucorales species could improve diagnosis of suspected invasive fungal infection, leading to a better patient outcome. This study describes two independent probe-based real-time PCR tests for detection of clinically relevant Mucorales, targeting specific fragments of the 18S and the 28S rRNA genes. Both assays have a short turnaround time, allow fast, specific and very sensitive detection of clinically relevant Mucorales and have the potential to be used as quantitative tests. They were validated on various clinical samples (fresh and formalin-fixed paraffin-embedded specimens, mainly biopsies, n = 17). The assays should be used as add-on tools to complement standard techniques; a combined approach of both real-time PCR assays has 100 % sensitivity. Genus identification by subsequent sequencing is possible for amplicons of the 18S PCR assay. In conclusion, combination of the two independent Mucorales assays described in this study, 18S and 28S, detected all clinical samples associated with proven Mucorales infection (n = 10). Reliable and specific identification of Mucorales is a prerequisite for successful antifungal therapy as these fungi show intrinsic resistance to voriconazole and caspofungin.

  3. A New Lab Developed Real Time PCR Assay for Direct Detection of C. Difficle from Stool Sample without DNA Extraction

    OpenAIRE

    2016-01-01

    Clostridium difficile is a major cause of nosocomial antibiotic-associated infectious diarrhea and pseudomembranous colitis. Detection of C. difficile by anaerobic bacterial culture and/or cytotoxicity assays has been largely replaced by rapid enzyme immunoassays (EIA). However, due to the lack of sensitivity of stool EIA, we developed a multiplex real-time PCR assay targeting the C. difficile toxin genes tcdB. stool samples from hospitalized pediatric patients suspected of having C. difficil...

  4. Rapid Diagnosis of Mycobacterial Infections and Quantitation of Mycobacterium tuberculosis Load by Two Real-Time Calibrated PCR Assays

    Science.gov (United States)

    Broccolo, Francesco; Scarpellini, Paolo; Locatelli, Giuseppe; Zingale, Anna; Brambilla, Anna M.; Cichero, Paola; Sechi, Leonardo A.; Lazzarin, Adriano; Lusso, Paolo; Malnati, Mauro S.

    2003-01-01

    Sensitive and specific techniques to detect and identify Mycobacterium tuberculosis directly in clinical specimens are important for the diagnosis and management of patients with tuberculosis (TB). We developed two real-time PCR assays, based on the IS6110 multicopy element and on the senX3-regX3 intergenic region, which provide a rapid method for the diagnosis of mycobacterial infections. The sensitivity and specificity of both assays were established by using purified DNA from 71 clinical isolates and 121 clinical samples collected from 83 patients, 20 of whom were affected by TB. Both assays are accurate, sensitive, and specific, showing a complementary pattern of Mycobacterium recognition: broader for the IS6110-based assay and restricted to the M. tuberculosis complex for the senX3-regX3-based assay. Moreover, the addition of a synthetic DNA calibrator prior to DNA extraction allowed us to measure the efficiency of DNA recovery and to control for the presence of PCR inhibitors. The mycobacterial burden of the clinical samples, as assessed by direct microscopy, correlates with the M. tuberculosis DNA load measured by the senX3-regX3-based assay. In addition, reduced levels of M. tuberculosis DNA load are present in those patients subjected to successful therapy, suggesting a potential use of this assay for monitoring treatment efficacy. Therefore, these assays represent a fully controlled high-throughput system for the evaluation of mycobacterial burden in clinical specimens. PMID:14532183

  5. Rapid detection and typing of pathogenic nonpneumophila Legionella spp. isolates using a multiplex real-time PCR assay.

    Science.gov (United States)

    Benitez, Alvaro J; Winchell, Jonas M

    2016-04-01

    We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources.

  6. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus.

    Directory of Open Access Journals (Sweden)

    Gilberto A Santiago

    Full Text Available Dengue is an acute illness caused by the positive-strand RNA dengue virus (DENV. There are four genetically distinct DENVs (DENV-1-4 that cause disease in tropical and subtropical countries. Most patients are viremic when they present with symptoms; therefore, RT-PCR has been increasingly used in dengue diagnosis. The CDC DENV-1-4 RT-PCR Assay has been developed as an in-vitro diagnostic platform and was recently approved by the US Food and Drug Administration (FDA for detection of dengue in patients with signs or symptoms of mild or severe dengue. The primers and probes of this test have been designed to detect currently circulating strains of DENV-1-4 from around the world at comparable sensitivity. In a retrospective study with 102 dengue cases confirmed by IgM anti-DENV seroconversion in the convalescent sample, the RT-PCR Assay detected DENV RNA in 98.04% of the paired acute samples. Using sequencing as a positive indicator, the RT-PCR Assay had a 97.92% positive agreement in 86 suspected dengue patients with a single acute serum sample. After extensive validations, the RT-PCR Assay performance was highly reproducible when evaluated across three independent testing sites, did not produce false positive results for etiologic agents of other febrile illnesses, and was not affected by pathological levels of potentially interfering biomolecules. These results indicate that the CDC DENV-1-4 RT-PCR Assay provides a reliable diagnostic platform capable for confirming dengue in suspected cases.

  7. Evaluation of a PCR-restriction fragment length polymorphism (PCR-RFLP) assay for molecular epidemiological study of Shiga toxin-producing Escherichia coli.

    Science.gov (United States)

    Sugimoto, Norihiko; Shima, Kensuke; Hinenoya, Atsushi; Asakura, Masahiro; Matsuhisa, Akio; Watanabe, Haruo; Yamasaki, Shinji

    2011-07-01

    In this study, we have evaluated our recently developed polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay for the molecular subtyping of Shiga toxin-producing Escherichia coli (STEC). A total of 200 STEC strains including O157 (n=100), O26 (n=50), O111 (n=10), and non-O26/O111/O157 (n=40) serogroups isolated during 2005-2006 in Japan, which were identified to be clonally different by pulsed-field gel electrophoresis (PFGE) were further analyzed by the PCR-RFLP assay in comparison to PFGE. Ninety-five of O157, 48 of O26, five of O111 and 19 of non-O26/O111/O157 STEC strains yielded one to three amplicons ranging from 6.0 to 15.5 kb in size by the specific primer set targeting region V which is located in the upstream of stx genes. These strains were classified into 41 (O157), 8 (O26), 4 (O111) and 17 (non-O26/O111/O157) groups based on the RFLP patterns obtained by subsequent restriction digestion, respectively. Although the discriminatory power of PCR-RFLP assay was somewhat less than that of PFGE, it is more convenient for molecular subtyping of STEC strains especially for O157, the most important serogroup implicated in human diseases, as well as to identify the outbreak-associated isolates because of its simplicity, rapidity, ease and good reproducibility.

  8. A Comparison of Nested PCR Assay with Conventional Techniques for Diagnosis of Intestinal Cryptosporidiosis in AIDS Cases from Northern India

    Directory of Open Access Journals (Sweden)

    Beena Uppal

    2014-01-01

    Full Text Available Cryptosporidiosis is a very important opportunistic infection and is responsible for significant morbidity and mortality in HIV/AIDS patients. Although current laboratory methods are generally considered adequate to detect high concentrations of oocysts, they fail to detect cases of cryptosporidiosis in many immunocompromised patients. The present study was done to determine the diagnostic efficacy of modified Ziehl-Neelsen (ZN, antigen detection ELISA, and a nested PCR assay for detection of Cryptosporidium in 58 adult AIDS cases with diarrhea from the ART clinic of Lok Nayak Hospital, New Delhi. Cryptosporidium was detected in 17 (29.4%, 39 (67.3%, and 45 (77.5% cases by modified ZN staining, antigen ELISA, and nested PCR assay, respectively. Taking nested PCR as the gold standard, specificity of both modified ZN staining and Cryptosporidium antigen detection ELISA was 100% while the sensitivity of the tests was 37.8% and 86.6%, respectively. PCR was more sensitive than the other two diagnostic modalities but required a more hands-on time per sample and was more expensive than microscopy. PCR, however, was very adaptable to batch analysis, reducing the costs considerably. This assay can therefore have considerable advantages in the treatment of immunosuppressed individuals like AIDS patients, allowing their early diagnosis and decreasing the morbidity and the mortality.

  9. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

    OpenAIRE

    Ågren, Joakim; Raditijo A Hamidjaja; Hansen, Trine; Ruuls, Robin; Thierry, Simon; Vigre, Håkan; Janse, Ingmar; Sundström, Anders; Segerman, Bo; Koene, Miriam; Löfström, Charlotta; van Rotterdam, Bart; Derzelle, Sylviane

    2013-01-01

    Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of B. anthracis. While most of the developed assays rely on unique markers present on virulence plasmids pXO1 and pXO2, relatively few assays incorporate chromosomal DNA markers due to the close relatedness of B. anthracis to the B. cereus group strains. ...

  10. Real-time PCR TaqMan assay for detecting Trichophyton tonsurans, a causative agent of tinea capitis, from hairbrushes.

    Science.gov (United States)

    Sugita, T; Shiraki, Y; Hiruma, M

    2006-09-01

    Tinea capitis caused by Trichophyton tonsurans is currently an epidemic in the United States, Europe, and Japan, and the cultivation of this microorganism is necessary for a definitive diagnosis. We recently developed a real-time PCR TaqMan assay as a culture-independent method for the rapid detection of T. tonsurans from hairbrushes.

  11. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples

    Science.gov (United States)

    Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster have been found to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. The United States Environmental Protection Agency is planning to conduct a ...

  12. Development of a non invasion real-time PCR assay for the quantitation of chicken parvovirus in fecal swabs

    Science.gov (United States)

    The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...

  13. Detection of Bartonella spp. DNA in clinical specimens using an internally controlled real-time PCR assay

    NARCIS (Netherlands)

    Bergmans, Anneke M C; Rossen, John W A

    2013-01-01

    Bartonella henselae is the causative agent of cat-scratch disease (CSD), usually presenting itself as a -self-limiting lymphadenopathy. In this chapter an internally controlled Taqman probe-based real-time PCR targeting the groEL gene of Bartonella spp. is described. This assay allows for the rapid,

  14. A real-time PCR assay for the specific identification of serotype O : 9 of Yersinia enterocolitica

    DEFF Research Database (Denmark)

    Jacobsen, N.R.; Bogdanovich, T.; Skurnik, M.

    2005-01-01

    A real-time PCR assay was developed based on a 18 1 -bp fragment of the recently cloned per gene, including an internal amplification control (124 bp), for the detection of Yersinia enterocolitica 0:9 (Ye 0:9). The validation included 48 Ye 0:9, 33 Y enterocolitica non-0:9 and 35 other closely-re...

  15. Field Evaluation of a Deployable RT-PCR Assay System for Real-Time Identification of Dengue Virus

    Science.gov (United States)

    2004-06-01

    strains of dengue serotypes 1-4, yellow fever, Japanese encephalitis, West Nile, and St. Louis encephalitis viruses as well as dengue virus infected...JA, Pyke A, Smith GA. Single rapid TaqMan fluorogenic probe based PCR assay that detects all four dengue serotypes . J Med Virol. 2002 April; 66(4

  16. Development of PCR/dot blot assay for specific detection and differentiation of taeniid cestode eggs in canids.

    Science.gov (United States)

    Armua-Fernandez, Maria Teresa; Nonaka, Nariaki; Sakurai, Tatsuya; Nakamura, Seita; Gottstein, Bruno; Deplazes, Peter; Phiri, Isaac G K; Katakura, Ken; Oku, Yuzaburo

    2011-01-01

    We report the development of a colourimetric PCR/dot blot assay targeting the mitochondrial gene NADH dehydrogenase subunit 1 (nad1) for differential diagnosis of taeniid eggs. Partial sequences of the cestode nad1 gene were aligned and new primers were designed based on conserved regions. Species-specific oligonucleotide probes (S-SONP) for canine taeniid cestodes were then designed manually based on the variable region between the conserved primers. Specifically, S-SONP were designed for the Taenia crassiceps, T. hydatigena, T. multiceps, T. ovis, T. taeniaeformis, Echinococcus granulosus (genotype 1), E. multilocularis and E. vogeli. Each probe showed high specificity as no cross-hybridisation with any amplified nad1 fragment was observed. We evaluated the assay using 49 taeniid egg-positive samples collected from dogs in Zambia. DNA from 5 to 10 eggs was extracted in each sample. Using the PCR/dot blot assay, the probes successfully detected PCR products from T. hydatigena in 42 samples, T. multiceps in 3 samples, and both species (mixed infection) in the remaining 4 samples. The results indicate that the PCR/dot blot assay is a reliable alternative for differential diagnosis of taeniid eggs in faecal samples.

  17. In situ detection of the Clostridium botulinum type C1 toxin gene in wetland sediments with a nested PCR assay

    Science.gov (United States)

    Williamson, J.L.; Rocke, T.E.; Aiken, Judd M.

    1999-01-01

    A nested PCR was developed for detection of the Clostridium botulinum type C1 toxin gene in sediments collected from wetlands where avian botulism outbreaks had or had not occurred. The C1 toxin gene was detected in 16 of 18 sites, demonstrating both the ubiquitous distribution of C. botulinum type C in wetland sediments and the sensitivity of the detection assay.

  18. World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays.

    Science.gov (United States)

    Oh, Kwang W; Park, Chinsung; Namkoong, Kak; Kim, Jintae; Ock, Kyeong-Sik; Kim, Suhyeon; Kim, Young-A; Cho, Yoon-Kyoung; Ko, Christopher

    2005-08-01

    We report a practical world-to-chip microfluidic interfacing method with built-in valves suitable for microscale multichamber chip-based assays. One of the primary challenges associated with the successful commercialization of fully integrated microfluidic systems has been the lack of reliable world-to-chip microfluidic interconnections. After sample loading and sealing, leakage tests were conducted at 100 degrees C for 30 min and no detectable leakage flows were found during the test for 100 microchambers. To demonstrate the utility of our world-to-chip microfluidic interface, we designed a microscale PCR chip with four chambers and performed PCR assays. The PCR results yielded a 100% success rate with no contamination or leakage failures. In conclusion, we have introduced a simple and inexpensive microfluidic interfacing system for both sample loading and sealing with no dead volume, no leakage flow and biochemical compatibility.

  19. Evaluation of a new real-time PCR assay for the direct detection of diarrheagenic Escherichia coli in stool specimens.

    Science.gov (United States)

    Eigner, U; Hiergeist, A; Veldenzer, A; Rohlfs, M; Schwarz, R; Holfelder, M

    2017-02-01

    Diarrheagenic E. coli (DEC) are one of the most common causes for diarrhea worldwide, especially in children. We evaluated the rapid RIDA ® GENE (RG) real-time multiplex PCR assays (R-Biopharm, Darmstadt, Germany) for the detection of the most important diarrheagenic E. coli. Three hundred fifteen liquid or non-formed stool specimens were examined. The results of the RG multiplex assays were compared to specific PCR methods. The sensitivity and specificity of the RG PCRs were as follows, 100%/100% for the detection of EHEC, 96.3% and 99% for EPEC, 100% and 100% for the detection of EAEC, ETEC and EIEC, respectively. Overall, the RG real-time PCR system for the detection of DEC tested in this study provided reliable and rapid results and shows the ability as a useful addendum for the detection of diarrheagenic E. coli in the medical laboratory.

  20. A New Lab Developed Real Time PCR Assay for Direct Detection of C. Difficle from Stool Sample without DNA Extraction

    Science.gov (United States)

    Li, Brandon

    2016-01-01

    Clostridium difficile is a major cause of nosocomial antibiotic-associated infectious diarrhea and pseudomembranous colitis. Detection of C. difficile by anaerobic bacterial culture and/or cytotoxicity assays has been largely replaced by rapid enzyme immunoassays (EIA). However, due to the lack of sensitivity of stool EIA, we developed a multiplex real-time PCR assay targeting the C. difficile toxin genes tcdB. stool samples from hospitalized pediatric patients suspected of having C. difficile-associated disease were prospectively collected. Three testing modalities were evaluated, including enriched culture, cepheid Xpert and real-time Pcr (tcdB) on stool samples performed with tcdB gene-specific primers and hydrolysis probes. A total of 150 de-identified clinical specimen were analyzed. The sensitivities of stool real-time Pcr were 95% against cepheid Xpert C. difficile and 93% against enriched culture respectively, with a specificity of 97% and 94%. The lower limit of detection of the stool real-time PCR was 0.5 cFU/ml of per reaction for tcdB. Direct detection of C. difficile toxin genes in stool samples by real-time Pcr showed performance comparable to enriched culture. Real-time PCR of DNA from stool samples is a rapid and cost-effective diagnostic modality for patients that should facilitate appropriate patient management. PMID:27829823

  1. A New Lab Developed Real Time PCR Assay for Direct Detection of C. Difficle from Stool Sample without DNA Extraction.

    Science.gov (United States)

    Li, Brandon

    2016-09-01

    Clostridium difficile is a major cause of nosocomial antibiotic-associated infectious diarrhea and pseudomembranous colitis. Detection of C. difficile by anaerobic bacterial culture and/or cytotoxicity assays has been largely replaced by rapid enzyme immunoassays (EIA). However, due to the lack of sensitivity of stool EIA, we developed a multiplex real-time PCR assay targeting the C. difficile toxin genes tcdB. stool samples from hospitalized pediatric patients suspected of having C. difficile-associated disease were prospectively collected. Three testing modalities were evaluated, including enriched culture, cepheid Xpert and real-time Pcr (tcdB) on stool samples performed with tcdB gene-specific primers and hydrolysis probes. A total of 150 de-identified clinical specimen were analyzed. The sensitivities of stool real-time Pcr were 95% against cepheid Xpert C. difficile and 93% against enriched culture respectively, with a specificity of 97% and 94%. The lower limit of detection of the stool real-time PCR was 0.5 cFU/ml of per reaction for tcdB. Direct detection of C. difficile toxin genes in stool samples by real-time Pcr showed performance comparable to enriched culture. Real-time PCR of DNA from stool samples is a rapid and cost-effective diagnostic modality for patients that should facilitate appropriate patient management.

  2. Sensitive detection of novel Indian isolate of BTV 21 using ns1 gene based real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Gaya Prasad

    2013-06-01

    Full Text Available Aim: The study was conducted to develop ns1 gene based sensitive real-time RT-PCR assay for diagnosis of India isolates of bluetongue virus (BTV. Materials and Methods: The BTV serotype 21 isolate (KMNO7 was isolated from Andhra Pradesh and propagated in BHK-21 cell line in our laboratory. The Nucleic acid (dsRNA of virus was extracted using Trizol method and cDNA was prepared using a standard protocol. The cDNA was allowed to ns1 gene based group specific PCR to confirm the isolate as BTV. The viral RNA was diluted 10 folds and the detection limit of ns1 gene based RT-PCR was determined. Finally the tenfold diluted viral RNA was subjected to real-time RT-PCR using ns1 gene primer and Taq man probe to standardized the reaction and determine the detection limit. Results: The ns1 gene based group specific PCR showed a single 366bp amplicon in agarose gel electrophoresis confirmed the sample as BTV. The ns1 gene RT-PCR using tenfold diluted viral RNA showed the detection limit of 70.0 fg in 1%agarose gel electrophoresis. The ns1 gene based real time RT-PCR was successfully standardized and the detection limit was found to be 7.0 fg. Conclusion: The ns1 gene based real-time RT-PCR was successfully standardized and it was found to be 10 times more sensitive than conventional RT-PCR. Key words: bluetongue, BTV21, RT-PCR, Real time RT-PCR, ns1 gene [Vet World 2013; 6(8.000: 554-557

  3. Duplex real-time PCR assay for rapid identification of Staphylococcus aureus isolates from dairy cow milk.

    Science.gov (United States)

    Pilla, Rachel; Snel, Gustavo G M; Malvisi, Michela; Piccinini, Renata

    2013-05-01

    Staphylococcus aureus isolates from dairy cow mastitis are not always consistent with the characteristic morphology described, and molecular investigation is often needed. The aim of the study was to develop a duplex real-time PCR assay for rapid identification of Staph. aureus isolates, targeting both nuc and Sa442. Overall, 140 isolates collected from dairy cow mastitis in 90 different herds, were tested. All strains had been identified using morphological and biochemical characteristics. DNA from each strain was amplified in real-time PCR assay, to detect nuc or Sa442. Thereafter, a duplex real-time PCR assay was performed, and specificity of the amplified products was assessed by high resolution melting curve analysis. Out of 124 Staph. aureus isolates, 33 did not show the typical morphology or enzymic activity; in 118 strains, the two melt-curve peaks consistent with nuc and Sa442 were revealed, while 2 isolates showed only the peak consistent with Sa442. Four isolates bacteriologically identified as Staph. aureus, were PCR-negative and were further identified as Staph. pseudintermedius by sequencing. Staph. pseudintermedius and coagulase-negative staphylococci did not carry nuc or Sa442. The results showed the correct identification of all isolates, comprehending also coagulase-or nuc-negative Staph. aureus, while other coagulase-positive Staphylococci were correctly identified as non-Staph. aureus. Both sensitivity and specificity were 100%. High resolution melting analysis allowed easy detection of unspecific products. Finally, the duplex real-time PCR was applied directly to 40 milk samples, to detect infected mammary quarters. The assay confirmed the results of bacteriological analysis, on Staph. aureus-positive or-negative samples. Therefore, the proposed duplex real-time PCR could be used in laboratory routine as a cost-effective and powerful tool for high-throughput identification of atypical Staph. aureus isolates causing dairy cow mastitis. Also, it

  4. A multiplex endpoint RT-PCR assay for quality assessment of RNA extracted from formalin-fixed paraffin-embedded tissues

    Directory of Open Access Journals (Sweden)

    Dobrovic Alexander

    2010-12-01

    Full Text Available Abstract Background RNA extracted from formalin-fixed paraffin-embedded (FFPE samples is chemically modified and degraded, which compromises its use in gene expression studies. Most of the current approaches for RNA quality assessment are not suitable for FFPE derived RNA. Results We have developed a single-tube multiplex endpoint RT-PCR assay specifically designed to evaluate RNA extracted from FFPE tissues for mRNA integrity and performance in reverse transcription - quantitative real-time PCR (RT-qPCR assays. This single-tube quality control (QC assay minimises the amount of RNA used in quality control. mRNA integrity and the suitability of RNA for RT-PCR is evaluated by the multiplex endpoint RT-PCR assay using the TBP gene mRNA as the target sequence. The RT-PCR amplicon sizes, 92, 161, 252 and 300 bp, cover a range of amplicon sizes suitable for a wide range of RT-qPCR assays. The QC assay was used to evaluate RNA prepared by two different protocols for extracting total RNA from needle microdissected FFPE breast tumour samples. The amplification products were analysed by gel electrophoresis where the spectrum of amplicon sizes indicated the level of RNA degradation and thus the suitability of the RNA for PCR. The ability of the multiplex endpoint RT-PCR QC assay to identify FFPE samples with an adequate RNA quality was validated by examining the Cq values of an RT-qPCR assay with an 87 bp amplicon. Conclusions The multiplex endpoint RT-PCR assay is well suited for the determination of the quality of FFPE derived RNAs, to identify which RT-PCR assays they are suitable for, and is also applicable to assess non-FFPE RNA for gene expression studies. Furthermore, the assay can also be used for the evaluation of RNA extraction protocols from FFPE samples.

  5. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    Energy Technology Data Exchange (ETDEWEB)

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  6. A highly sensitive quantitative real-time pcr assay for determination of mutant jak2 exon 12 allele burden

    DEFF Research Database (Denmark)

    Kjær, L.; Riley, C.H.; Westman, M.

    2012-01-01

    present a highly sensitive real-time quantitative PCR assay for determination of the mutant allele burden of JAK2 exon 12 mutations. In combination with high resolution melting analysis and sequencing the assay identified six patients carrying previously described JAK2 exon 12 mutations and one novel...... mutation. Two patients were homozygous with a high mutant allele burden, whereas one of the heterozygous patients had a very low mutant allele burden. The allele burden in the peripheral blood resembled that of the bone marrow, except for the patient with low allele burden. Myeloid and lymphoid cell...... populations were isolated by cell sorting and quantitative PCR revealed similar mutant allele burdens in CD16+ granulocytes and peripheral blood. The mutations were also detected in B-lymphocytes in half of the patients at a low allele burden. In conclusion, our highly sensitive assay provides an important...

  7. A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington's disease chromosomes.

    Science.gov (United States)

    Warner, J P; Barron, L H; Brock, D J

    1993-06-01

    The Huntington's Disease (HD) Collaborative Research Group has recently published the sequence of a new cDNA, IT15, containing a polymorphic trinucleotide (CAG)n repeat that is expanded and unstable on HD chromosomes. There is a correlation between the repeat size and the age of onset of symptoms. The suggested polymerase chain reaction (PCR) assay of the (CAG)n repeat requires unusual reaction components and primer concentrations and the use of 5% polyacrylamide sequencing gels to resolve the amplification products. We present a simple PCR assay that produces a smaller product using standard reaction conditions. This gives better resolution of the (CAG)n expansion observed on HD chromosomes by acrylamide gel electrophoresis and allows sufficient product to be obtained to perform assays using agarose gels. This will allow diagnostic labs to do rapid and accurate presymptomatic testing of HD in high risk families.

  8. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Directory of Open Access Journals (Sweden)

    Xingmei Xie

    Full Text Available Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR. Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY, five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377, one X/Y-common STR (X22, and two autosomal STRs (D13S305 and D21S11. Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  9. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Science.gov (United States)

    Xie, Xingmei; Liang, Qiaoyi

    2014-01-01

    Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR). Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY), five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377), one X/Y-common STR (X22), and two autosomal STRs (D13S305 and D21S11). Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  10. Rapid differential diagnosis between extrapulmonary tuberculosis and focal complications of brucellosis using a multiplex real-time PCR assay.

    Directory of Open Access Journals (Sweden)

    María Isabel Queipo-Ortuño

    Full Text Available BACKGROUND: Arduous to differ clinically, extrapulmonary tuberculosis and focal complications of brucellosis remain important causes of morbidity and mortality in many countries. We developed and applied a multiplex real-time PCR assay (M RT-PCR for the simultaneous detection of Mycobacterium tuberculosis complex and Brucella spp. METHODOLOGY: Conventional microbiological techniques and M RT-PCR for M. tuberculosis complex and Brucella spp were performed on 45 clinical specimens from patients with focal complications of brucellosis or extrapulmonary tuberculosis and 26 control samples. Fragments of 207 bp and 164 bp from the conserved region of the genes coding for an immunogenic membrane protein of 31 kDa of B. abortus (BCSP31 and the intergenic region SenX3-RegX3 were used for the identification of Brucella and M. tuberculosis complex, respectively. CONCLUSIONS: The detection limit of the M RT-PCR was 2 genomes per reaction for both pathogens and the intra- and inter-assay coefficients of variation were 0.44% and 0.93% for Brucella and 0.58% and 1.12% for Mycobacterium. M RT-PCR correctly identified 42 of the 45 samples from patients with tuberculosis or brucellosis and was negative in all the controls. Thus, the overall sensitivity, specificity, PPV and NPV values of the M RT PCR assay were 93.3%, 100%, 100% and 89.7%, respectively, with an accuracy of 95.8% (95% CI, 91.1%-100%. Since M RT-PCR is highly reproducible and more rapid and sensitive than conventional microbiological tests, this technique could be a promising and practical approach for the differential diagnosis between extrapulmonary tuberculosis and focal complications of brucellosis.

  11. A novel comprehensive set of fungal Real time PCR assays (fuPCR) for the detection of fungi in immunocompromised haematological patients-A pilot study.

    Science.gov (United States)

    Rahn, Sebastian; Schuck, Anna; Kondakci, Mustafa; Haas, Rainer; Neuhausen, Nicole; Pfeffer, Klaus; Henrich, Birgit

    2016-12-01

    . and 8.3% (3/36) to Alternaria spp., whereas cultivation only identified Candida spp. (10/17) and Saccharomyces spp. (7/17). In this pilot study a novel fuPCR assay was developed and validated for the simultaneous and comprehensive detection of fungal pathogens in clinical respiratory specimens of haematological patients. Future work will focus on the validation of the blood-stream detected fungi in pathogenicity of these patients.

  12. Specific detection of common pathogens of acute bacterial meningitis using an internally controlled tetraplex-PCR assay.

    Science.gov (United States)

    Farahani, Hamidreza; Ghaznavi-Rad, Ehsanollah; Mondanizadeh, Mahdieh; MirabSamiee, Siamak; Khansarinejad, Behzad

    2016-08-01

    Accurate and timely diagnosis of acute bacterial meningitis is critical for antimicrobial treatment of patients. Although PCR-based methods have been widely used for the diagnosis of acute meningitis caused by bacterial pathogens, the main disadvantage of these methods is their high cost. This disadvantage has hampered the widespread use of molecular assays in many developing countries. The application of multiplex assays and "in-house" protocols are two main approaches that can reduce the overall cost of a molecular test. In the present study, an internally controlled tetraplex-PCR was developed and validated for the specific detection of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae in cerebrospinal fluid (CSF) samples. The analysis of a panel of other human pathogens showed no cross-reactivity in the assay. The analytical sensitivity of the in-house assay was 792.3 copies/ml, when all three bacteria were presentin the specimens. This value was calculated as 444.5, 283.7, 127.8 copies/ml when only S. pneumoniae, N. meningitidis and H. influenzae, respectively, were present. To demonstrate the diagnostic performance of the assay, a total of 150 archival CSF samples were tested and compared with a commercial multiplex real-time PCR kit. A diagnostic sensitivity of 92.8% and a specificity of 95.1% were determined for the present tetraplex-PCR assay. The results indicate that the established method is sensitive, specific and cost-effective, and can be used particularly in situations where the high cost of commercial kits prevents the use of molecular methods for the diagnosis of bacterial meningitis.

  13. Diagnostic accuracy of a loop-mediated isothermal PCR assay for detection of Orientia tsutsugamushi during acute Scrub Typhus infection.

    Directory of Open Access Journals (Sweden)

    Daniel H Paris

    2011-09-01

    Full Text Available BACKGROUND: There is an urgent need to develop rapid and accurate point-of-care (POC technologies for acute scrub typhus diagnosis in low-resource, primary health care settings to guide clinical therapy. METHODOLOGY/PRINCIPAL FINDINGS: In this study we present the clinical evaluation of loop-mediated isothermal PCR assay (LAMP in the context of a prospective fever study, including 161 patients from scrub typhus-endemic Chiang Rai, northern Thailand. A robust reference comparator set comprising following 'scrub typhus infection criteria' (STIC was used: a positive cell culture isolate and/or b an admission IgM titer ≥1∶12,800 using the 'gold standard' indirect immunofluorescence assay (IFA and/or c a 4-fold rising IFA IgM titer and/or d a positive result in at least two out of three PCR assays. Compared to the STIC criteria, all PCR assays (including LAMP demonstrated high specificity ranging from 96-99%, with sensitivities varying from 40% to 56%, similar to the antibody based rapid test, which had a sensitivity of 47% and a specificity of 95%. CONCLUSIONS/SIGNIFICANCE: The diagnostic accuracy of the LAMP assay was similar to realtime and nested conventional PCR assays, but superior to the antibody-based rapid test in the early disease course. The combination of DNA- and antibody-based detection methods increased sensitivity with minimal reduction of specificity, and expanded the timeframe of adequate diagnostic coverage throughout the acute phase of scrub typhus.

  14. Development and validation of PCR-based assays for diagnosis of American cutaneous leishmaniasis and identification of the parasite species.

    Science.gov (United States)

    Graça, Grazielle Cardoso da; Volpini, Angela Cristina; Romero, Gustavo Adolfo Sierra; Oliveira Neto, Manoel Paes de; Hueb, Marcia; Porrozzi, Renato; Boité, Mariana Côrtes; Cupolillo, Elisa

    2012-08-01

    In this study, PCR assays targeting different Leishmania heat-shock protein 70 gene (hsp70) regions, producing fragments ranging in size from 230-390 bp were developed and evaluated to determine their potential as a tool for the specific molecular diagnosis of cutaneous leishmaniasis (CL). A total of 70 Leishmania strains were analysed, including seven reference strains (RS) and 63 previously typed strains. Analysis of the RS indicated a specific region of 234 bp in the hsp70 gene as a valid target that was highly sensitive for detection of Leishmania species DNA with capacity of distinguishing all analyzed species, after polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). This PCR assay was compared with other PCR targets used for the molecular diagnosis of leishmaniasis: hsp70 (1400-bp region), internal transcribed spacer (ITS)1 and glucose-6-phosphate dehydrogenase (G6pd). A good agreement among the methods was observed concerning the Leishmania species identification. Moreover, to evaluate the potential for molecular diagnosis, we compared the PCR targets hsp70-234 bp, ITS1, G6pd and mkDNA using a panel of 99 DNA samples from tissue fragments collected from patients with confirmed CL. Both PCR-hsp70-234 bp and PCR-ITS1 detected Leishmania DNA in more than 70% of the samples. However, using hsp70-234 bp PCR-RFLP, identification of all of the Leishmania species associated with CL in Brazil can be achieved employing a simpler and cheaper electrophoresis protocol.

  15. Development and validation of PCR-based assays for diagnosis of American cutaneous leishmaniasis and identificatio nof the parasite species

    Directory of Open Access Journals (Sweden)

    Grazielle Cardoso da Graça

    2012-08-01

    Full Text Available In this study, PCR assays targeting different Leishmania heat-shock protein 70 gene (hsp70 regions, producing fragments ranging in size from 230-390 bp were developed and evaluated to determine their potential as a tool for the specific molecular diagnosis of cutaneous leishmaniasis (CL. A total of 70 Leishmania strains were analysed, including seven reference strains (RS and 63 previously typed strains. Analysis of the RS indicated a specific region of 234 bp in the hsp70 gene as a valid target that was highly sensitive for detection of Leishmania species DNA with capacity of distinguishing all analyzed species, after polymerase chain reaction-restriction fragment length polymorfism (PCR-RFLP. This PCR assay was compared with other PCR targets used for the molecular diagnosis of leishmaniasis: hsp70 (1400-bp region, internal transcribed spacer (ITS1 and glucose-6-phosphate dehydrogenase (G6pd. A good agreement among the methods was observed concerning the Leishmania species identification. Moreover, to evaluate the potential for molecular diagnosis, we compared the PCR targets hsp70-234 bp, ITS1, G6pd and mkDNA using a panel of 99 DNA samples from tissue fragments collected from patients with confirmed CL. Both PCR-hsp70-234 bp and PCR-ITS1 detected Leishmania DNA in more than 70% of the samples. However, using hsp70-234 bp PCR-RFLP, identification of all of the Leishmania species associated with CL in Brazil can be achieved employing a simpler and cheaper electrophoresis protocol.

  16. A nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistance genes in Enterococcus species

    Directory of Open Access Journals (Sweden)

    Ravichandran Manickam

    2007-12-01

    Full Text Available Abstract Background Enterococci have emerged as a significant cause of nosocomial infections in many parts of the world over the last decade. The most common enterococci strains present in clinical isolates are E. faecalis and E. faecium which have acquired resistant to either gentamicin or vancomycin. The conventional culture test takes 2–5 days to yield complete information of the organism and its antibiotic sensitivity pattern. Hence our present study was focused on developing a nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistant enterococci (V-BiA-RE. This assay simultaneously detects 8 genes namely 16S rRNA of Enterococcus genus, ddl of E. faecalis and E. faecium, aacA-aphD that encodes high level gentamicin resistance (HLGR, multilevel vancomycin resistant genotypes such as vanA, vanB, vanC and vanD and one internal control gene. Results Unique and specific primer pairs were designed to amplify the 8 genes. The specificity of the primers was confirmed by DNA sequencing of the nanoplex PCR products and BLAST analysis. The sensitivity and specificity of V-BiA-RE nanoplex PCR assay was evaluated against the conventional culture method. The analytical sensitivity of the assay was found to be 1 ng at the DNA level while the analytical specificity was evaluated with 43 reference enterococci and non-enterococcal strains and was found to be 100%. The diagnostic accuracy was determined using 159 clinical specimens, which showed that 97% of the clinical isolates belonged to E. faecalis, of which 26% showed the HLGR genotype, but none were vancomycin resistant. The presence of an internal control in the V-BiA-RE nanoplex PCR assay helped us to rule out false negative cases. Conclusion The nanoplex PCR assay is robust and can give results within 4 hours about the 8 genes that are essential for the identification of the most common Enterococcus spp. and their antibiotic sensitivity pattern. The PCR assay

  17. Enzyme assays.

    Science.gov (United States)

    Reymond, Jean-Louis; Fluxà, Viviana S; Maillard, Noélie

    2009-01-07

    Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest.

  18. Development of a novel real-time qPCR assay for the dual detection of canine and phocine distemper virus

    DEFF Research Database (Denmark)

    Nielsen, Linette Buxbom; Hjulsager, Charlotte Kristiane; Larsen, Helene

    In a commercial diagnostic setting streamlining and optimization is an important factor when the goal is to provide high quality diagnostic results while remaining competitive. In the PCR diagnostics unit at DTU National Veterinary Institute part of this optimization programme is to replace...... conventional PCR assays with real-time PCR assays to obtain a uniform assay palette. The present work describes the development of a novel real-time RT-qPCR assay for the dual detection of canine and phocine distemper virus. The assay is relevant for the future detection of outbreaks of canine distemper virus...... bp in the Phosphoprotein (P) gene of the distemper virus genome. The dynamic range and PCR efficiency (E) was experimentally determined using 10-fold dilutions of a specially designed distemper DNA-oligo in addition to extracted RNA from clinical samples. E of the real-time assay was shown to range...

  19. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth and look-alike disease viruses

    Energy Technology Data Exchange (ETDEWEB)

    Hindson, B J; Baker, B R; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; Reid, S M; Ebert, K; Ferris, N P; King, D P

    2007-09-18

    A high-throughput multiplexed assay (Multiplex Version 1.0) was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRTPCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  20. RT-PCR assay for detection of Lassa virus and related Old World arenaviruses targeting the L gene.

    Science.gov (United States)

    Vieth, Simon; Drosten, Christian; Lenz, Oliver; Vincent, Martin; Omilabu, Sunday; Hass, Meike; Becker-Ziaja, Beate; ter Meulen, Jan; Nichol, Stuart T; Schmitz, Herbert; Günther, Stephan

    2007-12-01

    This study describes an RT-PCR assay targeting the L RNA segment of arenaviruses. Conserved regions were identified in the polymerase domain of the L gene on the basis of published sequences for Lassa virus, lymphocytic choriomeningitis virus (LCMV), Pichinde virus and Tacaribe virus, as well as 15 novel sequences for Lassa virus, LCMV, Ippy virus, Mobala virus and Mopeia virus determined in this study. Using these regions as target sites, a PCR assay for detection of all known Old World arenaviruses was developed and optimized. The concentration that yields 95% positive results in a set of replicate tests (95% detection limit) was determined to be 4290 copies of Lassa virus L RNA per ml of serum, corresponding to 30 copies per reaction. The ability of the assay to detect various Old World arenaviruses was demonstrated with in vitro transcribed RNA, material from infected cell cultures and samples from patients with Lassa fever and monkeys with LCMV-associated callitrichid hepatitis. The L gene PCR assay may be applicable: (i) as a complementary diagnostic test for Lassa virus and LCMV; (ii) to identify unknown Old World arenaviruses suspected as aetiological agents of disease; and (iii) for screening of potential reservoir hosts for unknown Old World arenaviruses.

  1. Multiplex Real-Time PCR Assay for Detection and Classification of Klebsiella pneumoniae Carbapenemase Gene (blaKPC) Variants▿

    OpenAIRE

    Chen, Liang; Mediavilla, José R.; Endimiani, Andrea; Rosenthal, Marnie E.; Zhao, Yanan; Robert A Bonomo; Kreiswirth, Barry N.

    2011-01-01

    Carbapenem resistance mediated by plasmid-borne Klebsiella pneumoniae carbapenemases (KPC) is an emerging problem of significant clinical importance in Gram-negative bacteria. Multiple KPC gene variants (blaKPC) have been reported, with KPC-2 (blaKPC-2) and KPC-3 (blaKPC-3) associated with epidemic outbreaks in New York City and various international settings. Here, we describe the development of a multiplex real-time PCR assay using molecular beacons (MB-PCR) for rapid and accurate identific...

  2. Development of a multiplex PCR assay to detect Edwardsiella tarda, Streptococcus parauberis, and Streptococcus iniae in olive flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Park, Seong Bin; Kwon, Kyoung; Cha, In Seok; Jang, Ho Bin; Nho, Seong Won; Fagutao, Fernand F; Kim, Young Kyu; Yu, Jong Earn; Jung, Tae Sung

    2014-01-01

    A multiplex PCR protocol was established to simultaneously detect major bacterial pathogens in olive flounder (Paralichthys olivaceus) including Edwardsiella (E.) tarda, Streptococcus (S.) parauberis, and S. iniae. The PCR assay was able to detect 0.01 ng of E. tarda, 0.1 ng of S. parauberis, and 1 ng of S. iniae genomic DNA. Furthermore, this technique was found to have high specificity when tested with related bacterial species. This method represents a cheaper, faster, and reliable alternative for identifying major bacterial pathogens in olive flounder, the most important farmed fish in Korea.

  3. Identification of campylobacteria isolated from Danish broilers by phenotypic tests and species-specific PCR assays

    DEFF Research Database (Denmark)

    Wainø, M; Bang, Dan; Lund, Marianne;

    2003-01-01

    To validate a phenotypic Campylobacter species identification method employed to identify campylobacters in broilers by comparison with campylobacterial species identification using various species-specific PCR analyses....

  4. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences.

    Science.gov (United States)

    Ågren, Joakim; Hamidjaja, Raditijo A; Hansen, Trine; Ruuls, Robin; Thierry, Simon; Vigre, Håkan; Janse, Ingmar; Sundström, Anders; Segerman, Bo; Koene, Miriam; Löfström, Charlotta; Van Rotterdam, Bart; Derzelle, Sylviane

    2013-11-15

    Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of B. anthracis. While most of the developed assays rely on unique markers present on virulence plasmids pXO1 and pXO2, relatively few assays incorporate chromosomal DNA markers due to the close relatedness of B. anthracis to the B. cereus group strains. For the detection of chromosomal DNA, different genes have been used, such as BA813, rpoB, gyrA, plcR, S-layer, and prophage-lambda. Following a review of the literature, an in silico analysis of all signature sequences reported for identification of B. anthracis was conducted. Published primer and probe sequences were compared for specificity against 134 available Bacillus spp. genomes. Although many of the chromosomal targets evaluated are claimed to be specific to B. anthracis, cross-reactions with closely related B. cereus and B. thuringiensis strains were often observed. Of the 35 investigated PCR assays, only 4 were 100% specific for the B. anthracis chromosome. An interlaboratory ring trial among five European laboratories was then performed to evaluate six assays, including the WHO recommended procedures, using a collection of 90 Bacillus strains. Three assays performed adequately, yielding no false positive or negative results. All three assays target chromosomal markers located within the lambdaBa03 prophage region (PL3, BA5345, and BA5357). Detection limit was further assessed for one of these highly specific assays.

  5. A novel quantitative PCR assay for the detection of Streptococcus pneumoniae using the competence regulator gene target comX.

    Science.gov (United States)

    Habets, Marrit N; Cremers, Amelieke J H; Bos, Martine P; Savelkoul, Paul; Eleveld, Marc J; Meis, Jacques F; Hermans, Peter W M; Melchers, Willem J; de Jonge, Marien I; Diavatopoulos, Dimitri A

    2016-02-01

    Streptococcus pneumoniae is responsible for an estimated 1.6 million deaths worldwide every year. While rapid detection and timely treatment with appropriate antibiotics is preferred, this is often difficult due to the amount of time that detection with blood cultures takes. In this study, a novel quantitative PCR assay for the detection of Streptococcus pneumoniae was developed. To identify novel targets, we analysed the pneumococcal genome for unique, repetitive DNA sequences. This approach identified comX, which is conserved and present in duplicate copies in Streptococcus pneumoniae but not in other bacterial species. Comparison with lytA, the current 'gold standard' for detection by quantitative PCR, demonstrated an analytic specificity of 100% for both assays on a panel of 10 pneumococcal and 18 non-pneumococcal isolates, but a reduction of 3.5 quantitation cycle values (± 0.23 sem), resulting in an increased analytical detection rate of comX. We validated our assay on DNA extracted from the serum of 30 bacteraemic patients who were blood culture positive for Streptococcus pneumoniae and 51 serum samples that were culture positive for other bacteria. This resulted in a similar clinical sensitivity between the comX and lytA assays (47%) and in a diagnostic specificity of 98.2 and 100% for the lytA and comX assays, respectively. In conclusion, we have developed a novel quantitative PCR assay with increased analytical sensitivity for the detection of Streptococcus pneumoniae, which may be used to develop a rapid bedside test for the direct detection of Streptococcus pneumoniae in clinical specimens.

  6. Development and assessment of a multiplex real-time PCR assay for quantification of human immunodeficiency virus type 1 DNA.

    Science.gov (United States)

    Beloukas, A; Paraskevis, D; Haida, C; Sypsa, V; Hatzakis, A

    2009-07-01

    Previous studies showed that high levels of human immunodeficiency virus type 1 (HIV-1) DNA are associated with a faster progression to AIDS, an increased risk of death, and a higher risk of HIV RNA rebound in patients on highly active antiretroviral therapy. Our objective was to develop and assess a highly sensitive real-time multiplex PCR assay for the quantification of HIV-1 DNA (RTMP-HIV) based on molecular beacons. HIV-1 DNA quantification was carried out by RTMP in a LightCycler 2.0 apparatus. HIV-1 DNA was quantified in parallel with CCR5 as a reference gene, and reported values are numbers of HIV-1 DNA copies/10(6) peripheral blood mononuclear cells (PBMCs). The clinical sensitivity of the assay was assessed for 115 newly diagnosed HIV-1-infected individuals. The analytical sensitivity was estimated to be 12.5 copies of HIV-1 DNA per 10(6) PBMCs, while the clinical sensitivity was 100%, with levels ranging from 1.23 to 4.25 log(10) HIV-1 DNA copies/10(6) PBMCs. In conclusion, we developed and assessed a new RTMP-HIV assay based on molecular beacons, using a LightCycler 2.0 instrument. This multiplex assay has comparable sensitivity, reproducibility, and accuracy to single real-time PCR assays.

  7. Sequence polymorphism can produce serious artifacts in real-time PCR assays: lessons from Pacific oysters

    Science.gov (United States)

    Since it was first described in the mid-1990s, quantitative real time PCR (Q-PCR) has been widely used in many fields of biomedical research and molecular diagnostics. This method is routinely used to validate whole transcriptome analyses such as DNA microarrays, suppressive subtractive hybridizati...

  8. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA.

    Science.gov (United States)

    Hunter, Margaret E; Dorazio, Robert M; Butterfield, John S S; Meigs-Friend, Gaia; Nico, Leo G; Ferrante, Jason A

    2017-03-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low-concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species' presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty-indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis and forensic and clinical diagnostics.

  9. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA

    Science.gov (United States)

    Hunter, Margaret; Dorazio, Robert M.; Butterfield, John S.; Meigs-Friend, Gaia; Nico, Leo; Ferrante, Jason

    2017-01-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species’ presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty – indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis, and forensic and clinical diagnostics.

  10. Comparative analysis of cultural isolation and PCR based assay for detection of Campylobacter jejuni in food and faecal samples

    Directory of Open Access Journals (Sweden)

    Harkanwaldeep Singh

    2011-03-01

    Full Text Available In the present study, the efficacy of polymerase chain reaction (PCR based on mapA gene of C. jejuni was tested for detection of Campylobacter jejuni in naturally infected as well as spiked faecal and food samples of human and animal origin. Simultaneously, all the samples were subjected to the cultural isolation of organism and biochemical characterization. The positive samples resulted in the amplification of a DNA fragment of size ~589 bp in PCR assay whereas the absence of such amplicon in DNA extracted from E. coli, Listeria, Salmonella and Staphylococcus confirmed the specificity of the primers. Of randomly collected 143 faecal samples comprising human diarrheic stools (43, cattle diarrheic faeces (48 and poultry faecal swabs (52 only 4, 3 and 8, respectively, could be detected by isolation whereas 6, 3 and 10, respectively, were found positive by PCR. However, among food samples viz. beef (30, milk (35, cheese (30, only one beef sample was detected both by culture as well as PCR. Additionally, PCR was found to be more sensitive for C. jejuni detection in spiked faecal and food samples (96.1% each as relative to culture isolation which could detect the organism in 86.7% and 80% samples, respectively. The results depicted the superior efficacy of PCR for rapid screening of samples owing to its high sensitivity, specificity and automation potential.

  11. BurkDiff: a real-time PCR allelic discrimination assay for Burkholderia pseudomallei and B. mallei.

    Directory of Open Access Journals (Sweden)

    Jolene R Bowers

    Full Text Available A real-time PCR assay, BurkDiff, was designed to target a unique conserved region in the B. pseudomallei and B. mallei genomes containing a SNP that differentiates the two species. Sensitivity and specificity were assessed by screening BurkDiff across 469 isolates of B. pseudomallei, 49 isolates of B. mallei, and 390 isolates of clinically relevant non-target species. Concordance of results with traditional speciation methods and no cross-reactivity to non-target species show BurkDiff is a robust, highly validated assay for the detection and differentiation of B. pseudomallei and B. mallei.

  12. Quantitative PCR Assays for Detecting Loach Minnow (Rhinichthys cobitis) and Spikedace (Meda fulgida) in the Southwestern United States.

    Science.gov (United States)

    Dysthe, Joseph C; Carim, Kellie J; Paroz, Yvette M; McKelvey, Kevin S; Young, Michael K; Schwartz, Michael K

    2016-01-01

    Loach minnow (Rhinichthys cobitis) and spikedace (Meda fulgida) are legally protected with the status of Endangered under the U.S. Endangered Species Act and are endemic to the Gila River basin of Arizona and New Mexico. Efficient and sensitive methods for monitoring these species' distributions are critical for prioritizing conservation efforts. We developed quantitative PCR assays for detecting loach minnow and spikedace DNA in environmental samples. Each assay reliably detected low concentrations of target DNA without detection of non-target species, including other cyprinid fishes with which they co-occur.

  13. Optimization and Validation of Real Time PCR Assays for Absolute Quantification of toxigenic Vibrio cholerae and Escherichia coli

    DEFF Research Database (Denmark)

    Ferdous, J.; Hossain, Z. Z.; Tulsiani, S.

    2016-01-01

    Quantitative real-time PCR (qPCR) is a dynamic and cogent assay for the detection and quantification of specified nucleic acid sequences and is more accurate compared to both traditional culture based techniques and ‘end point’ conventional PCR. Serial dilution of bacterial cell culture provides ...

  14. Respiratory virus multiplex RT-PCR assay sensitivities and influence factors in hospitalized children with lower respiratory tract infections.

    Science.gov (United States)

    Deng, Jikui; Ma, Zhuoya; Huang, Wenbo; Li, Chengrong; Wang, Heping; Zheng, Yuejie; Zhou, Rong; Tang, Yi-Wei

    2013-04-01

    Multiplex RT-PCR assays have been widely used tools for detection and differentiation of a panel of respiratory viral pathogens. In this study, we evaluated the Qiagen ResPlex II V2.0 kit and explored factors influencing its sensitivity. Nasopharyngeal swab (NPS) specimens were prospectively collected from pediatric inpatients with lower respiratory tract infections at the time of admission in the Shenzhen Children's Hospital from May 2009 to April 2010. Total nucleic acids were extracted using the EZ1 system (Qiagen, Germany) and 17 respiratory viruses and genotypes including influenza A virus (FluA), FluB, parainfluenza virus 1 (PIV1), PIV2, PIV3, PIV4, respiratory syncytial virus (RSV), human metapneumovirus (hMPV), rhinoviruses (RhV), enteroviruses (EnV), human bocaviruses (hBoV), adenoviruses (AdV), four coronaviruses (229E, OC43, NL63 and HKU1), and FluA 2009 pandemic H1N1(H1N1-p) were detected and identified by the ResPlex II kit. In parallel, 16 real-time TaqMan quantitative RT-PCR assays were used to quantitatively detect each virus except for RhV. Influenza and parainfluenza viral cultures were also performed. Among the total 438 NPS specimens collected during the study period, one or more viral pathogens were detected in 274 (62.6%) and 201(45.9%) specimens by monoplex TaqMan RT-PCR and multiplex ResPlex, respectively. When results from monoplex PCR or cell culture were used as the reference standard, the multiplex PCR possessed specificities of 92.9-100.0%. The sensitivity of multiplex PCR for PIV3, hMPV, PIV1 and BoV were 73.1%, 70%, 66.7% and 55.6%, respectively, while low sensitivities (11.1%-40.0%) were observed for FluA, EnV, OC43, RSV and H1N1. Among the seven viruses/genotypes detected with higher frequencies, multiplex PCR sensitivities were correlated significantly with viral loads determined by the TaqMan RT-PCR in FluA, H1N1-p and RSV (p=0.011-0.000). The Qiagen ResPlex II multiplex RT-PCR kit possesses excellent specificity for simultaneous

  15. Application of a multiplex PCR assay for Campylobacter fetus detection and subspecies differentiation in uncultured samples of aborted bovine fetuses.

    Science.gov (United States)

    Iraola, Gregorio; Hernández, Martín; Calleros, Lucía; Paolicchi, Fernando; Silveyra, Silvia; Velilla, Alejandra; Carretto, Luis; Rodríguez, Eliana; Pérez, Ruben

    2012-12-01

    Campylobacter (C.) fetus (epsilonproteobacteria) is an important veterinary pathogen. This species is currently divided into C. fetus subspecies (subsp.) fetus (Cff) and C. fetus subsp. venerealis (Cfv). Cfv is the causative agent of bovine genital Campylobacteriosis, an infectious disease that leads to severe reproductive problems in cattle worldwide. Cff is a more general pathogen that causes reproductive problems mainly in sheep although cattle can also be affected. Here we describe a multiplex PCR method to detect C. fetus and differentiate between subspecies in a single step. The assay was standardized using cultured strains and successfully used to analyze the abomasal liquid of aborted bovine fetuses without any pre-enrichment step. Results of our assay were completely consistent with those of traditional bacteriological diagnostic methods. Furthermore, the multiplex PCR technique we developed may be easily adopted by any molecular diagnostic laboratory as a complementary tool for detecting C. fetus subspecies and obtaining epidemiological information about abortion events in cattle.

  16. Development of a multiplex real-time RT-PCR assay for simultaneous detection of dengue and chikungunya viruses.

    Science.gov (United States)

    Cecilia, D; Kakade, M; Alagarasu, K; Patil, J; Salunke, A; Parashar, D; Shah, P S

    2015-01-01

    Dengue and chikungunya viruses co-circulate and cause infections that start with similar symptoms but progress to radically different outcomes. Therefore, an early diagnostic test that can differentiate between the two is needed. A single-step multiplex real-time RT-PCR assay was developed that can simultaneously detect and quantitate RNA of all dengue virus (DENV) serotypes and chikungunya virus (CHIKV). The sensitivity was 100 % for DENV and 95.8 % for CHIKV, whilst the specificity was 100 % for both viruses when compared with conventional RT-PCR. The detection limit ranged from 1 to 50 plaque-forming units. The assay was successfully used for differential diagnosis of dengue and chikungunya in Pune, where the viruses co-circulate.

  17. 6种虫媒病毒PCR-Mass检测方法的建立%Establishment of PCR-Mass Assay for the Detection of Six Arboviruses

    Institute of Scientific and Technical Information of China (English)

    朴静子; 王晓宏; 陈唯军; 杨银辉; 姜永强; 曹远银

    2012-01-01

    建立了一种可快速、同时检测流行性乙型脑炎病毒(JEV)、东方马脑炎病毒(EEEV)、西方马脑炎病毒(WEEV)、西尼罗病毒(WNV)、森林脑炎病毒(TBEV)和圣路易脑炎病毒(StLEV)等6种虫媒病毒的PCR-Mass检测方法.根据GenBank登录的上述6种病毒的序列信息,经过分析比对,设计6组扩增引物和延伸探针,初步建立针对上述6种病毒的PCR-Mass检测体系.采用上述6种虫媒病毒和其他常见致病性病毒为检测对象,确定PCR-Mass体系的特异性;通过对重组质粒的定量检测,确定该体系的检测灵敏度;并利用该体系对12份TBE阳性和10份JEV阳性脑脊液样本进行检测,评价检测方法的实用性和临床应用价值.结果表明:PCR-Mass检测方法可同时检测上述6种虫媒病毒,而对其他病毒检测均为阴性,无交叉反应现象;6种虫媒病毒的最低检出浓度均为102copies·mL-1;对22份阳性样本的检测结果均呈阳性.本研究建立的PCR-Mass检测方法可实现对6种虫媒病毒的快速、同时检测,具有良好的特异性和较高的灵敏度.%A novel PCR-Mass assay was developed for simultaneous detection of six arboviruses, namely, Encephalitis B vims (JEV), Forest encephalitis virus (TBEV), West Nile virus (WNV), Eastern equine encephalitis virus (EEEV), Western equine encephalitis virus (WEEV), and St Louis encephalitis virus (StLEV). Multiplex primers and extension probes were designed from conserved regions obtained from the GenBank database. Viral isolates and standard samples were used to determine the sensitivity and specificity of the PCR-Mass assay. Clinical performance was assessed with a total of 22 cerebrospinal fluid (CSF) samples from culture-positive patients. The limit of detection for the novel assay was 102 copies "mL"1. The identification of specific viruses and clinical specimens showed that the PCR 桵ass is a useful method for simultaneous detection up to six distinct arboviruses.

  18. Inter-laboratory and inter-assay comparison on two real-time PCR techniques for quantification of PCV2 nucleic acid extracted from field samples

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Grau-Roma, L.; Sibila, M.

    2009-01-01

    ) diagnosis has been suggested. However, neither inter-laboratory nor inter-assay comparisons have been published so far. In the present study two different qPCR probe assays Used routinely in two laboratories were compared on DNA extracted From serum, nasal and rectal swabs. Results showed a significant......Several real-time PCR assays for quantification of PCV2 DNA (qPCR) have been described in the literature. and different in-house assays are being used by laboratories around the world. A general threshold of it copies of PCV2 per millilitre serum for postweaning multisystemic wasting syndrome (PMWS...

  19. Development and validation of a multiplex reverse transcription PCR assay for simultaneous detection of three papaya viruses.

    Science.gov (United States)

    Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-10-21

    Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay's specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya.

  20. Multiplex real-time PCR melting curve assay to detect drug-resistant mutations of Mycobacterium tuberculosis.

    Science.gov (United States)

    Luo, Tao; Jiang, Lili; Sun, Weiming; Fu, G; Mei, Jian; Gao, Qian

    2011-09-01

    Early diagnosis of drug-resistant Mycobacterium tuberculosis is urgently needed to optimize treatment regimens and to prevent the transmission of resistant strains. Real-time PCR assays have been developed to detect drug resistance rapidly, but none of them have been widely applied due to their complexity, high cost, or requirement for advanced instruments. In this study, we developed a real-time PCR method based on melting curve analysis of dually labeled probes. Six probes targeting the rpoB 81-bp core region, katG315, the inhA promoter, the ahpC promoter, and embB306 were designed and validated with clinical isolates. First, 10 multidrug-resistant (MDR) strains with a wide mutation spectrum were used to analyze the melting temperature (T(m)) deviations of different mutations by single real-time PCR. All mutations can be detected by significant T(m) reductions compared to the wild type. Then, three duplex real-time PCRs, with two probes in each, were developed to detect mutations in 158 MDR isolates. Comparison of the results with the sequencing data showed that all mutations covered by the six probes were detected with 100% sensitivity and 100% specificity. Our method provided a new way to rapidly detect drug-resistant mutations in M. tuberculosis. Compared to other real-time PCR methods, we use fewer probes, which are labeled with the same fluorophore, guaranteeing that this assay can be used for detection in a single fluorescent channel or can be run on single-channel instruments. In conclusion, we have developed a widely applicable real-time PCR assay to detect drug-resistant mutations in M. tuberculosis.

  1. A Two-Tube Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Viral and Bacterial Pathogens of Infectious Diarrhea

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2014-01-01

    Full Text Available Diarrhea caused by viral and bacterial infections is a major health problem in developing countries. The purpose of this study is to develop a two-tube multiplex PCR assay using automatic electrophoresis for simultaneous detection of 13 diarrhea-causative viruses or bacteria, with an intended application in provincial Centers for Diseases Control and Prevention, China. The assay was designed to detect rotavirus A, norovirus genogroups GI and GII, human astrovirus, enteric adenoviruses, and human bocavirus (tube 1, and Salmonella, Vibrio parahaemolyticus, diarrheagenic Escherichia coli, Campylobacter jejuni, Shigella, Yersinia, and Vibrio cholera (tube 2. The analytical specificity was examined with positive controls for each pathogen. The analytical sensitivity was evaluated by performing the assay on serial tenfold dilutions of in vitro transcribed RNA, recombinant plasmids, or bacterial culture. A total of 122 stool samples were tested by this two-tube assay and the results were compared with those obtained from reference methods. The two-tube assay achieved a sensitivity of 20–200 copies for a single virus and 102-103 CFU/mL for bacteria. The clinical performance demonstrated that the two-tube assay had comparable sensitivity and specificity to those of reference methods. In conclusion, the two-tube assay is a rapid, cost-effective, sensitive, specific, and high throughput method for the simultaneous detection of enteric bacteria and virus.

  2. Development of Real-Time Reverse Transcriptase PCR Assays for the Detection of Punta Toro Virus and Pichinde Virus

    Science.gov (United States)

    2016-09-09

    Kramvis, A., Bukofzer, S., Kew, M.C., 1996. Comparison of hepatitis B virus DNA extractions from serum 283 by the QIAamp blood kit, GeneReleaser, and the...and reproducibility in samples extracted from a variety of clinical 53 matrices. These assays will be useful as a standard by researchers for future... extracted using TRIzol 149 LS and the EZ1 (Qiagen) according to the manufacturer’s instructions, and real-time RT-PCR 150 was performed on the

  3. Evaluation of a PCR assay on overgrown environmental samples cultured for Mycobacterium avium subsp. paratuberculosis.

    Science.gov (United States)

    Arango-Sabogal, Juan C; Labrecque, Olivia; Paré, Julie; Fairbrother, Julie-Hélène; Roy, Jean-Philippe; Wellemans, Vincent; Fecteau, Gilles

    2016-11-01

    Culture of Mycobacterium avium subsp. paratuberculosis (MAP) is the definitive antemortem test method for paratuberculosis. Microbial overgrowth is a challenge for MAP culture, as it complicates, delays, and increases the cost of the process. Additionally, herd status determination is impeded when noninterpretable (NI) results are obtained. The performance of PCR is comparable to fecal culture, thus it may be a complementary detection tool to classify NI samples. Our study aimed to determine if MAP DNA can be identified by PCR performed on NI environmental samples and to evaluate the performance of PCR before and after the culture of these samples in liquid media. A total of 154 environmental samples (62 NI, 62 negative, and 30 positive) were analyzed by PCR before being incubated in an automated system. Growth was confirmed by acid-fast bacilli stain and then the same PCR method was again applied on incubated samples, regardless of culture and stain results. Change in MAP DNA after incubation was assessed by converting the PCR quantification cycle (Cq) values into fold change using the 2(-ΔCq) method (ΔCq = Cq after culture - Cq before culture). A total of 1.6% (standard error [SE] = 1.6) of the NI environmental samples had detectable MAP DNA. The PCR had a significantly better performance when applied after culture than before culture (p = 0.004). After culture, a 66-fold change (SE = 17.1) in MAP DNA was observed on average. Performing a PCR on NI samples improves MAP culturing. The PCR method used in our study is a reliable and consistent method to classify NI environmental samples.

  4. Avian-specific real-time PCR assay for authenticity control in farm animal feeds and pet foods.

    Science.gov (United States)

    Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario

    2014-01-01

    A highly sensitive TaqMan real-time PCR assay targeting the mitochondrial 12S rRNA gene was developed for detection of an avian-specific DNA fragment (68bp) in farm animal and pet feeds. The specificity of the assay was verified against a wide representation of animal and plant species. Applicability assessment of the avian real-time PCR was conducted through representative analysis of two types of compound feeds: industrial farm animal feeds (n=60) subjected to extreme temperatures, and commercial dog and cat feeds (n=210). Results obtained demonstrated the suitability of the real-time PCR assay to detect the presence of low percentages of highly processed avian material in the feed samples analysed. Although quantification results were well reproducible under the experimental conditions tested, an accurate estimation of the target content in feeds is impossible in practice. Nevertheless, the method may be useful as an alternative tool for traceability purposes within the framework of feed control.

  5. A panel of real-time PCR assays for specific detection of three phytoplasmas from the apple proliferation group.

    Science.gov (United States)

    Nikolić, Petra; Mehle, Natasa; Gruden, Kristina; Ravnikar, Maja; Dermastia, Marina

    2010-10-01

    We report here on the development of combination of assays for fast, reliable, specific and sensitive detection and discrimination of 'Candidatus Phytoplasma mali', 'Ca. P. prunorum' and 'Ca. P. pyri' from the 16Sr-X (apple proliferation - AP) group. These phytoplasmas are causal agents of diseases of fruit trees within the family Rosaceae, namely apple proliferation (AP), European stone fruit yellows (ESFY) and pear decline (PD). The designed panel of assays uses TaqMan minor groove binder probes (MGB). It comprises the same set of primers and specific probes for species-specific amplification within the 16S-23S rRNA intergenic spacer region, a set of primers and probes for amplification of the 16S ribosomal DNA region for the universal phytoplasma detection, and an additional set of primers and probe for 18S rRNA as an endogenous quality control of DNA extraction. The performance characteristics of the panel were evaluated. The advantages of new assays were shown in a comparative study with the conventional PCR, which proved their higher sensitivity combined with three-fold shorter time of testing process; and in comparison with two reported multiplex real-time PCR assays for detection of 'Ca. P. mali' or 'Ca. P. pyri'. New panel of assays were tested on the DNA samples of 'Ca. P. mali', 'Ca. P. prunorum', 'Ca. P. pyri', other phytoplasmas and other bacteria isolated from plant material. Additionally, 198 symptomatic and asymptomatic fruit tree field samples collecting during several growing seasons were tested with new assays as well. The results of this study indicate that the combination of three specific assays may be applied in routine phytoplasma surveys and in the certification programs.

  6. Development of a Multiplex-PCR assay for the rapid identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus.

    Science.gov (United States)

    Pennacchia, Carmela; Breeuwer, Pieter; Meyer, Rolf

    2014-10-01

    The presence of thermophilic bacilli in dairy products is indicator of poor hygiene. Their rapid detection and identification is fundamental to improve the industrial reactivity in the implementation of corrective and preventive actions. In this study a rapid and reliable identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus was achieved by species-specific PCR assays. Two primer sets, targeting the ITS 16S-23S rRNA region and the rpoB gene sequence of the target species respectively, were employed. Species-specificity of both primer sets was evaluated by using 53 reference strains of DSMZ collection; among them, 13 species of the genus Geobacillus and 15 of the genus Anoxybacillus were represented. Moreover, 99 wild strains and 23 bulk cells collected from 24 infant formula powders gathered from several countries worldwide were included in the analyses. Both primer sets were highly specific and the expected PCR fragments were obtained only when DNA from G. stearothermophilus or A. flavithermus was used. After testing their specificity, they were combined in a Multiplex-PCR assay for the simultaneous identification of the two target species. The specificity of the Multiplex-PCR was evaluated by using both wild strains and bulk cells. Every analysis confirmed the reliable identification results provided by the single species-specific PCR methodology. The easiness, the rapidity (about 4 h from DNA isolation to results) and the reliability of the PCR procedures developed in this study highlight the advantage of their application for the specific detection and identification of the thermophilic species G. stearothermophilus and A. flavithermus.

  7. Identification and differentiation of Staphylococcus carnosus and Staphylococcus simulans by species-specific PCR assays of sodA genes.

    Science.gov (United States)

    Blaiotta, Giuseppe; Casaburi, Annalisa; Villani, Francesco

    2005-08-01

    The aim of this study was to design species-specific PCR assays for rapid and reliable identification and differentiation of Staphylococcus (S.) carnosus and S. simulans strains. Two different sets of primers, targeting the manganese-dependent superoxide dismutase (sodA) gene of S. carnosus and S. simulans, respectively, were designed. Species-specificity of both sets of primers was evaluated by using 93 strains, representing 26 different species of the genus Staphylococcus, 3 species of the genus Kocuria (K.), 1 species of the genus Micrococcus (Mic.) and 1 species of the genus Macrococcus (Mac.) as reference. By using primers simF and simR the expected PCR fragment was obtained only when purified DNA from S. simulans strains was used. Amplification performed by using primers carF and carR produced a PCR fragment of the expected length, when DNA from strains of S. carnosus and S. condimenti were used as template. Nevertheless, DraI digestion of the carF/carR PCR fragment allowed a clear differentiation of strains of these two species. Species-specific PCR assays designed during this study, overcoming many of the limitations of the traditional identification procedures, can be considered a valid strategy for detection and identification of S. carnosus and S. simulans strains. The rapidity (about 4h from DNA isolation to results), the reliability and low cost of the PCR procedures established suggests that the methods may be profitably applied for specific detection and identification of S. carnosus, S. condimenti and S. simulans strains in starter cultures and meat products.

  8. Evaluation of three real-time PCR assays for differential identification of Mycobacterium tuberculosis complex and nontuberculous mycobacteria species in liquid culture media.

    Science.gov (United States)

    Jung, Yu Jung; Kim, Ji-Youn; Song, Dong Joon; Koh, Won-Jung; Huh, Hee Jae; Ki, Chang-Seok; Lee, Nam Yong

    2016-06-01

    We evaluated the analytical performance of M. tuberculosis complex (MTBC)/nontuberculous mycobacteria (NTM) PCR assays for differential identification of MTBC and NTM using culture-positive liquid media. Eighty-five type strains and 100 consecutive mycobacterial liquid media cultures (MGIT 960 system) were analyzed by a conventional PCR assay (MTB-ID(®) V3) and three real-time PCR assays (AdvanSure™ TB/NTM real-time PCR, AdvanSure; GENEDIA(®) MTB/NTM Detection Kit, Genedia; Real-Q MTB & NTM kit, Real-Q). The accuracy rates for reference strains were 89.4%, 100%, 98.8%, and 98.8% for the MTB-ID V3, AdvanSure, Genedia, and Real-Q assays, respectively. Cross-reactivity in the MTB-ID V3 assay was mainly attributable to non-mycobacterium Corynebacterineae species. The diagnostic performance was determined using clinical isolates grown in liquid media, and the overall sensitivities for all PCR assays were higher than 95%. In conclusion, the three real-time PCR assays showed better performance in discriminating mycobacterium species and non-mycobacterium Corynebacterineae species than the conventional PCR assay.

  9. Detection of PCR inhibitors in cervical specimens by using the AMPLICOR Chlamydia trachomatis assay

    NARCIS (Netherlands)

    R.P.A.J. Verkooyen (Roel); A. Luijendijk (Ad); W.M. Huisman; W.H.F. Goessens (Wil); J.A.J.W. Kluytmans (Jan); J.H. van Rijsoort-Vos; H.A. Verbrugh (Henri)

    1996-01-01

    textabstractTo determine that susceptibility of AMPLICOR Chlamydia trachomatis PCR to inhibitory factors possibly present in cervical specimens, we obtained cervical specimens from 200 gynecology patients attending our outpatient clinic. The prevalence of C. trachomatis

  10. Comparison between Conventional and Real-Time PCR Assays for Diagnosis of Visceral Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Mariana R. Pereira

    2014-01-01

    Full Text Available The diagnosis of visceral leishmaniasis (VL is a challenging issue and several studies worldwide have evaluated the different tools to reach a diagnostic solution. The polymerase chain reaction (PCR has proven to be effective in detecting the genome of Leishmania species in different biological samples. In this study, we compared the conventional PCR and real-time PCR using the Sybr Green system and their application in molecular diagnosis of visceral leishmaniasis in peripheral blood as a biological sample. The genus-specific conserved region of kinetoplast DNA (kDNA was the target of amplification. We studied 30 samples from patients with suspect of visceral leishmaniasis who were treated by the Medical Clinic of Santa Casa de Belo Horizonte Hospital, Brazil. Among the samples studied, 19 had a confirmed diagnosis for VL by serology and/or by clinical findings. Among these 19 samples, 63% (n=12 presented positive results for serology and 79% (n=15 positive results in both PCR methodologies. This fact suggests that the PCR technique can assist in the diagnosis of visceral leishmaniasis in patients who do not have detectable antibodies by serology but can present the genome of the parasite circulating in whole blood. Also, it was possible to observe that there was conformity between the results of the techniques of cPCR and qPCR using the Sybr Green system in 100% of samples analyzed. These data suggest that both PCR techniques were equally effective for detection of the genome of the parasite in the patient’s blood.

  11. Comparison between Conventional and Real-Time PCR Assays for Diagnosis of Visceral Leishmaniasis

    Science.gov (United States)

    Pereira, Mariana R.; Rocha-Silva, Fabiana; Graciele-Melo, Cidiane; Lafuente, Camila R.; Magalhães, Telcia; Caligiorne, Rachel B.

    2014-01-01

    The diagnosis of visceral leishmaniasis (VL) is a challenging issue and several studies worldwide have evaluated the different tools to reach a diagnostic solution. The polymerase chain reaction (PCR) has proven to be effective in detecting the genome of Leishmania species in different biological samples. In this study, we compared the conventional PCR and real-time PCR using the Sybr Green system and their application in molecular diagnosis of visceral leishmaniasis in peripheral blood as a biological sample. The genus-specific conserved region of kinetoplast DNA (kDNA) was the target of amplification. We studied 30 samples from patients with suspect of visceral leishmaniasis who were treated by the Medical Clinic of Santa Casa de Belo Horizonte Hospital, Brazil. Among the samples studied, 19 had a confirmed diagnosis for VL by serology and/or by clinical findings. Among these 19 samples, 63% (n = 12) presented positive results for serology and 79% (n = 15) positive results in both PCR methodologies. This fact suggests that the PCR technique can assist in the diagnosis of visceral leishmaniasis in patients who do not have detectable antibodies by serology but can present the genome of the parasite circulating in whole blood. Also, it was possible to observe that there was conformity between the results of the techniques of cPCR and qPCR using the Sybr Green system in 100% of samples analyzed. These data suggest that both PCR techniques were equally effective for detection of the genome of the parasite in the patient's blood. PMID:24689047

  12. Comparison of real-time PCR and antigen assays for detection of hepatitis E virus in blood donors.

    Science.gov (United States)

    Vollmer, T; Knabbe, C; Dreier, J

    2014-06-01

    Hepatitis E virus (HEV) infection is recognized as an emerging and often undiagnosed disease in industrialized countries, with asymptomatic infections actually occurring in blood donors. Sensitive detection of HEV-RNA is crucial for diagnosis and monitoring of disease progression. We evaluated the analytical sensitivity and performance of three HEV RT-PCR assays (RealStar HEV reverse transcription-PCR [RT-PCR], hepatitis@ceeramTools, and ampliCube HEV RT-PCR) for screening of individuals for HEV infections (ID-nucleic acid amplification technology [ID-NAT]) and for blood donor pool screening (minipool-NAT [MP-NAT]). RNA was extracted using NucliSens easyMAG (ID-NAT) and a high-volume extraction protocol (4.8 ml, chemagic Viral 5K, MP-NAT). Three NAT assays were evaluated for ID-NAT but only two assays for MP-NAT due to inhibition of the ampliCube HEV RT-PCR kit using the corresponding RNA extract. Assays provided good analytical sensitivity, ranging from 37.8 to 180.1 IU/ml (ID-NAT) and from 4.7 to 91.2 IU/ml (MP-NAT). The applicability of HEV antigen (HEV-Ag) screening was compared to that of RT-PCR screening and detection of HEV-IgM antibodies using seroconversion panels of 10 HEV genotype 3-infected individuals. Four individuals revealed a positive HEV-Ag detection result, with corresponding viremias ranging from 1.92 E + 03 to 2.19 E + 05 IU/ml, while the progression of HEV-Ag followed that of HEV viremia. The other six individuals showed no presence of HEV-Ag although the corresponding viremias were also in the range of >1.0 E + 03. Anti-HEV-IgM antibodies were detectable in seven donors; one donor presented parallel positivities of HEV-Ag and anti-HEV IgM. The evaluated NAT methods present powerful tools providing sensitive HEV detection. Application of HEV-Ag or anti-HEV IgM screening is currently inferior for the early detection of HEV infection due to the decreased sensitivity compared to NAT methods.

  13. A highly sensitive quantitative real-time PCR assay for determination of mutant JAK2 exon 12 allele burden.

    Directory of Open Access Journals (Sweden)

    Lasse Kjær

    Full Text Available Mutations in the Janus kinase 2 (JAK2 gene have become an important identifier for the Philadelphia-chromosome negative chronic myeloproliferative neoplasms. In contrast to the JAK2V617F mutation, the large number of JAK2 exon 12 mutations has challenged the development of quantitative assays. We present a highly sensitive real-time quantitative PCR assay for determination of the mutant allele burden of JAK2 exon 12 mutations. In combination with high resolution melting analysis and sequencing the assay identified six patients carrying previously described JAK2 exon 12 mutations and one novel mutation. Two patients were homozygous with a high mutant allele burden, whereas one of the heterozygous patients had a very low mutant allele burden. The allele burden in the peripheral blood resembled that of the bone marrow, except for the patient with low allele burden. Myeloid and lymphoid cell populations were isolated by cell sorting and quantitative PCR revealed similar mutant allele burdens in CD16+ granulocytes and peripheral blood. The mutations were also detected in B-lymphocytes in half of the patients at a low allele burden. In conclusion, our highly sensitive assay provides an important tool for quantitative monitoring of the mutant allele burden and accordingly also for determining the impact of treatment with interferon-α-2, shown to induce molecular remission in JAK2V617F-positive patients, which may be a future treatment option for JAK2 exon 12-positive patients as well.

  14. A multiplex calibrated real-time PCR assay for quantitation of DNA of EBV-1 and 2.

    Science.gov (United States)

    Gatto, Francesca; Cassina, Giulia; Broccolo, Francesco; Morreale, Giuseppe; Lanino, Edoardo; Di Marco, Eddi; Vardas, Efthiya; Bernasconi, Daniela; Buttò, Stefano; Principi, Nicola; Esposito, Susanna; Scarlatti, Gabriella; Lusso, Paolo; Malnati, Mauro S

    2011-12-01

    Accurate and highly sensitive tests for the diagnosis of active Epstein-Barr virus (EBV) infection are essential for the clinical management of individuals infected with EBV. A calibrated quantitative real-time PCR assay for the measurement of EBV DNA of both EBV-1 and 2 subtypes was developed, combining the detection of the EBV DNA and a synthetic DNA calibrator in a multiplex PCR format. The assay displays a wide dynamic range and a high degree of accuracy even in the presence of 1μg of human genomic DNA. This assay measures with the same efficiency EBV DNA from strains prevalent in different geographic areas. The clinical sensitivity and specificity of the system were evaluated by testing 181 peripheral blood mononuclear cell (PBMCs) and plasma specimens obtained from 21 patients subjected to bone marrow transplantation, 70 HIV-seropositive subjects and 23 healthy controls. Patients affected by EBV-associated post-transplant lymphoprolipherative disorders had the highest frequency of EBV detection and the highest viral load. Persons infected with HIV had higher levels of EBV DNA load in PBMCs and a higher frequency of EBV plasma viremia compared to healthy controls. In conclusion, this new assay provides a reliable high-throughput method for the quantitation of EBV DNA in clinical samples.

  15. Development and evaluation of TaqMan real-time PCR assay for detection of beak and feather disease virus.

    Science.gov (United States)

    Černíková, Lenka; Vitásková, Eliška; Nagy, Alexander

    2017-03-02

    Psittacine beak and feather disease (PBFD) is one of the most significant viral diseases in psittacine birds. The aim of the presented study was to develop a highly specific and sensitive TaqMan real-time PCR assay for universal detection of beak and feather disease virus (BFDV). Primers and a hydrolysis probe were selected on the highly conserved regions belonging to the ORF1 of the BFDV genome which were identified by aligning 814 genomic sequences downloaded from the GenBank database. The evaluation of the reaction parameters suggested a reaction efficiency of 97.1%, with consistent detection of 10(1) virus copies/μl of nucleic acid extract. The low values of standard deviation and coefficient of variation indicate a high degree of reproducibility and repeatability. The diagnostic applicability of the assay was proven on 36 BFDV positive and 107 negative specimens of psittacine origin representing 28 species. The assay showed a 100% ability to detect distinct genetic variants of the virus. Our data suggest that the presented TaqMan real-time PCR represents a specific, sensitive and reliable assay facilitating the molecular detection of BFDV.

  16. Specific PCR-based assays for the identification of Fasciola species: their development, evaluation and potential usefulness in prevalence surveys.

    Science.gov (United States)

    Ai, L; Dong, S J; Zhang, W Y; Elsheikha, H M; Mahmmod, Y S; Lin, R Q; Yuan, Z G; Shi, Y L; Huang, W Y; Zhu, X Q

    2010-01-01

    Among the helminths infecting ruminants in China are three taxa belonging to the genus Fasciola: F. hepatica, F. gigantica and the so-called 'intermediate form' that appears to lie between these two species. Based on the sequences of the second internal-transcribed spacers (ITS-2) within the parasites' nuclear ribosomal DNA (rDNA), a pair of primers (DSJf/DSJ3) specific for F. hepatica and a pair (DSJf/DSJ4) specific for F. gigantica were designed and used to develop PCR-based assays. These assays allowed the identification and differentiation of F. hepatica, F. gigantica and the 'intermediate' Fasciola, with no amplicons produced from heterologous DNA samples. The results of sequencing confirmed the species-specific identity of the amplified products. The assays showed good sensitivity, giving positive results with as little as 0.11 ng of F. hepatica DNA and 0.35 ng of F. gigantica DNA. This meant that the DNA from a single Fasciola egg or a single infected snail was sufficient for identification of the Fasciola taxon. The developed PCR assays could provide useful tools for the detection, identification and epidemiological investigation of Fasciola infection in humans, other mammals and snails.

  17. Development and validation of Burkholderia pseudomallei-specific real-time PCR assays for clinical, environmental or forensic detection applications.

    Directory of Open Access Journals (Sweden)

    Erin P Price

    Full Text Available The bacterium Burkholderia pseudomallei causes melioidosis, a rare but serious illness that can be fatal if untreated or misdiagnosed. Species-specific PCR assays provide a technically simple method for differentiating B. pseudomallei from near-neighbor species. However, substantial genetic diversity and high levels of recombination within this species reduce the likelihood that molecular signatures will differentiate all B. pseudomallei from other Burkholderiaceae. Currently available molecular assays for B. pseudomallei detection lack rigorous validation across large in silico datasets and isolate collections to test for specificity, and none have been subjected to stringent quality control criteria (accuracy, precision, selectivity, limit of quantitation (LoQ, limit of detection (LoD, linearity, ruggedness and robustness to determine their suitability for environmental, clinical or forensic investigations. In this study, we developed two novel B. pseudomallei specific assays, 122018 and 266152, using a dual-probe approach to differentiate B. pseudomallei from B. thailandensis, B. oklahomensis and B. thailandensis-like species; other species failed to amplify. Species specificity was validated across a large DNA panel (>2,300 samples comprising Burkholderia spp. and non-Burkholderia bacterial and fungal species of clinical and environmental relevance. Comparison of assay specificity to two previously published B. pseudomallei-specific assays, BurkDiff and TTS1, demonstrated comparable performance of all assays, providing between 99.7 and 100% specificity against our isolate panel. Last, we subjected 122018 and 266152 to rigorous quality control analyses, thus providing quantitative limits of assay performance. Using B. pseudomallei as a model, our study provides a framework for comprehensive quantitative validation of molecular assays and provides additional, highly validated B. pseudomallei assays for the scientific research community.

  18. Development a diagnostic pan-dermatophyte TaqMan probe real-time PCR assay based on beta tubulin gene.

    Science.gov (United States)

    Mirhendi, Hossein; Motamedi, Marjan; Makimura, Koichi; Satoh, Kazuo

    2016-08-01

    Early differentiation of dermatophytosis from other cutaneous mycoses is essential to avoid inaccurate therapy. DNA-based techniques including real-time PCR have increasingly been considered for detection of fungal elements in clinical specimens. In this study, after partial sequence analysis of beta tubulin (BT2) gene in 13 common and rare pathogenic dermatophyte species, a pan-dermatophyte primer and probe set was designed in a TaqMan probe-based PCR format. The sensitivity and specificity of the system was tested with 22 reference strains of dermatophytes, 234 positive clinical specimens, 32 DNA samples extracted from normal nails, several fungi other than dermatophytes and human DNAs. Analytical detection limit of the designed PCR on serially diluted DNAs of prepared recombinant plasmid indicated that only five molecules per sample are the minimum number for reliable detection by the assay. A total of 226 out of 234 (96.5%) DNAs extracted from clinical samples, but none of the 32 nail samples, from healthy volunteers were positive in PCR. The real-time PCR targeted beta tubulin gene established in this study could be a sensitive diagnostic tool which is significantly faster than the conventional culture method and should be useful in the clinical settings, in large-scale epidemiological studies and in clinical trials of antifungal therapy.

  19. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

    DEFF Research Database (Denmark)

    Ågren, Joakim; Hamidjaja, Raditijo A.; Hansen, Trine

    2013-01-01

    on unique markers present on virulence plasmids pXO1 and pXO2, relatively few assays incorporate chromosomal DNA markers due to the close relatedness of B. anthracis to the B. cereus group strains. For the detection of chromosomal DNA, different genes have been used, such as BA813, rpoB, gyrA, plcR, S......Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of B. anthracis. While most of the developed assays rely......-layer, and prophage-lambda. Following a review of the literature, an in silico analysis of all signature sequences reported for identification of B. anthracis was conducted. Published primer and probe sequences were compared for specificity against 134 available Bacillus spp. genomes. Although many of the chromosomal...

  20. Development of a real-time PCR assay for the rapid detection of Acinetobacter baumannii from whole blood samples.

    Science.gov (United States)

    De Gregorio, Eliana; Roscetto, Emanuela; Iula, Vita Dora; Martinucci, Marianna; Zarrilli, Raffaele; Di Nocera, Pier Paolo; Catania, Maria Rosaria

    2015-04-01

    Acinetobacter baumannii is a multidrug-resistant pathogen associated with severe infections in hospitalized patients, including pneumonia, urinary and bloodstream infections. Rapid detection of A. baumannii infection is crucial for timely treatment of septicemic patients. The aim of the present study was to develop a specific marker for a quantitative polymerase chain reaction (PCR) assay for the detection of A. baumannii. The target gene chosen is the biofilm-associated protein (bap) gene, encoding a cell surface protein involved in biofilm formation. The assay is specific for A. baumannii, allowing its discrimination from different species of Acinetobacter and other clinically relevant bacterial pathogens. The assay is able to detect one genomic copy of A. baumannii, corresponding to 4 fg of purified DNA, and 20 colony-forming units/ml using DNA extracted from spiked whole blood samples.

  1. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    A method for reliable quantification of Pneumocystis carinii in research models of P. carinii pneumonia (PCP) that is more convenient and reproducible than microscopic enumeration of organisms would greatly facilitate investigations of this organism. We developed a rapid quantitative touchdown (QTD...... 6 log values for standards containing > or =5 copies/tube. Application of the assay to a series of 10-fold dilutions of P. carinii organisms isolated from rat lung demonstrated that it was reproducibly quantitative over 5 log values (r = 0.99). The assay was applied to a recently reported in vitro...... axenic cultivation system for P. carinii and confirmed our microscopy findings that no organism multiplication had occurred during culture. For all cultures analyzed, QTD PCR assays showed a decrease in P. carinii DNA that exceeded the expected decrease due to dilution of the inoculum upon transfer...

  2. Tetraplex PCR assay involving double gene-sites discriminates beef and buffalo in Malaysian meat curry and burger products.

    Science.gov (United States)

    Hossain, M A Motalib; Ali, Md Eaqub; Hamid, Sharifah Bee Abd; Hossain, S M Azad; Asing; Nizar, Nina Naquiah Ahmad; Uddin, Mohammad Nasir; Ali, Lokman; Asaduzzaman, Md; Akanda, Md Jahurul Haque

    2017-06-01

    Replacement of beef by buffalo and vice versa is frequent in global markets, but their authentication is challenging in processed foods due to the fragmentation of most biomarkers including DNA. The shortening of target sequences through use of two target sites might ameliorate assay reliability because it is highly unlikely that both targets will be lost during food processing. For the first time, we report a tetraplex polymerase chain reaction (PCR) assay targeting two different DNA regions in beef (106 and 120-bp) and buffalo (90 and 138-bp) mitochondrial genes to discriminate beef and buffalo in processed foods. All targets were stable under boiling, autoclaving and microwave cooking conditions. A survey in Malaysian markets revealed 71% beef curries contained buffalo but there was no buffalo in beef burgers. The assay detected down to 0.01ng DNA and 1% meat in admixed and burger products.

  3. Real-time PCR assay and rapid diagnostic tests for the diagnosis of clinically suspected malaria patients in Bangladesh

    Directory of Open Access Journals (Sweden)

    Khanum Hamida

    2011-06-01

    Full Text Available Abstract Background More than 95% of total malaria cases in Bangladesh are reported from the 13 high endemic districts. Plasmodium falciparum and Plasmodium vivax are the two most abundant malaria parasites in the country. To improve the detection and management of malaria patients, the National Malaria Control Programme (NMCP has been using rapid diagnostic test (RDT in the endemic areas. A study was conducted to establish a SYBR Green-based modified real-time PCR assay as a gold standard to evaluate the performance of four commercially-available malaria RDTs, along with the classical gold standard- microscopy. Methods Blood samples were collected from 338 febrile patients referred for the diagnosis of malaria by the attending physician at Matiranga Upazila Health Complex (UHC from May 2009 to August 2010. Paracheck RDT and microscopy were performed at the UHC. The blood samples were preserved in EDTA tubes. A SYBR Green-based real-time PCR assay was performed and evaluated. The performances of the remaining three RDTs (Falcivax, Onsite Pf and Onsite Pf/Pv were also evaluated against microscopy and real-time PCR using the stored blood samples. Result In total, 338 febrile patients were enrolled in the study. Malaria parasites were detected in 189 (55.9% and 188 (55.6% patients by microscopy and real-time PCR respectively. Among the RDTs, the highest sensitivity for the detection of P. falciparum (including mixed infection was obtained by Paracheck [98.8%, 95% confidence interval (CI 95.8-99.9] and Falcivax (97.6%, 95% CI 94.1-99.4 compared to microscopy and real-time PCR respectively. Paracheck and Onsite Pf/Pv gave the highest specificity (98.8%, 95% CI 95.7-99.9 compared to microscopy and Onsite Pf/Pv (98.8, 95% CI 95.8-99.9 compared to real-time PCR respectively for the detection of P. falciparum. On the other hand Falcivax and Onsite Pf/Pv had equal sensitivity (90.5%, 95% CI 69.6-98.8 and almost 100% specificity compared to microscopy for

  4. Use of a Combined Duplex PCR/Dot Blot Assay for more sensitive genetic characterization

    Directory of Open Access Journals (Sweden)

    Erin Curry

    2008-01-01

    Full Text Available A reliable and sensitive method of genetic analysis is necessary to detect multiple specific nucleic acid sequences from samples containing limited template. The most widely utilized method of specific gene detection, polymerase chain reaction (PCR, imparts inconsistent results when assessing samples with restricted template, especially in a multiplex reaction when copies of target genes are unequal. This study aimed to compare two methods of PCR product analysis, fluorescent detection following agarose gel electrophoresis or dot blot hybridization with chemiluminescent evaluation, in the detection of a single copy gene (SRY and a multicopy gene (β-actin. Bovine embryo sex determination was employed to exploit the limited DNA template available and the target genes of unequal copies. Primers were used either independently or together in a duplex reaction with purified bovine genomic DNA or DNA isolated from embryos. When used independently, SRY and β-actin products were detected on a gel at the equivalent of 4-cell or 1-cell of DNA, respectively; however, the duplex reaction produced visible SRY bands at the 256 cell DNA equivalent and β-actin products at the 64 cell DNA equivalent. Upon blotting and hybridization of the duplex PCR reaction, product was visible at the 1–4 cell DNA equivalent. Duplex PCR was also conducted on 186 bovine embryos and product was subjected to gel electrophoresis or dot-blot hybridization in duplicate. Using PCR alone, sex determination was not possible for 22.6% of the samples. Using PCR combined with dot blot hybridization, 100.0% of the samples exhibited either both the male specific and β-actin products or the β-actin signal alone, indicating that the reaction worked in all samples. This study demonstrated that PCR amplification followed by dot blot hybridization provided more conclusive results in the evaluation of samples with low DNA concentrations and target genes of unequal copies.

  5. Evaluating genomic DNA extraction methods from human whole blood using endpoint and real-time PCR assays.

    Science.gov (United States)

    Koshy, Linda; Anju, A L; Harikrishnan, S; Kutty, V R; Jissa, V T; Kurikesu, Irin; Jayachandran, Parvathy; Jayakumaran Nair, A; Gangaprasad, A; Nair, G M; Sudhakaran, P R

    2017-02-01

    The extraction of genomic DNA is the crucial first step in large-scale epidemiological studies. Though there are many popular DNA isolation methods from human whole blood, only a few reports have compared their efficiencies using both end-point and real-time PCR assays. Genomic DNA was extracted from coronary artery disease patients using solution-based conventional protocols such as the phenol-chloroform/proteinase-K method and a non-phenolic non-enzymatic Rapid-Method, which were evaluated and compared vis-a-vis a commercially available silica column-based Blood DNA isolation kit. The appropriate method for efficiently extracting relatively pure DNA was assessed based on the total DNA yield, concentration, purity ratios (A260/A280 and A260/A230), spectral profile and agarose gel electrophoresis analysis. The quality of the isolated DNA was further analysed for PCR inhibition using a murine specific ATP1A3 qPCR assay and mtDNA/Y-chromosome ratio determination assay. The suitability of the extracted DNA for downstream applications such as end-point SNP genotyping, was tested using PCR-RFLP analysis of the AGTR1-1166A>C variant, a mirSNP having pharmacogenetic relevance in cardiovascular diseases. Compared to the traditional phenol-chloroform/proteinase-K method, our results indicated the Rapid-Method to be a more suitable protocol for genomic DNA extraction from human whole blood in terms of DNA quantity, quality, safety, processing time and cost. The Rapid-Method, which is based on a simple salting-out procedure, is not only safe and cost-effective, but also has the added advantage of being scaled up to process variable sample volumes, thus enabling it to be applied in large-scale epidemiological studies.

  6. Development and Validation of a Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Three Papaya Viruses

    Directory of Open Access Journals (Sweden)

    Decai Tuo

    2014-10-01

    Full Text Available Papaya ringspot virus (PRSV, Papaya leaf distortion mosaic virus (PLDMV, and Papaya mosaic virus (PapMV produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay’s specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%, 93/341 (27.3%, and 3/341 (0.9%, for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3% of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya.

  7. Assessment of Legionella pneumophila in recreational spring water with quantitative PCR (Taqman) assay.

    Science.gov (United States)

    Shen, Shu-Min; Chou, Ming-Yuan; Hsu, Bing-Mu; Ji, Wen-Tsai; Hsu, Tsui-Kang; Tsai, Hsiu-Feng; Huang, Yu-Li; Chiu, Yi-Chou; Kao, Erl-Shyh; Kao, Po-Min; Fan, Cheng-Wei

    2015-07-01

    Legionella spp. are common in various natural and man-made aquatic environments. Recreational hot spring is frequently reported as an infection hotspot because of various factors such as temperature and humidity. Although polymerase chain reaction (PCR) had been used for detecting Legionella, several inhibitors such as humic substances, calcium, and melanin in the recreational spring water may interfere with the reaction thus resulting in risk underestimation. The purpose of this study was to compare the efficiencies of conventional and Taqman quantitative PCR (qPCR) on detecting Legionella pneumophila in spring facilities and in receiving water. In the results, Taqman PCR had much better efficiency on specifying the pathogen in both river and spring samples. L. pneumophila was detected in all of the 27 river water samples and 45 of the 48 hot spring water samples. The estimated L. pneumophela concentrations ranged between 1.0 × 10(2) and 3.3 × 10(5) cells/l in river water and 72.1-5.7 × 10(6) cells/l in hot spring water. Total coliforms and turbidity were significantly correlated with concentrations of L. pneumophila in positive water samples. Significant difference was also found in water temperature between the presence/absence of L. pneumophila. Our results suggest that conventional PCR may be not enough for detecting L. pneumophila particularly in the aquatic environments full of reaction inhibitors.

  8. Development and evaluation of a real-time PCR assay for detection of Pneumocystis jirovecii on the fully automated BD MAX platform.

    Science.gov (United States)

    Dalpke, Alexander H; Hofko, Marjeta; Zimmermann, Stefan

    2013-07-01

    Pneumocystis jirovecii is an opportunistic pathogen in immunocompromised and AIDS patients. Detection by quantitative PCR is faster and more sensitive than microscopic diagnosis yet requires specific infrastructure. We adapted a real-time PCR amplifying the major surface glycoprotein (MSG) target from Pneumocystis jirovecii for use on the new BD MAX platform. The assay allowed fully automated DNA extraction and multiplex real-time PCR. The BD MAX assay was evaluated against manual DNA extraction and conventional real-time PCR. The BD MAX was used in the research mode running a multiplex PCR (MSG, internal control, and sample process control). The assay had a detection limit of 10 copies of an MSG-encoding plasmid per PCR that equated to 500 copies/ml in respiratory specimens. We observed accurate quantification of MSG targets over a 7- to 8-log range. Prealiquoting and sealing of the complete PCR reagents in conical tubes allowed easy and convenient handling of the BD MAX PCR. In a retrospective analysis of 54 positive samples, the BD MAX assay showed good quantitative correlation with the reference PCR method (R(2) = 0.82). Cross-contamination was not observed. Prospectively, 278 respiratory samples were analyzed by both molecular assays. The positivity rate overall was 18.3%. The BD MAX assay identified 46 positive samples, compared to 40 by the reference PCR. The BD MAX assay required liquefaction of highly viscous samples with dithiothreitol as the only manual step, thus offering advantages for timely availability of molecular-based detection assays.

  9. Validation of a real-time PCR assay for the molecular identification of Mycobacterium tuberculosis.

    Science.gov (United States)

    Sales, Mariana L; Fonseca Júnior, Antônio Augusto; Orzil, Lívia; Alencar, Andrea Padilha; Silva, Marcio Roberto; Issa, Marina Azevedo; Soares Filho, Paulo Martins; Lage, Andrey Pereira; Heinemann, Marcos Bryan

    2014-01-01

    Mycobacterium tuberculosis is the major cause of tuberculosis in humans. This bacillus gained prominence with the occurrence of HIV, presenting itself as an important opportunistic infection associated with acquired immunodeficiency syndrome (AIDS). The current study aimed to develop a real-time PCR using Eva Green technology for molecular identification of M. tuberculosis isolates. The primers were designed to Rv1510 gene. Ninety nine samples of M. tuberculosis and sixty samples of M. bovis were tested and no sample of the bovine bacillus was detected by the qPCR. Statistical tests showed no difference between the qPCR and biochemical tests used to identify the Mycobacterium tuberculosis. The correlation between tests was perfect with Kappa index of 1.0 (p tuberculosis in samples of bacterial suspension. TB reference laboratories (health and agriculture sectors), public health programs and epidemiological studies probably may benefit from such method.

  10. PCR assay for the detection of Campylobacter in marinated and non-marinated poultry products

    DEFF Research Database (Denmark)

    Katzav, Marianne; Isohanni, Pauliina; Lund, Marianne;

    2008-01-01

    During a period of 9 months, 194 marinated and non-marinated poultry products were collected from retail shops in a defined area in Western Finland and tested for Campylobacter spp. using a conventional enrichment culture and Polymerase Chain Reaction (PCR) method. For marinated poultry products......, the study involved modification of a commercial DNA isolation method. Using either a conventional culture or PCR method, a total of 25 (12.9%) of all investigated samples were Campylobacter positive. In marinated poultry products, Campylobacter was detected at a prevalence of 21.1% and 9.5% in turkey...... and chicken products, respectively. In August, there was a peak with 28.9% positive Campylobacter samples. Campylobacter inoculation tests were carried out to test the detection limit of both methods. The PCR method used is faster than microbiological analyses. However, enrichment of the samples is necessary...

  11. Development of a Multiplex Real-Time PCR Assay for the Detection of Treponema pallidum, HCV, HIV-1, and HBV.

    Science.gov (United States)

    Zhou, Li; Gong, Rui; Lu, Xuan; Zhang, Yi; Tang, Jingfeng

    2015-01-01

    Treponema pallidum, hepatitis C virus (HCV), human immunodeficiency virus (HIV)-1, and hepatitis B virus (HBV) are major causes of sexually transmitted diseases passed through blood contact. The development of a sensitive and efficient method for detection is critical for early diagnosis and for large-scale screening of blood specimens in China. This study aims to establish an assay to detect these pathogens in clinical serum specimens. We established a TaqMan-locked nucleic acid (LNA) real-time polymerase chain reaction (PCR) assay for rapid, sensitive, specific, quantitative, and simultaneous detection and identification. The copy numbers of standards of these 4 pathogens were quantified. Standard curves were generated by determining the mean cycle threshold values versus 10-fold serial dilutions of standards over a range of 10(6) to 10(1) copies/μL, with the lowest detection limit of the assay being 10(1) copies/μL. The assay was applied to 328 clinical specimens and compared with enzyme-linked immunosorbent assay (ELISA) and commercial nucleic acid testing (NAT) methods. The assay identified 39 T. pallidum-, 96 HCV-, 13 HIV-1-, 123 HBV-, 5 HBV/HCV-, 1 T. pallidum/HBV-, 1 HIV-1/HCV-, and 1 HIV-1/T. pallidum-positive specimens. The high sensitivity of the assay confers strong potential for its use as a highly reliable, cost-effective, and useful molecular diagnostic tool for large-scale screening of clinical specimens. This assay will assist in the study of the pathogenesis and epidemiology of sexually transmitted blood diseases.

  12. Fungal granulomatous interstitial nephritis presenting as acute kidney injury diagnosed by renal histology including PCR assay.

    Science.gov (United States)

    Ogura, Makoto; Kagami, Shino; Nakao, Masatsugu; Kono, Midori; Kanetsuna, Yukiko; Hosoya, Tatsuo

    2012-10-01

    We describe two cases of fungal granulomatous interstitial nephritis (GIN) presenting as acute kidney injury (AKI). Increased serum creatinine was detected in Patient 1 after chemotherapy for pharyngeal cancer and in Patient 2 after steroid pulse therapy for bronchial asthma. Renal histology of both patients revealed GIN. Polymerase chain reaction (PCR)-based detection of fungal DNA sequences from kidney tissue demonstrated Trichosporon laibachii and Candida albicans, respectively. When AKI occurs in an immunocompromised host, differential diagnosis of fungal interstitial nephritis should be considered. Furthermore, PCR-based detection of fungal DNA sequences from renal specimens can be useful for rapid diagnosis.

  13. Development and validation of a real-time PCR assay for detection and quantification of Tuber magnatum in soil

    Directory of Open Access Journals (Sweden)

    Iotti Mirco

    2012-06-01

    Full Text Available Abstract Background Tuber magnatum, the Italian white truffle, is the most sought-after edible ectomycorrhizal mushroom. Previous studies report the difficulties of detecting its mycorrhizas and the widespread presence of its mycelium in natural production areas, suggesting that the soil mycelium could be a good indicator to evaluate its presence in the soil. In this study a specific real-time PCR assay using TaqMan chemistry was developed to detect and quantify T. magnatum in soil. This technique was then applied to four natural T. magnatum truffières located in different regions of Italy to validate the method under different environmental conditions. Results The primer/probe sets for the detection and quantification of T. magnatum were selected from the ITS rDNA regions. Their specificity was tested in silico and using qualitative PCR on DNA extracted from 25 different fungal species. The T. magnatum DNA concentration was different in the four experimental truffières and higher in the productive plots. T. magnatum mycelium was however also detected in most of the non-productive plots. Ascoma production during the three years of the study was correlated with the concentration of T. magnatum DNA. Conclusions Taken together, these results suggest that the specific real-time PCR assay perfected in this study could be an useful tool to evaluate the presence and dynamics of this precious truffle in natural and cultivated truffières.

  14. Real-Time PCR Assay Targeting the veA Gene for Quantification of Aspergillus carbonarius in Grapes.

    Science.gov (United States)

    Kizis, Dimosthenis; Nychas, George-John E; Panagou, Efstathios Z

    2015-12-01

    In this work, a SYBR Green I real-time PCR method has been developed for the detection and quantification of Aspergillus carbonarius in grapes by targeting the veA gene with a primer pair (veAF4/veAR4) that specifically amplifies a 91-bp PCR product. The quantification of the fungal DNA was performed by generation of standard curves for two A. carbonarius strains, using spectrophotometrically measured DNA quantities (Log) with a linearity range from 50 to 5 × 10(-4) ng of DNA. A high positive correlation (R(2) > 0.99) between exponential increases of DNA and real-time PCR threshold cycles showed a high amplification efficiency for the assay (E values 100.06 and 101.51%, respectively). Quantification of the fungal genomic DNA in grape samples artificially inoculated with A. carbonarius conidia was successfully performed with a minimum threshold of 10(4) conidia per g of grape berry. The assay developed would allow reliable, specific, and efficient detection and quantification of A. carbonarius in grapes.

  15. Quantification of viable Escherichia coli O157:H7 in meat products by duplex real-time PCR assays.

    Science.gov (United States)

    Gordillo, Rubén; Rodríguez, Alicia; Werning, María L; Bermúdez, Elena; Rodríguez, Mar

    2014-02-01

    Rapid and specific detection of viable Escherichia coli O157:H7 cells in ready-to-eat (RTE) meat products, by duplex quantitative PCR (qPCR) procedures with mRNA and SYBR Green and TaqMan methodologies were developed. Specific primers and probes were designed based on the serotype of E. coli O157:H7, fliCh7 and rfbE genes. No cross-reactivity with other microorganisms was observed. The detection limit of the assays was 10(1) or 10(2)CFU/g for artificially contaminated meat products, and after a 4h enrichment period at 37 °C, the detection limit decreased to about 1 CFU/g. Time-to completion of the assay was approximately 8h. Thus, these qPCR methods offer a useful, rapid and efficient tool for screening viable E. coli O157:H7 in RTE meat products. This tool could also be proposed for monitoring these foodborne pathogens in HACCP programs.

  16. Detection of Interaction of Binding Affinity of Aromatic Hydrocarbon Receptor to the Specific DNA by Exonuclease Protection Mediated PCR Assay

    Institute of Scientific and Technical Information of China (English)

    SUN Xi; XU Shunqing

    2005-01-01

    A novel exonuclease protection mediated PCR assay (EPM-PCR) to detect the interaction of protein and DNA at a dioxin-responsive enhancer (DRE) upstream of the CYP1A1 gene in rat hepatic cytosol was established. A double-stranded DNA fragment containing two binding sites was designed and incubated with the aryl hydrocarbon receptor (AhR) transformed by 2,3,7,8-tet rachlorodibenzo p dioxin (TCDD) to generate TCDD: AhR: DNA complex which could protect receptor-binding DNA against exonuclease Ⅲ (Exo Ⅲ) digestion. With ExoⅢ treatment, free DNAs were digested and receptor-bound DNAs remained that could be amplified by PCR. By agarose gel electrophoreses a clear band (285bp) was detected using TCDD-treated sample, while nothing with control samples. To detect transformed AhR-DRE complex, 2 fmol DNAs and 3 ug cytosol proteins were found to be sufficient in the experiment. Compared with gel retardation assay, this new method is more sensitive for monitoring the Ah receptor-enhancer interaction without radioactive pollution.

  17. A multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at point-of-care

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E; .Ortiz, J I; Tammero, L; Birch, J M; Derlet, R W; Cohen, S; Manning, D; McBride, M T

    2007-04-11

    We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used for the simultaneous detection of 5 common human respiratory pathogens including influenza A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less than 3 hours, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, and therefore allow implementation of infection control measures, and timely administration of antiviral therapies. This article presents a summary of the assay performance in terms of sensitivity and specificity. Limits of detection are provided for each targeted respiratory pathogen, and result comparisons are performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of influenza A without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on un-extracted samples.

  18. Evaluation of a real-time PCR assay based on the single-copy SAG1 gene for the detection of Toxoplasma gondii.

    Science.gov (United States)

    Yu, Haijie; Huang, Bin; Zhuo, Xunhui; Chen, Xueqiu; Du, Aifang

    2013-11-08

    Real-time PCR-based detection of Toxoplasma gondii is very sensitive and convenient for diagnosing toxoplasmosis. However, the performance of the PCR assays could be influenced by the target gene chosen. Here we evaluate a real-time PCR assay using double-stranded DNA dyes (SYBR(®) Green I assay) with a new set of primers targeting the SAG1 gene for the fast and specific detection of T. gondii. The assay showed higher sensitivity than conventional PCR protocols using T. gondii DNA as template. The detection limit of the developed real-time PCR assay was in the order of 1 tachyzoite. The assay was also assessed by experimentally infected mice and showed positive results for blood (25%), spleen (50%) and lung (50%) as early as 1 dpi. The specificity of the assay was confirmed by using DNA from Neospora caninum, Escherichia coli, Babesia bovis, Trypanosoma brucei, Cryptosporidium parvum, and Toxocara canis. Assay applicability was successfully tested in blood samples collected from slaughtered pigs. These results indicate that, based on SYBR(®) green I, the quantitative SAG1 assay may also be useful in the study of the pathogenicity, immunoprophylaxis, and treatment of T. gondii.

  19. The cps locus of Streptococcus suis serotype 16: Development of a serotype-specific PCR assay

    NARCIS (Netherlands)

    Wang, K.; Weixing, Fan; Wisselink, H.J.; Chengping, Lu

    2011-01-01

    Streptococcus suis serotype 16 can infect pigs and humans. We describe the identification and the characterization of the capsular polysaccharides synthesis locus of S. suis serotype 16. Using PCR primers flanking the capsular polysaccharides synthesis locus, a 30,101-bp fragment was amplified. Twen

  20. PCR real time assays for the early detection of BKV-DNA in immunocompromised patients.

    Science.gov (United States)

    Marinelli, Katia; Bagnarelli, Patrizia; Gaffi, Gianni; Trappolini, Silvia; Leoni, Pietro; Paggi, Alessandra Mataloni; Della Vittoria, Agnese; Scalise, Giorgio; Varaldo, Pietro Emanuele; Menzo, Stefano

    2007-07-01

    Testing for viral BKV-DNA in urine is a non-invasive early detection and monitoring tool in the diagnostic of BKV-related pathologies: quantitative analysis by Real-Time PCR can provide useful information in addition to cytologic analysis, although our study suggests that high BKV viruria is not necessarily associated with kidney or bladder damage.

  1. Development of a quantitative real-time PCR assay for detection of Vibrio tubiashii targeting the metalloprotease gene.

    Science.gov (United States)

    Gharaibeh, Dima N; Hasegawa, Hiroaki; Häse, Claudia C

    2009-03-01

    Vibrio tubiashii has recently re-emerged as a pathogen of bivalve larvae, causing a marked increase in the mortality of these species within shellfish rearing facilities. This has resulted in substantial losses of seed production and thus created the need for specific as well as sensitive detection methods for this pathogen. In this project, quantitative PCR (qPCR) primers were developed and optimized based upon analysis of the V. tubiashii vtpA gene sequence, encoding a metalloprotease known to cause larval mortality. Standard curves were developed utilizing dilutions of known quantities of V. tubiashii cells that were compared to colony forming unit (CFU) plate counts. The assay was optimized for detection of vtpA with both lab-grown V. tubiashii samples and filter-captured environmental seawater samples seeded with V. tubiashii. In addition, the primers were confirmed to specifically detect only V. tubiashii when tested against a variety of non-target Vibrio species. Validation of the assay was completed by analyzing samples obtained from a shellfish hatchery. The development of this rapid and sensitive assay for quantitative detection of V. tubiashii will accurately determine levels of this bacterium in a variety of seawater samples, providing a useful tool for oyster hatcheries and a method to assess the presence of this bacterium in the current turbulent ocean environment.

  2. Validation of Bacteroidales quantitative PCR assays targeting human and animal fecal contamination in the public and domestic domains in India.

    Science.gov (United States)

    Odagiri, Mitsunori; Schriewer, Alexander; Hanley, Kaitlyn; Wuertz, Stefan; Misra, Pravas R; Panigrahi, Pinaki; Jenkins, Marion W

    2015-01-01

    We compared host-associated Bacteroidales qPCR assays developed in the continental United States and Europe for the purpose of measuring the effect of improved sanitation on human fecal exposure in rural Indian communities where both human and animal fecal loading are high. Ten candidate Bacteroidales qPCR assays were tested against fecal samples (human, sewage, cow, buffalo, goat, sheep, dog and chicken) from a test set of 30 individual human, 5 sewage, and 60 pooled animal samples collected in coastal Odisha, India. The two universal/general Bacteroidales assays tested (BacUni, GenBac3) performed equally well, achieving 100% sensitivity on the test set. Across the five human-associated assays tested (HF183 Taqman, BacHum, HumM2, BacH, HF183 SYBR), we found low sensitivity (17 to 49%) except for HF183 SYBR (89%), and moderate to high cross-reactivity with dog (20 to 80%) and chicken fecal samples (60 to 100%). BacHum had the highest accuracy (67%), amplified all sewage samples within the range of quantification (ROQ), and did not cross-react with any fecal samples from cows, the most populous livestock animal in India. Of the ruminant- and cattle-associated assays tested (BacCow, CowM2), BacCow was more sensitive in detecting the full range of common Indian livestock animal fecal sources, while CowM2 only detected cow sources with 50% sensitivity. Neither assay cross-reacted with human sources. BacCan, the dog-associated assay tested, showed no cross-reactivity with human sources, and high sensitivity (90%) for dog fecal samples. Overall, our results indicate BacUni, BacHum, HumM2, BacCan and BacCow would be the most suitable MST assays to distinguish and quantify relative amounts of human-associated and livestock/domestic animal-associated contributions to fecal contamination in Odisha, India.

  3. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA.

    Science.gov (United States)

    Purcell, Maureen K; Pearman-Gillman, Schuyler; Thompson, Rachel L; Gregg, Jacob L; Hart, Lucas M; Winton, James R; Emmenegger, Eveline J; Hershberger, Paul K

    2016-07-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  4. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA

    Science.gov (United States)

    Purcell, Maureen K.; Pearman-Gillman, Schuyler; Thompson, Rachel L.; Gregg, Jacob L.; Hart, Lucas M.; Winton, James R.; Emmenegger, Eveline J.; Hershberger, Paul K.

    2016-01-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii. The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  5. Incidence in diverse pig populations of an IGF2 mutation with potential influence on meat quality and quantity: An assay based on real time PCR (RT-PCR).

    Science.gov (United States)

    Carrodeguas, José Alberto; Burgos, Carmen; Moreno, Carlos; Sánchez, Ana Cristina; Ventanas, Sonia; Tarrafeta, Luis; Barcelona, José Antonio; López, Maria Otilia; Oria, Rosa; López-Buesa, Pascual

    2005-11-01

    IGF2, insulin-like growth factor 2, is implicated in myogenesis and lean meat content. A mutation in a single base (A for G substitution) of the gene for IGF2 (position 3072 in intron 3) has been recently described as the cause of a major QTL effect on muscle growth in pigs [Van Laere, A. S, Nguyen, M., Braunschweig, M., Nezer, C., Collete, C., & Moreau, L. et al. (2003). Nature, 425, 832-836]. We describe here a rapid assay based on real time PCR (RT-PCR) to detect this mutation. We have evaluated the incidence of the mutation in commercial pig crosses, in three populations of purebred Iberian or Iberian×Duroc crosses, and in cured meat products and wild boars. The incidence of the mutation varies among these groups. Penetrance of the A mutation is about 80% in the commercial population. Purebred Iberian pigs were all homozygous G/G whereas crosses of Iberian pigs were heterozygous (90%) or homozygous A/A (10%). The implications of this gene for the selection of Iberian pigs are discussed.

  6. Quantitative PCR assay for detection and enumeration of ciguatera-causing dinoflagellate Gambierdiscus spp. (Gonyaulacales) in coastal areas of Japan.

    Science.gov (United States)

    Nishimura, Tomohiro; Hariganeya, Naohito; Tawong, Wittaya; Sakanari, Hiroshi; Yamaguchi, Haruo; Adachi, Masao

    2016-02-01

    In Japan, ciguatera fish poisoning (CFP) has been increasingly reported not only in subtropical areas but also in temperate areas in recent years, causing a serious threat to human health. Ciguatera fish poisoning is caused by the consumption of fish that have accumulated toxins produced by an epiphytic/benthic dinoflagellate, genus Gambierdiscus. Previous studies revealed the existence of five Gambierdiscus species/phylotypes in Japan: Gambierdiscus australes, Gambierdiscus scabrosus, Gambierdiscus sp. type 2, Gambierdiscus sp. type 3, and Gambierdiscus (Fukuyoa) cf. yasumotoi. Among these, G. australes, G. scabrosus, and Gambierdiscus sp. type 3 strains exhibited toxicities in mice, whereas Gambierdiscus sp. type 2 strains did not show any toxicity. Therefore, it is important to monitor the cell abundance and dynamics of these species/phylotypes to identify and characterize CFP outbreaks in Japan. Because it is difficult to differentiate these species/phylotypes by observation under a light microscope, development of a rapid and reliable detection and enumeration method is needed. In this study, a quantitative PCR assay was developed using a TaqMan probe that targets unique SSU rDNA sequences of four Japanese Gambierdiscus species/phylotypes and incorporates normalization with DNA recovery efficiency. First, we constructed standard curves with high linearity (R(2)=1.00) and high amplification efficiency (≥1.98) using linearized plasmids that contained SSU rDNA of the target species/phylotypes. The detection limits for all primer and probe sets were approximately 10 gene copies. Further, the mean number of SSU rDNA copies per cell of each species/phylotype was determined from single cells in culture and from those in environmental samples using the qPCR assay. Next, the number of cells of each species/phylotype in the mixed samples, which were spiked with cultured cells of the four species/phylotypes, was calculated by division of the total number of rDNA copies

  7. A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments

    Science.gov (United States)

    Erdner, D. L.; Percy, L.; Keafer, B.; Lewis, J.; Anderson, D. M.

    2010-02-01

    Harmful algal blooms (HABs) are a global problem that affects both human and ecosystem health. One of the most serious and widespread HAB poisoning syndromes is paralytic shellfish poisoning, commonly caused by Alexandrium spp. dinoflagellates. Like many toxic dinoflagellates, Alexandrium produces resistant resting cysts as part of its life cycle. These cysts play a key role in bloom initiation and decline, as well as dispersal and colonization of new areas. Information on cyst numbers and identity is essential for understanding and predicting blooms, yet comprehensive cyst surveys are extremely time- and labor-intensive. Here we describe the development and validation of a quantitative real-time PCR (qPCR) technique for the enumeration of cysts of A. tamarense of the toxic North American/Group I ribotype. The method uses a cloned fragment of the large subunit ribosomal RNA gene as a standard for cyst quantification, with an experimentally determined conversion factor of 28,402±6152 LSU ribosomal gene copies per cyst. Tests of DNA extraction and PCR efficiency show that mechanical breakage is required for adequate cyst lysis, and that it was necessary to dilute our DNA extracts 50-fold in order to abolish PCR inhibition from compounds co-extracted from the sediment. The resulting assay shows a linear response over 6 orders of magnitude and can reliably quantify ≥10 cysts/cm 3 sediment. For method validation, 129 natural sediment samples were split and analyzed in parallel, using both the qPCR and primulin-staining techniques. Overall, there is a significant correlation ( p<0.001) between the cyst abundances determined by the two methods, although the qPCR counts tend to be lower than the primulin values. This underestimation is less pronounced in those samples collected from the top 1 cm of sediment, and more pronounced in those derived from the next 1-3 cm of the core. These differences may be due to the condition of the cysts in the different layers, as the

  8. Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by the four parasite species causing malaria in humans.

    Science.gov (United States)

    McNamara, David T; Thomson, Jodi M; Kasehagen, Laurin J; Zimmerman, Peter A

    2004-06-01

    The diagnosis of infections caused by Plasmodium species is critical for understanding the nature of malarial disease, treatment efficacy, malaria control, and public health. The demands of field-based epidemiological studies of malaria will require faster and more sensitive diagnostic methods as new antimalarial drugs and vaccines are explored. We have developed a multiplex PCR-ligase detection reaction (LDR) assay that allows the simultaneous diagnosis of infection by all four parasite species causing malaria in humans. This assay exhibits sensitivity and specificity equal to those of other PCR-based assays, identifying all four human malaria parasite species at levels of parasitemias equal to 1 parasitized erythrocyte/microl of blood. The multiplex PCR-LDR assay goes beyond other PCR-based assays by reducing technical procedures and by detecting intraindividual differences in species-specific levels of parasitemia. Application of the multiplex PCR-LDR assay will provide the sensitivity and specificity expected of PCR-based diagnostic assays and will contribute new insight regarding relationships between the human malaria parasite species and the human host in future epidemiological studies.

  9. Sensitivity of solid culture, broth culture, and real-time PCR assays for milk and colostrum samples from Mycobacterium avium ssp. paratuberculosis-infectious dairy cows.

    Science.gov (United States)

    Laurin, Emilie; McKenna, Shawn; Chaffer, Marcelo; Keefe, Greg

    2015-12-01

    Mycobacterium avium ssp. paratuberculosis (MAP) can be shed in feces, milk, and colostrum. The goal of this study was to assess assays that detect MAP in these sample types, including effects of lactation stage or season. Understanding the performance of these assays could improve how they are used, limiting the risk of infection to calves. Forty-six previously confirmed MAP-positive cows from 7 Atlantic Canadian dairy farms were identified for colostrum sampling and monthly sampling of milk and feces over a 12-mo period. Samples were assayed for MAP using solid culture, broth culture, and direct real-time PCR (qPCR). Across assay types, test sensitivity when applied to milk samples averaged 25% of that when applied to fecal samples. For colostrum samples, sensitivity depended on assay type, with sensitivity of qPCR being approximately 46% of that in feces. Across sample types, sensitivity of qPCR was higher than that of the other assays. Sensitivity of qPCR, when applied to milk samples, was significantly higher in summer than in other seasons. Summer was also the season with highest agreement between milk and fecal samples collected within the same month. Our results suggest that qPCR would detect more cows shedding MAP in their milk and colostrum than solid or broth culture assays, particularly during the summer, thus providing better management information to limit exposure of calves to this infectious organism.

  10. A facile and specific assay for quantifying microRNA by an optimized RT-qPCR approach.

    Directory of Open Access Journals (Sweden)

    Qian Mei

    Full Text Available BACKGROUND: The spatiotemporal expression patterns of microRNAs (miRNAs are important to the verification of their predicted function. RT-qPCR is the accepted technique for the quantification of miRNA expression; however, stem-loop RT-PCR and poly(T-adapter assay, the two most frequently used methods, are not very convenient in practice and have poor specificity, respectively. RESULTS: We have developed an optimal approach that integrates these two methods and allows specific and rapid detection of tiny amounts of sample RNA and reduces costs relative to other techniques. miRNAs of the same sample are polyuridylated and reverse transcribed into cDNAs using a universal poly(A-stem-loop RT primer and then used as templates for SYBR® Green real-time PCR. The technique has a dynamic range of eight orders of magnitude with a sensitivity of up to 0.2 fM miRNA or as little as 10 pg of total RNA. Virtually no cross-reaction is observed among the closely-related miRNA family members and with miRNAs that have only a single nucleotide difference in this highly specific assay. The spatial constraint of the stem-loop structure of the modified RT primer allowed detection of miRNAs directly from cell lysates without laborious total RNA isolation, and the poly(U tail made it possible to use multiplex RT reactions of mRNA and miRNAs in the same run. CONCLUSIONS: The cost-effective RT-qPCR of miRNAs with poly(A-stem-loop RT primer is simple to perform and highly specific, which is especially important for samples that are precious and/or difficult to obtain.

  11. Multi-laboratory evaluations of the performance of Catellicoccus marimammalium PCR assays developed to target gull fecal sources

    Science.gov (United States)

    Sinigalliano, Christopher D.; Ervin, Jared S.; Van De Werfhorst, Laurie C.; Badgley, Brian D.; Ballestée, Elisenda; Bartkowiaka, Jakob; Boehm, Alexandria B.; Byappanahalli, Muruleedhara N.; Goodwin, Kelly D.; Gourmelon, Michèle; Griffith, John; Holden, Patricia A.; Jay, Jenny; Layton, Blythe; Lee, Cheonghoon; Lee, Jiyoung; Meijer, Wim G.; Noble, Rachel; Raith, Meredith; Ryu, Hodon; Sadowsky, Michael J.; Schriewer, Alexander; Wang, Dan; Wanless, David; Whitman, Richard; Wuertz, Stefan; Santo Domingo, Jorge W.

    2013-01-01

    Here we report results from a multi-laboratory (n = 11) evaluation of four different PCR methods targeting the 16S rRNA gene of Catellicoccus marimammalium originally developed to detect gull fecal contamination in coastal environments. The methods included a conventional end-point PCR method, a SYBR® Green qPCR method, and two TaqMan® qPCR methods. Different techniques for data normalization and analysis were tested. Data analysis methods had a pronounced impact on assay sensitivity and specificity calculations. Across-laboratory standardization of metrics including the lower limit of quantification (LLOQ), target detected but not quantifiable (DNQ), and target not detected (ND) significantly improved results compared to results submitted by individual laboratories prior to definition standardization. The unit of measure used for data normalization also had a pronounced effect on measured assay performance. Data normalization to DNA mass improved quantitative method performance as compared to enterococcus normalization. The MST methods tested here were originally designed for gulls but were found in this study to also detect feces from other birds, particularly feces composited from pigeons. Sequencing efforts showed that some pigeon feces from California contained sequences similar to C. marimammalium found in gull feces. These data suggest that the prevalence, geographic scope, and ecology of C. marimammalium in host birds other than gulls require further investigation. This study represents an important first step in the multi-laboratory assessment of these methods and highlights the need to broaden and standardize additional evaluations, including environmentally relevant target concentrations in ambient waters from diverse geographic regions.

  12. Multilocus sequence typing of Mycoplasma hyorhinis strains identified by a real-time TaqMan PCR assay.

    Science.gov (United States)

    Tocqueville, Véronique; Ferré, Séverine; Nguyen, Ngoc Hong Phuc; Kempf, Isabelle; Marois-Créhan, Corinne

    2014-05-01

    A real-time TaqMan PCR assay based on the gene encoding the protein p37 was developed to detect Mycoplasma hyorhinis. Its specificity was validated with 29 epidemiologically unrelated M. hyorhinis strains (28 field strains and one reference strain) and other mycoplasma species or with other microorganisms commonly found in pigs. The estimated detection limit of this qPCR assay was 125 microorganism equivalents/μl. The same 29 epidemiologically unrelated M. hyorhinis strains and four previously fully sequenced strains were typed by two portable typing methods, the sequencing of the p37 gene and a multilocus sequence typing (MLST) scheme. The first method revealed 18 distinct nucleotide sequences and insufficient discriminatory power (0.934). The MLST scheme was developed with the sequenced genomes of the M. hyorhinis strains HUB-1, GDL-1, MCLD, and SK76 and based on the genes dnaA, rpoB, gyrB, gltX, adk, and gmk. In total, 2,304 bp of sequence was analyzed for each strain. MLST was capable of subdividing the 33 strains into 29 distinct sequence types. The discriminatory power of the method was >0.95, which is the threshold value for interpreting typing results with confidence (D=0.989). Population analysis showed that recombination in M. hyorhinis occurs and that strains are diverse but with a certain clonality (one unique clonal complex was identified). The new qPCR assay and the robust MLST scheme are available for the acquisition of new knowledge on M. hyorhinis epidemiology. A web-accessible database has been set up for the M. hyorhinis MLST scheme at http://pubmlst.org/mhyorhinis/.

  13. A Multiplex PCR Assay for the Detection of Pathogenic Genes of EPEC, ETEC and EIEC

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tienan; LI Jichang; LU Chengwu; HUO Guicheng

    2006-01-01

    A multiplex polymerase chain reaction (PCR) was developed to detect three pathogenic genes of enteropathogenic, enterotocigenic and enteroinvasive Escherichia coli.. In this study three different sets of oligonucleotide primer were simultaneously used, and in this way, specific fragments of 880, 600, 150 bp for EPEC eaeA,EIEC ipaH and ETEC ST genes were amplified, respectively. The best condition of the multiplex PCR was: after an initial heat denaturation step at 95℃ for 5 min, followed by 30 cycles of denaturation at 94 ℃ for 40 s, primer annealing at 51.3 ℃ for 40 s and extension at 72 ℃ for 1 min, final extension at 72 ℃ for 10 min. The detection limit of tively. It may be a good way for the detection and identification of Diarrhea-causing E. coli..

  14. Real time RT-PCR assay for detection of different serotypes of FMDV in Egypt

    Directory of Open Access Journals (Sweden)

    Laila El-Shehawy

    Full Text Available Aim: The present study indicated that rRT-PCR could be provided for the detection of FMDV in infected, contact and carrier cattle and also provide a rapid sensitive tool aiming to aid in rapid disease detection and control. Foot and Mouth disease virus serotypes O and A still existing in Egypt. In January 2012, sever outbreaks struck the animal population in most Egyptian 1 governorates. The causative virus was identified as FMDV SAT2. Material and Methods: Five samples of tongue epithelium (ET and five oesophageal-pharyngeal (OP fluid samples were collected from FMD suspected cattle in infected farm at El-Fayoum and 20 OP samples from in-contact cattle at the same farm in addition to 30 OP samples from apparently healthy cattle at three different localities in El-Fayoum governorate (12 from Fayoum; 9 from Sinoras and 9 from Edsa in order to detect carrier cattle. All of these samples were collected during November and December 2011 and January 2012. Results: All the ET and OP samples were inoculated on BHK cell culture and baby mice. The obtained results were identified using complement fixation test in addition to real-time reverse transcriptase polymerase chain reaction (rRT-PCR. In the infected farm at El-Fayoum FMDV type SAT2 was detected in cattle which are considered as the first introduction of this type while FMDV type O and SAT2 were detected in the in-contact cattle in the same farm. The sensitivity of rRT-PCR was cleared in the in-contact cattle as 13 out of 20 OP samples were positive to FMDV by rRT-PCR while 11 out of 20 OP samples were positive to FMDV by CFT. The OP samples collected from apparently healthy cattle from Fayoum, Sinoras and Edsa localities in Fayoum governorate demonstrate the circulation of the FMDV type A, O and the recent SAT2 in carrier cattle which threaten cattle population in Fayoum governorate. Also the sensitivity of real time RT-PCR over the CFT in detection of FMDV carrier cattle was clearly noticed in

  15. Pentaplex PCR as screening assay for jellyfish species identification in food products.

    Science.gov (United States)

    Armani, Andrea; Giusti, Alice; Castigliego, Lorenzo; Rossi, Aurelio; Tinacci, Lara; Gianfaldoni, Daniela; Guidi, Alessandra

    2014-12-17

    Salted jellyfish, a traditional food in Asian Countries, is nowadays spreading on the Western markets. In this work, we developed a Pentaplex PCR for the identification of five edible species (Nemopilema nomurai, Rhopilema esculentum, Rhizostoma pulmo, Pelagia noctiluca, and Cotylorhiza tuberculata), which cannot be identified by a mere visual inspection in jellyfish products sold as food. A common degenerated forward primer and five specie-specific reverse primers were designed to amplify COI gene regions of different lengths. Another primer pair targeted the 28SrRNA gene and was intended as common positive reaction control. Considering the high level of degradation in the DNA extracted from acidified and salted products, the maximum length of the amplicons was set at 200 bp. The PCR was developed using 66 reference DNA samples. It gave successful amplifications in 85.4% of 48 ready to eat products (REs) and in 60% of 30 classical salted products (CPs) collected on the market.

  16. Survey for protozoan parasites in Eastern oysters (Crassostrea virginica) from the Gulf of Maine using PCR-based assays.

    Science.gov (United States)

    Marquis, Nicholas D; Record, Nicholas R; Robledo, José A Fernández

    2015-10-01

    Protozoan pathogens represent a serious threat to oyster aquaculture, since they can lead to significant production loses. Moreover, oysters can concentrate human pathogens through filter feeding, thus putting at risk raw oyster consumers' health. Using PCR-based assays in oysters (Crassostrea virginica) from Maine, we expand the Northeast range in the USA for the protozoans Perkinsus marinus, Perkinsus chesapeaki, and Haplosporidium nelsoni, and report for the first time the detection of the human pathogens Toxoplasma gondii and Cryptosporidium parvum. Oysters hosting both P. marinus and P. chesapeaki were more than three times as likely to be infected by a non-Perkinsus than those free of Perkinsus infections.

  17. Cytomegalovirus DNA quantification using an automated platform for nucleic acid extraction and real-time PCR assay setup.

    Science.gov (United States)

    Forman, Michael; Wilson, Andy; Valsamakis, Alexandra

    2011-07-01

    Analytical performance characteristics of the QIAsymphony RGQ system with artus cytomegalovirus (CMV) reagents were determined. Measurable range spanned 2.0 to ≥ 7.0 log(10) copies/ml. The detection limit was 23 copies/ml. Intrarun and interrun coefficients of variation were ≤ 2.1% at 3.0 and 5.0 log(10) copies/ml. In clinical specimens, RGQ values were ~0.2 log(10) copies/ml higher than those in an assay using a BioRobot M48 extraction/manual reaction setup/7500 Real-Time PCR instrument. No cross-contamination was observed.

  18. BurkDiff: A Real-Time PCR Allelic Discrimination Assay for Burkholderia Pseudomallei and B. mallei

    OpenAIRE

    Jolene R Bowers; Engelthaler, David M.; Jennifer L Ginther; Talima Pearson; Peacock, Sharon J; Apichai Tuanyok; Wagner, David M.; Currie, Bart J.; Keim, Paul S.

    2010-01-01

    A real-time PCR assay, BurkDiff, was designed to target a unique conserved region in the B. pseudomallei and B. mallei genomes containing a SNP that differentiates the two species. Sensitivity and specificity were assessed by screening BurkDiff across 469 isolates of B. pseudomallei, 49 isolates of B. mallei, and 390 isolates of clinically relevant non-target species. Concordance of results with traditional speciation methods and no cross-reactivity to non-target species show BurkDiff is a ro...

  19. A multiplex PCR assay for the simultaneous identification of three mealybug species (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Saccaggi, D L; Krüger, K; Pietersen, G

    2008-02-01

    Molecular species identification is becoming more wide-spread in diagnostics and ecological studies, particularly with regard to insects for which morphological identification is difficult or time-consuming. In this study, we describe the development and application of a single-step multiplex PCR for the identification of three mealybug species (Hemiptera: Pseudococcidae) associated with grapevine in South Africa: Planococcus ficus (vine mealybug), Planococcus citri (citrus mealybug) and Pseudococcus longispinus (longtailed mealybug). Mealybugs are pests on many commercial crops, including grapevine, in which they transmit viral diseases. Morphological identification of mealybug species is usually time-consuming, requires a high level of taxonomic expertise and usually only adult females can be identified. The single-step multiplex PCR developed here, based on the mitochondrial cytochrome c oxidase subunit 1 (CO I) gene, is rapid, reliable, sensitive, accurate and simple. The entire identification protocol (including DNA extraction, PCR and electrophoresis) can be completed in approximately four hours. Successful DNA extraction from laboratory and unparasitized field-collected individuals stored in absolute ethanol was 97%. Specimens from which DNA could be extracted were always correctly identified (100% accuracy). The technique developed is simple enough to be implemented in any molecular laboratory. The principles described here can be extended to any organism for which rapid, reliable identification is needed.

  20. Detection of tick blood parasites in Egypt using PCR assay II- Borrelia burgdorferi sensu lato.

    Science.gov (United States)

    Adham, Fatma K; El-Samie-Abd, Emtithal M; Gabre, Refaat M; El Hussein, Hala

    2010-12-01

    The prevalence of Borrelia burgdorferi sensu lato (s.l.), the etiologic agent of Lyme borrelosis (LB), was determined for the first time in Egypt by using polymerase chain reaction (PCR). Questing 5243 hard and soft ticks were collected from animal farms throughout Giza Governorate. DNA from 500 individual tick species was extracted and PCR was performed. Primers verified from the sequence of German strain Pko of Borrelia afzelii were used. Fragments of 642 bp were generated and sequenced. The prevalence of B. burgdorferi sensu lato (s.l.) was 28% of examined soft and hard ticks. High infection rate (66%) of B. burgdorferi s.l. was observed in both nymph and adult soft ticks Ornithodoros savignyi. Beside, the role of hard ticks as potential vectors of Lyme disease in Egypt, where the infection rate was between 0.0-50.0%. Sequence analysis of PCR product of Borrelia burgdorferi sensu lato shares high degree of similarity in sequence compared to similar species in GenBank.

  1. Evaluation of baker's yeast in honey using a real-time PCR assay.

    Science.gov (United States)

    Kast, Christina; Roetschi, Alexandra

    2017-04-01

    Occasionally, melissopalynological analysis reveals the presence of baker's yeast (Saccharomyces cerevisiae) in honey sediments. A field experiment reproducing a common spring bee feeding practice, using sugar paste containing baker's yeast, was performed to understand how S. cerevisiae are introduced into honey. Apart from classical microscopy, a real-time quantitative PCR (qPCR) system specific for S. cerevisiae was established for quantification of S. cerevisiae in honeys. Results showed that S. cerevisiae cells are stored in the honey of the brood combs and are also transferred into honey in the supers. The concentrations of S. cerevisiae were highest in honey of the brood frames immediately after the feeding and decreased over time to low concentrations at the end of the year. A high content of S. cerevisiae cells were also found in the honey from supers of the spring harvest. Observed S. cerevisiae cells were not able to multiply in a high-sugar environment, such as honey, and their viability decreased rapidly after addition to the honey. The screening of 200 Swiss honeys revealed the presence of S. cerevisiae in 4.5% of the samples, as determined by microscopy and qPCR. Finally, the method described here may indicate an unwanted sucrose addition to honey through bee-feeding.

  2. Real-Time Detection and Identification of Chlamydophila Species in Veterinary Specimens by Using SYBR Green-Based PCR Assays

    DEFF Research Database (Denmark)

    Nordentoft, Steen; Kabell, Susanne; Pedersen, Karl

    2011-01-01

    of Chlamydiaceae and differentiate the most prevalent veterinary Chlamydophila species: Cp. psittaci, Cp. abortus, Cp. felis, and Cp. caviae. By adding bovine serum albumin to the master mixes, target DNA could be detected directly in crude lysates of enzymatically digested conjunctival or pharyngeal swabs...... or tissue specimens from heart, liver, and spleen without further purification. The assays were evaluated on veterinary specimens where all samples were screened using a family-specific PCR, and positive samples were further tested using species-specific PCRs. Cp. psittaci was detected in 47 birds, Cp....... felis was found in 10 cats, Cp. caviae was found in one guinea pig, and Cp. abortus was detected in one sheep. The screening assay appeared more sensitive than traditional microscopical examination of stained tissue smears. By combining a fast, robust, and cost-effective method for sample preparation...

  3. Validation and comparison of two commercial ELISA kits and three in-house developed real-time PCR assays for the detection of potentially allergenic mustard in food.

    Science.gov (United States)

    Palle-Reisch, Monika; Hochegger, Rupert; Štumr, Stepan; Korycanova, Kveta; Cichna-Markl, Margit

    2015-05-01

    The study compares the applicability of two commercial mustard ELISA kits (Mustard ELISA Kit-specific and Mustard ELISA Kit-total) and three in-house developed real-time PCR assays (singleplex assay for white mustard, singleplex assay for black/brown mustard and duplex assay for the detection of white, black and brown mustard). Analyses of raw and brewed model sausages containing white and black/brown mustard in the range from 1 to 50 ppm indicate that both ELISAs and the three real-time PCR assays allow the detection of traces of mustard in raw and in brewed sausages. The ELISAs were found to be more sensitive than the real-time PCR assays. When the ELISAs and real-time PCR assays were applied to the analysis of 15 commercial foodstuffs differing in their labelling concerning mustard, in one sample mustard was detected with both ELISAs and the three real-time PCR assays although mustard was not indicated on the food ingredient list.

  4. Loop mediated isothermal amplification assay using hydroxy naphthol blue, conventional polymerase chain reaction and real-time PCR in the diagnosis of intraocular tuberculosis.

    Science.gov (United States)

    Balne, P K; Basu, S; Rath, S; Barik, M R; Sharma, S

    2015-01-01

    This study is a comparative evaluation (Chi-square test) of a closed tube loop mediated isothermal amplification assay using hydroxy naphthol blue dye (HNB-LAMP), real-time polymerase chain reaction (PCR) and conventional PCR in the diagnosis of intraocular tuberculosis. Considering clinical presentation as the gold standard in 33 patients, the sensitivity of HNB-LAMP assay (75.8%) was higher (not significant, P value 0.2) than conventional PCR (57.6%) and lower than real-time PCR (90.9%). Specificity was 100% by all three methods. No amplification was observed in negative controls (n = 20) by all three methods. The cost of the HNB-LAMP assay was Rs. 500.00 and it does not require thermocycler, therefore, it can be used as an alternative to conventional PCR in resource-poor settings.

  5. Loop mediated isothermal amplification assay using hydroxy naphthol blue, conventional polymerase chain reaction and real-time PCR in the diagnosis of intraocular tuberculosis

    Directory of Open Access Journals (Sweden)

    P K Balne

    2015-01-01

    Full Text Available This study is a comparative evaluation (Chi-square test of a closed tube loop mediated isothermal amplification assay using hydroxy naphthol blue dye (HNB-LAMP, real-time polymerase chain reaction (PCR and conventional PCR in the diagnosis of intraocular tuberculosis. Considering clinical presentation as the gold standard in 33 patients, the sensitivity of HNB-LAMP assay (75.8% was higher (not significant, P value 0.2 than conventional PCR (57.6% and lower than real-time PCR (90.9%. Specificity was 100% by all three methods. No amplification was observed in negative controls (n = 20 by all three methods. The cost of the HNB-LAMP assay was Rs. 500.00 and it does not require thermocycler, therefore, it can be used as an alternative to conventional PCR in resource-poor settings.

  6. Performance of the Roche LightCycler real-time PCR assay for diagnosing extrapulmonary tuberculosis.

    Science.gov (United States)

    Gous, N; Scott, L E; Wong, E; Omar, T; Venter, W D F; Stevens, W

    2012-06-01

    The Roche LightCycler mycobacterium detection molecular assay for Mycobacterium tuberculosis, M. avium, and M. kansasii, was applied to tissue specimens. It performed well on lymph node and cerebrospinal fluid specimens and less well on lung, liver, and bone marrow core biopsy specimens, but used in conjunction with a clinical suspicion of tuberculosis, it could augment patient management.

  7. Respiratory Virus Multiplex RT-PCR Assay Sensitivities and Influence Factors in Hospitalized Children with Lower Respiratory Tract Infections

    Institute of Scientific and Technical Information of China (English)

    Jikui Deng; Zhuoya Ma; Wenbo Huang; Chengrong Li; Heping Wang; Yuejie Zheng; Rong Zhou

    2013-01-01

    Multiplex RT-PCR assays have been widely used tools for detection and differentiation of a panel of respiratory viral pathogens.In this study,we evaluated the Qiagen ResPlex Ⅱ V2.0 kit and explored factors influencing its sensitivity.Nasopharyngeal swab (NPS) specimens were prospectively collected from pediatric inpatients with lower respiratory tract infections at the time of admission in the Shenzhen Children's Hospital from May 2009 to April 2010.Total nucleic acids were extracted using the EZ1 system (Qiagen,Germany) and 17 respiratory viruses and genotypes including influenza A virus (FluA),FluB,parainfluenza virus 1 (PIV1),PIV2,PIV3,PIV4,respiratory syncytial virus (RSV),human metapneumovirus (hMPV),rhinoviruses (RhV),enteroviruses (EnV),human bocaviruses (hBoV),adenoviruses (AdV),four coronaviruses (229E,OC43,NL63 and HKU1),and FluA 2009 pandemic H1N1(H1N1-p) were detected and identified by the ResPlex Ⅱ kit.In parallel,16 real-time TaqMan quantitative RT-PCR assays were used to quantitatively detect each virus except for RhV.Influenza and parainfluenza viral cultures were also performed.Among the total 438 NPS specimens collected during the study period,one or more viral pathogens were detected in 274 (62.6%) and 201(45.9%) specimens by monoplex TaqMan RT-PCR and multiplex ResPlex,respectively.When results from monoplex PCR or cell culture were used as the reference standard,the multiplex PCR possessed specificities of 92.9-100.0%.The sensitivity of multiplex PCR for PIV3,hMPV,PIV1 and BoV were 73.1%,70%,66.7% and 55.6%,respectively,while low sensitivities (11.1%-40.0%) were observed for FluA,EnV,OC43,RSV and H1N1.Among the seven viruses/genotypes detected with higher frequencies,multiplex PCR sensitivities were correlated significantly with viral loads determined by the TaqMan RT-PCR in F luA,H 1N 1-p and RSV (p=0.011-0.000).The Qiagen ResPlex Ⅱ multiplex RT-PCR kit possesses excellent specificity for simultaneous detection of 17

  8. Noninvasive screening for genital chlamydial infections in asymptomatic men: Strategies and costs using a urine PCR assay

    Science.gov (United States)

    Peeling, Rosanna W; Toye, Baldwin; Jessamine, Peter; Gemmill, Ian

    1998-01-01

    OBJECTIVE: To evaluate cost saving strategies to screen for genital chlamydial infection in men using polymerase chain reaction (PCR) technology. METHODS: Men with no urethral symptoms presenting to a sexually transmitted disease (STD) clinic were recruited. Study participants underwent a questionnaire interview. Urethral swabs were taken to perform a smear for polymorphonuclear leucocytes (PMN) and for the detection of Chlamydia trachomatis by culture and PCR. First-catch urine was collected for a leukocyte esterase test (LET) and PCR. RESULTS: C trachomatis infection was detected in 36 of 463 (7.8%) men. LET and PMN were positive in 10 (28%) and 12 (33%) infected men, respectively. Risk factors for chlamydial infection were younger than age 25 years, LET-positive, PMN-positive and STD contact (P<0.001). The direct cost of genital chlamydial infection in men in Canada has been previously estimated at $381/case. Based on a sensitivity of 90% for urine PCR, the estimated direct cost of testing all participants to detect 32 cases was $453/case. Using risk factors recommended in the Canadian STD Guidelines (age younger than 25 years, new partner, STD contact or unprotected sex), the same number of cases would have been detected by testing only 384 men at $376/case. Using age younger than 25 years or STD contact as the screening criterion, 78% of those infected would have been detected at $259/case, and no new cases would have been detected by adding LET-positive or PMN-positive as risk factors. CONCLUSION: Targeted screening for chlamydial infection using urine PCR assay and risk factors recommended in the Canadian guidelines could substantially reduce the cost of screening at a STD clinic setting. LET and PMN smear did not appear to be useful indicators of chlamydial infection in this population. PMID:22346549

  9. Establishment of realtime RT-PCR assay to detect polio virus in the Acute Flaccid Paralysis laboratory surveillance

    Directory of Open Access Journals (Sweden)

    Nike Susanti

    2016-07-01

    Polio Vaccine into Vaccine-Derived Poliovirus still continue. Since 1991, WHO has developedAcute Flaccid Paralysis (AFP laboratory based surveillance. In 2014, the polioviruses identification by real-timeReverse Transcriptase Polymerase Chain Reaction (rRT-PCR, has been introduced to National Polio Laboratory(NPL Center for Biomedical and Basic Technology of Health. The objective of the rRT-PCR application is to havefaster and better diagnostic methods to monitor the circulation and mutation of polio viruses.Methods: Isolate tested by rRT-PCR using a combination of primers and probe mentioned by WHO manual.The viral RNA is converted to cDNA using reverse transcriptase and amplified in a PCR reaction using Taqpolymerase. The PCR products are detected and identified by hybridization with specific probes. The combinationof primers and probes will result in the serotype identification and intratypic differentiation of poliovirus isolates.Results: In 2014 NPL Jakarta received 604 AFP cases through the surveillance system, five cases foundpositive for polio viruses by culture. All of the specimens were positive for polio vaccine viruses. Twocases were polio virus type P2 (40%, one cases polio virus type P1 (20%, 1 case polio virus type P3(20% and one case mix polio viruses type P1+P2 (20%.Conclusion: The real-time PCR assay was able to help the identification of polio viruses rapidly in Jakartalab. The test can be utilized for monitoring the population routinely immunized with OPV. (Health ScienceJournal of Indonesia 2016;7:27-31Keywords: ITD, Poliovirus, Identification, rRT-PCR

  10. A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules.

    Directory of Open Access Journals (Sweden)

    Zsolt Czimmerer

    Full Text Available Short regulatory RNA-s have been identified as key regulators of gene expression in eukaryotes. They have been involved in the regulation of both physiological and pathological processes such as embryonal development, immunoregulation and cancer. One of their relevant characteristics is their high stability, which makes them excellent candidates for use as biomarkers. Their number is constantly increasing as next generation sequencing methods reveal more and more details of their synthesis. These novel findings aim for new detection methods for the individual short regulatory RNA-s in order to be able to confirm the primary data and characterize newly identified subtypes in different biological conditions. We have developed a flexible method to design RT-qPCR assays that are very sensitive and robust. The newly designed assays were tested extensively in samples from plant, mouse and even human formalin fixed paraffin embedded tissues. Moreover, we have shown that these assays are able to quantify endogenously generated shRNA molecules. The assay design method is freely available for anyone who wishes to use a robust and flexible system for the quantitative analysis of matured regulatory RNA-s.

  11. Development of a real-time PCR melt curve assay for simultaneous detection of virulent and antibiotic resistant Salmonella.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2014-12-01

    Multiple drug resistance in Salmonella is an emerging problem in the area of food safety. Depending on the virulence and antibiotic resistance characteristics of the Salmonella strain, infections of varying severity could result. In this study, a multiplex melt curve real-time PCR assay for the detection of virulent and antibiotic resistance strains of Salmonella was developed with two primer sets. The first set targets the virulence gene, invasin (invA), and tetracycline (tetG), streptomycin (aadA2) and sulphonamide (sulI) antibiotic resistance genes, and the second set amplifies ampicillin (blaPSE,blaTEM) and chloramphenicol (floR) resistance genes. The multiplex assay was evaluated using 41 Salmonella strains and was further tested on eight different artificially inoculated food samples. The fluorescent DNA intercalating dye, SYTO9, generated high resolution melt curve peaks and, hence, was used for the development of the assay. This multiplex assay worked efficiently over a DNA concentration range of 20 ng-200 fg and showed a sensitivity of 290 CFU/mL with serially diluted broth cultures. The detection limit for un-enriched artificially inoculated food samples was 10(4) CFU/g, but an enrichment period of 6 h allowed for detection of 10 CFU/g of cells in the samples.

  12. Development of a Quantitative PCR Assay for Differentiating the Agent of Heartwater Disease, Ehrlichia ruminantium, from the Panola Mountain Ehrlichia.

    Science.gov (United States)

    Sayler, K A; Loftis, A D; Mahan, S M; Barbet, A F

    2016-12-01

    Panola Mountain Ehrlichia (PME) is an emerging Ehrlichia sp. reported in ten US states. Based on the sequence homology of all known genes, PME is closely related to Ehrlichia ruminantium (ER), the causative agent of heartwater. Heartwater is an economically important tick-borne disease of cattle, sheep and goats responsible for stock losses in sub-Saharan Africa. Unfortunately, ER was imported to the Caribbean islands in the 19th century, and the presence of this foreign animal disease in the Caribbean poses a threat to the US mainland. If introduced, a heartwater outbreak would cause massive losses of naïve livestock. The serologic assay of choice to diagnose heartwater is cross-reactive with Ehrlichia spp., including PME, as we demonstrate here, which would confound disease surveillance in the event of a heartwater outbreak. The purpose of this study was to develop a diagnostic assay capable of rapidly distinguishing between these pathogens. Using synthetic MAP-1B peptides for ER and PME, we tested the cross-reactivity of this assay using sera from infected livestock. The MAP-1B ELISA cannot distinguish between animals infected with PME and ER. Therefore, a dual-plex Taqman(™) qPCR assay targeting the groEL gene of PME and ER was developed and validated. Primers were designed that are conserved among all known strains of ER, allowing for the amplification of strains from the Caribbean and Africa. The assay is highly sensitive (10 copies of DNA) and specific. This assay distinguishes between infection with PME and ER and will be a valuable tool in the event of heartwater outbreak on the US mainland, or for epidemiological studies involving either disease-causing organism.

  13. Development and validation of a quantitative PCR assay using multiplexed hydrolysis probes for detection and quantification of Theileria orientalis isolates and differentiation of clinically relevant subtypes.

    Science.gov (United States)

    Bogema, D R; Deutscher, A T; Fell, S; Collins, D; Eamens, G J; Jenkins, C

    2015-03-01

    Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease.

  14. Rapid and Quantitative Detection of Leifsonia xyli subsp. xyli in Sugarcane Stalk Juice Using a Real-Time Fluorescent (TaqMan) PCR Assay

    Science.gov (United States)

    Fu, Hua-Ying; Sun, Sheng-Ren; Wang, Jin-Da; Ahmad, Kashif; Wang, Heng-Bo; Chen, Ru-Kai

    2016-01-01

    Ratoon stunting disease (RSD) of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx). A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR) assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR) and a fluorogenic probe (Pat1-QP) targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7%) of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174) were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174) were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields.

  15. Rapid and Quantitative Detection of Leifsonia xyli subsp. xyli in Sugarcane Stalk Juice Using a Real-Time Fluorescent (TaqMan PCR Assay

    Directory of Open Access Journals (Sweden)

    Hua-Ying Fu

    2016-01-01

    Full Text Available Ratoon stunting disease (RSD of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx. A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR and a fluorogenic probe (Pat1-QP targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7% of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174 were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174 were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields.

  16. Multiplex RT Q-PCR assay for simultaneous quantification of three viruses used for validation of virus clearance by biopharmaceutical production.

    Science.gov (United States)

    Lute, Scott; Wang, Hua; Sanchez, Davonie; Barletta, Janet; Chen, Qi; Brorson, Kurt

    2009-10-01

    Virus removal studies are used to insure the safety of biopharmaceutical products by quantitatively estimating the viral clearance capacity by the manufacturing process. Virus quantification assays are used to measure the log(10) clearance factor of individual purification unit operations in spike recovery studies. We have developed a multiplex RT Q-PCR assay that detects and quantifies three commonly used model viruses X-MuLV, SV40, and MMV simultaneously. This RT Q-PCR multiplex assay has a 6log(10) dynamic range with a limit of detection (LOD) of approximately 1 genome copy/microL. Amplification profiles are similar to existing singleplex assays. Overall, this RT Q-PCR multiplex assay is highly quantitative, accurately identifies multiple viruses simultaneously, and may prove useful to validate viral clearance of biological products in small scale studies.

  17. Evaluation of a single-tube fluorogenic RT-PCR assay for detection of bovine respiratory syncytial virus in clinical samples

    DEFF Research Database (Denmark)

    Hakhverdyan, Mikhayil; Hägglund, Sara; Larsen, Lars Erik;

    2005-01-01

    understanding of the virus. In this study, a BRSV fluorogenic reverse transcription PCR (fRT-PCR) assay, based on TaqMan principle, was developed and evaluated on a large number of clinical samples, representing various cases of natural and experimental BRSV infections. By using a single-step closed-tube format...

  18. Inter-laboratory comparison of three different real-time PCR assays for the detection of Pneumocystis jiroveci in bronchoalveolar lavage fluid samples.

    NARCIS (Netherlands)

    Linssen, C.F.; Jacobs, J.A.; Beckers, P.; Templeton, K.E.; Bakkers, J.; Kuijper, E.J.; Melchers, W.J.; Drent, M.; Vink, C.

    2006-01-01

    Pneumocystis jiroveci pneumonia (PCP) is an opportunistic infection affecting immunocompromised patients. While conventional diagnosis of PCP by microscopy is cumbersome, the use of PCR to diagnose PCP has great potential. Nevertheless, inter-laboratory validation and standardization of PCR assays i

  19. Diagnosis of amebic liver abscess and amebic colitis by detection of Entamoeba histolytica DNA in blood, urine, and saliva by a real-time PCR assay.

    Science.gov (United States)

    Haque, Rashidul; Kabir, Mamun; Noor, Zannatun; Rahman, S M Mazidur; Mondal, Dinesh; Alam, Faisal; Rahman, Intekhab; Al Mahmood, Abdullh; Ahmed, Nooruddin; Petri, William A

    2010-08-01

    The noninvasive diagnosis of amebic liver abscess is challenging, as most patients at the time of diagnosis do not have a concurrent intestinal infection with Entamoeba histolytica. Fecal testing for E. histolytica parasite antigen or DNA is negative in most patients. A real-time PCR assay was evaluated for detection of E. histolytica DNA in blood, urine, and saliva samples from amebic liver abscess as well as amebic colitis patients in Bangladesh. A total of 98 amebic liver abscess and 28 amebic colitis patients and 43 control subjects were examined. The real-time PCR assay detected E. histolytica DNA in 49%, 77%, and 69% of blood, urine, and saliva specimens from the amebic liver abscess patients. For amebic colitis the sensitivity of the real-time PCR assay for detection of E. histolytica DNA in blood, urine, and saliva was 36%, 61%, and 64%, respectively. All blood, urine, and saliva samples from control subjects were negative by the real-time PCR assay for E. histolytica DNA. When the real-time PCR assay results of the urine and saliva specimens were taken together (positive either in urine or saliva), the real-time PCR assay was 97% and 89% sensitive for detection of E. histolytica DNA in liver abscess and intestinal infection, respectively. We conclude that the detection of E. histolytica DNA in saliva and urine could be used as a diagnostic tool for amebic liver abscess.

  20. Use of 18S rRNA Gene-Based PCR Assay for Diagnosis of Acanthamoeba Keratitis in Non-Contact Lens Wearers in India

    OpenAIRE

    Pasricha, Gunisha; Sharma, Savitri; Garg, Prashant; Aggarwal, Ramesh K.

    2003-01-01

    Identification of Acanthamoeba cysts and trophozoites in ocular tissues requires considerable expertise and is often time-consuming. An 18S rRNA gene-based PCR test, highly specific for the genus Acanthamoeba, has recently been reported in the molecular diagnosis of Acanthamoeba keratitis. This PCR assay was compared with conventional microbiological tests for the diagnosis of Acanthamoeba keratitis. In a pilot study, the PCR conditions with modifications were first tested on corneal scraping...

  1. Detection of Salmonella spp, Salmonella Enteritidis and Typhimurium in naturally infected broiler chickens by a multiplex PCR-based assay

    Directory of Open Access Journals (Sweden)

    F.G. Paião

    2013-01-01

    Full Text Available The presence of Salmonella in the intestinal tract, on the chickens skin and among their feathers, may cause carcasses contamination during slaughtering and processing and possibly it is responsible by the introduction of this microorganism in the slaughterhouses. A rapid method to identify and monitor Salmonella and their sorovars in farm is becoming necessary. A pre-enriched multiplex polymerase chain reaction (m-PCR assay employing specific primers was developed and used to detect Salmonella at the genus level and to identify the Salmonella enterica serovar Enteritidis (S. Enteritidis and Salmonella enterica serovar Typhimurium (S. Typhimurium in broiler chicken swab samples. The method was validated by testing DNA extract from 90 fresh culture cloacal swab samples from poultry chicken cultured in phosphate buffer peptone water at 37 ºC for 18 h. The final results showed the presence of Salmonella spp. in 25% of samples, S. Enteritidis was present in 12% of the Salmonella-positive samples and S. Typhimurium in 3% of the samples. The m-PCR assay developed in this study is a specific and rapid alternative method for the identification of Salmonella spp. and allowed the observation of specific serovar contamination in the field conditions within the locations where these chickens are typically raised.

  2. Gene-targeted embryonic stem cells: real-time PCR assay for estimation of the number of neomycin selection cassettes

    Directory of Open Access Journals (Sweden)

    Mancini Cecilia

    2011-10-01

    Full Text Available Abstract In the preparation of transgenic murine ES cells it is important to verify the construct has a single insertion, because an ectopic neomycin phosphortransferase positive selection cassette (NEO may cause a position effect. During a recent work, where a knockin SCA28 mouse was prepared, we developed two assays based on Real-Time PCR using both SYBR Green and specific minor groove binder (MGB probes to evaluate the copies of NEO using the comparative delta-delta Ct method versus the Rpp30 reference gene. We compared the results from Southern blot, routinely used to quantify NEO copies, with the two Real-Time PCR assays. Twenty-two clones containing the single NEO copy showed values of 0.98 ± 0.24 (mean ± 2 S.D., and were clearly distinguishable from clones with two or more NEO copies. This method was found to be useful, easy, sensitive and fast and could substitute for the widely used, but laborious Southern blot method.

  3. Characterization of ISR region and development of a PCR assay for rapid detection of the fish pathogen Tenacibaculum soleae.

    Science.gov (United States)

    López, Jose R; Hamman-Khalifa, Abdel M; Navas, José I; de la Herran, Roberto

    2011-11-01

    The aims of this work were to characterize the 16S-23S internal spacer region of the fish pathogen Tenacibaculum soleae and to develop a PCR assay for its identification and detection. All T. soleae strains tested displayed a single internal spacer region class, containing tRNA(I) (le) and tRNA(A) (la) genes; nevertheless, a considerable intraspecific heterogeneity was observed. However, this region proved to be useful for differentiation of T. soleae from related and non-related species. Species-specific primers were designed targeting the 16S rRNA gene and the internal spacer region region, yielding a 1555-bp fragment. Detection limit was of 1 pg DNA per reaction (< 30 bacterial cells) when using pure cultures. The detection level in the presence of DNA from fish or other bacteria was lower; however, 10 pg were detected at a target/background ratio of 1 : 10(5) . The PCR assay proved to be more sensitive than agar cultivation for the detection of T. soleae from naturally diseased fish, offering a useful tool for diagnosis and for understanding the epidemiology of this pathogen.

  4. An integrated closed-tube 2-plex PCR amplification and hybridization assay with switchable lanthanide luminescence based spatial detection.

    Science.gov (United States)

    Lahdenperä, Susanne; Spangar, Anni; Lempainen, Anna-Maija; Joki, Laura; Soukka, Tero

    2015-06-21

    Switchable lanthanide luminescence is a binary probe technology that inherently enables a high signal modulation in separation-free detection of DNA targets. A luminescent lanthanide complex is formed only when the two probes hybridize adjacently to their target DNA. We have now further adapted this technology for the first time in the integration of a 2-plex polymerase chain reaction (PCR) amplification and hybridization-based solid-phase detection of the amplification products of the Staphylococcus aureus gyrB gene and an internal amplification control (IAC). The assay was performed in a sealed polypropylene PCR chip containing a flat-bottom reaction chamber with two immobilized capture probe spots. The surface of the reaction chamber was functionalized with NHS-PEG-azide and alkyne-modified capture probes for each amplicon, labeled with a light harvesting antenna ligand, and covalently attached as spots to the azide-modified reaction chamber using a copper(i)-catalyzed azide-alkyne cycloaddition. Asymmetric duplex-PCR was then performed with no template, one template or both templates present and with a europium ion carrier chelate labeled probe for each amplicon in the reaction. After amplification europium fluorescence was measured by scanning the reaction chamber as a 10 × 10 raster with 0.6 mm resolution in time-resolved mode. With this assay we were able to co-amplify and detect the amplification products of the gyrB target from 100, 1000 and 10,000 copies of isolated S. aureus DNA together with the amplification products from the initial 5000 copies of the synthetic IAC template in the same sealed reaction chamber. The addition of 10,000 copies of isolated non-target Escherichia coli DNA in the same reaction with 5000 copies of the synthetic IAC template did not interfere with the amplification or detection of the IAC. The dynamic range of the assay for the synthetic S. aureus gyrB target was three orders of magnitude and the limit of detection of 8 p

  5. A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4.

    Science.gov (United States)

    Väisänen, E; Lahtinen, A; Eis-Hübinger, A M; Lappalainen, M; Hedman, K; Söderlund-Venermo, M

    2014-01-01

    Human parvovirus 4 (PARV4) of the family Parvoviridae was discovered in a plasma sample of a patient with an undiagnosed acute infection in 2005. Currently, three PARV4 genotypes have been identified, however, with an unknown clinical significance. Interestingly, these genotypes seem to differ in epidemiology. In Northern Europe, USA and Asia, genotypes 1 and 2 have been found to occur mainly in persons with a history of injecting drug use or other parenteral exposure. In contrast, genotype 3 appears to be endemic in sub-Saharan Africa, where it infects children and adults without such risk behaviour. In this study, a novel straightforward and cost-efficient molecular assay for both quantitation and genotyping of PARV4 DNA was developed. The two-step method first applies a single-probe pan-PARV4 qPCR for screening and quantitation of this relatively rare virus, and subsequently, only the positive samples undergo a real-time PCR-based multi-probe genotyping. The new qPCR-GT method is highly sensitive and specific regardless of the genotype, and thus being suitable for studying the clinical impact and occurrence of the different PARV4 genotypes.

  6. Comparison of agar gel immunodiffusion test, enzyme-linked immunosorbent assay and PCR in diagnostics of enzootic bovine leukosis

    Directory of Open Access Journals (Sweden)

    Malovrh Tadej

    2005-01-01

    Full Text Available Bovine leukaemia virus (BLV is a retrovirus that induces a chronic infection in cattle. Once infected, cattle remain virus carriers for life and start to show an antibody response within a few weeks after infection. Eradication and control of the disease are based on early diagnostics and segregation of the carriers. The choice of a diagnostic method depends on the eradication programme, money resources and characteristics of the herd to be analysed. The agar gel immunodiffusion (AGID test has been the serological test of choice for routine diagnosis of serum samples. Nevertheless, in more recent years, the enzyme-linked immunosorbent assay (ELISA has replaced the AGID for large scale testing. For this purpose, commercially available BLV-ELISA kits were compared to the AGID and to the polymerase chain reaction (PCR method performed with two sets of primers, amplifying env region. The ELISA kit based on the p24 core protein was found to be less specific and served as a screening test. The ELISA kit based on the envelope glycoprotein (gpSI served as a verification test and gave a good correlation with the AGID test and PCR method. However, ELISA showed a higher sensitivity than AGID. The p24 based ELiSA was useful for screening a large number of samples, whereas gp51 based ELISA, AGID and PCR were more important for detecting the antibody response against the individual BLV-proteins and therefore for verification of the infection with BLV.

  7. Development of a real-time PCR assay for Penicillium expansum quantification and patulin estimation in apples.

    Science.gov (United States)

    Tannous, Joanna; Atoui, Ali; El Khoury, André; Kantar, Sally; Chdid, Nader; Oswald, Isabelle P; Puel, Olivier; Lteif, Roger

    2015-09-01

    Due to the occurrence and spread of the fungal contaminants in food and the difficulties to remove their resulting mycotoxins, rapid and accurate methods are needed for early detection of these mycotoxigenic fungi. The polymerase chain reaction and the real time PCR have been widely used for this purpose. Apples are suitable substrates for fungal colonization mostly caused by Penicillium expansum, which produces the mycotoxin patulin during fruit infection. This study describes the development of a real-time PCR assay incorporating an internal amplification control (IAC) to specifically detect and quantify P. expansum. A specific primer pair was designed from the patF gene, involved in patulin biosynthesis. The selected primer set showed a high specificity for P. expansum and was successfully employed in a standardized real-time PCR for the direct quantification of this fungus in apples. Using the developed system, twenty eight apples were analyzed for their DNA content. Apples were also analyzed for patulin content by HPLC. Interestingly, a positive correlation (R(2) = 0.701) was found between P. expansum DNA content and patulin concentration. This work offers an alternative to conventional methods of patulin quantification and mycological detection of P. expansum and could be very useful for the screening of patulin in fruits through the application of industrial quality control.

  8. 发色底物法在酶促反应初速度内测定α1抗胰蛋白酶的活性%Detection ofα1 antitrypsin activity by chromogenic substrate assay with initial veloci-ty of enzymatic reaction

    Institute of Scientific and Technical Information of China (English)

    张晋超; 赵雄; 吕茂民; 尹惠琼; 王延琳; 章金刚

    2015-01-01

    Objective To detect the activity of α1 antitrypsin(AAT) with initial velocity of enzymatic reaction in order to detect the activity of samples in the process of separating and purifying plasma protein ,chromogenic substrate assay was optimized.Methods The effect of trypsin concentration and reaction time on enzymatic reaction was acquired by the kinetic monitoring mode of the microplate reader .Initial velocity was calculated to confirm the largest concentration of trypsin which was saturated by substrate .AAT was incubated with trypsin and absorbance produced by enzymatic reaction of remaining trypsin and substrate could reflect the activity of AAT .A standard curve was established with △D fitting with the activity of AAT standard.The activity of related samples was detected and the precision and accuracy of the method were evaluated . Results Trypsin concentration was 0.0625 mg/ml.Within 20 minutes, enzymatic reaction was with initial velocity .The range of the standard curve was 200-1200 IU/ml.Correlation coefficient was more than 0.99.The activity of Cohn Ⅳ, samples of pre-processing and elution were (720.59 ±18.63), (601.84 ±19.18),and (568.09 ±24.83)IU/ml, respec-tively.The relative standard deviation was less than 10%. Sample recovery rate was 90%-110%.Conclusion The optimized chromogenic substrate assay greatly improves accuracy and precision .The method can be used for the detec-tion of AAT activity of samples in laboratories and workshops .%目的:优化发色底物法,使其在酶促反应初速度内测定α1抗胰蛋白酶( AAT)的活性并用于血浆蛋白纯化过程中各样品活性的检测。方法采用酶标仪动态监测模式观察酶浓度和反应时间对酶促反应的影响;计算初速度并确定被底物饱和的最大酶浓度。将AAT与胰蛋白酶孵育,剩余靶酶和底物作用产生的光密度可反映AAT的活性。通过△D与AAT标准品活性进行拟合建立标准曲线,测定相关样品的活

  9. Quantitative polymerase chain reaction (PCR) assays for a bacterial thiaminase I gene and the thiaminase-producing bacterium Paenibacillus thiaminolyticus.

    Science.gov (United States)

    Richter, C.A.; Wright-Osment, Maureen K.; Zajicek, J.L.; Honeyfield, D.C.; Tillitt, D.E.

    2009-01-01

    The thiaminase I enzyme produced by the gram-positive bacterium Paenibacillus thiaminolyticus isolated from the viscera of Lake Michigan alewives Alosa pseudoharengus is currently the only defined source of the thiaminase activity linked to thiamine (vitamin B1) deficiency in early mortality syndrome (EMS) in the larvae of Great Lakes salmonines. Diets of alewife or isolated strains of P. thiaminolyticus mixed in a semipurified diet and fed to lake trout Salvelinus namaycush have been shown to produce EMS in fry. We utilized quantitative polymerase chain reaction (Q-PCR) to aid in studies of the sources of P. thiaminolyticus and thiaminase I. Quantitative PCR assays were established to detect the thiaminase I gene of P. thiaminolyticus, the 16S rRNA gene from most species of bacteria, and the 16S rRNA gene specifically from P. thiaminolyticus and a few closely related taxa. The Q-PCR assays are linear over at least six orders of magnitude and can detect the thiaminase I gene of P. thiaminolyticus from as few as 1,000 P. thiaminolyticus cells/g of sample or the Paenibacillus 16S rRNA gene from as few as 100 P. thiaminolyticus cells/g of sample. The initial results from alewife viscera samples with high thiaminase activity yielded unexpectedly low densities of P. thiaminolyticus cells; Paenibacillus thiaminolyticus was detectable in 2 of 6 alewife viscera tested at densities on the order of 100 cells/g out of 100,000,000 total bacterial cells/g. The low numbers of P. thiaminolyticus detected suggest that alewives contain additional non-P. thiaminolyticus sources of thiaminase activity.

  10. Detection of mycobacteria, Mycobacterium avium subspecies, and Mycobacterium tuberculosis complex by a novel tetraplex real-time PCR assay.

    Science.gov (United States)

    Sevilla, Iker A; Molina, Elena; Elguezabal, Natalia; Pérez, Valentín; Garrido, Joseba M; Juste, Ramón A

    2015-03-01

    Mycobacterium tuberculosis complex, Mycobacterium avium, and many other nontuberculous mycobacteria are worldwide distributed microorganisms of major medical and veterinary importance. Considering the growing epidemiologic significance of wildlife-livestock-human interrelation, developing rapid detection tools of high specificity and sensitivity is vital to assess their presence and accelerate the process of diagnosing mycobacteriosis. Here we describe the development and evaluation of a novel tetraplex real-time PCR for simultaneous detection of Mycobacterium genus, M. avium subspecies, and M. tuberculosis complex in an internally monitored single assay. The method was evaluated using DNA from mycobacterial (n = 38) and nonmycobacterial (n = 28) strains, tissues spiked with different CFU amounts of three mycobacterial species (n = 57), archival clinical samples (n = 233), and strains isolated from various hosts (n = 147). The minimum detectable DNA amount per reaction was 50 fg for M. bovis BCG and M. kansasii and 5 fg for M. avium subsp. hominissuis. When spiked samples were analyzed, the method consistently detected as few as 100 to 1,000 mycobacterial CFU per gram. The sensitivity and specificity values for the panel of clinical samples were 97.5 and 100% using a verified culture-based method as the reference method. The assays performed on clinical isolates confirmed these results. This PCR was able to identify M. avium and M. tuberculosis complex in the same sample in one reaction. In conclusion, the tetraplex real-time PCR we designed represents a highly specific and sensitive tool for the detection and identification of mycobacteria in routine laboratory diagnosis with potential additional uses.

  11. BLV-CoCoMo-qPCR-2: improvements to the BLV-CoCoMo-qPCR assay for bovine leukemia virus by reducing primer degeneracy and constructing an optimal standard curve.

    Science.gov (United States)

    Takeshima, Shin-nosuke; Kitamura-Muramatsu, Yuri; Yuan, Yuan; Polat, Meripet; Saito, Susumu; Aida, Yoko

    2015-05-01

    Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. Because BLV infection can remain clinically silent, the proviral load is an important index for estimating disease progression. CoCoMo-qPCR, an assay developed to estimate BLV proviral load, allows the highly sensitive detection of BLV originating in different countries. Here, we developed a modified version of the CoCoMo-qPCR assay, the "BLV-CoCoMo-qPCR-2" assay, which uses optimized degenerate primers. We also constructed a new plasmid standard. Finally, we used both assays to examine DNA samples from BLV-infected cattle and compared the results.

  12. Evaluation of a rapid and completely automated real-time reverse transcriptase PCR assay for diagnosis of enteroviral meningitis.

    Science.gov (United States)

    Nolte, Frederick S; Rogers, Beverly B; Tang, Yi-Wei; Oberste, M Steven; Robinson, Christine C; Kehl, K Sue; Rand, Kenneth A; Rotbart, Harley A; Romero, Jose R; Nyquist, Ann-Christine; Persing, David H

    2011-02-01

    Nucleic acid amplification tests (NAATs) for enterovirus RNA in cerebrospinal fluid (CSF) have emerged as the new gold standard for diagnosis of enteroviral meningitis, and their use can improve the management and decrease the costs for caring for children with enteroviral meningitis. The Xpert EV assay (Cepheid, Sunnyvale, CA) is a rapid, fully automated real-time PCR test for the detection of enterovirus RNA that was approved by the U.S. Food and Drug Administration for in vitro diagnostic use in March 2007. In this multicenter trial we established the clinical performance characteristics of the Xpert EV assay in patients presenting with meningitis symptoms relative to clinical truth. Clinical truth for enteroviral meningitis was defined as clinical evidence of meningitis, the absence of another detectable pathogen in CSF, and detection of enterovirus in CSF either by two reference NAATs or by viral culture. A total of 199 prospectively and 235 retrospectively collected specimens were eligible for inclusion in this study. The overall prevalence of enteroviral meningitis was 26.04%. The Xpert EV assay had a sensitivity of 94.69% (90% confidence interval [CI] = 89.79 to 97.66%), specificity of 100% (90% CI = 99.07 to 100%), positive predictive value of 100%, negative predictive value of 98.17, and an accuracy of 98.62% relative to clinical truth. The Xpert EV assay demonstrated a high degree of accuracy for diagnosis of enteroviral meningitis. The simplicity and on-demand capability of the Xpert EV assay should prove to be a valuable adjunct to the evaluation of suspected meningitis cases.

  13. Clinical Application of a Multiplex Real-Time PCR Assay for Simultaneous Detection of Legionella Species, Legionella pneumophila, and Legionella pneumophila Serogroup 1

    OpenAIRE

    Benitez, Alvaro J.; Winchell, Jonas M.

    2014-01-01

    We developed a single-tube multiplex real-time PCR assay capable of simultaneously detecting and discriminating Legionella spp., Legionella pneumophila, and Legionella pneumophila serogroup 1 in primary specimens. Evaluation of 21 clinical specimens and 115 clinical isolates demonstrated this assay to be a rapid, high-throughput diagnostic test with 100% specificity that may aid during legionellosis outbreaks and epidemiologic investigations.

  14. Clinical application of a multiplex real-time PCR assay for simultaneous detection of Legionella species, Legionella pneumophila, and Legionella pneumophila serogroup 1.

    Science.gov (United States)

    Benitez, Alvaro J; Winchell, Jonas M

    2013-01-01

    We developed a single-tube multiplex real-time PCR assay capable of simultaneously detecting and discriminating Legionella spp., Legionella pneumophila, and Legionella pneumophila serogroup 1 in primary specimens. Evaluation of 21 clinical specimens and 115 clinical isolates demonstrated this assay to be a rapid, high-throughput diagnostic test with 100% specificity that may aid during legionellosis outbreaks and epidemiologic investigations.

  15. Development of a multiplex taqMan real-time PCR assay for typing of Mycoplasma pneumoniae based on type-specific indels identified through whole genome sequencing.

    Science.gov (United States)

    Wolff, Bernard J; Benitez, Alvaro J; Desai, Heta P; Morrison, Shatavia S; Diaz, Maureen H; Winchell, Jonas M

    2017-03-01

    We developed a multiplex real-time PCR assay for simultaneously detecting M. pneumoniae and typing into historically-defined P1 types. Typing was achieved based on the presence of short type-specific indels identified through whole genome sequencing. This assay was 100% specific compared to existing methods and may be useful during epidemiologic investigations.

  16. Development of a real-time RT-PCR assay based on primer-probe energy transfer for the detection of all serotypes of bluetongue virus

    DEFF Research Database (Denmark)

    Leblanc, N; Rasmussen, Thomas Bruun; Fernandez, J

    2010-01-01

    A real-time RT-PCR assay based on the primer–probe energy transfer (PriProET) was developed to detect all 24 serotypes of bluetongue virus (BTV). BTV causes serious disease, primarily in sheep, but in other ruminants as well. A distinguishing characteristic of the assay is its tolerance toward mu...

  17. Toward an international standard for PCR-based detection of Escherichia coli O157 - Part 1. Assay development and multi-center validation

    DEFF Research Database (Denmark)

    Abdulmawjood, A.; Bulte, M.; Cook, N.

    2003-01-01

    As part of a major European research project, a diagnostic PCR assay, including an internal amplification control, was developed and validated in a collaborative trial for the detection of Escherichia coli O157. The assay is based on amplification of sequences of the rJbE O157 gene. The collabora...

  18. Development and Validation of a PCR Assay To Detect the Prairie Epidemic Strain of Pseudomonas aeruginosa from Patients with Cystic Fibrosis.

    Science.gov (United States)

    Workentine, M; Poonja, A; Waddell, B; Duong, J; Storey, D G; Gregson, D; Somayaji, R; Rabin, H R; Surette, M G; Parkins, M D

    2016-02-01

    The monitoring of epidemic Pseudomonas aeruginosa is important for cystic fibrosis (CF) infection control. The prairie epidemic strain (PES) is common in western Canadian CF clinics. Using whole-genome sequencing, we identified a novel genomic island and developed a PCR assay for PES. Against a collection of 186 P. aeruginosa isolates, the assay had 98% sensitivity and 100% specificity.

  19. Simultaneous detection of virulence factors from a colony in diarrheagenic Escherichia coli by a multiplex PCR assay with Alexa Fluor-labeled primers.

    Science.gov (United States)

    Kuwayama, Masaru; Shigemoto, Naoki; Oohara, Sachiko; Tanizawa, Yukie; Yamada, Hiroko; Takeda, Yoshihiro; Matsuo, Takeshi; Fukuda, Shinji

    2011-07-01

    We have developed simultaneous detection of eight genes associated with the five categories of diarrheagenic Escherichia coli by the multiplex PCR assay with Alexa Fluor-labeled primers. This assay can easily distinguish eight genes based on the size and color of amplified products without gel staining.

  20. Quantitation of viable Coxiella burnetii in milk using an integrated cell culture-polymerase chain reaction (ICC-PCR) assay.

    Science.gov (United States)

    Stewart, Diana; Shieh, Y-Carol; Tortorello, Mary; Kukreja, Ankush; Shazer, Arlette; Schlesser, Joseph

    2015-11-01

    The obligate intracellular pathogen Coxiella burnetii has long been considered the most heat resistant pathogen in raw milk, making it the reference pathogen for determining pasteurisation conditions for milk products. New milk formulations and novel non-thermal processes require validation of effectiveness which requires a more practical method for analysis than using the currently used animal model for assessing Coxiella survival. Also, there is an interest in better characterising thermal inactivation of Coxiella in various milk formulations. To avoid the use of the guinea pig model for evaluating Coxiella survival, an Integrated Cell Culture-PCR (ICC-PCR) method was developed for determining Coxiella viability in milk. Vero cell cultures were directly infected from Coxiella-contaminated milk in duplicate 24-well plates. Viability of the Coxiella in milk was shown by a ≥ 0.5 log genome equivalent (ge)/ml increase in the quantity of IS111a gene from the baseline post-infection (day 0) level after 9-11 d propagation. Coxiella in skim, 2%, and whole milk, and half and half successfully infected Vero cells and increased in number by at least 2 logs using a 48-h infection period followed by 9-d propagation time. As few as 125 Coxiella ge/ml in whole milk was shown to infect and propagate at least 2 logs in the optimised ICC-PCR assay, though variable confirmation of propagation was shown for as low as 25 Coxiella ge/ml. Applicability of the ICC-PCR method was further proven in an MPN format to quantitate the number of viable Coxiella remaining in whole milk after 60 °C thermal treatment at 0, 20, 40, 60 and 90 min.

  1. Diagnosis of visceral Leishmaniasis in asymptomatic dogs by the KDNA PCR-hybridization assay using noninvasive samples

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Rodrigo Souza; Andrade, Antero Silva Ribeiro de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: rleite2005@gmail.com; Ferreira, Sydney de Almeida; Ituassu, Leonardo Trindade; Melo, Maria Norma de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Centro de Ciencias Biologicas. Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com

    2009-07-01

    The visceral leishmaniasis (VL) in Brazil is caused by Leishmania (Leishmania) chagasi and the asymptomatic dogs may transmit the parasite to sand flies vectors. The VL epidemiological control in Brazil involves the elimination of seropositive dogs, insecticide treatment and systematic treatment of human cases. Therefore, the accurate diagnosis is important in order to avoid the disease transmission or unnecessary culling of dogs. Serological tests are used for screening of dogs. However, these techniques present limitations. The Polymerase Chain Reaction (PCR) is an attractive alternative to the diagnosis in this context; but non-invasive samplings have great importance because they are simpler, painless and less resisted by dog-owners. This study aimed at evaluating conjunctival swab (CS) for canine VL diagnosis. In this methodology a sterile cotton swab is used to sampling the dog conjunctiva in both eyes. Thirty asymptomatic seropositive dogs were used. The samples were analyzed by the kDNA PCR-hybridization procedure in which the PCR products are hybridized with cloned kDNA mini-circles labeled with {sup 32}P[]dCTP. In addition, blood (B) was collected from each animal. L. chagasi was identified in 90% of CS samples and 13,6% of B samples. The high sensitivity obtained with asymptomatic dogs, in which the diagnosis is more difficult due the low number of parasites in the samples, allow concluding that the conjunctival swab associated to the kDNA PCR-hybridization assay provides a valuable alternative tool for the direct diagnosis of canine leishmaniasis. (author)

  2. In vitro adhesion assay of lactic acid bacteria, Escherichia coli and Salmonella sp. by microbiological and PCR methods

    Directory of Open Access Journals (Sweden)

    Didier Montet

    2006-03-01

    Full Text Available In vitro adhesion assay using Lactobacillus reuteri KUB-AC5 as a test strain has been studied by applying simple PCR reaction together with image analysis and plate count techniques. Critical factor affecting the PCR method was quality and quantity of DNA. The cell lysis technique was modified to optimize this method. Thus, lysozyme and proteinase K were added to lyse the cells, followed by SDS solution to obtain a complete cell lysis. Only PCR products from total cells (TC were obtained, with low consistency, but none from cells bound to mucus (BC at either 0.1 or 0.5 mg/mL concentration. It was hypothesized that the attached cells might not be extracted into the cell suspension. Therefore, 1% SDS solution and 0.1M NaOH were used directly in the extraction. As expected, PCR products were observed when both TC and BC were used as a DNA template. Adhesion appeared at a wide range of 0-45%, with low consistency. Therefore, a simple microbiological method (plate count was used. The extraction of bound cells into cell suspension was critical in this method. Extraction times of 20, 60, 120 and 150 min were tried. Results showed that maximum cell number was obtained with 120 min extraction. L. reuteri KUB-AC5, L. reuteri KUB-AC16, L. reuteri KUB-AC20, L. salivarius KUB-AC21, L. acidophilus KV-1, Escherichia coli E010, Salmonella sp. S003, E. coli ATCC8739, and S. typhimurium ATCC 13311 exhibited adhesion activity of 21.6%, 0.8%, 5.7%, 1.1%, 23.1%, 10.7%, 10.3%, 4.4% and 3.2%, respectively. Among the 9 types of microorganisms tested L. acidophilus KV-1 and L. reuteri KUB-AC5 showed higher adhesion activity than the others.

  3. Use of competitive PCR to assay copy number of repetitive elements in banana.

    Science.gov (United States)

    Baurens, F C; Noyer, J L; Lanaud, C; Lagoda, P J

    1996-11-27

    Banana is one of the most important subtropical fruit crops. Genetic improvement by traditional breeding strategies is difficult and better knowledge of genomic structure is needed. Repeated sequences are powerful markers for genetic fingerprinting. The method proposed here to determine the copy number of nuclear repetitive elements is based on competitive reverse transcription-polymerase chain reaction and can also be used for quantifying cytosolic sequences. The reliability of this method was investigated on crude preparations of total DNA. Variations due to the heterogeneity of crude DNA extracts showed that a single locus reference is needed for accurate quantification. A mapped microsatellite locus was used to normalize copy number measurements. Copy number assay of repetitive elements using this method clearly distinguishes between the two banana subspecies investigated: Musa acuminata spp. banskii and M. acuminata spp. malaccensis. Two repetitive sequence families, pMaCIR1115 and pA9-26, were assayed that cover up to 1% of the M. acuminata genome. Their copy number varied up to six fold between the two subspecies. Furthermore, sequence quantification showed that mitochondrial genomes are present in crude leaf-extracted banana DNA at up to 40 copies per cell.

  4. Development of 11-Plex MOL-PCR Assay for the Rapid Screening of Samples for Shiga Toxin-Producing Escherichia coli.

    Science.gov (United States)

    Woods, Travis A; Mendez, Heather M; Ortega, Sandy; Shi, Xiaorong; Marx, David; Bai, Jianfa; Moxley, Rodney A; Nagaraja, T G; Graves, Steven W; Deshpande, Alina

    2016-01-01

    Strains of Shiga toxin-producing Escherichia coli (STEC) are a serious threat to the health, with approximately half of the STEC related food-borne illnesses attributable to contaminated beef. We developed an assay that was able to screen samples for several important STEC associated serogroups (O26, O45, O103, O104, O111, O121, O145, O157) and three major virulence factors (eae, stx 1 , stx 2) in a rapid and multiplexed format using the Multiplex oligonucleotide ligation-PCR (MOL-PCR) assay chemistry. This assay detected unique STEC DNA signatures and is meant to be used on samples from various sources related to beef production, providing a multiplex and high-throughput complement to the multiplex PCR assays currently in use. Multiplex oligonucleotide ligation-PCR (MOL-PCR) is a nucleic acid-based assay chemistry that relies on flow cytometry/image cytometry and multiplex microsphere arrays for the detection of nucleic acid-based signatures present in target agents. The STEC MOL-PCR assay provided greater than 90% analytical specificity across all sequence markers designed when tested against panels of DNA samples that represent different STEC serogroups and toxin gene profiles. This paper describes the development of the 11-plex assay and the results of its validation. This highly multiplexed, but more importantly dynamic and adaptable screening assay allows inclusion of additional signatures as they are identified in relation to public health. As the impact of STEC associated illness on public health is explored additional information on classification will be needed on single samples; thus, this assay can serve as the backbone for a complex screening system.

  5. Development of a real-time RT-PCR assay for the detection of Crimean-Congo hemorrhagic fever virus.

    Science.gov (United States)

    Atkinson, Barry; Chamberlain, John; Logue, Christopher H; Cook, Nicola; Bruce, Christine; Dowall, Stuart D; Hewson, Roger

    2012-09-01

    Crimean-Congo hemorrhagic fever (CCHF) is a virulent tick-borne disease with a case fatality rate ranging from 10-50% for tick-borne transmission, and up to 80% for nosocomial transmission. Human cases have been reported in over 30 countries across Europe, Asia, and Africa. It appears to be spreading to new areas with several countries reporting their first human cases of CCHF disease within the past 10 years. We report a novel real-time RT-PCR assay designed to amplify a conserved region of the CCHF virus S segment. It is capable of detecting strains from all 7 groups of CCHF, including the AP92 strain that until recently represented a lineage of strains that were not associated with human disease. The limit of detection of the assay is 5 copies of target RNA, and the assay shows no cross-reactivity with other viruses from within the same genus, or with viruses causing similar human disease.

  6. A real-time PCR assay to estimate invertebrate and fish predation on anchovy eggs in the Bay of Biscay

    KAUST Repository

    Albaina, A.

    2015-02-01

    In order to investigate the role of predation on eggs and larvae in the recruitment of anchovy (Engraulis encrasicolus), sardine (Sardina pilchardus), sprat (Sprattus sprattus) and 52 macrozooplankton taxa were assayed for anchovy remains in the gut during the 2010 spawning season using a molecular method. This real-time PCR based assay was capable of detecting 0.005. ng of anchovy DNA (roughly 1/100 of a single egg assay) in a reliable way and allowed detecting predation events up to 6. h after ingestion by small zooplankton taxa. A total of 1069 macrozooplankton individuals, 237 sardines and 213 sprats were tested. Both fish species and 32 macrozooplankton taxa showed remains of anchovy DNA within their stomach contents. The two main findings are (1) that the previously neglected macrozooplankton impact in anchovy eggs/larvae mortality is in the same order of magnitude of that due to planktivorous fishes and that, (2) the predation pressure was notably different in the two main spawning centers of Bay of Biscay anchovy. While relatively low mortality rates were recorded at the shelf-break spawning center, a higher predation pressure from both fish and macrozooplankton was exerted at the shelf one.

  7. Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study

    Science.gov (United States)

    Layton, Blythe A.; Cao, Yiping; Ebentier, Darcy L.; Hanley, Kaitlyn; Ballesté, Elisenda; Brandão, João; Byappanahalli, Muruleedhara N.; Converse, Reagan; Farnleitner, Andreas H.; Gentry-Shields, Jennifer; Gourmelon, Michèle; Lee, Chang Soo; Lee, Jiyoung; Lozach, Solen; Madi, Tania; Meijer, Wim G.; Noble, Rachel; Peed, Lindsay; Reischer, Georg H.; Rodrigues, Raquel; Rose, Joan B.; Schriewer, Alexander; Sinigalliano, Chris; Srinivasan, Sangeetha; Stewart, Jill; ,; Laurie, C.; Wang, Dan; Whitman, Richard; Wuertz, Stefan; Jay, Jenny; Holden, Patricia A.; Boehm, Alexandria B.; Shanks, Orin; Griffith, John F.

    2013-01-01

    A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing in large multi-laboratory studies. Here, we evaluated ten of these methods (BacH, BacHum-UCD, Bacteroides thetaiotaomicron (BtH), BsteriF1, gyrB, HF183 endpoint, HF183 SYBR, HF183 Taqman®, HumM2, and Methanobrevibacter smithii nifH (Mnif)) using 64 blind samples prepared in one laboratory. The blind samples contained either one or two fecal sources from human, wastewater or non-human sources. The assay results were assessed for presence/absence of the human markers and also quantitatively while varying the following: 1) classification of samples that were detected but not quantifiable (DNQ) as positive or negative; 2) reference fecal sample concentration unit of measure (such as culturable indicator bacteria, wet mass, total DNA, etc); and 3) human fecal source type (stool, sewage or septage). Assay performance using presence/absence metrics was found to depend on the classification of DNQ samples. The assays that performed best quantitatively varied based on the fecal concentration unit of measure and laboratory protocol. All methods were consistently more sensitive to human stools compared to sewage or septage in both the presence/absence and quantitative analysis. Overall, HF183 Taqman® was found to be the most effective marker of human fecal contamination in this California-based study.

  8. Clinical Application of Multiplex PCR Assay for the Diagnosis of the Etiology of Genital Ulcer Disease Among Patients Attending STD Clinics in Guangzhou, China

    Institute of Scientific and Technical Information of China (English)

    朱慧兰; 苏向阳; 林路洋; 叶兴东

    2002-01-01

    Objectives: To develop a method of simultaneous PCRdetection of Haemophilus ducreyi, Treponema pallidum, andHerpes Simplex Virus Types 1 and 2 from genital ulcersamong patients attending STD clinics in Guangzhou, China;and evaluate the clinical application of multiplex PCR (M-PCR) assay for diagnosing the etiology of genital ulcerdiseases (GUD). Methods: 244 patients with a genital ulcer were evaluated.Clinical etiology of GUD was based on physical appearanceand microbiologic evaluations that included dark fieldmicroscopy examination (D-F) and serology test for syphilis(STS). Swabs of each genital ulcer were tested for HSVantigen by enzyme immunoassay (EIA) and processed in anM-PCR assay for simultaneous detection of T. pallidum, HSVand H. ducreyi. Results: The standard strains of T. pallidum, HSV and H.ducreyi were amplified by M-PCR, producing amplifiedproducts of 260bp,432bp,170bp, respectively. The sensitivityof M-PCR is 102pg DNA. M-PCR assay for T. pallidum, HSVand H. ducreyi showed good agreement when compared withD-F detection for T. pallidum, STS, H. ducreyi culture and EIAfor HSV antigen (Kappa scores are 0.774,0.704,0.793,0.756,respectively). Conclusions: The M-PCR is a convenient, accurate andreliable assay for the detection of T. pallidum, HSV and H.ducreyi from genital ulcers, and can be used as a method of diagnosing the etiology of GUD.

  9. Development and evaluation of novel one-step TaqMan realtime RT-PCR assays for the detection and direct genotyping of genogroup I and II noroviruses

    DEFF Research Database (Denmark)

    Schultz, Anna Charlotte; Vega, Everado; Dalsgaard, Anders;

    2011-01-01

    , polioviruses, and rotaviruses. L-RT-qPCR products were typed by sequencing. ResultsThe novel GI and GII L-RT-qPCR assays detected and typed all but one of the NoV positive panel samples. As few as 5–500 RNA copies could be accurately typed by sequencing of amplicons. ConclusionsWe developed novel one-step Taq......BackgroundCurrent detection and genotyping methods of genogroup (G) I and II noroviruses (NoVs) consist of a 2-step approach including detection of viral RNA by TaqMan realtime RT-PCR (RT-qPCR) followed by conventional RT-PCR and sequencing of partial regions of ORF1 or ORF2. ObjectiveTo develop...... novel long-template one-step TaqMan assays (L-RT-qPCR) for the rapid detection and direct genotyping of GI and GII NoVs and to evaluate the sensitivity and specificity of the assays. Study designGI and GII-specific broadly reactive L-RT-qPCR assays were developed by combining existing NoV primers...

  10. Detection and Differentiation of Leishmania spp. in Clinical Specimens by Use of a SYBR Green-Based Real-Time PCR Assay.

    Science.gov (United States)

    de Almeida, Marcos E; Koru, Ozgur; Steurer, Francis; Herwaldt, Barbara L; da Silva, Alexandre J

    2017-01-01

    Leishmaniasis in humans is caused by Leishmania spp. in the subgenera Leishmania and Viannia Species identification often has clinical relevance. Until recently, our laboratory relied on conventional PCR amplification of the internal transcribed spacer 2 (ITS2) region (ITS2-PCR) followed by sequencing analysis of the PCR product to differentiate Leishmania spp. Here we describe a novel real-time quantitative PCR (qPCR) approach based on the SYBR green technology (LSG-qPCR), which uses genus-specific primers that target the ITS1 region and amplify DNA from at least 10 Leishmania spp., followed by analysis of the melting temperature (Tm) of the amplicons on qPCR platforms (the Mx3000P qPCR system [Stratagene-Agilent] and the 7500 real-time PCR system [ABI Life Technologies]). We initially evaluated the assay by testing reference Leishmania isolates and comparing the results with those from the conventional ITS2-PCR approach. Then we compared the results from the real-time and conventional molecular approaches for clinical specimens from 1,051 patients submitted to the reference laboratory of the Centers for Disease Control and Prevention for Leishmania diagnostic testing. Specimens from 477 patients tested positive for Leishmania spp. with the LSG-qPCR assay, specimens from 465 of these 477 patients also tested positive with the conventional ITS2-PCR approach, and specimens from 10 of these 465 patients had positive results because of retesting prompted by LSG-qPCR positivity. On the basis of the Tm values of the LSG-qPCR amplicons from reference and clinical specimens, we were able to differentiate four groups of Leishmania parasites: the Viannia subgenus in aggregate; the Leishmania (Leishmania) donovani complex in aggregate; the species L (L) tropica; and the species L (L) mexicana, L (L) amazonensis, L (L) major, and L (L) aethiopica in aggregate.

  11. Comparison of PCR,DIA and Pathogenicity Assay for Detection of Xanthomonas axonopodis pv.citri,the Causal Agent of Citrus Bacterial Canker Disease

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-kang; SUN Xian-yun; YIN You-ping; ZHOU Chang-yong; XIA Yu-xian

    2004-01-01

    Polymerase chain reaction (PCR) approach based on newly designed primers, JYF5/JYR5, was applied for specific detection of Xanthomonas axonopodis pv.citri(Xac). The efficiency and reliability of PCR method were compared with dot immunobinding assay (DIA) and classical pathogenicity test techniques for detecting suspensions of pure cells of Xac and soaking sap of citrus tissues. Detection sensitivity of PCR was about 4.5 cells or 1.56 pg target DNA per reaction which was higher than that of DIA (ca. 450 cells per dot).These three techniques (PCR assay, DIA and Pathogenecity test) could always detect Xac from symptomatic citrus samples. Different performances were obtained from citrus materials without symptoms, and the positive detection frequency was PCR, DIA and pathogenicity test.

  12. An Improved PCR-RFLP Assay for Detection and Genotyping of Asymptomatic Giardia lamblia Infection in a Resource-Poor Setting.

    Science.gov (United States)

    Hawash, Yoursry; Ghonaim, M M; Al-Shehri, S S

    2016-02-01

    Laboratory workers, in resource-poor countries, still consider PCR detection of Giardia lamblia more costly and more time-consuming than the classical parasitological techniques. Based on 2 published primers, an in-house one-round touchdown PCR-RFLP assay was developed. The assay was validated with an internal amplification control included in reactions. Performance of the assay was assessed with DNA samples of various purities, 91 control fecal samples with various parasite load, and 472 samples of unknown results. Two cysts per reaction were enough for PCR detection by the assay with exhibited specificity (Sp) and sensitivity (Se) of 100% and 93%, respectively. Taking a published small subunit rRNA reference PCR test results (6%; 29/472) as a nominated gold standard, G. lamblia was identified in 5.9% (28/472), 5.2%, (25/472), and 3.6% (17/472) by PCR assay, RIDA(®) Quick Giardia antigen detection test (R-Biopharm, Darmstadt, Germany), and iodine-stained smear microscopy, respectively. The percent agreements (kappa values) of 99.7% (0.745), 98.9% (0.900), and 97.7% (0.981) were exhibited between the assay results and that of the reference PCR, immunoassay, and microscopy, respectively. Restriction digestion of the 28 Giardia-positive samples revealed genotype A pattern in 12 and genotype B profile in 16 samples. The PCR assay with the described format and exhibited performance has a great potential to be adopted in basic clinical laboratories as a detection tool for G. lamblia especially in asymptomatic infections. This potential is increased more in particular situations where identification of the parasite genotype represents a major requirement as in epidemiological studies and infection outbreaks.

  13. A Multiplex PCR assay to differentiate between dog and red fox.

    Science.gov (United States)

    Weissenberger, M; Reichert, W; Mattern, R

    2011-11-01

    Foxes are frequently the cause of car accidents in Baden-Württemberg (BW, Germany). The domestic dog (Canis familiaris) is in close relation to the red fox (Vulpes vulpes) and the silver fox which is a coat colour variant of the red fox. As insurance claims that involve accidents with animals require authentication, we analyzed frequency distribution and allele sizes in two canine microsatellite loci in 26 dogs (different breeds) and 19 red foxes of the region of BW, Germany. Moreover, sequencing analysis was performed. Red foxes exhibited only 1 allele at each microsatellite locus, whereas in dog 7 alleles at the CPH4 locus and 6 alleles at the CPH12 locus were detected. Sequences of PCR products from the two species revealed several differences between dogs and foxes. We established a sequenced allelic ladder and give population data from dogs and red foxes from the region of BW, Germany. Using microsatellite polymorphisms is efficient in differentiating between dogs and foxes in forensic casework.

  14. Determination of bacterial endotoxin content of diphtheria toxin mutant CRM 197 by kinetic chromogenic assay%动态显色法检测白喉毒素突变体CRM197的细菌内毒素含量

    Institute of Scientific and Technical Information of China (English)

    邓杰; 张珂; 袁涛; 李春阳

    2013-01-01

    目的 建立检测白喉毒素突变体CRM197细菌内毒素(bacterial endotoxin)含量的动态显色法(kinetic chromogenic assay,KCA).方法 按照《中国药典》三部(2010版)要求,用细菌内毒素检查用水(bacterial endotoxin,BET)稀释细菌内毒素工作标准品制备细菌内毒素标准曲线系列溶液,各浓度均设3个平行孔,分别与动态显色鲎试剂(kinetic chromogenic analysis tachypleus amebocyte lysate,KCA TAL)反应,绘制标准曲线,验证标准曲线的可靠性,确定最佳线性范围、测定范围及最低检测限(limit of quantitation,LOQ),验证方法的精密性和准确性,并进行初步应用.结果 标准曲线的回归方程为:y=-0.263x+2.741,R2=0.997,相关系数的绝对值|r|≥0.980,阴性对照的反应时间大于标准曲线最低点的反应时间,各复孔的变异系数(CV)<10%;内毒素浓度在0.02~2.50EU/ml时,线性关系良好,LOQ为0.02 EU/ml;3个浓度(2.50、0.50、0.02 EU/ml)标准内毒素检测结果的CV均<5%,加入高、中、低3个浓度(2.50、0.50、0.02 EU/ml)标准内毒素的3批供试品检测结果的CV均<10%,回收率在95% ~ 143%之间;采用建立的方法检测10批次CRM197样品的细菌内毒素含量,回收率在77%~118%之间,其中8批样品的内毒素含量合格.结论 动态显色法检测CRM197中内毒素的含量精密性和准确性良好,能快速、定量检测样品中的内毒素含量,抗干扰能力强,可用于CRM197研制过程中的质量控制.

  15. Duplex PCR assay for the detection of avian adeno virus and chicken anemia virus prevalent in Pakistan

    Directory of Open Access Journals (Sweden)

    Iqbal Aqib

    2011-09-01

    Full Text Available Abstract Avian Adeno viruses and Chicken Anemia Viruses cause serious economic losses to the poultry industry of Pakistan each year. Timely and efficient diagnosis of the viruses is needed in order to practice prevention and control strategies. In the first part of this study, we investigated broilers, breeder and Layer stocks for morbidity and mortality rates due to AAV and CAV infections and any co-infections by examining signs and symptoms typical of their infestation or post mortem examination. In the second part of the study, we developed a duplex PCR assay for the detection of AAV and CAV which is capable to simultaneously detect both the viral types prevalent in Pakistan with high sensitivity and 100% specificity.

  16. Rapid touchdown PCR assay for the molecular diagnosis of spinocerebellar ataxia type 2.

    Science.gov (United States)

    Condorelli, D F; Trovato-Salinaro, A; Spinella, F; Valvo, S; Saponara, R; Giuffrida, S

    1998-01-01

    Seven different chromosomal loci, designated SCA1 to SCA7 (spinocerebellar ataxias), have been identified as responsible for autosomal dominant cerebellar ataxias. Five genes (SCA1, 2, 3, 6, 7) have been cloned to date and show a single type of mutation, an unstable expansion of a CAG repeat coding for a polyglutamine stretch in the corresponding protein. We describe an improved polymerase chain reaction assay, based on a touchdown protocol, for the diagnosis of spinocerebellar ataxia type 2. This method produces an efficient amplification of both normal and pathological alleles and no radioactive labelling is necessary to observe the amplification products. The pathological alleles are identified by a simple non-denaturing polyacrylamide electrophoretic separation followed by ethidium bromide staining. A comparison of this technique with previously reported methods confirmed its utility for the rapid molecular diagnosis of spinocerebellar ataxia type 2. We found that the spinocerebellar ataxia type 2 mutation is responsible for 88% of the examined autosomal dominant cerebellar ataxia type 1 families in our territory (eastern Sicily). With the rapid touchdown polymerase chain reaction method, the trinucleotide expansion was also observed in 2 ataxic patients without family history of the disease, suggesting the necessity for analysis of spinocerebellar ataxia type 2 expansion even in sporadic patients.

  17. Real-time PCR assay is superior to other methods for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran.

    Science.gov (United States)

    Molla Kazemiha, Vahid; Bonakdar, Shahin; Amanzadeh, Amir; Azari, Shahram; Memarnejadian, Arash; Shahbazi, Shirin; Shokrgozar, Mohammad Ali; Mahdian, Reza

    2016-08-01

    Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert(®) assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert(®) mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert(®), indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.

  18. Comparison and evaluation of conventional RT-PCR, SYBR green I and TaqMan real-time RT-PCR assays for the detection of porcine epidemic diarrhea virus.

    Science.gov (United States)

    Zhou, Xinrong; Zhang, Tiansheng; Song, Deping; Huang, Tao; Peng, Qi; Chen, Yanjun; Li, Anqi; Zhang, Fanfan; Wu, Qiong; Ye, Yu; Tang, Yuxin

    2017-02-07

    Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) is a highly contagious intestinal disease, resulting in substantial economic losses to the swine industry worldwide. In this study, three assays, namely a conventional reverse transcription-polymerase chain reaction (RT-PCR), a SYBR Green I real-time RT-PCR and a TaqMan real-time RT-PCR targeting the highly conserved M gene of PEDV, were developed and evaluated. Then, the analytical specificity, sensitivity and reproducibility of these assays were determined and compared. The TaqMan real-time RT-PCR was 100-fold and 10,000-fold more sensitive than that of the SYBR Green I real-time RT-PCR and the conventional RT-PCR, respectively. The analytical sensitivity of TaqMan real-time RT-PCR was 10 copies/μl of target gene and no cross amplification with other viruses tested was observed. With the features of high specificity, sensitivity, and reproducibility, the TaqMan real-time RT-PCR established in this study could be a useful tool for clinical diagnosis, epidemiological surveys and outbreak investigations of PED.

  19. Real-Time Reverse Transcription PCR Assay for Detection of Senecavirus A in Swine Vesicular Diagnostic Specimens.

    Directory of Open Access Journals (Sweden)

    Alexa J Bracht

    Full Text Available Senecavirus A (SV-A, formerly, Seneca Valley virus (SVV, has been detected in swine with vesicular lesions and is thought to be associated with swine idiopathic vesicular disease (SIVD, a vesicular disease syndrome that lacks a defined causative agent. The clinical presentation of SIVD resembles that of other more contagious and economically devastating vesicular diseases, such as foot-and-mouth disease (FMD, swine vesicular disease (SVD, and vesicular stomatitis (VS, that typically require immediate rule out diagnostics to lift restrictions on animal quarantine, movement, and trade. This study presents the development of a sensitive, SYBR Green RT-qPCR assay suitable for detection of SV-A in diagnostic swine specimens. After testing 50 pigs with clinical signs consistent with vesicular disease, 44 (88% were found to be positive for SV-A by RT-qPCR as compared to none from a negative cohort of 35 animals without vesicular disease, indicating that the assay is able to successfully detect the virus in an endemic population. SV-A RNA was also detectable at a low level in sera from a subset of pigs that presented with (18% or without (6% vesicular signs. In 2015, there has been an increase in the occurrence of SV-A in the US, and over 200 specimens submitted to our laboratory for vesicular investigation have tested positive for the virus using this method. SV-A RNA was detectable in all common types of vesicular specimens including swabs and tissue from hoof lesions, oral and snout epithelium, oral swabs, scabs, and internal organ tissues such as liver and lymph node. Genome sequencing analysis from recent virus isolates was performed to confirm target amplicon specificity and was aligned to previous isolates.

  20. Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays.

    Science.gov (United States)

    Selbmann, Laura; Isola, Daniela; Zucconi, Laura; Onofri, Silvano

    2011-10-01

    Cryptoendolithic Antarctic black fungi are adapted to the harshest terrestrial conditions as in the ice-free area of the McMurdo Dry Valleys. Recently, surviving space simulated conditions proves their bewildering extremotolerance. In order to investigate the potential DNA damage and their response after UV-B exposition, two strains of Antarctic cryptoendolithic black fungi, Cryomyces antarcticus CCFEE 534 and Cryomyces minteri CCFEE 5187, were irradiated at different UV-B doses. Since conventional methods cannot be applied to these organisms, the effect on the genome was assessed by RAPD and rDNA amplification PCR based assays; the results were compared with the responses of Saccharomyces pastorianus DBVPG 6283 treated with the same conditions. Results showed that template activity was drastically inhibited in S. pastorianus after irradiation. Dramatic changes in the RAPD profiles showed after 30 min of exposure while the rDNA amplification of SSU, LSU, and ITS portions failed after 30, 60, and 90 min of exposure respectively. No alteration was detected in the templates of the Antarctic strains where both RAPD profiles and rDNA PCR amplifications were unaffected even after 240 min of exposure. The electroferograms of the rDNA portions of Cryomyces strains were perfectly readable and conserved whilst the analyses revealed a marked alteration in S. pastorianus confirming the high resistance of the Antarctic strains to UV-B exposure.

  1. Molecular Characteristics of Pseudomonas syringae pv. actinidiae Strains Isolated in Korea and a Multiplex PCR Assay for Haplotype Differentiation

    Directory of Open Access Journals (Sweden)

    Hyun Seok Koh

    2014-03-01

    Full Text Available The molecular features of Pseudomonas syringae pv. actinidiae strains isolated in Korea were compared with strains isolated in Japan and Italy. Sequencing of eight P. syringae pv. actinidiae and three P. syringae pv. theae strains revealed a total of 44 single nucleotide polymorphisms across 4,818 bp of the concatenated alignment of nine genes. A multiplex PCR assay was developed for the detection of P. syringae pv. actinidiae and for the specific detection of recent haplotype strains other than strains isolated since the 1980s in Korea. The primer pair, designated as TacF and TacR, specifically amplified a 545-bp fragment with the genomic DNA of new haplotype of P. syringae pv. actinidiae strains. A multiplex PCR conducted with the TacF/TacR primer pair and the universal primer pair for all P. syringae pv. actinidiae strains can be simultaneously applied for the detection of P. syringae pv. actinidiae and for the differentiation of new haplotype strains.

  2. Detection of metallo-β-lactamases producing Acinetobacter baumannii using microbiological assay, disc synergy test and PCR

    Directory of Open Access Journals (Sweden)

    M Purohit

    2012-01-01

    Full Text Available Background: One leading factor responsible for resistance in Acinetobacter baumannii, an important opportunist in health care institutions globally, is the production of carbapenamases like metallo-β-lactamases (MBLs, which hydrolyze a variety of β-lactams including penicillin, cephalosporins and carbapenems. However, neither any standard guidelines are available nor any method has been found to be perfect for their detection. Various methods have shown discordant results, depending upon the employed methodology, β-lactamase substrate and MBL inhibitor used. This study aims to evaluate two phenotypic methods against PCR as gold standard among carbapenem resistant A. baumannii for identifying MBL producers. Materials and Methods: A total of 130 A. baumannii were screened for imipenem and meropenem resistance by Kirby-Bauer disc diffusion method. Phenotypic expression of MBL was detected by EDTA-imipenem-microbiological (EIM assay and extended EDTA disc synergy (eEDS test and presence of bla-IMP and bla-VIM was detected by PCR in all the carbapenem resistant isolates. Results: Of the 43 imipenem and/or meropenem resistant A. baumannii isolates, 4 (9.3% were found to be MBL producers by EIM and 3 (6.97% by eEDS. Only bla-VIM gene was detected in 7 (16.28% by PCR. In addition EIM detected 14 (32.56% carbapenem resistant non-metallo enzyme producers. Conclusion: Of the two MBL genes targeted, bla-VIM was only detected and that too in isolates resistant to both imipenem and meropenem. Further, EIM was useful in differentiating MBL from non-metalloenzymes producers.

  3. Comparison of multiplex real-time PCR and PCR-reverse blot hybridization assay for the direct and rapid detection of bacteria and antibiotic resistance determinants in positive culture bottles.

    Science.gov (United States)

    Wang, Hye-Young; Kim, Seoyong; Kim, Jungho; Park, Soon Deok; Kim, Hyo Youl; Uh, Young; Lee, Hyeyoung

    2016-09-01

    The aim of this study was to evaluate the performance of a commercially available multiplex real-time PCR assay and a PCR-reverse blot hybridization assay (PCR-REBA) for the rapid detection of bacteria and identification of antibiotic resistance genes directly from blood culture bottles and to compare the results of these molecular assays with conventional culture methods. The molecular diagnostic methods were used to evaluate 593 blood culture bottles from patients with bloodstream infections. The detection positivity of multiplex real-time PCR assay for Gram-positive bacteria, Gram-negative bacteria and Candida spp. was equivalent to PCR-REBA as 99.6 %, 99.1 % and 100 %, respectively. Using conventional bacterial cultures as the gold standard, the sensitivity, specificity, positive predictive value and negative predictive value of these two molecular methods were 99.5 % [95 % confidence interval (CI), 0.980-1.000; PReal-methicillin-resistant Staphylococcusaureus multiplex real-time PCR assay targeting the mecA gene to detect methicillin resistance was lower than that of the PCR-REBA method, detecting an overall positivity of 98.4 % (n=182; 95 % CI, 0.964-1.000; P<0.009) and 99.5 % (n=184; 95 % CI, 0.985-1.000; P<0.0001), respectively. The entire two methods take about 3 h, while results from culture can take up to 48-72 h. Therefore, the use of these two molecular methods was rapid and reliable for the characterization of causative pathogens in bloodstream infections.

  4. Development of a two-step SYBR Green I based real time RT-PCR assay for detecting and quantifying peste des petits ruminants virus in clinical samples.

    Science.gov (United States)

    Abera, Tsegalem; Thangavelu, Ardhanary

    2014-12-01

    A two-step SYBR Green I based real time RT-PCR targeting the matrix (M) gene of Peste des petits ruminants virus (PPRV) was developed. The specificity of the assay was assessed against viral nucleic acid extracted from a range of animal viruses of clinical and structural similarities to PPRV including canine distemper virus, measles virus, bluetongue virus and Newcastle disease virus. But none of the viruses and no template control showed an amplification signal. Sensitivity of the same assay was assessed based on plasmid DNA copy number and with respect to infectivity titre. The lower detection limit achieved was 2.88 plasmid DNA copies/μl with corresponding Ct value of 35.93. Based on tissue culture infectivity titre the lower detection limits were 0.0001TCID50/ml and 1TCID50/ml for the SYBR green I based real time RT-PCR and conventional RT-PCR, respectively. The calculated coefficient of variations values for intra- and inter-assay variability were low, ranging from 0.21% to 1.83% and 0.44% to 1.97%, respectively. The performance of newly developed assay was evaluated on a total of 36 clinical samples suspected of PPR and compared with conventional RT-PCR. The SYBR Green I based real time RT-PCR assay detected PPRV in 32 (88.8%) of clinical samples compared to 19 (52.7%) by conventional RT-PCR. Thus, the two-step SYBR Green I based real time RT-PCR assay targeting the M gene of PPRV reported in this study was highly sensitive, specific and reproducible for detection and quantitation of PPRV nucleic acids.

  5. Improvement in laboratory diagnosis of wound botulism and tetanus among injecting illicit-drug users by use of real-time PCR assays for neurotoxin gene fragments.

    Science.gov (United States)

    Akbulut, D; Grant, K A; McLauchlin, J

    2005-09-01

    An upsurge in wound infections due to Clostridium botulinum and Clostridium tetani among users of illegal injected drugs (IDUs) occurred in the United Kingdom during 2003 and 2004. A real-time PCR assay was developed to detect a fragment of the neurotoxin gene of C. tetani (TeNT) and was used in conjunction with previously described assays for C. botulinum neurotoxin types A, B, and E (BoNTA, -B, and -E). The assays were sensitive, specific, rapid to perform, and applicable to investigating infections among IDUs using DNA extracted directly from wound tissue, as well as bacteria growing among mixed microflora in enrichment cultures and in pure culture on solid media. A combination of bioassay and PCR test results confirmed the clinical diagnosis in 10 of 25 cases of suspected botulism and two of five suspected cases of tetanus among IDUs. The PCR assays were in almost complete agreement with the conventional bioassays when considering results from different samples collected from the same patient. The replacement of bioassays by real-time PCR for the isolation and identification of both C. botulinum and C. tetani demonstrates a sensitivity and specificity similar to those of conventional approaches. However, the real-time PCR assays substantially improves the diagnostic process in terms of the speed of results and by the replacement of experimental animals. Recommendations are given for an improved strategy for the laboratory investigation of suspected wound botulism and tetanus among IDUs.

  6. Use of 18S rRNA gene-based PCR assay for diagnosis of acanthamoeba keratitis in non-contact lens wearers in India.

    Science.gov (United States)

    Pasricha, Gunisha; Sharma, Savitri; Garg, Prashant; Aggarwal, Ramesh K

    2003-07-01

    Identification of Acanthamoeba cysts and trophozoites in ocular tissues requires considerable expertise and is often time-consuming. An 18S rRNA gene-based PCR test, highly specific for the genus Acanthamoeba, has recently been reported in the molecular diagnosis of Acanthamoeba keratitis. This PCR assay was compared with conventional microbiological tests for the diagnosis of Acanthamoeba keratitis. In a pilot study, the PCR conditions with modifications were first tested on corneal scrapings from patients with culture-proven non-contact lens-related Acanthamoeba, bacterial, and fungal keratitis. This was followed by testing of corneal scrapings from 53 consecutive cases of microbial keratitis to determine sensitivity, specificity, and predictive values of the assay. All corneal scrapings from patients with proven Acanthamoeba keratitis showed a 463-bp amplicon, while no amplicon was obtained from patients with bacterial or fungal keratitis. Some of these amplified products were sequenced and compared with EMBL database reference sequences to validate these to be of Acanthamoeba origin. Out of 53 consecutive cases of microbial keratitis included for evaluating the PCR, 10 (18.9%) cases were diagnosed as Acanthamoeba keratitis on the basis of combined results of culture, smear, and PCR of corneal scrapings. Based on culture results as the "gold standard," the sensitivity of PCR was the same as that of the smear (87.5%); however, the specificity and the positive and negative predictive values of PCR were marginally higher than the smear examination (97.8 versus 95.6%, 87.5 versus 77.8%, and 97.8 versus 97.7%) although the difference was not significant. This study confirms the efficacy of the PCR assay and is the first study to evaluate a PCR-based assay against conventional methods of diagnosis in a clinical setting.

  7. An Evaluation of Quantitative PCR Assays (TaqMan® and SYBR Green for the Detection of Babesia bigemina and Babesia bovis, and a Novel Fluorescent-ITS1-PCR Capillary Electrophoresis Method for Genotyping B. bovis Isolates

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2016-09-01

    Full Text Available Babesia spp. are tick-transmitted haemoparasites causing tick fever in cattle. In Australia, economic losses to the cattle industry from tick fever are estimated at AUD$26 Million per annum. If animals recover from these infections, they become immune carriers. Here we describe a novel multiplex TaqMan qPCR targeting cytochrome b genes for the identification of Babesia spp. The assay shows high sensitivity, specificity and reproducibility, and allows quantification of parasite DNA from Babesia bovis and B. bigemina compared to standard PCR assays. A previously published cytochrome b SYBR Green qPCR was also tested in this study, showing slightly higher sensitivity than the Taqman qPCRs but requires melting curve analysis post-PCR to confirm specificity. The SYBR Green assays were further evaluated using both diagnostic submissions and vaccinated cattle (at 7, 9, 11 and 14 days post-inoculation showed that B. bigemina can be detected more frequently than B. bovis. Due to fewer circulating parasites, B. bovis detection in carrier animals requires higher DNA input. Preliminary data for a novel fluorescent PCR genotyping based on the Internal Transcribed Spacer 1 region to detect vaccine and field alleles of B. bovis are described. This assay is capable of detecting vaccine and novel field isolate alleles in a single sample.

  8. Comparison of two in-house real-time PCR assays with MTB Q-PCR Alert and GenoType MTBDRplus for the rapid detection of mycobacteria in clinical specimens.

    Science.gov (United States)

    Seagar, Amie-Louise; Neish, Barry; Laurenson, Ian F

    2012-10-01

    An in-house IS6110 real-time PCR (IH IS6110), MTB Q-PCR Alert (Q-PCR) and GenoType MTBDRplus (MTBDR; Hain Lifescience) were compared for the direct detection of Mycobacterium tuberculosis complex (MTBC) in 87 specimens following automated NucliSENS easyMAG DNA extraction. This included 82 first smear-positive specimens and three smear-negative specimens. Another in-house real-time PCR with a Mycobacterium genus-specific probe for the internal transcribed spacer (ITS) region (IH ITS) was used to allow a full comparison with culture results. The sensitivities of IH IS6110, Q-PCR, MTBDR and IH ITS for MTBC detection were 100, 92, 87 and 87 %, respectively, compared with culture. Both IS6110-based real-time PCRs (in-house and Q-PCR) were similar in performance, with 91.2 % concordant results for MTBC detection. Inhibition rates were low, with zero to three specimens producing uninterpretable results. However, the Q-PCR failed to detect MTBC in five samples that were smear negative or had few acid-fast bacilli (one to 10 bacilli in 10 microscopic fields) detected by IH IS6110. IH ITS was the least sensitive assay but may be useful when used in conjunction with IS6110 PCR results to determine the presence of non-tuberculous mycobacteria in smear-negative specimens. None of the real-time PCR assays tested provided drug-resistance data. It was concluded that an IH IS6110 assay could easily be incorporated into the workflow of a diagnostic laboratory for rapid and accurate identification of MTBC from clinical specimens. The inclusion of an internal control and amplification of an ITS target enhance the diagnostic utility of the test.

  9. Antibody levels correlate with detection of Trypanosoma cruzi DNA by sensitive PCR assays in seropositive blood donors and possible resolution of infection over time

    Science.gov (United States)

    Sabino, E.C.; Lee, T.H.; Montalvo, L.; Nguyen, M.L.; Leiby, D.A.; Carrick, D.M.; Otani, M.M.; Vinelli, E.; Wright, D.; Stramer, S.L.; Busch, M.

    2013-01-01

    Background The clinical significance of anti-T. cruzi low-level reactive samples is incompletely understood. PCR-positive rates and antibody levels among seropositive blood donors in three countries are described. Methods Follow-up whole blood and plasma samples were collected from T. cruzi-seropositive donors from 2008-2010 in the US (n=195) and Honduras (n=58). Also 143 samples from Brazil in 1996-2002, originally positive by three serological assays, were available and paired with contemporary follow-up samples from these donors. All samples were retested with the FDA-approved Ortho ELISA. PCR assays were performed on coded sample panels by two laboratories (BSRI and ARC) that amplified kinetoplast minicircle DNA sequences of T. cruzi. Results PCR testing at BSRI yielded slightly higher overall sensitivity and specificity (33% and 98%) compared with the ARC lab (28% and 94%). Among seropositive donors, PCR-positive rates varied by country (p<0.0001) for the BSRI laboratory: Brazil (57%), Honduras (32%) and the US (14%). ELISA signal/cutoff (S/CO) ratios were significantly higher for PCR-positive compared to PCR-negative donors (p<0.05 for all comparisons). Additionally, PCR-negative Brazilian donors exhibited greater frequencies of antibody decline over time versus PCR-positive donors (p=0.003). Conclusion For all three countries, persistent DNA positivity correlated with higher ELISA S/CO values, suggesting that high-level seroreactivity reflects chronic parasitemia. The higher rate of PCR positivity for Brazilian donors was likely attributable to required reactivity on three assays available a decade ago. Significant S/CO declines in 10% of the PCR-negative Brazilian donors may indicate seroreversion following parasite clearance in the absence of treatment. PMID:23002996

  10. Rapid detection and grouping of porcine bocaviruses by an EvaGreen(®) based multiplex real-time PCR assay using melting curve analysis.

    Science.gov (United States)

    Zheng, Xiaowen; Liu, Gaopeng; Opriessnig, Tanja; Wang, Zining; Yang, Zongqi; Jiang, Yonghou

    2016-08-01

    Several novel porcine bocaviruses (PBoVs) have been identified in pigs in recent years and association of these viruses with respiratory signs or diarrhea has been suggested. In this study, an EvaGreen(®)-based multiplex real-time PCR (EG-mPCR) with melting curve analysis was developed for simultaneous detection and grouping of novel PBoVs into the same genogroups G1, G2 and G3. Each target produced a specific amplicon with a melting peak of 81.3 ± 0.34 °C for PBoV G1, 78.2 ± 0.37 °C for PBoV G2, and 85.0 ± 0.29 °C for PBoV G3. Non-specific reactions were not observed when other pig viruses were used to assess the EG-mPCR assay. The sensitivity of the EG-mPCR assay using purified plasmid constructs containing the specific viral target fragments was 100 copies for PBoV G1, 50 for PBoV G2 and 100 for PBoV G3. The assay is able to detect and distinguish three PBoV groups with intra-assay and inter-assay variations ranging from 0.13 to 1.59%. The newly established EG-mPCR assay was validated with 227 field samples from pigs. PBoV G1, G2 and G3 was detected in 15.0%, 25.1% and 41.9% of the investigated samples and coinfections of two or three PBoV groups were also detected in 25.1% of the cases, indicating that all PBoV groups are prevalent in Chinese pigs. The agreement of the EG-mPCR assay with an EvaGreen-based singleplex real-time PCR (EG-sPCR) assay was 99.1%. This EG-mPCR will serve as a rapid, sensitive, reliable and cost effective alternative for routine surveillance testing of multiple PBoVs in pigs and will enhance our understanding of the epidemiological features and possible also pathogenetic changes associated with these viruses in pigs.

  11. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    Science.gov (United States)

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  12. Performance and Verification of a Real-Time PCR Assay Targeting the gyrA Gene for Prediction of Ciprofloxacin Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Hemarajata, P; Yang, S; Soge, O O; Humphries, R M; Klausner, J D

    2016-03-01

    In the United States, 19.2% of Neisseria gonorrhoeae isolates are resistant to ciprofloxacin. We evaluated a real-time PCR assay to predict ciprofloxacin susceptibility using residual DNA from the Roche Cobas 4800 CT/NG assay. The results of the assay were 100% concordant with agar dilution susceptibility test results for 100 clinical isolates. Among 76 clinical urine and swab specimens positive for N. gonorrhoeae by the Cobas assay, 71% could be genotyped. The test took 1.5 h to perform, allowing the physician to receive results in time to make informed clinical decisions.

  13. Evaluation of the Binax NOW Flu A+B Enzyme Immunochromatographic Assay in comparison with Real-Time PCR during the Pandemic of Influenza 2009

    Directory of Open Access Journals (Sweden)

    Iris Hasibra (Hatibi

    2013-12-01

    Full Text Available The Binax NOW Flu A+B enzyme immunochromatographic assay was compared to Real-Time PCR assay for 542 specimen from nasal-wash or nasopharyngeal swab collected during the pandemic of 2009. The overall sensitivity, specificity, positive predic¬tive value, and negative predictive value of the assay were 44.6%, 95.8%, 73.5%, and 86.9%, respectively. The assay sensitivity shows mixed values decreasing significantly in infants and children age, which is linked with the quality and the way sample is collected.

  14. Development and Preliminary Evaluation of a New Real-Time RT-PCR Assay For Detection of Peste des petits Ruminants Virus Genome.

    Science.gov (United States)

    Polci, A; Cosseddu, G M; Ancora, M; Pinoni, C; El Harrak, M; Sebhatu, T T; Ghebremeskel, E; Sghaier, S; Lelli, R; Monaco, F

    2015-06-01

    A duplex real-time reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed for a simple and rapid diagnosis of Peste des petits ruminants (PPR). qRT-PCR primers and TaqMan probe were designed on a conserved region of nucleocapsid protein (Np) of PPR virus (PPRV) genome. An in vitro transcript of the target region was constructed and tested to determine analytical sensitivity. Commercial heterologous Armored RNA(®) was used as an internal positive control (IPC) for either RNA isolation or RT-PCR steps. The detection limit of the newly designed duplex real-time RT-PCR (qRT-PCR PPR_Np) was approximately 20 copies/μl with a 95% probability. No amplification signals were recorded when the qRT-PCR PPR_Np was applied to viruses closely related or clinically similar to PPRV- or to PPR-negative blood samples. A preliminary evaluation of the diagnostic performance was carried out by testing a group of 43 clinical specimens collected from distinct geographic areas of Africa and Middle East. qRT-PCR PPR_Np showed higher sensitivity than the conventional gel-based RT-PCR assays, which have been used as reference standards. Internal positive control made it possible to identify the occurrence of 5 false-negative results caused by the amplification failure, thus improving the accuracy of PPRV detection.

  15. Giardia and Cryptosporidium spp. dissemination during wastewater treatment and comparative detection via immunofluorescence assay (IFA), nested polymerase chain reaction (nested PCR) and loop mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Gallas-Lindemann, Carmen; Sotiriadou, Isaia; Plutzer, Judit; Noack, Michael J; Mahmoudi, Mohammad Reza; Karanis, Panagiotis

    2016-06-01

    Environmental water samples from the Lower Rhine area in Germany were investigated via immunofluorescence assays (IFAs), nested polymerase chain reaction (nested PCR) and loop-mediated isothermal amplification (LAMP) to detect the presence of Giardia spp. (n=185) and Cryptosporidium spp. (n=227). The samples were concentrated through filtration or flocculation, and oocysts were purified via centrifugation through a sucrose density gradient. For all samples, IFA was performed first, followed by DNA extraction for the nested PCR and LAMP assays. Giardia cysts were detected in 105 samples (56.8%) by IFA, 62 samples (33.5%) by nested PCR and 79 samples (42.7%) by LAMP. Cryptosporidium spp. were detected in 69 samples (30.4%) by IFA, 95 samples (41.9%) by nested PCR and 99 samples (43.6%) by LAMP. According to these results, the three detection methods are complementary for monitoring Giardia and Cryptosporidium in environmental waters.

  16. Multiplex SYBR® green-real time PCR (qPCR) assay for the detection and differentiation of Bartonella henselae and Bartonella clarridgeiae in cats.

    Science.gov (United States)

    Staggemeier, Rodrigo; Pilger, Diogo André; Spilki, Fernando Rosado; Cantarelli, Vlademir Vicente

    2014-01-01

    A novel SYBR® green-real time polymerase chain reaction (qPCR) was developed to detect two Bartonella species, B. henselae and B. clarridgeiae, directly from blood samples. The test was used in blood samples obtained from cats living in animal shelters in Southern Brazil. Results were compared with those obtained by conventional PCR targeting Bartonella spp. Among the 47 samples analyzed, eight were positive using the conventional PCR and 12 were positive using qPCR. Importantly, the new qPCR detected the presence of both B. henselae and B. clarridgeiae in two samples. The results show that the qPCR described here may be a reliable tool for the screening and differentiation of two important Bartonella species.

  17. MULTIPLEX SYBR® GREEN-REAL TIME PCR (qPCR ASSAY FOR THE DETECTION AND DIFFERENTIATION OF Bartonella henselae AND Bartonella clarridgeiae IN CATS

    Directory of Open Access Journals (Sweden)

    Rodrigo Staggemeier

    2014-04-01

    Full Text Available A novel SYBR® green-real time polymerase chain reaction (qPCR was developed to detect two Bartonella species, B. henselae and B. clarridgeiae, directly from blood samples. The test was used in blood samples obtained from cats living in animal shelters in Southern Brazil. Results were compared with those obtained by conventional PCR targeting Bartonella spp. Among the 47 samples analyzed, eight were positive using the conventional PCR and 12 were positive using qPCR. Importantly, the new qPCR detected the presence of both B. henselae and B. clarridgeiae in two samples. The results show that the qPCR described here may be a reliable tool for the screening and differentiation of two important Bartonella species.

  18. Exudative epidermitis in pigs caused by toxigenic Staphylococcus chromogenes

    DEFF Research Database (Denmark)

    Andresen, Lars Ole; Ahrens, Peter; Daugaard, Lise

    2005-01-01

    Staphylococcus chromogenes is closely related to Staphylococcus hyicus, which is recognised as the causative agent of exudative epidermitis (EE) in pigs. S. chromogenes is part of the normal skin flora of pigs, cattle and poultry and has so far been considered non-pathogenic to pigs. A strain of S...

  19. Duplex quantitative real-time PCR assay for the detection and discrimination of the eggs of Toxocara canis and Toxocara cati (Nematoda, Ascaridoidea in soil and fecal samples

    Directory of Open Access Journals (Sweden)

    Durant Jean-Francois

    2012-12-01

    Full Text Available Abstract Background Toxocarosis is a zoonotic disease caused by Toxocara canis (T. canis and/or Toxocara cati (T. cati, two worldwide distributed roundworms which are parasites of canids and felids, respectively. Infections of humans occur through ingestion of embryonated eggs of T. canis or T. cati, when playing with soils contaminated with dogs or cats feces. Accordingly, the assessment of potential contamination of these areas with these roundworms eggs is paramount. Methods A duplex quantitative real-time PCR (2qPCR targeting the ribosomal RNA gene internal transcribed spacer (ITS2 has been developed and used for rapid and specific identification of T. canis and T. cati eggs in fecal and soil samples. The assay was set up on DNA samples extracted from 53 adult worms including T. canis, T. cati, T. leonina, Ascaris suum (A. suum and Parascaris equorum (P. equorum. The assay was used to assess the presence of T. cati eggs in several samples, including 12 clean soil samples spiked with eggs of either T. cati or A. suum, 10 actual soil samples randomly collected from playgrounds in Brussels, and fecal samples from cats, dogs, and other animals. 2qPCR results on dogs and cats fecal samples were compared with results from microscopic examination. Results 2qPCR assay allowed specific detection of T. canis and T. cati, whether adult worms, eggs spiked in soil or fecal samples. The 2qPCR limit of detection (LOD in spiked soil samples was 2 eggs per g of soil for a turnaround time of 3 hours. A perfect concordance was observed between 2qPCR assay and microscopic examination on dogs and cats feces. Conclusion The newly developed 2qPCR assay can be useful for high throughput prospective or retrospective detection of T.canis and/or T. cati eggs in fecal samples as well as in soil samples from playgrounds, parks and sandpits.

  20. Type-specific PCR assays for Babesia bovis msa-1 genotypes in Asia: Revisiting the genetic diversity in Sri Lanka, Mongolia, and Vietnam.

    Science.gov (United States)

    Liyanagunawardena, Nilukshi; Sivakumar, Thillaiampalam; Kothalawala, Hemal; Silva, Seekkuge Susil Priyantha; Battsetseg, Badgar; Lan, Dinh Thi Bich; Inoue, Noboru; Igarashi, Ikuo; Yokoyama, Naoaki

    2016-01-01

    Babesia bovis is the most virulent Babesia organism, resulting in a high mortality rate in cattle. The genetic diversity of B. bovis merozoite surface antigens (MSAs), such as MSA-1, MSA-2b, and MSA-2c, might be linked to altered immune profiles in the host animals. The present study aimed to develop type-specific PCR assays for Asian msa-1 genotypes, thereby re-analyzing the genetic diversity of msa-1 in Sri Lanka, Mongolia, and Vietnam. Specific primers were designed for nine Asian msa-1 genotypes, which had been detected based on the phylogeny constructed using msa-1 gene sequences retrieved from the GenBank database. Specificity of the type-specific PCR assays was confirmed using plasmids containing the inserts of msa-1 gene fragments that represent Asian genotypes. Furthermore, no amplicons were observed by these PCR assays when DNA samples of Babesia bigemina, Babesia ovata, Theileria annulata, Theileria orientalis, Trypanosoma evansi, Trypanosoma theileri, Anaplasma marginale, and Anaplasma bovis, and non-infected bovine blood were analyzed. In total, 109 B. bovis-positive blood DNA samples sourced from Sri Lanka (44 cattle), Mongolia (26 cattle), and Vietnam (23 cattle and 16 water buffaloes) were then screened by the type-specific PCR assays. The sequences derived from all of the PCR amplicons were phylogenetically analyzed. Out of 109 DNA samples, 23 (20 from cattle and 3 from water buffaloes) were positive for at least one genotype. In agreement with previous studies, five and four different genotypes were detected among the DNA samples from Sri Lanka and Vietnam, respectively. In contrast, four genotypes, including three novel genotypes, were detected from Mongolia. Five DNA samples were found to be co-infected with multiple genotypes. The sequences of the PCR amplicons clustered phylogenetically within the corresponding clades. These findings indicated that the type-specific PCR assays described herein are useful for the determination of genotypic

  1. 猪嗜血支原体PCR及荧光定量PCR检测方法的建立和比较%Establishment and comparison of the PCR and FQ-PCR assays for detection of Mycoplasma haemosuis

    Institute of Scientific and Technical Information of China (English)

    张长莹; 张莉莉; 李玉峰; 李文良; 刘捷; 陈闻; 姜平

    2011-01-01

    To compare PCR and TaqMan real time PCR (FQ-PCR) for the detection of Mycoplasma haemosuis infection in pigs, the PCR method and FQ-PCR were set up with the primers targeting the 16S rRNA gene of M.haemosuis.Plasmid containing 16S rRNA gene was used as template to optimize the conditions of conventional PCR and FQ-PCR reactions.The results showed that these 2 assays have good sensitivity and specificity.The sensitivity of FQ-PCR was 1,000 times higher than conventional PCR.Twenty clinical samples were detected by these 2 assays, positive rate was 12/20 by conventional PCR, while 15/20 by FQ-PCR.In conclusion, these 2 assays can effectively detect the clinical infection of M.haemosuis and may provide useful tools in establishment of animal infection model.%为了解猪嗜血支原体(Mycoplasma haemosuis)对猪群的感染情况并建立该病的检测方法,本研究根据GenBank登录的M.haemosuis 16S rRNA基因序列(FJ263944)设计合成PCR引物以及荧光定量PCR(FQ-PCR)引物和探针.以含16S rRNA基因的重组质粒为模板,通过对PCR反应条件的优化,建立检测M.haemosuis的PCR和FQ-PCR检测方法.结果表明,这两种检测方法均具有较好的敏感性和特异性,与常规方法相比,FQ-PCR方法的敏感性高1000倍;用这两种PCR方法检测20份临床样品,常规PCR方法的阳性率为60%(12/20),而FQ-PCR方法的阳性率为75%(15/20).这两种检测方法的建立为确定M.haemosuis在我国猪群的感染情况和建立该病动物模型提供有效的检测手段.

  2. Detection of Brucella melitensis DNA in the milk of sheep after abortion by PCR assay Detección de ADN de Brucella melitensis mediante la prueba de PCR en muestras de leche de ovejas postaborto

    Directory of Open Access Journals (Sweden)

    Z Ilhan

    2008-01-01

    Full Text Available Laboratory diagnosis of brucellosis is generally performed by microbiological and serological methods. PCR assay is a specific and sensitive choice for the detection of different bacterial agents. An evaluation of this test was carried out for the detection of Brucella melitensis DNA in sheep milk. 102 milk samples from sheep after abortion were taken and studied using bacteriological culture, PCR and milk ring test (MRT. PCR found B. melitensis DNA in 24 (23.5% out of 102 milk samples, while only 8 (7.8% of the samples were positive to B. melitensis through direct culture. MRT found 28 (27.4% positive milk samples. The detection limit for PCR in sheep milk inoculated with B. melitensis strain 16 M was 1.7x10³-1.7x10(4 cfu/ml. PCR and MRT coincidence was 96%. The diagnostic sensitivity and specificity were determined as 100% and 81.3% respectively for PCR assay and 75% and 75% for MRT. PCR is a useful tool for a fast diagnosis of B. melitensis in sheep milk.El diagnóstico de laboratorio de brucelosis es generalmente realizado por métodos microbiológicos y serológicos. La prueba PCR es reconocida como una alternativa específica y sensible para la detección de diferentes agentes bacterianos. Se realizó una evaluación de la prueba PCR para la detección de ADN de Brucella melitensis en leche de oveja. Ciento dos muestras tomadas de ovejas postaborto fueron analizadas por métodos de cultivo bacteriológico, prueba PCR y prueba del anillo en leche (MRT. El PCR detectó ADN de B. melitensis en 24 (23,5% de 102 muestras de leche, mientras que solamente 8 (7,8% muestras de leche fueron positivas a B. melitensis por cultivo directo. El MRT detectó 28 (27,4% muestras positivas de leche. El límite de detección de B. melitensis 16 M por PCR fue de 1,7x10³-1,7x10(4 ufc/ml en leche inoculada. La concordancia entre PCR y MRT fue 96%. La sensibilidad diagnóstica y la precisión fueron determinadas como el 100% y el 81,3% respectivamente para la

  3. Development of novel triplex single-step real-time PCR assay for detection of Hepatitis Virus B and C simultaneously.

    Science.gov (United States)

    Prakash, Shantanu; Jain, Amita; Jain, Bhawana

    2016-05-01

    Multiplex RT-PCR assays are widely used tools for detection of hepatitis viruses, but none of them provide quality check of sample. In the present study we developed a single-step triplex real-time polymerase chain reaction (PCR) assay for detection of Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) with sample quality check, by using β-actin as housekeeping gene. The primers and probes were self-designed and assay was standardized. Assay was also destined to quantitate copy numbers of HBV and HCV. This novel assay was sensitive, specific, and reproducible for detection of HBV and HCV in serum/plasma. The assay also detected all genotypes of HBV and HCV. The detection limit was 60 IU/mL for HBV and 20 IU/mL for HCV. This assay is the first assay developed on single-step platform for nucleic acid detection of HBV and HCV with an extra edge over all other assays by providing inbuilt check for quality of sample.

  4. Development of SYBR Green and TaqMan quantitative real-time PCR assays for hepatopancreatic parvovirus (HPV) infecting Penaeus monodon in India.

    Science.gov (United States)

    Yadav, Reena; Paria, Anutosh; Mankame, Smruti; Makesh, M; Chaudhari, Aparna; Rajendran, K V

    2015-12-01

    Hepatopancreatic parvovirus (HPV) infects Penaeus monodon and causes mortality in the larval stages. Further, it has been implicated in the growth retardation in cultured P. monodon. Though different geographical isolates of HPV show large sequence variations, a sensitive PCR assay specific to Indian isolate has not yet been reported. Here, we developed a sensitive SYBR Green-based and TaqMan real-time PCR for the detection and quantification of the virus. A 441-bp PCR amplicon was cloned in pTZ57 R/T vector and the plasmid copy number was estimated. A 10-fold serial dilution of the plasmid DNA from 1 × 10(9) copies to 1 copy was prepared and used as the standard. The primers were tested initially using the standard on a conventional PCR format to determine the linearity of detection. The standards were further tested on real-time PCR format using SYBR Green and TaqMan chemistry and standard curves were generated based on the Ct values from three well replicates for each dilution. The assays were found to be sensitive, specific and reproducible with a wide dynamic range (1 × 10(9) to 10 copies) with coefficient of regression (R(2)) > 0.99, calculated average slope -3.196 for SYBR Green assay whereas, for TaqMan assay it was >0.99 and -3.367, respectively. The intra- and inter-assay variance of the Ct values ranged from 0.26% to 0.94% and 0.12% to 0.81%, respectively, for SYBR Green assay, and the inter-assay variance of the Ct values for TaqMan assay ranged from 0.07% to 1.93%. The specificity of the assays was proved by testing other DNA viruses of shrimp such as WSSV, IHHNV and MBV. Standardized assays were further tested to detect and quantify HPV in the post-larvae of P. monodon. The result was further compared with conventional PCR to test the reproducibility of the test. The assay was also used to screen Litopeneaus vannamei, Macrobrachium rosenbergii and Scylla serrata for HPV.

  5. Development of a PCR Assay to Detect Low Level Trypanosoma cruzi in Blood Specimens Collected with PAXgene Blood DNA Tubes for Clinical Trials Treating Chagas Disease

    Science.gov (United States)

    Wei, Bo; Chen, Lei; Kibukawa, Miho; Kang, John; Waskin, Hetty; Marton, Matthew

    2016-01-01

    Chagas disease is caused by the parasitic infection of Trypanosoma cruzi (T. cruzi). The STOP CHAGAS clinical trial was initiated in 2011 to evaluate posaconazole in treating Chagas disease, with treatment success defined as negative qualitative PCR results of detecting the parasites in blood specimens collected post-treatment. PAXgene Blood DNA tubes were utilized as a simple procedure to collect and process blood specimens. However, the PAXgene blood specimens challenged published T. cruzi PCR methods, resulting in poor sensitivity and reproducibility. To accurately evaluate the treatment efficacy of the clinical study, we developed and validated a robust PCR assay for detecting low level T. cruzi in PAXgene blood specimens. The assay combines a new DNA extraction method with a custom designed qPCR assay, resulting in limit of detection of 0.005 and 0.01 fg/μl for K98 and CL Brener, two representative strains of two of T. cruzi’s discrete typing units. Reliable qPCR standard curves were established for both strains to measure parasite loads, with amplification efficiency ≥ 90% and the lower limit of linearity ≥ 0.05 fg/μl. The assay successfully analyzed the samples collected from the STOP CHAGAS study and may prove useful for future global clinical trials evaluating new therapies for asymptomatic chronic Chagas disease. PMID:27906977

  6. Methicillin-Resistant Staphylococcus aureus (MRSA) Detection: Comparison of Two Molecular Methods (IDI-MRSA PCR Assay and GenoType MRSA Direct PCR Assay) with Three Selective MRSA Agars (MRSA ID, MRSASelect, and CHROMagar MRSA) for Use with Infection-Control Swabs▿

    OpenAIRE

    van Hal, S. J.; Stark, D.; Lockwood, B.; Marriott, D; Harkness, J.

    2007-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an increasing problem. Rapid detection of MRSA-colonized patients has the potential to limit spread of the organism. We evaluated the sensitivities and specificities of MRSA detection by two molecular methods (IDI-MRSA PCR assay and GenoType MRSA Direct PCR assay) and three selective MRSA agars (MRSA ID, MRSASelect, and CHROMagar MRSA), using 205 (101 nasal, 52 groin, and 52 axillary samples) samples from consecutive known MRSA-infected an...

  7. Development and Validation of a Real-Time PCR Assay for Rapid Detection of Two-Spotted Spider Mite, Tetranychus urticae (Acari: Tetranychidae).

    Science.gov (United States)

    Li, Dongmei; Fan, Qing-Hai; Waite, David W; Gunawardana, Disna; George, Sherly; Kumarasinghe, Lalith

    2015-01-01

    Spider mites of the genus Tetranychus are difficult to identify due to their limited diagnostic characters. Many of them are morphologically similar and males are needed for species-level identification. Tetranychus urticae is a common interception and non-regulated pest at New Zealand's borders, however, most of the intercepted specimens are females and the identification was left at Tetranychus sp. Consequently, the shipments need to be fumigated. DNA sequencing and PCR-restriction fragment length polymorphism (PCR-RFLP) protocols could be used to facilitate the accurate identification. However, in the context of border security practiced in New Zealand, insect identifications are required to be provided within four hours of receiving the samples; thus, those molecular methods are not sufficient to meet this requirement. Therefore, a real-time PCR TaqMan assay was developed for identification of T. urticae by amplification of a 142 bp Internal Transcribed Spacer (ITS) 1 sequence. The developed assay is rapid, detects all life stages of T. urticae within three hours, and does not react with closely related species. Plasmid DNA containing ITS1 sequence of T. uritcae was serially diluted and used as standards in the real-time PCR assay. The quantification cycle (Cq) value of the assay depicted a strong linear relationship with T. urticae DNA content, with a regression coefficient of 0.99 and efficiency of 98%. The detection limit was estimated to be ten copies of the T. urticae target region. The assay was validated against a range of T. urticae specimens from various countries and hosts in a blind panel test. Therefore the application of the assay at New Zealand will reduce the unnecessary fumigation and be beneficial to both the importers and exporters. It is expected that the implementation of this real-time PCR assay would have wide applications in diagnostic and research agencies worldwide.

  8. Development and Validation of a Real-Time PCR Assay for Rapid Detection of Two-Spotted Spider Mite, Tetranychus urticae (Acari: Tetranychidae.

    Directory of Open Access Journals (Sweden)

    Dongmei Li

    Full Text Available Spider mites of the genus Tetranychus are difficult to identify due to their limited diagnostic characters. Many of them are morphologically similar and males are needed for species-level identification. Tetranychus urticae is a common interception and non-regulated pest at New Zealand's borders, however, most of the intercepted specimens are females and the identification was left at Tetranychus sp. Consequently, the shipments need to be fumigated. DNA sequencing and PCR-restriction fragment length polymorphism (PCR-RFLP protocols could be used to facilitate the accurate identification. However, in the context of border security practiced in New Zealand, insect identifications are required to be provided within four hours of receiving the samples; thus, those molecular methods are not sufficient to meet this requirement. Therefore, a real-time PCR TaqMan assay was developed for identification of T. urticae by amplification of a 142 bp Internal Transcribed Spacer (ITS 1 sequence. The developed assay is rapid, detects all life stages of T. urticae within three hours, and does not react with closely related species. Plasmid DNA containing ITS1 sequence of T. uritcae was serially diluted and used as standards in the real-time PCR assay. The quantification cycle (Cq value of the assay depicted a strong linear relationship with T. urticae DNA content, with a regression coefficient of 0.99 and efficiency of 98%. The detection limit was estimated to be ten copies of the T. urticae target region. The assay was validated against a range of T. urticae specimens from various countries and hosts in a blind panel test. Therefore the application of the assay at New Zealand will reduce the unnecessary fumigation and be beneficial to both the importers and exporters. It is expected that the implementation of this real-time PCR assay would have wide applications in diagnostic and research agencies worldwide.

  9. Real-Time PCR Assay Using Fine-Needle Aspirates and Tissue Biopsy Specimens for Rapid Diagnosis of Mycobacterial Lymphadenitis in Children

    Science.gov (United States)

    van Coppenraet, E. S. Bruijnesteijn; Lindeboom, J. A.; Prins, J. M.; Peeters, M. F.; Claas, E. C. J.; Kuijper, E. J.

    2004-01-01

    A real-time PCR assay was developed to diagnose and identify the causative agents of suspected mycobacterial lymphadenitis. Primers and probes for the real-time PCR were designed on the basis of the internal transcribed spacer sequence, enabling the recognition of the genus Mycobacterium and the species Mycobacterium avium and M. tuberculosis. The detection limit for the assay was established at 1,100 CFU/ml of pus, and the specificity tests showed no false-positive reaction with other mycobacterial species and other pathogens causing lymphadenitis. From 67 children with suspected mycobacterial lymphadenitis based on a positive mycobacterial skin test, 102 samples (58 fine-needle aspirates [FNA] and 44 tissue specimens) were obtained. The real-time PCR assay detected a mycobacterial infection in 48 patients (71.6%), whereas auramine staining and culturing were positive for 31 (46.3%) and 28 (41.8%) of the patients. The addition of the real-time PCR assay to conventional diagnostic tests resulted in the recognition of 13 more patients with mycobacterial disease. These results indicate that the real-time PCR is more sensitive than conventional staining and culturing techniques (P = 0.006). The M. avium-specific real-time PCR was positive for 38 patients, and the M. tuberculosis-specific real-time PCR was positive for 1 patient. Analysis of 27 patients from whom FNA and tissue biopsy specimens were collected revealed significantly more positive real-time PCR results for FNA than for tissue biopsy specimens (P = 0.003). Samples from an age-matched control group of 50 patients with PCR-proven cat scratch disease were all found to be negative by the real-time PCR. We conclude that this real-time PCR assay with a sensitivity of 72% for patients with lymphadenitis and a specificity of 100% for the detection of atypical mycobacteria can provide excellent support for clinical decision making in children with lymphadenitis. PMID:15184446

  10. TaqMan real-time PCR assays for single-nucleotide polymorphisms which identify Francisella tularensis and its subspecies and subpopulations.

    Directory of Open Access Journals (Sweden)

    Dawn N Birdsell

    Full Text Available Francisella tularensis, the etiologic agent of tularemia and a Class A Select Agent, is divided into three subspecies and multiple subpopulations that differ in virulence and geographic distribution. Given these differences, there is a need to rapidly and accurately determine if a strain is F. tularensis and, if it is, assign it to subspecies and subpopulation. We designed TaqMan real-time PCR genotyping assays using eleven single nucleotide polymorphisms (SNPs that were potentially specific to closely related groups within the genus Francisella, including numerous subpopulations within F. tularensis species. We performed extensive validation studies to test the specificity of these SNPs to particular populations by screening the assays across a set of 565 genetically and geographically diverse F. tularensis isolates and an additional 21 genetic near-neighbor (outgroup isolates. All eleven assays correctly determined the genetic groups of all 565 F. tularensis isolates. One assay differentiates F. tularensis, F. novicida, and F. hispaniensis from the more genetically distant F. philomiragia and Francisella-like endosymbionts. Another assay differentiates F. tularensis isolates from near neighbors. The remaining nine assays classify F. tularensis-confirmed isolates into F. tularensis subspecies and subpopulations. The genotyping accuracy of these nine assays diminished when tested on outgroup isolates (i.e. non F. tularensis, therefore a hierarchical approach of assay usage is recommended wherein the F. tularensis-specific assay is used before the nine downstream assays. Among F. tularensis isolates, all eleven assays were highly sensitive, consistently amplifying very low concentrations of DNA. Altogether, these eleven TaqMan real-time PCR assays represent a highly accurate, rapid, and sensitive means of identifying the species, subspecies, and subpopulation of any F. tularensis isolate if used in a step-wise hierarchical scheme. These assays

  11. An ex vivo RT-qPCR-based assay for human peripheral leukocyte responsiveness to glucocorticoids in surgically induced inflammation

    Directory of Open Access Journals (Sweden)

    Gråberg T

    2015-08-01

    Full Text Available Truls Gråberg,1 Lovisa Strömmer,1 Erik Hedman,2 Mehmet Uzunel,3 Ewa Ehrenborg,4 Ann-Charlotte Wikström5 1Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC, Karolinska Institutet, 2Department of Clinical Pharmacology, Karolinska University Hospital, 3Division of Therapeutic Immunology, Department of Laboratory Medicine, 4Atherosclerosis Research Unit, Department of Medicine, Solna, 5Unit of Translational Immunology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden Introduction: An assay to determine glucocorticoid (GC responsiveness in humans could be used to monitor GC non-responsiveness in states of GC insufficiency and could provide a tool to adapt GC treatment to individual patients. We propose an ex vivo assay to test GC responsiveness in peripheral leukocytes. The assay was evaluated in a human experimental model of surgery-induced inflammation. Patients and methods: Changes in expression of the GC-regulated genes GILZ, IL1R2, FKBP5, and HLA-DR and glucocorticoid receptor alpha (GRα were determined by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR in peripheral leukocytes from surgical patients and healthy blood donors (total n=60 in response to low (1 nM and high (1 µM dexamethasone (DEX. The final selection of a suitable endogenous control gene was based on the studies of stability during DEX treatment and inflammation. Correlations between pre- and postoperative GC-induced gene expression, the postoperative systemic inflammatory and metabolic response (CRP, IL-6, white blood cell count, cytokines, resistin, free fatty acids, glucose, insulin, and adiponectin, and the clinical outcome were analyzed. The length of stay in the intensive care unit (ICU-LOS, the length of stay in the hospital, and postoperative complications were used to measure clinical outcome. Results: When the blood donors were compared to the patients, there were no significant

  12. A Multiplex PCR/LDR Assay for Simultaneous Detection and Identification of the NIAID Category B Bacterial Food and Water-borne Pathogens

    Science.gov (United States)

    Rundell, Mark S.; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H.; Spitzer, Eric D.; Golightly, Linnie; Barany, Francis

    2014-01-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/LDR assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay was assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91 to 100% (median 100%) depending on the species. For the majority of organisms the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. PMID:24709368

  13. Evaluation of a PCR Assay to Detect Enterococcus faecalis in Blood and Determine Glycopeptides Resistance Genes: Van A and Van B

    Directory of Open Access Journals (Sweden)

    Hamidreza Honarmand

    2012-09-01

    Full Text Available Background: Bacteremia due to Enterococcus faecalis is usually caused by strains resistant to most antibiotics. Effective management of the disease is dependent on rapid detection and characterization of the bacteria, and determination its sensitivity pattern to antimicrobial drugs. The aim of this study was to investigate a more rapid and reliable assay for simultaneous diagnosis of enterococcal bacteremia and its sensitivity pattern to antimicrobial drugs. Methods: Several bacterial suspensions with different content of two standard strains of Enterococcus faecalis resistant to vancomycin were used for inoculation to defibrinated sheep blood samples. PCR and routine assay was performed on all blood samples with different bacterial content.Results: Routine assay and PCR for all inoculated blood samples with ≥5 cfu/ml was positive. Mean time for PCR and routine assays was 10 hours and 5 days, respectively. Conclusion: PCR is a more rapid and sensitive assay for simultaneous detection and characterization for Enterococcus faecalis, and determination of its sensitivity pattern to vancomycin.

  14. Development of a real-time PCR assay based on primer-probe energy transfer for the detection of swine vesicular disease virus

    DEFF Research Database (Denmark)

    Hakhverdyan, M.; Rasmussen, Thomas Bruun; Thoren, P.;

    2006-01-01

    remained negative. The sensitivity of assay was five copies of viral genome equivalents. A key point of the assay is tolerance toward mutations in the probe region. Melting curve analysis directly after PCR, with determination of probe melting point, confirmed specific hybridisation of the SVDV strains....... Eight of twenty SVDV strains tested, revealed shifted melting points that indicated mutations in the probe region. All predicted mutations were confirmed by nucleotide sequencing. With the PriProET system there is a chance to identify phylogenetically divergent strains of SVDV, which may appear negative...... in other probe-based real-time PCR assays. At the same time, any difference in melting points may provide an indication of divergence in the probe region. The high sensitivity, specificity, and tolerance toward mutations in the probe region of the SVDV PriProET assay may improve the early and rapid...

  15. Comparison of the artus Epstein-Barr virus (EBV) PCR kit and the Abbott RealTime EBV assay for measuring plasma EBV DNA loads in allogeneic stem cell transplant recipients.

    Science.gov (United States)

    Vinuesa, Víctor; Solano, Carlos; Giménez, Estela; Navarro, David

    2017-02-24

    The ability of the artus Epstein-Barr virus (EBV) PCR kit and the Abbott RealTime EBV PCR assay to detect and quantify plasma EBV DNAemia was compared. The agreement between these assays was 95.8%. The EBV DNA loads measured by the two assays significantly correlated (P=< 0.0001).

  16. Establishment of Real-Time TaqMan-Fluorescence Quantitative RT-PCR Assay for Detection and Quantification of Porcine Lipoprotein Lipase mRNA

    Institute of Scientific and Technical Information of China (English)

    LIAN Hong-xia; LU De-xun; GAO Min

    2009-01-01

    Porcine lipoprotein lipase (LPL) cDNA was cloned as the standard for real-time quantifying LPL mRNA and the TaqMan-fluorescence quantitative PCR assay for detection was established. The total RNA extracted from Longissimus dorsi of porcine was reverse-transcribed to cDNA. LPL cDNA was ligated with pGM-T vector and transformed into Escherichia coli TOP 10. Plasmid DNA extracted from positive clones was verified by PCR amplification and sequenced. LPL was amplified by real-time fluorescence quantitative PCR from the plasmid DNA. The concentration of DNA template purified was detected by analyzing absorbance in 260 nm and then the combined plasmid was diluted to series as standard for fluorescence quantitative PCR (FQ-PCR). The method of LPL mRNA real-time PCR was well established, which detected as low as 103 with the linear range 103 to 1010 copies. The standard curves showed high correlations (R2=0.9871). A series of standards for real-time PCR analysis have been constructed successfully, and real-time TaqMan-fluorescence quantitative RT-PCR is reliable to quantitatively evaluate FQ-PCR mRNA in L. dorsi of porcine.

  17. Prevalence Study of Coxiella burnetii in Aborted Ovine and Caprine Fetuses by Evaluation of Nested and Real-Time PCR Assays

    Directory of Open Access Journals (Sweden)

    Farhad S. Dehkordi

    2011-01-01

    Full Text Available Problem statement: Q fever is a ubiquitous zoonosis caused by Coxiella burnetii, an obligate intracellular rickettsial organism that caused abortion and stillbirth in ruminants. Approach: The prevalence of Coxiella burnetii in Iran is essentially unknown. Its traditional diagnosis is based on culture, serology and conventional PCR. In this present study, for more sensitive and accurate detection and prevalence's determination of Coxiella burnetii in aborted Ovine and Caprine fetuses, the nested and real-time PCR methods are recommended. Results: About 98 (12.53% and 122 (16.39% out of 782 and 744 Ovine and Caprine aborted fetuses, were positive for presence of Coxiella burnetii by nested PCR, respectively. After LSI Taqvet Coxiella burnetii real-time PCR, it was recognized that 121 (15.47% and 152 (20.43% samples were positive for Coxiella burnetii in Ovine and Caprine aborted fetuses, respectively. Results indicated that the real-time PCR was 7 times more sensitive than the nested PCR. Statistical analysis showed significant differences about PCoxiella burnetii in aborted Ovine and Caprine fetuses by both nested and real-time PCR assays and PCoxiella burnetii. The Ct values which obtained from real-time PCR had significant differences about PCoxiella burnetii between aborted Ovine and Caprine fetuses. Our results indicated that Caprine is more sensitive than Ovine to Coxiella burnetii’s abortion Khozestan and Gilan have the highest and Khorasan and Sistan va Baluchistan provinces have the lowest prevalence of Coxiella burnetii, respectively. Conclusion: To our knowledge, this study is the first prevalence report of direct identification of Coxiella burnetii in aborted Ovine and Caprine fetuses by evaluation of nested and real-time PCR assays in Iran. This study showed that the nested PCR for detecting Coxiella burnetii are technically time-consuming and labor-intensive.

  18. Multiplex Real-Time PCR Assay with High-Resolution Melting Analysis for Characterization of Antimicrobial Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Donà, Valentina; Kasraian, Sara; Lupo, Agnese; Guilarte, Yuvia N; Hauser, Christoph; Furrer, Hansjakob; Unemo, Magnus; Low, Nicola; Endimiani, Andrea

    2016-08-01

    Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detection of AMR determinants could provide valuable tools for surveillance and epidemiological studies and for informing individual case management. We developed a fast (<1.5-h) SYBR green-based real-time PCR method with high-resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully characterized N. gonorrhoeae strains, 19 commensal Neisseria species strains, and an additional panel of 193 gonococcal isolates. Results were compared with results of culture-based AMR determination. The assay correctly identified N. gonorrhoeae and the presence or absence of the seven AMR determinants. There was some cross-reactivity with nongonococcal Neisseria species, and the detection limit was 10(3) to 10(4) genomic DNA (gDNA) copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity, 100%; specificity, 90%), cefixime (sensitivity, 92%; specificity, 94%), azithromycin (sensitivity and specificity, 100%), and spectinomycin (sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations that generate resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens, but this method can be used to screen collections of gonococcal isolates for AMR more quickly than current culture-based AMR testing.

  19. Development of a real-time RT-PCR and Reverse Line probe Hybridisation assay for the routine detection and genotyping of Noroviruses in Ireland.

    LENUS (Irish Health Repository)

    Menton, John F

    2007-01-01

    BACKGROUND: Noroviruses are the most common cause of non-bacterial gastroenteritis. Improved detection methods have seen a large increase in the number of human NoV genotypes in the last ten years. The objective of this study was to develop a fast method to detect, quantify and genotype positive NoV samples from Irish hospitals. RESULTS: A real-time RT-PCR assay and a Reverse Line Blot Hybridisation assay were developed based on the ORF1-ORF2 region. The sensitivity and reactivity of the two assays used was validated using a reference stool panel containing 14 NoV genotypes. The assays were then used to investigate two outbreaks of gastroenteritis in two Irish hospitals. 56 samples were screened for NoV using a real-time RT-PCR assay and 26 samples were found to be positive. Genotyping of these positive samples found that all positives belonged to the GII\\/4 variant of NoV. CONCLUSION: The combination of the Real-time assay and the reverse line blot hybridisation assay provided a fast and accurate method to investigate a NoV associated outbreak. It was concluded that the predominant genotype circulating in these Irish hospitals was GII\\/4 which has been associated with the majority of NoV outbreaks worldwide. The assays developed in this study are useful tools for investigating NoV infection.

  20. Evaluation of the Cobas TaqMan MTB real-time PCR assay for direct detection of Mycobacterium tuberculosis in respiratory specimens.

    Science.gov (United States)

    Lee, Meng-Rui; Chung, Kuei-Pin; Wang, Hao-Chien; Lin, Chih-Bin; Yu, Chong-Jen; Lee, Jen-Jyh; Hsueh, Po-Ren

    2013-08-01

    The Cobas TaqMan MTB assay is a real-time PCR (qPCR) kit for rapid detection of Mycobacterium tuberculosis from clinical specimens. There are, however, limited studies validating its performance. We performed a prospective study in two hospitals in Taiwan on 586 respiratory specimens. By using culture as the reference method, the sensitivity and specificity of the Cobas TaqMan MTB assay were found to be 82.7 and 96.5 %, respectively. The sensitivity of the Cobas TaqMan MTB assay in acid-fast stain-negative respiratory specimens was only 34.9 %. Five specimens from five patients were positive for M. tuberculosis by the Cobas TaqMan MTB assay but were negative for M. tuberculosis by conventional culture methods. A diagnosis of pulmonary tuberculosis (TB) was made based on clinical and radiological findings as well as the response to anti-TB treatment in these five patients. Addition of data from these five specimens with discrepant results (PCR vs culture) from patients with symptoms clinically compatible with TB increased the sensitivity of the Cobas TaqMan MTB assay to 83.1 %. The Cobas TaqMan MTB assay is a rapid identification tool with a high degree of specificity for the direct detection of M. tuberculosis in respiratory specimens. The sensitivity for detecting acid-fast smear-negative respiratory specimens, however, is low.

  1. A molecular approach for the rapid, selective and sensitive detection of Exophiala jeanselmei in environmental samples: development and performance assessment of a real-time PCR assay.

    Science.gov (United States)

    Libert, X; Chasseur, C; Packeu, A; Bureau, F; Roosens, N H; De Keersmaecker, S J C

    2016-02-01

    Exophiala jeanselmei is an opportunistic pathogenic black yeast growing in humid environments such as water reservoirs of air-conditioning systems. Because this fungal contaminant could be vaporized into the air and subsequently cause health problems, its monitoring is recommended. Currently, this monitoring is based on culture and microscopic identification which are complex, sometimes ambiguous and time-demanding, i.e., up to 21 days. Therefore, molecular, culture-independent methods could be more advantageous for the monitoring of E. jeanselmei. In this study, we developed a SYBR®green real-time PCR assay based on the internal transcribed spacer 2 from the 18S ribosomal DNA complex for the specific detection of E. jeanselmei. The selectivity (100 %), PCR efficiency (95.5 %), dynamic range and repeatability of this qPCR assay were subsequently evaluated. The limit of detection for this qPCR assay was determined to be 1 copy of genomic DNA of E. jeanselmei. Finally, water samples collected from cooling reservoirs were analyzed using this qPCR assay to deliver a proof of concept for the molecular detection of E. jeanselmei in environmental samples. The results obtained by molecular analysis were compared with those of classical methods (i.e., culture and microscopic identification) used in routine analysis and were 100 % matching. This comparison demonstrated that this SYBR®green qPCR assay can be used as a molecular alternative for monitoring and routine investigation of samples contaminated by E. jeanselmei, while eliminating the need for culturing and thereby considerably decreasing the required analysis time to 2 days.

  2. Evaluation of modified Ziehl-Neelsen, direct fluorescent-antibody and PCR assay for detection of Cryptosporidium spp. in children faecal specimens.

    Science.gov (United States)

    Aghamolaie, S; Rostami, A; Fallahi, Sh; Tahvildar Biderouni, F; Haghighi, A; Salehi, N

    2016-09-01

    To determine the sensitivity and specificity of routine screening methods for cryptosporidiosis, three methods including conventional modified Ziehl-Neelsen (MZN), direct fluorescent-antibody (DFA) and Nested-PCR assay compared together. To this end, their ability to identify the low concentrations of Cryptosporidium spp. oocysts in children fecal samples was evaluated. The sample population of this study was children under 12 years old who had diarrhea and referred to pediatric hospitals in Tehran, Iran. 2,510 stool specimens from patients with diarrhea were screened for Cryptosporidium oocysts by concentration method and MZN. To determine sensitivity and specificity, Nested-PCR and DFA were performed on 30 positive and 114 negative samples which previously had been proved by MZN. By using the microscopic method, DFA assay and PCR analysis, a total of 30 (1.2 %), 28 (1.1 %) and 32 (1.27 %) positive samples were detected respectively. According to the results, the sensitivity, specificity, and positive and negative predictive values of the Nested-PCR assay were 100 %, compared to 94, 100, 100, and 98 %, respectively, for MZN and 87.5, 100, 100, and 96 %, respectively, for DFA. Results of the present study showed that the Nested-PCR assay was more sensitive than the other two methods and laboratories can use the Nested-PCR method for precise diagnosis of Cryptosporidium spp. However, regarding the costs of Nested-PCR and its unavailability in all laboratories and hospitals, MZN staining on smears has also enough accuracy for Cryptosporidium diagnosis.

  3. Detection of Mycoplasma genitalium with real-time PCR assay%生殖支原体TaqMan荧光PCR检测方法的建立

    Institute of Scientific and Technical Information of China (English)

    李晶; 顾一心; 何利华; 孟凡亮; 赵飞

    2012-01-01

    Objective Established a simple, rapid real-time PCR assay to detect Mycoplasma genitalium. Methods An optimized real-time PCR assay was established by analyzing the mg219 gene of M. genitalium. The specificity and sensitivity of this assay were evaluated and compared with conventional PCR assay using a standard concentration plasmid of M. genitalium. Results The sensitivity of the real-time PCR assay was about 10 copies. The specificity of the assay appeared to be 100%. This real-time PCR assay had about 10 times the sensitivity of conventional PCR. Conclusion This real-time PCR assay maybe a suitable method for the detection of M. genitalium in clinical settings.%目的 建立一种快速、灵敏、特异的生殖支原体TaqMan荧光PCR检测方法. 方法 选取生殖支原体mg219基因保守区域设计、合成特异性扩增引物和TaqMan探针,建立并优化荧光PCR检测方法.对优化后的方法进行扩增效率、灵敏度及特异度评价,并与已报道的生殖支原体常规PCR方法进行比较. 结果 建立的荧光PCR方法对生殖支原体的检测限约为10 copies,高于常规PCR的102 copies,并缩短检测时间100 min.用该方法扩增20种病原菌染色体及人类染色体,结果均为阴性,特异度为100%. 结论 建立的荧光PCR方法可快速、灵敏、特异地检测生殖支原体,有望用于临床标本检测.

  4. Use of a real time PCR assay for detection of the ctxA gene of Vibrio cholerae in an environmental survey of Mobile Bay.

    Science.gov (United States)

    Blackstone, George M; Nordstrom, Jessica L; Bowen, Michael D; Meyer, Richard F; Imbro, Paula; DePaola, Angelo

    2007-02-01

    Toxigenic Vibrio cholerae, the etiological agent of cholera, is a natural inhabitant of the marine environment and causes severe diarrheal disease affecting thousands of people each year in developing countries. It is the subject of extensive testing of shrimp produced and exported from these countries. We report the development of a real time PCR (qPCR) assay to detect the gene encoding cholera toxin, ctxA, found in toxigenic V. cholerae strains. This assay was tested against DNA isolated from soil samples collected from diverse locations in the US, a panel of eukaryotic DNA from various sources, and prokaryotic DNA from closely related and unrelated bacterial sources. Only Vibrio strains known to contain ctxA generated a fluorescent signal with the 5' nuclease probe targeting the ctxA gene, thus confirming the specificity of the assay. In addition, the assay was quantitative in pure culture across a six-log dynamic range down to Mobile Bay, AL, were analyzed by qPCR and traditional culture methods. The assay was applied to overnight alkaline peptone water enrichments of these matrices after boiling the enrichments for 10 min. Toxigenic V. cholerae strains were not detected by either qPCR or conventional methods in the 16 environmental samples examined. A novel exogenous internal amplification control developed by us to prevent false negatives identified the samples that were inhibitory to the PCR. This assay, with the incorporated internal control, provides a highly specific, sensitive, and rapid detection method for the detection of toxigenic strains of V. cholerae.

  5. Evaluation of an Immunochromatographic Strip (Xenostrip –Tv Test for Diagnosis of Vaginal Trichomoniasis Compared with Wet Mount and PCR Assay

    Directory of Open Access Journals (Sweden)

    MH Feiz-Haddad

    2008-09-01

    Full Text Available "nBackground: Trichomoniasis, caused by Trichomonas vaginalis, is one of the most common sexually transmitted infections in the world. Diagnosis of T. vaginalis is performed by different methods, including wet mount, culture, serological methods and PCR, which required laboratory equipments and expert laboratory personnel. The aim of this study was evaluation of immunochromatographic strip test (Xenostrip-Tv for diagnosis of vaginal trichomoniasis compared with wet mount and PCR assay."nMethods: In this prospective study vaginal swabs were obtained from 100 women with genital complaints demanding a speculum examination, referred to Imam Khomeini and Amir Kabir hospitals in Ahwaz, Khuzestan Province. Samples were first examined by wet mount and Xenostrip-Tv. PCR assay was performed in the next step using TVK3 and TVK7 primers initially. The positive samples were then confirmed by the second PCR assay using TVA5-1 and TVA6 primers."nResults: PCR with TVA5-1 and TVA6 primers was determined as gold standard. The wet mount as well as Xenostrip-Tv sensitivity and specificity were 73.3% and 100%, respectively in comparison with gold standard. The sensitivity and specificity of PCR with primers TVK3 and TVK7 were also determined as 100% and 96.6%, respectively. The infection rates were 14% for wet mount and Xenostrip-Tv, 21% for PCR with primers TVK3 plus TVK7 and 19% with the gold standard PCR using TVA5-1 and TVA6 primers."nConclusion: Xenostrip- Tv could be used for diagnosis of vaginal trichomoniasis in regions with no laboratory diagnostic facilities.

  6. Clinical validation of a PCR assay for the detection of EGFR mutations in non-small-cell lung cancer: retrospective testing of specimens from the EURTAC trial.

    Directory of Open Access Journals (Sweden)

    Susana Benlloch

    Full Text Available The EURTAC trial demonstrated that the tyrosine kinase inhibitor (TKI erlotinib was superior to chemotherapy as first-line therapy for advanced non-small cell lung cancers (NSCLC that harbor EGFR activating mutations in a predominantly Caucasian population. Based on EURTAC and several Asian trials, anti-EGFR TKIs are standard of care for EGFR mutation-positive NSCLC. We sought to validate a rapid multiplex EGFR mutation assay as a companion diagnostic assay to select patients for this therapy. Samples from the EURTAC trial were prospectively screened for EGFR mutations using a combination of laboratory-developed tests (LDTs, and tested retrospectively with the cobas EGFR mutation test (EGFR PCR test. The EGFR PCR test results were compared to the original LDT results and to Sanger sequencing, using a subset of specimens from patients screened for the trial. Residual tissue was available from 487 (47% of the 1044 patients screened for the trial. The EGFR PCR test showed high concordance with LDT results with a 96.3% overall agreement. The clinical outcome of patients who were EGFR-mutation detected by the EGFR PCR test was very similar to the entire EURTAC cohort. The concordance between the EGFR PCR test and Sanger sequencing was 90.6%. In 78.9% of the discordant samples, the EGFR PCR test result was confirmed by a sensitive deep sequencing assay. This retrospective study demonstrates the clinical utility of the EGFR PCR test in the accurate selection of patients for anti-EGFR TKI therapy. The EGFR PCR test demonstrated improved performance relative to Sanger sequencing.

  7. Development of quantitative PCR assays targeting the 16S rRNA genes of Enterococcus spp. and their application to the identification of enterococcus species in environmental samples.

    Science.gov (United States)

    Ryu, Hodon; Henson, Michael; Elk, Michael; Toledo-Hernandez, Carlos; Griffith, John; Blackwood, Denene; Noble, Rachel; Gourmelon, Michèle; Glassmeyer, Susan; Santo Domingo, Jorge W

    2013-01-01

    The detection of environmental enterococci has been determined primarily by using culture-based techniques that might exclude some enterococcal species as well as those that are nonculturable. To address this, the relative abundances of enterococci were examined by challenging fecal and water samples against a currently available genus-specific assay (Entero1). To determine the diversity of enterococcal species, 16S rRNA gene-based group-specific quantitative PCR (qPCR) assays were developed and evaluated against eight of the most common environmental enterococcal species. Partial 16S rRNA gene sequences of 439 presumptive environmental enterococcal strains were analyzed to study further the diversity of enterococci and to confirm the specificities of group-specific assays. The group-specific qPCR assays showed relatively high amplification rates with targeted species (>98%), although some assays cross-amplified with nontargeted species (1.3 to 6.5%). The results with the group-specific assays also showed that different enterococcal species co-occurred in most fecal samples. The most abundant enterococci in water and fecal samples were Enterococcus faecalis and Enterococcus faecium, although we identified more water isolates as Enterococcus casseliflavus than as any of the other species. The prevalence of the Entero1 marker was in agreement with the combined number of positive signals determined by the group-specific assays in most fecal samples, except in gull feces. On the other hand, the number of group-specific assay signals was lower in all water samples tested, suggesting that other enterococcal species are present in these samples. While the results highlight the value of genus- and group-specific assays for detecting the major enterococcal groups in environmental water samples, additional studies are needed to determine further the diversity, distributions, and relative abundances of all enterococcal species found in water.

  8. Development of a nested-PCR assay for the rapid detection of Pilidiella granati in pomegranate fruit

    Science.gov (United States)

    Yang, Xue; Hameed, Uzma; Zhang, Ai-Fang; Zang, Hao-Yu; Gu, Chun-Yan; Chen, Yu; Xu, Yi-Liu

    2017-01-01

    Pilidiella granati, a causal agent of twig blight and crown rot of pomegranate, is an emerging threat that may cause severe risk to the pomegranate industry in the future. Development of a rapid assay for the timely and accurate detection of P. granati will be helpful in the active surveillance and management of the disease caused by this pathogen. In this study, a nested PCR method was established for the detection of P. granati. Comparative analysis of genetic diversity within 5.8S rDNA internal transcribed spacer (ITS) sequences of P. granati and 21 other selected fungal species was performed to design species-specific primers (S1 and S2). This primer pair successfully amplified a 450 bp product exclusively from the genomic DNA of P. granati. The developed method can detect 10 pg genomic DNA of the pathogen in about 6 h. This technique was successfully applied to detect the natural infection of P. granati in the pomegranate fruit. The designed protocol is rapid and precise with a high degree of sensitivity. PMID:28106107

  9. TEST-SYSTEMS FOR MONITORING OF CORROSION-RELEVANT SULFATE-REDUCING BACTERIA USING REAL-TIME PCR ASSAY

    Directory of Open Access Journals (Sweden)

    D. R.

    2016-02-01

    Full Text Available The possibility of the designing test-systems for specific detection of corrosive-relevant sulfate-reducing bacteria using real-time PCR assay were investigated. This method of the bacteria identification is based on the detection of the functional genes, encoding key enzymes of dissimilatory sulfate-reduction pathway, i.e. dissimilatory sulfitreductase α subunit dsrA. It was established among the six test-systems specificity reveal only three designed on the base of Desulfotomaculum, Desulfovibrio, Desulfobulbus genera sequences. The most corrosive-relevant strain Desulfovibrio sp. UCM B-11503 dsrA gene detected more effectively (threshold cycle was 20,0, than less corrosive-relevant strains Desulfovibrio sp. UCM B-11504 (threshold cycle was 28,1 and for Desulfotomaculum sp. UCM B-11505 and Desulfomicrobium sp. UCМ B-11506 were 24,9 and 23,1 cycles, respectively. Test-systems allowed identifying corrosive-relevant sulfate-reducing bacteria faster and more effective. This approach will serve as a base for monitoring of these bacteria for estimating corrosion sites on the high-level dangerous man-caused objects.

  10. PCR-RFLP assays to distinguish the Western and Eastern phylogroups in wild and cultured tench Tinca tinca.

    Science.gov (United States)

    Lajbner, Z; Kotlík, P

    2011-03-01

    The tench Tinca tinca is a valued table fish native to Europe and Asia, but which is now widely distributed in many temperate freshwater regions of the world as the result of human-mediated translocations. Fish are currently being transplanted between watersheds without concern for genetic similarity to wild populations or local adaptation, and efficient phylogeographic markers are therefore urgently needed to rapidly distinguish genetically distinct geographical populations and to assess their contribution to the hatchery breeds and to the stocked wild populations. Here, we present a new method to distinguish recently discovered and morphologically undistinguishable Western and Eastern phylogroups of the tench. The method relies on PCR-RFLP assays of two independent nuclear-encoded exon-primed intron-crossing (EPIC) markers and of one mitochondrial DNA (mDNA) marker and allows the rapid identification of the Western and Eastern phylogroup and also of three geographical mtDNA clades within the Eastern phylogroup. Our method will enable researchers and fishery practitioners to rapidly distinguish genetically divergent geographical populations of the tench and will be useful for monitoring the introduction and human-mediated spread of the phylogroups in wild populations, for characterization of cultured strains and in breeding experiments.

  11. A family-wide RT-PCR assay for detection of paramyxoviruses and application to a large-scale surveillance study.

    Directory of Open Access Journals (Sweden)

    Sander van Boheemen

    Full Text Available Family-wide molecular diagnostic assays are valuable tools for initial identification of viruses during outbreaks and to limit costs of surveillance studies. Recent discoveries of paramyxoviruses have called for such assay that is able to detect all known and unknown paramyxoviruses in one round of PCR amplification. We have developed a RT-PCR assay consisting of a single degenerate primer set, able to detect all members of the Paramyxoviridae family including all virus genera within the subfamilies Paramyxovirinae and Pneumovirinae. Primers anneal to domain III of the polymerase gene, with the 3' end of the reverse primer annealing to the conserved motif GDNQ, which is proposed to be the active site for nucleotide polymerization. The assay was fully optimized and was shown to indeed detect all available paramyxoviruses tested. Clinical specimens from hospitalized patients that tested positive for known paramyxoviruses in conventional assays were also detected with the novel family-wide test. A high-throughput fluorescence-based RT-PCR version of the assay was developed for screening large numbers of specimens. A large number of samples collected from wild birds was tested, resulting in the detection of avian paramyxoviruses type 1 in both barnacle and white-fronted geese, and type 8 in barnacle geese. Avian metapneumovirus type C was found for the first time in Europe in mallards, greylag geese and common gulls. The single round family-wide RT-PCR assay described here is a useful tool for the detection of known and unknown paramyxoviruses, and screening of large sample collections from humans and animals.

  12. Revisiting catechol derivatives as robust chromogenic hydrogen donors working in alkaline media for peroxidase mimetics.

    Science.gov (United States)

    Drozd, Marcin; Pietrzak, Mariusz; Pytlos, Jakub; Malinowska, Elżbieta

    2016-12-15

    Colloidal noble metal-based nanoparticles are able to catalyze oxidation of chromogenic substrates by H2O2, similarly to peroxidases, even in basic media. However, lack of robust chromogens, which work in high pH impedes their real applications. Herein we demonstrate the applicability of selected catechol derivatives: bromopyrogallol red (BPR) and pyrogallol (PG) as chromogenic substrates for peroxidase-like activity assays, which are capable of working over wide range of pH, covering also basic values. Hyperbranched polyglycidol-stabilized gold nanoparticles (HBPG@AuNPs) were used as model enzyme mimetics. Efficiency of several methods of improving stability of substrates in alkaline media by means of selective suppression of their autoxidation by molecular oxygen was evaluated. In a framework of presented studies the impact of borate anion, applied as complexing agent for PG and BPR, on their stability and reactivity towards oxidation mediated by catalytic AuNPs was investigated. The key role of high concentration of hydrogen peroxide in elimination of non-catalytic oxidation of PG and improvement of optical properties of BPR in alkaline media containing borate was underlined. Described methods of peroxidase-like activity characterization with the use of BPR and PG can become universal tools for characterization of nanozymes, which gain various applications, among others, they are used as catalytic labels in bioassays and biosensors.

  13. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae.

    Science.gov (United States)

    Monstein, H-J; Ostholm-Balkhed, A; Nilsson, M V; Nilsson, M; Dornbusch, K; Nilsson, L E

    2007-12-01

    Extended-spectrum beta-lactamases (ESBLs) are often mediated by (bla-)SHV, (bla)TEM and (bla)CTX-M genes in Enterobacteriaceae and other Gram-negative bacteria. Numerous molecular typing methods, including PCR-based assays, have been developed for their identification. To reduce the number of PCR amplifications needed we have developed a multiplex PCR assay which detects and discriminates between (bla-)SHV, (bla)TEM and (bla)CTX-M PCR amplicons of 747, 445 and 593 bp, respectively. This multiplex PCR assay allowed the identification of (bla-)SHV, (bla)TEM and (bla)CTX-M genes in a series of clinical isolates of Enterobacteriaceae with previously characterised ESBL phenotype. The presence of (bla)SHV, (bla)TEM and (bla)CTX-M genes was confirmed by partial DNA sequence analysis. Apparently, the universal well-established CTX-M primer pair used here to reveal plasmid-encoded (bla)CTX-M genes would also amplify the chromosomally located K-1 enzyme gene in all Klebsiella oxytoca strains included in the study.

  14. Rapid and sensitive detection of Phytophthora colocasiae responsible for the taro leaf blight using conventional and real-time PCR assay.

    Science.gov (United States)

    Nath, Vishnu S; Hegde, Vinayaka M; Jeeva, Muthulekshmi L; Misra, Raj S; Veena, Syamala S; Raj, Mithun; Unnikrishnan, Suresh K; Darveekaran, Sree S

    2014-03-01

    Conventional and real-time PCR assays were developed for sensitive and specific detection of Phytophthora colocasiae, an oomycete pathogen that causes leaf blight and corm rot of taro. A set of three primer pairs was designed from regions of the RAS-related protein (Ypt1), G protein alpha-subunit (GPA1) and phospho-ribosylanthranilate isomerase (TRP1) genes. In conventional PCR, the lower limit of detection was 50 pg DNA, whereas in real-time PCR, the detection limit was 12.5 fg for the primer based on Ypt1 gene. The cycle threshold values were linearly correlated with the concentration of the target DNA (range of R(2) = 0.911-0.999). All the primer sets were successful in detecting P. colocasie from naturally infected leaves and tubers of taro. Phytophthora colocasiae was detected from artificially infested samples after 18 and 15 h of postinoculation in conventional and real-time PCR assay, respectively. The developed PCR assay proved to be a robust and reliable technique to detect P. colocasiae in taro planting material and for assessing the distribution of pathogen within fields, thus aid in mitigating taro leaf blight.

  15. Detection of Alicyclobacillus spp. in Fruit Juice by Combination of Immunomagnetic Separation and a SYBR Green I Real-Time PCR Assay.

    Science.gov (United States)

    Cai, Rui; Wang, Zhouli; Yuan, Yahong; Liu, Bin; Wang, Ling; Yue, Tianli

    2015-01-01

    An approach based on immunomagnetic separation (IMS) and SYBR Green I real-time PCR (real-time PCR) with species-specific primers and melting curve analysis was proposed as a rapid and effective method for detecting Alicyclobacillus spp. in fruit juices. Specific primers targeting the 16S rDNA sequences of Alicyclobacillus spp. were designed and then confirmed by the amplification of DNA extracted from standard strains and isolates. Spiked samples containing known amounts of target bacteria were used to obtain standard curves; the correlation coefficient was greater than 0.986 and the real-time PCR amplification efficiencies were 98.9%- 101.8%. The detection limit of the testing system was 2.8×101 CFU/mL. The coefficient of variation for intra-assay and inter-assay variability were all within the acceptable limit of 5%. Besides, the performance of the IMS-real-time PCR assay was further investigated by detecting naturally contaminated kiwi fruit juice; the sensitivity, specificity and accuracy were 91.7%, 95.9% and 95.3%, respectively. The established IMS-real-time PCR procedure provides a new method for identification and quantitative detection of Alicyclobacillus spp. in fruit juice.

  16. A Systematic Investigation of Parameters Influencing Droplet Rain in the Listeria monocytogenes prfA Assay - Reduction of Ambiguous Results in ddPCR

    Science.gov (United States)

    Witte, Anna Kristina; Mester, Patrick; Fister, Susanne; Witte, Matthias; Schoder, Dagmar; Rossmanith, Peter

    2016-01-01

    The droplet digital polymerase chain reaction (ddPCR) determines DNA amounts based upon the pattern of positive and negative droplets, according to Poisson distribution, without the use of external standards. However, division into positive and negative droplets is often not clear because a part of the droplets has intermediate fluorescence values, appearing as “rain” in the plot. Despite the droplet rain, absolute quantification with ddPCR is possible, as shown previously for the prfA assay in quantifying Listeria monocytogenes. Nevertheless, reducing the rain, and thus ambiguous results, promotes the accuracy and credibility of ddPCR. In this study, we extensively investigated chemical and physical parameters for optimizing the prfA assay for ddPCR. While differences in the concentration of all chemicals and the dye, quencher and supplier of the probe did not alter the droplet pattern, changes in the PCR cycling program, such as prolonged times and increased cycle numbers, improved the assay. PMID:27992475

  17. Detection of Alicyclobacillus spp. in Fruit Juice by Combination of Immunomagnetic Separation and a SYBR Green I Real-Time PCR Assay.

    Directory of Open Access Journals (Sweden)

    Rui Cai

    Full Text Available An approach based on immunomagnetic separation (IMS and SYBR Green I real-time PCR (real-time PCR with species-specific primers and melting curve analysis was proposed as a rapid and effective method for detecting Alicyclobacillus spp. in fruit juices. Specific primers targeting the 16S rDNA sequences of Alicyclobacillus spp. were designed and then confirmed by the amplification of DNA extracted from standard strains and isolates. Spiked samples containing known amounts of target bacteria were used to obtain standard curves; the correlation coefficient was greater than 0.986 and the real-time PCR amplification efficiencies were 98.9%- 101.8%. The detection limit of the testing system was 2.8×101 CFU/mL. The coefficient of variation for intra-assay and inter-assay variability were all within the acceptable limit of 5%. Besides, the performance of the IMS-real-time PCR assay was further investigated by detecting naturally contaminated kiwi fruit juice; the sensitivity, specificity and accuracy were 91.7%, 95.9% and 95.3%, respectively. The established IMS-real-time PCR procedure provides a new method for identification and quantitative detection of Alicyclobacillus spp. in fruit juice.

  18. Novel Molecular Beacon Probe-Based Real-Time RT-PCR Assay for Diagnosis of Crimean-Congo Hemorrhagic Fever Encountered in India

    Directory of Open Access Journals (Sweden)

    Aman Kamboj

    2014-01-01

    Full Text Available Crimean-Congo hemorrhagic fever (CCHF is an emerging zoonotic disease in India and requires immediate detection of infection both for preventing further transmission and for controlling the infection. The present study describes development, optimization, and evaluation of a novel molecular beacon-based real-time RT-PCR assay for rapid, sensitive, and specific diagnosis of Crimean-Congo hemorrhagic fever virus (CCHFV. The developed assay was found to be a better alternative to the reported TaqMan assay for routine diagnosis of CCHF.

  19. Establishment of one-step SYBR green-based real time-PCR assay for rapid detection and quantification of chikungunya virus infection.

    Science.gov (United States)

    Ho, Phui San; Ng, Mary Mah Lee; Chu, Justin Jang Hann

    2010-01-21

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus and one of the prevalent re-emerging arbovirus in tropical and subtropical regions of Asia, Africa, and Central and South America. It produces a spectrum of illness ranging from inapparent infection to moderate febrile illness as well as severe arthralgia or arthritis affecting multiple joints. In this study, a quantitative, one-step real-time SYBR Green-based RT-PCR system for the non-structural protein 2 (nsP2) of CHIKV that can quantify a wide range of viral RNA concentrations was developed. Comparisons between the conventional semi-quantitative RT-PCR assay, immunofluorescence detection method and the one-step SYBR Green-based RT-PCR assay in the detection of CHIKV infection revealed much rapid and increase sensitivity of the latter method. Furthermore, this newly developed assay was validated by in vitro experiments in which ribavirin, a well-known RNA virus inhibitor, showed a dose-dependent inhibition of virus replication on cells that was assessed by viral infectivity and viral RNA production. Our results demonstrate the potential of this newly developed one-step SYBR Green I-based RT-PCR assay may be a useful tool in rapid detection of CHIKV and monitoring the extent of viral replication possibly in patients' samples.

  20. Evaluation of a real-time PCR assay for simultaneous detection of Kingella kingae and Staphylococcus aureus from synovial fluid in suspected septic arthritis.

    Science.gov (United States)

    Haldar, Malay; Butler, Meghan; Quinn, Criziel D; Stratton, Charles W; Tang, Yi-Wei; Burnham, Carey-Ann D

    2014-07-01

    Direct plating of synovial fluid (SF) on agar-based media often fails to identify pathogens in septic arthritis (SA). We developed a PCR assay for the simultaneous detection of Kingella kingae and Staphylococcus aureus from SF to evaluate molecular detection in SF and to estimate the incidence of K. kingae in SA in North America. The assay was based on detection of the cpn60 gene of K. kingae and the spa gene of S. aureus in multiplex real-time PCR. K. kingae was identified in 50% of patients between 0 and 5 yr of age (n=6) but not in any patients >18 yr old (n=105). Direct plating of SF on agar-based media failed to detect K. kingae in all samples. The PCR assay was inferior to the culture-based method for S. aureus, detecting only 50% of culture-positive cases. Our findings suggest that K. kingae is a common pathogen in pediatric SA in North America, in agreement with previous reports from Europe. PCR-based assays for the detection of K. kingae may be considered in children with SA, especially in those with a high degree of clinical suspicion.

  1. Development and application of a PCR assay to detect chicken and turkey parvoviruses in commercial poultry flocks in the United States.

    Science.gov (United States)

    Comparative sequence analysis of six independent chicken and turkey parvovirus nonstructural (NS) genes revealed specific genomic regions with 100% nucleotide sequence identity. A PCR assay with primers targeting these conserved genome sequences proved to be highly specific and sensitive to detect p...

  2. Establishment of one-step SYBR green-based real time-PCR assay for rapid detection and quantification of chikungunya virus infection

    Directory of Open Access Journals (Sweden)

    Chu Justin

    2010-01-01

    Full Text Available Abstract Chikungunya virus (CHIKV is a mosquito-borne alphavirus and one of the prevalent re-emerging arbovirus in tropical and subtropical regions of Asia, Africa, and Central and South America. It produces a spectrum of illness ranging from inapparent infection to moderate febrile illness as well as severe arthralgia or arthritis affecting multiple joints. In this study, a quantitative, one-step real-time SYBR Green-based RT-PCR system for the non-structural protein 2 (nsP2 of CHIKV that can quantify a wide range of viral RNA concentrations was developed. Comparisons between the conventional semi-quantitative RT-PCR assay, immunofluorescence detection method and the one-step SYBR Green-based RT-PCR assay in the detection of CHIKV infection revealed much rapid and increase sensitivity of the latter method. Furthermore, this newly developed assay was validated by in vitro experiments in which ribavirin, a well-known RNA virus inhibitor, showed a dose-dependent inhibition of virus replication on cells that was assessed by viral infectivity and viral RNA production. Our results demonstrate the potential of this newly developed one-step SYBR Green I-based RT-PCR assay may be a useful tool in rapid detection of CHIKV and monitoring the extent of viral replication possibly in patients' samples.

  3. Dataset of proinflammatory cytokine and cytokine receptor gene expression in rainbow trout (Oncorhynchus mykiss) measured using a novel GeXP multiplex, RT-PCR assay

    Science.gov (United States)

    A GeXP multiplex, RT-PCR assay was developed and optimized that simultaneously measures expression of a suite of immune-relevant genes in rainbow trout (Oncorhynchus mykiss), concentrating on tumor necrosis factor and interleukin-1 ligand/receptor systems and acute phase response genes. The dataset ...

  4. A highly sensitive, multiplex broad-spectrum PCR-DNA-enzyme immunoassay and reverse hybridization assay for rapid detection and identification of Chlamydia trachomatis serovars.

    NARCIS (Netherlands)

    Quint, K.D.; Doorn, L.J. van; Kleter, B.; Koning, M.N. de; Munckhof, H.A. van den; Morre, S.A.; Harmsel, B. ter; Weiderpass, E.; Harbers, G.; Melchers, W.J.G.; Quint, W.G.V.

    2007-01-01

    Chlamydia trachomatis (Ct) comprises distinct serogroups and serovars. The present study evaluates a novel Ct amplification, detection, and genotyping method (Ct-DT assay). The Ct-DT amplification step is a multiplex broad-spectrum PCR for the cryptic plasmid