WorldWideScience

Sample records for chromium-resistant bacteria isolated

  1. Chromium Resistant Bacteria: Impact on Plant Growth in Soil Microcosm

    Directory of Open Access Journals (Sweden)

    Sayel Hanane

    2014-07-01

    Full Text Available Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.

  2. Cultural characteristics of chromium resistant unicellular cyanobacteria isolated from local environment in Pakistan

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Many unicellular cyanobacteria were isolated from different places: fields, ponds, polluted water, and soils from Muredkey and Kasur tannery areas, near Lahore, Pakistan. Different media like BG 11 medium, Bold Basal medium, Chu's # 10 medium and Gorham's medium, in standard forms and with slight variations of ingredients, and different pH, temperature and light regimes were checked for the optimum growth of the isolates. The isolation procedure was repeated with different concentrations of chromium to select the resistant strains. These selected strains grew on chromium of the range 100-200 μg/ml in BG 11 medium. Cyanobacteria were maintained in solid and liquid media with/without shaking. Cyanobacterial strains were collected from natural habitats that were accompanied by a diversified group of organisms including bacteria, protozoan, and rotifers etc. In order to eliminate these agents termed as contaminants, we used several methods including phenol treatment, use of antibiotic and careful manual picking of unicellular cyanobacteria. Resistance of these strains against different heavy metals (ZnSO4, MnSO4,NiSO4, CoCl2, Pb(NO3)3, CuSO4, HgCl2, AgNO3 and CdCl2) and antibiotics (erythromycin, streptomycin, kanamycin,chloramphenicol, neomycin) was evaluated. Optimum temperature was 30℃ with variable pH for the reduction of Cr6+ in to Cr3+ in majority of strains.

  3. Cultural characteristics of chromium resistant unicellular cyanobacteria isolated from local environment in Pakistan

    Science.gov (United States)

    Hameed, Abdul; Hasnain, Shahida

    2005-12-01

    Many unicellular cyanobacteria were isolated from different places: fields, ponds, polluted water, and soils from Muredkey and Kasur tannery areas, near Lahore, Pakistan. Different media like BG 11 medium, Bold Basal medium, Chu's #10 medium and Gorham's medium, in standard forms and with slight variations of ingredients, and different pH, temperature and light regimes were checked for the optimum growth of the isolates. The isolation procedure was repeated with different concentrations of chromium to select the resistant strains. These selected strains grew on chromium of the range 100-200 μg/ml in BG 11 medium. Cyanobacteria were maintained in solid and liquid media with/without shaking. Cyanobacterial strains were collected from natural habitats that were accompanied by a diversified group of organisms including bacteria, protozoan, and rotifers etc. In order to eliminate these agents termed as contaminants, we used several methods including phenol treatment, use of antibiotic and careful manual picking of unicellular cyanobacteria. Resistance of these strains against different heavy metals (ZnSO4, MnSO4, NiSO4, CoCl2, Pb(NO3)3, CuSO4, HgCl2, AgNO3 and CdCl2) and antibiotics (erythromycin, streptomycin, kanamyci chloramphenicol, neomycin) was evaluated. Optimum temperature was 30°C with variable pH for the reduction of Cr6+ in to Cr3+ in majority of strains.

  4. Bioremediation of Tannery Wastewater by Chromium Resistant Fungal Isolate Fusarium Chlamydosporium SPFS2-g

    Directory of Open Access Journals (Sweden)

    Smiley Sharma

    2014-12-01

    Full Text Available The present study assessed the bioremediation potential of Fusarium chlamydosporium SPFS2-g isolated from tannery effluent enriched soil. The isolate exhibited minimum inhibitory concentration (MIC for Cr(VI as 500 ppm. The treatment of tannery wastewater with Fusarium chlamydosporium in shake flask experiment resulted in the reduction of chemical oxygen demand (COD, color, Cr(VI, total suspended solids (TSS, turbidity, Na+, Cl-, and NO3- in the order of 71.80, 64.69, 100, 36.47, 22.77, 11.69, 27.87 and 62.33%, respectively after six days of treatment duration.

  5. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kundi; Li, Fuli [Chinese Academy of Sciences, Qingdao (China). Qingdao Inst. of Bioenergy and Bioprocess Technology

    2011-05-15

    A novel bacterium, Cr-10, was isolated from a chromium-contaminated site and capable of removing toxic chromium species from solution by reducing hexavalent chromium to an insoluble precipitate. Sequence analysis of 16S rRNA gene of strain Cr-10 showed that it was most closely related to Serratia rubidaea JCM 1240{sup T} (97.68%). Physiological and chemotaxonomic data also supported that strain Cr-10 was identified as Serratia sp., a genus which was never specially reported chromate-resistant before. Serratia sp., Cr-10 was tolerant to a concentration of 1,500 mg Cr(VI) L{sup -1}, which was the highest level reported until now. The optimum pH and temperature for reduction of Cr(VI) by Serratia sp. Cr-10 were found to be 7.0 and 37 C, respectively. The Cr(VI) reduction was significantly influenced by additional carbon sources, and among them fructose and lactose offered maximum reduction, with a rate of 0.28 and 0.25 mg Cr(VI) L{sup -1} h{sup -1}, respectively. The cell-free extracts and filtrate of the culture were able to reduce Cr(VI) while concentration of total chromium remained stable in the process, indicating that the enzyme-catalyzed mechanism was applied in Cr(VI) reduction by the isolate. Additionally, it was found that there was hardly any chromium on the cell surface of the strain, further supporting that reduction, rather than bioadsorption, plays a major role in the Cr(VI) removal. (orig.)

  6. Isolation and Identification of Concrete Environment Bacteria

    Science.gov (United States)

    Irwan, J. M.; Anneza, L. H.; Othman, N.; Husnul, T.; Alshalif, A. F.

    2016-07-01

    This paper presents the isolation and molecular method for bacteria identification through PCR and DNA sequencing. Identification of the bacteria species is required in order to fully utilize the bacterium capability for precipitation of calcium carbonate in concrete. This process is to enable the addition of suitable catalyst according to the bacterium enzymatic pathway that is known through the bacteria species used. The objective of this study is to isolate, enriched and identify the bacteria species. The bacteria in this study was isolated from fresh urine and acid mine drainage water, Kota Tinggi, Johor. Enrichment of the isolated bacteria was conducted to ensure the bacteria survivability in concrete. The identification of bacteria species was done through polymerase chain reaction (PCR) and rRDNA sequencing. The isolation and enrichment of the bacteria was done successfully. Whereas, the results for bacteria identification showed that the isolated bacteria strains are Bacillus sp and Enterococus faecalis.

  7. Hydrocarbon Degrading Bacteria: Isolation and Identification

    Directory of Open Access Journals (Sweden)

    Lies Indah Sutiknowati

    2007-11-01

    Full Text Available There is little information how to identify hydrocarbon degrading bacteria for bioremediation of marine oil spills. We have used gravel which contaminated oil mousse from Beach Simulator Tank, in Marine Biotechnology Institute, Kamaishi, Japan, and grown on enrichment culture. Biostimulation with nutrients (N and P was done to analyze biodegradation of hydrocarbon compounds: Naphthalene, Phenanthrene, Trichlorodibenzofuran and Benzo[a]pyrene. Community of bacteria from enrichment culture was determined by DGGE. Isolating and screening the bacteria on inorganic medium contain hydrocarbon compounds and determination of bacteria by DAPI (number of cells and CFU. DNA was extracted from colonies of bacteria and sequence determination of the 16S rDNA was amplified by primers U515f and U1492r. Twenty nine strains had been sequence and have similarity about 90-99% to their closest taxa by homology Blast search and few of them have suspected as new species.

  8. Bacteria Isolated from Post-Partum Infections

    Directory of Open Access Journals (Sweden)

    Nahid Arianpour

    2009-06-01

    Full Text Available Objective: This study was undertaken with an aim to determine bacterial species involved in post partum infections and also their abundance in patients admitted to at Khanevadeh hospital. In this study out of three different kinds of postpartum infections (i.e. genital, breast and urinary tract, only genital infection is considered.Materials and Methods: Post partum infection among 6077 patients (inpatients and re-admitted patients of Khanevadeh hospital from 2003 till 2008 was studied in this descriptive study. Samples were collected from patients for laboratory diagnosis to find out the causative organisms.Results: Follow up of mothers after delivery revealed 7.59% (461 patients had post partum infection, out of which 1.03% (63 patients were re-hospitalized. Infection was more often among younger mothers. Bacteria isolated and identified were both aerobic and anaerobic cocci and bacilli, majority of which were normal flora of the site of infection. Though, some pathogenic bacteria like Staphylococcus aureus, Neisseria gonorrhea, Chlamydia trachomatis,were also the causative agents. The commonest infection was infection at the site of episiotomy. Conclusion: Puerperal infection was detected in of 7.59% mothers. Bacteria isolated were both aerobic and anaerobic cocci and bacilli, majority of which were normal flora. However; some pathogenic bacteria were isolated.

  9. Design and application of the method for isolating magnetotactic bacteria

    Institute of Scientific and Technical Information of China (English)

    XIAO Zhijie; LIAN Bin; CHEN Jun; H. Henry Teng

    2007-01-01

    A simple apparatus was designed to effectively isolate magnetotactic bacteria from soils or sediments based on their magnetotaxis. Through a series of processes including sample incubation, MTB harvesting, isolation, purification and identification, several strains of bacteria were isolated from the samples successfully. By Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray Analysis (EDXA), these bacteria were certificated to be magnetotactic bacteria. The phylogenetic relationship between the isolated magnetic strains and some known magnetotactic bacteria was inferred by the construction of phylogenetic tree based on 16SrDNA sequences. This apparatus has been proven to have the advantages of being inexpensive, simple to assemble, easy to perform and highly efficient to isolate novel magnetotactic bacteria. The research indicated that the combined approach of harvesting MTB by home-made apparatus and the method of plate colony isolation could purify and isolate magnetotactic bacteria effectively.

  10. Isolation and characterization of novel chitinolytic bacteria

    Science.gov (United States)

    Gürkök, Sümeyra; Görmez, Arzu

    2016-04-01

    Chitin, a linear polymer of β-1,4-N-acetylglucosamine units, is one of the most abundant biopolymers widely distributed in the marine and terrestrial environments. It is found as a structural component of insects, crustaceans and the cell walls of fungi. Chitinases, the enzymes degrading chitin by cleaving the β-(1-4) bond, have gained increased attention due to their wide range of biotechnological applications, especially for biocontrol of harmful insects and phytopathogenic fungi in agriculture. In the present study, 200 bacterial isolates from Western Anatolia Region of Turkey were screened for chitinolytic activity on agar media amended with colloidal chitin. Based on the chitin hydrolysis zone, 13 isolates were selected for further study. Bacterial isolates with the highest chitinase activity were identified as Acinetobacter calcoaceticus, Arthrobacter oxydans, Bacillus cereus, Bacillus megaterium, Brevibacillus reuszeri, Kocuria erythromyxa, Kocuria rosea, Novosphingobium capsulatum, Rhodococcus bratislaviensis, Rhodococcus fascians and Staphylococcus cohnii by MIS and BIOLOG systems. The next aims of the study are to compare the productivity of these bacteria quantitatively, to purify the enzyme from the most potent producer and to apply the pure enzyme for the fight against the phytopathogenic fungi and harmful insects.

  11. Isolation and identification of marine fish tumour (odontoma) associated bacteria

    Institute of Scientific and Technical Information of China (English)

    Ramalingam Vijayakumar; Kuzhanthaivel Raja; Vijayapoopathi Singaravel; Ayyaru Gopalakrishnan

    2015-01-01

    Objective: To identify fish tumour associated bacteria. Methods: The marine fish Sphyraena jello with odontoma was collected from in Tamil Nadu (Southeast India), and tumour associated bacteria were isolated. Then the isolated bacteria were identified based on molecular characters. Results: A total of 4 different bacterial species were isolated from tumour tissue. The bacterial species were Bacillus sp., Pontibacter sp., Burkholderia sp. and Macrococcus sp., and the sequences were submitted in DNA Data Bank of Japan with accession numbers of AB859240, AB859241, AB859242 and AB859243 respectively. Conclusions: Four different bacterial species were isolated from Sphyraena jello, but the role of bacteria within tumour needs to be further investigated.

  12. Isolation and identification of marine fish tumour (odontoma associated bacteria

    Directory of Open Access Journals (Sweden)

    Ramalingam Vijayakumar

    2015-09-01

    Full Text Available Objective: To identify fish tumour associated bacteria. Methods: The marine fish Sphyraena jello with odontoma was collected from in Tamil Nadu (Southeast India, and tumour associated bacteria were isolated. Then the isolated bacteria were identified based on molecular characters. Results: A total of 4 different bacterial species were isolated from tumour tissue. The bacterial species were Bacillus sp., Pontibacter sp., Burkholderia sp. and Macrococcus sp., and the sequences were submitted in DNA Data Bank of Japan with accession numbers of AB859240, AB859241, AB859242 and AB859243 respectively. Conclusions: Four different bacterial species were isolated from Sphyraena jello, but the role of bacteria within tumour needs to be further investigated.

  13. Isolation and Characterization of Three Siderophores from Marine Bacteria

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    One new siderophore (3) along with the previously reported nocardamine (1) and schizokinen A (2) were iso-lated from the culture broth of three bacteria isolated from unidentified marine sponges. The minimal active con-centrations of the compounds by chrome azurol S (CAS) liquid assay are 5, 4 and 156 μg/mL, respectively.

  14. ISOLATION AND IDENTIFICATION OF ACR YLAMIDE DEGRADING BACTERIA FROM SOIL

    Directory of Open Access Journals (Sweden)

    Nidhi Jain

    2013-02-01

    Full Text Available Acrylamide is an aliphatic amide, which is produced by industrial processes and during heating of food. It is neurotoxic and a suspected carcinogen. In the present study an attempt was made to isolate acrylamide degrading bacteria from soil. The optimum growth conditions and physiological characteristics for the isolated acrylamide degrading bacteria were investigated. The isolated bacterium was identified as Bacillus clausii strain 1779 based on full 16S rRNA molecular phylogeny. The bacteria can degrade 800 mg l-1acrylamide after eight days of incubation with concomitant cell growth. In addition to above, it also grows optimally at a concentration of acrylamide between 500-2000 mg l-1between pH 8-10 and temperature and 25 – 45 0C. Thus the isolate would be useful in the bioremediation of environment from acrylamide in alkali conditions.

  15. "DRUG RESISTANCE PATTERN IN ISOLATED BACTERIA FROM BLOOD CULTURES"

    OpenAIRE

    A Sobhani; H. Shodjai S. Javanbakht

    2004-01-01

    Bacteremia is an important infectious disease which may lead to death. Common bacteria and pattern of antibiotic resistance in different communities are different and understanding these differences is important. In the present study, relative frequency and pattern of drug resistance have been examined in bacteria isolated from blood cultures in Razi Hospital laboratory. The method of the study was descriptive. Data collection was carried out retrospectively. Total sample consisted of 311 pos...

  16. Mycoplasma and associated bacteria isolated from ovine pink-eye.

    Science.gov (United States)

    Langford, E V

    1971-01-01

    A mycoplasma was recovered from the untreated conjunctival membranes of nine sheep affected by Pink-eye. It was neither isolated from the conjunctiva of treated animals which were affected nor from the conjunctiva of normal animals either in contact or not in contact with affected animals. Bacteria found on normal conjunctival membranes were Neisseria ovis, Escherichia coli, Staphylococcus epidermididis, Streptococcus and Bacillus spp. Bacteria found in clinical cases of Pink-eye were N. ovis, E. coli, a Streptococcus and Pseudomonas spp.

  17. Isolation and characterization of pigmented algicidal bacteria from seawater

    Science.gov (United States)

    Shaima, A.; Gires, U.; Asmat, A.

    2014-09-01

    Some dinoflagellate species are toxic and widely distributed in Malaysian marines ecosystems. They can cause many problems to aquatic life due to the production of various potential and natural toxins that accumulate in filter feeding shellfish and cause food poisoning to human. In recent decades, bacteria have been widely used as a biological control against these harmful algae. In the present study, pigmented bacteria isolated from marine water of Port Dickson beach was studied for their anti-algal activity towards toxic dinoflagellate Alexandrium minutum. Four isolates were studied and only one was capable of inhibiting algal growth when treated with bacterial culture. The algilytic effect on dinoflagellate was evaluated based on direct cell count under the microscope. Results showed that only isolate Sdpd-310 with orange colour has an inhibitory effect on A. minutum growth. This study demonstrated the rapid algicidal activity of a marine pigmented bacteria against the toxic dinoflagellate A. minutum.

  18. Isolation and identification of Profenofos degrading bacteria

    Directory of Open Access Journals (Sweden)

    Saadatullah Malghani

    2009-12-01

    Full Text Available An enrichment culture technique was used to isolate bacterial strains responsible for the biodegradation of profenofos in a soil from Hubei province of central China. Two pure bacterial cultures, named W and Y, were isolated and subsequently characterized by sequencing of 16S rRNA genes and biochemical tests. Isolate W showed 96% similarity to the 16S rRNA gene of a Pseudomonas putida unlike Y which showed 99% similarity to the 16S rRNA gene of Burkholderia gladioli. Both strains grew well at pH 5.5-7.2 with a broad temperature profile ranging from 28º to 36 ºC. Bioremediation of profenofos-contaminated soil was examined using soil treated with 200 ug g-1; profenofos resulted in a higher degradation rate than control soils without inoculation. In a mineral salt medium (FTW reduction in profenofos concentration was 90% within 96 hours of incubation. A literature survey revealed that no data is available regarding the role of Burkholderia gladioli on pesticide biodegradation as well as on profenofos.

  19. Isolation and Identification of Nitrite- oxidizing Bacteria

    Institute of Scientific and Technical Information of China (English)

    Yulong; CHEN; Wenyong; TAN; Da; YANG

    2015-01-01

    In order to select the strain that can degrade nitrite,we use the screening plate with nitrite as the sole nitrogen source to select the strain with ability to degrade nitrite,and get a strain with nitrite degrading capacity from the silt of shrimp farming pond in Hepu City,Guangxi Zhuang Autonomous Region. By identifying the strain from colony morphology,physiological and biochemical characteristics and 16 S r RNA sequence,we finally get a bacteria strain that can degrade nitrite,and this strain can grow well on the culture medium with nitrite concentration of 2 g / L. Based on morphology,nitrogen source requirements and evolutionary tree analysis of the above 16 S r RNA sequence,it is found that this strain belongs to Pannonibacter phragmitetus. According to the screening location,it is named HPPP007 strain.

  20. Isolation of bacteria from ectomycorrhizae of Tuber aestivum Vittad

    Directory of Open Access Journals (Sweden)

    Milana Gryndler

    2013-12-01

    Full Text Available Fifteen different cultivation media were used to isolate bacteria with the idea to obtain taxa specifically associated with ectomycorrhizae of Tuber aestivum. Ectomycorrhizae were collected at the sampling points previously analyzed for bacterial molecular diversity. We isolated 183 bacterial strains and identified them on the basis of the partial sequence of 16S rDNA. Out of these isolates, only 4 corresponded to operational taxonomic units significantly associated with T. aestivum ectomycorrhizae in previous molecular study. Preliminary study of the effect of 12 selected isolates on growth of T. aestivum mycelium showed no stimulation and one isolate induced the damage of hyphae. Different isolation strategy has to be developed to increase the probability of cultivation of potentially important components of T. aestivum mycorrhizosphere.

  1. Multiresistant Bacteria Isolated from Chicken Meat in Austria

    Directory of Open Access Journals (Sweden)

    Gernot Zarfel

    2014-12-01

    Full Text Available Multidrug resistant bacteria (MDR bacteria, such as extended spectrum beta-lactamase (ESBL Enterobacteriaceae, methicillin resistant Staphylococcus aureus (MRSA, and vancomycin-resistant Enterococci (VRE, pose a challenge to the human health care system. In recent years, these MDR bacteria have been detected increasingly outside the hospital environment. Also the contamination of food with MDR bacteria, particularly of meat and meat products, is a concern. The aim of the study was to evaluate the occurrence of MDR bacteria in chicken meat on the Austrian market. For this study, 50 chicken meat samples were analysed. All samples originated from chickens slaughtered in Austrian slaughterhouses and were marked as produced in Austria. Samples were analysed for the presence of ESBL Enterobacteriaceae, methicillin resistant Staphylococci and VRE. Resistance genes of the isolated bacteria were characterised by PCR and sequencing. In the present study 26 ESBL producing E. coli, five mecA gene harbouring Staphylococci (but no MRSA, and four VRE were detected in chicken meat samples of Austrian origin. In 24 (48% of the samples no ESBL Enterobacteriaceae, MRSA, methicillin resistant coagulase negative Staphylococcus (MRCNS or VRE could be detected. None of the samples contained all three types of investigated multiresistant bacteria. In concordance to previous studies, CTX-M-1 and SHV-12 were the dominant ESBL genes.

  2. Isolation of Asphaltene-Degrading Bacteria from Sludge Oil

    Directory of Open Access Journals (Sweden)

    Pingkan Aditiawati

    2015-03-01

    Full Text Available Sludge oil contains 30%–50% hydrocarbon fractions that comprise saturated fractions, aromatics, resins, and asphaltene. Asphaltene fraction is the most persistent fraction. In this research, the indigenous bacteria that can degrade asphaltene fractions from a sludge oil sample from Balikpapan that was isolated using BHMS medium (Bushnell-Hass Mineral Salt with 0.01% (w/v yeast extract, 2% (w/v asphaltene extract, and 2% (w/v sludge oil. The ability of the four isolates to degrade asphaltene fractions was conducted by the biodegradation asphaltene fractions test using liquid cultures in a BHMS medium with 0.01% (w/v yeast extract and 2% (w/v asphaltene extract as a carbon source. The parameters measured during the process of biodegradation of asphaltene fractions include the quantification of Total Petroleum Hydrocarbon (g, log total number of bacteria (CFU/ml, and pH. There are four bacteria (isolates 1, 2, 3, and 4 that have been characterized to degrade asphaltic fraction and have been identified as Bacillus sp. Lysinibacillus fusiformes, Acinetobacter sp., and Mycobacterium sp., respectively. The results showed that the highest ability to degrade asphaltene fractions is that of Bacillus sp. (isolate 1 and Lysinibacillus fusiformes (Isolate 2, with biodegradation percentages of asphaltene fractions being 50% and 55%, respectively, and growth rate at the exponential phase is 7.17x107 CFU/mL.days and 4.21x107 CFU/mL.days, respectively.

  3. Isolation of lactic acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Bohn, Jelena; Yüksel-Dadak, Aytül; Dröge, Stefan; König, Helmut

    2017-02-20

    Direct molecular approaches provide hints that lactic acid bacteria play an important role in the degradation process of organic material to methanogenetic substrates in biogas plants. However, their diversity in biogas fermenter samples has not been analyzed in detail yet. For that reason, five different biogas fermenters, which were fed mainly with maize silage and manure from cattle or pigs, were examined for the occurrence of lactic acid-forming bacteria. A total of 197 lactic acid-forming bacterial strains were isolated, which we assigned to 21 species, belonging to the genera Bacillus, Clostridium, Lactobacillus, Pediococcus, Streptococcus and Pseudoramibacter-related. A qualitative multiplex system and a real-time quantitative PCR could be developed for most isolates, realized by the selection of specific primers. Their role in biogas plants was discussed on the basis of the quantitative results and on physiological data of the isolates.

  4. Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts.

    Science.gov (United States)

    Zhou, N; Zhang, J X; Fan, M T; Wang, J; Guo, G; Wei, X Y

    2012-09-01

    The aim of this study was to evaluate the susceptibility of 43 strains of lactic acid bacteria, isolated from Chinese yogurts made in different geographical areas, to 11 antibiotics (ampicillin, penicillin G, roxithromycin, chloramphenicol, tetracycline, chlortetracycline, lincomycin, kanamycin, streptomycin, neomycin, and gentamycin). The 43 isolates (18 Lactobacillus bulgaricus and 25 Streptococcus thermophilus) were identified at species level and were typed by random amplified polymorphic DNA analysis. Thirty-five genotypically different strains were detected and their antimicrobial resistance to 11 antibiotics was determined using the agar dilution method. Widespread resistance to ampicillin, chloramphenicol, chlortetracycline, tetracyclines, lincomycin, streptomycin, neomycin, and gentamycin was found among the 35 strains tested. All of the Strep. thermophilus strains tested were susceptible to penicillin G and roxithromycin, whereas 23.5 and 64.7% of Lb. bulgaricus strains, respectively, were resistant. All of the Strep. thermophilus and Lb. bulgaricus strains were found to be resistant to kanamycin. The presence of the corresponding resistance genes in the resistant isolates was investigated through PCR, with the following genes detected: tet(M) in 1 Lb. bulgaricus and 2 Strep. thermophilus isolates, ant(6) in 2 Lb. bulgaricus and 2 Strep. thermophilus isolates, and aph(3')-IIIa in 5 Lb. bulgaricus and 2 Strep. thermophilus isolates. The main threat associated with these bacteria is that they may transfer resistance genes to pathogenic bacteria, which has been a major cause of concern to human and animal health. To our knowledge, the aph(3')-IIIa and ant(6) genes were found in Lb. bulgaricus and Strep. thermophilus for the first time. Further investigations are required to analyze whether the genes identified in Lb. bulgaricus and Strep. thermophilus isolates might be horizontally transferred to other species.

  5. Screening and isolation of halophilic bacteria producing industrially important enzymes

    Directory of Open Access Journals (Sweden)

    Sumit Kumar

    2012-12-01

    Full Text Available Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases. Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3-20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology.

  6. Isolation of novel psychrophilic bacteria from Arctic sea ice

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The phylogenetic diversity of culturable psychrophilic bacteria associated with sea ice from the high latitude regions of Canadian Basin and Chukchi Sea, Arctic, was investigated. A total of 34 psychropilic strains were isolated using three methods of (Ⅰ) dilution plating (at 4 ℃), (Ⅱ) bath culturing (at -1 ℃) and dilution plating, and (Ⅲ) cold shock (-20 ℃ for 24 h), bath culturing and dilution plating under aerobic conditions. Sea-ice samples were exposed to -20 ℃ for 24 h that might reduce the number of common microorganisms and encourage outgrowth of psychrophilic strains. This process might be able to be introduced to isolation psychrophilic bacteria from other environmental samples in future study. 16S rDNA nearly full-length sequence analysis revealed that psychrophilic strains felled in two phylogenetic divisions, γ-proteobacteria (in the genera Colwellia、Marinobacter、Shewanella、Glaciecola、Marinomonas and Pseudoalteromonas) and Cytophaga-Flexibacter-Bacteroides (Flavobacterium and Psychroflexus). Fifteen of bacterial isolates quite likely represented novel species (16S rDNA sequence similarity below 98%). One of strains (BSi20002) from Canadian Basin showed 100% sequence similarity to that of Marinobacter sp. ANT8277 isolated from the Antarctic Weddell sea ice, suggesting bacteria may have a bipolar distribution at the species level.

  7. Characterization of protease-producing bacteria isolated from terasi

    Directory of Open Access Journals (Sweden)

    Novi Arfarita

    2016-03-01

    Full Text Available Total of 117 bacterial strains were isolated from terasi samples and 69% of isolates (71 could perform distinctive proteolytic activity that related to the ability to produce protease enzymes. Their proteolytic activity was further tested using spot incubation technique. Strain S4-5 has shown the highest activity then was selected for further tests in this study. Gram staining test showed that S4-5 is gram positive bacteria and able to grow under anaerobic condition. Based on API biochemical profiles, S4-5 strain bacteria was Bacillus licheniformis. Similarity test of genome sequence among Bacillus species from gene bank (EMBL Sequence Version with Bacillus spp., strain S4-5 had similarity with Bacillus licheniformis genome. The optimal pH of this strain was 6 whereas the optimum temperature for Bacillus licheniformis strain S4-5 was 37ºC.

  8. Identification of lead- resistant endophytic bacteria isolated from rice.

    Directory of Open Access Journals (Sweden)

    Alexander Pérez-Cordero

    2015-06-01

    Full Text Available   The objective of this study was to evaluate in vitro the endophytic bacteria resistance to different lead concentrations. The sampling was undertaken in the first half of 2013, when tissue samples of commercial varieties of rice at tillering stage were collected in Montería, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria in agar R2A medium were isolated. Population density (CFU/g tissue was determined from each tissue, by direct counting of R2A medium surface. morphotypes were classified by shape, color, size, and appearance. A total of 168 morphotypes were isolated from root, tillers, and leaf of different commercial varieties of rice. The lead resistance test was performed in vitro, to do that, suspensions of endophytic bacteria in log phase were prepared and inoculated in minimal medium with five concentrations of lead as Pb(NO32. The experiment was incubated at 32 °C and agitated at 150 rpm, for five days. Every hour afterstarting the test, turbidimetry measuring at 600 nm was conducted. Results showed the ability of endophytic bacteria to grow at concentrations of 100% of Pb as Pb(NO32. The results of the identification with kit API20E confirmed the presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to different lead concentrations.

  9. "DRUG RESISTANCE PATTERN IN ISOLATED BACTERIA FROM BLOOD CULTURES"

    Directory of Open Access Journals (Sweden)

    A. Sobhani

    2004-05-01

    Full Text Available Bacteremia is an important infectious disease which may lead to death. Common bacteria and pattern of antibiotic resistance in different communities are different and understanding these differences is important. In the present study, relative frequency and pattern of drug resistance have been examined in bacteria isolated from blood cultures in Razi Hospital laboratory. The method of the study was descriptive. Data collection was carried out retrospectively. Total sample consisted of 311 positive blood cultures from 1999 to 2001. Variables under study were bacterial strains, antibiotics examined in antibiogram, microbial resistance, and patients' age and sex. The most common isolated bacteria were Salmonella typhi (22.2% and the least common ones were Citrobacter (1.6%. The highest antibiotic resistance was seen against amoxicillin (88.4%. The proportion of males to females was1: 1/1 and the most common age group was 15-44 (47.3%. Common bacteria and pattern of antibiotic resistance were different in some areas and this subject requires further studies in the future.

  10. Isolation of endophyic bacteria from purwoceng (Pimpinella alpina Kds.

    Directory of Open Access Journals (Sweden)

    Tri Widayat

    2012-09-01

    andits derivatives has wide biological activity spectrum as antifungal, anticoagulation, anti infl amation and it can be an additive in certain food or cosmetic additive. This study aimed to isolate endophytic bacteria frompurwoceng, to assess the growth of endophytic bacteria within coumarin containing medium and to reveal the affect of endophytic bacteria to the coumarin content of the medium.Methods: Endophytic bacteria were isolated from purwoceng roots and leaves. Pure culture of endophytic bacteria was selected by growing the bacteria in the ammonium salt sugar medium containing purwoceng herbalinfusion. The effect of the bacteria to coumarin content in the medium was assessed through the cultivation of chosen bacteria in medium that was similar with the medium used in the selection step. Coumarin content inthe medium was detected by using thin layer chromatography (TLC.Results: Nine isolates obtained from purwoceng roots and leaves could be alive in the basic medium containing purwoceng herbal infusion and had generation time (g 2.7-5.7 hours and specifi c growth rate (μ 0,14-0,26/hour. Cultivation of chosen isolate showed that BAP5 could grow in the medium containing 1072 arbitrary unit (AU of coumarin. The TLC exhibited Rf 0.27 of the compound that was assumed as coumarin.Conclusion: Endophytic bacteria were successfully isolated from purwoceng and prevented the coumarin loss from the medium. (Health Science Indones 2012;1:31-6 

  11. Macrolides resistance of common bacteria isolated from Taiwan.

    Science.gov (United States)

    Chang, S C; Chen, Y C; Luh, K T; Hsieh, W C

    1995-12-01

    To determine the susceptibility to macrolides of common pathogenic bacteria isolated from Taiwan, the in vitro activities of erythromycin, roxithromycin, azithromycin, clarithromycin, and dirithromycin were tested against 492 clinical isolates of eight different bacteria, collected from the National Taiwan University Hospital. The results showed high minimum inhibitory concentrations (MICs) against most of the tested bacteria. The MIC90s for Staphylococcus aureus (both methicillin-resistant and -sensitive strains), coagulase-negative staphylococci (both methicillin-resistant and -sensitive strains), Streptococcus pyogenes, Streptococcus pneumoniae, enterococci, peptostreptococci, and Bacteroides fragilis were all > or = 256 micrograms/ml. The MIC50s for methicillin-resistant strains of S. aureus and coagulase-negative staphylococci, and enterococci were > or = 256 micrograms/ml. For S. pneumoniae, peptostreptococci, and B. fragilis, the MIC50s were > 8 micrograms/ml. The resistance rates to macrolides were 80% or more in methicillin-resistant staphylococci and about 30% in methicillin-sensitive staphylococci. Around 55% of S. pneumoniae strains and 37 approximately 42% of S. pyogenes strains were resistant to macrolides. Cross-resistance to different macrolides was clearly demonstrated in most of the resistant strains.

  12. Naturally Occurring Lactic Acid Bacteria Isolated from Tomato Pomace Silage

    Science.gov (United States)

    Wu, Jing-jing; Du, Rui-ping; Gao, Min; Sui, Yao-qiang; Xiu, Lei; Wang, Xiao

    2014-01-01

    Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage. PMID:25049999

  13. Microbial Cellulose Production from Bacteria Isolated from Rotten Fruit

    Directory of Open Access Journals (Sweden)

    B. E. Rangaswamy

    2015-01-01

    Full Text Available Microbial cellulose, an exopolysaccharide produced by bacteria, has unique structural and mechanical properties and is highly pure compared to plant cellulose. Present study represents isolation, identification, and screening of cellulose producing bacteria and further process optimization. Isolation of thirty cellulose producers was carried out from natural sources like rotten fruits and rotten vegetables. The bacterial isolates obtained from rotten pomegranate, rotten sweet potato, and rotten potato were identified as Gluconacetobacter sp. RV28, Enterobacter sp. RV11, and Pseudomonas sp. RV14 through morphological and biochemical analysis. Optimization studies were conducted for process parameters like inoculum density, temperature, pH, agitation, and carbon and nitrogen sources using Gluconacetobacter sp. RV28. The strain produced 4.7 g/L of cellulose at optimum growth conditions of temperature (30°C, pH (6.0, sucrose (2%, peptone (0.5%, and inoculum density (5%. Characterization of microbial cellulose was done by scanning electron microscopy (SEM.

  14. Isolation and characterization of bacteria resistant to metallic copper surfaces.

    Science.gov (United States)

    Santo, Christophe Espírito; Morais, Paula Vasconcelos; Grass, Gregor

    2010-03-01

    Metallic copper alloys have recently attracted attention as a new antimicrobial weapon for areas where surface hygiene is paramount. Currently it is not understood on a molecular level how metallic copper kills microbes, but previous studies have demonstrated that a wide variety of bacteria, including Escherichia coli, Staphylococcus aureus, and Clostridium difficile, are inactivated within minutes or a few hours of exposure. In this study, we show that bacteria isolated from copper alloy coins comprise strains that are especially resistant against the toxic properties exerted by dry metallic copper surfaces. The most resistant of 294 isolates were Gram-positive staphylococci and micrococci, Kocuria palustris, and Brachybacterium conglomeratum but also included the proteobacterial species Sphingomonas panni and Pseudomonas oleovorans. Cells of some of these bacterial strains survived on copper surfaces for 48 h or more. Remarkably, when these dry-surface-resistant strains were exposed to moist copper surfaces, resistance levels were close to those of control strains and MICs for copper ions were at or below control strain levels. This suggests that mechanisms conferring resistance against dry metallic copper surfaces in these newly isolated bacterial strains are different from well-characterized copper ion detoxification systems. Furthermore, staphylococci on coins did not exhibit increased levels of resistance to antibiotics, arguing against coselection with copper surface resistance traits.

  15. Isolation and identification of novel geosmin-degrading bacteria.

    Science.gov (United States)

    Xue, Qiang; Chen, Gang; Shimizu, Kazuya; Sakharkar, Meena Kishore; Utsumi, Motoo; Chen, Honghan; Li, Miao; Zhang, Zhenya; Sugiura, Norio

    2011-06-01

    Three novel geosmin-degrading bacteria were isolated from the sediments of Lake Kasumigaura, Japan. All strains were identified as Acinetobacter spp. by 16S rRNA gene sequence analysis and can biodegrade geosmin at an initial geosmin concentration of 2 mg/L after 2 days. Furthermore, at an initial geosmin concentration of 40 microg/L, geosmin removal was more than 68per cent by GSM-2 strain, and the degradation mechanism followed a pseudo-first-order mode. A rate constant of 0.026 reveals rapid geosmin degradation. This is the first report on geosmin degradation by by Acinetobacter spp.

  16. Lactic acid bacteria isolated from soy sauce mash in Thailand.

    Science.gov (United States)

    Tanasupawat, Somboon; Thongsanit, Jaruwan; Okada, Sanae; Komagata, Kazuo

    2002-08-01

    Fourteen sphere-shaped and 30 rod-shaped lactic acid bacteria were isolated from soy sauce mash of two factories in Thailand. These strains were separated into two groups, Group A and Group B, by cell shape and DNA-DNA similarity. Group A contained 14 tetrad-forming strains, and these strains were identified as Tetragenococcus halophilus by DNA similarity. Group B contained 30 rod-shaped bacteria, and they were further divided into four Subgroups, B1, B2, B3, and B4, and three ungrouped strains by phenotypic characteristics and DNA similarity. Subgroup B1 contained 16 strains, and these strains were identified as Lactobacillus acidipiscis by DNA similarity. Subgroup B2 included two strains, and the strains were identified as Lactobacillus farciminis by DNA similarity. Subgroup B3 contained five strains. The strains had meso-diaminopimelic acid in the cell wall, and were identified as Lactobacillus pentosus by DNA similarity. The strains tested produced DL-lactic acid from D-glucose. Subgroup B4 contained four strains. The strains had meso-diaminopimelic acid in the cell wall, and they were identified as Lactobacillus plantarum by DNA similarity. Two ungrouped strains were homofermentative, and one was heterofermentative. They showed a low degree of DNA similarity with the type strains tested, and were left unnamed. The distribution of lactic acid bacteria in soy sauce mash in Thailand is discussed.

  17. Isolation and characterization of arsenic resistant bacteria from wastewater

    Directory of Open Access Journals (Sweden)

    Syed Zaghum Abbas

    2014-12-01

    Full Text Available The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6 were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 ºC and at 7.0 pH in control but in arsenite stress Luria Bertani broth the bacterial growth is lower than control. All strains were arsenite oxidizing. All strains were biochemically characterized and ribotyping (16S rRNA was done for the purpose of identification which confirmed that MNZ1 was homologous to Enterobacter sp. while MNZ4 and MNZ6 showed their maximum homology with Klebsiella pneumoniae. The protein profiling of these strains showed in arsenic stressed and non stressed conditions, so no bands of induced proteins appeared in stressed conditions. The bacterial isolates can be exploited for bioremediation of arsenic containing wastes, since they seem to have the potential to oxidize the arsenite (more toxic into arsenate (less toxic form.

  18. Isolation and characterization of arsenic resistant bacteria from wastewater.

    Science.gov (United States)

    Abbas, Syed Zaghum; Riaz, Mehwish; Ramzan, Naseem; Zahid, M Tariq; Shakoori, Farah R; Rafatullah, Mohd

    2014-01-01

    The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6) were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 °C and at 7.0 pH in control but in arsenite stress Luria Bertani broth the bacterial growth is lower than control. All strains were arsenite oxidizing. All strains were biochemically characterized and ribotyping (16S rRNA) was done for the purpose of identification which confirmed that MNZ1 was homologous to Enterobacter sp. while MNZ4 and MNZ6 showed their maximum homology with Klebsiella pneumoniae. The protein profiling of these strains showed in arsenic stressed and non stressed conditions, so no bands of induced proteins appeared in stressed conditions. The bacterial isolates can be exploited for bioremediation of arsenic containing wastes, since they seem to have the potential to oxidize the arsenite (more toxic) into arsenate (less toxic) form.

  19. Alternative methodology for isolation of biosurfactant-producing bacteria.

    Science.gov (United States)

    Krepsky, N; Da Silva, F S; Fontana, L F; Crapez, M A C

    2007-02-01

    Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g x L(-1)) and Arabian Light oil (2 g x L(-1)) as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase) did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.

  20. Alternative methodology for isolation of biosurfactant-producing bacteria

    Directory of Open Access Journals (Sweden)

    N. Krepsky

    Full Text Available Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g.L-1 and Arabian Light oil (2 g.L-1 as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.

  1. Marine bacteria producing antibacterial compounds isolated from inter-tidal invertebrates

    OpenAIRE

    León, Jorge; Laboratorio de Microbiología Ambiental y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Apartado 110058, Lima Perú.; Liza, Libia; Laboratorio de Microbiología Ambiental y Biotecnología, facultad de Ciencias Biológicas,Universidad Nacional Mayor de San Marcos, Lima, Perú. Biólogo. Microbiólogo.; Soto, Isela; Laboratorio de Microbiología Ambiental y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Apartado 110058, Lima Perú.; Torres, Magali; Laboratorio de Microbiología Ambiental y Biotecnología, facultad de Ciencias Biológicas,Universidad Nacional Mayor de San Marcos, Lima, Perú. Biólogo. Microbiólogo; Orosco, Andrés; Laboratorio de Microbiología Ambiental y Biotecnología, facultad de Ciencias Biológicas,Universidad Nacional Mayor de San Marcos, Lima, Perú. Biólogo. Microbiólogo

    2010-01-01

    Prospective sampling activities of intertidal invertebrates in the Ancon Bay (Lima, Peru) were done in order to select marine bacteria producing antimicrobial substances. The study included the isolation of bacteria in marine agar, in vitro antimicrobial susceptibility testing and electronic microscopic observations. We report the isolation, phenotypical characterization and antimicrobial properties of 10 strains of marine bacteria including the genus Vibrio, Pseudomonas, and Flavobacteri...

  2. Isolation and identification of thermophilic and mesophylic proteolytic bacteria from shrimp paste "Terasi"

    Science.gov (United States)

    Murwani, R.; Supriyadi, Subagio, Trianto, A.; Ambariyanto

    2015-12-01

    Terasi is a traditional product generally made of fermented shrimp. There were many studies regarding lactic acid bacteria of terasi but none regarding proteolitic bacteria. This study was conducted to isolate and identify the thermophilic and mesophylic proteolytic bacteria from terasi. In addition, the effect of different salt concentrations on the growth of the isolated proteolytic bacteria with the greatest proteolytic activity was also studied. Terasi samples were obtained from the Northern coast region of Java island i.e. Jepara, Demak and Batang. The study obtained 34 proteolytic isolates. Four isolates were identified as Sulfidobacillus, three isolates as Vibrio / Alkaligenes / Aeromonas, two isolates as Pseudomonas, 21 isolates as Bacillus, three isolates as Kurthia/ Caryophanon and one isolates as Amphibacillus. The growth of proteolytic bacteria was affected by salt concentration. The largest growth was found at 0 ppm salt concentrations and growth was declined as salt concentration increased. Maximum growth at each salt concentration tested was found at 8 hours incubation.

  3. PROBIOTIC POTENTIALS AMONG LACTIC ACID BACTERIA ISOLATED FROM CURD

    Directory of Open Access Journals (Sweden)

    Shruthy VV

    2011-02-01

    Full Text Available Curd is a commonly used fermented milk product in India since time immemorial. The scientific use of curd as a source of probiotic (good bacteria for health has not been much examined. The yougurt (curd containing probiotics is in Indian market and highly acclaimed. Therefore the status of curd as a source of probiotics is in question and requires scientific examination of its content, so the study was carried out. Probiotic potentials of two bacterial isolates from 20 different curd samples were identified as Lactobacillus spp. by the determination of morphological, cultural, physiological and biochemical characteristics, were investigated. The antibacterial potential against diarrhoegenic bacterial pathogens was also examined. The reference strain used was Lactobacillus acidophilus, MTCC 447. The percentage survivability of the strains at pH 3.5, was found to be satisfactory (>90%. Bile salt resistance (0.3% sodium thioglycollate was found to be between 80.41% and 83.2%. The pH decrease of the strains with time showed slow acidification activity. The lactic acid production of the strains ranges from 1.83 ± 0.12 to 3.93 ± 0.07 g. The strains were β-galactosidase producer and were resistant to principal antibiotics tested. But the absence of plasmids showed that they are intrinsically resistant or chromosome encoded. Strains showed maximum inhibition zone against V. cholerae O139 (13.67 ± 0.57 to 15.33 ± 0.57 mm in comparison to other diarrhoeagenic bacteria. Only 10% of the examined curd samples had probiotic bacteria. Isolated strains of Lactobacillus spp. showed satisfactory probiotic potentials in comparison with reference strains and with antibacterial activity against diarrhoeagenic pathogens and thus maybe useful in the management of diarrhoea and also in functional food industry.

  4. Isolation of aerobic bacteria from ticks infested sheep in Iraq

    Institute of Scientific and Technical Information of China (English)

    Waleed Ibrahem Jalil; Mohammad Mushgil Zenad

    2016-01-01

    Objective:To highlight the presence of aerobic bacteria in live ticks infested sheep,in Diyala Governorate,Iraq.Methods:One hundred and thirty adult alive ticks were picked up from sheep which were reared in different farms in Diyala Governorate,Iraq,during the period from November 2012 to May 2013.Ticks were classified in the Natural History Museum in Baghdad.They were dissected aseptically for extraction of the salivary gland and midgut.The removed tissue from each organ was inoculated in buffer peptone water(1%)and incubated for 2 h at 37 °C,to maintain weak and/or injured bacterial cells,then transmitted to nutrient broth incubated at 37 °C for 18 h.Culturing was done on three solid bacteriological media(nutrient,blood and McConkey agars),and then incubated at37 ℃ for 24 h.Bacterial identification was performed by using multiple biochemical tests and API-20 strips.Data were analyzed by using Statistical Analysis System version 9.1,2010.Chi-square test was used for comparison at significant level of P ≤ 0.05.Results:Two species of ticks were identified[Rhipicephalus(Boophilus) annulatus and Hyalomma turanicum].High bacterial isolation rate was observed(483 isolates).A significant high isolation rate was recorded from Rhipicephalus annulatus(63.14%).Six bacterial species were identified[Escherichia coli(28.36%),Pseudomonas aeruginosa(18.01%),Bacillus cereus(14.69%),Staphylococcus aureus(13.66%),Citrobacter freundii(13.04%),and Enterobacter species(12.21%)].Also the high bacterial isolation rates were recorded in the temperate months(November,March and April);these coincided with high reproductive performance of ticks.Conclusions:The high isolation rate of aerobic pathogens from ticks might reflect the active contribution of this arthropod in environmental contamination and increase the probability of transmitting bacterial pathogens to their hosts.

  5. Isolation of aerobic bacteria from ticks infested sheep in Iraq

    Institute of Scientific and Technical Information of China (English)

    Waleed Ibrahem Jalil; Mohammad Mushgil Zenad

    2016-01-01

    Objective: To highlight the presence of aerobic bacteria in live ticks infested sheep, in Diyala Governorate, Iraq. Methods: One hundred and thirty adult alive ticks were picked up from sheep which were reared in different farms in Diyala Governorate, Iraq, during the period from November 2012 to May 2013. Ticks were classified in the Natural History Museum in Baghdad. They were dissected aseptically for extraction of the salivary gland and mid-gut. The removed tissue from each organ was inoculated in buffer peptone water (1%) and incubated for 2 h at 37℃, to maintain weak and/or injured bacterial cells, then transmitted to nutrient broth incubated at 37℃ for 18 h. Culturing was done on three solid bacteriological media (nutrient, blood and McConkey agars), and then incubated at 37℃ for 24 h. Bacterial identification was performed by using multiple biochemical tests and API-20 strips. Data were analyzed by using Statistical Analysis System version 9.1, 2010. Chi-square test was used for comparison at significant level of P ≤0.05. Results: Two species of ticks were identified [Rhipicephalus (Boophilus) annulatus and Hyalomma turanicum]. High bacterial isolation rate was observed (483 isolates). A significant high isolation rate was recorded from Rhipicephalus annulatus (63.14%). Six bacterial species were identified [Escherichia coli (28.36%), Pseudomonas aeruginosa (18.01%), Bacillus cereus (14.69%), Staphylococcus aureus (13.66%), Citrobacter freundii (13.04%), and Enterobacter species (12.21%)]. Also the high bacterial isolation rates were recorded in the temperate months (November, March and April); these coin-cided with high reproductive performance of ticks. Conclusions: The high isolation rate of aerobic pathogens from ticks might reflect the active contribution of this arthropod in environmental contamination and increase the probability of transmitting bacterial pathogens to their hosts.

  6. Characterisation of lactic acid bacteria isolated from fermented milk "laban".

    Science.gov (United States)

    Chammas, Gisele I; Saliba, Rachad; Corrieu, Georges; Béal, Catherine

    2006-07-01

    The technological properties of 96 lactic acid bacteria isolated from Lebanese traditional fermented milk "laban" were characterised. They were classified by phenotypic and biochemical analyses as Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, thus indicating that laban is a fermented milk similar to yogurt. Most strains of L. bulgaricus (87.5%) exhibited a high acidification activity, whereas strains of streptococci showed low acidification ability. 33.3% of streptococci strains and 25% of lactobacilli strains displayed similar acidification performances as European strains. Results obtained for syneresis, texture and rheological parameters led us to consider that isolated strains were not low polymer-producing strains. Some of them displayed interesting characteristics such as low syneresis and high values for rheological parameters. The major flavour compounds found in pure cultures were acetaldehyde, acetone, 2-butanone, dimethyl disulfide, acetoin, 2,3-butanedione, 2,3-pentanedione, and acetic, hexanoic and butanoic acids. Acetaldehyde (7.4%) and organic acids (48.3%) were mainly produced by L. bulgaricus strains, whereas streptococci cultures contained high relative levels of 2,3-butanedione and acetoin, which represented around 82% of the total flavour compounds. Finally, strains isolated from laban samples exhibited different technological properties than those used in yogurt production, thus conferring specific characteristics to this product.

  7. Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae) in the Brazilian Amazon

    OpenAIRE

    Fernandes Júnior,Paulo Ivan; Duarte Pereira, Gilmara Maria; Perin, Liamara; da Silva, Luana Mesquita; Cardoso Baraúna, Alexandre; Muniz Alves, Francilene; Ribeiro Passos, Samuel; Édson Zilli, Jerri

    2013-01-01

    The association of wild grasses with diazotrophic bacteria in Brazilian biomes is poorly understood. The isolation and characterization of bacteria associated with wild grasses can contribute to understand the diazotrophic ecology as well as to identify bacteria with biotechnological applications. In this study, we isolated and characterized diazotrophic bacterial isolates from Oryza glumaepatula collected in Cerrado and Forest areas of the Amazon in Roraima State, Brazil. Healthy O. glumepat...

  8. Antimicrobial activity of marine bacteria isolated from Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Adriana Matos

    2011-05-01

    Full Text Available Currently there is a need for new antibiotics with an alternative mode of action and new chemical structures. Bacterial pathogens are gradually becoming more resistant to conventional antibiotics, generating an emergence of infectious diseases and they are becoming a great problem in the field of public health. In this study, seven different isolated bacteria were obtained from offshore seawater and sediment of the Gulf of Mexico from Campeche, Mexico. They were substance producers which inhibit growth of human pathogens like Staphylococcus aureus and Pseudomonas aeruginosa and one of them was a polymer producer on peptone and glucose culture. They were characterized phenotipically by means of morphological techniques and physiologically by conventional tests. Four of them were Gram-positive bacteria and the Scanning Electron Microscope analysis revealed their size between 0.6 - 1.5 µm. One of seven marine strains, Gram negative, yellow pigmented, slightly curved rods, was identified as Pseudoalteromonas sp. on the analysis of the gen16S rRNA sequence.

  9. [Bacteria isolated from urine and renal tissue samples and their relation to renal histology].

    Science.gov (United States)

    Gökalp, A; Gültekin, E Y; Bakici, M Z; Ozdeşlik, B

    1988-01-01

    The bacteria from the urine and renal biopsy specimens of 40 patients undergoing renal surgery were isolated and their relations with renal histology investigated. The urine cultures were positive in 14 patients, the same organisms being isolated from the renal tissue in 7 cases. In 6 patients with negative urine cultures, bacteria were isolated from renal tissues. Of the 28 cases pathologically diagnosed as chronic pyelonephritis, bacteria were isolated from the renal tissue in 13 cases, the urine cultures being positive in only 11 cases. E. coli was the most commonly encountered bacteria in both the urine and renal tissues.

  10. Isolation of Soil Bacteria Species for Degrading Dibenzothiophene

    Institute of Scientific and Technical Information of China (English)

    JIANGChengying; LIUHuizhou; 等

    2002-01-01

    Five bacterial strains,which are able to grow and to disintegrate dibenzothiophene (DBT) and dibenzothiophene sulfone (DBTO2) in fossil fuels,are isolated.Analysis of products of DBT metabolized by these strains shows that different bacteria strains oxidize DBT by different pathways.The isolated strains R-6,R-16,R-9 and R-8 can metabolize DBT to DBTO2 and 2-hydroxybiphenyl(HBP),which are identified as Bacillus brevis,Bacillus sphaericus,Nocardia globerula and Pseudomonas delafieldii respectively.Another strain R-12 identified as Pseudomonas sp. can degrade DBT completely but it cannot produce DBTO2 and HBP. The optimum temperature and initial pH for desulfurization by R-8 are 32℃ and 7.02 respectively and pH of the broth decreases during biodegradation.The growth of strain R-8 with different sulfur-sources indicates that this strain in DBT medium has an induction period of 3 days,which is longer than those with dimethylsulfoxide and MgSO4 media,but the growth rate of the bacterial strain in DBT is higher after the induction.Higher growth and desulfurization rates are observed in the DBT-hexadecane system than in both DBT-ethanol and DBT-dimethylformamide systems.Both strains of R-8 and R-9 also show higher desulfurization activities toward other sulfur-substrates,indicating that they have greater desulfurization potential in application.

  11. Isolation of Cellulolytic Bacteria and Characterization of the Enzyme

    Directory of Open Access Journals (Sweden)

    Nisa Rachmania

    2009-04-01

    Full Text Available Four of cellulolitic bacteria isolates had beencharacterized. The determination of cellulase activity was conducted at the highest production time, using crudeenzymes with the modification of Miller methods (1959 on pure cellulose substrates such as CMC (Carboxymethylcellulose, Avicel and Filter paper Whatman No. 1 as well as agriculture waste such as rice straw, corn cob and bananapeel. Cellulase from C4-4, C5-1, C5-3 and C11-1 showed optimum activity at pH 5, 70°C, pH 3.5, 90°C, pH 5, 80°Cand pH 8, 70°C, respectively. Avicel is a appropriate substrate for C4-4 cellulase whereas CMC for the other three.C11-1 cellulase has the highest cellulase enzyme activity on rice straw substrate whereas C4-4 cellulase on banana peelsubstrates. C5-1 and C5-3 cellulase have relatively low cellulase activities in degrading substrates of agriculture waste.However, isolates of C5-1 and C5-3 have high cellulase activities on banana peel substrates.

  12. Isolation and characterization of bacteria and yeasts from contaminated soil

    Directory of Open Access Journals (Sweden)

    Karličić Vera M.

    2016-01-01

    Full Text Available Plant growth promoting (PGP bacteria and yeasts play an important role in bioremediation processes. Thirty bacterial and ten yeast isolates were obtained from PAH and PCB contaminated soil with an aim of determining the presence of PGP mechanisms (production of ammonia, indoleacetic acid, siderophores and solubilization of inorganic phosphate. As a result, three bacterial (Serratia liquefaciens, Micrococcus sp. and Serratia sp. and two yeast isolates (Candida utilis and Candida tropicalis were recognized as PGP strains. Among them, Serratia sp. showed the highest indole production (25.5 μg/ml. Analyses of metal tolerance (Cu+2, Cr+6 and Ni+2 revealed that Serratia liquefaciens, Micrococcus sp., Serratia sp. and Candida tropicalis were capable to tolerate significant concentration of metals. As a result of this study several bacterial and yeast strains were attributed as potential plant growth promoters which can be applied in future remediation activities and environmental quality improvements. [Projekat ministarstva nauke Republike Srbije, br. TR 31080 i FP-7 project AREA (316004

  13. [Isolation identification and characterization of halotolerant petroleum-degrading bacteria].

    Science.gov (United States)

    Wu, Tao; Xie, Wen-Jun; Yi, Yan-Li; Li, Xiao-Bin; Wang, Jun; Hu, Xiang-Ming

    2012-11-01

    To obtain efficient halotolerant petroleum-degrading bacteria, 39 bacteria strains were isolated from 30 petroleum contaminated saline soil samples in Yellow River Delta, an important base of petroleum production in China. One bacterium (strain BM38) was found to efficiently degrade crude oil in highly saline environments based on a series of liquid and soil incubation experiments. According to its morphology, physiochemical characteristics and 16S rDNA sequence analysis, this strain was identified as Pseudomonas putida. Moreover, a series of liquid incubation experiments were conducted to investigate its characteristics such as halotolerance, biosurfactants production and degrading efficiency for various hydrocarbons. The salt resistance test demonstrated that strain BM38 grew well at NaCl concentrations ranging from 0.5% to 6.0%. Petroleum degradation experiments showed that strain BM38 could degrade 73.5% crude oil after 7 days in a liquid culture medium containing 1.0% NaCl and remove more than 40% of total petroleum hydrocarbons after 40 days in the soil with 0.22% and 0.61% of salinity, these results proved that the strain was effective in removing petroleum hydrocarbons. Strain BM38 could produce a bioemulsifier in a liquid culture medium. The NaCl concentration had the significant effect on the EI24 of fermentation broth, which decreased sharply if the NaCl concentration was greater than 1.0%. However, the EI24 of BM38 was still quite high in the presence of 2.0% of NaCl, and the value was 61.0%. Furthermore, this strain was also able to grow in mineral liquid media amended with hexadecane, toluene, phenanthrene, isooctane and cyclohexane as the sole carbon sources. Among these hydracarbons, strain BM38 showed relatively high ability in degrading n-alkanes and aromatic hydracarbons. The results indicated that strain BM38 had potential for application in bioremediation of petroleum-contaminated saline soil.

  14. Frequency of Resistance and Susceptible Bacteria Isolated from Houseflies

    Directory of Open Access Journals (Sweden)

    B Davari

    2010-12-01

    Conclusion: Houseflies collected from hospitals and slaughterhouse may be involved in the spread of drug resistant bacteria and may increase the potential of human exposure to drug resistant bacteria.

  15. Antibiotic Resistance of Gram Negative Bacteria Isolated From Urine Cultures in Our Laboratory

    Directory of Open Access Journals (Sweden)

    Hakan Temiz

    2008-12-01

    Full Text Available In this study; we analyzed the antimicrobial susceptibility of Gram negative bacteria isolated from urine cultures in the Microbiology Laboratory of Dicle University Medical Faculty Hospital from January 2006 to December 2006; retrospectively. Escherichia coli and Klebsiella species were the most frequently isolated bacteria from both outpatients and hospitalized patients. The most effective antibiotics to these bacteria were carbapenems. These results were suggested to be useful for empirical treatment of urinary system infections in our hospital.

  16. Isolation and characterisation of lactic acid bacteria from donkey milk.

    Science.gov (United States)

    Soto Del Rio, Maria de Los Dolores; Andrighetto, Christian; Dalmasso, Alessandra; Lombardi, Angiolella; Civera, Tiziana; Bottero, Maria Teresa

    2016-08-01

    During the last years the interest in donkey milk has increased significantly mainly because of its compelling functional elements. Even if the composition and nutritional properties of donkey milk are known, its microbiota is less studied. This Research Communication aimed to provide a comprehensive characterisation of the lactic acid bacteria in raw donkey milk. RAPD-PCR assay combined with 16S rDNA sequencing analysis were used to describe the microbial diversity of several donkey farms in the North West part of Italy. The more frequently detected species were: Lactobacillus paracasei, Lactococcus lactis and Carnobacterium maltaromaticum. Less abundant genera were Leuconostoc, Enterococcus and Streptococcus. The yeast Kluyveromyces marxianus was also isolated. The bacterial and biotype distribution notably diverged among the farms. Several of the found species, not previously detected in donkey milk, could have an important probiotic activity and biotechnological potential. This study represents an important insight to the ample diversity of the microorganisms present in the highly selective ecosystem of raw donkey milk.

  17. Isolation and characterization of novel thermophilic lipase-secreting bacteria

    Directory of Open Access Journals (Sweden)

    Mohammed Rabbani

    2013-12-01

    Full Text Available The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered.

  18. Antibacterial susceptibility of bacteria isolated from burns and wounds of cancer patients

    Directory of Open Access Journals (Sweden)

    Sulaiman A. Alharbi

    2014-01-01

    Full Text Available In this study 540 burns and wound swabs were collected from cancer patients of some Egyptian hospitals. The single infection was detected from 210, and 70 cases among wounded and burned patients, while mixed infection was 30 and 45, respectively. We recovered where 60 isolates of Pseudomonas aeruginosa, 60 isolates of Staphylococcus aureus, 7 isolates of Staphylococcus epidermidis, 4 isolates of Streptococcus pyogenes, 25 isolates of Escherichia coli, 23 isolates of Klebsiella pneumoniae and 27 isolates of Proteus vulgaris from 355 burn and surgical wound infections . All bacterial isolates showed high resistance to the commonly used β-lactams (amoxycillin, cefaclor, ampicillin, vancomycin, amoxicillin/clavulonic, and low resistance to imepenim and ciprofloxacin. Plasmid analysis of six multidrug resistant and two susceptible bacterial isolates revealed the same plasmid pattern. This indicated that R-factor is not responsible for the resistance phenomenon among the isolated opportunistic bacteria. The effect of ultraviolet radiation on the isolated bacteria was studied.

  19. [Nonfermentative gram-negative bacteria: isolation rates and antibiotic sensitivity].

    Science.gov (United States)

    Bogomolova, N S; Bol'shakov, L V; Kuznetsova, S M; Oreshkina, T D

    2010-01-01

    The isolation rates of nonfermentative gram-negative bacteria (NFGNB) are analyzed in the inpatients treated at the B. V. Petrovsky Russian Surgery Research Center in 2005-2009 and antibiotic resistance trends in nosocomial strains of NFGNB are traced in the above period. The study of the etiological structure of nosocomial infections has shown that the past 2 years (2008 and 2009) were marked by a clear tendency for the preponderance of gram-positive coccal pathogens (46.8 and 53.9%) with a considerable (1.5-2-fold) reduction in the proportion of representatives of enterobacteria (31.5 and 24.5%) and NFGB (13.4 and 11.3%), but with an increase in the proportion of fungi up to 7.1 and 8.6%, respectively. Among the NFGNBs, P. aeruginosa remains ohe of the most common pathogens for nosocomial infections although its portion in the number of all etiologically significant microorganisms was substantially reduced (from 13% in 2005 to 4.6% in 2009). It continues to remain one of the most common causative agents for infections of the urinary tract (e.g., after renal transplantation) and upper and lower respiratory tract (e.g. nosocomial pneumonia) and for those developing after surgical interventions (postoperative wound suppuration discharged along the drainages, from a T-sized tube, etc.). Among the NFGNBs, Acinetobacter spp. was the second frequently isolated pathogen, the isolation rate for which also decreased from 7.9% in 2005 to 2.6% in 2009. Polymyxin B and carbapenems (imipenem, meropenem, and doripenem) showed the highest activity against the vast majority of the test strains; however, there was an absolutely clear declining trend in the proportion of carbapenem-sensitive strains among virtually all the NFGNBs under study. According to the proportion of imipenem-, meropenem-, and doripenem-sensitive nosocomial P. aeroginosa strains (66.7, 46.6, and 44.7%, respectively), doripenem had the least activity. Acinetobacter spp. strains sensitive to these drugs showed

  20. Isolation of lactic acid bacteria with potential protective culture characteristics from fruits

    Science.gov (United States)

    Hashim, Nurul Huda; Sani, Norrakiah Abdullah

    2015-09-01

    Lactic acid bacteria are also known as beneficial microorganisms abundantly found in fermented food products. In this study, lactic acid bacteria were isolated from fresh cut fruits obtained from local markets. Throughout the isolation process from 11 samples of fruits, 225 presumptive lactic acid bacteria were isolated on MRS agar medium. After catalase and oxidase tests, 149 resulted to fit the characteristics of lactic acid bacteria. Further identification using Gram staining was conducted to identify the Gram positive bacteria. After this confirmation, the fermentation characteristics of these isolates were identified. It was found that 87 (58.4%) isolates were heterofermentative, while the rest of 62 (41.6%) are homofermentative lactic acid bacteria. Later, all these isolates were investigated for the ability to inhibit growth of Staphylococcus aureus using agar spot assay method. Seven (4.7%) isolates showed strong antagonistic capacity, while 127 (85.2%) and 8 (5.4%) isolates have medium and weak antagonistic capacity, respectively. The other 7 (4.7%) isolates indicated to have no antagonistic effect on S. aureus. Results support the potential of LAB isolated in this study which showed strong antagonistic activity against S. aureus may be manipulated to become protective cultures in food products. While the homofermentative or heterofermentative LAB can be utilized in fermentation of food and non-food products depending on the by-products required during the fermentation.

  1. Degradation behaviors of nonylphenol ethoxylates by isolated bacteria using improved isolation method

    Institute of Scientific and Technical Information of China (English)

    GU Xin; ZHANG Yu; ZHANG Jing; YANG Min; Hideyuki Tamaki; Yoichi Kamagata

    2008-01-01

    Nonylphenol ethoxylate (NPEO)-degrading bacteria were isolated from activated sludge using an improved isolation method, and the corresponding degradation behaviours were investigated. Eight NPEO-degrading strains distributed in genera Pseudomonas, Sphingomonas, Sphingobium, Cupriavidus, Ralstonia, Achromobacter, and Staphylococcus were acquired. The latter five genera have never been reported for the degradation of NPEOs. Four degradation patterns were observed for the eight pure strains. In pattern A, NPEOs were converted to short-chain NPEOs and carboxylated products, while in pattern B, lower ethoxylated oligomers appeared. Nonylphenol monoethoxylate was the main product in pattern C, while in pattern D ethoxylated units was oxidized but not shortened. Pattern C and D have not yet been reported.

  2. Isolation, enumeration, molecular identification and probiotic potential evaluation of lactic acid bacteria isolated from sheep milk

    Directory of Open Access Journals (Sweden)

    L.B. Acurcio

    2014-06-01

    Full Text Available Lactic acid bacteria species were molecularly identified in milk from Lacaune, Santa Inês and crossbred sheep breeds and their in vitro probiotic potential was evaluated. The species identified were Enterococcus faecium (56.25%, E. durans (31.25% and E. casseliflavus (12.5%. No other lactic acid bacteria species, such as lactobacilli, was identified. Most of the isolated enterococci were resistant to gastric pH (2.0 and to 0.3% oxgall. All tested enterococci were resistant to ceftazidime, oxacillin and streptomycin and sensible to clindamycin, erythromycin and penicillin. The resistance to ciprofloxacin, gentamicin, tetracycline and vancomycin varied among tested species. All tested enterococci strongly inhibited (P<0.05 Escherichia coli and Listeria monocytogenes, moderately inhibited E. faecalis and Staphylococcus aureus and did not inhibit Pseudomonas aeruginosa, Salmonella enterica var. Typhimurium and also one E. durans sample isolated from sheep milk. Four samples of E. faecium, one of E. durans and one of E. casseliflavus presented the best probiotic potential.

  3. Isolation, Characterization, and Genetic Diversity of Ice Nucleation Active Bacteria on Various Plants

    Directory of Open Access Journals (Sweden)

    DIANA ELIZABETH WATURANGI

    2009-06-01

    Full Text Available Ice nucleation active (INA bacteria is a group of bacteria with the ability to catalyze the ice formation at temperature above -10 oC and causing frost injury in plants. Since, most of the literature on INA bacteria were from subtropical area, studies of INA bacteria from tropical area are needed. We sampled eight fruits and 36 leaves of 21 plant species, and then identified through biochemical and genetic analysis. INA bacteria were characterized for INA protein classification, pH stability, and optimization of heat endurance. We discovered 15 INA bacteria from seven plants species. Most of bacteria are oxidase and H2S negative, catalase and citrate positive, gram negative, and cocoid formed. These INA bacteria were classified in to three classes based on their freezing temperature. Most of the isolates were active in heat and pH stability assay. Some isolates were analysed for 16S rRNA gene. We observed that isolates from Morinda citrifolia shared 97% similiarity with Pseudomonas sp. Isolate from Piper betle shared 93% similarity with P. pseudoalcaligenes. Isolate from Carica papaya shared 94% similarity with Pseudomonas sp. While isolate from Fragaria vesca shared 90% similarity with Sphingomonas sp.

  4. Isolation and characterization of cellulolytic bacteria from the Stain house Lake, Antarctica.

    Science.gov (United States)

    Melo, Itamar S; Zucchi, Tiago D; Silva, Rafael E; Vilela, Elke S D; Sáber, Mirian Lobo; Rosa, Luiz H; Pellizari, Vivian H

    2014-07-01

    The main aim was to evaluate the occurrence of cellulolytic bacteria from the Stain house Lake, located at Admiralty Bay, Antarctica. Thick cotton string served as a cellulose bait for the isolation of bacteria. A total of 52 bacterial isolates were recovered and tested for their cellulase activity, and two of them, isolates CMAA 1184 and CMAA 1185, showed significant cellulolytic activity on carboxymethylcellulose agar plates. Phylogenetic analysis placed the isolates into the Bacillus 16S ribosomal RNA gene subclade. Both isolates produced a cold-active cellulase which may play a crucial role in this extreme environment.

  5. Isolation and Characterisation of Diazotrophic Bacteria from Rhizosphere of Different Rice Cultivars of South Assam, India

    Directory of Open Access Journals (Sweden)

    FOLGUNI LASKAR

    2013-04-01

    Full Text Available Free living heterotrophic bacteria were isolated from the rhizosphere of 10 local and cultivated varieties of rice grown in Karimganj district of South Assam. Among the 25 isolates, 11 isolates withplant growth promoting activity were identified based on phenotypic and 16S rDNA sequence analysis. The strains were identified as Shingomonasazotifigens, Pseudomonas putida, Stenotrophomonasmaltophila,Acinetobacterradioresistance, Alkaligenesfaecalis, Enterobactercloaceae subsp. dissolvens, Pantoeaagglomerans, Klebsiellapneumoneae, Achromobacterxyloxidans, Herbispirillumrubrisubalbicans and Herbispirillum sp . The efficient strains are isolated from the local varieties of rice plant. The isolate KR-23 ( Sphingomonasazotifigens was a novel bacteria reported for the first time as nitrogen fixing bacteria from India. The nitrogen fixing ability along with IAA production, ACC deaminase activity and P-solubilisation by the bacteria has shown their potential for plant-growth-promoting rhizobacteria. KR-6( Stenotrophomonasmaltophila and KR-7( Herbispirillumrubrisubalbicans have been reported earlier as plant pathogensbut theyhave shown a high potential for nitrogen fixing and auxin producing activity in the present study

  6. Characterization of predominant bacteria isolates from clean rooms in a pharmaceutical production unit

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aims: To screen for the predominant bacteria strains distributed in clean rooms and to analyze their phylogenetic relationships. Methods and Results: The bacteria distributed in air, surfaces and personnel in clean rooms were routinely monitored using agar plates. Five isolates frequently isolated from the clean rooms of an aseptic pharmaceutical production workshop were selected based on their colony and cell morphology characteristics. Their physiological and biochemical properties, as well as partial 16S rDNA sequences, were analyzed. Results showed that all the five isolates belong to Gram positive bacteria, of which three were Staphylococcus, one Microbacterium and one Bacillus species. Sensitivity tests for these bacteria isolates to 3 disinfectants showed that isolate F03 was obtuse, and had low susceptivity to UV irradiation, while isolates F02, F01 and F04 were not sensitive to phenol treatment. Isolates F04, F01 and F05 were resistant to chlorhexidine gluconate. Conclusion: Bacteria widely distributed in clean rooms are mainly a group of Gram positive strains, showing high resistance to selected disinfectants. Significance and impact of the study: Clean rooms are essential in aseptic pharmaceutical and food production. Screening bacteria isolates and identifying them is part of good manufacturing practices, and will aid in finding a more effective disinfection method.

  7. Effect of media composition, including gelling agents, on isolation of previously uncultured rumen bacteria.

    Science.gov (United States)

    Nyonyo, T; Shinkai, T; Tajima, A; Mitsumori, M

    2013-01-01

    The aim of this study was to develop novel anaerobic media using gellan gum for the isolation of previously uncultured rumen bacteria. Four anaerobic media, a basal liquid medium (BM) with agar (A-BM), a modified BM (MBM) with agar (A-MBM), an MBM with phytagel (P-MBM) and an MBM with gelrite (G-MBM) were used for the isolation of rumen bacteria and evaluated for the growth of previously uncultured rumen bacteria. Of the 214 isolates composed of 144 OTUs, 103 isolates (83 OTUs) were previously uncultured rumen bacteria. Most of the previously uncultured strains were obtained from A-MBM, G-MBM and P-MBM, but the predominant cultural members, isolated from each medium, differed. A-MBM and G-MBM showed significantly higher numbers of different OTUs derived from isolates than A-BM (P MBM showed the highest diversity (H' = 3·89) compared with those of G-MBM, P-MBM and A-BM (H' = 3·59, 3·23 and 3·39, respectively). Although previously uncultured rumen bacteria were isolated from all media used, the ratio of previously uncultured bacteria to total isolates was increased in A-MBM, P-MBM and G-MBM.

  8. Antimicrobial properties of lactic acid bacteria isolated from uruguayan artisan cheese

    Directory of Open Access Journals (Sweden)

    Martín Fraga Cotelo

    2013-12-01

    Full Text Available Uruguayan artisan cheese is elaborated with raw milk and non-commercial starters. The associated native microbiota may include lactic acid bacteria and also potentially pathogenic bacteria. Lactic acid bacteria were isolated from artisan cheese, raw milk, and non-commercial starter cultures, and their potential bacteriocin production was assessed. A culture collection of 509 isolates was obtained, and five isolates were bacteriocin-producers and were identified as Enterococcus durans,Lactobacillus casei, and Lactococcus lactis. No evidence of potential virulence factors were found in E. durans strains. These are promising results in terms of using these native strains for cheese manufacture and to obtain safe products.

  9. Isolation and Identification of Epiphytic Lactic Acid Bacteria from Guinea Grass (Panicum maximum

    Directory of Open Access Journals (Sweden)

    M. Pasebani

    2010-01-01

    Full Text Available Problem statement: Bacteria can perform a variety of beneficial functions, for example many lactic acid bacteria are responsible for fermentation of silage in the process of forage conservation. In the making of silage, epiphytic lactic acid bacteria are usually insufficient in numbers to promote efficient lactate fermentation. This study was conducted to identify the predominant indigenous bacteria, with emphasis on lactic acid bacteria, from Guinea grass (Panicum maximum. Approach: Two different condition of growth using nutrient and MRS agar were prepared for isolation of the bacteria. In total, 18 purified isolates were identified by BIOLOG identification system which comprised of 9 bacterial species. Standard plate count in the both conditions was considered. Results: Three bacterial species based on the first condition of growth were identified which were belonging to Flavimonas oryzihabitans, Enerobacter cloacae, Sphingomonas paucimobilis B. Lactic acid bacteria based on the second condition of growth were belonging to Weissella confusa, Weissella paramesenteroides, Leuconostoc mesenteroides ssp. dextranicum, Lactococcus lactis ssp. hordniae. Result of plate count showed that 8.3×103 CFU lactic acid bacteria are available per gram of fresh guinea grass. Conclusion: Three hetero-fermentative and one homo-fermentative lactic acid bacteria were identified which would be suggested to use as bacterial inoculants because of the insufficient amount of epiphytic lactic acid bacteria and the availability of pathogenic bacteria in the grass.

  10. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Bacteria Isolated from Light Oil Polluted Soils

    Science.gov (United States)

    Ohnuma, T.; Suto, K.; Inoue, C.

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAHs) have polluted soil and groundwater widely and for long term because of their low solubility at normal temperature. Several microorganisms, such as Pseudomonas sp., Sphigomonas sp., a white-rot fungus and so on, being able to decompose PAHs, have been isolated and researched. This study reported to investigate biodegradation of low molecule PAH by isolated bacteria from light oil polluted soil. 12 isolates were obtained from a light oil polluted soil using naphthalene, fluorene and anthracene as sole carbon source, of which 4 isolates grew with naphthalene, 4 isolates did with fluorene and 4 isolates did with anthracene. Among them 3 isolates showed the ability to degrade phenanthrene additionally. These phenanthrene degradation and growth rates were almost same as that of S. yanoikuyae (DSM6900), which is the typical bacteria of PAHs degrader. Therefore, the isolate seemed to have an expectation for PAHs degradation.

  11. [AEROMONAS BACTERIA ISOLATED FROM BITHYNIIDAE MOLLUSKS AND THEIR HABITATS: SPECIES COMPOSITION AND BIOLOGICAL PROPERTIES. COMMUNICATION 1].

    Science.gov (United States)

    Stepanova, T F; Bukharin, O V; Kataeva, L V; Perunova, N B; Karpukhina, N F

    2015-01-01

    The purpose of this investigation was to study the species composition and biological properties of Aeromonas bacteria isolated from Bithyniidae mollusks and their habitat (a water reservoir). The Bithyniidae mollusks and water from their habitat were the material to be studied. A total of 176 Aeromonas strains were isolated from the mollusks and water. A. veronii, A. hydrophila, and A. ichthiosmia were most common in the mollusks and A. veronii and A. ichthiosmia were in the water. All the strains isolated had hemolytic activity and no lysozyme or plasma coagulase activity. The magnitude of lecithinase and antilysozymic activities and biofilm formation of the Aeromonas bacteria varied with the isolation source of their strains.

  12. Enrichment and isolation of crude oil degrading bacteria from some mussels collected from the Persian Gulf.

    Science.gov (United States)

    Bayat, Zeynab; Hassanshahian, Mehdi; Hesni, Majid Askari

    2015-12-15

    To date, little is known about existing relationships between mussels and bacteria in hydrocarbon-contaminated marine environments. The aim of this study is to find crude oil degrading bacteria in some mussels at the Persian Gulf. Twenty eight crude oil degrading bacteria were isolated from three mussels species collected from oil contaminated area at Persian Gulf. According to high growth and degradation of crude oil four strains were selected between 28 isolated strains for more study. Determination the nucleotide sequence of the gene encoding for 16S rRNA show that these isolated strains belong to: Shewanella algae isolate BHA1, Micrococcus luteus isolate BHA7, Pseudoalteromonas sp. isolate BHA8 and Shewanella haliotis isolate BHA35. The residual crude oil in culture medium was analysis by Gas Chromatography (GC). The results confirmed that these strains can degrade: 47.24%, 66.08%, 27.13% and 69.17% of crude oil respectively. These strains had high emulsification activity and biosurfactant production. Also, the effects of some factors on crude oil degradation by isolated strains were studied. The results show that the optimum concentration of crude oil was 2.5% and the best degradation take place at 12% of salinity. This research is the first reports on characterization of crude oil degrading bacteria from mussels at Persian Gulf and by using of these bacteria in the field the effect of oil pollution can be reduce on this marine environment.

  13. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates

    NARCIS (Netherlands)

    Mendes, R.; Pizzirani-Kleiner, A.A.; Araujo, W.L.; Raaijmakers, J.M.

    2007-01-01

    Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic ba

  14. European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections

    DEFF Research Database (Denmark)

    Marques, Cátia; Gama, Luís Telo; Belas, Adriana

    2016-01-01

    of antimicrobial resistant bacteria causing urinary tract infection (UTI) in companion animals in Europe. The antimicrobial susceptibility of 22 256 bacteria isolated from dogs and cats with UTI was determined. Samples were collected between 2008 and 2013 from 16 laboratories of 14 European countries...

  15. ISOLATION OF LACTIC ACID BACTERIA UNDER LOW TEMPERATURE FOR THE PREPARATION OF YOGURT

    OpenAIRE

    Javid Ahmad Bhat; Mohd Irfan Naik; R.K. Tenguria

    2014-01-01

    An investigation of isolation of Lactic acid bacteria was carried out under low temperature for the preparation of Yogurt by using various food supplements like carrot, ground-nut and tomato juices. Methods: Various samples of Cow milk, Skimmed milk were processed along with nutrients like Carrot, ground nut and tomato juices with Tryptone glucose yeast extract agar (TGYA) at different temperatures like 50C, 150C and 220C for the isolation of Lactic acid bacteria for the preparation of yogurt...

  16. Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem

    OpenAIRE

    SRI WIDAWATI

    2011-01-01

    Widawati S (2011) Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem. Biodiversitas 12: 17-21. Soil, water, sand, and plant rhizosphere samples collected from coastal ecosystem of Laki Island-Jakarta were screened for phosphate solubilizing bacteria (PSB). While the population was dependent on the cultivation media and the sample type, the highest bacterial population was observed in the rhizosphere of Ipomea aquatica. The PSB strains isolated from ...

  17. Selective isolation of bacteria from soil with hydrophobic materials

    OpenAIRE

    Oku, Shota; Nishiyama, Masaya; Takao, Yuji

    2011-01-01

    Bacterial strains having a hydrophobic cell surface have often been considered as degraders of hydrophobic organic pollutants in soil. In this study, bacterial strains were isolated using hydrophobic materials from 12 soil samples, and their cell surface hydrophobicity was determined by evaluating their adherence to n-hexane. Bacterial strains isolated using polytetrafluoroethylene (PTFE) membrane were more hydrophobic on an average than those isolated with styrene-divinylbenzene (DVB) partic...

  18. The potential of phosphate solubilizing bacteria isolated from sugarcane wastes for solubilizing phosphate

    Directory of Open Access Journals (Sweden)

    Atekan

    2014-07-01

    Full Text Available Most of P in agricultural soils is in unavailable forms for plant growth. Phosphate solubilizing bacteria can increase soil P availability. This study was aimed to isolate phosphate solubilizing bacteria from sugarcane waste compost and to test ability of the isolated bacterial to dissolve phosphate. The bacteria were isolated from three types of sugarcane waste, i.e. filter cake compost, bagasse compost, and a mixture of filter cake + bagasse + trash biomass compost. The potential colony was further purified by the Pikovskaya method on selective media. Eight isolates of phosphate solubilizing bacteria were obtained from all wasted studied. Amongst them, T-K5 and T-K6 isolates were superior in dissolving P from Ca3(PO42 in the media studied. The two isolates were able to solubilize P with solubilizing index of 1.75 and 1.67 for T-K5 and T-K6, respectively. Quantitatively, T-K6 isolate showed the highest P solubilization (0.74 mg / L, followed by T-K5 isolate (0.56 mg / L, while the lowest P solubilization (0.41 mg / L was observed for T-K4 isolate. The increase of soluble P was not always followed by the decrease in pH.

  19. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion.

    Science.gov (United States)

    Kuklinsky-Sobral, Júlia; Araújo, Welington Luiz; Mendes, Rodrigo; Geraldi, Isaias Olívio; Pizzirani-Kleiner, Aline Aparecida; Azevedo, João Lúcio

    2004-12-01

    Endophytic and epiphytic bacteria were isolated from two soybean cultivars (Foscarin and Cristalina). Significant differences were observed in bacterial population densities in relation to season of isolation, soybean growth phase and the tissues from which the isolates were obtained. The isolates were identified by partial 16S rDNA sequence analysis, with most of the isolates belonging to the Pseudomonaceae, Burkholderiacea and Enterobacteriaceae groups. The potential of the isolates for plant growth promotion was evaluated by screening for indoleacetic acid (IAA) production and mineral phosphate solubilization; 34% of endophytic bacteria produced IAA and 49% were able to solubilize mineral phosphate whereas only 21% of epiphytic bacteria produced IAA although 52% were able to solubilize mineral phosphate. A high frequency of IAA producing isolates occurred in the early ripening Foscarin cultivar whereas a high percentage of phosphate solubilizing isolates were obtained from plants in the initial development stage (V6). We also found that 60% of endophytic and 69% of epiphytic isolates that produced IAA and solubilized mineral phosphate were also able to fix nitrogen in vitro. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the genera Pseudomonas, Ralstonia, Enterobacter, Pantoea and Acinetobacter.

  20. Phylogenetically Diverse Aerobic Anoxygenic Phototrophic Bacteria Isolated from Epilithic Biofilms in Tama River, Japan

    Science.gov (United States)

    Hirose, Setsuko; Matsuura, Katsumi; Haruta, Shin

    2016-01-01

    The diversity of aerobic anoxygenic phototrophic (AAP) bacteria in freshwater environments, particularly in rivers, has not been examined in as much detail as in ocean environments. In the present study, we investigated the phylogenetic and physiological diversities of AAP bacteria in biofilms that developed on submerged stones in a freshwater river using culture methods. The biofilms collected were homogenized and inoculated on solid media and incubated aerobically in the dark. Sixty-eight red-, pink-, yellow-, orange-, or brown-colored colonies were isolated, and, of these, 28 isolates contained the photosynthetic pigment, bacteriochlorophyll (BChl) a. Phylogenetic analyses based on 16S rRNA gene sequences showed that the isolates were classified into 14 groups in 8 operational taxonomic units (OTUs) and distributed in the orders Rhodospirillales, Rhodobacterales, and Sphingomonadales of Alphaproteobacteria and in Betaproteobacteria. Physiological analyses confirmed that none of the representative isolates from any of the groups grew under anaerobic phototrophic conditions. Seven isolates in 4 OTUs showed a 16S rRNA gene sequence identity of 98.0% or less with any established species, suggesting the presence of previously undescribed species of AAP bacteria. Six isolates in 2 other OTUs had the closest relatives, which have not been reported to be AAP bacteria. Physiological comparisons among the isolates revealed differences in preferences for nutrient concentrations, BChl contents, and light-harvesting proteins. These results suggest that diverse and previously unknown AAP bacteria inhabit river biofilms. PMID:27453124

  1. Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Magura Cave, Bulgaria

    Directory of Open Access Journals (Sweden)

    Tomova Iva

    2013-01-01

    Full Text Available Biocapacity of bacteria inhabiting karstic caves to produce valuable biologically active compounds is still slightly investigated. A total of 46 culturable heterotrophic bacteria were isolated under aerobic conditions from the Gallery with pre-historical drawings in Magura Cave, Bulgaria. Phylogenetic analysis revealed that most of bacterial isolates aff iliated with Proteobacteria (63%, followed by Actinobacteria (10.9%, Bacteroidetes (10.9%, and Firmicutes (6.5%. A strong domination of Gram-negative bacteria (total 81% belonging to nine genera: Serratia, Pseudomonas, Enterobacter, Sphingobacterium, Stenotrophomonas, Commamonas, Acinetobacter, Obesumbacterium, and Myroides, was observed. Gram-positive isolates were represented by the genera Bacillus, Arthrobacter, and Micrococcus. One isolate showed a signif icant phylogenetic distance to the closest neighbor and could represent а novel species. Heterotrophic bacterial isolates from Magura Cave were investigated for hydrolytic enzymes production, antimicrobial and hemolytic activity. Predominance of producers of protease (87%, followed by xanthan lyase (64%, lipase (40%, β-glycosidase (40%, and phytase (21% was observed. Over 75% of the isolates demonstrated antimicrobial and hemolytic activity. The results suggest that heterotrophic bacteria isolated from Magura Cave could be a valuable source of industrially relevant psychrotolerant enzymes and bioactive metabolites. This study is a f irst report on the taxonomic composition and biological activity of culturable bacteria inhabiting a cave in Bulgaria.

  2. Bacteria isolated from parasitic nematodes--a potential novel vector of pathogens?

    Science.gov (United States)

    Lacharme-Lora, Lizeth; Salisbury, Vyv; Humphrey, Tom J; Stafford, Kathryn; Perkins, Sarah E

    2009-12-21

    Bacterial pathogens are ubiquitous in soil and water - concurrently so are free-living helminths that feed on bacteria. These helminths fall into two categories; the non-parasitic and the parasitic. The former have been the focus of previous work, finding that bacterial pathogens inside helminths are conferred survival advantages over and above bacteria alone in the environment, and that accidental ingestion of non-parasitic helminths can cause systemic infection in vertebrate hosts. Here, we determine the potential for bacteria to be associated with parasitic helminths. After culturing helminths from fecal samples obtained from livestock the external bacteria were removed. Two-hundred parasitic helminths from three different species were homogenised and the bacteria that were internal to the helminths were isolated and cultured. Eleven different bacterial isolates were found; of which eight were indentified. The bacteria identified included known human and cattle pathogens. We concluded that bacteria of livestock can be isolated in parasitic helminths and that this suggests a mechanism by which bacteria, pathogenic or otherwise, can be transmitted between individuals. The potential for helminths to play a role as pathogen vectors poses a potential livestock and human health risk. Further work is required to assess the epidemiological impact of this finding.

  3. Production of halomethanes and isoprene in the culture of bacteria isolated from brackish water

    Science.gov (United States)

    Fujimori, T.; Taniai, G.; Kurihara, M.; Tamegai, H.; Hashimoto, S.

    2010-12-01

    Halomethanes produced naturally are important source of halogen in troposphere and stratosphere. In the ocean, macroalgae and phytoplankton have been considered to be the main producers of halomethanes. Recent investigations have shown that marine bacteria also produces halomethane such as iodomethane. However, knowledge of aquatic halomethane production, especially by bacteria, is insufficient. Here we survey bacteria, which produce volatile organic compounds (VOCs) including halomethanes, from brackish area (salinity: about 5‰) where high halomethane productions were observed. Bacteria was isolated and incubated in marine broth 2216, which is the media for marine bacteria. The VOCs such as halomethanes in the gas phase above cultured samples was determined using dynamic headspace (GESTEL DHS) - gas chromatograph (Agilent 6890N)- mass spectrometer (Agilent 5975C). The optical density at 600 nm (OD600) was also measured during the cultured period. From the result of the isolation and measurement of VOCs, some of the isolated bacteria produced halomethanes. For example, monohalomethanes (from 1 to about 600 nM) and isoprene (up to about 400 nM) were increased for several days in the culture (dibromomethane, chloroiodomethane, bromoiodomethane, and tribromomethane were not detected). Since halomethanes are abundant at the sampling point (under 1% of light intensity of the surface), bacteria is one of the possible candidates for halomethane producer there. Now, we are studying on the identification by 16S rRNA sequence analysis of bacteria collected from brackish water.

  4. [Characteristics of microbial community structure during isolation of electrical active bacteria].

    Science.gov (United States)

    Wang, Min; Zhao, Yang- Guo; Lu, Shan-Shan

    2014-10-01

    To investigate the effect of selective culturing on microorganisms and functional role of electrical active bacteria in biofilm, some exoelectrogens were isolated from microbial fuel cell (MFC) anodic biofilm using Hungate roll-tube technique with iron oxide as indicator. At the same time, the dynamics of the microbial community structure was monitored during the pure culture isolation. The results show that maximum voltages of MFCs feeding with lactic acid, acetic acid and steroid wastewater are 0.57, 0.60 and 0.40 V respectively. The dominant bacteria isolated from seed sludge and anodic films feeding with acetate and lactate belong to phylum Proteobacteria; while steroid wastewater contains relative high diversity of bacteria, i. e. Proteobacteria, Firmicutes and Bacteroidetes. After enriching and culturing, two bacteria were consequently obtained, which shared the highest similarity with Enterobacter ludwigii and Citrobacter freundii respectively. When inoculated in MFC with lactic acid as the substrate, they produced maximum voltage of 0.10 and 0.17 V individually. This study shows that electrical active bacteria can be isolated from the MFC anodic biofilm using anaerobic gradient dilution culture techniques with iron oxide as indicator. Microbial community structure presents markedly shifting during the bacteria isolation owing to its selectivity.

  5. Redução de cromo hexavalente por bactérias isoladas de solos contaminados com cromo Reduction of hexavlent chromium by isolated bacteria of contaminated soils with chromium

    Directory of Open Access Journals (Sweden)

    Daniele Conceição

    2007-12-01

    Full Text Available A redução do Cr(VI para Cr(III diminui a toxidade deste metal no ambiente, uma vez que o Cr(III é insolúvel às membranas biológicas. Assim, a redução microbiana do Cr(VI é uma alternativa para reduzir os impactos ambientais causados por este metal, utilizado em diversos processos industriais. O objetivo deste trabalho foi selecionar microrganismos a partir de solo contaminado com cromo e caracterizar sua capacidade de redução do Cr(VI durante o crescimento celular. A atividade de redução do Cr(VI pelos isolados foi quantificada com o reagente de s-difenilcarbazida. No isolamento, foram obtidas 20 bactérias resistentes a cromo(VI; seis destas foram capazes de reduzir acima de 100mg L-1 Cr(VI em 24 horas. As bactérias selecionadas foram eficientes na redução do Cr(VI e apresentam potencial para outros estudos, visando à aplicação em processos de biorremediação.The reduction of Cr(VI to Cr(III decrease the toxic effect of this metal in the environment, because Cr(III is insoluble to the biological membranes. The microbial reduction of Cr(VI it is an alternative to reduce the environmental impacts caused by this metal used in several industrial processes. The objective of this research was to select microorganisms from chromium contaminated soil and to characterize their ability to reduce Cr(VI. The activity of reduction of Cr(VI for the isolated was quantified with s-diphenylcarbazide. A group of 20 chromium resistant bacteria were isolated; six of these were able to reduce 100mg L-1 Cr(VI in 24 hours. The isolated bacteria, from contaminated soil can remediate chromate and presented potential for other studies seeking their application in bioremediation processes.

  6. Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria

    NARCIS (Netherlands)

    Streminska, M.A.; Felgate, H.; Rowley, G.; Richardson, D.J.; Baggs, E.M.

    2012-01-01

    Here we provide the first demonstration of the potential for N2O production by soil-isolated nitrate-ammonifying bacteria under different C and N availabilities, building on characterizations informed from model strains. The potential for soil-isolated Bacillus sp. and Citrobacter sp. to reduce NO3-

  7. Isolation and identification of indigenous lactic acid bacteria from North Sumatra river buffalo milk

    Directory of Open Access Journals (Sweden)

    Heni Rizqiati

    2015-06-01

    Full Text Available Buffalo milk is a source of various lactic acid bacteria (LAB which is potential as culture starter as well as the probiotic. This study was conducted to isolate and identify LAB from indigenous North Sumatra river buffalo milk. Lactic acid bacteria was isolated and grown in medium De Man Rogosa Sharpe Agar (MRSA. The isolation was conducted to obtain pure isolate. The identification of LAB was studied in terms of morphology, physiology, biochemistry and survival on low pH. Morphology tests were conducted by Gram staining and cell forming; physiology tests were conducted for growing viability at pH 4.5 and temperature at 45oC; whereas biochemistry tests were conducted for CO2, dextran and NH3 productions. Determination of LAB species was conducted using Analytical Profile Index (API test CHL 50. Results of identification showed that 41 isolates were identified as LAB with Gram-positive, catalase-negative, rod and round shaped characteristics. Resistance test done to low pH (pH 2 for the lactic acid bacteria showed decrease of bacteria viability up to1.24±0.68 log cfu/ml. The resistant isolates at low pH were L12, L16, L17, L19, L20, M10, P8, S3, S19 and S20. Identification with API test CHL 50 for 10 isolates showed that four isolates were identified as Lactobacillus plantarum, L. brevis, L. pentosus and Lactococuslactis.

  8. Isolation and identification of bacteria causing arthritis in chickens

    Directory of Open Access Journals (Sweden)

    B. Y. Rasheed

    2011-01-01

    Full Text Available Sixty chickens 30-55 days old with arthritis symptoms, were collected from different broiler chickens farms, all samples were examined clinically, post mortem and bacterial isolation were done. The results revealed isolation of 26 (50.98% of Staphylococcus aureus, which were found highly sensitive to amoxycillin. The experimental infection of 10 chickens was carried out on 35 days old by intravenous inoculated with 107 cfu/ml of isolated Staphylococcus aureus. Arthritis occurred in 8 (80% chickens. Clinical signs and post mortem findings confined to depression, swollen joints, inability to stand.

  9. Glyphosate Utilization as the Source of Carbon: Isolation and Identification of new Bacteria

    Directory of Open Access Journals (Sweden)

    M. Mohsen Nourouzi

    2011-01-01

    Full Text Available Mixed bacteria from oil palm plantation soil (OPS were isolated to investigate their ability to utilize glyphosate as carbon source. Results showed that approximately all of the glyphosate was converted to aminomethyl-phosphonic acid (AMPA (99.5%. It is worthy to note that mixed bacteria were able to degrade only 2% of AMPA to further metabolites. Two bacterial strains i.e. Stenotrophomonas maltophilia and Providencia alcalifaciens were obtained from enrichment culture. Bacterial isolates were cultured individually on glyphosate as a sole carbon source. It was observed that both isolates were able to convert glyphosate to AMPA.

  10. Isolation and partial characterization of actinomycetes with antimicrobial activity against multidrug resistant bacteria

    Institute of Scientific and Technical Information of China (English)

    Smriti Singh; Pramod Kumar; N Gopalan; Bhuvnesh Shrivastava; RC Kuhad; Hotam Singh Chaudhary

    2012-01-01

    Objective: To isolate strains of Actinomycetes from different locations of Gwalior to evaluate its antimicrobial activity against multidrug resistant pathogenic strains. Method: Soil samples collected from different niche habitats of Gwalior were serially diluted and plated on selective media. Potential colonies were further purified and stored in agar slants and glycerol stocks. Isolates were biochemically characterized and purified isolates were test against pathogenic microorganisms for screening. Isolates with antagonistic properties were inoculated in production media and secondary metabolites or antimicrobial products were extracted. Result: The seven actinomycetes strains showing maximum antibacterial activity were isolated further characterized based on their colony characteristics and biochemical analyses. The isolates were screened for their secondary metabolites activity on three human pathogenic bacteria are Escherichia coli (E. coli), Methicillin-Resistant Staphylococcus aureus (S. aureus) and Vancomycin-Resistant Enterococci (VRE). Discussion: The strain MITS 1005 was found to be more active against the test bacteria.

  11. Isolation of aerobic bacteria from ticks infested sheep in Iraq

    Directory of Open Access Journals (Sweden)

    Waleed Ibrahem Jalil

    2016-01-01

    Conclusions: The high isolation rate of aerobic pathogens from ticks might reflect the active contribution of this arthropod in environmental contamination and increase the probability of transmitting bacterial pathogens to their hosts.

  12. Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi-jeot

    Directory of Open Access Journals (Sweden)

    Eun-Seo Lim

    2016-12-01

    Full Text Available Abstract The objectives of this study were to identify the histamine-forming bacteria and bacteriocin- producing lactic acid bacteria (LAB isolated from Myeolchi-jeot according to sequence analysis of the 16S rRNA gene, to evaluate the inhibitory effects of the bacteriocin on the growth and histamine accumulation of histamine-forming bacteria, and to assess the physico-chemical properties of the bacteriocin. Based on 16S rRNA gene sequences, histamine-forming bacteria were identified as Bacillus licheniformis MCH01, Serratia marcescens MCH02, Staphylococcus xylosus MCH03, Aeromonas hydrophila MCH04, and Morganella morganii MCH05. The five LAB strains identified as Pediococcus acidilactici MCL11, Leuconostoc mesenteroides MCL12, Enterococcus faecium MCL13, Lactobacillus sakei MCL14, and Lactobacillus acidophilus MCL15 were found to produce an antibacterial compound with inhibitory activity against the tested histamine-producing bacteria. The inhibitory activity of these bacteriocins obtained from the five LAB remained stable after incubation at pH 4.0–8.0 and heating for 10 min at 80 °C; however, the bacteriocin activity was destroyed after treatment with papain, pepsin, proteinase K, α-chymotrypsin, or trypsin. Meanwhile, these bacteriocins produced by the tested LAB strains also exhibited histamine-degradation ability. Therefore, these antimicrobial substances may play a role in inhibiting histamine formation in the fermented fish products and preventing seafood-related food-borne disease caused by bacterially generated histamine.

  13. Isolation characterization and growth of locally isolated hydrocarbonoclastic marine bacteria (eastern Algerian coast).

    Science.gov (United States)

    Feknous, N; Branes, Z; Rouabhia, K; Batisson, I; Amblard, C

    2017-01-01

    The Algerian coastline is being exposed to several types of pollution, including that of hydrocarbons. This environment rich in oil could be the source of proliferation of hydrocarbonoclastic bacteria. The objective of the study is to isolate and identify indigenous bacterial strains from marine waters of two ports in the eastern Algerian coast and to test their growth in the presence of hydrocarbons with and without biostimulation throughout the intake of nitrogen and phosphate. Results recorded the highest level of both total hydrocarbons and phosphates in the port of Annaba, followed by El-Kala station and then the control station, while that of total nitrogen was vice versa. Fifty-three bacterial strains were identified from which four were selected to perform the growth tests. Results showed that the growth and the biodegradation differ from one species to another. Thus, the strains tested (Halomonas venusta NY-8, Exiguobacterium aurantiacum NB11-3A, Vibrio alginolyticus Pb-WC11099, and Dietzia sp. CNJ898 PL04) seem very active, in which better growth was obtained with the last two strains during nitrogen and phosphate supplementation. Such strains are suggested to participate a lot in the biodegradation of oil at polluted sites.

  14. Isolation of lactic acid bacteria for its possible use in the fermentation of green algerian olives

    Directory of Open Access Journals (Sweden)

    Nour-Eddine, Karam

    2004-12-01

    Full Text Available This study was undertaken with the aim of obtaining lactic acid bacteria with the ability to ferment olives for possible use as starter cultures. For this reason, 32 isolates of lactic acid bacteria isolated from the spontaneous fermentation of green olives were characterized and identified on the basis of morphological and biochemical criteria. 14 of them were identified as Lactococcus lactis, 11 isolates as Lactobacillus plantarum and 7 isolates as Enterococcus sp. Of the 18 isolates examined for antagonistic activity, 3 isolates of Lactobacillus plantarum and one isolate of Enterococcus sp. were able to give distinct zones of inhibition against 5 indicator strains of lactic acid bacteria isolated in this study. Cell free supernatant of Lactobacillus plantarum OL9 was active against Gram-positive bacteria (Lactobacillus, Enterococcus and Propionibacterium and also against one Gram-negative bacteria strain of spoilage significance (Erwinia.Este estudio se emprendió con el objetivo de obtener bacterias del ácido láctico con capacidad para utilizarse como cultivo iniciador en la fermentación de aceitunas. Por esta razón, 32 cepas de bacterias del ácido láctico procedentes de fermentaciones espontáneas de aceitunas verdes se caracterizaron e identificaron en función de criterios morfológicos y bioquímicos. Catorce cepas se identificaron como Lactococcus lactis, 11 cepas como Lactobacillus plantarum y 7 cepas como Enterococcus sp. De las 18 cepas que se examinaron para detectar actividades antagónicas, se encontró que 3 cepas de Lactobacillus plantarum y una de Enterococcus sp. mostraban zonas de inhibición contra 5 cepas indicadoras de bacterias del ácido láctico aisladas en este estudio. El sobrenadante libre de células Lactobacillus plantarum OL9 fue activo contra diversas bacterias Gram-positivas (Lactobacillus, Enterococcus y Propionibacterium y contra una cepa de bacteria Gram-negativa relacionada con alteraciones (Erwinia.

  15. Application of a single-colony coculture technique to the isolation of hitherto unculturable gut bacteria.

    Science.gov (United States)

    Tanaka, Yoshiki; Benno, Yoshimi

    2015-02-01

    Molecular studies have led to postulation of a relationship between gut microbiota and certain diseases. However, because studies of hitherto uncultured species in vivo are essential for characterizing the biology and pathogenic properties of gut bacteria, techniques for culturing and isolating such bacteria must be developed. Here, a technique is described that partially overcomes the obstacles that prevent detection of interbacterial communication in vitro and are thus responsible for the failure to culture certain bacterial species. For this purpose, a ring with a membrane filter at the bottom was designed and a relatively simple nutrient medium was used instead of conventional media. Gut bacteria were cocultivated in soft agar separated by the membrane filter to simulate interbacterial communication in vitro. Use of this soft agar coculture technique led to the successful isolation of hitherto uncultured bacteria and the demonstration of multistage interbacterial communication among gut bacteria in vitro. Cultivation and isolation of single colonies of bacteria that require other bacteria for growth will enhance efforts to better understand the physiological and pathogenic roles of gut microbiota.

  16. Isolation and characterization of deodorizing bacteria for organic sulfide malodor

    Institute of Scientific and Technical Information of China (English)

    JIANG An-xi; LIU Bo; ZHAO Yang-guo; LI Zheng; BAI Yu; CHENG Yang-xue

    2004-01-01

    Strain Jll screened out from different odor origins can efficiently degrade methyl mercaptan and ethanethiol whereas has no ability to remove dimethyl sulfide. The results indicated that the strain Jll breaks only the C-SH bond. The optimum temperature and pH of Jll are 20-30℃ and 6.0-8.3 respectively. A systematic identification method-16S rDNA gene sequence comparison, for deodorizing bacteria was carried out. The 16S rDNA gene sequence analysis of strain Jll showed the highest level of 97% homology to Rape rhizosphere.

  17. PROPERTIES OF NEW STRAINS CHEMOLITHOTROPHIC BACTERIA ISOLATED FROM INDUSTRIAL SUBSTRATES

    Directory of Open Access Journals (Sweden)

    I. A.

    2015-12-01

    Full Text Available The purpose of the research was determination of strains Acidithiobacillus ferrooxidans MFLv37 and Acidithiobacillus ferrooxidans MFLad27, isolated from aboriginal consortium of coal beneficiation dumps and fly ash from coal combustion, resistance to heavy metals, forming part of these waste, as well as adaption ability of the strains to new substrates. New strains increased resistance to heavy metal ions as compared to A. ferrooxidans standard and collection strains is found; minimal inhibitory concentrations of heavy and toxic metals are determined; a number of metals that have negative impact on growth of isolated cultures are identified. It is shown that the minimal metals concentrations, at which strains growth still happens, are several times higher than their concentrations in technogenic waste. It has been established that isolated strains differed in their ability to adapt, as well as in growth rate and substrates oxidation. This is due to the specific conditions of microbiocenoses formation in making and further storage of rock dumps and fly ash, whereof the appropriate strains are isolated. The investigations indicate the necessity in directional selection of strains that are resistant to the toxic compounds and are able to oxidize various mineral substrates, as well as in their adaptation to new substrates for the extraction of heavy metals.

  18. Isolation and Identification of Cellulolytic Bacteria from the Gut of Three Phytophagus Insect Species

    Directory of Open Access Journals (Sweden)

    Rajib Kumar Shil

    2014-12-01

    Full Text Available The cellulolytic bacteria from the gut of three different phytophagous insects were studied to isolate novel cellulolytic organism for biofuel industry. Among the threse, gut of P. quatuordecimpunctata larvae contained both highest no of total bacterial count (6.8x107CFU/gut and cellulolytic bacteria (5.42x103CFU/gut. Fifteen different isolates were obtained from the gut of O. velox, A. miliarisand P. quatuordecimpunctata. All the isolates produced clear zone in CMC medium staining with Congo red. The isolates included Gram positive Enterococcus, Microbacterium and Gram negative Aeromonas, Erwinia, Serretia, Flavobacterium, Acenitobacter, Klebsiella, Yersinia, Xenorhabdus, Psedomonas and Photorhabdus. Out of the fifteen isolated and identified bacterial species, twelve bacterial species were novel being reported for first time as having cellulase activity.

  19. Isolation and identification of cobalt- and caesium-resistant bacteria from a nuclear fuel storage pond.

    Science.gov (United States)

    Dekker, Linda; Osborne, Thomas H; Santini, Joanne M

    2014-10-01

    One of the issues facing the nuclear power industry is how to store spent nuclear fuel which is contaminated with radionuclides produced during nuclear fission, including caesium ((134)Cs(+), (135)Cs(+) and (137)Cs(+)) and cobalt ((60)Co(2+)). In this study, we have isolated Co(2+)- and Cs(+)-resistant bacteria from water collected from a nuclear fuel storage pond. The most resistant Cs(+) and Co(2+) isolates grew in the presence of 500 mM CsCl and 3 mM CoCl2. Strain Cs67-2 is resistant to fourfold more Cs(+) than Cupriavidus metallidurans str. CH34 making it the most Cs(+)-resistant strain identified to date. The Cs(+)-resistant isolates were closely related to bacteria in the Serratia and Yersinia genera, while the Co(2+)-resistant isolates were closely related to the Curvibacter and Tardiphaga genera. These new isolates could be used for bioremediation.

  20. Phylogenetic analysis of cultivable bacteria isolated from Arctic sea-ice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Phylogenetic analysis based on 16S rDNA of 8 strains of cultivable bacteria isolated from Arctic sea-ice was studied. The results showed that strain BJ1 belonged to genus Planococcus, which was a genus of low mole percent G+C gram-positive bacteria; strain BJ6 belonged to genus Burkholderia of β- proteobacteria and the rest 6 strain all belonged to γ-proteobacteria, of which strain BJ8 was a species of Pseudoalteromonas, strain BJ2-BJ5 and BJ7 were members of genus Psychrobacter. Phylogenetic analysis also indicated that bacteria of genus Psychrobacter of the isolates formed a relatively independent phylogenetic cluster in comparison with other bacteria belonged to genus Psychrobacter.

  1. New and Rare Carotenoids Isolated from Marine Bacteria and Their Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Kazutoshi Shindo

    2014-03-01

    Full Text Available Marine bacteria have not been examined as extensively as land bacteria. We screened carotenoids from orange or red pigments-producing marine bacteria belonging to rare or novel species. The new acyclic carotenoids with a C30 aglycone, diapolycopenedioc acid xylosylesters A–C and methyl 5-glucosyl-5,6-dihydro-apo-4,4′-lycopenoate, were isolated from the novel Gram-negative bacterium Rubritalea squalenifaciens, which belongs to phylum Verrucomicrobia, as well as the low-GC Gram-positive bacterium Planococcus maritimus strain iso-3 belonging to the class Bacilli, phylum Firmicutes, respectively. The rare monocyclic C40 carotenoids, (3R-saproxanthin and (3R,2′S-myxol, were isolated from novel species of Gram-negative bacteria belonging to the family Flavobacteriaceae, phylum Bacteroidetes. In this review, we report the structures and antioxidant activities of these carotenoids, and consider relationships between bacterial phyla and carotenoid structures.

  2. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods

    Directory of Open Access Journals (Sweden)

    K Beheshti-Maal

    2010-06-01

    Full Text Available Background and Objectives: Acetic acid bacteria (AAB are useful in industrial production of vinegar. The present study aims at isolation and identification of acetic acid bacteria with characterization, optimization, and evaluation of their acetic acid productivity."nMaterials and Methods: Samples from various fruits were screened for presence of acetic acid bacteria on glucose, yeast extract, calcium carbonate (GYC medium. Carr medium supplemented with bromocresol green was used for distinguishing Acetobacter from Gluconobacter. The isolates were cultured in basal medium to find the highest acetic acid producer. Biochemical tests followed by 16S rRNA and restriction analyses were employed for identification of the isolate and phylogenic tree was constructed. Bacterial growth and acid production conditions were optimized based on optimal inoculum size, pH, temperature, agitation, aeration and medium composition."nResults: Thirty-seven acetic acid bacteria from acetobacter and gluconobacter members were isolated. Acetic acid productivity yielded 4 isolates that produced higher amounts of acid. The highest producer of acid (10.03% was selected for identification. The sequencing and restriction analyses of 16S rRNA revealed a divergent strain of Acetobacter pasteurianus (Gene bank accession number # GU059865. The optimum condition for acid production was a medium composed of 2% glucose, 2% yeast extract, 3% ethanol and 3% acid acetic at inoculum size of 4% at 3L/Min aeration level in the production medium. The isolate was best preserved in GYC medium at 12oC for more than a month. Longer preservation was possible at -70oC."nConclusion: The results are suggestive of isolation of an indigenous acetic acid bacteria. Pilot plan is suggested to study applicability of the isolated strain in acetic acid production.

  3. ISOLATION AND IDENTIFICATION OF LACTIC ACID PRODUCING BACTERIA FROM CAMEL MILK

    OpenAIRE

    Toqeer Ahmad, Rashida Kanwal, Izhar Hussain Athar1, Najam Ayub

    2002-01-01

    Lactic acid bacteria (LAB) were isolated from camel milk by culturing the camel milk on specific media and pure culture was obtained by sub culturing. Purification of culture was confirmed by Gram's staining and identified by different bio-chemical tests. Camel milk contains lactic acid producing bacteria including Strpptococci such as S. cremoris and S. lactis and Lactobacilli such as L. acidophilus L. acidophilus grows more rapidly in camel milk than others as its growth is supported by cam...

  4. Isolation and Characterization of Bacteria Resistant to Metallic Copper Surfaces▿ †

    OpenAIRE

    Espírito Santo, Christophe; Morais, Paula Vasconcelos; Grass, Gregor

    2010-01-01

    Metallic copper alloys have recently attracted attention as a new antimicrobial weapon for areas where surface hygiene is paramount. Currently it is not understood on a molecular level how metallic copper kills microbes, but previous studies have demonstrated that a wide variety of bacteria, including Escherichia coli, Staphylococcus aureus, and Clostridium difficile, are inactivated within minutes or a few hours of exposure. In this study, we show that bacteria isolated from copper alloy coi...

  5. Isolation of Lactic Acid Bacteria Bacteriophages from Dairy Products

    Directory of Open Access Journals (Sweden)

    Elnaz Shokrani

    2013-09-01

    Full Text Available Backgrounds: Lactococcus lactis (L. lactis is one of the most important microorganisms used in dairy industry for production of fermented milk products. Bacteriophages which attack  L. lactis are a serious threat to the dairy industry because of their negative effects on fermentation processes. Methods: Samples of raw milk were examined for the presence of lactococcal bacteriophages. Samples were centrifuged and then filtered through 0.45µm pore size filters. The filtrates were added to early-exponential cultures of Lactococcus lactis subspp. Lactis (PTCC 1336. Overlay method was used to detect the formation of plaques. After isolation and concentration of phages, serial dilutions of phage stock were used to determine titer of phage in concentrated sample. Electron Microscopy was used for observation and characterization of structural details of bacteriophages. Results: Two phages were isolated; one of them had a hexagonal head of 45×30 nm in diameter and a flexible non-contractile tail of 70nm long which belonged to Siphoviridae. The other had a short tail and a hexagonal head of 53×60 nm in diameter which was a member of Podoviridae family. Conclusion: In this study, for the first time, two phages were isolated from milk. This does not reduce the significance of phage control in different stages of the production. The spread of the phages in the production plant can be very harmful.

  6. Isolation and characterization of endosulfan-degrading bacteria from contaminated agriculture soils

    Directory of Open Access Journals (Sweden)

    Mehdi Hassanshahian

    2016-04-01

    Full Text Available Objective: To isolate and characterize endosulfan-degrading bacteria from Kerman pistachio orchards. Methods: Endosulfan-degrading bacteria were enriched in Bushnell-Hass medium. Identification and sequencing of prevalent degrading strains was performed by using PCR based on amplifying 16S rDNA. Results: The results showed that the soils of pistachio orchards have some degrading bacteria that are suitable for elimination of endosulfan from soils and the environment. Four endosulfandegrading bacteria strains belong to Achromobacter xylosoxidans (strain EN3, Pseudomonas azotoformans (strain EN4, Pseudomonas brassicacearum (strain EN7 and Pseudomonas thivervalensis (strain EN8, respectively. The best degrading strain (EN7, up to 100 mg/L, illustrated a good growth, whereas the growth was reduced in concentration higher than 100 mg/L. The results of gas chromatography confirmed the decomposition of organic pesticide by degrading-bacteria. Conclusions: By using these strains and other biological reclamation methods we can eliminate bio-environmental problems.

  7. Isolation and identification of lactid acid bacteria originated from king grass (Pennisetum purpureophoides) as candidate of probiotic for livestock

    OpenAIRE

    Santoso B; Maunatin A; Hariadi BT; Abubakar H

    2013-01-01

    A study was conducted to isolate and identify strain of lactic acid bacteria (LAB) isolated from king grass, and to determine their potential as candidate of probiotic for livestock. The LAB was isolated by culturing king grass extract in De Man, Rogosa and Sharpe (MRS) medium. The pure culture LAB was used to identify strain of bacteria using Analytical Profile Index (API) 50 CH kit. The result showed that the strain bacteria was identified as Lactobacillus plantarum. L. plantarum was able t...

  8. Isolation and characterization of Fenitrothion-degrading bacteria from pestachio gardens in Kerman Provinance

    Directory of Open Access Journals (Sweden)

    Mehrnosh Ghafari

    2014-07-01

    Full Text Available   Introduction : Pesticides with complex structure have high persistence in ecosystem and biosphere. Pesticides have harmful effects on farmlands, human and natural resources.   Materials and methods: In this study for isolation of pesticide-degrading bacteria (Fenitrothion soil samples were collected from pistachio gardens in Kerman province. Collected soil samples were enriched in Bushnell Hass medium with this pesticide as only carbon and energy source. Isolated bacteria were identified by amplification of 16S rDNA gene by PCR and sequencing .   Results : In this study three Fenitrothion -degrading bacterial strains were isolated. These isolated bacteria were identified as: Pseudomonas fluorescens strain F1 ، Bacillus cereus strain F3 and pseudomonas aeruginosa strain F4 . The effects of pesticides concentration on each dominant bacterial strain were investigated. For Fenitrothion degrading bacterium (F4 strain growth continue until 100 ppm and then decreased. The result of Gas Chromatography (GC analysis confirmed the biodegradation ability of selected bacterial strains .   Discussion and conclusion : The results of this study demonstrated that there is a diversity of pesticide-degrading bacteria (Fenitrothion in soil ecosystem farmlands of Kerman province. It is seemed by application of these pesticide-degrading bacteria in farmlands and using bioremediation technique the ecosystem contamination of pesticide can be decreased.

  9. Isolation and Characterization of Pb Resistant Bacteria from Cilalay Lake, Indonesia

    Directory of Open Access Journals (Sweden)

    Kesi Kurnia

    2015-12-01

    Full Text Available Pollution of water environment with heavy metals is becoming one of the most severe environmental and human health hazards. Lead (Pb is a major pollutant and highly toxic to human, animals, plants, and microbes. Toxic metals are difficult to remove from the environment, since they cannot be chemically or biologically degraded and are ultimately indestructible. Biological approaches based on metal-resistant microorganisms have received a great deal of attention as alternative remediation processes. This study aim to isolate and characterize Pb resistant of heterotrophic bacteria in Cilalay Lake, West Java, Indonesia. The water samples were collected along three points around Cilalay Lake. Water physical and chemical determination was performed using the Water Quality Checker. The bacterial isolates were screened on Triptone Glucose Yeast (TGY agar plates. Afterwards selected isolates were grown on Nutrient Agar media 50% with supplemented Pb 100 ppm by the standard disk. Population of resistant bacteria was counted. The result from metal resistant bacteria indicated that all isolates were resistant. The most abundant type of resistant bacteria to lead was Gram negative more than Gram positive. Identified have metal resistant bacteria could be useful for the bioremediation of heavy metal contaminated sewage and waste water

  10. Anaerobic facultative bacteria isolated from the gut of rabbits fed different diets.

    Science.gov (United States)

    Canganella, F; Zirletta, G; Gualterio, L; Massa, S; Trovatelli, L D

    1992-11-01

    Anaerobic facultative bacteria colonizing the intestinal tract of conventional rabbits fed three different diets (standard pellet, hay and pellet/hay mixture) were enumerated in brain heart infusion agar. Colony counts recovered from homogenized samples of small intestine, caecum and rectum differed with reference to the diet given. Among anaerobic groups, identified from rabbit fed pellet/hay mixture, Enterococci (E. faecalis, E. avium, E. faecium and E. durans) represented the predominant flora. Enterobacters (E. cloacae and E. aerogenes) accounted for about 10 to 25% of the bacteria in the rectum and colon respectively, whereas Staphylococci (S. intermedius, S. epidermidis and S. lentus) represented 11% of the bacteria isolated from colon.

  11. Study of frequency of bacteria isolated from blood culture and their antibiotic susceptibility pattern in a university hospital in Tehran

    Directory of Open Access Journals (Sweden)

    Hoorieh Saderi

    2009-12-01

    Full Text Available Introduction: Determining frequency of bacteria, isolated from blood culture and their antibiotic susceptibility patterns, has epidemiological significance and can help in selecting empirical therapy. This study was aimed to assess, the frequency of bacteria isolated from blood culture of patients suspected to bacteremia and their antibiotic susceptibility patterns. Methods: Culture of blood and determination of antibiotic susceptibility was done by standard methods. In this study, a variety of isolated bacteria types, antibiotic susceptibility, as well as age, sex and type of admission of patients were analyzed in a university hospital from 21 March, 2006 to 20 March, 2007. Results: During one year, blood culture was done for 5116 patients and bacteria were isolated in 912 cases (17.8%. Three most frequently groups of bacteria in blood cultures of patients were non-fermentative gram negative bacteria (Pseudomonas and Acintobacter spp, coliforms (Escherichia coli and enterobacter and klebsiella spp. and coagulase negative staphylococci, respectively, which were isolated in 63.4%, 17.0% and 12.8% of patients, and constituted 93.2% of positive blood cultures. Higher resistance was shown in bacteria isolated from inpatients compare to outpatients. Conclusion: This study showed the influence of age, sex and type of admission (outpatient or inpatient in a variety of isolated bacteria in blood culture. The result of this study were the same as the other studies in Iran and other countries in respect of the variety of isolated bacteria and antibiotic susceptibility and show increase of antibiotic resistance in these bacteria.

  12. Isolation and characterization of bacteria from midgut of the rice water weevil (Coleoptera: Curculionidae).

    Science.gov (United States)

    Lu, Fang; Kang, Xiaoying; Jiang, Cong; Lou, Binggan; Jiang, Mingxing; Way, Michael O

    2013-10-01

    Gut bacteria are known to play important and often essential roles in the biology of insects. Theoretically, they can be genetically manipulated, then reintroduced into insects to negatively modify specific biological features. The weevil superfamily Curculionoidea is one of the most species-rich and successful animal groups on earth, but currently the overall knowledge of the bacterial communities in weevils and their associations with hosts is still limited. In this study, we isolated and characterized the bacteria in the midgut of an invasive weevil, Lissorhoptrus oryzophilus Kuschel, by culturing methods. Female adults of this weevil were collected from four different geographic regions of the United States and mainland China. Sequencing of the bacterial 16S rRNA amplicons demonstrated that the major culturable gut bacteria of rice water weevil are γ-proteobacteria and Bacilli. The gut bacterial composition differs among regions, with many of the bacteria isolated from only a single region while several were detected from more than one region. Overall, the diversity of gut bacteria in rice water weevil is relatively low. The possible origins of certain bacteria are discussed in relation to the weevil, rice plant, and bacteria.

  13. Isolation and life-cycle characterization of lytic viruses infecting heterotrophic bacteria and cyanobacteria

    DEFF Research Database (Denmark)

    Middelboe, Mathias; Chan, Amy; Bertelsen, Sif Koldborg

    2010-01-01

    Basic knowledge on viruses infecting heterotrophic bacteria and cyanobacteria is key to future progress in understanding the role of viruses in aquatic systems and the influence of virus–host interactions on microbial mortality, biogeochemical cycles, and genetic exchange. Such studies require......, and discusses the applications and limitations of different isolation procedures. Most work on phage isolation has been carried out with aerobic heterotrophic bacteria and cyanobacteria, culturable both on agar plates and in enriched liquid cultures. The procedures presented here are limited to lytic viruses...

  14. Isolation and identification of oil sludge degrading bacteria from production tank Number 9 Masjed Soleiman

    Directory of Open Access Journals (Sweden)

    Yalda Sheyni

    2014-07-01

    Full Text Available   Introduction: “Bioremediation” is one of the most effective methods to remove petroleum contaminants. The aim of the present study is to isolate the indigenous bacteria from the waste petroleum in the Masjed Soleiman No. 9 production tank and to examine the effect of their application on the elimination of petroleum heavy chain hydrocarbons and converting them into light compounds .   Materials and methods: Two percent of petroleum sludge was inoculated to the mineral basal medium and after proliferation of its indigenous bacteria, they were inoculated into the mixture of oil sludge and sand at level of 5%, and the amount of total hydrocarbons and residual oil were measured and compared. The isolates were identified based on biochemical tests and 16S rRNA gene sequencing. Optimization of nitrogen and phosphate sources was done based on growth curves of selected isolates. Gas chromatography was used to determine degradation of sludge hydrocarbons.   Results: In this study, 10 bacterial isolates were isolated from petroleum sludge . Measurement of petroleum total hydrocarbons, using Soxhlet-extraction method, showed that two isolates named MIS1 and MIS2 are able to decompose oil sludge hydrocarbons within 7 days, with the yields of 62% and 72%, respectively. Furthermore, the two isolates reach the end of the logarithmic phase at 48 and 120 hrs, respectively. The best source of nitrogen and phosphate for both isolates was ammonium nitrate and potassium di ­hydrogen phosphate, respectively. The isolates were identified as Arthrobacter aurescens and Pseudomonas aeruginosa , respectively. In gas chromatography analysis it was revealed that Pseudomonas aeruginosa was more potent in degradation of heavy chain hydrocarbons and their conversion to light chain compounds.   Discussion and conclusion: Resident bacteria are present in the oil sludge and are able to degrade the heavy petroleum compounds and convert them into light compounds. These

  15. Isolation and characterization of facultative mixotrophic ammonia-oxidizing bacteria from constructed wetlands

    Institute of Scientific and Technical Information of China (English)

    Soulwène Kouki; Neila Saidi; Fadhel M'hiri; Houda Nasr; Hanène Cherif; Hadda Ouzari; Abdermaceur Hassen

    2011-01-01

    Autotrophic ammonia-oxidizing bacteria (AOB) have been widely studied in constructed wetlands systems,while mixotrophic AOB have been less thoroughly examined.Heterotrophic bacteria were isolated from wastewater and rhizospheres of macrophytes of constructed wetlands,and then cultivated in a mixotrophic medium containing ammonium and acetic acid.A molecular characterization was accomplished using ITS-PCR amplification,and phylogenetic analysis based on 16S rRNA gene sequences.Results showed the presence of 35 bacteria,among 400 initially heterotrophic isolates,that were able to remove ammonia.These 35 isolates were classified into 10 genetically different groups based on ITS pattern.Then,a collection of 10 isolates were selected because of their relatively high ammonia removal efficiencies (ARE ≥ 80%) and their phylogenetic diversity.In conditions of mixotrophy,these strains were shown to be able to grow (increase of optical density OD660 during incubation with assimilation of nitrogen into cellular biomass) and to oxidize ammonia (important ammonia oxidation efficiencies,AOE between 79% and 87%).Among these facultative mixotrophic AOB,four isolates were genetically related to Firmicutes (Bacillus and Exiguobacterium),three isolates were affiliated to Actinobacteria (Arthrobacter) and three other isolates were associated with Proteobacteria (Pseudomonas,Ochrobactrum and Bordetella).

  16. The aflatoxin B1 isolating potential of two lactic acid bacteria

    Institute of Scientific and Technical Information of China (English)

    Adel Hamidi; Reza Mirnejad; Emad Yahaghi; Vahid Behnod; Ali Mirhosseini; Sajad Amani; Sara Sattari; Ebrahim Khodaverdi Darian

    2013-01-01

    Objective:To determine lactic acid bacteria’s capability to enhance the process of binding and isolating aflatoxin B1 and to utilize such lactic acid bacteria as a food supplement or probiotic products for preventing absorption of aflatoxin B1 in human and animal bodies. Methods: In the present research, the bacteria were isolated from five different sources. For surveying the capability of the bacteria in isolating aflatoxin B1, ELISA method was implemented, and for identifying the resultant strains through 16S rRNA sequencing method, universal primers were applied. Results: Among the strains which were isolated, two strains of Lactobacillus pentosus and Lactobacillus beveris exhibited the capability of absorbing and isolating aflatoxin B1 by respectively absorbing and discharging 17.4%and 34.7%of the aforementioned toxin existing in the experiment solution. Conclusions:Strains of Lactobacillus pentosus and Lactobacillus beveris were isolated from human feces and local milk samples, respectively. And both strains has the ability to isolate or bind with aflatoxin B1.

  17. Comparative analysis of antimicrobial and proteolytic activity of lactic acid bacteria isolated from Zlatar cheese

    Directory of Open Access Journals (Sweden)

    Topisirović Ljubiša

    2007-01-01

    Full Text Available Traditional artisan Zlatar cheese belongs to the group of white, semi hard home-made cheeses, which are produced from no pasteurized cow's milk, without addition of any known bacterial starter culture. In total, 253 Gram-positive and catalase negative lactic acid bacteria (LAB were isolated. Results showed that 70 out of 253 analyzed isolates produced antimicrobial compounds known as bacteriocins. Most isolates from genera Lactococcus and Enterococcus, and isolates belonging to species Lactobacillus plantarum and Lb. brevis, do not synthesize extracellular proteinase. In contrast, isolates from subspecies Lb. paracasei subsp. paracasei showed very good proteolytic activity. It was observed that good proteolytic activity of isolates was not in correlation with their good antimicrobial activity in the most of isolates.

  18. Isolation and identification of bacteria associated with the surfaces of several algal species

    Institute of Scientific and Technical Information of China (English)

    WANG Zifeng; XIAO Tian; PANG Shaojun; LIU Min; YUE Haidong

    2009-01-01

    We conducted this study to assess the diversity of bacteria associated with the surfaces of algae based on 16S rDNA sequence analyses. Twelve strains of bacteria were obtained from the surfaces of the following four species of algae: Gracilaria textorii, Ulva pertusa, Laminaria japonica, and Polysiphonia urceolata. The isolated strains of bacteria can be divided into two groups: Halomonas and Vibrio, in physiology, biochemical characteristics and 16S rDNA sequence analyses. The phylogenetic tree constructed based on 16S rDNA sequences of the isolates shows four obvious clusters, Halomonas venusta, Vibrio tasmaniensis, Vibrio lentus, and Vibrio splendidus. Isolates from the surface of P. Urceolata are more abundant and diverse, of which strains P9 and P28 have a 16S rDNA sequence very similar (97.5%-99.8%) to that of V. Splendidus. On the contrary, the isolates from the surfaces of G. Textorii, U. Pertusa and L. Japonica are quite simple and distribute on different branches of the phylogenetic tree. In overall, the results of this study indicate that the genetic relationships among the isolates are quite close and display a certain level of host species specificity, and alga-associated bacteria species are algal species specific.

  19. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed.

  20. Screening and Isolation of Salt Tolerant Bacteria from Tidal Floodplain Soils of Bangladesh

    OpenAIRE

    Mondal, D.

    2016-01-01

    Use of eco-friendly area specific salt tolerant bio-inoculants is better alternatives to chemical fertilizer for sustainable agriculture in the coastal saline soils. The study was conducted to isolate and characterize salinity tolerant bacteria like Rhizobium sp. which can be used as biofertilizer. Soil samples were collected from two salinity affected districts namely Khulna and Patuakhali situated in the southern part of Bangladesh. Nine colonies were isolated from pore-plate containing yea...

  1. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots

    OpenAIRE

    Enrico Baldan; Sebastiano Nigris; Chiara Romualdi; Stefano D'Alessandro; Anna Clocchiatti; Michela Zottini; Piergiorgio Stevanato; Andrea Squartini; Barbara Baldan

    2015-01-01

    We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammoniu...

  2. Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria

    Institute of Scientific and Technical Information of China (English)

    QI Yun; ZHAO Lin; OJEKUNLE Z.Olusheyi; TAN Xin

    2007-01-01

    A study Was conducted to compare the diversity of 2-,3-,and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge.These samples contained strikingly different populations of mono-chlorobenzoate degraders.Although fewer cultures were isolated in the uncontaminated soils than contaminated one,the ability of microbial populations to mineralize chlorobenzoate was widespread.The 3-and 4-chlorobenzoate degraders were more diverse than me 2-chlorobenzoate degraders.One of the strains isolated from the sewage sludge was obtained.Based on its phenotype.chemotaxonomic properties and 16S rRNA gene,the organism S-7was classified as Rhodococcus erythropolis.The strain can grow at temperature from 4 to 37℃.C.It can utilize several(halo)aromatic compounds.Moreover,strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions.The psychrotolerant ability was significant for bioremediation in low temperature regions.Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain,but no(chloro)catechol 2,3-dioxygenase activities was detected.Spectral conversion assays with extracts from R.erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate.On the basis of these results,we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.

  3. EMULSAN ANALYSIS PRODUCED BY LOCALLY ISOLATED BACTERIA AND ACINETOBACTER CALCOACETICUS RAG-1

    Directory of Open Access Journals (Sweden)

    P. Chamanrokh, M. Mazaheri Assadi, A. Noohi, S. Yahyai

    2008-04-01

    Full Text Available Growth of previously isolated bacteria from Iranian oil reservoirs on different carbon and energy sources and under varying conditions have been used to produce a class of extracellular microbial protein-associated lipopolysaccharides named emulsan.Several Bacteria were previously isolated from Iranian oil reservoirs and designated as; Ilam-1 and Paydar-4. In present study, the isolated strains were compared with standard sample of Acinetobacter calcoaceticus RAG-1 from Persian Type Culture Collection (PTCC 1641, IROST. Among the isolated strains, two strains were found to produce an extracellular, emulsifying agent when grown in Mineral Salt Medium containing soya oil, ethanol or local crude oil. The isolated bacteria were cultured and further analysed using protein estimation, reducing sugar analysis, hemolytic activity, surface tension and emulsification activity tests. The crude emulsifier of RAG-1, PAYDAR-4 and ILAM-1 were concentrated from the cell-free culture fluid by ammonium sulfate precipitation to yield 1.89g, 1.78g and 1.69g of bioemulsan respectively. Emulsifying activity was observed over the entire production process. These investigations showed that emulsan produced by isolated Iranian crude oil reservoir were comparable with Acinetobacter calcoaceticus RAG-1 which is made of carbohydrate backbone as its hydrophilic part (N-acetyl-D-galactoseamine, N-acetylgalactoseamine uronic acid, diamino-6-deoxy-D-glucose and fatty acid chain as its hydrophobic portion.

  4. Characterization and transferability of class 1 integrons in commensal bacteria isolated from farm and nonfarm environments.

    Science.gov (United States)

    Yang, Hua; Byelashov, Oleksandr A; Geornaras, Ifigenia; Goodridge, Lawrence D; Nightingale, Kendra K; Belk, Keith E; Smith, Gary C; Sofos, John N

    2010-12-01

    This study assessed the distribution of class 1 integrons in commensal bacteria isolated from agricultural and nonfarm environments, and the transferability of class 1 integrons to pathogenic bacteria. A total of 26 class 1 integron-positive isolates were detected in fecal samples from cattle operations and a city park, water samples from a beef ranch and city lakes, and soil, feed (unused), manure, and compost samples from a dairy farm. Antimicrobial susceptibility testing of class 1 integron-positive Enterobacteriaceae isolates from city locations displayed multi-resistance to 12-13 out of the 22 antibiotics tested, whereas class 1 integron-positive Enterobacteriaceae isolates from cattle operations only displayed tetracycline resistance. Most class 1 integrons had one gene cassette belonging to the aadA family that confers resistance to streptomycin and spectinomycin. One isolate from a dog fecal sample collected from a city dog park transferred its class 1 integron to a strain of Escherichia coli O157:H7 at a frequency of 10(-7) transconjugants/donor by in vitro filter mating experiments under the stated laboratory conditions. Due to the numerous factors that may affect the transferability testing, further investigation using different methodologies may be helpful to reveal the transferability of the integrons from other isolates. The presence of class 1 integrons among diverse commensal bacteria from agricultural and nonfarm environments strengthens the possible role of environmental commensals in serving as reservoirs of antibiotic resistance genes.

  5. Naturally fermented Jijelian black olives: microbiological characteristics and isolation of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Karam, Nour-Eddine

    2009-12-01

    Full Text Available A study of the microflora of traditionally fermented black olives in Eastern Algeria is presented. A count of the following microbial groups was carried out: mesophilic bacteria, enterobacteria, lactic acid bacteria (LAB, staphylococci and yeast. In a second phase, the identification and assessment of the technological traits of LAB was performed. Seventeen lactic acid bacteria were isolated and identified. These isolates were represented by two genera: Lactobacillus and Leuconostoc. The results showed that Lactobacillus plantarum was the predominant species in this traditional product.Un estudio sobre la microflora de aceitunas negras fermentada por métodos tradicionales en el Este de Argelia es presentado. Se realizo el siguiente recuento de grupos de microorganismos: bacterias mesófilas, enterobacterias, bacterias ácido lácticas (LAB, staphylococcus y levaduras. En una segunda fase, la identificación y evaluación de aspectos tecnológicos de LAB fue realizada. Setenta bacterias ácido lácticas fueron aisladas e identificadas. Estos aislados contenían principalmente dos géneros: Lactobacillus y Leuconostoc. Los resultados mostraron que Lactobacillus plantarum fue la especie predominante en este producto tradicional.

  6. Genetic and phenotypic diversity of carbofuran-degrading bacteria isolated from agricultural soils.

    Science.gov (United States)

    Shin, Dong-Hyeon; Kim, Dong-Uk; Seong, Chi-Nam; Song, Hong-Gyu; Ka, Jong-Ok

    2012-04-01

    Thirty-seven carbofuran-degrading bacteria were isolated from agricultural soils, and their genetic and phenotypic characteristics were investigated. The isolates were able to utilize carbofuran as a sole source of carbon and energy. Analysis of the 16S rRNA gene sequence indicated that the isolates were related to members of the genera Rhodococcus, Sphingomonas, and Sphingobium, including new types of carbofuran-degrading bacteria, Bosea and Microbacterium. Among the 37 isolates, 15 different chromosomal DNA patterns were obtained by polymerase chain reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences. Five of the 15 representative isolates were able to degrade carbofuran phenol, fenoxycarb, and carbaryl, in addition to carbofuran. Ten of the 15 representative isolates had 1 to 8 plasmids. Among the 10 plasmid-containing isolates, plasmid-cured strains were obtained from 5 strains. The cured strains could not degrade carbofuran and other pesticides anymore, suggesting that the carbofuran degradative genes were on the plasmid DNAs in these strains. When analyzed with PCR amplification and dot-blot hybridization using the primers targeting for the previously reported carbofuran hydrolase gene (mcd), all of the isolates did not show any positive signals, suggesting that their carbofuran hydrolase genes had no significant sequence homology with the mcd gene.

  7. Activity of autoinducer two (AI-2) in bacteria isolated from surface ripened cheeses

    DEFF Research Database (Denmark)

    Gori, Klaus; Jespersen, Lene

    ). Corynebacterium casei, Microbacterium barkeri, Microbacterium gubbeenense and S. equorum subsp. linens (all isolated from the smear of surface ripened cheeses) using the AI-2 bioluminescence assay. This indicates that AI-2 signaling could take place between bacteria found in the smear of surface ripened cheeses....

  8. Activity of autoinducer two (AI-2) in bacteria isolated from surface ripened cheeses

    DEFF Research Database (Denmark)

    Gori, Klaus; Jespersen, Lene

    2007-01-01

    ). Corynebacterium casei, Microbacterium barkeri, Microbacterium gubbeenense and S. equorum subsp. linens (all isolated from the smear of surface ripened cheeses) using the AI-2 bioluminescence assay. This indicates that AI-2 signaling could take place between bacteria found in the smear of surface ripened cheeses....

  9. Identification of lactic acid bacteria isolated from Tarhana, a traditional Turkish fermented food

    DEFF Research Database (Denmark)

    Sengun, Ilkin Yucel; Nielsen, Dennis Sandris; Karapinar, Mehmet

    2009-01-01

    Tarhana is a traditional fermented product produced from a mixture of spontaneously fermented yogurt and wheat flour in Turkey. The aims of the present study were to enumerate and identify for the first time by molecular biology-based methods predominant lactic acid bacteria (LAB) isolated during...

  10. Identification of lactic acid bacteria isolated from Tarkhineh, a traditional Iranian fermented food

    Directory of Open Access Journals (Sweden)

    Faride Tabatabaee

    2013-01-01

    Full Text Available Tarkhineh is a traditional Iranian fermented product produced from a mixture of doogh and wheat grout. The purposes of the present study were identifying of lactic acid bacteria (LAB isolated and Changes of lactic acid bacteria flora throughout spontaneous fermentation of Tarkhineh. Results have shown a total of ten strains of LAB were isolated from Tarkhineh on the 3th day of fermentation using MRS agar plates and identified on the basis of morphological, biochemical, and physiological characteristics. The isolates were identified as L.nagelii(67%, L.bifermentans(21.3%, Leu.cermoris(6%, L.fructosus(1.45%, L.fermentum(1%, L.intestinalis(0.9%, L.agilis(0.9% L.acidipiscis(0.9% was reported, and approximately %1 of isolated samples remained unknown. The naturally occurring lactic acid bacteria load was found to vary between 1.97×105 and 4.3×105 cfu/gr. The main source of lactic acid bacteria was found to be the doogh.

  11. Cellulolytic and proteolytic ability of bacteria isolated from gastrointestinal tract and composting of a hippopotamus.

    Science.gov (United States)

    da Cruz Ramos, Geomárcia Feitosa; Ramos, Patricia Locosque; Passarini, Michel Rodrigo Zambrano; Vieira Silveira, Marghuel A; Okamoto, Débora Noma; de Oliveira, Lilian Caroline Gonçalves; Zezzo, Larissa Vieira; Marem, Alyne; Santos Rocha, Rafael Costa; da Cruz, João Batista; Juliano, Luiz; de Vasconcellos, Suzan Pantaroto

    2016-03-01

    The bioprospection for cellulase and protease producers is a promise strategy for the discovery of potential biocatalysts for use in hydrolysis of lignocellulosic materials as well as proteic residues. These enzymes can increment and turn viable the production of second generation ethanol from different and alternative sources. In this context, the goal of this study was the investigation of cellulolytic and proteolytic abilities of bacteria isolated from the gastrointestinal tract of a hippopotamus as well as from its composting process. It is important to highlight that hippopotamus gastrointestinal samples were a non-typical sources of efficient hydrolytic bacteria with potential for application in biotechnological industries, like biofuel production. Looking for this, a total of 159 bacteria were isolated, which were submitted to qualitative and quantitative enzymatic assays. Proteolytic analyzes were conducted through the evaluation of fluorescent probes. Qualitative assays for cellulolytic abilities revealed 70 positive hits. After quantitative analyzes, 44 % of these positive hits were selected, but five (5) strains showed cellulolytic activity up to 11,8 FPU/mL. Regarding to proteolytic activities, six (6) strains showed activity above 10 %, which overpassed results described in the literature. Molecular analyzes based on the identification of 16S rDNA, revealed that all the selected bacterial isolates were affiliated to Bacillus genus. In summary, these results strongly indicate that the isolated bacteria from a hippopotamus can be a potential source of interesting biocatalysts with cellulolytic and proteolytic activities, with relevance for industrial applications.

  12. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    Science.gov (United States)

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants.

  13. [Characteristics of bacteria isolated from body surface of German cockroaches caught in hospitals].

    Science.gov (United States)

    Czajka, Ewa; Pancer, Katarzyna; Kochman, Maria; Gliniewicz, Aleksandra; Sawicka, Bozena; Rabczenko, Daniel; Stypułkowska-Misiurewicz, Hanna

    2003-01-01

    The objective of the study was to identify bacterial flora from external parts of German cockroaches caught in hospitals. The susceptibility of the bacteria to the most important groups of antimicrobial agents was also examined. 80 strains of bacteria were isolated, among them 34 strains of Gram-positive cocci and 31 strains of Gram-negative rods. One of isolated strains of Citrobacter freundii and two strains of Serratia liquefaciens showed ESBL mechanism of resistance and extended level of AmpC--type beta-lactamases. Two Staphylococcus strains (S. epidermidis and S. equorum) were resistant to erythromycin and clindamycin (MLSB mechanism of resistance). Such strains, resistant to antibiotics and chemiotherapeutics may be reservoirs of resistance genes which can be transmitted into other bacteria. Presence of such pathogens on the body surface of German cockroaches, very mobile insects, might create conditions for easy dissemination of them in hospital environment.

  14. Isolation and characterization of gasoline-degrading bacteria from gas station leaking-contaminated soils

    Institute of Scientific and Technical Information of China (English)

    LU Si-jin; WANG Hong-qi; YAO Zhi-hua

    2006-01-01

    The effects of culture conditions in vitro and biosurfactant detection were studied on bacterial strains capable of degrading gasoline from contaminated soils near gas station. The main results were summarized as follows. Three bacteria (strains Q10, Q14 and Q18) that were considered as efficiently degrading strains were isolated and identified as Pseudomonas sp., Flavobacterium sp. and Rhodococcus sp., respectively. The optimal growth conditions of three bacteria including pH, temperature and the concentration of gasoline were similar. The reduction in surface tension was observed with all the three bacteria, indicating the production of toluene, ethylbenzene and xylene (BTEX) could easily be degraded by the three isolates. The consortium was more effective than the individual cultures in degrading added gasoline, diesel oil, and BTEX. These results indicate that these strains have great potential for in situ remediation of soils contaminated by gas station leaking.

  15. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production.

    Science.gov (United States)

    García-Hernández, Yaneisy; Pérez-Sánchez, Tania; Boucourt, Ramón; Balcázar, José L; Nicoli, Jacques R; Moreira-Silva, João; Rodríguez, Zoraya; Fuertes, Héctor; Nuñez, Odalys; Albelo, Nereyda; Halaihel, Nabil

    2016-10-01

    In livestock production, lactic acid bacteria (LAB) are the most common microorganisms used as probiotics. For such use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. In the present study, LAB were isolated from broiler excreta, where a fermentation process was used. Nine among sixteen isolates were identified by biochemical and molecular (sequencing of the 16S rRNA gene) methods as Lactobacillus crispatus (n=1), Lactobacillus pentosus (n=1), Weissella cibaria (n=1), Pediococcus pentosaceus (n=2) and Enterococcus hirae (n=4). Subsequently, these bacteria were characterized for their growth capabilities, lactic acid production, acidic pH and bile salts tolerance, cell surface hydrophobicity, antimicrobial susceptibility and antagonistic activity. Lactobacillus pentosus strain LB-31, which showed the best characteristics, was selected for further analysis. This strain was administered to broilers and showed the ability of modulating the immune response and producing beneficial effects on morpho-physiological, productive and health indicators of the animals.

  16. Isolation and Characteristics of New Heterotrophic Nitrifying Bacteria

    Institute of Scientific and Technical Information of China (English)

    SU Jun-feng; MA Fang; WANG Hong-yu; GUO Jing-bo; HOU Ning; LI Wei-guo; WEI Li

    2007-01-01

    The study presented the method for isolating the heterotrophic nitrifiers and the characterization of heterotrophic nitrification. When influent Ammonia nitrogen concentration was 42. 78-73. 62 mg/L. The average ammonia nitrogen removal rate was 81,32% from the bio-ceramics reactor. Sodium acetate and ammonium chloride were used as carbon and nitrogen source. The COD removal rates by microorganisms of strain wgy21 and wgy36 were 56.1% and 45.45%, respectively. The TN removal rates by microorganisms of strain wgy21 and wgy36 were 65.85%and 67. 98%, respectively. At the same time, the concentration of ammonium nitrogen was with the removal rates of 75.25% and 84.96%, and it also had the function of producing NO2-N. Sodium acetate and sodium nitrite were used as carbon and nitrogen source. Through the 12days of the aerobic culture, the COD femoral rates by microorganisms of strain wgy21 and wgy36 were 29.25%and 22.08%, respectively. NO2-N concentration decreased slowly. Comparison, similarity of wgy21 and many Acinetobacter sp. ≥99%, similarity of wgy36 and many Acinetobacter sp. ≥99%. Refer to routine physiological-biochemical characteristic determination, further evidences showed that wgy21 and wgy36 belong to Acinetobacter sp.,respectively.

  17. Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates.

    Science.gov (United States)

    Saïdi, Sabrine; Chebil, Samir; Gtari, Maher; Mhamdi, Ridha

    2013-06-01

    A collection of 104 isolates from root-nodules of Vicia faba was submitted to 16S rRNA PCR-RFLP typing. A representative sample was further submitted to sequence analysis of 16S rRNA. Isolates were assigned to 12 genera. All the nodulating isolates (45 %) were closely related to Rhizobium leguminosarum USDA2370(T) (99.34 %). The remaining isolates, including potential human pathogens, failed to nodulate their original host. They were checked for presence of symbiotic genes, P-solubilization, phytohormone and siderophore production, and then tested for their growth promoting abilities. Results indicated that 9 strains could induce significant increase (41-71 %) in shoot dry yield of faba bean. A Pseudomonas strain was further assessed in on-farm trial in combination with a selected rhizobial strain. This work indicated that nodule-associated bacteria could be a valuable pool for selection of effective plant growth promoting isolates. Nevertheless, the possible involvement of nodules in increasing risks related to pathogenic bacteria should not be neglected and needs to be investigated further.

  18. Microbial production of polyhydroxyalkanoates by bacteria isolated from oil wastes.

    Science.gov (United States)

    Wong, A L; Chua, H; Yu, P H

    2000-01-01

    A Gram-positive coccus-shaped bacterium capable of synthesizing higher relative molecular weight (M(r)) poly-hydroxybutyrate (PHB) was isolated from sesame oil and identified as Staphylococcus epidermidis (by Microbial ID, Inc., Newark, NJ). The experiment was conducted by shake flask fermentation culture using media containing fructose. Cell growth up to a dry mass of 2.5 g/L and PHB accumulation up to 15.02% of cell dry wt was observed. Apart from using single carbohydrate as a sole carbon source, various industrial food wastes including sesame oil, ice cream, malt, and soya wastes were investigated as nutrients for S. epidermidis to reduce the cost of the carbon source. As a result, we found that by using malt wastes as nutrient for cell growth, PHB accumulation of S. epidermidis was much better than using other wastes as nutrient source. The final dried cell mass and PHB production using malt wastes were 1.76 g/L and 6.93% polymer/cells (grams/gram), and 3.5 g/L and 3.31% polymer/cells (grams/gram) in shake flask culture and in fermentor culture, respectively. The bacterial polymer was characterized by 1H-nuclear magnetic resonance (NMR), 13C-NMR, Fourier transform infrared, and differential scanning calorimetry. The results show that with different industrial food wastes as carbon and energy sources, the same biopolymer (PHB) was obtained. However, the use of sesame oil as the carbon source resulted in the accumulation of PHB with a higher melting point than that produced from other food wastes as carbon sources by this organism under similar experimental conditions.

  19. Gram-positive bacteria of marine origin: a numerical taxonomic study on Mediterranean isolates.

    Science.gov (United States)

    Ortigosa, M; Garay, E; Pujalte, M J

    1997-12-01

    A numerical taxonomic study was performed on 65 Gram-positive wild strains of heterotrophic, aerobic, marine bacteria, and 9 reference strains. The isolates were obtained from oysters and seawater sampled monthly over one year, by direct plating on Marine Agar. The strains were characterized by 96 morphological, biochemical, physiological and nutritional tests. Clustering yielded 13 phena at 0.62 similarity level (Sl coefficient). Only one of the seven phena containing wild isolates could be identified (Bacillus marinus). A pronounced salt requirement was found in most isolates.

  20. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives

    Energy Technology Data Exchange (ETDEWEB)

    Ghabbour, N.; Lamzira, Z.; Thonart, P.; Cidalia, P.; Markaouid, M.; Asehraoua, A.

    2011-07-01

    A total of 177 strains of lactic acid bacteria (LAB) were isolated from early-stage Moroccan Picholine green olive fermentation, including Lactobacillus plantarum (44.63%), Lactobacillus pentosus (25.99%), Lactobacillus brevis (9.61%) and Pediococcus pentosaceus (19.77%). All the isolates were screened for their tolerance to olive leaf extract and oleuropein. Most of the isolates (85.3%) were found able to degrade oleuropein, when evaluated by either oleuropein or 5-Bromo-4-chloro-3-indolyl {beta}-D-glucuronide (X-Gluc) as substrates. The biodegradation capacity of the selected strains of each species was confirmed by HPLC analysis. (Author).

  1. Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria

    Science.gov (United States)

    Biosca, Elena G.; Flores, Raquel; Santander, Ricardo D.; Díez-Gil, José Luis; Barreno, Eva

    2016-01-01

    Lichens, self-supporting mutualistic associations between a fungal partner and one or more photosynthetic partners, also harbor non-photosynthetic bacteria. The diversity and contribution of these bacteria to the functioning of lichen symbiosis have recently begun to be studied, often by culture-independent techniques due to difficulties in their isolation and culture. However, culturing as yet unculturable lichenic bacteria is critical to unravel their potential functional roles in lichen symbiogenesis, to explore and exploit their biotechnological potential and for the description of new taxa. Our objective was to improve the recovery of lichen associated bacteria by developing novel isolation and culture approaches, initially using the lichen Pseudevernia furfuracea. We evaluated the effect of newly developed media enriched with novel lichen extracts, as well as the influence of thalli washing time and different disinfection and processing protocols of thalli. The developed methodology included: i) the use of lichen enriched media to mimic lichen nutrients, supplemented with the fungicide natamycin; ii) an extended washing of thalli to increase the recovery of ectolichenic bacteria, thus allowing the disinfection of thalli to be discarded, hence enhancing endolichenic bacteria recovery; and iii) the use of an antioxidant buffer to prevent or reduce oxidative stress during thalli disruption. The optimized methodology allowed significant increases in the number and diversity of culturable bacteria associated with P. furfuracea, and it was also successfully applied to the lichens Ramalina farinacea and Parmotrema pseudotinctorum. Furthermore, we provide, for the first time, data on the abundance of culturable ecto- and endolichenic bacteria that naturally colonize P. furfuracea, R. farinacea and P. pseudotinctorum, some of which were only able to grow on lichen enriched media. This innovative methodology is also applicable to other microorganisms inhabiting these

  2. Linear alkylbenzene sulfonate tolerance in bacteria isolated from sediment of tropical water bodies polluted with detergents.

    Science.gov (United States)

    Eniola, Kehinde I T; Olayemi, Albert B

    2008-12-01

    The discharge of untreated detergent-bearing waste introduces linear alklcylbenzene sulfonates (LAS) to the aquatic environment. The surfactant persists in some streams and rivers in Nigeria, some is adsorbed to suspended materials and end in the sediment of the receiving water bodies. In this study, bacteria isolated from sediments of some tropical detergent-effluent-polluted streams were tested for tolerance to LAS using the media dilution technique. LAS-tolerance was indicated by growth of the bacteria in the presence of the surfactant. The pH, concentrations of surfactant, population of heterotrophic bacteria and population of LAS-tolerant bacteria in the sediments were determined. A direct relationship (r = 0.9124) was found between the alkaline conditions (pH= 8.2-12.0) and high surfactant concentrations (45-132 mg/g) in the sediment. The sediments harboured a high population and a wide variety of bacteria; the populations of viable heterotrophic bacteria (VHB: 2.9 x 10(5) to 1.2 x 10(7) cfu/g) and LAS tolerant bacteria (LTB: 1.5 x 10(4) to 1.2 x 10(6) cfu/g) had a direct relationship (r = 0.9500). An inverse relationship resulted between each of them and the concentration of surfactant in the sediment, r(VHB/LAS) = -0.9303 and r(LTB/LAS) = -0.9143, respectively. Twelve bacteria species were isolated from the sediment: Alcaligenes odorans, Bacillus subtilis, Burkholderia cepacia, Citrobacter freundii, Citrobacter diversus, Escherichia coli, Micrococcus luteus, Micrococcus albus, Pseudomonas putida, Pseudomonas stutzeri, Staphylococcus aureus and Streptococcusfaecalis. Most of them were adapted to the surfactant with their maximum acceptable concentrations ranging between 0.03 and >1.0% (w/v). The sediments could serve as source of adapted organisms which can be used in bio-treatment of LAS-bearing waste.

  3. Vertical quantitative and dominant population distribution of the bacteria isolated from the Muztagata ice core

    Institute of Scientific and Technical Information of China (English)

    XIANG; Shurong; YAO; Tandong; AN; Lizhe; WU; Guangjian; XU

    2005-01-01

    Vertical distribution of the main bacteria isolated from the Muztagata ice core (about 22.4 m) was investigated by means of cultivation and 16S rRNA sequence analysis. The results showed that the amount of culturable bacteria fluctuated with ice core depth, and was more in dirty layer than in clean ice, which suggested the close corresponding relationship between high input of the bacteria deposited by wind and snowflow and dirty layer. Most of the bacteria were psychrophiles and psychrotolerants, including α- and γ-proteobacteria, Cryobacterium psychrophilum, CFB (Cytophaga-Flavobacterium-Bacteroides) group, high-G+C gram-positive bacteria (HGC). Acinetobacter sp. And HGC repeatly occurred in different ice depths, and their quantitative distribution was consistent with the change of the total amount of culturable bacteria with depth, which suggested the main bio-indicator; while Flavobacterium, Cryobacterium psychrophilum, and α-proteobacteria, also functioned as a secondary indicator of climatic and environmental changes. This study is the first report concerning continuous quantitative variation and pattern of the main culturable bacteria in ice core section.

  4. Isolation and characterization of beneficial bacteria associated with citrus roots in Florida.

    Science.gov (United States)

    Trivedi, Pankaj; Spann, Timothy; Wang, Nian

    2011-08-01

    Cultivable diversity of bacteria associated with citrus was investigated as part of a larger study to understand the roles of beneficial bacteria and utilize them to increase the productive capacity and sustainability of agro-ecosystems. Citrus roots from Huanglongbing (HLB) diseased symptomatic and asymptomatic citrus were used in this study. A total of 227 and 125 morphologically distinct colonies were isolated and characterized from HLB asymptomatic and symptomatic trees, respectively. We observed that the frequency of bacterial isolates possessing various plant beneficial properties was significantly higher in the asymptomatic samples. A total of 39 bacterial isolates showing a minimum of five beneficial traits related to mineral nutrition [phosphate (P) solubilization, siderophore production, nitrogen (N) fixation], development [indole acetic acid (IAA) synthesis], health [production of antibiotic and lytic enzymes (chitinase)], induction of systemic resistance [salicylic acid (SA) production], stress relief [production of 1-amino-cyclopropane-1-carboxylate deaminase] and production of quorum sensing [N-acyl homoserine lactones] signals were characterized. A bioassay using ethidium monoazide (EMA)-qPCR was developed to select bacteria antagonistic to Candidatus Liberibacter asiaticus. Using the modified EMA-qPCR assay, we found six bacterial isolates showing maximum similarity to Paenibacillus validus, Lysinibacillus fusiformis, Bacillus licheniformis, Pseudomonas putida, Microbacterium oleivorans, and Serratia plymutica could significantly reduce the population of viable Ca. L. asiaticus in HLB symptomatic leaf samples. In conclusion, we have isolated and characterized multiple beneficial bacterial strains from citrus roots which have the potential to enhance plant growth and suppress diseases.

  5. Isolation of culturable endophytic bacteria from Moso bamboo (Phyllostachys edulis and 16S rDNA diversity analysis

    Directory of Open Access Journals (Sweden)

    Yuan Zong-Sheng

    2015-01-01

    Full Text Available We analyzed culturable endophytic bacteria from Moso bamboo (Phyllostachys edulis using traditional bacterial isolation and culture methods and then studied the colony characteristics and diversity with a 16S rDNA sequence analysis. We isolated 82 endophytic bacteria strains belonging to 47 species in 26 genera from the root, rhizome, stem and leaves of Moso bamboo species from populations on Wuyi Mountain, and in the Jiangle and Changting regions. There were significant differences in the composition of the culturable endophytic bacteria isolated from the different areas and from different tissues. The dominant bacteria strains from the Wuyi Mountain samples were Arthrobacter, Staphylococcus, Bacillus and Enterobacter, while the dominant bacteria from the Jiangle samples were Bacillus, Staphylococcus and Curtobacterium, and the dominant bacteria in the Changting samples were Alcaligenes, Pseudomonas, Staphylococcus and Bacillus. Our results demonstrate the abundant diversity of endophytic bacteria in Moso bamboo.

  6. Phylogenetic analysis and biological characteristic tests of marine bacteria isolated from Southern Ocean (Indian sector) water

    Institute of Scientific and Technical Information of China (English)

    GUPTA Pratibha; BALAJI Raju; PARANI M; CHANDRA T S; SHUKLA P; KUMAR Anil; BANDOPADHYAY Rajib

    2015-01-01

    Fifty-seven bacteria were isolated from Southern Ocean (Indian sector) water samples which were collected from different latitude and longitude of the ocean. All the isolates were able to grow at 4°C, 20°C, 37°C and tolerable NaCl concentration up to 13.5% (w/v). 29 out of 57 isolates were identified using 16S rDNA amplification and the sequences were submitted to National Center for Biotechnology Information (NCBI). All the isolates were classified by using Ribosomal Database Project (RDP) and found that isolates belongs to Proteobacteria and Bacteriodes. The average G+C content was 56.4%. The isolates were screened for the presence of extracellular enzymes,viz. amylase, catalase, urease, esterase, lipase and protease. The disc diffusion method is used to screen antibiotic production by the isolates against four pathogenic bacteria,viz.Salmonella typhimurium (NCIM 2501), Staphylococcus aureus (NCIM 2122),Bacillus subtilis (NCIM 2193), andPseudomonas aeruginosa (NCIM 2036). Nine out of 29 were found to be antibiotic producer.

  7. Isolation of palm oil-utilising, polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique.

    Science.gov (United States)

    Alias, Zazali; Tan, Irene K P

    2005-07-01

    In early attempts to isolate palm oil-utilising bacteria from palm oil mill effluent (POME), diluted liquid samples of POME were spread on agar containing POME as primary nutrient. 45 purified colonies were screened for intracellular lipids by staining with Sudan Black B. Of these, 10 isolates were positively stained. The latter were grown in a nitrogen-limiting medium with palm olein (a triglyceride) or saponified palm olein (salts of fatty acids) as carbon source. None of the isolates grew in the palm olein medium but all grew well in the saponified palm olein medium. Of the latter however, only one isolate was positively stained with Nile Blue A, indicating the presence of PHA. This method did not successfully generate bacterial isolates which could metabolise palm olein to produce PHA. An enrichment technique was therefore developed whereby a selective medium was designed. The latter comprised minerals and palm olein (1% w/v) as sole carbon source to which POME (2.5% v/v) was added as the source of bacteria. The culture was incubated with shaking at 30 degrees C for 4 weeks. Out of seven isolates obtained from the selective medium, two isolates, FLP1 and FLP2, could utilise palm olein for growth and production of the homopolyester, poly(3-hydroxybutyrate). FLP1 is gram-negative and is identified (BIOLOG) to have 80% similarity to Burkholderia cepacia. When grown with propionate or valerate, FLP1 produced a copolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate).

  8. Isolation and characterization of pigmented bacteria showing antimicrobial activity from Malaysian marine environment

    Directory of Open Access Journals (Sweden)

    Ahmad, A.

    2013-01-01

    Full Text Available Aims: Natural products play a prominent role in the discovery of leads for the development of drugs in the treatment ofhuman diseases. Much of nature remains to be explored, especially marine and microbial environments.Methodology and results: Fifty-five pigmented marine bacteria were isolated from sponges, seawater, mangrovesediment, sea cucumber and mussel from different coastal area of Malaysia. The antimicrobial activities of thesebacteria were investigated by disk diffusion method against pathogenic bacteria. Out of 55 isolates, 18 isolates exhibitedantimicrobial activity, which based on morphological characterization, 53% of them were Gram positive and 47% wereGram negative. All active isolates were able to tolerate more than 4% NaCl in the nutrient agar medium that indicatedthey were autochthonous to marine environment and moderate salt tolerant in nature. Molecular identification of isolatesby the strong antimicrobial activities indicates that isolates WPRA3 (JX020764 and SM11-3j belong to genus Serratiaand isolate SDPM1 (JQ083392 belongs to genus Zooshikella.Conclusion, significance and impact of study: The results of present study revealed that the active isolates arepotential producer of antimicrobial secondary metabolites and might be utilized as drug candidate.

  9. Detection and isolation of plant-associated bacteria scavenging atmospheric molecular hydrogen.

    Science.gov (United States)

    Kanno, Manabu; Constant, Philippe; Tamaki, Hideyuki; Kamagata, Yoichi

    2016-09-01

    High-affinity hydrogen (H2 )-oxidizing bacteria possessing group 5 [NiFe]-hydrogenase genes are important contributors to atmospheric H2 uptake in soil environments. Although previous studies reported the occurrence of a significant H2 uptake activity in vegetation, there has been no report on the identification and diversity of the responsible microorganisms. Here, we show the existence of plant-associated bacteria with the ability to consume atmospheric H2 that may be a potential energy source required for their persistence in plants. Detection of the gene hhyL - encoding the large subunit of group 5 [NiFe]-hydrogenase - in plant tissues showed that plant-associated high-affinity H2 -oxidizing bacteria are widely distributed in herbaceous plants. Among a collection of 145 endophytic isolates, seven Streptomyces strains were shown to possess hhyL gene and exhibit high- or intermediate-affinity H2 uptake activity. Inoculation of Arabidopsis thaliana (thale cress) and Oryza sativa (rice) seedlings with selected isolates resulted in an internalization of the bacteria in plant tissues. H2 uptake activity per bacterial cells was comparable between plant and soil, demonstrating that both environments are favourable for the H2 uptake activity of streptomycetes. This study first demonstrated the occurrence of plant-associated high-affinity H2 -oxidizing bacteria and proposed their potential contribution as atmospheric H2 sink.

  10. Inactivation of koi-herpesvirus in water using bacteria isolated from carp intestines and carp habitats.

    Science.gov (United States)

    Yoshida, N; Sasaki, R-K; Kasai, H; Yoshimizu, M

    2013-12-01

    Since its first outbreak in Japan in 2003, koi-herpesvirus (KHV) remains a challenge to the carp Cyprinus carpio L. breeding industry. In this study, inactivation of KHV in water from carp habitats (carp habitat water) was investigated with the aim of developing a model for rapidly inactivating the pathogen in aquaculture effluent. Experiments with live fish showed that, in carp habitat water, KHV lost its infectivity within 3 days. Indications were that inactivation of KHV was caused by the antagonistic activity of bacteria (anti-KHV bacteria) in the water from carp habitats. Carp habitat water and the intestinal contents of carp were therefore screened for anti-KHV bacteria. Of 581 bacterial isolates, 23 showed anti-KHV activity. An effluent treatment model for the disinfection of KHV in aquaculture effluent water using anti-KHV bacteria was developed and evaluated. The model showed a decrease in cumulative mortality and in the number of KHV genome copies in kidney tissue of fish injected with treated effluent compared with a positive control. It is thought that anti-KHV bacteria isolated from the intestinal contents of carp and from carp habitat water can be used to control KHV outbreaks.

  11. Isolation and characterization of halophilic lactic acid bacteria isolated from "terasi" shrimp paste: a traditional fermented seafood product in Indonesia.

    Science.gov (United States)

    Kobayashi, Takeshi; Kajiwara, Michika; Wahyuni, Mita; Kitakado, Toshihide; Hamada-Sato, Naoko; Imada, Chiaki; Watanabe, Etsuo

    2003-10-01

    Lactic acid bacteria from "terasi" shrimp paste, a highly popular fermented seafood in Indonesia were isolated and characterized. Viable cell counts were 10(4) to 10(6) cfu/g on MRS medium. All the isolates were catalase-negative, gram-positive cocci and were able to grow at 15% NaCl. Numerical phenotypic analysis showed that the isolates clustered into one group. However, they could be classified into two types: the Tetragenococcus halophilus group and the T. muriaticus group as revealed by a restriction fragment length polymorphism (RFLP) analysis and sequencing of the 16S rRNA gene. This study is the first to show that both species of Tetragenococcus are distributed in Indonesian fermented foods.

  12. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria.

    Science.gov (United States)

    Simões, Lúcia Chaves; Simões, Manuel; Vieira, Maria João

    2010-10-01

    This study was performed in order to characterize the relationship between adhesion and biofilm formation abilities of drinking water-isolated bacteria (Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp.). Adhesion was assessed by two distinct methods: thermodynamic prediction of adhesion potential by quantifying hydrophobicity and the free energy of adhesion; and by microtiter plate assays. Biofilms were developed in microtiter plates for 24, 48 and 72 h. Polystyrene (PS) was used as adhesion substratum. The tested bacteria had negative surface charge and were hydrophilic. PS had negative surface charge and was hydrophobic. The free energy of adhesion between the bacteria and PS was > 0 mJ/m(2) (thermodynamic unfavorable adhesion). The thermodynamic approach was inappropriate for modelling adhesion of the tested drinking water bacteria, underestimating adhesion to PS. Only three (B. cepacia, Sph. capsulata and Staphylococcus sp.) of the six bacteria were non-adherent to PS. A. calcoaceticus, Methylobacterium sp. and M. mucogenicum were weakly adherent. This adhesion ability was correlated with the biofilm formation ability when comparing with the results of 24 h aged biofilms. Methylobacterium sp. and M. mucogenicum formed large biofilm amounts, regardless the biofilm age. Given time, all the bacteria formed biofilms; even those non-adherents produced large amounts of matured (72 h aged) biofilms. The overall results indicate that initial adhesion did not predict the ability of the tested drinking water-isolated bacteria to form a mature biofilm, suggesting that other events such as phenotypic and genetic switching during biofilm development and the production of extracellular polymeric substances (EPS), may play a significant role on biofilm formation and differentiation. This understanding of the relationship between adhesion and biofilm formation is important for

  13. Isolation and screening of native polyhydroxyalkanoate producing bacteria from oil contaminated soils of Abadan refinery

    Directory of Open Access Journals (Sweden)

    Hossein MOtamedi

    2015-02-01

    Full Text Available   Introduction : Environmental contaminations due to petrochemical plastic usage have forced researchers to search new biological methods for biodegradable polymer production. The aim of this study was to find native PHA producing bacteria from Abadan oil refinery in order to be used in biodegradable polymer production studies.   Materials and method s : For this purpose soil samples were harvested from oil sludge contaminated soil of Abadan refinery. After primary enrichment, screening of PHA producing bacteria was done by PHA- Detection agar and was confirmed by Sudan black and Nile Blue A staining methods. These isolates were identified based on phenotypic methods and sequencing of 16s rRNA. Polymer extraction was performed and optimized using different concentrations of HClO and SDS.   Results : As a result of this study 26 different bacterial isolates were obtained from which 17 isolates were PHA producer with different potentiality. Based on the polymer accumulation 4 isolates were selected for further studies. The efficiency of PHA production in these isolates was 75.53±5.08, 82±19.05, 81.06±6.92 and 79.86±11.84%. Based on sequence analysis in NCBI database, these isolates were identified as Bacillus cereus.   Discussion and conclusion : With respect to the results of this study it can be suggested that oil contaminated soils due to high C/N and C/P ratios and also different carbohydrate contents are suitable candidates for PHA producer bacteria isolation. So the native strains in such habitats with high carbon content can be optimized for industrial polymer production.

  14. SPECTRUM OF BACTERIA ISOLATED FROM BRONCHOALVEOLAR LAVAGE IN A TERTIARY CARE CENTRE

    Directory of Open Access Journals (Sweden)

    Sowmya

    2014-07-01

    Full Text Available BACKGROUND/OBJECTIVES: Pneumonia is an inflammatory condition of the lung caused by bacteria, viruses, fungi and parasites. The common bacterial pathogens include Pseudomonas spp., Klebsiella pneumoniae, S. aureus, Acinetobacter spp., Streptococcus pneumoniae. Antibiotic resistance is common among these bacterial isolates. This study was taken up to identify the spectrum of bacteria isolated from bronchoalveolar (BAL samples of patients suffering from lower respiratory tract infections and to determine their antibiogram. MATERIALS and METHODS: The retrospective study was carried out in a tertiary care centre over a period of one year (March 2013-February 2014.Patients above 18 years with clinical suspicion of pneumonia were included in this study. The samples with growth >104 CFU/ml of bacteria were identified and their susceptibility pattern to various antibiotics was performed. RESULTS: Out of 307 BAL samples, 110 were culture positive. The common bacterial pathogens isolated were Pseudomonas spp. (21.8%, Acinetobacter spp. (15.5%, Klebsiella spp.(14.5%, Enterococcus spp.(10.9% and S.aureus (12.7%. Carbapenem resistance was seen in 31.6% of Acinetobacter spp, 22% Klebsiella spp. and 14% in Pseudomonas spp. Methicillin resistance was detected in 21.4% of S.aureus isolates. All strains of S.aureus were sensitive to vancomycin and teicoplanin. All isolates of Enterococci were sensitive to vancomycin, teicoplanin and high level aminoglycosides. CONCLUSION: Pseudomonas and Acinetobacter spp. were the most common bacterial pathogens isolated from BAL. Carbapenem resistance is on the rise among these gram negative bacterial isolates.

  15. Bioprospection and selection of bacteria isolated from environments contaminated with petrochemical residues for application in bioremediation.

    Science.gov (United States)

    Cerqueira, Vanessa S; Hollenbach, Emanuel B; Maboni, Franciele; Camargo, Flávio A O; Peralba, Maria do Carmo R; Bento, Fátima M

    2012-03-01

    The use of microorganisms with hydrocarbon degrading capability and biosurfactant producers have emerged as an alternative for sustainable treatment of environmental passives. In this study 45 bacteria were isolated from samples contaminated with petrochemical residues, from which 21 were obtained from Landfarming soil contaminated with oily sludge, 11 were obtained from petrochemical industry effluents and 13 were originated directly from oily sludge. The metabolization capability of different carbon sources, growth capacity and tolerance, biosurfactant production and enzymes detection were determined. A preliminary selection carried out through the analysis of capability for degrading hydrocarbons showed that 22% of the isolates were able to degrade all carbon sources employed. On the other hand, in 36% of the isolates, the degradation of the oily sludge started within 18-48 h. Those isolates were considered as the most efficient ones. Twenty isolates, identified based on partial sequencing of the 16S rRNA gene, were pre-selected. These isolates showed ability for growing in a medium containing 1% of oily sludge as the sole carbon source, tolerance in a medium containing up to 30% of oily sludge, ability for biosurfactant production, and expression of enzymes involved in degradation of aliphatic and aromatic compounds. Five bacteria, identified as Stenotrophomonas acidaminiphila BB5, Bacillus megaterium BB6, Bacillus cibi, Pseudomonas aeruginosa, and Bacillus cereus BS20 were shown to be promising for use as inoculum in bioremediation processes (bioaugmentation) of areas contaminated with petrochemical residues since they can use oily sludge as the sole carbon source and produce biosurfactants.

  16. Isolation of Biosurfactant–Producing Bacteria with Antimicrobial Activity against Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Siripun Sarin

    2011-01-01

    Full Text Available The aims of this research were to study biosurfactant producing bacteria isolated from soil and to determine their property and efficiency as biosurfactants in order to inhibit bacterial pathogens. The result showed that there were 8 bacterial isolates out of 136 isolates of the total biosurfactant producing bacteria screened that exhibited the diameter of clear zone more than 1.5 cm. in the oil spreading test. The highest potential of emulsifying activity (%EA24 of 54.4 and the maximum additive concentration, (%MAC of 24.2 was obtained from the fermentation broth of the G7 isolate which the G7 isolate was later identified as Pseudomonas fluorescens. Escherichia coli, Staphylococcus aureus and Psuedomonas aeruginosa were the tested bacterial pathogens that were most sensitive to the acid precipitated biosurfactant obtained from P. fluorescens G7 with the lowest minimum inhibitory concentration (MIC of 41.6 mg/ml and minimum bactericidal concentration (MBC of 41.6 mg/ml compared with the acid precipitated bisurfactants of the other isolates used in the antimicrobial activity test. The type of the separated crude biosurfactant produced by P. fluorescens G7 analyzed later by using the rhamose test, TLC and FT-IR techniques was rhamnolipid.

  17. INHIBITION OF PATHOGENS BY SPOROGENIC BACTERIA ISOLATED FROM HONEY OF Melipona sp. (APIDAE: APINAE: MELIPONINI

    Directory of Open Access Journals (Sweden)

    KELY DAMIANA NOVAES DA SILVA

    2016-01-01

    Full Text Available The aim of this study was to isolate sporogenic bacteria from the honey of stingless bees Melipona sp., in dry forest, and to evaluate their antagonistic potential for medicinal employment purposes and animal production. The honey samples were collected in Serra Talhada - PE, where honey was taken from four different hives (in triplicate, totaling 12 samples. The samples were diluted and subjected to 80 ºC for 20 minutes to eliminate vegetative cells. The dilutions were plated onto nutrient agar and incubated at 30 ºC for 72 hours. Then the colony forming units (CFU were quantified. The samples were also plated onto malt agar and Sabouraud agar, and incubated at 30 ºC for 14 days for the growth of yeast and molds. Total and fecal coliforms were quantified by the most probable number method (MPN. Seven isolates (I of sporogenic bacteria ( Bacillus were obtained, however only four showed probiotic potential. Isolate I - 5 showed the greatest probiotic potential and inhibited the growth of Escherichia coli , Klebsiella sp., Pseudomonas aeruginosa, Salmonella sp., and Staphylococcus aureus . The growth of the Sarcina sp. was not inhibited by any isolate. No yeast, molds or coliforms were found. The Melipona sp. honey is a source of spore - forming bacteria and is antagonistic to microorganisms that contaminate honey. It has good microbiological quality.

  18. Characterization of culturable bacteria isolated from the cold-water coral Lophelia pertusa

    Science.gov (United States)

    Galkiewicz, Julia P.; Pratte, Zoe A.; Gray, Michael A.; Kellogg, Christina A.

    2011-01-01

    Microorganisms associated with corals are hypothesized to contribute to the function of the host animal by cycling nutrients, breaking down carbon sources, fixing nitrogen, and producing antibiotics. This is the first study to culture and characterize bacteria from Lophelia pertusa, a cold-water coral found in the deep sea, in an effort to understand the roles that the microorganisms play in the coral microbial community. Two sites in the northern Gulf of Mexico were sampled over 2 years. Bacteria were cultured from coral tissue, skeleton, and mucus, identified by 16S rRNA genes, and subjected to biochemical testing. Most isolates were members of the Gammaproteobacteria, although there was one isolate each from the Betaproteobacteria and Actinobacteria. Phylogenetic results showed that both sampling sites shared closely related isolates (e.g. Pseudoalteromonas spp.), indicating possible temporally and geographically stable bacterial-coral associations. The Kirby-Bauer antibiotic susceptibility test was used to separate bacteria to the strain level, with the results showing that isolates that were phylogenetically tightly grouped had varying responses to antibiotics. These results support the conclusion that phylogenetic placement cannot predict strain-level differences and further highlight the need for culture-based experiments to supplement culture-independent studies.

  19. Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods.

    Science.gov (United States)

    Grosu-Tudor, Silvia-Simona; Stancu, Mihaela-Marilena; Pelinescu, Diana; Zamfir, Medana

    2014-09-01

    Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.

  20. Screening and Isolation of Salt Tolerant Bacteria from Tidal Floodplain Soils of Bangladesh

    Directory of Open Access Journals (Sweden)

    D. Mondal

    2016-06-01

    Full Text Available Use of eco-friendly area specific salt tolerant bio-inoculants is better alternatives to chemical fertilizer for sustainable agriculture in the coastal saline soils. The study was conducted to isolate and characterize salinity tolerant bacteria like Rhizobium sp. which can be used as biofertilizer. Soil samples were collected from two salinity affected districts namely Khulna and Patuakhali situated in the southern part of Bangladesh. Nine colonies were isolated from pore-plate containing yeast extract mannitol agar (YEMA medium. All the isolates were rod-shaped, motile and gram negative. Biochemical tests indicated that they were obligate aerobes, catalase and starch hydrolysis positive. They were fast and slow growers on the YEMA medium having different pH levels. The obtained results exhibited that all the isolates tolerated at higher salt concentration (up to 4% NaCl. Among the isolates examined in this study, the KNR4 isolate was found maximum absorbance (1.265 indicating most tolerant to salinity whereas, KNR5 isolate was recorded the lowest absorbance (0.8449 resulting most sensitive. Other isolates were moderate tolerance to salinity. Therefore, KNR4 isolate may become a promising source for salinity tolerant Rhizobiumsp in Bangladesh.

  1. Identification and characterisation of oil sludge degrading bacteria isolated from compost

    Directory of Open Access Journals (Sweden)

    Ubani Onyedikachi

    2016-06-01

    Full Text Available Compounds present in oil sludge such as polycyclic aromatic hydrocarbons (PAHs are known to be cytotoxic, mutagenic and potentially carcinogenic. Microorganisms including bacteria and fungi have been reported to degrade oil sludge components to innocuous compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading capabilities from compost prepared from oil sludge and animal manures. These bacteria were isolated on a mineral base medium and mineral salt agar plates. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR of the 16S rRNA gene with specific primers (universal forward 16S-P1 PCR and reverse 16S-P2 PCR. The amplicons were sequenced and sequences were compared with the known nucleotides from the GenBank. The phylogenetic analyses of the isolates showed that they belong to 3 different clades; Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to the genera Bacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus. The results showed that Bacillus species were predominant in all composts. Based on the results of the degradation of the PAHs in the composts and results of previous studies on bacterial degradation of hydrocarbons in oil, the characteristics of these bacterial isolates suggests that they may be responsible for the breakdown of PAHs of different molecular weights in the composts. Thus, they may be potentially useful for bioremediation of oil sludge during compost bioremediation.

  2. ISOLATION AND LIGNOCELLULOLYTIC ACTIVITIES OF FIBER-DIGESTING BACTERIA FROM DIGESTIVE TRACT OF TERMITE (Cryptothermes sp.

    Directory of Open Access Journals (Sweden)

    B.I.M. Tampoebolon

    2015-09-01

    Full Text Available The objectives of this study were to obtain the fiber-digesting bacteria isolates from termitedigestive tract and to determine the optimum conditions of growth and production of cellulase, xylanaseand ligninase enzyme of isolate. The first study was conducted to isolate and select the fiber-digestingbacteria from the digestive tract of termites based on the highest activity of cellulolytic (S, xylanolytic(X and lignolytic (L. The second study was optimation of the growth conditions of bacteria and theenzyme production due to effect of rice straw substrate and nitrogen. The material used were dry woodtermites, rice straw, and culture medium. The design used was a completely randomized factorial design,in which the first factor was rice straw substrate (1, 2, and 3% W/V, while the second factor wasnitrogen (0.1, 0.2 and 0.3% W/V. Variables measured were cellulase, xylanase and ligninase activities.Results of the first sudy showed that the isolates obtained consisted of 3 types, those were cellulolyticbacteria (S1, S2, and S3, 3 types of bacteria xylanolytic (X1, X2, and X3 and 3 types of bacteria lignolytic(L1, L2, and L3. Meanwhile, results of the second study showed that isolates of S2, X3, and L1 had thehighest activity, those were 1.894 U/mL, 1.722 U/mL and 0.314 U/mL, respectively. In conclusion, the addition of 1% level of rice straw substrate and 0.3% of nitrogen showed the highest enzyme activity oncellulase, xylanase and ligninase.

  3. Phytate degrading activities of lactic acid bacteria isolated from traditional fermented food

    Science.gov (United States)

    Damayanti, Ema; Ratisiwi, Febiyani Ndaru; Istiqomah, Lusty; Sembiring, Langkah; Febrisiantosa, Andi

    2017-03-01

    The objective of this study was to determine the potential of LAB with phytate degrading activity from fermented traditional food grain-based and legume-based. Lactic acid bacteria were isolated from different sources of traditional fermented food from Gunungkidul Yogyakarta Indonesia such as gembus tempeh (tofu waste), soybean tempeh, lamtoro tempeh (Leucaena bean) and kara tempeh. Isolation of LAB was performed using Total Plate Count (TPC) on de Man Rogosa Sharpe Agar (MRSA) medium supplemented with CaCO3. They were screened for their ability to degrade myo-inositol hexaphosphate or IP6 by using qualitative streak platemethod with modified de Man Rogosa-MorpholinoPropanesulfonic Acid Sharpe (MRS-MOPS) medium contained sodium salt of phytic acid as substrate and cobalt chloride staining (plate assay) method. The selected isolates were further assayed for phytase activities using quantitative method with spectrophotometer and the two selected isolates growth were optimized. Furthermore, thhe isolates that shown the highest phytase activity was characterized and identified using API 50 CH kitand 16S rRNA gene sequencing. The results showed that there were 18 LAB isolates obtained from samplesand 13 isolates were able to degrade sodium phytate based on qualitative screening. According to quantitative assay, the highest phytate degrading activities were found in TG-2(23.562 U/mL) and TG-1 (19.641 U/mL) isolated from gembus tempeh. The phytate activity of TG-2 was optimum at 37 °C with agitation, while the phytate activity of TG-1 was optimum at 45 °C without agitation. Characterization and identification of TG-2 isolate with the highest phytate degrading activity using API 50 CH and 16S rRNA showed that TG-2had homology with Lactobacillus fermentum. It could be concluded that LAB from from fermented traditional food grain-based and legume-based produced the extracellular phytase. Keywords: lactic acid bacteria, tempeh, phytatedegrading activity

  4. Isolation and Screening of Rhizosphere Bacteria from Grasses in East Kavango Region of Namibia for Plant Growth Promoting Characteristics.

    Science.gov (United States)

    Haiyambo, D H; Chimwamurombe, P M; Reinhold-Hurek, B

    2015-11-01

    A diverse group of soil bacteria known as plant growth promoting rhizobacteria (PGPR) is able to inhabit the area close to plant roots and exert beneficial effects on plant growth. Beneficial interactions between rhizospheric bacteria and plants provide prospects for isolating culturable PGPR that can be used as bio-fertilizers for sustainable crop production in communities that cannot easily afford chemical fertilizers. This study was conducted with the aim of isolating rhizospheric bacteria from grasses along the Kavango River and screening the bacterial isolates for plant growth promoting characteristics. The bacteria were isolated from rhizospheres of Phragmites australis, Sporobolus sp., Vetiveria nigritana, Pennisetum glaucum and Sorghum bicolor. The isolates were screened for inorganic phosphate solubilization, siderophore production and indole-3-acetic acid (IAA) production. The nitrogen-fixing capability of the bacteria was determined by screening for the presence of the nifH gene. Up to 21 isolates were obtained from P. australis, Sporobolus sp., S. bicolor, P. glaucum and V. nigritana. The genera Bacillus, Enterobacter, Kocuria, Pseudomonas and Stenotrophomonas, identified via 16S rDNA were represented in the 13 PGPR strains isolated. The isolates exhibited more than one plant growth promoting trait and they were profiled as follows: three phosphate solubilizers, four siderophore producers, eight IAA producing isolates and five nitrogen-fixers. These bacteria can be used to develop bio-fertilizer inoculants for improved soil fertility management and sustainable production of local cereals.

  5. Molecular identification of the isolated diesel degrading bacteria and optimization studies

    Directory of Open Access Journals (Sweden)

    Janani Prathiba G

    2014-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Diesel, a refinery product of crude oil constitutes a major source of pollution in our environment. Poor solubility in water and the higher content in sediments make diesel a potential water pollutant. Bioremediation of contaminated aquatic and soil environments has arisen as an effective technology, with a range of advantages compared to more traditional methods. A total of 9 bacteria were isolated from three petroleum contaminated soil samples and isolate 3 of sample 1 showed maximum degradation potential of diesel in both primary and secondary screening tests. Hence, it was subjected for 16srDNA study and sequence alignment by BLASTN identified the isolate as Pseudomonas aeruginosa strain KEB24. The reaction conditions for efficient diesel degradation by the isolate were optimized.

  6. Evaluation of the probiotic characteristics of newly isolated lactic acid bacteria.

    Science.gov (United States)

    Aswathy, Ravindran Girija; Ismail, Bindhumol; John, Rojan Pappy; Nampoothiri, Kesavan Madhavan

    2008-12-01

    Lactic acid bacteria were isolated from fermented vegetables, sour dough, milk products, sheep and human excreta. The newly isolated cultures were evaluated for a number of probiotic characteristics like bile salt resistance, salt tolerance in general, survival in low pH, hydrophobicity of the cell surface, resistance to low phenol concentration, antimicrobial activity and susceptibility pattern against vancomycin and erythromycin. The selected cultures were further screened for their ability to produce the nutraceticals such as folic acid and exopolysaccharide (EPS). Two potent isolates, CB2 (from cabbage) and SD2 (from sour dough) were found to produce both extracellular and intracellular folate. One of the isolates from yogurt (MC-1) and the one from whey (W3) produced significant amount of EPS with a maximum production of 8.79 +/- 0.05 g/l by MC-1.

  7. Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil

    Science.gov (United States)

    Zhang, Qiuzhuo; Wang, Duanchao; Li, Mengmeng; Xiang, Wei-Ning; Achal, Varenyam

    2014-03-01

    Two indigenous bacteria of petroleum contaminated soil were characterized to utilize diesel fuel as the sole carbon and energy sources in this work. 16S rRNA gene sequence analysis identified these bacteria as Sphingomonas sp. and Acinetobacter junii. The ability to degrade diesel fuel has been demonstrated for the first time by these isolates. The results of IR analyses showed that Sphingomonas sp. VA1 and A. junii VA2 degraded up to 82.6% and 75.8% of applied diesel over 15 days, respectively. In addition, Sphingomonas sp. VA1 possessed the higher cellular hydrophobicities of 94% for diesel compared to 81% by A. junii VA2. The isolates Sphingomonas sp. VA1 and A. junii VA2 exhibited 24% and 18%, respectively emulsification activity. This study reports two new diesel degrading bacterial species, which can be effectively used for bioremediation of petroleum contaminated sites.

  8. [Improvement of the method of isolation of hydrogen-forming bacteria of Clostridium genus].

    Science.gov (United States)

    Pritula, I R; Tashirev, A B

    2012-01-01

    The method of isolation and quantitative account of pure cultures of obligate anaerobic hydrogen-forming clostridia is improved. A strain of hydrogen-forming bacteria Clostridium sp. BY-11 has been isolated from the association of sporulating bacteria. Quantitative indices of hydrogen synthesis and starch fermentation have been determined when growing the strain in the liquid medium. Concentration of H2 in the gas phase was 49%, microorganisms synthesized 128 1 of H2 from 1 kg of starch, the mass of starch decreased 7 times for 6 days. The mentioned indices for hydrogen synthesis and starch fermentation and for other organic model substrates in the future are the basis for creating the industrial biotechnology for production of hydrogen as the energy carrier under disposal of ecologically dangerous solid food waste.

  9. Isolation and Genetic Analysis of Multidrug Resistant Bacteria from Diabetic Foot Ulcers.

    Science.gov (United States)

    Shahi, Shailesh K; Kumar, Ashok

    2015-01-01

    Severe diabetic foot ulcers (DFUs) patients visiting Sir Sunderlal Hospital, Banaras Hindu University, Varanasi, were selected for this study. Bacteria were isolated from swab and deep tissue of 42 patients, for examining their prevalence and antibiotic sensitivity. DFUs of majority of the patients were found infected with Enterococcus spp. (47.61%), Escherichia coli (35.71%), Staphylococcus spp. (33.33%), Alcaligenes spp. (30.95%), Pseudomonas spp. (30.95%), and Stenotrophomonas spp. (30.95%). Antibiotic susceptibility assay of 142 bacteria with 16 antibiotics belonging to eight classes showed the presence of 38 (26.76%) isolates with multidrug resistance (MDR) phenotypes. MDR character appeared to be governed by integrons as class 1 integrons were detected in 26 (68.42%) isolates. Altogether six different arrays of genes (aadA1, aadB, aadAV, dhfrV, dhfrXII, and dhfrXVII) were found within class 1 integron. Gene cassette dhfrAXVII-aadAV (1.6 kb) was present in 12 (3 Gram positive and 9 Gram negative) isolates and was conserved across all the isolates as evident from RFLP analysis. In addition to the presence of class 1 integron, six β-lactamase resistance encoding genes namely bla TEM, bla SHV, bla OXA, bla CTX-M-gp1, bla CTX-M-gp2, and bla CTX-M-gp9 and two methicillin resistance genes namely mecA and femA and vancomycin resistance encoding genes (vanA and vanB) were identified in different isolates. Majority of the MDR isolates were positive for bla TEM (89.47%), bla OXA (52.63%), and bla CTX-M-gp1 (34.21%). To our knowledge, this is the first report of molecular characterization of antibiotic resistance in bacteria isolated from DFUs from North India. In conclusion, findings of this study suggest that class-1 integrons and β-lactamase genes contributed to the MDR in above bacteria.

  10. Bacteriocin-Producing Lactic Acid Bacteria Isolated from Traditional Fermented Food

    Science.gov (United States)

    Kormin, Salasiah; Rusul, Gulam; Radu, Son; Ling, Foo Hooi

    2001-01-01

    Lactic Acid Bacteria (LAB) isolated from several traditional fermented foods such as “tempeh”, “tempoyak” and “tapai” were screened for the production of bacteriocin. One strain isolated from “tempeh” gives an inhibitory activity against several LAB. The strain was later identified as Lactobacillus plantarum BS2. Study shows that the inhibitory activity was not caused by hydrogen peroxide, organic acids or bacteriophage. The bacteriocin production was maximum after 10 hours of incubation with an activity of 200 AU/ml. The bacteriocin was found to be sensitive towards trypsin, α-chymotrypsin, β-chymotrypsin, α-amylase and lysozyme. PMID:22973159

  11. Isolation and Quantification of Lactic Acid Bacteria from Traditional Fermented Products in Benin

    OpenAIRE

    Tchekessi, C.K.C.; Bokossa, I.Y; Azokpota, P.; Agbangla, C.; Daube, Georges; Scippo, Marie-Louise; Korsak Koulagenko, Nicolas; Angelov, A.

    2014-01-01

    In Africa, fermented food products are particularly used as weaning foods for young children, pregnant women and the seniors. In Benin, most of these cereals-based foods are manufactured and sold around the streets. These are ablo, dèguè, akpan, abotin, gowé etc ... This study focused on the isolation and enumeration of bacteria and yeast from twenty six (26) samples of traditional African fermented foods. Decimal dilution method allowed us to isolate a total of 42 different st...

  12. Isolation and genetic analysis of multidrug resistant bacteria from diabetic foot ulcers

    Directory of Open Access Journals (Sweden)

    Shailesh Kumar Shahi

    2016-01-01

    Full Text Available Severe diabetic foot ulcers (DFUs patients visiting Sir Sunderlal Hospital, Banaras Hindu University, Varanasi, were selected for this study. Bacteria were isolated from swab and deep tissue of 42 patients, for examining their prevalence and antibiotic sensitivity. DFUs of majority of the patients were found infected with Enterococcus spp. (47.61%, Escherichia coli (35.71%, Staphylococcus spp. (33.33%, Alcaligenes spp. (30.95%, Pseudomonas spp. (30.95% and Stenotrophomonas spp. (30.95%. Antibiotic susceptibility assay of 142 bacteria with 16 antibiotics belonging to eight classes showed the presence of 38 (26.76% isolates with multidrug resistance (MDR phenotypes. MDR character appeared to be governed by integrons as class 1 integrons were detected in 26 (68.42% isolates. Altogether six different arrays of genes (aadA1, aadB, aadAV, dhfrV, dhfrXII and dhfrXVII were found within class 1 integron. Gene cassette dhfrAXVII-aadAV (1.6 kb was present in 12 (3 Gram positive and 9 Gram negative isolates and was conserved across all the isolates as evident from RFLP analysis. In addition to the presence of class 1 integron, six β-lactamase resistance encoding genes namely blaTEM, blaSHV, blaOXA, blaCTX-M-gp1, blaCTX-M-gp2 and blaCTX-M-gp9 and two methicillin resistance genes namely mecA and femA and vancomycin resistance encoding genes (vanA and vanB were identified in different isolates. Majority of the MDR isolates were positive for blaTEM (89.47%, blaOXA (52.63% and blaCTX-M-gp1 (34.21%. To our knowledge, this is the first report of molecular characterization of antibiotic resistance in bacteria isolated from DFUs from North India. In conclusion, findings of this study suggest that class-1 integrons and β-lactamase genes contributed to the MDR in above bacteria.

  13. Isolation and identification of acetogenic bacteria obtained from deer rumen and their potential for methanogenesis inhibitor

    Directory of Open Access Journals (Sweden)

    Amlius Thalib

    2008-10-01

    Full Text Available Methanogenesis can be inhibited by various chemicals through different mechanism reaktion. The use of acetogenic bacteria as H2 sink is assumed to be a promising approach. Isolation and identification of acetogenic bacteria obtained from deer rumen had been conducted. Two types of media used for isolation were hydrogen-carbondioxide utilizing acetogens and carbonmonoxide utilizing acetogens. Identification of species of acetogens isolates was based on descriptions of morphology, Gram type, motility, bioreaction results, and oksygen requirement. The compositions of methane and volatile fatty acids (VFA were determined on minimal media or added with sheep rumen liquid innoculated with pure isolates. The identification results showed that the isolate cultured on media of hydrogen-carbondioxide utilizing acetogens was Acetoanaerobium noterae and the ones cultured on media of carbonmonoxide utilizing acetogens was Acetobacterium woodii. Inoculumn of A. noterae and A. woodii could decreased the composition of methane resulted from substrate fermented by fresh rumen liquid of sheep (CRDF, that is culture of A. noterae added FPM and defaunator decreased methane production by 28.8% (P CH3COOH + 2H2O by which reduction of CO2 with H2 producing CH4 can be inhibited or decreased. Their function as methanogenesis inhibitor would be more significant when they are combined with microbial growth factors and defaunator.

  14. Identification of Moraxella-like bacteria isolated from caprine and ovine nasal flora.

    Science.gov (United States)

    Kodjo, A; Moussa, A; Borges, E; Richard, Y

    1993-03-01

    Twenty four Moraxella related bacterias were isolated from healthy caprine and ovine nasal swabs and were investigated by classic biochemical tests and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of whole-cell proteins in comparison with 9 reference strains. Proteolytic and haemolytic strains were investigated by electron microscopy. The biochemical results clustered field isolates in four groups corresponding to Branhamella and Moraxella species. Proteolytic, haemolytic and fimbriated field isolates showed the same morphological structure and biochemical features as Moraxella bovis. SDS-PAGE results indicated that DICE coefficient between a field isolate and the corresponding reference strain can be as 62.5%; 41.7% and 36% respectively for the groups 1, 3 and 4. The group 2 showed a similarity percentage over 75% with the reference strain Moraxella nonliquefaciens. This results indicated that a non proteolytic but haemolytic bacteria, closely related to Moraxella nonliquefaciens was commonly isolated from small ruminants nasal flora. These animals can also be hosts of a subspecies of Moraxella bovis.

  15. Molecular characterization of lactic acid bacteria isolated from industrially fermented Greek table olives

    OpenAIRE

    Doulgeraki, Agapi; Pramateftaki, Paraskevi; Argyri, Anthoula; Nychas, George John; Tassou, Chrysoula; Panagou, Efstathios

    2012-01-01

    A total of 145 lactic acid bacteria (LAB) isolates have been recovered from fermented table olives and brine and characterized at strain level with molecular tools. Pulsed-Field Gel Electrophoresis (PFGE) of ApaI macrorestriction fragments was applied for strain differentiation. Species differentiation was based either on Denaturing Gradient Gel Electrophoresis (PCR-DGGE) (black olives) or on restriction analysis of the amplified 16S rRNA gene (PCR-ARDRA) (brine and green olives). Species ide...

  16. Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Davey, R.A.; Lappin-Scott, H. [Univ. of Exeter (United Kingdom)

    1995-12-31

    During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducing the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.

  17. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    Science.gov (United States)

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.

  18. Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem

    Directory of Open Access Journals (Sweden)

    SRI WIDAWATI

    2011-01-01

    Full Text Available Widawati S (2011 Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem. Biodiversitas 12: 17-21. Soil, water, sand, and plant rhizosphere samples collected from coastal ecosystem of Laki Island-Jakarta were screened for phosphate solubilizing bacteria (PSB. While the population was dependent on the cultivation media and the sample type, the highest bacterial population was observed in the rhizosphere of Ipomea aquatica. The PSB strains isolated from the sample registered 18.59 g-1L-1, 18.31 g-1L-1, and 5.68 g-1L-1 of calcium phosphate (Ca-P, Al-P and rock phosphate solubilization after 7-days. Phosphate solubilizing capacity was the highest in the Ca-P medium. Two strains, 13 and 14, registered highest Phosphomonoesterase activities (2.01 µgNP.g-1.h-1 and 1.85NP µg.g-1.h-1 were identified as Serattia marcescens, and Pseudomonas fluorescense, respectively. Both strains were isolated from the crops of Amaranthus hybridus and I. aquatica, respectively, which are commonly observed in coastal ecosystems. The presence of phosphate solubilizing microorganisms and their ability to solubilize various types of phosphate species are indicative of the important role of both species of bacteria in the biogeochemical cycle of phosphorus and the plant growth in coastal ecosystems.

  19. Antimicrobial activities of novel cultivable bacteria isolated from marine sponge Tedania anhelans

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhen; ZHAO Jing; KE Caihuan; WANG Dexiang

    2013-01-01

    Marine sponge Tedania anhelans distributes throughout the intertidal zone of Fujian,southeastern China,and is a potential source of natural bioactive products.The sponge harbors a large number of bacterial groups that have been identified using various techniques,including fluorescent in situ hybridization (FISH).Fractionation of dissociated sponge allowed isolation of 25 bacterial species.Based on 16S rRNA gene sequencing,phylogenetic analysis attributed most of these eubacteria to a-Proteobacteria,γ-Proteobacteria,Cytophaga/Flavobacterium/Bacteroidetes (CFB group),and the family Bacillaceae of Gram-positive bacteria.In sequence similarity,five putatively novel species were identified with less than 98% similarity to other strains in the NCBI database.Tests for antimicrobial activities were performed against Gram-positive bacteria,Gram-negative bacteria,fungi,antitumor indicators Escherichia coli 343/591 (with DNA repair deficiency),regular E.coli 343/636 (with different DNA repair capacity),and 10 bacterial isolates exhibited inhibitory bioactivities.Among these strains,three isolates were detected involving function gene NRPS-A domains,which were most closely related to the amino acid sequences of linear gramicidin synthetase and pyoverdine synthetase.These results contribute to our knowledge of the microbes associated with marine sponges and further reveal novel bacterial resources for the screening of bioactive marine natural products.

  20. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil.

    Science.gov (United States)

    Park, Jin Hee; Bolan, Nanthi; Megharaj, Mallavarapu; Naidu, Ravi

    2011-01-30

    Lead (Pb), a highly toxic heavy metal forms stable compounds with phosphate (P). The potential of phosphate solubilizing bacteria (PSB) to immobilize Pb by enhancing solubilization of insoluble P compounds was tested in this research. Eighteen different PSB strains isolated from P amended and Pb contaminated soils were screened for their efficiency in P solubilization. The PSB isolated from P amended soils solubilized 217-479 mg/L of P while the PSB from Pb contaminated soil solubilized 31-293 mg/L of P. Stepwise multiple regression analysis and P solubility kinetics indicated that the major mechanism of P solubilization by PSB is the pH reduction through the release of organic acids. From the isolated bacteria, two PSB were chosen for Pb immobilization and these bacteria were identified as Pantoea sp. and Enterobacter sp., respectively. The PSB significantly increased P solubilization by 25.0% and 49.9% in the case of Pantoea sp., and 63.3% and 88.6% in the case of Enterobacter sp. for 200 and 800 mg/kg of rock phosphate (RP) addition, respectively, thereby enhancing the immobilization of Pb by 8.25-13.7% in the case of Pantoea sp. and 14.7-26.4% in the case of Enterobacter sp. The ability of PSB to solubilize P, promote plant growth, and immobilize Pb can be used for phytostabilization of Pb contaminated soils.

  1. Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes.

    Science.gov (United States)

    Ikeda, Angela Cristina; Bassani, Luciana Lange; Adamoski, Douglas; Stringari, Danyelle; Cordeiro, Vanessa Kava; Glienke, Chirlei; Steffens, Maria Berenice Reynaud; Hungria, Mariangela; Galli-Terasawa, Lygia Vitoria

    2013-01-01

    Maize is one of the most important crops worldwide, and in Brazil, the state of Paraná stands as its largest producer. The crop demands high inputs of N fertilizers, therefore all strategies aiming to optimize the grain production with lower inputs are very relevant. Endophytic bacteria have a high potential to increment maize grain yield by means of input via biological nitrogen fixation and/or plant growth promotion, in this last case increasing the absorption of water and nutrients by the plants. In this study, we established a collection of 217 endophytic bacteria, isolated from roots of four lineages and three hybrid genotypes of maize, and isolated in four different N-free culture media. Biochemical-comprising growth in different carbon sources, intrinsic tolerance to antibiotics, and biochemical tests for catalase, nitrate reductase, urease, and growth in N-free media in vitro-and genetic characterization by BOX-PCR revealed great variability among the isolates. Both commercial hybrids and homozygous lineages were broadly colonized by endophytes, and sequencing of the 16S rRNA gene revealed the presence of bacteria belonging to the genera Pantoea, Bacillus, Burkholderia, and Klebsiella. Qualitative differences in endophytic colonization were detected between lineages and hybrid genotypes.

  2. Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics.

    Science.gov (United States)

    Perron, Gabriel G; Whyte, Lyle; Turnbaugh, Peter J; Goordial, Jacqueline; Hanage, William P; Dantas, Gautam; Desai, Michael M

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes.

  3. Isolation and identification of culturable bacteria from honeydew of whitefly, Bemisia tabaci (G. (Hemiptera: Aleyrodidae

    Directory of Open Access Journals (Sweden)

    Roopa H.K.

    2014-12-01

    Full Text Available Bemisia tabaci (G. is an important pest and a vector of Gemini viruses infecting plants. During the process of feeding B. tabaci excretes honeydew which is rich in nutrients, and an excellent medium for microbial growth. Recent report proved that volatile emitted by the honeydew associated bacteria of aphid, Acyrthosiphon pisum Harris was involved in natural enemy calling. Thus understanding the honeydew associated bacteria is of paramount importance from the non-chemical method of insect pest management. In this perspective, very less information is available on bacteria associated with the honeydew excreted by B. tabaci. Therefore, in the present study we have isolated and characterized three culturable bacteria from the honeydew of B. tabaci viz. Bacillus endophyticus, Bacillus niacini and Roseomonas species by employing 16Sr DNA BLASTx analyses which revealed that both B. endophyticus and B. niacini had high similarity (>99% to the respective species, while Roseomonas sp. showed only 95% similarity to the existing Roseomonas sp. specificity of honeydew association of Roseomonas sp. was confirmed by developing specific primers as this genus is reported from immunocompromised persons and recently from ticks and mites. The present study also indicated the possible host-plant origin of these honeydew associated bacteria.

  4. Isolation and identification of culturable bacteria from honeydew of whitefly, Bemisia tabaci (G.) (Hemiptera: Aleyrodidae).

    Science.gov (United States)

    H K, Roopa; K B, Rebijith; R, Asokan; Mahmood, Riaz; N K, Krishna Kumar

    2014-12-01

    Bemisia tabaci (G.) is an important pest and a vector of Gemini viruses infecting plants. During the process of feeding B. tabaci excretes honeydew which is rich in nutrients, and an excellent medium for microbial growth. Recent report proved that volatile emitted by the honeydew associated bacteria of aphid, Acyrthosiphon pisum Harris was involved in natural enemy calling. Thus understanding the honeydew associated bacteria is of paramount importance from the non-chemical method of insect pest management. In this perspective, very less information is available on bacteria associated with the honeydew excreted by B. tabaci. Therefore, in the present study we have isolated and characterized three culturable bacteria from the honeydew of B. tabaci viz. Bacillus endophyticus, Bacillus niacini and Roseomonas species by employing 16Sr DNA BLASTx analyses which revealed that both B. endophyticus and B. niacini had high similarity (> 99%) to the respective species, while Roseomonas sp. showed only 95% similarity to the existing Roseomonas sp. specificity of honeydew association of Roseomonas sp. was confirmed by developing specific primers as this genus is reported from immunocompromised persons and recently from ticks and mites. The present study also indicated the possible host-plant origin of these honeydew associated bacteria.

  5. Isolation and characterization of endosulfan-degrading bacteria from contaminated agriculture soils

    Institute of Scientific and Technical Information of China (English)

    Mehdi Hassanshahian; Zahra Shahi

    2016-01-01

    Objective: To isolate and characterize endosulfan-degrading bacteria from Kerman pistachio orchards. Methods: Endosulfan-degrading bacteria were enriched in Bushnell-Hass medium. Identification and sequencing of prevalent degrading strains was performed by usingPCR based on amplifying16S rDNA. Results: The results showed that the soils of pistachio orchards have some degrading bacteria that are suitable for elimination of endosulfan from soils and the environment. Four endosulfan-degrading bacteria strains belong toAchromobacter xylosoxidans (strain EN3),Pseudomonas azotoformans (strain EN4),Pseudomonas brassicacearum (strain EN7) andPseudomonas thivervalensis (strain EN8), respectively. The best degrading strain (EN7), up to 100 mg/L, illustrated a good growth, whereas the growth was reduced in concentration higher than 100 mg/L. The results of gas chromatography confirmed the decomposition of organic pesticide by degrading-bacteria. Conclusions: By using these strains and other biological reclamation methods we can eliminate bio-environmental problems.

  6. Bacterias marinas productoras de compuestos antibacterianos aisladas a partir de invertebrados intermareales Marine bacteria producing antibacterial compounds Isolated from inter-tidal invertebrates

    Directory of Open Access Journals (Sweden)

    Jorge León

    2010-06-01

    Full Text Available Se realizó actividades prospectivas de muestreo de invertebrados intermareales en la Bahía de Ancón (Lima - Perú con el objetivo de seleccionar bacterias marinas productoras de sustancias antimicrobianas. El estudio comprendió el aislamiento de bacterias en agar marino, pruebas de susceptibilidad antimicrobiana in vitro y observaciones de microscopía electrónica. Se reporta el aislamiento, caracterización fenotípica y propiedades antimicrobianas de diez cepas de bacterias marinas que incluyen a los géneros Vibrio, Pseudomonas y Flavobacterium y del orden Actinomycetal que inhiben a patógenos de humanos. Los resultados indicarían que los invertebrados marinos serían fuentes de bacterias productoras de sustancias antibióticas.Prospective sampling activities of intertidal invertebrates in the Ancon Bay (Lima, Peru were done in order to select marine bacteria producing antimicrobial substances. The study included the isolation of bacteria in marine agar, in vitro antimicrobial susceptibility testing and electronic microscopic observations. We report the isolation, phenotypical characterization and antimicrobial properties of 10 strains of marine bacteria including the genus Vibrio, Pseudomonas, and Flavobacterium, and the order Actinomycetae that inhibit human pathogens. The results indicate that the marine invertebrates would be sources of bacteria producing antibiotic substances.

  7. Mineral Phosphate Solubilizing Bacteria Isolated from Various Plant Rhizosphere under Different Aluminum Content

    Directory of Open Access Journals (Sweden)

    Dolly Iriani Damarjaya

    2015-10-01

    Full Text Available The objectives of this study was to isolate and characterize the mineral phosphate solubilizing bacteriafrom rhizosphere and evaluate their potential as plant growth promoting bacteria in Al-toxic soils. The halozone formation method was used to isolate PSB using the media containing insoluble phosphates (Ca-P or Al-Pas a source of phosphate. Eight of acid and Al-tolerant PSB isolates that were able to solubilize Ca-P wereobtained from rhizosphere of clover, wheat, corn, and sunflower grown in Al-toxic soil. Identification of theisolates based on the 16S rRNA gene sequence analysis demonstrated that the isolates were strains of Burkholderia(5 strains, Pseudomonas (1 strain, Ralstonia (1 strain, and unidentified bacterium (1 strains. All PSB isolatesshowed the capability to dissolve Ca-P, and only 1 strain (Ralstonia strain was able to dissolve Al-P in agar platemedium. The P-solubilization by these isolates was correlated with pH of medium. Inoculation of the bacterialstrains on clover on Al-toxic medium showed that all isolates increased the plant dry weight compared withuninoculated treatment. Our results showed that those PSB isolates have potential to be developed as a biofertilizerto increase the efficiency of P-inorganic fertilizer used in Al-toxic soils.

  8. Biochemical and molecular characterization of high population density bacteria isolated from sunflower.

    Science.gov (United States)

    Guerra Pinheiro de Goes, Kelly Campos; de Castro Fisher, Maria Luisa; Cattelan, Alexandre José; Nogueira, Marco Antonio; Portela de Carvalho, Claudio Guilherme; Martinez de Oliveira, Andre Luiz

    2012-04-01

    Natural and beneficial associations between plants and bacteria have demonstrated potential commercial application for several agricultural crops. The sunflower has acquired increasing importance in Brazilian agribusiness owing to its agronomic characteristics such as the tolerance to edaphoclimatic variations, resistance to pests and diseases, and adaptation to the implements commonly used for maize and soybean, as well as the versatility of the products and by-products obtained from its cultivation. A study of the cultivable bacteria associated with two sunflower cultivars, using classical microbiological methods, successfully obtained isolates from different plant tissues (roots, stems, florets, and rhizosphere). Out of 57 plantgrowth- promoting isolates obtained, 45 were identified at the genus level and phylogenetically positioned based on 16S rRNA gene sequencing: 42 Bacillus (B. subtilis, B. cereus, B. thuringiensis, B. pumilus, B. megaterium, and Bacillus sp.) and 3 Methylobacterium komagatae. Random amplified polymorphic DNA (RAPD) analysis showed a broad diversity among the Bacillus isolates, which clustered into 2 groups with 75% similarity and 13 subgroups with 85% similarity, suggesting that the genetic distance correlated with the source of isolation. The isolates were also analyzed for certain growth-promoting activities. Auxin synthesis was widely distributed among the isolates, with values ranging from 93.34 to 1653.37 microM auxin per microng of protein. The phosphate solubilization index ranged from 1.25 to 3.89, and siderophore index varied from 1.15 to 5.25. From a total of 57 isolates, 3 showed an ability to biologically fix atmospheric nitrogen, and 7 showed antagonism against the pathogen Sclerotinia sclerotiorum. The results of biochemical characterization allowed identification of potential candidates for the development of biofertilizers targeted to the sunflower crop.

  9. Characterization of culturable bacteria isolated from hot springs for plant growth promoting traits and effect on tomato (Lycopersicon esculentum) seedling.

    Science.gov (United States)

    Patel, Kinjal Samir; Naik, Jinal Hardik; Chaudhari, Sejal; Amaresan, Natarajan

    2017-03-23

    To elucidate the functional diversity of hot spring bacteria, 123 bacteria were isolated and screened for evaluating their multifunctional plant growth promoting (PGP) properties. The antagonistic activity against different phytopathogens showed the presence of a high amount of biocontrol bacteria in the hot springs. During screening for PGP properties, 61.0% isolates showed production of indole acetic acid and 23.6% showed inorganic phosphate solubilization qualitatively. For production of extracellular enzymes, it was found that 61.0% isolates produced lipase, 56.9% produced protease, and 43.9% produced cellulase. In extreme properties, half of the isolates showed tolerance to 5% NaCl (w/v) and 48.8% isolates survived heat shock at 70°C. The identification of 12 multipotential bacteria based on 16S rRNA gene sequencing revealed that the bacteria belonged to Aneurinibacillus aneurinilyticus and Bacillus spp. Bacterization of tomato seeds showed that the hot spring bacteria promoted shoot height, fresh shoot weight, root length, and fresh root weight of tomato seedlings, with values ranging from 3.12% to 74.37%, 33.33% to 350.0%, 16.06% to 130.41%, and 36.36% to 318.18%, respectively, over the control. This research shows that multifunctional bacteria could be isolated from the hot springs. The outcome of this research may have a potential effect on crop production methodologies used in saline and arid environments.

  10. Isolation of maize soil and rhizosphere bacteria with antagonistic activity against Aspergillus flavus and Fusarium verticillioides.

    Science.gov (United States)

    Palumbo, Jeffrey D; O'Keeffe, Teresa L; Abbas, Hamed K

    2007-07-01

    Bacterial isolates from Mississippi maize field soil and maize rhizosphere samples were evaluated for their potential as biological control agents against Aspergillus flavus and Fusarium verticillioides. Isolated strains were screened for antagonistic activities in liquid coculture against A. flavus and on agar media against A. flavus and F. verticillioides. We identified 221 strains that inhibited growth of both fungi. These bacteria were further differentiated by their production of extracellular enzymes that hydrolyzed chitin and yeast cell walls and by production of antifungal metabolites. Based on molecular and nutritional identification of the bacterial strains, the most prevalent genera isolated from rhizosphere samples were Burkholderia and Pseudomonas, and the most prevalent genera isolated from nonrhizosphere soil were Pseudomonas and Bacillus. Less prevalent genera included Stenotrophomonas, Agrobacterium, Variovorax, Wautersia, and several genera of coryneform and enteric bacteria. In quantitative coculture assays, strains of P. chlororaphis and P. fluorescens consistently inhibited growth of A. flavus and F. verticillioides in different media. These results demonstrate the potential for developing individual biocontrol agents for simultaneous control of the mycotoxigenic A. flavus and F. verticillioides.

  11. Isolation and Physiological Characterization of Psychrophilic Denitrifying Bacteria from Permanently Cold Arctic Fjord Sediments (Svalbard, Norway)

    Science.gov (United States)

    Canion, Andy; Prakash, Om; Green, Stefan J.; Jahnke, Linda; Kuypers, Marcel M. M.; Kostka, Joel E.

    2013-01-01

    A large proportion of reactive nitrogen loss from polar sediments is mediated by denitrification, but microorganisms mediating denitrification in polar environments remain poorly characterized. A combined approach of most-probable-number (MPN) enumeration, cultivation and physiological characterization was used to describe psychrophilic denitrifying bacterial communities in sediments of three Arctic fjords in Svalbard (Norway). A MPN assay showed the presence of 10(sup 3)-10(sup 6) cells of psychrophilic nitrate-respiring bacteria g(sup -1) of sediment. Fifteen strains within the Proteobacteria were isolated using a systematic enrichment approach with organic acids as electron donors and nitrate as an electron acceptor. Isolates belonged to five genera, including Shewanella, Pseudomonas, Psychromonas (Gammaproteobacteria), Arcobacter (Epsilonproteobacteria) and Herminiimonas (Betaproteobacteria). All isolates were denitrifiers, except Shewanella, which exhibited the capacity for dissimilatory nitrate reduction to ammonium (DNRA). Growth from 0 to 40 degC demonstrated that all genera except Shewanella were psychrophiles with optimal growth below 15 degC, and adaptation to low temperature was demonstrated as a shift from primarily C16:0 saturated fatty acids to C16:1 monounsaturated fatty acids at lower temperatures. This study provides the first targeted enrichment and characterization of psychrophilic denitrifying bacteria from polar sediments, and two genera, Arcobacter and Herminiimonas, are isolated for the first time from permanently cold marine sediments.

  12. Antibiotic Resistance of Probiotic Strains of Lactic Acid Bacteria Isolated from Marketed Foods and Drugs

    Institute of Scientific and Technical Information of China (English)

    CHANG LIU; ZHUO-YANG ZHANG; KE DONG; JIAN-PING YUAN; XIAO-KUI GUO

    2009-01-01

    Objective To identify the antimicrobial resistance of commercial lactic acid bacteria present in microbial foods and drug additives by analyzing their isolated strains used for fermentation and probioties. Methods Antimicrobial susceptibility of 41 screened isolates was tested with disc diffusion and E-test methods after species-level identification. Resistant strains were selected and examined for the presence of resistance genes by PCR. Results Distribution of resistance was found in different species. All isolates were susceptible to chloramphenicol, tetracycline, ampicillin, amoxicillin/clavulanic acid, cephalothin, and imipenem. In addition, isolates resistant to vancomycin, rifampicin, streptomycin, bacitracin, and erythromycin were detected, although the incidence of resistance to these antibiotics was relatively low. In contrast, most strains were resistant to ciprofloxacin, amikacin, trimethoprim/sulphamethoxazole, and gentamycin. The genes msrC, vanX, and dfrA were detected in strains of Enterococcus faecium, Lactobacillus plantarum, Streptococcus thermophilus, and Lactococcus lactis. Conclusion Antibiotic resistance is present in different species of probiotic strains, which poses a threat to food safety. Evaluation of the safety of lactic acid bacteria for human consumption should be guided by established criteria, guidelines and regulations.

  13. Isolation, screening and characterization of bacteriocin-producing lactic acid bacteria isolated from traditional fermented food.

    Science.gov (United States)

    El-Shafei, H A; Abd-El-Sabour, H; Ibrahim, N; Mostafa, Y A

    2000-03-01

    100 lactic acid bacterial strains isolated from traditional fermented foods (yoghurt, milk cream, sour dough and milk) were screened for bacteriocin production. Twenty six strains producing a nisin-like bacteriocin were selected. Most of these isolates gave only a narrow inhibitory spectrum, although one showed a broad inhibitory spectrum against the indicator strains tested, this strain was determined as Lactococcus lactis. The influence of several parameters on the fermentative production of nisin by Lactococcus lactis was studied. Production of nisin was optimal at 30 degrees C and in the pH range 5.5-6.3. The effect of different sulphur and nitrogen sources on Lactococcus lactis growth and nisin production was studied. Magnesium sulfate and manganese sulfate were found to be the best sulphur sources while triammonium citrate was the best inorganic nitrogen source and meat extract, peptone and yeast extract were the best organic nitrogen source for nisin production.

  14. Antibiogram of bacteria isolated from automated teller machines in Hamadan, West Iran

    Directory of Open Access Journals (Sweden)

    Mahmoudi, Hassan

    2017-02-01

    Full Text Available Aim: Bacteria are ubiquitous in the environment. In keeping with the continued expansion of urbanization and the growing population, an increasing number of people use automated banking, i.e. automated teller machines (ATMs. The aim of this study was to investigate the bacterial contamination and its antibiotic sensitivity on computer keyboards located at ATMs in Hamadan province, Iran. Method: Out of 360 ATMs at four locations in Hamadan, 96 were randomly selected for this study. The antibiotic susceptibility pattern of all isolates was determined by the agar disk diffusion method using gentamicin (10 µg, vancomycin (30 µg, trimethoprim/sulfamethoxazole (25 µg, amikacin (30 µg, tobramycin (10 µg, cephalotin (30 µg, norfloxacin (5 µg, and ceftizoxim (30 µg disks. Results: Melli and Saderat Banks had the most frequently contaminated ATMS, with 18 (27.7% and 12 (18.5%, respectively. The most frequently isolated bacteria were in 12 (18.5% ATMs, in in 11 (16.9%, in 6 (9.2%, spp. in 8 (12.3%, spp. in 2 (3.1%, in 6 (9.2%, in 3 (4.6%, and spp. in 5 (7.69% cases. All isolated bacteria were susceptible to gentamicin, cephalotin, tobramycin, amikacin, norfloxacin, and vancomycin. The resistance rate to trimethoprim/sulfamole was 50%. Conclusion: All tested ATM keyboards were contaminated with at least one species of bacteria. Based on these findings, it is recommendable to disinfect the hands after entering one’s own apartment, work area or a hospital, in order to hinder the spread of critical pathogens in the personal environment or in the hospital.

  15. Isolation and characterization of potential probiotic bacteria from pustulose ark (Anadara tuberculosa suitable for shrimp farming

    Directory of Open Access Journals (Sweden)

    Ana Claudia Sánchez-Ortiz

    2015-03-01

    Full Text Available In aquaculture, probiotics have been tested for enhancing the immune system and promoting growth and survival rate of many marine species like shrimp and mollusks. In order to isolate bacteria with a high probiotic potential for marine shellfish aquaculture, homogenates of the gastrointestinal tract from adult mangrove cockle, Anadara tuberculosa, were obtained to perform in vitro and in vivo assays. Isolates were tested in vitro for hemolytic activity, hydrophobicity, tolerance to ammonia nitrogen, salinity and pH as well as for growth kinetics, extracellular enzymatic activity, autoaggregation, coaggregation and molecular identification. Three bacteria with high degree of hydrophobicity (>60% adherence to p-xylene and four bacteria with medium hydrophobicity, which showed different patterns of attachment to monopolar solvents (chloroform and ethyl acetate and a high tolerance to ammonia nitrogen (200 mg L-1, were selected. Six different treatments: T1 (without addition of cultured bacteria; T2 (MAt29, Enterococcus casseliflavus; T3 (MAt35, Citrobacter koseri; T4 (GAtBl, Bacillus subtilis subtilis; T5 (GAt7, Staphylococcus sp.; and T6 (1:1:1:1 mix of strains T2, T3, T4 and T5, were used to evaluate the specific growth rate, and cellular immune response of the shrimp Litopenaeus vannamei. The best specific growth rate was observed for T6 and T4 treatments related to Bacillus subtilis subtilis. A significant difference in total hemocytes count (P < 0.05 was found for T4 treatment with respect to control group. Strains isolated from A. tuberculosa had a beneficial effect on the growth and immune response of L. vannamei, so they have potential use as probiotics in aquaculture of marine shellfish.

  16. Antibiogram of bacteria isolated from automated teller machines in Hamadan, West Iran

    Science.gov (United States)

    Mahmoudi, Hassan; Arabestani, Mohammad Reza; Alikhani, Mohammad Yousef; Sedighi, Iraj; Kohan, Hamed Farhadi; Molavi, Mohammad

    2017-01-01

    Aim: Bacteria are ubiquitous in the environment. In keeping with the continued expansion of urbanization and the growing population, an increasing number of people use automated banking, i.e. automated teller machines (ATMs). The aim of this study was to investigate the bacterial contamination and its antibiotic sensitivity on computer keyboards located at ATMs in Hamadan province, Iran. Method: Out of 360 ATMs at four locations in Hamadan, 96 were randomly selected for this study. The antibiotic susceptibility pattern of all isolates was determined by the agar disk diffusion method using gentamicin (10 µg), vancomycin (30 µg), trimethoprim/sulfamethoxazole (25 µg), amikacin (30 µg), tobramycin (10 µg), cephalotin (30 µg), norfloxacin (5 µg), and ceftizoxim (30 µg) disks. Results: Melli and Saderat Banks had the most frequently contaminated ATMS, with 18 (27.7%) and 12 (18.5%), respectively. The most frequently isolated bacteria were Staphylococcus epidermidis in 12 (18.5%) ATMs, Pseudomonas aeruginosa in 12 (18.5%), Bacillus subtilis in 11 (16.9%), Escherichia coli in 6 (9.2%), Klebsiella spp. in 8 (12.3%), Enterobacter spp. in 2 (3.1%), Bacillus cereus in 6 (9.2%), Staphylococcus aureus in 3 (4.6%), and Micrococcaceae spp. in 5 (7.69%) cases. All isolated bacteria were susceptible to gentamicin, cephalotin, tobramycin, amikacin, norfloxacin, and vancomycin. The S. aureus resistance rate to trimethoprim/sulfamethoxazole was 50%. Conclusion: All tested ATM keyboards were contaminated with at least one species of bacteria. Based on these findings, it is recommendable to disinfect the hands after entering one’s own apartment, work area or a hospital, in order to hinder the spread of critical pathogens in the personal environment or in the hospital.

  17. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor.

    Science.gov (United States)

    Kato, Souichiro; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion.

  18. [Isolation and Identification of Petroleum Degradation Bacteria and Interspecific Interactions Among Four Bacillus Strains].

    Science.gov (United States)

    Wang, Jia-nan; Shi, Yan-yun; Zheng, Li-yan; Wang, Zhe; Cai, Zhang; Liu, Jie

    2015-06-01

    Six petroleum-degrading strains were isolated from oil-contaminated soil at Dagang oil field and oil sewage on Bohai offshore drilling platform in Tianjin using enrichment culture and isolation method. The physiological biochemical test together with 16S rDNA sequencing analysis indicated that they belonged to Bacillus (S1, S2, S3, S4), Pseudomonas (W1) and Ochrobactrum (W2), respectively. The strain S3 had the maximum degradation rate of alkane (41.3%) and aromatic hydrocarbon (30.9%) among all isolated strains showing the better degradation efficiency by endogenous bacteria when compared to that by the exogenous bacteria. The four Bacillus strains were used to construct microbiome, thereafter subjected to petroleum degradation efficiency test and analyzed. The results showed that microbiome F3 consisting of S1 and S4 had the maximum degradation rates of alkane (50.5%) and aromatic hydrocarbon (54.0%), which were 69.9% and 156.1% higher than those by single bacterium, respectively. Furthermore, they were 22.1% and 74.6% respectively higher than those by the most optimal degradation bacterium S3. Microbiome F4 consisting of S2 and S3 had the minimum degradation rates of alkane (18.5%) and aromatic hydrocarbon (18.9%) which were 55.3% and 39.0% lower than the degradation rates of single bacterium, respectively. The results also demonstrated that there were both microbial synergy promotion and antagonism inhibition among bacteria of the same genus in the petroleum degradation period. Bacteria with close affinity in Bacillus genus displayed mainly promoted petroleum degradation effect.

  19. Isolation and identification of sulfate reducing bacteria (SRB) from the sediment pond after a coal mine in Samarinda, East Kalimantan

    Science.gov (United States)

    Kusumawati, Eko; Sudrajat, Putri, Junita Susilaning

    2017-02-01

    Title isolation and identification of sulfate reducing bacteria (SRB) of sediment pond former coal mine in Samarinda, East Kalimantan. Sulfate reducing bacteria (SRB) is a group of microbes that can be used to improve the quality of sediment former coal mine. In the metabolic activities, the SRB can reduce sulfate to H2S which immediately binds to metals that are widely available on mined lands and precipitated in the form of metal sulfides reductive. Isolation and identification of sulfate reducing bacteria carried out in the Laboratory of Microbiology and Molecular Genetics, Faculty of Mathematics and Natural Sciences, University of Mulawarman, Samarinda. Postgate B is a liquid medium used for isolation through serial dilution. Physiological and biochemical characterization was done by Bergey's Manual of Determinative Bacteriology. Six isolates of sulfate reducing bacteria were isolated from the sediment pond former coal mine in Samarinda. Several groups of bacteria can grow at 14 days of incubation, however, another group of bacteria which takes 21 days to grow. The identification results showed that two isolates belong to the genus Desulfotomaculum sp., and each of the other isolates belong to the genus Desulfococcus sp., Desulfobacter sp., Desulfobulbus sp. and Desulfobacterium sp.

  20. Aromatic compound degradation by iron reducing bacteria isolated from irrigated tropical paddy soils

    Institute of Scientific and Technical Information of China (English)

    LU Wenjing; WANG Hongtao; HUANG Changyong; W. Reichardt

    2008-01-01

    Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures. Pure cultures and some prepared mixed cultures were examined for ferric oxide reduction and phenol/benzoate degradation. All the isolates were iron reducers, but only 56.5% could couple iron reduction to phenol and/or benzoate degradation, as evidenced by depletion of phenol and benzoate after one week incubation. Analysis of degradative capability using Biolog MT plates revealed that most of them could degrade other aromatic compounds such as ferulic acid, vanillic acid, and hydroxybenzoate. Mixed-cultures and soft samples displayed greater capacity for aromatic degradation and iron reduction than pure bacterial isolates, suggesting that these reactions may be coupled via a consortia-based mechanism in paddy soils.

  1. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    Science.gov (United States)

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L-1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  2. Identification and Antibacterial Activity of Bacteria Isolated from Marine Sponge Haliclona (Reniera) sp. against Multi-Drug Resistant Human Pathogen

    Science.gov (United States)

    Ardhanu Asagabaldan, Meezan; Ayuningrum, D.; Kristiana, R.; Sabdono, A.; Radjasa, O. K.; Trianto, A.

    2017-02-01

    The marine sponge Haliclona (Reniera) sp. was a potential source of natural bioactive compounds. This sponge widely distributed along the coast of Panjang Island, Jepara, Indonesia. The aims of this research were to isolate the associated bacteria with Haliclona (Reniera) sp. and to screen the antibacterial activity against Multi-Drug Resistant (MDR) bacteria. Amount five bacteria were isolated using media selective for bacteria. The antibacterial activities of bacteria were performed by overlay methods. The bacteria strain PSP. 39-04 had the best activity against Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, and Enterobacter cloaceae. Based on colony morphology and phylogenetic characterization using 16S rRNA gene sequencing, PSP 39-04 was closely related with Chromohalobacter salixigens strain DSM3043.

  3. Isolation and Screening of Polyhydroxyalkanoates Producing Bacteria from Pulp, Paper, and Cardboard Industry Wastes

    Directory of Open Access Journals (Sweden)

    Anish Kumari Bhuwal

    2013-01-01

    Full Text Available Background. Polyhydroxyalkanoates (PHAs are storage materials that accumulate by various bacteria as energy and carbon reserve materials. They are biodegradable, environmentally friendly, and also biocompatible bioplastics. Unlike petrochemical-based plastics that take several decades to fully degrade, PHAs can be completely degraded within a year by variety of microorganisms into CO2 and water. In the present study, we aim to utilize pulp, paper, and cardboard industry sludge and waste water for the isolation and screening of polyhydroxyalkanoates (PHAs accumulating bacteria and production of cost-effective PHB using cardboard industry waste water. Results. A total of 42 isolates showed black-blue coloration when stained with Sudan black B, a preliminary screening agent for lipophilic compounds, and a total of 15 isolates showed positive result with Nile blue A staining, a more specific dye for PHA granules. The isolates NAP11 and NAC1 showed maximum PHA production 79.27% and 77.63% with polymer concentration of 5.236 g/L and 4.042 g/L with cardboard industry waste water. Both of the selected isolates, NAP11 and NAC1, were classified up to genus level by studying their morphological and biochemical characteristics and were found to be Enterococcus sp., Brevundimonas sp. and, respectively. Conclusion. The isolates Enterococcus sp. NAP11 and Brevundimonas sp. NAC1 can be considered as good candidates for industrial production of PHB from cardboard industry waste water. We are reporting for the first time the use of cardboard industry waste water as a cultivation medium for the PHB production.

  4. Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes.

    Science.gov (United States)

    Bhuwal, Anish Kumari; Singh, Gulab; Aggarwal, Neeraj Kumar; Goyal, Varsha; Yadav, Anita

    2013-01-01

    Background. Polyhydroxyalkanoates (PHAs) are storage materials that accumulate by various bacteria as energy and carbon reserve materials. They are biodegradable, environmentally friendly, and also biocompatible bioplastics. Unlike petrochemical-based plastics that take several decades to fully degrade, PHAs can be completely degraded within a year by variety of microorganisms into CO2 and water. In the present study, we aim to utilize pulp, paper, and cardboard industry sludge and waste water for the isolation and screening of polyhydroxyalkanoates (PHAs) accumulating bacteria and production of cost-effective PHB using cardboard industry waste water. Results. A total of 42 isolates showed black-blue coloration when stained with Sudan black B, a preliminary screening agent for lipophilic compounds, and a total of 15 isolates showed positive result with Nile blue A staining, a more specific dye for PHA granules. The isolates NAP11 and NAC1 showed maximum PHA production 79.27% and 77.63% with polymer concentration of 5.236 g/L and 4.042 g/L with cardboard industry waste water. Both of the selected isolates, NAP11 and NAC1, were classified up to genus level by studying their morphological and biochemical characteristics and were found to be Enterococcus sp., Brevundimonas sp. and, respectively. Conclusion. The isolates Enterococcus sp. NAP11 and Brevundimonas sp. NAC1 can be considered as good candidates for industrial production of PHB from cardboard industry waste water. We are reporting for the first time the use of cardboard industry waste water as a cultivation medium for the PHB production.

  5. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts

    Science.gov (United States)

    2012-01-01

    The biopreservation of foods using bacteriocinogenic lactic acid bacteria (LAB) isolated directly from foods is an innovative approach. The objectives of this study were to isolate and identify bacteriocinogenic LAB from various cheeses and yogurts and evaluate their antimicrobial effects on selected spoilage and pathogenic microorganisms in vitro as well as on a food commodity. LAB were isolated using MRS and M17 media. The agar diffusion bioassay was used to screen for bacteriocin or bacteriocin-like substances (BLS) producing LAB using Lactobacillus sakei and Listeria innocua as indicator organisms. Out of 138 LAB isolates, 28 were found to inhibit these bacteria and were identified as strains of Enterococcus faecium, Streptococcus thermophilus, Lactobacillus casei and Lactobacillus sakei subsp. sakei using 16S rRNA gene sequencing. Eight isolates were tested for antimicrobial activity at 5°C and 20°C against L. innocua, Escherichia coli, Bacillus cereus, Pseudomonas fluorescens, Erwinia carotovora, and Leuconostoc mesenteroides subsp. mesenteroides using the agar diffusion bioassay, and also against Penicillium expansum, Botrytis cinerea and Monilinia frucitcola using the microdilution plate method. The effect of selected LAB strains on L. innocua inoculated onto fresh-cut onions was also investigated. Twenty percent of our isolates produced BLS inhibiting the growth of L. innocua and/or Lact. sakei. Organic acids and/or H2O2 produced by LAB and not the BLS had strong antimicrobial effects on all microorganisms tested with the exception of E. coli. Ent. faecium, Strep. thermophilus and Lact. casei effectively inhibited the growth of natural microflora and L. innocua inoculated onto fresh-cut onions. Bacteriocinogenic LAB present in cheeses and yogurts may have potential to be used as biopreservatives in foods. PMID:22963659

  6. Isolation and characterization of lactic acid bacteria strains with ornithine producing capacity from natural sea salt.

    Science.gov (United States)

    Yu, Jin-Ju; Oh, Suk-Heung

    2010-08-01

    Two lactic acid bacteria (LAB) having ornithine-producing capacity were isolated from Korean natural sea salt. They were Gram-positive, short rod-type bacteria, and able to grow anaerobically with CO(2) production. The isolates grew well on MRS broth at 30-37 degrees C and a pH of 6.5-8.0. The optimum temperature and pH for growth are 37 degrees C and pH 7.0. The isolates fermented D-ribose, D-galactose, D-lactose, D-maltose, Dcellobiose, D-tagatose, D-trehalose, sucrose, D-melezitose, gentiobiose, D-glucose but not D-melibiose, inositol, and L-sorbose. The 16S rDNA sequences of the two isolates showed 99.5% and 99.6% homology with the Weissella koreensis S5623 16S rDNA (Access no. AY035891). They were accordingly identified and named as Weissella koreensis MS1-3 and Weissella koreensis MS1-14, and produced intracellular ornithine at levels of 72 mg/100 g cell F.W. and 105 mg/100 g cell F.W. and extracellular ornithine at levels of 4.5 mg/100 ml and 4.6 mg/100 ml medium, respectively, by culturing in MRS broth supplemented with 1% arginine. High cell growth was maintained in MRS broth with a NaCl concentration of 0-6%. These results show for the first time that Korean natural sea salts contain lactic acid bacteria Weissella koreensis strains having ornithine producing capacity.

  7. Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton.

    Science.gov (United States)

    Eilers, H; Pernthaler, J; Peplies, J; Glöckner, F O; Gerdts, G; Amann, R

    2001-11-01

    We tested new strategies for the isolation of abundant bacteria from coastal North Sea surface waters, which included reducing by several orders of magnitude the concentrations of inorganic N and P compounds in a synthetic seawater medium. Agar plates were resampled over 37 days, and slowly growing colonies were allowed to develop by repeatedly removing all newly formed colonies. A fivefold increase of colonies was observed on plates with reduced nutrient levels, and the phylogenetic composition of the culture collection changed over time, towards members of the Roseobacter lineage and other alpha-proteobacteria. Novel gamma-proteobacteria from a previously uncultured but cosmopolitan lineage (NOR5) formed colonies only after 12 days of plate incubation. A time series of German Bight surface waters (January to December 1998) was screened by fluorescence in situ hybridization (FISH) with isolate-specific and general probes. During spring and early summer, a prominent fraction of FISH-detectable bacteria (mean, 51%) were affiliated with the Cytophaga-Flavobacterium group (CF) of the Bacteroidetes. One Cytophaga sp. lineage with cultured representatives formed almost 20% of the CF group. Members of the Roseobacter cluster constituted approximately 50% of alpha-proteobacteria, but none of the Roseobacter-related isolates formed populations of >1% in the environment. Thus, the readily culturable members of this clade are probably not representative of Roseobacter species that are common in the water column. In contrast, members of NOR5 were found at high abundances (>10(5) cells ml(-1)) in the summer plankton. Some abundant pelagic bacteria are apparently able to form colonies on solid media, but appropriate isolation techniques for different species need to be developed.

  8. ISOLATION OF LACTIC ACID BACTERIA UNDER LOW TEMPERATURE FOR THE PREPARATION OF YOGURT

    Directory of Open Access Journals (Sweden)

    Javid Ahmad Bhat

    2014-02-01

    Full Text Available An investigation of isolation of Lactic acid bacteria was carried out under low temperature for the preparation of Yogurt by using various food supplements like carrot, ground-nut and tomato juices. Methods: Various samples of Cow milk, Skimmed milk were processed along with nutrients like Carrot, ground nut and tomato juices with Tryptone glucose yeast extract agar (TGYA at different temperatures like 50C, 150C and 220C for the isolation of Lactic acid bacteria for the preparation of yogurt. The characteristic isolates were identified by using various biochemical tests and direct microscopy. Results: Lactic acid bacteria (LAB dominated the microbial population of Yogurt, and were identified according to their morphological and physiological characteristics. Among these lactobacilli were frequently occurring organisms. The most abundant species were Lactobacillus delbrueckii subspecies Bulgaricus and Streptococcus thermophilus. The Lactic Streptococci was subjected to bio-chemical tests to identify the species. Based on the biochemical reactions the species was identified as Lactococcus Lactis, sub species di-acetylactis. Isolated culture of lactic Streptococci was found to grow at low temperature. When this was used as an inoculum to prepare yogurt at 50C, 150C and 220C curdling took place in 3days time. In order to reduce the setting time, nutrients in the form of carrot, ground-nut and tomato juices were added. The yogurt was found to set at 50C in 30hrs which is considered useful. Acidity of yogurt was found to be 0.53%- 0.55%. The yogurt was found to contain di-acetyl and quality of yogurt was good.

  9. Inhibitory Effect of Lactobacillus reuteri on Some Pathogenic Bacteria Isolated From Women With Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Eslami

    2014-08-01

    Full Text Available Background Considering the high prevalence of bacterial vaginosis and its association with urinary tract infection in women and treatment of gynecologic problems occur when a high recurrence of bacterial vaginosis is often treated with antibiotics. Objectives The purpose of this study was to investigate the inhibitory effect of Lactobacillus reuteri on pathogenic bacteria isolated from women with bacterial vaginosis. Materials and Methods Ninety-six samples were obtained from vaginal discharge of women with bacterial vaginosis by a gynecologist with a Dacron swab and put in sterile tubes containing TSB broth and Thioglycollate broth. Then were immediately sent to the laboratory in cold chain for further assessment. Afterward, culture was transferred on blood agar, EMB, Palcam and differential diagnosis environments. Then cultures were incubated for 24 hours at 37 °C. Lactobacillus reuteri strains were cultured in MRS environment and transferred to laboratory. After purification of pathogenic bacteria, Lactobacillus reuteri inhibitory effect on pathogenic bacteria was evaluated by minimum inhibitory concentration (MIC and antibiogram. Statistical analysis was performed using SPSS software v.16. Results The results of this study demonstrated the inhibitory effect of Lactobacillus reuteri on some pathogenic bacteria that cause bacterial, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Enterococcus, Listeria monocytogenes and E. coli. Microscopic examination of stained smears of most Lactobacillus and pathogenic bacteria showed reduced. The prevalence of abnormal vaginal discharge, history of drug use, contraceptive methods and douching were 61%, 55%, 42% and 13%, respectively. Significant difference was observed between the use and non-use of IUD in women with bacterial. Conclusions Our findings indicated the inhibitory effect of Lactobacillus reuteri on pathogenic bacteria that

  10. ANTIBIOTIC RESISTANCE IN LACTIC ACID BACTERIA ISOLATED FROM FERMENTED DAIRY PRODUCTS AND BOZA

    Directory of Open Access Journals (Sweden)

    Gamze Başbülbül

    2015-06-01

    Full Text Available In this study, the resistance of 83 strains of lactic acid bacteria isolated from Turkish cheese, yogurt, kefir and boza samples to 6 antibiotics (gentamicin, tetracycline, chloramphenicol, erythromycin, vancomycin and ciprofloxacin was evaluated. The 83 isolates were identified by 16S rRNA gene sequencing and according to BLAST comparisons with sequences in the data banks, those strains showing the highest similarities with the isolates were Enterococcus faecium (10, Lactococcus lactis subsp. Lactis (10, Lactobacillus fermentum (6, Lactobacillus plantarum (6, Lactobacillus coryniformis (7, Lactobacillus casei (13, Leuconostoc mesenteroides (14, Pediococcus pentosaceus (10, Weisella confusa (7. Antimicrobial resistance of strains to 6 antibiotics was determined using the agar dilution method. The antibiotic resistance among all the isolates was detected against chloramphenicol (31,3 % of the isolates, tetracycline (30,1 %, erythromycin (2,4 %, ciprofloxacin (2,41%, vancomycin (73,5 %, intrinsic resistance. Overall 19,3 % of the isolates showed resistance against multiple antibiotics. Antibiotic resistance genes were studied by PCR and the following genes were detected; tet(M gene in Lactobacillus fermentum (1, Lactobacillus plantarum (1, Pediococcus pentosaceus (5, Enterococcus faecium (2, Weisella confusa (4 and the vancomycin resistance gene van(A in one Weisella confusa strain.

  11. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    Science.gov (United States)

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

  12. Isolation and characterization of lactic acid bacteria from Ukrainiantraditional dairy products

    Directory of Open Access Journals (Sweden)

    Garmasheva I

    2016-09-01

    Full Text Available The aim of this study was to isolate, identify and analyze the diversity of the predominantlactic acid bacteria (LAB genera occurring in Ukrainian traditionally prepared dairy products and toassess their potential for industrial application. Fermented milk, soured cream, cottage cheese andbryndza made from raw cow’s, goat’s or sheep’s milk were prepared on traditional way without theaddition of a starter culture. The samples were collected from 9 regions in Ukraine. In total 950strains of LAB strains were isolated and identified using phenotypic and genotypic methods. Among allisolates, Enterococcussp. strains represented 60%,Lactococcussp.—27%,Lactobacillussp.—6%,Leuconostocsp.—3.5% andPediococcussp.—3%. The diversity of the isolated LAB strains wascorrelated with the type of product and the source of milk. The milk clotting activity of isolated LABstrains was preliminary tested to assess their potential for industrial application as starter cultures.Most (54% of the LAB strains isolated from Ukrainian traditional dairy products showed apotentially good acidifying activity and coagulated milk within 12 h. The milk coagulation rate wasnot strongly dependent on the LAB genus and was strain dependent. The time of milk clotting wascorrelated with product, from which strains were isolated. This is the first systematic study of theLAB diversity in Ukrainian artisanal dairy products, which can be a source of new LAB strains withgood technological and functional properties

  13. Isolation and identification of lactid acid bacteria originated from king grass (Pennisetum purpureophoides as candidate of probiotic for livestock

    Directory of Open Access Journals (Sweden)

    Santoso B

    2013-06-01

    Full Text Available A study was conducted to isolate and identify strain of lactic acid bacteria (LAB isolated from king grass, and to determine their potential as candidate of probiotic for livestock. The LAB was isolated by culturing king grass extract in De Man, Rogosa and Sharpe (MRS medium. The pure culture LAB was used to identify strain of bacteria using Analytical Profile Index (API 50 CH kit. The result showed that the strain bacteria was identified as Lactobacillus plantarum. L. plantarum was able to survive in extreme condition at pH 2 and 0.3% bile salt. L. plantarum also survived against pathogenic bacteria i.e. Staphylococcus aureus, Escherechia coli and Salmonella thypi. It is concluded that L. plantarum isolated from king grass could potentially to be used as probiotic for livestock.

  14. Isolation of Sphaerotilus-Leptothrix strains from iron bacteria communities in Tierra del Fuego wetlands.

    Science.gov (United States)

    Schmidt, Bertram; Sánchez, Leandro A; Fretschner, Till; Kreps, Gastón; Ferrero, Marcela A; Siñeriz, Faustino; Szewzyk, Ulrich

    2014-11-01

    Sheath-forming iron- and manganese-depositing bacteria belonging to the Sphaerotilus-Leptothrix group (SLG) are widespread in natural and artificial water systems. Known requirements for their growth include the presence of organic substrates and molecular oxygen. High concentrations of reduced iron or manganese, although not necessary for most species, make their growth a noticeable phenomenon. Such microbial communities have been studied mostly in the Northern Hemisphere. Here, we present descriptions of diverse ochre-depositing microbial communities in Tierra del Fuego, Argentina, using a combined approach of microscopical examination, clone library construction and cultivation focused on SLG bacteria. To date, only few SLG type strains are available. The present work increases the number and diversity of cultivated SLG bacteria by obtaining isolates from biofilms and sediment samples of wetlands in Tierra del Fuego. Thirty isolates were selected based on morphological features such as sheath formation and iron/manganese deposition. Five operational taxonomic units (OTUs) were deduced. Sequencing of 16S rRNA genes showed that one OTU is identical to the Leptothrix mobilis Feox-1(T) -sequence while the four remaining OTUs show similarity values related to previously described type strains. Similarity values ranged from 96.5% to 98.8%, indicating possible new species and subspecies.

  15. Levoglucosan-assimilating bacteria was isolated from levoglucosan treated soil suspension

    Energy Technology Data Exchange (ETDEWEB)

    Xie, H.J. [Shandong Univ., Jinan (China). Environment Research Inst.; Chinese Academy of Sciencess, Beijing (China). Dept. of Environmental Biotechnology, Research Center for Eco-Environmental Sciences; Zhuang, X.L.; Bai, Z.H.; Zhang, H.X. [Chinese Academy of Sciencess, Beijing (China). Dept. of Environmental Biotechnology, Research Center for Eco-Environmental Sciences

    2008-07-01

    Levoglucosan (LG) is emitted into the environment only during the combustion of wood and cigarettes. As such, it is a useful tracer for wood smoke in the atmosphere. It also has potential use as a fermentative carbon and energy resource in the fermentation industry. Depending on the initial cellulose content of woody feedstocks, the yield of LG may range from 38 to 58 per cent. This study examined whether the LG-assimilating bacterium could be isolated or not under LG treatment. The study also addressed the impact of the LG on the genetic diversity and the diversity of the cultivable fraction of the bacterial community in soil suspension. Genetic diversity was analyzed by Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. The changes in diversity were monitored by two different methods following a 90 day incubation period for 20 mg of LG per mL of soil suspension. The cultivable heterotrophic diversity was investigated by colony morphology on solid 1/5 lactobacillus medium. The results of the cultivable heterotrophic diversity and genetic diversity showed that there was an obvious decrease in diversity, and the amount of levoglucosan-assimilating bacteria also decreased. The application of LG had an obvious impact on Bacillus spp and Marinibacillus spp. Through cultivable analysis, five levoglucosan-assimilating bacteria were isolated from an LG treated soil suspension. Phylogenetic analysis of 16S rRNA gene sequences revealed that levoglucosan-assimilating bacteria belong to Bacillus and Marinibacillus. 2 refs., 2 tabs., 3 figs.

  16. Isolation of alkaliphilic bacteria for production of high optically pure L-(+)-lactic acid.

    Science.gov (United States)

    Yokaryo, Hiroto; Tokiwa, Yutaka

    2014-01-01

    Lactic acid bacteria that grow under alkaline conditions (pH 10) were isolated from various sources in Okinawa (Japan). These alkali-tolerant and alkaliphilic bacteria were classified as follows: Microbacterium sp. (1 strain), Enterococcus spp. (9 strains), Alkalibacterium spp. (3 strains), Exiguobacterium spp. (5 strains), Oceanobacillus spp. (3 strains) and Bacillus spp. (7 strains) by 16S rRNA gene sequencing. By fermentation, many strains were able to convert glucose into mainly L-(+)-lactic acid of high optical purity in alkaline broth. This result indicated that valuable L-(+)-lactic acid-producing bacteria could be isolated efficiently by screening under alkaline conditions. Six strains were selected and their ability to produce lactic acid at different initial pH was compared. Enterococcus casseliflavus strain 79w3 gave the highest lactic acid concentration. Lactic acid concentration and productivity were 103 g L(-1) (optical purity of 99.5% as L-isomer) and 2.2 g L(-1) h(-1), respectively when 129 g L(-1) of glucose was used by batch fermentation.

  17. The antibacterial capacity of marine bacteria isolated from sponge Acanthella cavernosa collected from Lombok Island

    Institute of Scientific and Technical Information of China (English)

    Tutik Murniasih; Eka Ayu Indriany; Masteri Yunovilsa Putra; Febriana Untari

    2016-01-01

    Objective:To find a potent antibiotic producer from the sponge-associated bacteria as well as to profile the important substances. Methods:Sponge collection, bacteria isolation, extraction and characterization of potent active compounds were carried out for this study. Results:Approximately 59 single strains of bacteria were isolated from this sponge. Totally 40 strains showed activity against Escerichia coli, Staphylococcus aureus and Vibrio eltor. The chemical separation of the potent strain Bacterium sp. Lb.10%.2.1.1.b, using n-phase column chromatography revealed 7 active fractions (7, 8, 9, 10, 11, 14 and 15). The gas chromatography-mass spectrometer analysis of Fraction 7 indicated some phenolic compounds including 4-nonylphenol, methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, acetosyringone, 2,4-bis(1-phenylethyl)phenol, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, tri(2-ethylhexyl) trimellitate and oleamide. Conclusions:Indeed, this is a preliminary information in profiling chemical substances, produced by Bacterium sp. Lb.10%.2.1.1.b. Further purification and structural chemical determination were needed to find a comprehensive result.

  18. The antibacterial capacity of marine bacteria isolated from sponge Acanthella cavernosa collected from Lombok Island

    Directory of Open Access Journals (Sweden)

    Tutik Murniasih

    2016-10-01

    Full Text Available Objective: To find a potent antibiotic producer from the sponge-associated bacteria as well as to profile the important substances. Methods: Sponge collection, bacteria isolation, extraction and characterization of potent active compounds were carried out for this study. Results: Approximately 59 single strains of bacteria were isolated from this sponge. Totally 40 strains showed activity against Escerichia coli, Staphylococcus aureus and Vibrio eltor. The chemical separation of the potent strain Bacterium sp. Lb.10%.2.1.1.b, using n-phase column chromatography revealed 7 active fractions (7, 8, 9, 10, 11, 14 and 15. The gas chromatography-mass spectrometer analysis of Fraction 7 indicated some phenolic compounds including 4-nonylphenol, methyl 3-(3,5-di-tert-butyl-4-hydroxyphenylpropionate, acetosyringone, 2,4-bis(1-phenylethylphenol, 1,2-benzenedicarboxylic acid, mono(2- ethylhexyl ester, tri(2-ethylhexyl trimellitate and oleamide. Conclusions: Indeed, this is a preliminary information in profiling chemical substances, produced by Bacterium sp. Lb.10%.2.1.1.b. Further purification and structural chemical determination were needed to find a comprehensive result.

  19. Study of frequency of bacteria isolated from blood culture and their antibiotic susceptibility pattern in a university hospital in Tehran

    OpenAIRE

    Hoorieh Saderi; Ali akbar Karimi; Marzieh Loni

    2009-01-01

    Introduction: Determining frequency of bacteria, isolated from blood culture and their antibiotic susceptibility patterns, has epidemiological significance and can help in selecting empirical therapy. This study was aimed to assess, the frequency of bacteria isolated from blood culture of patients suspected to bacteremia and their antibiotic susceptibility patterns. Methods: Culture of blood and determination of antibiotic susceptibility was done by standard methods. In this study, a variety ...

  20. Isolation and Identification of Lactic Acid Bacteria Isolated from a Traditional Jeotgal Product in Korea

    Science.gov (United States)

    Cho, Gyu Sung; Do, Hyung Ki

    2006-06-01

    Seventeen lactic acid bacterial strains (LAB) were isolated using MRS agar medium from Jeotgal, a Korean fermented food, purchased at the Jukdo market of Pohang. To identify the strains isolated, they were tested by examining their cell morphologies, gram-staining, catalase activity, arginine hydrolase activity, D-L lactate form and carbohydrate fermentation. According to the phenotypic characteristics, three strains were tent atively identified as Lactobacillus spp., ten were Enterococcus spp. (or Streptococcus spp., or Pediococcus spp.) and the rest were Leuconostoc spp. (or Weissella spp.). Five strains among 17 were chosen by preliminary bacteriocin activity test. Four bacterial strains which inhibited both indicator microorganisms were identified by 16S rRNA sequencing. The results are as follows; Leuconostoc mesenteroides (HK 4), Leuconostoc mesenteroides (HK 5), Leuconostoc mesenteroides(HK 11), Streptococcus salivarius(HK 8). In order to check LAB which are showing a high survival rate in gut, we investigated three strains inhibiting both indicator microorganisms in artificial gastric acid and bile juice -all except HK8. The three strains mentioned above grew in extreme low acid conditions.

  1. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    Science.gov (United States)

    Hoyt, Joseph R; Cheng, Tina L; Langwig, Kate E; Hee, Mallory M; Frick, Winifred F; Kilpatrick, A Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species.

  2. Hexavalent Chromium Reduction and Its Distribution in the Cell and Medium by Chromium Resistant Fusarium solani

    Directory of Open Access Journals (Sweden)

    Mousumi Sen

    2013-01-01

    Full Text Available In the present work, batch biosorption of Cr(VI was studied using the fungal strain isolated from soil. The fungal strain was characterized as Fusarium solani. The total Cr distribution in the biomass (fungus and in the media obtained from the experiment conducted at 500 mg l -1 initial Cr(VI concentration and pH 5.0. The results indicated both intracellular and extracellular accumulation and enzymatic reduction of Cr(VI and this was supported by the Transmission Electron Microscopic (TEM observation at the same Cr(VI concentration and pH value. Chromium elution from Fusarium solani containing Cr was then tried out using a number of chromium eluting reagents and a maximum Cr could be eluted using 0.5N sodium hydroxide solution without destructing the biomass structure. The total Cr was recovered by pH adjustment from both biomass and media was found to be 44% of the initial Cr(VI concentration (500 mg l-1.

  3. THE STUDY OF ANTIBIOTIC- AND FAGOSENSITIVITY OF NOSOCOMIAL STRAINS BACTERIA ISOLATED FROM TRANSPLANTED PATIENTS

    Directory of Open Access Journals (Sweden)

    N. I. Gabrielan

    2011-01-01

    Full Text Available Antibiotic and fagosensitivity most etiologically important nosocomial strains of bacteria – Pseudomonas aeru- ginosa, Klebsiella pneumoniae, E. coli, Proteus spp., Staphylococcus spp. were studied. Multiple drug-resistant bacteria as gram-positive and gram-negative, isolated from 8 substrates, had been demonstrated. With regard to the sensitivity of Pseudomonas aeruginosa >40% was observed in 40–50% of the strains to aminoglycosides – aztreonam, amikacin, netilmicin, and only 23–25% of the strains – to gentamicin and levofloxacin (an average of antibiotic susceptibility was 27%. All strains of ESBL Klebsiella drew up and were sensitive only to imipenem, meropenem and aminoglycosides. Specific phages lysed 43–48% of the strains Pseudomonas aeruginosa and Klebsiella pneumoniae, E. coli, Pro- teus spp., multidrug resistant strains of Staphylococcus spp. It is proposed to introduce the use of phages in clinical practice. 

  4. Study of bacteria isolated from the foot pad of Spheniscus magellanicus with and without bumblefoot

    Directory of Open Access Journals (Sweden)

    L.G. Osório

    2013-02-01

    Full Text Available The bumblefoot or pododermatitis is among the diseases with the highest morbidity in Magellanic penguins, sometimes evolving to septicemia and death. Therefore, this study aimed to relate the main species involved in the disorder, as well as the in vitro susceptibility profile of the microorganisms against routine antimicrobial usage in Veterinary Medicine. During two years in vivo material was harvested from 200 footpads (n=100 animals for microbiological analysis and in vitro susceptibility tests against the Antibiotic enrofloxacin, streptomycin, penicillin and cephalosporin. Bacteria have been identified both as part of permanent and transient microbiota, also being associated to 100% of the pododermatitis cases. The most prevalent genus were Staphylococcus and Corynebacterium. The antibiograms of all the isolated bacteria resulted in greater susceptibility of the strains facing cephalosporin, followed by enrofloxacin, streptomycin and penicillin.

  5. Identification and Characteristics of Lactic Acid Bacteria Isolated from Sour Dough Sponges.

    Science.gov (United States)

    Okada, S; Ishikawa, M; Yoshida, I; Uchimura, T; Ohara, N; Kozaki, M

    1992-01-01

    Lactic acid bacteria in four samples of sour dough sponges were studied quantitatively and qualitatively. In each sponge, there were one or two species of the genus Lactobacillus: L. reuteri and L. curvatus in San Francisco sour dough sponge, L. brevis and L. hilgardii in panettone sour dough sponge produced in Italy, L. sanfrancisco from a rye sour dough sponge produced in Germany, and L. casei and L. curvatus from a rye sour dough sponge produced in Switzerland. For all isolates except the L. reuteri strains oleic acid, a component of the Tween 80 added to the medium, was essential for growth. It was of interest that lactobacilli requiring oleic acid were the predominant flora of lactic acid bacteria in the microbial environment of sour dough sponges.

  6. ISOLATION AND IDENTIFICATION OF LACTIC ACID PRODUCING BACTERIA FROM CAMEL MILK

    Directory of Open Access Journals (Sweden)

    Toqeer Ahmad, Rashida Kanwal, Izhar Hussain Athar1, Najam Ayub

    2002-03-01

    Full Text Available Lactic acid bacteria (LAB were isolated from camel milk by culturing the camel milk on specific media and pure culture was obtained by sub culturing. Purification of culture was confirmed by Gram's staining and identified by different bio-chemical tests. Camel milk contains lactic acid producing bacteria including Strpptococci such as S. cremoris and S. lactis and Lactobacilli such as L. acidophilus L. acidophilus grows more rapidly in camel milk than others as its growth is supported by camel milk. A variety of food can be preserved by lactic acid fermentation, so starter culture was prepared from strains which were isolated from camel milk. Camel and buffalo's milk cheese was prepared by using starter culture. The strains isolated from camel milk were best for acid production and can coagulate the milk in less lime. Camel milk cheese was prepared and compared with buffalo's milk cheese. It is concluded that cheese can be prepared successfully from camel milk and better results can be obtained by coagulating milk with starter culture.

  7. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria.

    Science.gov (United States)

    Kaškonienė, Vilma; Stankevičius, Mantas; Bimbiraitė-Survilienė, Kristina; Naujokaitytė, Gintarė; Šernienė, Loreta; Mulkytė, Kristina; Malakauskas, Mindaugas; Maruška, Audrius

    2017-02-01

    The scientific interest for the search of natural means of microbial inhibitors has not faded for several years. A search of natural antibiotics, so-called bacteriocins which are produced by lactic acid bacteria (LAB), gains a huge attention of the scientists in the last century, in order to reduce the usage of synthetic food additives. Pure bacteriocins with wide spectra of antibacterial activity are promising among the natural biopreservatives. The usage of bacteriocin(s) producing LAB as starter culture for the fermentation of some food products, in order to increase their shelf-life, when synthetic preservatives are not allowable, is also possible. There are a lot of studies focusing on the isolation of new bacteriocins from traditional fermented food, dairy products and other foods or sometimes even from unusual non-food matrices. Bacteriocins producing bacteria have been isolated from different sources with the different antibacterial activity against food-borne microorganisms. This review covers the classification of bacteriocins, diversity of sources of bacteriocin(s) producing LAB, antibacterial spectra of isolated bacteriocins and analytical methods for the bacteriocin purification and analysis within the last 15 years.

  8. Taxonomic status and ecologic function of methanogenic bacteria isolated from the oral cavity of humans

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, C.W.

    1985-01-01

    The detection of methane gas in samples of dental plaque and media inoculated with dental plaque was attributed to the presence of methane-producing bacteria in the plaque microbiota. The results of a taxonomic analysis of the 12 methanogenic isolates obtained from human dental plaque, (ABK1-ABK12), placed the organisms in the genus Methanobrevibacter. A DNA-DNA hybridization survey established three distinct genetic groups of oral methanogens based on percent homology values. The groups exhibited less than 32% homology between themselves and less than 17% homology with the three known members of the genus methanobrevibacter. The ecological role of the oral methanogens was established using mixed cultures of selected methanogenic isolates (ABK1, ABK4, ABK6, or ABK7) with oral heterotrophic bacteria. Binary cultures of either Streptococcus mutans, Streptococcus sanguis, Veillonella rodentium, Lactobacillus casei, or Peptostreptococcus anaerobius together with either methanogenic isolates ABK6 or ABK7 were grown to determine the effect of the methanogens on the distribution of carbon end products produced by the heterotrophs. Binary cultures of S. mutans and ABK7 exhibited a 27% decrease in lactic acid formation when compared to pure culture of S. mutans. The decrease in lactic acid production was attributed to the removal of formate by the methanogen, (ABK7), which caused an alteration in the distribution of carbon end products by S. mutans.

  9. Antagonist capacity of Newly Isolated Strains of Pseudomonas Fluorescens against Three Important Phytopathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Reynaldo D.L. Cruz-Quiroz

    2011-01-01

    Full Text Available Problem statement: Phytopatogenic bacteria cause several damages to plants with important economical consequences. They provoke losses of product quality affecting all commercial chain of crops, for this reason, their control is a priority. Approach: We evaluated antagonist capacity of newly isolated Pseudonomas fluorescens strains against three important phytopatogenic bacteria (Clavibacter michiganensis, Xanthomonas axonopodis and Erwinia carotovora. Soils from commercial cropping of Capsicum annum L of several Mexican regions were used to isolate P. fluorescens strains. Results: Isolates producing flourescein were purified on King B agar and biochemically identified. Crude extracts with and without cells were produced in King B broths and their antagonist capacities were evaluated by the plate diffusion procedure on nutritive agar. Conclusion: Obtained results demonstrated that cell free extracts exhibited a limited antagonist capacity in comparison of those extracts with cells, which showed an excellent capacity to inhibit the growth of C. michiganensis, X. axonopodis and E. carotovora, demonstrating the intracellular nature of the bioactive metabolites associated to bacterial growth inhibition.

  10. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  11. Characterisation of lactic acid bacteria isolated from naturally fermented Greek dry salami.

    Science.gov (United States)

    Samelis, J; Maurogenakis, F; Metaxopoulos, J

    1994-10-01

    A total of 348 lactic acid bacteria isolated from five batches of naturally fermented dry salami at various stages of ripening were characterised. The majority of the strains were assigned to two main phylogenetic groups of species: (i) the psychrotrophic, formerly called atypical, meat streptobacteria (169 strains) and (ii) a new genus Weissella (120), which was recently proposed (Collins et al., 1993) to include Leuconostoc paramesenteroides and some other closely related species. Meat streptobacteria were identified as Lactobacillus curvatus (88 strains) and L. sake (76), whereas 5 strains were indistinguishable and, thus designated L. sake/curvatus. Non-psychrotrophic streptobacteria were also isolated and identified as L. plantarum (34 strains), L. farciminis (10), L. coryniformis (1) and L. casei subsp. pseudoplantarum (1). The majority of the Weissella strains (86) were leuconostoc-like bacteria; four of them were identified as W. viridescens, 11 belonged to the newly described W. hellenica (Collins et al., 1993), another 11 resembled W. paramesenteroides, whereas 60 isolates were not classified to any species. The latter group comprised strains that produced D(L)-lactate. The remaining Weissella were gas-forming, arginine-positive rods assigned to W. minor (31) and W. halotolerans (3). Other species identified were Enterococcus faecium (10), Leuconostoc mesenteroides (1), L. brevis (1) and Pediococcus sp. (1). The main criteria used to distinguish between above species as well as their distribution on the five salami batches in relation to their succession with time and suitability as starters were discussed.

  12. Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation

    Directory of Open Access Journals (Sweden)

    Uttiya Dey

    2016-06-01

    Full Text Available Ground water arsenic contamination is a widespread problem in many developing countries including Bangladesh and India. In recent years development of modern innovative technologies for the removal of arsenic from aqueous system has become an interesting topic for research. In this present study, two rod shaped Gram-positive bacteria are being reported, isolated from arsenic affected ground water of Purbasthali block of Burdwan, West Bengal, India, which can tolerate arsenate concentration up to 4500 ppm and 550 ppm of arsenite concentration. From biochemical analysis and 16S rRNA sequencing, they were identified as Bacillus sp. and Aneurinibacillus aneurinilyticus respectively. The isolates SW2 and SW4 can remove 51.45% and 51.99% of arsenite and 53.29% and 50.37% of arsenate, respectively from arsenic containing culture media. Both of the isolate can oxidize arsenite to less toxic arsenate. These two arsenic resistant bacteria can be used as a novel pathway for the bioremediation of arsenic.

  13. Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species

    Science.gov (United States)

    Bulgasem, Bulgasem Y.; Lani, Mohd Nizam; Wan Yusoff, Wan Mohtar; Fnaish, Sumaya G.

    2016-01-01

    The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly (p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly (p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species. PMID:28154488

  14. Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces.

    Science.gov (United States)

    Ji, Keunho; Jang, Na Young; Kim, Young Tae

    2015-09-01

    The purpose of this study was to investigate lactic acid bacteria with antioxidative and probiotic activities isolated from Korean healthy infant feces and kimchi. Isolates A1, A2, S1, S2, and S3 were assigned to Lactobacillus sp. and isolates A3, A4, E1, E2, E3, and E4 were assigned to Leuconostoc sp. on the basis of their physiological properties and 16S ribosomal DNA sequence analysis. Most strains were confirmed as safe bioresources through nonhemolytic activities and non-production of harmful enzymes such as β-glucosidase, β- glucuronidase and tryptophanase. The 11 isolates showed different resistance to acid and bile acids. In addition, they exhibited antibacterial activity against foodborne bacteria, especially Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Furthermore, all strains showed significantly high levels of hydrophobicity. The antioxidant effects of culture filtrates of the 11 strains included 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity, 2.2'- azino-bis (2-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity, and superoxide dismutase activity. The results revealed that most of the culture filtrates have effective scavenging activity for DPPH and ABTS radicals. All strains appeared to have effective superoxide dismutase activity. In conclusion, the isolated strains A1, A3, S1, and S3 have significant probiotic activities applicable to the development of functional foods and health-related products. These strains might also contribute to preventing and controlling several diseases associated with oxidative stress, when used as probiotics.

  15. Highly effective bacterial agents against Cimbex quadrimaculatus (Hymenoptera: Cimbicidae): isolation of bacteria and their insecticidal activities.

    Science.gov (United States)

    Cakici, Filiz Ozkan; Ozgen, İnanc; Bolu, Halil; Erbas, Zeynep; Demirbağ, Zihni; Demir, İsmail

    2015-01-01

    Cimbex quadrimaculatus (Hymenoptera: Cimbicidae) is one of the serious pests of almonds in Turkey and worldwide. Since there is no effective control application against this pest, it has been a serious problem up to now. Therefore, we aimed to find an effective bacterium that can be utilized as a biocontrol agent against C. quadrimaculatus in pest management. We isolated seven bacteria from dead and live C. quadrimaculatus larvae, and evaluated the larvicidal potency of all isolates on the respective pest. Based on the morphological, physiological, biochemical and molecular properties (partial sequence of 16S rRNA gene), the isolates were identified to be Bacillus safensis (CQ1), Bacillus subtilis (CQ2), Bacillus tequilensis (CQ3), Enterobacter sp. (CQ4), Kurthia gibsonii (CQ5), Staphylococcus sp. (CQ6) and Staphylococcus sciuri (CQ7). The results of the larvicidal activities of these isolates indicated that the mortality value obtained from all treatments changed from 58 to 100 %, and reached 100 % with B. safensis (CQ1) and B. subtilis (CQ2) on the 3rd instar larvae within 10 days of application of 1.89 × 10(9) cfu/mL bacterial concentration at 25 °C under laboratory conditions. Findings from this study indicate that these isolates appear to be a promising biocontrol agent for C. quadrimaculatus.

  16. Deep Subsurface Life from North Pond: Enrichment, Isolation, Characterization and Genomes of Heterotrophic Bacteria.

    Science.gov (United States)

    Russell, Joseph A; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F

    2016-01-01

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.

  17. Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products

    Directory of Open Access Journals (Sweden)

    Gamal Fadl M. Gad

    2014-01-01

    Full Text Available A total of 244 lactic acid bacteria (LAB strains were isolated from 180 dairy and pharmaceutical products that were collected from different areas in Minia governorate, Egypt. LAB were identified phenotypically on basis of morphological, physiological and biochemical characteristics. Lactobacillus isolates were further confirmed using PCR-based assay. By combination of phenotypic with molecular identification Lactobacillus spp. were found to be the dominant genus (138, 76.7% followed by Streptococcus spp. (65, 36.1% and Lactococcus spp. (27, 15%. Some contaminant organisms such as (Staphylococcus spp., Escherichia coli, Salmonella spp., mould and yeast were isolated from the collected dairy samples but pharmaceutical products were free of such contaminants. Susceptibility of LAB isolates to antibiotics representing all major classes was tested by agar dilution method. Generally, LAB were highly susceptible to Beta-lactams except penicillin. Lactobacilli were resistant to vancomycin, however lactococci and streptococci proved to be very susceptible. Most strains were susceptible to tetracycline and showed a wide range of streptomycin MICs. The MICs of erythromycin and clindamycin for most of the LAB were within the normal range of susceptibility. Sixteen Lactobacillus,8 Lactococcus and 8 Streptococcus isolates including all tetracycline and/or erythromycin resistant strains were tested for the presence of tetracycline and/or erythromycin resistant genes [tet(M and/or erm(B]. PCR assays shows that some resistant strains harbor tet(M and/or erm(B resistance genes.

  18. Isolation and Selection of Anti-Candida albicans Metabolites Producing Lactic Acid Bacteria from Various Sources

    Directory of Open Access Journals (Sweden)

    Tanes SUNGSRI

    2015-02-01

    Full Text Available Five hundred and fifty-two of lactic acid bacteria (LAB have been isolated and screened from fermented foods, natural sources and dairy effluents on De Mann Rogosa Sharpe (MRS agar. Fifty-one isolates, in the percentile of 9.24, produced the secondary metabolites that could inhibit the growth of Candida albicans BCC6120 by using dual culture overlay assay. The culture broth of LAB, moreover, showed anti-C. albicans activity in acidic condition at pH range of 3.0-5.0 by using agar well diffusion method. Interestingly, the isolate L-47-2 showed much more colonization surrounding the surface of sterile toothpick and test tube when growing in MRS broth. The identification of isolate L-47-2 by morphological and biochemical characteristics using API 50 CHL Test Kit and further confirmed by 16S rRNA gene sequence analysis revealed that isolate L47-2 was similar to Lactobacillus paracasei with 99% nucleotide identity.    

  19. Bacteria isolated from a sugarcane agroecosystem: their potential production of polyhydroxyalcanoates and resistance to antibiotics

    Directory of Open Access Journals (Sweden)

    Lima Teresa Cristina S. de

    1999-01-01

    Full Text Available In this investigation, a sugarcane agroecosystem at a coastal tableland, in the northeast of Brazil, was screened to obtain bacteria strains able to synthesize poly-b-hydroxyalkanoates (PHA, using sucrose as the main carbon source. The potential to synthesize PHA was tested qualitatively by Sudan Black staining of colonies growing in different carbon sources: sucrose, glucose, fructose, propionate and cellulose. In a typical sugarcane crop management system, the plantation is burned before harvesting and vinasse, a byproduct of alcohol production, is used in a fertirrigation system causing, probably, selective pressures on the microbiota of natural environments. Eightytwo bacteria strains, belonging to 16 different genera and 35 different species, were isolated. The data showed that 11 strains (ca 13%, nine of which belonging to the genus Pseudomonas, presented a strong Sudan Black staining in several carbon sources tested and, simultaneously, showed multiple resistance to antibiotics. Resistance to antibiotics is an advantageous feature for the biotechnological production of PHAs. The total number of isolates with multiple resistance to antibiotics was 73, and 38% of them belong to the genus Pseudomonas. Among the isolates, ca 86% and 43% grew in the presence of 10-100 U/ml of penicillin and/or 100-300 mg/ml of virginiamycin, respectively. These antibiotics are utilized in the alcohol distillery we investigated. The results suggest that some agroecosystem environments could be considered as habitats where bacteria are submitted to nutritional unbalanced conditions, resulting in strains with potential ability to produce PHAs, and also, to an increase in the microbial diversity.

  20. Sequential Isolation of Saturated, Aromatic, Resinic and Asphaltic Fractions Degrading Bacteria from Oil Contaminated Soil in South Sumatera

    Directory of Open Access Journals (Sweden)

    Pingkan Aditiawati

    2012-04-01

    Full Text Available Sequential isolation has been conducted to obtain isolates of saturated, aromatic, resin, and asphaltene fractions degrading bacteria from oil contaminated sites. Five soil samples were collected from South Sumatera. These were analyzed using soil extract medium enriched with oil recovery or Remaining-Oil recovery Degradated (ROD as sole carbon and energy sources according to the isolation stage. ROD at the end of every isolation stage analyzed oil fractions by use of the SARA analysis method. Six isolates of bacteria have been selected, one isolate was fraction saturates degrading bacteria that are Mycobacterium sp. T1H2D4-7 at degradation rate 0.0199 mgs/h with density 8.4x106 cfu/g from stage I. The isolate T2H1D2-4, identified as Pseudomonas sp. was fraction aromatics degrading bacteria at accelerate 0.0141 mgs/h with density 5.1x106 cfu/g are obtained at stage II. Two isolates namely Micrococcus sp. T3H2D4-2 and Pseudomonas sp. T1H1D5-5 were fraction resins degrading bacteria by accelerate 0.0088 mgs/h at density 5.6x106 cfu/g and 0.0089 mgs/h at density 5.7x106 cfu/g are obtained at stage III. Isolation of stage IV has been obtained two isolates Pseudomonas sp. T4H1D3-1and Pseudomonas sp. T4H3D5-4 were fraction asphaltenes degrading bacteria by accelerate 0.0057 mgs/h at density 5.6x106 cfu/g and accelerate 0.0058 mgs/h at density 5.7x106 cfu/g.

  1. Isolation of bacteria producing chitinase and inhibiting growth of Rhizoctonia solani

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Five bacteria strains with higher chitinase activity were isolated by using a technique of enriched cell wall of R. solani. All of them showed inhibiting effect on the growth of R. solani. Being cultured 3 d, strain CH-1 showed higher chitinase activity on the chitin plate. The diameter of the transparent circle reached 8.7 mm (4 replications) . In the antagonistic test to R. solani in PDA plate, the circle was 18.1 mm. It was also observed that the antagonistic ability of some strains was not consistent with the chitinase activity (Table 1). It may be connected with the secretion of chitinase at different culture situations.

  2. Isolation, Identification and Phenotypic Characterization of Microcystin-Degrading Bacteria from Lake Erie

    Science.gov (United States)

    Krishnan, A.; Mou, X. J.

    2015-12-01

    Lake Erie, the smallest and warmest lake among the Laurentian Great Lakes, is known for its problem of eutrophication and frequent occurrence of harmful cyanobacterial blooms (CyanoHABs). One major harmful effect of CyanoHABs is the production of cyanotoxins, especially microcystins. Microcystins (MC) are a group of hepatotoxins and the predominant variant of them is MC-LR. Field measurements and lab experiments indicate that MC degradation in Lake Erie is mainly carried out by indigenous bacteria. However, our knowledge on taxa involved in this process is very limited. This study aimed to fill this knowledge gap using a culture-dependent approach. Water and surface sediment samples were collected from Lake Erie in 2014 and 2015 and enriched with MC-LR. Cells were plated on a number of culturing media. The obtained pure bacterial cultures were screened for MC degrading abilities by MT2 BIO-LOG assays and by growing cells in liquid media containing MC-LR as the sole carbon source. In the latter experiment, MC concentrations were measured using HPLC. Isolates showing positive MC degradation activities in the screening steps were designated MC+ bacteria and characterized based on their phenotypic properties, including colony pigmentation, elevation, opacity, margin, gram nature and motility. The taxonomic identity of MC+ bacteria was determined by 16S rRNA gene full-length DNA sequencing. The presence of mlrA, a gene encoding MC cleavage pathway, was detected by PCR. Our culturing efforts obtained 520 pure cultures; 44 of them were identified as MC+. These MC+ isolates showed diversity in taxonomic identities and differed in their morphology, gram nature, colony characteristics and motility. PCR amplification of mlrA gene yield negative results for all MC+ isolates, indicating that the primers that were used may not be ubiquitous enough to cover the heterogeneity of mlrA genes or, more likely, alternative degradative genes/pathways were employed by Lake Erie bacteria

  3. Enzymatic and antagonistic potential of bacteria isolated from typical fruit of Cerrado in Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    Cristina Ferreira Silva

    2015-08-01

    Full Text Available Brazil has great biodiversity, which is observed in the Cerrado biome of the tropical Brazilian savanna. The objectives of this study were to isolate and identify bacteria from Psychotria hoffmannseggiana with potential cellulase and pectinase production and with antagonistic activity against Aspergillus carbonarius, an Ochratoxin A (OTA producer. Ripe fruit were collected in the region of Passos City in the preserved Cerrado area in Minas Gerais State, Brazil. Serial dilutions were performed, and the bacteria isolated were biochemically characterized and identified by sequencing. To analyze the production of enzymes, the bacteria were cultivated in CMC and pectinase media. The better enzyme producers were optimized for production. Assays on the antagonistic activity for growth and sporulation were carried out in co-culture (bacteria and filamentous fungi. TLC was performed to verify the mycotoxin production. The predominant microbiota were Gram-negative bacteria belonging to the Enterobacteriaceae family. Some isolates showed potential for enzymatic and antagonistic activity, especially the isolate identified as Lysinibacillus fusiformis. This species was a better producer of cellulases (maximum activity: 103.1 mg glucose min.-1 mg-1 protein. In conclusion, the bacteria isolated from Psychotria hoffmannseggiana showed biotechnological potential for agro-industry and the environmental aspect.

  4. Laboratory identification of anaerobic bacteria isolated on Clostridium difficile selective medium.

    Science.gov (United States)

    Rodriguez, Cristina; Warszawski, Nathalie; Korsak, Nicolas; Taminiau, Bernard; Van Broeck, Johan; Delmée, Michel; Daube, Georges

    2016-06-01

    Despite increasing interest in the bacterium, the methodology for Clostridium difficile recovery has not yet been standardized. Cycloserine-cefoxitin fructose taurocholate (CCFT) has historically been the most used medium for C. difficile isolation from human, animal, environmental, and food samples, and presumptive identification is usually based on colony morphologies. However, CCFT is not totally selective. This study describes the recovery of 24 bacteria species belonging to 10 different genera other than C. difficile, present in the environment and foods of a retirement establishment that were not inhibited in the C. difficile selective medium. These findings provide insight for further environmental and food studies as well as for the isolation of C. difficile on supplemented CCFT.

  5. Inhibitory activity of Aloe vera gel on some clinically isolated cariogenic and periodontopathic bacteria.

    Science.gov (United States)

    Fani, Mohammadmehdi; Kohanteb, Jamshid

    2012-03-01

    Aloe vera is a medicinal plant with anti-inflammatory, antimicrobial, antidiabetic and immune-boosting properties. In the present study we investigated the inhibitory activities of Aloe vera gel on some cariogenic (Streptococcus mutans), periodontopathic (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis) and an opportunistic periodontopathogen (Bacteroides fragilis) isolated from patients with dental caries and periodontal diseases. Twenty isolates of each of these bacteria were investigated for their sensitivity to Aloe vera gel using the disk diffusion and microdilution methods. S. mutans was the species most sensitive to Aloe vera gel with a MIC of 12.5 µg/ml, while A. actinomycetemcomitans, P. gingivalis, and B. fragilis were less sensitive, with a MIC of 25-50 µg/ml (P Aloe vera gel at optimum concentration could be used as an antiseptic for prevention of dental caries and periodontal diseases.

  6. Biotransformation of phosphogypsum by bacteria isolated from petroleum-refining wastewaters.

    Science.gov (United States)

    Wolicka, Dorota; Kowalski, Włodzimierz; Boszczyk-Maleszak, Hanka

    2005-01-01

    The biotransformation of phosphogypsum in cultures of sulfate-reducing bacteria (SRB) isolated from crude petroleum-refining wastewaters or purified using activated sludge method was studied. Selection was with the microcosms method on Postgate and minimal medium with different carbon sources, Emerson medium and petroleum-refining wastewaters. Highest hydrogen sulfide production, in excess of 500 mg/L, was observed in culture of microorganisms isolated from purified petroleum-refining wastewaters in Postgate medium with phenol as sole carbon source. 76% phenol reduction with simultaneous biotransformation of 2.7g phosphogypsum/L (1350 mg SO4/L) was obtained. The results regarding post-culture sediment indicated 66% utilization of phosphogypsum introduced into the culture (5 g/L), which reflects the active biotransformation of phosphogypsum by the community selected from the wastewaters.

  7. Isolation and characterization of bacteria degrading polychlorinated biphenyls from transformer oil.

    Science.gov (United States)

    Rojas-Avelizapa, N G; Rodríguez-Vázquez, R; Martínez-Cruz, J; Esparza-García, F; Montes de Oca-García, A; Ríos-Leal, E; Fernández-Villagómez, G

    1999-01-01

    Polychlorinated biphenyls from transformer oil were degraded in liquid culture under aerobic conditions using a mixed bacterial culture isolated from a transformer oil sample with a high content of polychlorinated biphenyls and other hydrocarbons. Four strains were identified, three of them corresponded to genus Bacillus, the other one to Erwinia. Bacteria in the transformer oil could remove as much as 65% of polychlorinated biphenyls (88% W/V in the transformer oil). Additional data showed that the two isolated strains of B. lentus were able to grow on transformer oil and degrade polychlorinated biphenyls by 80 and 83%. Our results provide evidence that microorganisms occurring in transformer oil have the potential to degrade polychlorinated biphenyls.

  8. Bacteriocinogenic Bacteria Isolated from Raw Goat Milk and Goat Cheese Produced in the Center of México.

    Science.gov (United States)

    Hernández-Saldaña, Oscar F; Valencia-Posadas, Mauricio; de la Fuente-Salcido, Norma M; Bideshi, Dennis K; Barboza-Corona, José E

    2016-09-01

    Currently, there are few reports on the isolation of microorganisms from goat milk and goat cheese that have antibacterial activity. In particular, there are no reports on the isolation of microorganisms with antibacterial activity from these products in central Mexico. Our objective was to isolate bacteria, from goat products, that synthesized antimicrobial peptides with activity against a variety of clinically significant bacteria. We isolated and identified Lactobacillus rhamnosus, L. plantarum, L. pentosus, L. helveticus and Enterococcus faecium from goat cheese, and Aquabacterium fontiphilum, Methylibium petroleiphilum, Piscinobacter aquaticus and Staphylococcus xylosus from goat milk. These bacteria isolated from goat cheese were able to inhibit Staphylococcus aureus, Bacillus cereus, Escherichia coli, Listeria monocytogenes, L. inoccua, Pseudomona aeruginosa, Shigella flexneri, Serratia marcescens, Enterobacter cloacae and Klebsiella pneumoniae. In addition, bacteria from goat milk showed inhibitory activity against B. cereus, L. lactis, E. coli, S. flexneri, E. cloacae and K. pneumonia; S. aureus, L. innocua, S. agalactiae and S. marcescens. The bacteriocins produced by these isolates were shown to be acid stable (pH 2-6) and thermotolerant (up to 100 °C), but were susceptible to proteinases. When screened by PCR for the presence of nisin, pediocin and enterocin A genes, none was found in isolates recovered from goat milk, and only the enterocin A gene was found in isolates from goat cheese.

  9. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues.

    Science.gov (United States)

    Yang, Jinsong; Tan, Haisheng; Cai, Yimin

    2016-07-01

    The natural lactic acid bacteria (LAB) population, chemical composition, and silage fermentation of fruit residues were studied. Eighty-two strains of LAB were isolated from fruit residues such as banana leaf and stem, pineapple peel, and papaya peel. All strains were gram-positive and catalase-negative bacteria, and they were divided into 7 groups (A-G) according to morphological and biochemical characters. Strains in groups A to F were rods, and group G was cocci. Group F produced gas from glucose; other groups did not. Groups A to C and F formed dl-lactic acid, whereas groups D, E, and G formed l-lactic acid. Based on the 16S rRNA gene sequence and DNA-DNA hybridization analysis, groups A to G strains were identified as Lactobacillus plantarum (54.9% of the total isolates), Lactobacillus paraplantarum (3.6%), Lactobacillus nagelii (8.5%), Lactobacillus perolens (4.9%), Lactobacillus casei (11.0%), Lactobacillus fermentum (9.8%), and Enterococcus gallinarum (7.3%), respectively. Lactobacillus plantarum and Lactobacillus casei are the most frequently isolated from fruit residues as a dominant species, and they could grow at a lower pH conditions and produce more lactic acid than other isolates. Pineapple and papaya peels contained higher crude protein (11.5-13.8%) and water-soluble carbohydrate (16.8-22.4%), but lower acid detergent fiber contents (21.2 to 26.4%) than banana stems and leaves (8.2% crude protein, 42.8% acid detergent fiber, and 5.1% water-soluble carbohydrate). Compared with banana stem and leaf silages, the pineapple and papaya peel silages were well preserved with a lower pH and higher lactate content. The study suggests that the fruit residues contain excellent LAB species and abundant feed nutrients, and that they can be preserved as silage to be potential food resources for livestock.

  10. Characteristics of Lactic Acid Bacteria Isolated from Gastrointestinal Tract of Cemani Chicken and Their Potential Use as Probiotics

    Directory of Open Access Journals (Sweden)

    S. N. Jannah

    2014-12-01

    Full Text Available The aims of this study were to screen and characterize lactic acid bacteria (LAB isolated from gastrointestinal (GI tract of Cemani chicken, one of Indonesian local chicken and to investigate their potential use as probiotics. LAB were isolated from GI tract using MRSA and GYPA media and incubated anaerobically. Selected LAB were determined their probiotic properties with several assays. Identification of selected LAB was based on 16S rDNA sequences, morphological and biochemical characteristics. Ninety five bacteria were isolated and characterized as lactic acid bacteria (Gram positive, catalase negative, non sporeforming and acid producing. Twenty four isolates of LAB demonstrated antimicrobial activity against Escherichia coli JCM 1649 and Salmonella enteritidis B2586, and three selected isolates, i.e. CCM011, CSP004, and CVM002 showed the highest inhibition activity. The isolates had characters of high cell surface hydrophobicity and inter-isolate coaggregation ability of LAB, high survival at low pH, high phytase and protease activity (but no amylase and lipase activity, weak coaggregation with pathogen and no resistance to the examined antibiotics. The isolates were identified based on sequence analysis of 16S rRNA gene as Lactobacillus salivarius, however, each isolate had different profiles of sugar fermentation. Therefore the three LAB isolates had potential application as probiotics for chicken.

  11. [Inactivation of the chlorine-resistant bacteria isolated from the drinking water distribution system].

    Science.gov (United States)

    Chen, Yu-Qiao; Duan, Xiao-Di; Lu, Pin-Pin; Wang, Qian; Zhang, Xiao-Jian; Chen, Chao

    2012-01-01

    Inactivation experiments of seven strains of chlorine-resistant bacteria, isolated from a drinking water distribution system, were conducted with four kinds of disinfectants. All the bacteria showed high resistance to chlorine, especially for Mycobacterium mucogenicum. The CT value of 99.9% inactivation for M. mucogenicum, Sphingomonas sanguinis and Methylobacterium were 120 mg x (L x min)(-1), 7 mg x (L x min)(-1) and 4 mg x (L x min)(-1), respectively. The results of inactivation experiments showed that chlorine dioxide and potassium monopersulfate could inactive 5 lg of M. mucogenicum within 30 min, which showed significantly higher efficiency than free chlorine and monochloramine. Free chlorine was less effective because the disinfectant decayed very quickly. Chloramination needed higher concentration to meet the disinfection requirements. The verified dosage of disinfectants, which could effectively inactivate 99.9% of the highly chlorine-resistant M. mucogenicum within 1 h, were 3.0 mg/L monochloramine, 1.0 mg/L chlorine dioxide (as Cl2), and 1.0 mg/L potassium monopersulfate (as Cl2). It was suggested that the water treatment plants increase the concentration of monochloramine or apply chlorine dioxide intermittently to control the disinfectant-resistant bacteria.

  12. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods.

    Science.gov (United States)

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.

  13. Isolation and characterization of bacteriophages specific to hydrogen-sulfide-producing bacteria.

    Science.gov (United States)

    Gong, Chao; Heringa, Spencer; Singh, Randhir; Kim, Jinkyung; Jiang, Xiuping

    2013-01-01

    The objectives of this study were to isolate and characterize bacteriophages specific to hydrogen-sulfide-producing bacteria (SPB) from raw animal materials, and to develop a SPB-specific bacteriophage cocktail for rendering application. Meat, chicken offal, and feather samples collected from local supermarkets and rendering processing plants were used to isolate SPB (n = 142). Bacteriophages (n = 52) specific to SPB were isolated and purified from the above samples using 18 of those isolated SPB strains as hosts. The host ranges of bacteriophages against 5 selected SPB strains (Escherichia coli, Citrobacter freundii, and Hafnia alvei) were determined. Electron microscopy observation of 9 phages selected for the phage cocktail revealed that 6 phages belonged to the family of Siphoviridae and 3 belonged to the Myoviridae family. Restriction enzyme digestion analysis with endonuclease DraI detected 6 distinguished patterns among the 9 phages. Phage treatment prevented the growth of SPB for up to 10 h with multiplicity of infection ratios of 1, 10, 100, and 1000 in tryptic soy broth at 30 °C, and extended the lag phase of SPB growth for 2 h at 22 °C with multiplicities of infection of 10, 100, and 1000. These results suggest that the selected bacteriophage cocktail has a high potential for phage application to control SPB in raw animal materials destined for the rendering process.

  14. Effects of lactic acid bacteria isolated from fermented mustard on lowering cholesterol

    Institute of Scientific and Technical Information of China (English)

    Shu Chen Wang; Chen Kai Chang; Shu Chang Chan; Jiunn Shiuh Shieh; Chih Kwang Chiu; Pin-Der Duh

    2014-01-01

    Objective: To evaluate the ability of lactic acid bacteria (LAB) strains isolated from fermented mustard to lower the cholesterol in vitro.Methods:The ability of 50 LAB strains isolated from fermented mustard on lowering cholesterol in vitro was determined by modified o-phtshalaldehyde method. The LAB isolates were analyzed for their resistance to acid and bile salt. Strains with lowering cholesterol activity, were determined adherence to Caco-2 cells. Results: Strain B0007, B0006 and B0022 assimilated more cholesterol than BCRC10474 and BCRC 17010. The isolated strains showed tolerance to pH 3.0 for 3 h despite variations in the degree of viability and bile-tolerant strains, with more than 108 CFU/mL after incubation for 24 h at 1%oxigall in MRS. In addition, strain B0007 and B0022 identified as Lactobacillus plantarum with 16S rDNA sequences were able to adhere to the Caco-2 cell lines.Conclusions:These strains B0007 and B0022 may be potential functional sources for cholesterol-lowering activities as well as adhering to Caco-2 cell lines.

  15. Effects of lactic acid bacteria isolated from fermented mustard on lowering cholesterol

    Institute of Scientific and Technical Information of China (English)

    Shu; Chen; Wang; Chen; Kai; Chang; Shu; Chang; Chan; Jiunn; Shiuh; Shieh; Chih; Kwang; Chiu; Pin-Der; Duh

    2014-01-01

    Objective:To evaluate the ability of lactic acid bacteria(LAB)strains isolated from fermented mustard to lower the cholesterol in vitro.Methods:The ability of 50 LAB strains isolated from fermented mustard on lowering cholesterol in vitro was determined by modified o-phtshalaldehyde method.The LAB isolates were analyzed for their resistance to acid and bile salt.Strains with lowering cholesterol activity,were determined adherence to Caco-2 cells.Results:Strain B0007,B0006 and B0022 assimilated more cholesterol than BCRC10474 and BCRC17010.The isolated strains showed tolerance to pH 3.0 for 3h despite variations in the degree of viability and bile-tolerant strains,with more than 10~s CFU/mL after incubation for 24 h at 1%oxigall in MRS.In addition,strain B0007 and B0022 identified as Lactobacillus plantarum with 16S rDNA sequences were able to adhere to the Caco-2 cell lines.Conclusions:These strains B0007 and B0022 may be potential functional sources for cholesterollowering activities as well as adhering to Caco-2 cell lines.

  16. Selection and characterization of biofuel-producing environmental bacteria isolated from vegetable oil-rich wastes.

    Directory of Open Access Journals (Sweden)

    Almudena Escobar-Niño

    Full Text Available Fossil fuels are consumed so rapidly that it is expected that the planet resources will be soon exhausted. Therefore, it is imperative to develop alternative and inexpensive new technologies to produce sustainable fuels, for example biodiesel. In addition to hydrolytic and esterification reactions, lipases are capable of performing transesterification reactions useful for the production of biodiesel. However selection of the lipases capable of performing transesterification reactions is not easy and consequently very few biodiesel producing lipases are currently available. In this work we first isolated 1,016 lipolytic microorganisms by a qualitative plate assay. In a second step, lipolytic bacteria were analyzed using a colorimetric assay to detect the transesterification activity. Thirty of the initial lipolytic strains were selected for further characterization. Phylogenetic analysis revealed that 23 of the bacterial isolates were Gram negative and 7 were Gram positive, belonging to different clades. Biofuel production was analyzed and quantified by gas chromatography and revealed that 5 of the isolates produced biofuel with yields higher than 80% at benchtop scale. Chemical and viscosity analysis of the produced biofuel revealed that it differed from biodiesel. This bacterial-derived biofuel does not require any further downstream processing and it can be used directly in engines. The freeze-dried bacterial culture supernatants could be used at least five times for biofuel production without diminishing their activity. Therefore, these 5 isolates represent excellent candidates for testing biofuel production at industrial scale.

  17. Accelerated decolorization of reactive azo dyes under saline conditions by bacteria isolated from Arabian seawater sediment.

    Science.gov (United States)

    Khalid, Azeem; Kausar, Farzana; Arshad, Muhammad; Mahmood, Tariq; Ahmed, Iftikhar

    2012-12-01

    Presence of huge amount of salts in the wastewater of textile dyeing industry is one of the major limiting factors in the development of an effective biotreatment system for the removal of azo dyes from textile effluents. Bacterial spp. capable of thriving under high salt conditions could be employed for the treatment of saline dyecontaminated textile wastewaters. The present study was aimed at isolating the most efficient bacterial strains capable of decolorizing azo dyes under high saline conditions. Fiftyeight bacterial strains were isolated from seawater, seawater sediment, and saline soil, using mineral salt medium enriched with 100 mg l−1 Reactive Black-5 azo dye and 50 g NaCl l−1 salt concentration. Bacterial strains KS23 (Psychrobacter alimentarius) and KS26 (Staphylococcus equorum) isolated from seawater sediment were able to decolorize three reactive dyes including Reactive Black 5, Reactive Golden Ovifix, and Reactive Blue BRS very efficiently in liquid medium over a wide range of salt concentration (0-100 g NaCl l)⁻¹. Time required for complete decolorization of 100 mg dye l ⁻¹ varied with the type of dye and salt concentration. In general, there was an inverse linear relationship between the velocity of the decolorization reaction (V) and salt concentration. This study suggested that bacteria isolated from saline conditions such as seawater sediment could be used in designing a bioreactor for the treatment of textile effluent containing high concentration of salts.

  18. Isolation and Selection of Anti-Candida albicans Producing Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Monthon LERTCANAWANICHAKUL

    2005-06-01

    Full Text Available The forty isolates of lactic acid bacteria (LAB were obtained from various fermented foods. The cross streak plate method was used to preliminary screen for antimicrobial activity. LAB were isolated by selective medium, Mann Rogosa Sharpe (MRS. Most of the isolates showed inhibition against Staphylococcus aureus TISTR 517, Bacillus subtilis TISTR 008, Micrococcus luteus TISTR 884, Escherichia coli TISTR 887, Pseudomonas aeruginosa TISTR 781, and Candida albicans DMST 5239. Only sterile culture supernatant of isolate No. L14, later identified as Lactococcus lactis, showed antifungal activity by means of agar well diffusion assay. The activity was stable during heat treatment and was retained even after autoclaving at 121 °C for 15 minutes. Maximum activity was observed at pH values between 2.5-4.0, and was lost at higher pH values. The anti-C. albicans activity was fully regained after readjustment of the pH to the initial value (pH 3.5.

  19. Selection and characterization of biofuel-producing environmental bacteria isolated from vegetable oil-rich wastes.

    Science.gov (United States)

    Escobar-Niño, Almudena; Luna, Carlos; Luna, Diego; Marcos, Ana T; Cánovas, David; Mellado, Encarnación

    2014-01-01

    Fossil fuels are consumed so rapidly that it is expected that the planet resources will be soon exhausted. Therefore, it is imperative to develop alternative and inexpensive new technologies to produce sustainable fuels, for example biodiesel. In addition to hydrolytic and esterification reactions, lipases are capable of performing transesterification reactions useful for the production of biodiesel. However selection of the lipases capable of performing transesterification reactions is not easy and consequently very few biodiesel producing lipases are currently available. In this work we first isolated 1,016 lipolytic microorganisms by a qualitative plate assay. In a second step, lipolytic bacteria were analyzed using a colorimetric assay to detect the transesterification activity. Thirty of the initial lipolytic strains were selected for further characterization. Phylogenetic analysis revealed that 23 of the bacterial isolates were Gram negative and 7 were Gram positive, belonging to different clades. Biofuel production was analyzed and quantified by gas chromatography and revealed that 5 of the isolates produced biofuel with yields higher than 80% at benchtop scale. Chemical and viscosity analysis of the produced biofuel revealed that it differed from biodiesel. This bacterial-derived biofuel does not require any further downstream processing and it can be used directly in engines. The freeze-dried bacterial culture supernatants could be used at least five times for biofuel production without diminishing their activity. Therefore, these 5 isolates represent excellent candidates for testing biofuel production at industrial scale.

  20. Biomineralization processes of calcite induced by bacteria isolated from marine sediments.

    Science.gov (United States)

    Wei, Shiping; Cui, Hongpeng; Jiang, Zhenglong; Liu, Hao; He, Hao; Fang, Nianqiao

    2015-06-01

    Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10(-4) mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments.

  1. Biomineralization processes of calcite induced by bacteria isolated from marine sediments

    Directory of Open Access Journals (Sweden)

    Shiping Wei

    2015-06-01

    Full Text Available Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10−4 mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments.

  2. Isolation, screening and identification of mercury resistant bacteria from mercury contaminated soil

    Directory of Open Access Journals (Sweden)

    Kowalczyk Anna

    2016-01-01

    Full Text Available New bacterial strains resistant to high concentration of mercury were obtained and character iz ed focusing on their potential application in bioremediation. The biological material was isolated from soil contaminated with mercury. The ability to removal of Hg from the liquid medium and the effect of the various pH and mercury concentrations in the environment on bacterial strains growth kinetics were tested. The selected strains were identified by analysis of the 16S ribosome subunit coding sequenc es as Pseudomonas syringae. The analysis of Hg concentration in liquid medium as effect of microbial metabolism demonstrated that P. syringae is able to remove almost entire metal from medium after 120 hours of incubation. Obtained results revealed new ability of the isolated strain P. syringae. Analyzed properties of this soil bacteria species able to reduce concentration of Hg ors immobi lize this metal are promising for industrial wastewater treatment and bioremediation of the soils polluted especially by mercury lamps scrapping, measuring instruments, dry batteries, detonators or burning fuels made from crude oil, which may also contain mercury. Selected bacteria strains provide efficient and relatively low-cost bioremediation of the areas and waters contaminated with Hg.

  3. Isolation and Identification of Sodium Fluoroacetate Degrading Bacteria from Caprine Rumen in Brazil

    Directory of Open Access Journals (Sweden)

    Expedito K. A. Camboim

    2012-01-01

    Full Text Available The objective of this paper was to report the isolation of two fluoroacetate degrading bacteria from the rumen of goats. The animals were adult goats, males, crossbred, with rumen fistula, fed with hay, and native pasture. The rumen fluid was obtained through the rumen fistula and immediately was inoculated 100 μL in mineral medium added with 20 mmol L−1 sodium fluoroacetate (SF, incubated at 39°C in an orbital shaker. Pseudomonas fluorescens (strain DSM 8341 was used as positive control for fluoroacetate dehalogenase activity. Two isolates were identified by 16S rRNA gene sequencing as Pigmentiphaga kullae (ECPB08 and Ancylobacter dichloromethanicus (ECPB09. These bacteria degraded sodium fluoroacetate, releasing 20 mmol L−1 of fluoride ion after 32 hours of incubation in Brunner medium containing 20 mmol L−1 of SF. There are no previous reports of fluoroacetate dehalogenase activity for P. kullae and A. dichloromethanicus. Control measures to prevent plant intoxication, including use of fences, herbicides, or other methods of eliminating poisonous plants, have been unsuccessful to avoid poisoning by fluoroacetate containing plants in Brazil. In this way, P. kullae and A. dichloromethanicus may be used to colonize the rumen of susceptible animals to avoid intoxication by fluoroacetate containing plants.

  4. Effect of lactic acid bacteria isolated from fermented mustard on immunopotentiating activity

    Institute of Scientific and Technical Information of China (English)

    Chen-Kai; Chang; Shu-Chen; Wang; Chih-Kwang; Chiu; Shih-Ying; Chen; Zong-Tsi; Chen; Pin-Der; Duh

    2015-01-01

    Objective: To investigate the effect of lactic acid bacteria isolated from fermented mustard on immunopotentiating activity Methods: One hundred and fifty nine strains of lactic acid bacteria isolated from traditional Taiwan fermented mustard were evaluated for their immunopotentiating activity on a murine macrophage cell line RAW 264.7.Results: Of the strains, pronounced increases in the levels of nitric oxide(NO), tumor necrosis factor-α and interleukin-6 were observed in strains B0040, B0110 and B0145. Among them,strain B0145 had the highest NO and tumor necrosis factor-α generation in RAW 264.7 cells;strains B0040 and B0110 were also superior to that of Lactobacillus casei. These results demonstrated that NO and cytokines were effectively induced when the bacterial stimulants were treated with macrophages. In addition, strains B0040 and B0110 were identified as Lactobacillus plantarum, and B0145 as Weissella cibaria using 16 S rDNA analysis.Conclusions: The results implicated selected strains may be regarded as a biological response modifier and had a broad application prospects in exploiting new functional food or as a feed additive.

  5. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria.

    Science.gov (United States)

    Asad, S; Amoozegar, M A; Pourbabaee, A A; Sarbolouki, M N; Dastgheib, S M M

    2007-08-01

    Studies were carried out on the decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Among the 27 strains of halophilic and halotolerant bacteria isolated from effluents of textile industries, three showed remarkable ability in decolorizing the widely utilized azo dyes. Phenotypic characterization and phylogenetic analysis based on 16S rDNA sequence comparisons indicate that these strains belonged to the genus Halomonas. The three strains were able to decolorize azo dyes in a wide range of NaCl concentration (up to 20%w/v), temperature (25-40 degrees C), and pH (5-11) after 4 days of incubation in static culture. They could decolorize the mixture of dyes as well as pure dyes. These strains also readily grew in and decolorized the high concentrations of dye (5000 ppm) and could tolerate up to 10,000 ppm of the dye. UV-Vis analyses before and after decolorization and the colorless bacterial biomass after decolorization suggested that decolorization was due to biodegradation, rather than inactive surface adsorption. Analytical studies based on HPLC showed that the principal decolorization was reduction of the azo bond, followed by cleavage of the reduced bond.

  6. Lactic acid bacteria from "Sheep's Dhan", a traditional butter: Isolation, identification and major technological traits

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Twenty six lactic acid bacteria were isolated from sheep’s Dhan, a traditional butter made from sheep’s milk in Jijel (East of Algeria. These strains belong to three genera: Lactococcus, Leuconostoc and Lactobacillus. The results showed that Lactococcus lactis ssp diacetylactis was the predominant species in this traditional butter. The results of the assessment of the technological aptitude indicate that a major strain has a good acidification aptitude, some of them show good proteolytic activity and only Leuconostoc mesenteroides ssp. dextranicum isolates were able to produce exopolysaccharide.

    Veintiséis bacterias lácticas fueron aisladas de “Sheep´s Dhan”, una mantequilla tradicional hecha con leche de oveja en Jijel (al Este de Argelia. Estas cepas pertenecen a tres géneros: Lactococcus, Leuconostoc y Lactobacillus. Los resultados mostraron que Lactococcus lactis ssp diacetylactis fue la especie predominante en esta mantequilla tradicional. Los resultados de la evaluación de la aptitud tecnológica indican que la principal cepa tiene una buena aptitud de acidificación, algunas de ellas mostraron una buena actividad proteolítica y únicamente Leuconostoc mesenteroides ssp. dextranicum fue capaz de producir exopolisacárido.

  7. Marine Bacteria with antimicrobials capacity isolated from cultures of bivalve mollusks

    Directory of Open Access Journals (Sweden)

    Fabiola Pellon

    2014-06-01

    Full Text Available Microorganisms have commonly been studied as producers of antibacterial substances; yet they are also considered producers of antifungic, antiviral, antiparasitic, citotoxics and inhibitory of other forms of cellular growth substances. This paper describes the isolation, inhibitory potential and phenotipic characterization of native bacterial strains associated to bivalve mollusks such as Argopecten purpuratus “concha de abanico” and Crassostrea gigas “ostra” in cultivation systems. From 345 marine strains collected, 20 strains were recovered that had the ability of inhibiting a wide spectrum of fish, mollusks and shellfish pathogenic bacteria; being the most sensitive pathogens Aeromonas sobria P-281, Aeromonas hydrophila ATCC 7966, Vibrio vulnificus ATCC 27562 and Vibrio parahaemolyticus ATCC 17803. The phenotipic characterization of this strains with inhibitory capacity allowed the identification of the following genera: Vibrio (40%, Aeromonas (15%, Flavobacterium (10%, Pseudomonas (5%, Moraxella (5%, Flexibacter (5%. A 20% could not be identified. The results suggest that the isolated bacteria could be used as probiotics agents for the biological control of pathogens from marine organisms of interest in mariculture.

  8. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Directory of Open Access Journals (Sweden)

    Enrico Baldan

    Full Text Available We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%, release ammonium (39%, secrete siderophores (38% and a limited part of them synthetized IAA and IAA-like molecules (5%. Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.

  9. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Science.gov (United States)

    Baldan, Enrico; Nigris, Sebastiano; Romualdi, Chiara; D'Alessandro, Stefano; Clocchiatti, Anna; Zottini, Michela; Stevanato, Piergiorgio; Squartini, Andrea; Baldan, Barbara

    2015-01-01

    We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammonium (39%), secrete siderophores (38%) and a limited part of them synthetized IAA and IAA-like molecules (5%). Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP) of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.

  10. Antimicrobial activity of extracellular metabolites from antagonistic bacteria isolated from potato (Solanum phureja crops

    Directory of Open Access Journals (Sweden)

    Sinar David Granada García

    2014-09-01

    Full Text Available Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja was tested through dual culture in this plant with different plant pathogenic fungi and bacteria. Isolates that showed significantly higher antagonistic activity were fermented in liquid media and crude extracts from the supernatants had their biological activities assessed by optical density techniques. Inhibitory effecton tested pathogens was observed for concentrations between 0.5% and 1% of crude extracts. There was a correlation between the antimicrobial activity of extracts and the use of nutrient-rich media in bacteria fermentation. Using a bioguided method, a peptidic compound, active against Fusarium oxysporum, was obtained from the 7ANT04 strain (Pyrobaculum sp.. Analysis by nuclear magnetic resonance and liquid chromatography coupled to mass detector evidenced an 11-amino acid compound. Bioinformatic software using raw mass data confirmed the presence of a cyclic peptide conformed by 11 mostly non-standard amino acids.

  11. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages

    DEFF Research Database (Denmark)

    Grossart, H.P.; Tang, K.W.; Kiørboe, Thomas

    2007-01-01

    to model aggregates (agar spheres) had threefold higher BPP and two orders of magnitude higher protease activity than their free-living counterpart. These observations could be explained by preferential colonization of the agar spheres by bacteria with inherently higher metabolic activity and/or individual......Marine snow aggregates are microbial hotspots that support high bacterial abundance and activities. We conducted laboratory experiments to compare cell-specific bacterial protein production (BPP) and protease activity between free-living and attached bacteria. Natural bacterial assemblages attached...... bacteria increasing their metabolism upon attachment to surfaces. In subsequent experiments, we used four strains of marine snow bacteria isolates to test the hypothesis that bacteria could up- and down-regulate their metabolism while on and off an aggregate. The protease activity of attached bacteria...

  12. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria

    Directory of Open Access Journals (Sweden)

    Magdy El-Said Mohamed

    2015-02-01

    Full Text Available Microorganisms possess enormous highly specific metabolic activities, which enable them to utilize and transform nearly every known chemical class present in crude oil. In this context, one of the most studied biocatalytic processes is the biodesulfurization (BDS of thiophenic sulfur-containing compounds such as benzothiophene (BT and dibenzothiophene (DBT in crude oils and refinery streams. Three newly isolated bacterial strains, which were affiliated as Rhodococcus sp. strain SA11, Stenotrophomonas sp. strain SA21, and Rhodococcus sp. strain SA31, were enriched from oil contaminated soil in the presence of DBT as the sole S source. GC-FID analysis of DBT-grown cultures showed consumption of DBT, transient formation of DBT sulfone (DBTO2 and accumulation of 2-hydroxybiphenyl (2-HBP. Molecular detection of the plasmid-borne dsz operon, which codes for the DBT desulfurization activity, revealed the presence of dszA, dszB, and dszC genes. These results point to the operation of the known 4S pathway in the BDS of DBT. The maximum consumption rate of DBT was 11 µmol/g Dry Cell Weight (DCW/h and the maximum formation rate of 2-HBP formation was 4 µmol/g DCW/h. Inhibition of both cell growth and DBT consumption by 2-HBP was observed for all isolates but SA11 isolate was the least affected. The isolated biocatalysts desulfurized other model DBT alkylated homologs. SA11 isolate was capable of desulfurizing BT as well. Resting cells of SA11 exhibited 10% reduction in total sulfur present in heavy crude oil and 18% reduction in total sulfur present in the hexane-soluble fraction of the heavy crude oil. The capabilities of the isolated bacteria to survive and desulfurize a wide range of S compounds present in crude oil are desirable traits for the development of a robust BDS biocatalyst to upgrade crude oils and refinery streams.

  13. Heavy metal tolerance (Cr, Ag AND Hg) in bacteria isolated from sewage

    Science.gov (United States)

    Lima de Silva, Agostinho A.; de Carvalho, Márcia A. Ribeiro; de Souza, Sérgio A. L; Dias, Patrícia M. Teixeira; da Silva Filho, Renato G.; de Meirelles Saramago, Carmen S.; de Melo Bento, Cleonice A.; Hofer, Ernesto

    2012-01-01

    Samples of sewage from a university hospital and a chemistry technical school were analysed for the percentage of bacterial tolerance to chromium (Cr), silver (Ag) and mercury (Hg). Additionally, we investigated the effect of these metals on pigmentation and on some enzymatic activities of the metal tolerant strains isolated, as well as antimicrobial resistance in some metal tolerant Enterobacteriaceae strains. Tolerance to Cr was observed mainly in Gram positive bacteria while in the case of Ag and Hg the tolerant bacteria were predominately Gram negative. Hg was the metal for which the percentage of tolerance was significantly higher, especially in samples from the hospital sewage (4.1%). Mercury also had the most discernible effect on color of the colonies. Considering the effect of metals on the respiratory enzymes, one strain of Ag-tolerant Bacillus sp. and one of Hg-tolerant P. aeruginosa were unable to produce oxidase in the presence of Ag and Hg, respectively, while the expression of gelatinase was largely inhibited in various Gram negative strains (66% by Cr). Drug resistance in Hg-tolerant Enterobacteriaceae strains isolated from the university hospital sewage was greater than 80%, with prevalence of multiple resistance, while the Ag-tolerant strains from the same source showed about 34% of resistance, with the predominance of mono-resistance. Our results showed that, despite the ability of metal tolerant strains to survive and grow in the presence of these elements, the interactions with these metals may result in metabolic or phisiological changes in this group of bacteria. PMID:24031994

  14. Heavy metal tolerance (Cr, Ag and Hg in bacteria isolated from sewage

    Directory of Open Access Journals (Sweden)

    Agostinho A. de Lima e Silva

    2012-12-01

    Full Text Available Samples of sewage from a university hospital and a chemistry technical school were analysed for the percentage of bacterial tolerance to chromium (Cr, silver (Ag and mercury (Hg. Additionally, we investigated the effect of these metals on pigmentation and on some enzymatic activities of the metal tolerant strains isolated, as well as antimicrobial resistance in some metal tolerant Enterobacteriaceae strains. Tolerance to Cr was observed mainly in Gram positive bacteria while in the case of Ag and Hg the tolerant bacteria were predominately Gram negative. Hg was the metal for which the percentage of tolerance was significantly higher, especially in samples from the hospital sewage (4.1%. Mercury also had the most discernible effect on color of the colonies. Considering the effect of metals on the respiratory enzymes, one strain of Ag-tolerantBacillus sp. and one of Hg-tolerant P. aeruginosa were unable to produce oxidase in the presence of Ag and Hg, respectively, while the expression of gelatinase was largely inhibited in various Gram negative strains (66% by Cr. Drug resistance in Hg-tolerant Enterobacteriaceae strains isolated from the university hospital sewage was greater than 80%, with prevalence of multiple resistance, while the Ag-tolerant strains from the same source showed about 34% of resistance, with the predominance of mono-resistance. Our results showed that, despite the ability of metal tolerant strains to survive and grow in the presence of these elements, the interactions with these metals may result in metabolic or phisiological changes in this group of bacteria.

  15. Isolation of bacteria causing secondary bacterial infection in the lesions of cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Ziaie Hengameh

    2008-01-01

    Full Text Available Background: Cutaneous Leishmaniasis (CL is a parasitic disease characterized by single or multiple ulcerations. Secondary bacterial infection is one of the complications of the disease that can increase the tissue destruction and the resulting scar. Objective: To effectively determine the incidence of real secondary bacteria infection in cutaneous leishmaniasis, we designed the current study. Methods and Materials: This was a cross-sectional study performed in Skin Diseases and Leishmaniasis Research Centre, Isfahan, Iran. In this study, 854 patients with confirmed CL were enrolled. Samples were taken from all the patients. Sterile swaps were achieved for the ulcer exudates and scraping was used for nonulcerated lesions. All the samples were transferred to tryptic soy broth medium. After 24 h of incubation in 37°C, they were transferred to eosin methylene blue agar (EBM and blood agar. Laboratory tests were used to determine the species of bacteria. All of the collected data were analyzed by SPSS software and chi-square. Results: Among 854 patients with confirmed cutaneous leishmaniasis, 177 patients (20.7% had positive cultures for secondary bacterial infection. Bacteria isolated from the lesions were as follows: Staphylococcus aureus - 123 cases (69.4%, coagulase negative Staphylococcus - 41 cases (23.1%, E. coil - 7 cases (3.9%, Proteus - 3 cases (1.7% and Klebsiella - 3 cases (1.7%. Conclusions: The incidence of secondary bacterial infection in lesions of CL was 20.7%. The most common isolated pathogen was Staphylococcus aureus . The incidence of secondary bacterial infection was significantly more in the ulcerated lesions as compared with nonulcerated lesions ( P = 0.00001.

  16. Isolation of iron-oxidizing bacteria from corroded concretes of sewage treatment plants.

    Science.gov (United States)

    Maeda, T; Negishi, A; Komoto, H; Oshima, Y; Kamimura, K; Sugio, T

    1999-01-01

    Thirty-six strains of iron-oxidizing bacteria were isolated from corroded concrete samples obtained at eight sewage treatment plants in Japan. All of the strains isolated grew autotrophically in ferrous sulfate (3.0%), elemental sulfur (1.0%) and FeS (1.0%) media (pH 1.5). Washed intact cells of the 36 isolates had activities to oxidize both ferrous iron and elemental sulfur. Strain SNA-5, a representative of the isolated strains, was a gram-negative, rod-shaped bacterium (0.5-0.6x0.9-1.5 microm). The mean G+C content of its DNA was 55.9 mol%. The pH and temperature optima for growth were 1.5 and 30 degrees C, and the bacterium had activity to assimilate 14CO2 into the cells when ferrous iron or elemental sulfur was used as a sole source of energy. These results suggest that SNA-5 is Thiobacillus ferrooxidans strain. The pHs and numbers of iron-oxidizing bacteria in corroded concrete samples obtained by boring to depths of 0-1, 1-3, and 3-5 cm below the concrete surface were respectively 1.4, 1.7, and 2.0, and 1.2 x 10(8), 5 x 10(7), and 5 x 10(6) cells/g concrete. The degree of corrosion in the sample obtained nearest to the surface was more severe than in the deeper samples. The findings indicated that the levels of acidification and corrosion of the concrete structure corresponded with the number of iron-oxidizing bacteria in a concrete sample. Sulfuric acid produced by the chemolithoautotrophic sulfur-oxidizing bacterium Thiobacillus thiooxidansis known to induce concrete corrosion. Since not only T. thiooxidans but also T. ferrooxidans can oxidize reduced sulfur compounds and produce sulfuric acid, the results strongly suggest that T. ferrooxidans as well as T. thiooxidans is involved in concrete corrosion.

  17. Antibiotic resistance in bacteria isolated from vegetables with regards to the marketing stage (farm vs. supermarket).

    Science.gov (United States)

    Schwaiger, Karin; Helmke, Katharina; Hölzel, Christina Susanne; Bauer, Johann

    2011-08-15

    The aim of this study was to elucidate whether and to what extent fresh produce from Germany plays a role as a carrier and reservoir of antibiotic resistant bacteria. For this purpose, 1001 vegetables (fruit, root, bulbous vegetables, salads and cereals) were collected from 13 farms and 11 supermarkets in Germany and examined bacteriologically. Phenotypic resistance of Enterobacter cloacae (n=172); Enterobacter gergoviae (n=92); Pantoea agglomerans (n=96); Pseudomonas aeruginosa (n=295); Pseudomonas putida (n=106) and Enterococcus faecalis (n=100) against up to 30 antibiotics was determined by using the microdilution method. Resistance to ß-lactams was most frequently expressed by P. agglomerans and E. gergoviae against cefaclor (41% and 29%). Relatively high resistance rates were also observed for doxycycline (23%), erythromycin (21%) and rifampicin (65%) in E. faecalis, for spectinomycin (28%) and mezlocillin (12%) in E. cloacae, as well as for streptomycin (19%) in P. putida. In P. aeruginosa, relatively low resistance rates were observed for the aminoglycosides amikacin, apramicin, gentamicin, neomycin, netilmicin and tobramycin (4%); 11% was resistant to streptomycin. No glycopeptide-resistant enterococci were observed. Resistance rates of bacteria isolated from farm samples were higher than those of the retail markets whenever significant differences were observed. This suggests that expressing resistance is at the expense of bacterial viability, since vegetables purchased directly at the farm are probably fresher than at the supermarket, and they have not been exposed to stress factors. However, this should not keep the customer from buying directly at the farm, since the overall resistance rates were not higher than observed in bacteria from human or animal origin. Instead, peeling or washing vegetables before eating them raw is highly recommended, since it reduces not only the risk of contact with pathogens, but also that of ingesting and spreading

  18. Inhibitory effect of Lactobacillus rhamnosus on pathogenic bacteria isolated from women with bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Gita Eslami

    2014-06-01

    Full Text Available Background: Considering the high prevalence of bacterial vaginosis and its association with urinary tract infection in women and treatment of gynecologic problems occur when a high recurrence of bacterial vaginosis is often treated with antibiotics. The purpose of this study is to investigate the inhibitory effect of Lactobacillus rhamnosus on pathogenic bacteria isolated from women with bacterial vaginosis, respectively.Materials and Methods: 96 samples from women with bacterial vaginosis discharge referred to health centers dependent Shahid Beheshti University in 91-92 were taken by a gynecologist with a dacron swab and put in sterile tubes containing TSB broth and Thioglycollate broth and were immediately sent to the lab location in cold chain for the next stages of investigation. From Thioglycollate and TSB medium was cultured on blood agar and EMB and Palkam and Differential diagnosis environments, and then incubated for 24 h at 37°C. Strains of Lactobacillus rhamnosus were cultured in MRSA environment and were transfered to the lab. After purification of pathogenic bacteria, MIC methods and antibiogram, Lactobacillus rhamnosus inhibitory effect on pathogenic bacteria is checked. Statistical analysis was done by SPSS software v.16.Results: The results of this study show the inhibitory effect of Lactobacillus rhamnosus on some pathogenic bacteria that cause bacterial vaginosis, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Entrococcus, Listeria monocytogenes and E.Coli. Microscopic examination of stained smears of the large number of Lactobacillus and pathogenic bacteria showed reduced. The prevalence of abnormal vaginal discharge, history of drug use means of preventing pregnancy and douching, respectively, 61%, 55%, 42% and 13% respectively. Significant difference was observed between the use and non-use of IUD in women with bacterial vaginosis infection

  19. Low-temperature isolation of disease-suppressive bacteria and characterization of a distinctive group of pseudomonads.

    Science.gov (United States)

    Johansson, P Maria; Wright, Sandra A I

    2003-11-01

    The influence of environmental factors during isolation on the composition of potential biocontrol isolates is largely unknown. Bacterial isolates that efficiently suppressed wheat seedling blight caused by Fusarium culmorum were found by isolating psychrotrophic, root-associated bacteria and by screening them in a bioassay that mimicked field conditions. The impact of individual isolation factors on the disease-suppressive index (DSI) of almost 600 isolates was analyzed. The bacteria originated from 135 samples from 62 sites in Sweden and Switzerland. The isolation factors that increased the probability of finding isolates with high DSIs were sampling from arable land, Swiss origin of samples, and origination of isolates from plants belonging to the family Brassicaceae. The colony morphology of the isolates was characterized and compared to DSIs, which led to identification of a uniform morphological group containing 57 highly disease-suppressive isolates. Isolates in this group were identified as Pseudomonas sp.; they were fluorescent on King's medium B and had characteristic crystalline structures in their colonies. These isolates were morphologically similar to seven strains that had previously been selected for suppression of barley net blotch caused by Drechslera teres. Members of this morphological group grow at 1.5 degrees C and produce an antifungal polyketide (2,3-deepoxy-2,3-didehydrorhizoxin [DDR]). They have similar two-dimensional polyacrylamide gel electrophoresis protein profiles, phenotypic characteristics, and in vitro inhibition spectra of pathogens. In summary, in this paper we describe some isolation factors that are important for obtaining disease-suppressive bacteria in our system, and we describe a novel group of biocontrol pseudomonads.

  20. Analysis on Antimicrobial Resistance of Clinical Bacteria Isolated from County Hospitals and a Teaching Hospital

    Institute of Scientific and Technical Information of China (English)

    SUN Ziyong; LI Li; ZHU Xuhui; MA Yue; LI Jingyun; SHEN Zhengyi; JIN Shaohong

    2006-01-01

    The distinction of antimicrobial resistance of clinical bacteria isolated from county hospitals and a teaching hospital was investigated. Disc diffusion test was used to study the antimicrobial resistance of isolates collected from county hospitals and a teaching hospital. The data was analyzed by WHONET5 and SPSS statistic software. A total of 655 strains and 1682 strains were collected from county hospitals and a teaching hospital, respectively, in the year of 2003. The top ten pathogens were Coagulase negative staphylococci (CNS), E. coli, Klebsiella spp. , S. areus, P. aeruginosa, Enterococcus spp. , Enterobacter spp. , otherwise Salmonella spp. , Proteus spp. , Shigella spp. in county hospitals and Streptococcus spp. , Acinetobacter spp. , X. maltophilia in the teaching hospital. The prevalence of multi-drug resistant bacteria was 5% (4/86) of methicillin-resistant S. areus (MRSA), 12% (16/133) and 15.8 % (9/57) of extended-spectrum β-lactamases producing strains of E. coli and Klebsiella spp. , respectively, in county hospitals. All of the three rates were lower than that in the teaching hospital and the difference was statistically significant (P<0.01). However, the incidence of methicillin-resistant CNS (MRCNS) reached to 70 % (109/156) in the two classes of hospitals. Generally, the antimicrobial resistant rates in the county hospitals were lower than those in the teaching hospital, except the resistant rates of ciprofloxacin, erythromycin, clindamycin, SMZco which were similar in the two classes of hospitals. There were differences between county hospitals and the teaching hospital in the distribution of clinical isolates and prevalence of antimicrobial resistance. It was the basis of rational use of antimicrobial agents to monitor antimicrobial resistance by each hospital.

  1. Isolation and Identification of Carcinogen Acenaphthene-Degrading Endemic Bacteria from Crude Oil Contaminated Soils around Abadan Refinery

    Directory of Open Access Journals (Sweden)

    Farshid Kafilzadeh

    2012-12-01

    Full Text Available Background and Objective: PAHs are non-polar organic compounds consisting of two or more fused benzene multi-rings. Among these compounds, acenaphthene is a multi-ring hydrocarbon that occurs abundantly in nature. Use of microorganisms to clean the contaminations of soil can be cheap and effective. The most important acenaphthene-degrading bacteria are pseudomonas, micrococcus, and Bacillus. The goal of this study was to isolate and identify the bacteria which degrade acenaphthene in soils around Abadan Refinery and to investigate the relation between the levels of environmental pollution with acenaphthene. Materials and Methods: Soil samples were collected from three areas around Abadan Refinery. The number of the bacteria was counted on the nutrient agar culture with and without acenaphthene. Isolation of the bacteria was done by culturing the samples on acenaphthene broth with a mineral-salt medium, and on an acenaphthene agar medium. Then, the bacteria were identified via biochemical diagnostic tests. Results: The logarithm average of the bacteria was 4.786 ± 0.073 at a medium with acenaphthene, which was 6.671 ± 0.073 less than that of the control medium. The maximum number of degrading bacteria was 7.089 ± 0.089 at Station C, and the minimum number of the degrading bacteria was 4.485 ± 0.089 at Station B. In this study, Bacillus sp, Micrococcus Luteus, Corynebacterium sp, Staphylococcus epidermidis, and Pseudomonas sp bacteria were isolated and identified in terms of frequency, respectively. Conclusion: The results of this study showed that the soil around Abadan Refinery contained a great number of acenaphthene degrading bacteria, especially Bacillus and Micrococcus.

  2. Isolation and Identification of Pyrene-degrading Bacteria from Soils around Landfills in Shiraz and Their Growth Kinetic Assay

    Directory of Open Access Journals (Sweden)

    Farshid Kafilzadeh

    2011-12-01

    Full Text Available Background & Objectives: Pyrene is a kind of carcinogen hydrocarbon in environment and one of the top 129 pollutants as ranked by the U.S.Environmental Pretection Agency (USEPA. Today's commodious method that is considered by many researchers is the use of microorganisms to degrade these compounds from the environment. The goal of this research is separation and identification of the indigenous bacterias which are effective in decomposition of Pyrene hydrocarbon from soils around Shiraz Landfills. Isolated bacteria growth in the presence of different concentrations of the aforesaid organic pollutant was evaluated. Materials & Methods: Taking samples from Landfills were done after transportation them to the laboratory. The numbers of the bacterias were counted in a medium including Pyrene 0.6 g/l and in another medium without Pyrene. The isolated bacterias were separated by the enriched medium of hydrocarbon Pyrene and were recognized accordance with standards methods (specialty of colony, microscopic properties, fermentation of sugars and biochemical test.The kinetic growth of the separated bacterias was evaluated every 12 hours during 7 successive days. Results: It was reported that the numbers of the bacterias in the medium without Pyrene is more than those with Pyrene (cfu/g. The separated bacterias were included Bacillus spp., Pseudomonas spp., Micrococcus spp., Mycobacterium spp. These four isolated bacterias showed the best growth with Pyrene 0.6 g/l during third and fourth days. Conclusion: The separating bacterias, effecting in decomposition of PAH, make this possibility that the modern methods with more efficiency to be created for removing the carcinogen organic polluters from the environment. Moreover, the separated bacterias (relating to this research can be applied to develop the microbial population in the areas that polluted with Pyrene.

  3. Isolation, structural elucidation and in vitro activity of 2-acetyl-2-decarboxamido-oxytetracycline against environmental relevant bacteria, including tetracycline-resistant bacteria

    DEFF Research Database (Denmark)

    Lykkeberg, Anne Kruse; Sengeløv, Gitte; Cornett, Claus;

    2004-01-01

    2-Acetyl-2-decarboxamido-oxytetracycline (ADOTC) is a major impurity of oxytetracycline (OTC) produced as a side product during fermentation. ADOTC was isolated from OTC and other impurities using preparative HPLC. The preparative column was an Xterra MS. C-18 chromatographic column (100 mm x 19 ...... sludge bacteria was deter-mined giving a potency of only 3% of that of OTC. With tetracycline-resistant bacteria, no anti-microbial activity was observed, indicating a mode of action similar to that of OTC....

  4. Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese.

    Science.gov (United States)

    Domingos-Lopes, M F P; Stanton, C; Ross, P R; Dapkevicius, M L E; Silva, C C G

    2017-05-01

    A total of 114 lactic acid bacteria were isolated at one and 21 days of ripening from a traditional raw cow's milk cheese without the addition of starter culture, produced by three artisanal cheese-makers in Azores Island (Pico, Portugal). Identification to species and strain level was accomplished by16S rRNA gene and PFGE analysis. Carbohydrate utilization profiles were obtained with the relevant API kits. Isolates were evaluated according to safety and technological criteria. The most frequently observed genus identified by 16S rRNA sequencing analysis was Enterococcus, whereas API system mostly identified Lactobacillus. The highest percentages of antibiotic resistance were to nalidixic acid (95%), and aminoglycosides (64-87%). All isolates were sensitive to several beta-lactam antibiotics and negative for histamine and DNase production. Gelatinase activity was detected in 49.1% of isolates, 43% were able to degrade casein and 93% were α-hemolytic. Most enterococci presented virulence genes, such as gelE, asaI, ace. Diacetyl production was found to be species dependent and one strain (Leu. citreum) produced exopolysaccharides. Selected strains were further studied for technological application and were found to be slow acid producers in milk and experimental cheeses, a desirable trait for adjunct cultures. Two strains were selected on the basis of technological and safety application as adjunct cultures in cheese production and presented the best cheese aroma and flavor in consumer preference tests. This is the first effort to characterize Pico cheese LAB isolates for potential application as adjunct cultures; the results suggest the potential of two strains to improve the quality of this traditional raw milk product.

  5. Evaluation of antibacterial effect of some Sinai medicinal plant extracts on bacteria isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Gamil S. G. Zeedan

    2014-11-01

    Full Text Available Aim: Bovine mastitis is the most economically important disease affecting dairy cattle worldwide from an economic, diagnostic and public-health point of view. The present study aimed to isolate and identify of bacteria causes mastitis in dairy cows and to evaluate the antibacterial activities of some selected medicinal plants extracts comparing antibiotics used in the treatment of mastitis in Egypt. Materials and Methods: A total of 203 milk samples of dairy cows were collected during the period from February to June 2013 at different Governorates in Egypt. The use clinical inspection and California mastitis test examination were provided efficient diagnostic tool for detection of clinical, subclinical mastitis and apparently normal health cattle. The collected milk samples were cultured on Nutrient, Blood agar, Mannitol salt, Edward’s and MacConkey agar plates supporting the growth of various types of bacteria for their biochemical studies and isolation. The antimicrobial activity of plants extracts (Jasonia montana and Artemisia herb albawith different solvent (ethanol, petroleum ether, chloroform and acetonewere studied in vitro against isolated bacteria from mastitis by paper desk diffusion and minimum inhibitory concentration method (MIC. Results: The prevalence of clinical, subclinical mastitis and normal healthy animals were 34.50%, 24.7% and 40.8% respectively. The major pathogens isolated from collected milk samples were Escherichia coli (22.16%, Staphylococcus aureus (20.19%, Streptococcus spp. (13.3%, Streptococcus agalactiae (12.8%, Streptococcus dysgalactia (0.5%, Pasteurella spp. (2.45%, Klebsiella spp. (1.47%and Pseudomonas spp. (0.45%. The highest antibacterial activity of J. montana plant extracted with acetone solvent against S. agalactiae, E. coli, S. aureus, Klebsiella spp and coagulase-negative Staphylococci with zone of inhibition values ± standard deviation (SD, ranging from 4.33±0.57 to 25.6±0.60 mm. The MIC values

  6. Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential.

    Science.gov (United States)

    Guo, C L; Zhou, H W; Wong, Y S; Tam, N F Y

    2005-01-01

    Surface sediment samples were collected from seven mangrove swamps in Hong Kong SAR with different degrees of contamination. The total concentrations of 16 PAHs in these sediments ranged from 169.41 to 1058.37 ng g(-1) with the highest concentration found in Ma Wan and the lowest in Kei Ling Ha Lo Wai mangrove swamp. In each swamp, three bacterial consortia were enriched from sediments using phenanthrene (Phe) as the sole carbon and energy source, and individual bacterial colony showing Phe degradation was isolated and identified by 16S rDNA gene sequence. The consortia enriched from Sai Keng and Ho Chung sediments had highest ability to degrade mixed PAHs in liquid medium, with 90% Phe and Fla (fluoranthene) degraded in 7 days. On the other hand, Kei Ling Ha Lo Wai-enriched consortia degraded less than 40% Phe and Fla. Pyrene (Pyr) was hardly degraded by the consortia enriched from sediments. Bacterial isolates, namely Rhodococcus (HCCS), Sphingomonas (MWFG) and Paracoccus (SPNT) were capable to degrade mixed PAHs (Phe + Fla + Pyr). Their degradation percentages could be lower, comparable or even higher than their respective enriched consortia, depending on the consortium and the type of PAH compounds. These results suggest that PAH-degrading bacteria enriched from mangrove sediments, either as a mixed culture or as a single isolate could be used for PAHs bioremediation.

  7. Effect of neem extract against the bacteria isolated from marine fish.

    Science.gov (United States)

    Dhayanithi, N B; Kumar, T T Ajith; Kathiresan, K

    2010-07-01

    Marine ornamental fishes are exceedingly valuable due to their high demand in domestic and international markets. There is a growing global interest to rear the fishes in captivity. But problem due to bacteria and fungi are the major hitch in captive condition. Since, the use of antibiotics is banned, an attempt was made to ascertain in vitro assay of the neem leaves extract against the bacterial pathogens isolated from infected fishes. Bacterial strains isolated from infected regions of the clown fishes Amphiprion sebae and A. ocellaris were identified as Aeromonas hydrophila, Enterobacter sp., E. coli, Pseudomonas aeruginosa, Proteus sp., Streptococcus sp., Vibrio cholerae, V. alginolyticus, V. parahaemolyticus and Yersinia enterocolitica. Ethanol and methanol extracts were highly inhibitory to the bacterial isolates when compared to other solvents. Ethanol extracts exhibited low minimum inhibitory concentration (75-250 microg ml(-1)) as compared to other extracts. The present finding revealed that the neem leaf extract significantly reduces the bacterial pathogens and their infection in marine ornamental fishes.

  8. Degradation pathways of low-ethoxylated nonylphenols by isolated bacteria using an improved method.

    Science.gov (United States)

    Zhang, Yu; Gu, Xin; Zhang, Jing; Yang, Min

    2014-01-01

    Nonylphenol ethoxylates (NPEOs) with low ethoxylation degree (NPav₂EO; containing two ethoxy units on average) and estrogenic properties are the intermediate products of nonionic surfactant NPEOs. To better understand the environmental fate of low-ethoxylated NPEOs, phylogenetically diverse low-ethoxylated NPEO-degrading bacteria were isolated from activated sludge using gellan gum as the gelling reagent. Four isolates belonging to four genera, i.e., Pseudomonas sp. NP522b in γ-Proteobacteria, Variovorax sp. NP427b and Ralstonia sp. NP47a in β-Proteobacteria, and Sphingomonas sp. NP42a in α-Proteobacteria were acquired. Ralstonia sp. NP47a or Sphingomonas sp. NP42a, have not been reported for the degradation of low-ethoxylated NPEOs previously. The biotransformation pathways of these isolates were investigated. The first three strains (NP522b, NP427b, and NP47a) exhibited high NPav₂EO oxidation ability by oxidizing the polyethoxy (EO) chain to form low-ethoxylated nonylphenoxy carboxylates, and then further oxidizing the alkyl chain to form carboxyalkylphenol polyethoxycarboxylates. Furthermore, Sphingomonas sp. NP42a degraded NPav2EO through a nonoxidative pathway with nonylphenol monoethoxylate as the dominant product.

  9. Diversity of bacteriocinogenic lactic acid bacteria isolated from Mediterranean fish viscera.

    Science.gov (United States)

    Migaw, Sarra; Ghrairi, Taoufik; Belguesmia, Yanath; Choiset, Yvan; Berjeaud, Jean-Marc; Chobert, Jean-Marc; Hani, Khaled; Haertlé, Thomas

    2014-04-01

    Nine lactic acid bacteria strains showing bacteriocin-like activity were isolated from various fresh fish viscera. The following species were identified based on 16S rDNA sequences: Enterococcus durans (7 isolates), Lactococcus lactis (1) and Enterococcus faecium (1). These strains were active against Listeria innocua and other LAB. Random amplified polymorphic DNA analyses showed four major patterns for the E. durans species. PCR analyses revealed a nisin gene in the genome of the Lc. lactis strain. Genes coding enterocins A, B and P were found in the genome of the E. faecium isolate. Enterocins A and B genes were also present in the genome of E. durans GM19. Hence, this is the first report describing E. durans strains producing enterocins A and B. Electrospray ionization mass spectrometry revealed that the purified bacteriocin produced by the E. durans GMT18 strain had an exact molecular mass of 6,316.89 Da. This bacteriocin was designated as durancin GMT18. Edman sequencing failed to proceed; suggesting that durancin GTM18 may contain terminal lanthionine residues. Overall, the results obtained revealed the presence of a variety of enterococci in Mediterranean fish viscera, as evidenced by their genetic profiles and abilities to produce different bacteriocins. These strains could be useful for food biopreservation or as probiotics.

  10. Isolation of lactic acid bacteria from Allium cepa var. aggregatum and study of their probiotic properties

    Directory of Open Access Journals (Sweden)

    Nannu Shafakatullah

    2015-04-01

    Full Text Available The shallot (Allium cepa var. aggregatum or the A. cepa Aggregatum Group is a botanical variety of the species Allium cepa, to which the multiplier onion also belongs. Shallots are called "small onions" in South India and are used extensively in cooking. The scientific use of shallots as a source of Lactic Acid Bacteria (LAB has not yet been examined. Indigenous knowledge revealed shallots as a good health source. An attempt has been made to find out the possibilities of LAB in fresh shallots. Four isolates were identified on the basis of their morphological, cultural, physiological and biochemical tests and their probiotic properties were evaluated. These isolates were screened for resistance against bile salt, gastric juice, intestinal juice, different NaCl concentrations, acidic pH, ability to inhibit pathogens, antibiotic resistance, adherence capacity as well as survival under different storage temperatures. Isolated strains Bacillus coagulans (Lactobacillus sporogenes, Lactobacillus brevis, Lactobacillus delbrueckii subsp. bulgaricus and Lactococcus lactis showed satisfactory probiotic potentials.

  11. Isolation and Identification of Phosphate Solubilizing and Nitrogen Fixing Bacteria from Soil in Wamena Biological Garden, Jayawijaya, Papua

    Directory of Open Access Journals (Sweden)

    SRI WIDAWATI

    2005-07-01

    Full Text Available A study was undertaken to investigate the occurrence of phosphate solubilizing bacteria (PSB and nitrogen-fixing bacteria (NFB from soil samples of Wamena Biological Garden (WbiG. Eleven soil samples were collected randomly to estimate microbial population which used plate count method. The result showed that the microbial population ranged from 5.0x103-7.5x106 cells of bacteria/gram of soil and 5.0x103-1.5x107 cells of bacteria/gram of soil for PSB and NFB respectively. There were 17 isolates which have been identified till genus and species. The isolated microorganism were identified as PSB i.e. Bacillus sp., B. pantothenticus, B. megatherium, Flavobacterium sp., F. breve, Klebsiella sp., K. aerogenes, Chromobacterium lividum, Enterobacter alvei, E. agglomerans, Pseudomonas sp., Proteus sp. and as NFB i.e. Azotobacter sp., A. chroococcum, A. paspalii, Rhizobium sp., and Azospirillum sp.

  12. Isolation and identification of quercetin degrading bacteria from human fecal microbes.

    Directory of Open Access Journals (Sweden)

    Zhichao Zhang

    Full Text Available Quercetin has a wide range of biological properties. The gut microflora can often modulate its biological activity and their potential health effects. There still is a lack of information about gut bacteria involving in this process. The strains of gut microbes from human feces that can transform quercetin were isolated and identified by in vitro fermentation. The results showed that Escherichia coli, Stretococcus lutetiensis, Lactobacillus acidophilus, Weissella confusa, Enterococcus gilvus, Clostridium perfringens and Bacteroides fragilis have the various ability of degrading quercetin. Among them, C. perfringens and B. fragilis were discovered to have the strongest ability of degrading quercetin. Additionally, quercetin can't inhibit the growth of C. perfringens. In conclusion, many species of gut microbiota can degrade quercetin, but their ability are different.

  13. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture

    DEFF Research Database (Denmark)

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik;

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance...... in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic....... used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have...

  14. Detection,isolation,and identification of cadmium-resistant bacteria based on PCR-DGGE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study focused on the screening of cadmium-resistant bacterial strains from Pb-Zn tailing.We investigated the diversity of microbial community inhabiting Dong-san-cha Pb-Zn tailing in Beijing,China,by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene of bacterial strain,and found two dominant strains in the DGGE profile.Using special culture media,We isolated two strong cadmium-resistant bacterial strains.On the basis of morphological,physiological,and biochemical characteristics,BIOLOG,and 16S rDNA sequencing,the two strains were identified as Bacillus cereus and Enterobaeter cloacae.Minimal inhibitory concentrations (MICs) of heavy metals for the bacteria were determined.E.cloacae showed higher MIC values for heavy metals and a larger range of antibiotic resistance than B.cereus.

  15. Endophytic bacteria isolated from orchid and their potential to promote plant growth.

    Science.gov (United States)

    Faria, Deise Cristina; Dias, Armando Cavalcante Franco; Melo, Itamar Soares; de Carvalho Costa, Francisco Eduardo

    2013-02-01

    Twelve endophytic bacteria were isolated from the meristem of in vitro Cymbidium eburneum orchid, and screened according to indole yield quantified by colorimetric assay, in vitro phosphate solubilization, and potential for plant growth promotion under greenhouse conditions. Eight strains with positive results were classified into the genus Paenibacillus by FAME profile, and evaluated for their ability to increase survival and promote the growth of in vitro germinated Cattleya loddigesii seedlings during the acclimatization process. The obtained results showed that all strains produced detectable indole levels and did not exhibit potential for solubilizing inorganic phosphate. Particularly, an increase of the total biomass and number of leaves was observed. Two strains of Paenibacillus macerans promoted plant growth under greenhouse conditions. None of the treatments had a deleterious effect on growth of inoculated plants. These results suggest that these bacterial effects could be potentially useful to promote plant growth during seedling acclimatization in orchid species other than the species of origin.

  16. Antimicrobial Potentials of Lactic Acid Bacteria Isolated From a Nigerian Menstruating Woman

    Directory of Open Access Journals (Sweden)

    Funmilola Abidemi Ayeni

    2013-06-01

    Full Text Available ABSTRACT Background: Racial differences affect the composition of lactic acid bacteria (LAB in women’s vagina. However, the bacteria present in women’s vagina exert protective effect against invading uropathogens through production of several inhibitory compounds. The LAB composition of the vagina of a menstruating Nigerian woman was examined to detect any difference between the subject’s vaginal LAB flora and reported cases of women from western world and to investigate the antimicrobial activities of these lactic acid bacteria against potential uropathogens and enteropathogens with analysis of possible compounds that may be responsible for inhibition. Methods: Informed consent was obtained from the subject. LAB were identified by partially sequencing the 16S rRNA gene. The organic acids were detected through High Performance Liquid Chromatography (HPLC while the volatile compounds were detected by gas chromatography. The hydrogen peroxide production was assayed through enzymatic reactions. Results: Enterococcus faecalis FAA025 and Streptococcus equines FAA026 were the only bacterial strains isolated. The two LAB strains inhibited the growth of all tested uropathogens and enteropathogens to remarkable degree. Both strains produced high quantities of lactic acid while high quantities of hydrogen peroxide, acetic acid and ethanol were only observed in Streptococcus equines FAA026. Conclusions: The results of this study suggest that in spite of absence of lactobacilli during menstruation in the subject, other LAB present (Enterococcus faecalis FAA025 and Streptococcus equines FAA026 can exert protective effects against invading uropathogens. Also, the LAB composition of the Nigerian woman is similar to her counterparts in the West. [TAF Prev Med Bull 2013; 12(3.000: 283-290

  17. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation.

    Science.gov (United States)

    van Beek, S; Priest, F G

    2000-12-01

    Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation.

  18. Isolation, Identification and Growth Characteristics of Four Tribenuron-methyl Degrading Bacterias

    Directory of Open Access Journals (Sweden)

    TIAN Shuang

    2014-10-01

    Full Text Available Four bacterias named B1, B2, B3 and B4 which were able to degrade tribenuron-methyl, were isolated from the soil of long term applied with tribenuron-methyl by enrichment culture. Based on physiological and biochemical characteristics and 16S rDNA sequence anal-ysis, the strain B1 was identified preliminarily as Pseudomonas aeruginosa, the strain B2 was identified preliminarily as Delftia sp., the strain B3 was identified preliminarily as Microbacterium sp., and the strain B4 was identified preliminarily as Alcaligenes sp.The effect of tempera-ture, initial pH, inoculation amount, initial concentration of tribenuron-methyl, medium volume, nitrogen source, carbon source and Mg 2+concentration on growth efficiencies was studied. The results showed that B1 optimal temperature was 35 ℃, the rest were 30 ℃. B3 optimal initial pH was 8.0, the others were 7.0. B1 and B3 optimal inoculation amount were 15%, B2 and B4 optimal inoculation amount were 10%.B3 optimal initial concentration of tribenuron-methyl was 100 mg· L-1, the other three were 200 mg· L -1. The four bacterias optimal medium volume all were 75 mL, optimal nitrogen source were ammonium nitrate and optimal carbon source were glucose. B2 optimal Mg 2+ concentra-tion was 100 mg·L -1, the others were 200 mg·L v. B1 and B4 optimal sodium chloride concentration were 20 g· L -1 while B2 could grow well from 5 g·L -1 to 30 g·L-1, B3 optimal sodium chloride concentration was 50 g·L -1. The results provide theoretical basis for using bacterias in situ bioremediation of soil pollution of tribenuron-methyl.

  19. Characterization of N-Acylhomoserine Lactones Produced by Bacteria Isolated from Industrial Cooling Water Systems

    Directory of Open Access Journals (Sweden)

    Noriya Okutsu

    2015-12-01

    Full Text Available The cooling water systems are used to remove heat generated in the various industries. Biofouling of the cooling water systems causes blocking of condenser pipes and the heat exchanger tubes. In many Gram-negative bacteria, N-acylhomoserine lactone (AHL are used as quorum-sensing signal molecule and associated with biofilm formation. To investigate the relationship between quorum sensing and biofouling in the cooling water system, we isolated a total of 192 bacterial strains from the five cooling water systems, and screened for AHL production. Seven isolates stimulated AHL-mediated purple pigment production in AHL reporter strain Chromobacterium violaceum CV026 or VIR07. Based on their 16S rRNA gene sequences, AHL-producing isolates were assigned to Aeromonas hydrophila, Lysobacter sp., Methylobacterium oryzae, and Bosea massiliensis. To the best of our knowledge, B. massiliensis and Lysobacter sp. have not been reported as AHL-producing species in the previous researches. AHLs extracted from the culture supernatants of B. massiliensis and Lysobacter sp. were identified by liquid chromatography-mass spectrometry. AHLs produced by B. massiliensis were assigned as N-hexanoyl-l-homoserine lactone (C6-HSL, N-(3-oxohexanoyl-l-homoserine lactone (3-oxo-C6-HSL, and N-(3-oxooctanoyl-l-homoserine lactone (3-oxo-C8-HSL. AHLs produced by Lysobacter sp. were assigned as N-decanoyl-l-homoserine lactone (C10-HSL and N-(3-oxodecanoyl-l-homoserine lactone (3-oxo-C10-HSL. This is the first report of identification of AHLs produced by B. massiliensis and Lysobacter sp. isolated from the cooling water system.

  20. Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge.

    Science.gov (United States)

    Zhang, Guo Xia; Ren, Sui Zhou; Xu, Mei Ying; Zeng, Guo Qu; Luo, Hui Dong; Chen, Jin Lin; Tan, Zhi Yuan; Sun, Guo Ping

    2011-04-01

    Three aniline-degrading bacteria, strains DN316(T), DN316-1 and DN365, were isolated from activated sludge. According to 16S rRNA gene sequence-based phylogenetic analysis, the isolates belonged to the genus Rhizobium, with Rhizobium ( = Agrobacterium) radiobacter LMG 140(T) as the closest relative, with 96.5 % sequence similarity. Phylogenetic analysis of the representative strain DN316(T) using sequences of the glnA, thrC and recA genes and the 16S-23S intergenic spacer region confirmed the phylogenetic arrangement obtained from analysis of the 16S rRNA gene. DNA-DNA relatedness between DN316(T) and R. radiobacter LMG 140(T) was 43.7 %, clearly indicating that the representative strain DN316(T) represents a novel species. Phenotypic and biochemical characterization of the isolates and insertion sequence-PCR fingerprinting patterns showed several distinctive features that differentiated them from closely related species. The major components of the cellular fatty acids were C(18 : 1)ω7c (57.10 %), C(16 : 0) (11.31 %) and C(19 : 0) cyclo ω8c (10.13 %). Based on our taxonomic analysis, the three isolates from activated sludge represent a novel species of the genus Rhizobium, for which the name Rhizobium borbori sp. nov. is proposed. The type strain is DN316(T) ( = CICC 10378(T)  = LMG 23925(T)).

  1. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Fulazzaky

    2016-06-01

    Full Text Available The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 “Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30” (Fulazzaky et al., 2015 [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments.

  2. Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant

    Directory of Open Access Journals (Sweden)

    Kulnaree Phetrong

    2007-05-01

    Full Text Available Biosurfactant-producing marine bacteria were isolated from oil-spilled seawater collected from harbors and docks in Songkhla Province, Thailand. Haemolytic activity, emulsification activity toward nhexadecane,emulsion of weathered crude oil, drop collapsing test as well as oil displacement test were used to determine biosurfactant producing activity of marine bacteria. Among two-hundred different strains, 40strains exhibited clear zone on blood agar plates. Only eight strains had haemolytic activity and were able to emulsify weathered crude oil in marine broth during cultivation. Eight strains named SM1-SM8 wereidentified by 16S rRNA as Myroides sp. (SM1; Vibrio paraheamolyticus (SM2; Bacillus subtilis (SM3; Micrococcus luteus (SM4; Acinetobacter anitratus (SM6; Vibrio paraheamolyticus (SM7 and Bacilluspumilus (SM8. However, SM5 could not be identified. Strain SM1 showed the highest emulsification activity against weathered crude oil, by which the oil was emulsified within 24 h of cultivation. In addition, strainSM1 exhibited the highest activity for oil displacement test and emulsification test toward n-hexadecane. The emulsification activity against n-hexadecane of crude extract of strain SM1 was stable over a broadrange of temperature (30-121oC, pH (5-12 and salt concentration (0-9% NaCl, whereas CaCl2 showed an adverse effect on emulsifying activity.

  3. Antimicrobial resistance in bacteria isolated from aquatic environments in Brazil: a systematic review

    Directory of Open Access Journals (Sweden)

    Ermeton Duarte do Nascimento

    2014-04-01

    Full Text Available This article discusses antibiotic resistance in bacteria isolated from aquatic environments in Brazil, taking into account isolation sites, the main reported antimicrobial agents, the genes involved in resistance, the most prevalent bacterial genera and species, and the main mechanisms of resistance. This review is based upon specialized literature, consulting published scientific articles selected from the SciELO, PubMed and LILACS databases. Based upon the inclusion criteria, we selected 21 articles, most (61.6% were from PubMed, with the highest prevalence for work done in the Southeast region (71.4% in freshwater environments (71.4%, and the major focus on farm ponds (28.6%. Gram-negative bacteria are the most studied (71.4% and the Aeromonas spp. was the one found most frequently (19.0%. The most frequently used antimicrobials were chloramphenicol (81.0%, gentamicin (76.2%, sulpha/trimethroprim (71.4%, ampicillin (61.9% and tetracycline (71.4%; and the ones with higher prevalence of resistance were chloramphenicol (58.8%, sulpha/trimethroprim (78.5% and ampicillin (84.6%. It was found that studies on resistance in other aquatic environments have not yet been conducted in Brazil, especially in the North and Northeast regions, where irregular rainfall distribution leads to the use of reservoirs as supply sources during the dry season, highlighting concerns regarding the quality, contamination and maintenance of these resources, as the water is intended for human use or for production purposes.

  4. Phosphate-Solubilizing and -Mineralizing Abilities of Bacteria Isolated from Soils

    Institute of Scientific and Technical Information of China (English)

    TAO Guang-Can; TIAN Shu-Jun; CAI Miao-Ying; XIE Guang-Hui

    2008-01-01

    Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavailability. The study was conducted to screen and isolate inorganic P-solubilizing bacteria (IPSB) and organic P-mineralizing bacteria (OPMB) in soils taken from subtropical flooded and temperate non-flooded soils, and to compare inorganic P-solubilizing and organic P-solubilizing abilities between IPSB and OPMB. Ten OPMB strains were isolated and identified as Bacillus cereus and Bacillus megaterium, and five IPSB strains as B. megaterium, Burkholderia caryophylli,Pseudomonas ciehorii, and Pseudomonas syringae. P-solubilizing and -mineralizing abilities of the strains were measured using the methods taking cellular P into account. The IPSB strains exhibited inorganic P-sohibilizing abilities ranging between 25.4-41.7 μg P mL-1 and organic P-mineralizing abilities between 8.2-17.8 μg P mL-1. Each of the OPMB strains also exhibited both solubilizing and mineralizing abilities varying from 4.4 to 26.5 μg P mL-1 and from 13.8 to 62.8 μg P mL-1, respectively. For both IPSB and OPMB strains, most of the P mineralized from the organic P source was incorporated into the bacterial cells as cellular P. A significantly negative linear correlation (P < 0.05) was found between culture pH and P solubilized from inorganic P by OPMB strains. The results suggested that P solubilization and mineralization could coexist in the same bacterial strain.

  5. Measurement of antimicrobial activity of isolated bacteria from the Caspian sea and molecular identification of strains with antimicrobial effect

    Directory of Open Access Journals (Sweden)

    Sajad Harounabadi

    2015-12-01

    Full Text Available Introduction: Easy access and wide use of antimicrobial compounds led to the emergence of resistance among microorganisms. Therefore, screening and identifying antimicrobial compound with high effect of microorganisms in different environments is necessary and vital . Using microorganisms for biological aims change them to an important tool to control pathogens. Streptomyces griseus is one of them. The aim of this study is isolation of marine bacteria with antimicrobial effect against gram positive and negative bacteria. Finally, molecular identification of strains with antimicrobial activity. Materials and methods: In this study, 162 strains were isolated from the Caspian Sea .The strains were cultured on special medium and finally antimicrobial activity on references strains as measured. Among them four strains with remarkable antimicrobial activity were identified and selected. The strains were subjected to 16S rDNA PCR sequencing. The strains were submitted to NCBI as new Streptomyces griseus strains. Results: Among 162 strains, 4 strains had the most antimicrobial activity. The result showed, the strains were the most effective on Bacillus subtilis and Staphylococcus aureus (Gram positive bacteria and the least effect were observed on Escherichia coli and Pseudomonas aeruginosa (Gram negative bacteria. After sequencing, the strains were classified to sterptomyces griseus genu. Discussion and conclusion: In this study, 4 strains with antimicrobial activity were identified. According to the strength of these bacteria for controlling pathogenic bacteria resistant to antibiotic, we can have more pure microorganisms in optimized and controlled conditions for using in pharmaceutical industries and also for the treatment of dangerous pathogenic bacteria.

  6. Effects of culture medium compositions on antidiabetic activity and anticancer activity of marine endophitic bacteria isolated from sponge

    Science.gov (United States)

    Maryani, Faiza; Mulyani, Hani; Artanti, Nina; Udin, Linar Zalinar; Dewi, Rizna Triana; Hanafi, Muhammad; Murniasih, Tutik

    2017-01-01

    High diversity of Indonesia marine spesies and their ability in producing secondary metabolite that can be used as a drug candidate cause this fascinating topic need to explore. Most of marine organisms explored to discover drug is macroorganism whereas microorganism (such as Indonesia marine bacteria) is very limited. Therefore, in this report, antidiabetic and anticancer activity of Indonesia marine bacteria isolated from Sponges's extract have been studied. Bacteria strain 8.9 which are collection of Research Center for Oseanography, Indonesian Institute of Sciences were from Barrang Lompo Island, Makasar, Indonesia. Bacteria were cultured in different culture medium compositions (such as: different pH, source of glucose and water) for 48 hours on a shaker, then they were extracted with ethyl asetate. Extracts of bacteria were tested by DPPH method (antioxidant activity), alpha glucosidase inhibitory activity method (antidiabetic activity), and Alamar Blue assay (anticancer activity) at 200 ppm. According to result, extract of bacteria in pH 8.0 exhibited the greatest antioxidant (19.27% inhibition), antidiabetic (63.95% inhibition) and anticancer activity of T47D cell line (44.62% cell viability) compared to other extracts. However, effect of addition of sugar sources (such as: glucose, sucrose, and soluble starch) and effect of addition of water/sea water exhibited less influence on their bioactivities. In conclusion, Indonesia marine bacteria isolated from sponge have potential a source of bioactive compound in drug discovery field.

  7. Exploiting the fungal highway: development of a novel tool for the in situ isolation of bacteria migrating along fungal mycelium.

    Science.gov (United States)

    Simon, Anaele; Bindschedler, Saskia; Job, Daniel; Wick, Lukas Y; Filippidou, Sevasti; Kooli, Wafa M; Verrecchia, Eric P; Junier, Pilar

    2015-11-01

    Fungi and bacteria form various associations that are central to numerous environmental processes. In the so-called fungal highway, bacteria disperse along fungal mycelium. We developed a novel tool for the in situ isolation of bacteria moving along fungal hyphae as well as for the recovery of fungi potentially involved in dispersal, both of which are attracted towards a target culture medium. We present the validation and the results of the first in situ test. Couples of fungi and bacteria were isolated from soil. Amongst the enriched organisms, we identified several species of fast-growing fungi (Fusarium sp. and Chaetomium sp.), as well as various potentially associated bacterial groups, including Variovorax soli, Olivibacter soli, Acinetobacter calcoaceticus, and several species of the genera Stenotrophomonas, Achromobacter and Ochrobactrum. Migration of bacteria along fungal hyphae across a discontinuous medium was confirmed in most of the cases. Although the majority of the bacteria for which migration was confirmed were also positive for flagellar motility, not all motile bacteria dispersed using their potential fungal partner. In addition, the importance of hydrophobicity of the fungal mycelial surface was confirmed. Future applications of the columns include targeting different types of microorganisms and their interactions, either by enrichment or by state of the art molecular biological methods.

  8. Isolation, identification and optimization of ethanol producing bacteria from Saccharomyces-based fermentation process of alcohol industries in Iran

    Directory of Open Access Journals (Sweden)

    Hoda Ebrahimi

    2013-01-01

    Full Text Available Introduction: Due to the vast growth of world population, consumption of a lot of energy, limited energy supply and rising prices of fuel oil in the future, other alternative energy source is essential. Ethanol is renewable and a safe fuel and it is mainly based on microbial fermentation. The purpose of this study was isolation of high ethanol producing bacteria from the fermentation process of alcohol industries and optimization of growth conditions to be introduced to the industries. Materials and methods: The samples that were collected from fermentation tanks of alcohol industries were enriched in ZSM medium. To isolate the ethanol producing bacteria, the enriched culture was transferred on RMA agar. Bacterial growth conditions and their effects on ethanol production were optimized based on pH, growth temperature, agitation, fermentation time, initial substrate concentration and carbon and nitrogen sources. In addition, the morphological, physiological and molecular characterizations were investigated for identification of the isolates.Results: Three bacterial isolates ZYM7, ZYM8 and ZYM9 were isolated from fermentation tank. All isolates were able to produce ethanol 5.00, 7.60 and 4.00 gL-1 after 48 hours, respectively. The results demonstrated that all isolates were able to consume most sugars sources specially pentose carbon xylose. The isolate ZYM7 produced 13.00 gL-1 ethanol by consumption of xylose. The results of morphological and physiological characteristics showed that ZYM7 belonged to Lactobacillus sp. and ZYM8 and ZYM9 belonged to Acetobacter sp. Moreover, 16S rRNA sequencing and phylogenetic analyses exhibited that ZYM7 was similar to Lactobacillus rhamnosus with 99% homology and ZYM8 and ZYM9 were similar to Acetobacter pasteurianus with 99 and 98% homology, respectively.Discussion and conclusion: The results showed that that the isolated bacteria were suitable candidates to produce ethanol from raw material enriched with

  9. Density and diversity of diazotrophic bacteria isolated from Amazonian soils using N-free semi-solid media

    Directory of Open Access Journals (Sweden)

    Krisle da Silva

    2011-10-01

    Full Text Available Non-symbiotic diazotrophic bacteria are amongst the most important functional groups of soil-dwelling microorganisms. These bacteria contribute to plant growth predominantly through biological N2 fixation. Here, we evaluated the density and diversity of non-symbiotic diazotrophic bacteria in soils taken from diverse land use systems (LUS in Amazonia using nitrogen-free media. A total of 30 soil samples were collected from the following LUS: pristine forest, young secondary forest, old secondary forest, agroforestry, agriculture and pasture. Bacterial density was evaluated by the most probable number (MPN method utilizing N-free semi-solid media with varied compositions (JNFb, NFb, LGI and Fam. Individual isolates were characterized by colony and cellular morphology as well as total protein profiles and nitrogenase activity. Isolate genotypes were determined by partial 16S rDNA sequences. No typical diazotrophic growth in the JNFb medium was observed. Bacterial densities in the NFb medium were higher in the agriculture and agroforestry soil samples. In LGI and Fam media, bacterial densities were highest in the pasture soil samples. Overall, 22 isolates with high phenotypic diversity were obtained. Eleven isolates exhibited nitrogenase activity. Sequences of 16S rDNA genes of 14 out of 19 isolates had similarities below 100 % with known nitrogen-fixing species. Isolates were identified as belonging to the Burkholderia, Enterobacter, Serratia, Klebsiella, and Bacillus genera. A higher number of isolates from pasture soil samples were isolated, with the majority of these belonging to the Burkholderia and Bacillus genera. Among the isolates, unknown sequences were obtained, possibly indicating new species. Taken together, these data demonstrate that Fam, NFb, and LGI semi-solid media allowed the growth of diazotrophic bacteria belonging to different phylogenetic lines.

  10. Rapid isolation of gluten-digesting bacteria from human stool and saliva by using gliadin-containing plates.

    Science.gov (United States)

    Berger, Martina; Sarantopoulos, Christos; Ongchangco, Deryn; Sry, Jeremy; Cesario, Thomas

    2015-07-01

    The number of individuals with gluten intolerance has increased dramatically over the last years. To date, the only therapy for gluten intolerance is the complete avoidance of dietary gluten. To sustain a strictly gluten-free diet, however, is very challenging. Therefore, there is need for a non-dietary therapy. Any such treatment must appreciate that the immunogenic part of gluten are gliadin peptides which are poorly degraded by the enzymes of the gastrointestinal tract. Probiotic therapy and oral enzyme therapy containing gluten-degrading bacteria (GDB) and their gliadin-digesting enzymes are possible new approaches for the treatment of gluten intolerance, however effectively isolating GDB for these treatments is problematic. The goal of this study was to develop an easy technique to isolate GDB rapidly and efficiently with the hope it might lead to newer ways of developing either probiotics or traditional medicines to treat gluten intolerance. Several researchers have already isolated successfully GDB by using gluten minimal or limited agar plates. Although these plates can be used to isolate bacteria which can tolerate gluten, further assays are needed to investigate if the same bacteria can also digest gluten. The agar plates we developed can detect bacteria which cannot only tolerate gluten but are able to digest it as well. Therefore, we were able to combine two steps into one step. Using such technologies, we were able to isolate five GDB from saliva and stool, and identified three bacterial reference strains with gluten-degrading activity. The technique we developed to isolate bacteria with gluten-degrading activity is fast, effective, and easy to use. The GDB isolated by our technology could have potential as part of a probiotic or enzymatic therapy for people with gluten intolerance.

  11. Isolation and Characterization of Thermophilic Cellulase-Producing Bacteria from Empty Fruit Bunches-Palm Oil Mill Effluent Compost

    Directory of Open Access Journals (Sweden)

    Azhari S. Baharuddin

    2010-01-01

    Full Text Available Problems statement: Lack of information on locally isolated cellulase-producing bacterium in thermophilic compost using a mixture of Empty Fruit Bunch (EFB and Palm Oil Mill Effluent (POME as composting materials. Approach: The isolation of microbes from compost heap was conducted at day 7 of composting process where the mixture of composting materials consisted of 45.8% cellulose, 17.1% hemicellulose and 28.3% lignin content. The temperature, pH and moisture content of the composting pile at day 7 treatment were 58.3, 8.1 and 65.5°C, respectively. The morphological analysis of the isolated microbes was conducted using Scanning Electron Microscope (SEM and Gram stain method. The congo red test was conducted in order to detect 1% CMC agar degradation activities. Total genomic DNAs were extracted from approximately 1.0 g of mixed compost and amplified by using PCR primers. The PCR product was sequent to identify the nearest relatives of 16S rRNA genes. The localization of bacteria chromosomes was determined by Fluorescence In Situ Hybridization (FISH analysis. Results: Single isolated bacteria species was successfully isolated from Empty Fruit Bunch (EFB-Palm Oil Mill Effluent (POME compost at thermophilic stage. Restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs with the phylogenetic analysis showed that the isolated bacteria from EFB-POME thermophilic compost gave the highest homology (99% with similarity to Geobacillus pallidus. The strain was spore forming bacteria and able to grow at 60°C with pH 7. Conclusion: Thermophilic bacteria strain, Geobacillus pallidus was successfully isolated from Empty Fruit Bunch (EFB and Palm Oil Mil Effluent (POME compost and characterized.

  12. Evaluation of antimicrobial activity of extracts of Tibouchina candolleana (melastomataceae, isolated compounds and semi-synthetic derivatives against endodontic bacteria

    Directory of Open Access Journals (Sweden)

    Fernanda M. dos Santos

    2012-06-01

    Full Text Available This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of b-amyrin, a-amyrin, and b-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis.

  13. Diversity of bacteria carried by pinewood nematode in USA and phylogenetic comparison with isolates from other countries.

    Directory of Open Access Journals (Sweden)

    Diogo Neves Proença

    Full Text Available Pine wilt disease (PWD is native to North America and has spread to Asia and Europe. Lately, mutualistic relationship has been suggested between the pinewood nematode (PWN, Bursaphelenchus xylophilus the causal nematode agent of PWD, and bacteria. In countries where PWN occurs, nematodes from diseased trees were reported to carry bacteria from several genera. However no data exists for the United States. The objective of this study was to evaluate the diversity of the bacterial community carried by B. xylophilus, isolated from different Pinus spp. with PWD in Nebraska, United States. The bacteria carried by PWN belonged to Gammaproteobacteria (79.9%, Betaproteobacteria (11.7%, Bacilli (5.0%, Alphaproteobacteria (1.7% and Flavobacteriia (1.7%. Strains from the genera Chryseobacterium and Pigmentiphaga were found associated with the nematode for the first time. These results were compared to results from similar studies conducted from other countries of three continents in order to assess the diversity of bacteria with associated with PWN. The isolates from the United States, Portugal and China belonged to 25 different genera and only strains from the genus Pseudomonas were found in nematodes from all countries. The strains from China were closely related to P. fluorescens and the strains isolated from Portugal and USA were phylogenetically related to P. mohnii and P. lutea. Nematodes from the different countries are associated with bacteria of different species, not supporting a relationship between PWN with a particular bacterial species. Moreover, the diversity of the bacteria carried by the pinewood nematode seems to be related to the geographic area and the Pinus species. The roles these bacteria play within the pine trees or when associated with the nematodes, might be independent of the presence of the nematode in the tree and only related on the bacteria's relationship with the tree.

  14. Characterization and in vitro probiotic evaluation of lactic acid bacteria isolated from idli batter.

    Science.gov (United States)

    Iyer, Bharti K; Singhal, Rekha S; Ananthanarayan, Laxmi

    2013-12-01

    An Indian traditional fermented food, idli batter, was used as a source for isolation of lactic acid bacteria (LAB). A total of 15 LAB strains were isolated on the basis of their Gram nature and catalase activity. Of these, one lactobacilli strain and one lactococci strain which showed antimicrobial activity were identified using biochemical characterization, sugar utilization and molecular sequencing. The microbes, labeled as IB-1 (Lactobacillus plantarum) and IB-2 (Lactococcus lactis) were tested for their in vitro tolerance to bile salts, resistance to low pH values and acidifying activity. Both the strains showed good viability (IB1- 58.11%; IB2- 60.84%) when exposed to high bile salt concentration (2%) and acidic pH of ≤pH 3.0 (IB1- 88.13%; IB2- 89.85%). Lactic acid (IB1- 181.93 mM; IB2- 154.44 mM), biomass production (IB1- 0.65; IB2- 0.58 g/l) after 54 h as well as qualitative estimation of β-galactosidase and vitamin B12 production were also studied to check their suitability as an industrially important strain for production of important biomolecules.

  15. Isolation and characterization of agar-degrading endophytic bacteria from plants.

    Science.gov (United States)

    Song, Tao; Zhang, Weijia; Wei, Congchong; Jiang, Tengfei; Xu, Hui; Cao, Yi; Cao, Yu; Qiao, Dairong

    2015-02-01

    Agar is a polysaccharide extracted from the cell walls of some macro-algaes. Among the reported agarases, most of them come from marine environment. In order to better understand different sources of agarases, it is important to search new non-marine native ones. In this study, seven agar-degrading bacteria were first isolated from the tissues of plants, belonging to three genera, i.e., Paenibacillus sp., Pseudomonas sp., and Klebsiella sp. Among them, the genus Klebsiella was first reported to have agarolytic ability and the genus Pseudomonas was first isolated from non-marine environment with agarase activity. Besides, seven strains were characterized by investigating the growth and agarase production in the presence of various polysaccharides. The results showed that they could grow on several polysaccharides such as araban, carrageenan, chitin, starch, and xylan. Besides, they could also produce agarase in the presence of different polysaccharides other than agar. Extracellular agarases from seven strains were further analyzed by SDS-PAGE combined with activity staining and estimated to be 75 kDa which has great difference from most reported agarases.

  16. [Epidemiological and bacteriological characteristics of uropathogen bacteria isolated in a pediatric environment].

    Science.gov (United States)

    Ferjani, A; Mkaddemi, H; Tilouche, S; Marzouk, M; Hannechi, N; Boughammoura, L; Boukadida, J

    2011-02-01

    Urinary tract infection (UTI) in children is a grave pathology, which requires a fast and effective care. Bacteriological and epidemiological data play a determining role in patient's care. We report a retrospective study, which spreads out from January 1st till August 31st, 2009, having concerned hospitalized children for urinary infection in pediatrics service of Farhat Hached teaching hospital in Sousse. Our series contained 51 children with a sex ratio of 0.76, an average age of 32 months. The majority of cases was pyelonephritis (94.1%). A pathology is associated with the urinary infection in 41.2%. Three cases of vesico-ureteral reflux were noted. The diagnosis of urinary infection was confirmed by cytobacteriological exam of urine (CBEU). Enterobacteriacea were isolated in 96.1%. Escherichia coli remains the most often isolated (80.4%), followed by Klebsiella pneumoniae (9.8%) then by Proteus mirabilis (5.9%). E. coli was resistant to amoxicillin in 78% of cases, to the association amoxicillin-clavulanic acid in 64,8%, to cephalosporins of 3(rd) generation (C3G) in 5% and to cotrimoxazole in 51%. No K. pneumoniae or P. mirabilis strain was resistant to C3G. UTI in children is always an indication for CBEU realization at first intention. The results of this exam are very important considering the diversity of the responsible bacteria and the growing frequency of acquired antibiotic resistance.

  17. Isolation and characterization of halophilic bacteria and archaea from salt ponds in Hangu Saltworks, Tianjin, China

    Science.gov (United States)

    Deng, Yuangao; Xu, Gaochao; Sui, Liying

    2015-07-01

    A total of 26 isolates were obtained from solar salt ponds of different salinities (100, 150, 200, and 250) in Hangu Saltworks Co. Ltd., Tianjin, China. Phylogenetic analysis of 16S rRNA gene sequences indicated that five bacteria genera Halomonas, Salinicoccus, Oceanobacillus, Gracibacillus, and Salimicrobium and one archaea genera Halorubrum were present. The genus Halomonas was predominant with eight strains distributed in a salinity range of 100-200, followed by Halorubrum with six strains in salinity 250. Based on the genus and original sampling salinity, eight bacterial and two archaeal isolates were selected for further morphological, physiological, and biochemical characterization. All of the bacterial strains were moderately halophilic with the optimal salinity for growth being either 50 or 100, while two archaeal strains were extremely halophilic with an optimal growth salinity of 200. Additionally, we put forth strain SM.200-5 as a new candidate Salimicrobium species based on the phylogenic analysis of the 16S rRNA gene sequence and its biochemical characteristics when compared with known related species.

  18. Bacteria isolated from Korean black raspberry vinegar with low biogenic amine production in wine.

    Science.gov (United States)

    Song, Nho-Eul; Cho, Hyoun-Suk; Baik, Sang-Ho

    2016-01-01

    A high concentration of histamine, one of the biogenic amines (BAs) usually found in fermented foods, can cause undesirable physiological side effects in sensitive humans. The objective of this study is to isolate indigenous Acetobacter strains from naturally fermented Bokbunja vinegar in Korea with reduced histamine production during starter fermentation. Further, we examined its physiological and biochemical properties, including BA synthesis. The obtained strain MBA-77, identified as Acetobacter aceti by 16S rDNA homology and biochemical analysis and named A. aceti MBA-77. A. aceti MBA-77 showed optimal acidity % production at pH 5; the optimal temperature was 25°C. When we prepared and examined the BAs synthesis spectrum during the fermentation process, Bokbunja wine fermented with Saccharomyces cerevisiae showed that the histamine concentration increased from 2.72 of Bokbunja extract to 5.29mg/L and cadaverine and dopamine was decreased to 2.6 and 10.12mg/L, respectively. Bokbunja vinegar prepared by A. aceti MBA-77 as the starter, the histamine concentration of the vinegar preparation step was decreased up to 3.66mg/L from 5.29mg/L in the wine preparation step. To our knowledge, this is the first report to demonstrate acetic acid bacteria isolated from Bokbunja seed vinegar with low spectrum BA and would be useful for wellbeing vinegar preparation.

  19. Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Irlan Almeida Freires

    2015-04-01

    Full Text Available Dental caries remains the most prevalent and costly oral infectious disease worldwide. Several methods have been employed to prevent this biofilm-dependent disease, including the use of essential oils (EOs. In this systematic review, we discuss the antibacterial activity of EOs and their isolated constituents in view of a potential applicability in novel dental formulations. Seven databases were systematically searched for clinical trials, in situ, in vivo and in vitro studies addressing the topic published up to date. Most of the knowledge in the literature is based on in vitro studies assessing the effects of EOs on caries-related streptococci (mainly Streptococcus mutans and lactobacilli, and on a limited number of clinical trials. The most promising species with antibacterial potential against cariogenic bacteria are: Achillea ligustica, Baccharis dracunculifolia, Croton cajucara, Cryptomeria japonica, Coriandrum sativum, Eugenia caryophyllata, Lippia sidoides, Ocimum americanum, and Rosmarinus officinalis. In some cases, the major phytochemical compounds determine the biological properties of EOs. Menthol and eugenol were considered outstanding compounds demonstrating an antibacterial potential. Only L. sidoides mouthwash (1% has shown clinical antimicrobial effects against oral pathogens thus far. This review suggests avenues for further non-clinical and clinical studies with the most promising EOs and their isolated constituents bioprospected worldwide.

  20. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria

    Directory of Open Access Journals (Sweden)

    Yongjun Wang

    2016-04-01

    Full Text Available Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg2+ could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections.

  1. Clinically significant anaerobic bacteria isolated from patients in a South African academic hospital: antimicrobial susceptibility testing.

    Science.gov (United States)

    Naidoo, S; Perovic, O; Richards, G A; Duse, A G

    2011-09-27

    BACKGROUND. Increasing resistance to some antimicrobial agents among anaerobic bacteria has made susceptibility patterns less predictable. METHOD. This was a prospective study of the susceptibility data of anaerobic organisms isolated from clinical specimens from patients with suspected anaerobic infections from June 2005 until February 2007. Specimens were submitted to the microbiology laboratory at Charlotte Maxeke Johannesburg Academic Hospital, where microscopy, culture and susceptibility testing were performed the using E test® strip minimum inhibitory concentration method. Results were interpreted with reference to Clinical and Laboratory Standards Institute guidelines for amoxicillin-clavulanate, clindamycin, metronidazole, penicillin, ertapenem, cefoxitin, ceftriaxone, chloramphenicol and piperacillin-tazobactam. RESULTS. One hundred and eighty anaerobic isolates were submitted from 165 patients. The most active antimicrobial agents were chloramphenicol (100% susceptible), ertapenem (97.2%), piperacillin-tazobactam (99.4%) and amoxicillin-clavulanic acid (96.7%). Less active were metronidazole (89.4%), cefoxitin (85%), clindamycin (81.7%), ceftriaxone (68.3%) and penicillin (33.3%). CONCLUSION. Susceptibility testing should be performed periodically to identify emerging trends in resistance and to modify empirical treatment of anaerobic infections.

  2. Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review.

    Science.gov (United States)

    Freires, Irlan Almeida; Denny, Carina; Benso, Bruna; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-04-22

    Dental caries remains the most prevalent and costly oral infectious disease worldwide. Several methods have been employed to prevent this biofilm-dependent disease, including the use of essential oils (EOs). In this systematic review, we discuss the antibacterial activity of EOs and their isolated constituents in view of a potential applicability in novel dental formulations. Seven databases were systematically searched for clinical trials, in situ, in vivo and in vitro studies addressing the topic published up to date. Most of the knowledge in the literature is based on in vitro studies assessing the effects of EOs on caries-related streptococci (mainly Streptococcus mutans) and lactobacilli, and on a limited number of clinical trials. The most promising species with antibacterial potential against cariogenic bacteria are: Achillea ligustica, Baccharis dracunculifolia, Croton cajucara, Cryptomeria japonica, Coriandrum sativum, Eugenia caryophyllata, Lippia sidoides, Ocimum americanum, and Rosmarinus officinalis. In some cases, the major phytochemical compounds determine the biological properties of EOs. Menthol and eugenol were considered outstanding compounds demonstrating an antibacterial potential. Only L. sidoides mouthwash (1%) has shown clinical antimicrobial effects against oral pathogens thus far. This review suggests avenues for further non-clinical and clinical studies with the most promising EOs and their isolated constituents bioprospected worldwide.

  3. GES-5 among the β-lactamases detected in ubiquitous bacteria isolated from aquatic environment samples.

    Science.gov (United States)

    Manageiro, Vera; Ferreira, Eugénia; Caniça, Manuela; Manaia, Célia M

    2014-02-01

    In this study, we investigated the β-lactamase-encoding genes responsible for β-lactam resistance phenotypes detected among 56 Gram-negative isolates (Gamma- and Alpha-proteobacteria) recovered from wastewater, urban streams, and drinking water. The β-lactam resistance mechanisms detected in 36 isolates comprised the presence of class A (blaTEM-1 , blaSHV-1 , blaSHV-11 , blaGES-5 ), class B (ImiS, L1), class C (blaCMY-2 , blaCMY-34 , blaCMY-65 , blaCMY-89 , blaCMY-90 , blaACC-5 , blaACT-13 ), and class D (blaOXA-309)β-lactamase-encoding genes, some variants described for the first time here. Notably, the results showed antimicrobial resistance genes related not only to commonly used antibiotics, but also to carbapenems, providing the first description of a GES-5-producing Enterobacteriaceae. The importance of ubiquitous bacteria thriving in aquatic environments as reservoirs or carriers of clinically relevant resistance determinants was confirmed, and the need to monitor water habitats as potential sources for the emergence and/or spread of antibiotic resistance in the environment was highlighted.

  4. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria

    Science.gov (United States)

    Wang, Yongjun; Wang, Ling; Yang, Huali; Xiao, Haoliang; Farooq, Athar; Liu, Zhonghua; Hu, Min; Shi, Xiaoliu

    2016-01-01

    Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg2+ could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections. PMID:27128941

  5. Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria.

    Science.gov (United States)

    Ercole, Claudia; Bozzelli, Paola; Altieri, Fabio; Cacchio, Paola; Del Gallo, Maddalena

    2012-08-01

    This study highlights the role of specific outer bacterial structures, such as the glycocalix, in calcium carbonate crystallization in vitro. We describe the formation of calcite crystals by extracellular polymeric materials, such as exopolysaccharides (EPS) and capsular polysaccharides (CPS) isolated from Bacillus firmus and Nocardia calcarea. Organic matrices were isolated from calcifying bacteria grown on synthetic medium--in the presence or absence of calcium ions--and their effect on calcite precipitation was assessed. Scanning electron microscopy observations and energy dispersive X-ray spectrometry analysis showed that CPS and EPS fractions were involved in calcium carbonate precipitation, not only serving as nucleation sites but also through a direct role in crystal formation. The utilization of different synthetic media, with and without addition of calcium ions, influenced the biofilm production and protein profile of extracellular polymeric materials. Proteins of CPS fractions with a molecular mass between 25 and 70 kDa were overexpressed when calcium ions were present in the medium. This higher level of protein synthesis could be related to the active process of bioprecipitation.

  6. Morphophysiological characterization of bacteria native to Cerrado soils, isolated from cowpea nodules

    Directory of Open Access Journals (Sweden)

    Clicyane Lima de Araújo

    2017-02-01

    Full Text Available Characteristics such as tolerance to pH, temperature, salinity and high aluminum concentration can be verified in rhizobia native to tropical soils. These particularities are relevant to biological nitrogen fixation studies, such as those about Vigna unguiculata L. Walp. (cowpea, which is of great economic importance to family farmers in different parts of Brazil, especially the North and Northeast regions. The objective of this study was to morphologically and physiologically characterize the native bacteria from Cerrado soils in eastern Maranhão, using the cowpea as plant bait. The study was conducted in Caxias (MA between 2014 and 2015. The isolates were derived from cowpea nodules sampled from three different areas of soil, especially forest composed of babassu and cultivated Manihot esculenta (cassava and Desmanthus virgatus L. (jureminha. They were morphologically characterized based on their colonies and the following physiological tests: tolerance to high temperatures, acidity, aluminum and high salinity. The isolates showed significant morphological diversity. The physiological tests showed that most of them are resistant to high temperatures, acidity and aluminum toxicity, but only a few are resistant to high salinity.

  7. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture.

    Science.gov (United States)

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik; Aarestrup, Frank M; Phu, Tran Minh; Dalsgaard, Anders

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be strengthened

  8. Characterization, identification and application of lactic Acid bacteria isolated from forage paddy rice silage.

    Science.gov (United States)

    Ni, Kuikui; Wang, Yanping; Li, Dongxia; Cai, Yimin; Pang, Huili

    2015-01-01

    There has been growing interest to develop forage rice as a new feed resource for livestock. This study was to characterize the natural population of lactic acid bacteria (LAB) and select potentially excellent strains for paddy rice silage preparation in China. One hundred and twenty-six strains were isolated and screened from paddy rice silage prepared using a small-scale fermentation system, and ninety-nine of these isolates were considered to be LAB based on their Gram-positive and catalase-negative morphology and the production of most of their metabolic products as lactic acid. These isolates were divided into eight groups (A-H) on the basis of their morphological and biochemical characteristics. The Group A to H strains were identified as Lactobacillus (L.) plantarum subsp. plantarum (species ratio: 8.1%), L. casei (5.1%), Leuconostoc (Ln.) pseudomesenteroides (11.1%), Pediococcus (P.) pentosaceus (24.2%), Enterococcus (E.) mundtii (12.1%), Lactococcus (Lc.) garvieae (15.2%), E. faecium (9.1%) and Lc. lactis subsp. lactis (15.2%) based on sequence analyses of their 16S rRNA and recA genes. P. pentosaceus was the most abundant member of the LAB population in the paddy rice silage. A selected strain, namely L. casei R 465, was found to be able to grow under low pH conditions and to improve the silage quality with low pH and a relatively high content of lactic acid. This study demonstrated that forage paddy rice silage contains abundant LAB species and its silage can be well preserved by inoculation with LAB, and that strain R 465 can be a potentially excellent inoculant for paddy rice silage.

  9. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture.

    Directory of Open Access Journals (Sweden)

    Gazi Md Noor Uddin

    Full Text Available Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD, tetracycline (tetL, phenicol (fexA and trimethoprim (dfrD, dfrG and dfrK resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be

  10. Characterization, Identification and Application of Lactic Acid Bacteria Isolated from Forage Paddy Rice Silage

    Science.gov (United States)

    Ni, Kuikui; Wang, Yanping; Li, Dongxia; Cai, Yimin; Pang, Huili

    2015-01-01

    There has been growing interest to develop forage rice as a new feed resource for livestock. This study was to characterize the natural population of lactic acid bacteria (LAB) and select potentially excellent strains for paddy rice silage preparation in China. One hundred and twenty-six strains were isolated and screened from paddy rice silage prepared using a small-scale fermentation system, and ninety-nine of these isolates were considered to be LAB based on their Gram-positive and catalase-negative morphology and the production of most of their metabolic products as lactic acid. These isolates were divided into eight groups (A-H) on the basis of their morphological and biochemical characteristics. The Group A to H strains were identified as Lactobacillus (L.) plantarum subsp. plantarum (species ratio: 8.1%), L. casei (5.1%), Leuconostoc (Ln.) pseudomesenteroides (11.1%), Pediococcus (P.) pentosaceus (24.2%), Enterococcus (E.) mundtii (12.1%), Lactococcus (Lc.) garvieae (15.2%), E. faecium (9.1%) and Lc. lactis subsp. lactis (15.2%) based on sequence analyses of their 16S rRNA and recA genes. P. pentosaceus was the most abundant member of the LAB population in the paddy rice silage. A selected strain, namely L. casei R 465, was found to be able to grow under low pH conditions and to improve the silage quality with low pH and a relatively high content of lactic acid. This study demonstrated that forage paddy rice silage contains abundant LAB species and its silage can be well preserved by inoculation with LAB, and that strain R 465 can be a potentially excellent inoculant for paddy rice silage. PMID:25803578

  11. Lactic Acid Bacteria Isolated from Bovine Mammary Microbiota: Potential Allies against Bovine Mastitis.

    Directory of Open Access Journals (Sweden)

    Damien S Bouchard

    Full Text Available Bovine mastitis is a costly disease in dairy cattle worldwide. As of yet, the control of bovine mastitis is mostly based on prevention by thorough hygienic procedures during milking. Additional strategies include vaccination and utilization of antibiotics. Despite these measures, mastitis is not fully under control, thus prompting the need for alternative strategies. The goal of this study was to isolate autochthonous lactic acid bacteria (LAB from bovine mammary microbiota that exhibit beneficial properties that could be used for mastitis prevention and/or treatment. Sampling of the teat canal led to the isolation of 165 isolates, among which a selection of ten non-redundant LAB strains belonging to the genera Lactobacillus and Lactococcus were further characterized with regard to several properties: surface properties (hydrophobicity, autoaggregation; inhibition potential of three main mastitis pathogens, Staphylococcus aureus, Escherichia coli and Streptococcus uberis; colonization capacities of bovine mammary epithelial cells (bMEC; and immunomodulation properties. Three strains, Lactobacillus brevis 1595 and 1597 and Lactobacillus plantarum 1610, showed high colonization capacities and a medium surface hydrophobicity. These strains are good candidates to compete with pathogens for mammary gland colonization. Moreover, nine strains exhibited anti-inflammatory properties, as illustrated by the lower IL-8 secretion by E. coli-stimulated bMEC in the presence of these LAB. Full genome sequencing of five candidate strains allowed to check for undesirable genetic elements such as antibiotic resistance genes and to identify potential bacterial determinants involved in the beneficial properties. This large screening of beneficial properties while checking for undesirable genetic markers allowed the selection of promising candidate LAB strains from bovine mammary microbiota for the prevention and/or treatment of bovine mastitis.

  12. Screening and identification of newly isolated cellulose-degrading bacteria from the gut of xylophagous termite Microcerotermes diversus (Silvestri).

    Science.gov (United States)

    Pourramezan, Z; Ghezelbash, G R; Romani, B; Ziaei, S; Hedayatkhah, A

    2012-01-01

    The aim of the present study was to isolate and characterize the cellulose-degrading bacteria from the gut of the local termite, Microcerotermes diversus (Silvestri), inhabiting the Khuzestan province of Iran. The microorganisms capable of growing in the liquid medium containing cellulose as the only source of carbon were isolated and their cellulolytic activity on CMC-containing media was confirmed by the congo red clearing zone assay. The isolates were identified based on biochemical characteristics and the phylogenetic analysis of 16S rRNA gene fragments. The results of the present study show that three cellulose-degrading bacteria isolated from local termite guts belonged to the genera Acinetobacter, Pseudomonas and Staphylococcus and four cellulose-degrading bacteria belonged to Enterobacteriaceae and Bacillaceae families. Several isolates recovered from separate termite Microcerotermes diversus samples closely clustered in phylogenetic trees indicating high similarity and the abundance of particular cellulolytic strains. Bacillus B5B and Acinetobacter L9B hydrolyzed cellulose faster than the other isolates (with CMCase activity of 1.47 U/mL and 1.22 U/mL, respectively). The stability of CMCase produced by Bacillus B5B over a broad range of pH and high temperature indicated that the enzyme may be of great commercial value.

  13. An efficient screening method for the isolation of heterotrophic bacteria influencing growth of diatoms under photoautotrophic conditions.

    Science.gov (United States)

    Zecher, Karsten; Jagmann, Nina; Seemann, Philipp; Philipp, Bodo

    2015-12-01

    Interactions between photoautotrophic diatoms and heterotrophic bacteria are important for the biogeochemical C-cycle in the oceans. Additionally, biofilms formed by diatoms and bacteria are the initiating step of biofouling processes, which causes high costs in shipping. Despite this ecological and economical importance, the knowledge about biochemical and molecular mechanisms underlying these interkingdom interactions is relatively small. For analyzing these mechanisms, laboratory model systems are required. In this study, an efficient screening method for isolating bacteria influencing photoautotrophic diatom growth was established. First, diatom cultures of Phaeodactylum tricornutum and Thalassiosira pseudonana were made axenic by applying β-lactam antibiotics. Second, a non-invasive method for measuring growth of multiple parallel diatom cultures by chlorophyll fluorescence was established. This method allowed semi-quantitative chlorophyll determination of cultures with up to 3 μg (chlorophyll) ml(-1). Axenic diatom cultures were then used for enriching bacteria and led to the isolation of 24 strains influencing growth of both diatom strains in various ways. For example, Rheinheimera sp. strain Tn16 inhibited growth of T. pseudonana, while it stimulated growth and cell aggregation of P. tricornutum. Thus, this screening method is appropriate for isolating heterotrophic bacteria showing different interactions with different diatom species ranging from synergistic to antagonistic. In consecutive applications, this method will be useful to screen for bacterial mutants with altered phenotypes regarding the influence on diatom growth.

  14. Investigation of antibacterial activity of Lactic Acid Bacteria isolated from traditional kordish cheese in comparison with commercial strains

    Directory of Open Access Journals (Sweden)

    Fereshteh Tofangsazan

    2013-12-01

    Full Text Available Background and Aim: The health benefits of lactic acid bacteria in human, especially their anti-pathogenic properties has been the focus of recent interests. The objective of this study was to investigate the antibacterial activity of lactic acid bacteria (LAB isolated from traditional Kurdish cheese against a few bacterial pathogens. Materials and Methods: The cell free culture supernatant of LAB isolated from Kurdish cheese which was treated with heat and NaOH were tested for their antibacterial activity by Agar Disk Diffusion method. Moreover, Minimum Inhibition Concentration and Co-aggregation of LAB against pathogens were determined. Each test was repeated for three times. Results: The LAB isolates, in comparison with commercial lactic acid bacteria, showed suitable antibacterial activity. Heating the bacterial supernatant eliminated its anti-bacterial property; however, alkali treatment did not have any effect. The Minimum Inhibition Concentration did not show significant differences between native and commercial lactic acid bacteria; however, the native LAB showed suitable co-aggregation with pathogens. Conclusion: Traditional lactic acid bacteria and their metabolites can inhibit growth of pathogens. This shows the positive role of LAB in human health which necessitates their increase usage as natural antimicrobial agent.

  15. Isolation And Partial Characterization Of Bacteria Activity Associated With Gorgonian Euplexaura sp. Against Methicillin-Resistant Staphylococcus aureus (MRSA)

    Science.gov (United States)

    Kristiana, R.; Ayuningrum, D.; Asagabaldan, M. A.; Nuryadi, H.; Sabdono, A.; Radjasa, O. K.; Trianto, A.

    2017-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infection has emerged in around the world and has been resistance to ciprofloxacin, erythromycin, clindamycin. The aims of this study were to isolate, to investigate and to characterize bacterial symbionts gorgonian having activity against MRSA. Euplexaura sp. was collected from Panjang Island, Jepara, Indonesia by snorkling 2-5 m in depth. Bacterias were isolated by using spesific media with dilution method. Bacterias were conducted by using the streak method. Antibacterial activity was investigated by overlay method. The potent bacteria was identified by using molecular identification (DNA extraction, electrophoresis, PCR and phylogenetic analysis using 16S rDNA genes with actinobacteria-spesific primers) and bio-chemical test (among 5 isolated bacteria from gorgonian showed activity against MRSA). The strain PG-344 was the best candidat that has an inhibition zone against MRSA. The result of sequencing bacteria is 100% closely related with Virgibacillus salarius. This becomes a potential new bioactive compounds to against MRSA that can be a new drug discovery.

  16. Selection and Test of L-histidine Decarboxylase Enzyme Activity of Six Isolates of Histamine Forming Bacteria

    Directory of Open Access Journals (Sweden)

    Romauli Aya Sophia

    2007-11-01

    Full Text Available Six isolates of histamine forming bacteria were screened to see the degree of ability in producing histamine on modified Niven's medium. The result showed that the six bacteria were able to produce histamine by giving a pinkish color on the medium, which could be used as a preliminary identification of histamine-forming bacteria (HFB. The isolates were grown in liquid modified Niven medium to measure the production of histamine. The histamine produced were determined by Hardy and Smith method. The result showed that all of the isolates produced high level of histamine (92.35 - 305.49 mg/100 ml of the medium. From all of them, Enterobacter spp. produced the highest level of histamine (305.49 mg/100 ml. A synthetic medium was used to measure the growth pattern and optimum time required by Enterobacter spp and Morganella morganii (as control bacteria to produce the L-histidine decarboxylase enzyme (HDC which is responsible for histamine production. The result showed that for both bacteria, the optimum enzim production was 8 hours after incubation.

  17. Safety assessment of dairy microorganisms: aerobic coryneform bacteria isolated from the surface of smear-ripened cheeses.

    Science.gov (United States)

    Denis, Catherine; Irlinger, Françoise

    2008-09-01

    The group of "coryneform bacteria" belongs to the class of Actinobacteria including a diverse and heterogeneous collection of bacteria of various genera. Most of them are known as environmental residents and/or commensal flora of humans and they are isolated frequently in clinical studies. Actinobacteria include also several aerobic species, present at the surface of smear-ripened cheeses for decades and used as ripening culture in the dairy industry. Their clinical significance is controversial because an easy combination of phenotypic and molecular methods to characterize Actinobacteria at the species level is still lacking. A bibliographical survey was conducted to assess the safety status of Actinobacteria species used as starter culture in fermented dairy foods, according to their technological interest. Aerobic coryneform bacteria isolated from smear-ripened cheeses are most commonly recovered from soil, the environment or food. To date, no clinical infection or food toxi-infection related to smear cheese coryneform bacteria ingestion has been reported. From a taxonomic viewpoint, dairy species are distant from the reference species associated with known pathologies. From a physiological viewpoint, cheese smear coryneform bacteria appear to be related to particular ecological niches: they are all oxidative species, and most are psychrotrophic and unable to grow at 37 degrees C whereas medically relevant coryneform bacteria are facultative anaerobes and grow at 35-37 degrees C. Consequently, technological strains must be selected according to taxonomic criteria (nonpathogenic species) and ecological criteria.

  18. Isolation and identification of crude oil degrading bacteria from gastropod Haustrum scobina collected from Persian Gulf (Bandar Abbas Shoreline provenance

    Directory of Open Access Journals (Sweden)

    Zinab Bayat

    2016-06-01

    Full Text Available Introduction: Biodegradation is a good alternative rather than chemical and physical methods for cleaning oil contaminated areas. Several factors like crude oil concentration, biosurfactant production, salinity and incubation time affect the biodegradation. Materials and methods: In this study, seawater sample and gastropod were collected from Persian Gulf. To isolate oil degrading bacteria from collected samples, ONR7a medium was used. The strains that had more growth and higher oil removal were selected and identified. The factors such as the effect of different concentrations of oil, incubation time, mixed cultures and salinity on the biodegradation were investigated. Results: Six crude oil degrading bacteria were isolated. Between these bacteria 2 strains were selected based on higher oil removal. These strains belonged to the genus Vibrio and Halomonas. Strains with higher Emulsification activity produce more biosurfactant and have higher oil biodegradation. Growth and oil degradation have increment pattern by prolonging the incubation time. Mixed culture of Vibrio and Halomonas strains have higher rates of degradation rather than culturing with one of them. Increase in crudeoil concentration to 2.5% caused reduction in growth of bacteria and degradation of oil. Discussion and conclusion: The results of this study show that crude oil degrading bacteria have high diversity in Persian Gulf. These bacteria have higher capability for oil degradation thus they can be used for remediation of oil contaminated areas.

  19. Antimicrobial Activity of Bacillus sp. Natural Isolates and Their Potential Use in the Biocontrol of Phytopathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Tanja Berić

    2012-01-01

    Full Text Available Screening of 203 Bacillus sp. natural isolates for antimicrobial activity against phytopathogenic bacteria showed that 127 tested strains inhibit at least one sensitive strain, which illustrates their potential use as biocontrol agents. Among them, 104 isolates showed significant antagonism against Xanthomonas oryzae pv. oryzae, and only one of these (VPS50.2 synthesizes bacteriocin. An additional screening tested whether 51 isolates contained genes involved in the biosynthesis of lipopeptides of the iturin and surfactin classes. Results show that 33 isolates harbour the operon for iturin biosynthesis, and six of them carry the sfp gene, responsible for the biosynthesis of surfactin. Lipopeptide purification from the supernatant of isolate SS12.9 (identified as B. subtilis or B. amyloliquefaciens was performed using ethyl acetate extraction, ultrafiltration and reversed phase HPLC. Mass spectrometry analysis confirmed that isolate SS12.9 produces a substance of the iturin class with potential for biocontrol of X. oryzae pv. oryzae.

  20. 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from blood cultures

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Skov, Marianne Nielsine; Knudsen, Elisa;

    2010-01-01

    A comparison between conventional identification and 16S rRNA gene sequencing of anaerobic bacteria isolated from blood cultures in a routine setting was performed (n = 127). With sequencing, 89% were identified to the species level, versus 52% with conventional identification. The times...

  1. DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract

    NARCIS (Netherlands)

    Zoetendal, E.G.; Ben-Amor, K.; Akkermans, A.D.L.; Abee, T.; Vos, de W.M.

    2001-01-01

    A major concern in molecular ecological studies is the lysis efficiency of different bacteria in a complex ecosystem. We used a PCR-based 16S rDNA approach to determine the effect of two DNA isolation protocols (i.e. the bead beating and Triton-X100 method) on the detection limit of seven feces-asso

  2. Toward Probiotict Food Product from Meat Through Isolation and Identification Lactic Acid Bacteria As Probiotic Culture Stater

    Directory of Open Access Journals (Sweden)

    Yunilas Yunilas

    2014-01-01

    Full Text Available Probiotic food products of meat can provide extensive benefits, to increase the shelf life and nutritional value also improve the taste. The use of lactic acid bacteria culture (LAB derived from the isolation of the meat and the addition of probiotic cultures (Lactobacilli and Bifidobacteria in fermented sausage processing is expected to produce a probiotic sausage products with nutritional value, and better shelf life and improve health. This study aimed to isolate and identify lactic acid bacteria (LAB of meat as a starter culture fermented sausages. The parameters observed were gram test, catalase, motility, gas production, type of fermentation, growth at various temperatures and pH. The results were obtained 28 isolates, 17 isolates were able to produce acid and 8 of them are lactic acid bacteria (LAB with the characteristics of gram-positive, catalase negative, not motile, produces gas, are hetero and homo fermentative, optimum growth temperature of 300C and a few of them are able to grow on pH 3.5. Lactic acid bacteria that able to be combined with probiotics as sausage starter culture to the probiotic food products of meat.

  3. "Paraffin wax-overlay of pour plate", a method for the isolation and enumeration of purple non-sulfur bacteria.

    Science.gov (United States)

    Archana, A; Sasikala, Ch; Ramana, Ch V; Arunasri, K

    2004-12-01

    A modification of pour plate technique with an overlay of wax was used for isolation and enumeration of purple non-sulfur bacteria (PNSB) with equal efficiency as that of agar shake culture. The total count of PNSB ranged from 10(5)-10(8) CFU g dry soil(-1) and belonged to the genera of Rhodobacter, Rhodopseudomonas, Rhodocista and Rubrivivax.

  4. Desulfuromonas svalbardensis sp nov and Desulfuromusa ferrireducens sp nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard

    DEFF Research Database (Denmark)

    Vandieken, V.; Mussmann, M.; Niemann, Hans Henrik

    2006-01-01

    Two psychrophilic, Gram-negative, rod-shaped, motile bacteria (strains 112(T) and 102(T)) that conserved energy from dissimilatory Fe(III) reduction concomitant with acetate oxidation were isolated from permanently cold Arctic marine sediments. Both strains grew at temperatures down to -2 degrees C...

  5. Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard

    DEFF Research Database (Denmark)

    Vandieken, Verona; Mussmann, Marc; Niemann, Helge

    2006-01-01

    Two psychrophilic, Gram-negative, rod-shaped, motile bacteria (strains 112T and 102T) that conserved energy from dissimilatory Fe(III) reduction concomitant with acetate oxidation were isolated from permanently cold Arctic marine sediments. Both strains grew at temperatures down to -2 degrees C...

  6. Draft Genome Sequences of Gluconobacter cerinus CECT 9110 and Gluconobacter japonicus CECT 8443, Acetic Acid Bacteria Isolated from Grape Must

    Science.gov (United States)

    Sainz, Florencia

    2016-01-01

    We report here the draft genome sequences of Gluconobacter cerinus strain CECT9110 and Gluconobacter japonicus CECT8443, acetic acid bacteria isolated from grape must. Gluconobacter species are well known for their ability to oxidize sugar alcohols into the corresponding acids. Our objective was to select strains to oxidize effectively d-glucose. PMID:27365351

  7. ISOLATION AND SCREENING OF HEAVY METAL ABSORBING BACTERIA FROM THE INDUSTRY EFFLUENT SITES OF THE RIVER NAGAVALI

    Directory of Open Access Journals (Sweden)

    Satpal Singh Bisht*, B. Praveen, M. Rukmini and Harman Dhillon

    2012-05-01

    Full Text Available The present study was designed to evaluate the heavy metal absorbing potential of bacteria isolated from industry effluent sites of river Nagavali, Srikakulam Andhra Pradesh. From the effluent waste water three bacteria were isolated and confirmed as Staphylococcus aureus and Staphylococcus epidermidis and Staphylococcus saprophyticus after performing various biochemical tests. The heavy metal tolerant efficiency was determined by analyzing the growth of the bacteria in presence of heavy metal (Cu, Hg, Co and Zn solution and their optimum tolerance was determined by measuring the optical density at 600nm after 24hr and 48hr of incubation. Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus saprophyticus were found to grow in heavy metal solutions.

  8. Natural populations of lactic acid bacteria isolated from vegetable residues and silage fermentation.

    Science.gov (United States)

    Yang, J; Cao, Y; Cai, Y; Terada, F

    2010-07-01

    Natural populations of lactic acid bacteria (LAB) and silage fermentation of vegetable residues were studied. Fifty-two strains of LAB isolated from cabbage, Chinese cabbage, and lettuce residues were identified and characterized. The LAB strains were gram-positive and catalase-negative bacteria, which were divided into 6 groups (A to F) according to morphological and biochemical characteristics. The strains in group A were rods that did not produce gas from glucose and formed the d and l isomers of lactate. Groups B and C were homofermentative cocci that formed l-lactic acid. Groups D, E, and F were heterofermentative cocci that formed d-lactic acid. Based on 16S rDNA gene sequence analysis, group A to F strains were identified as Lactobacillus plantarum, Lactococcus piscium, Lactococcus lactis, Leuconostoc citreum, Weissella soli and Leuconostoc gelidum, respectively. The prevalent LAB, predominantly homofermentative lactobacilli, consisted of Lactobacillus plantarum (34.6%), Weissella soli (19.2%), Leuconostoc gelidum (15.4%), Leuconostoc citreum (13.5%), Lactococcus lactis (9.6%), and Lactococcus piscium (7.7%). Lactobacillus plantarum was the dominant member of the LAB population in 3 types of vegetable residues. These vegetable residues contained a high level of crude protein (20.2 to 28.4% of dry matter). These silages prepared by using a small-scale fermentation system were well preserved, with low pH and a relatively high content of lactate. This study suggests that the vegetable residues contain abundant LAB species and nutrients, and that they could be well preserved by making silage, which is a potentially good vegetable protein source for livestock diets.

  9. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum.

    Science.gov (United States)

    Leite, Giuseppe G F; Figueirôa, Juciane V; Almeida, Thiago C M; Valões, Jaqueline L; Marques, Walber F; Duarte, Maria D D C; Gorlach-Lira, Krystyna

    2016-03-01

    Biosurfactants are microbial secondary metabolites. The most studied are rhamnolipids, which decrease the surface tension and have emulsifying capacity. In this study, the production of biosurfactants, with emphasis on rhamnolipids, and diesel oil degradation by 18 strains of bacteria isolated from waste landfill soil contaminated by petroleum was analyzed. Among the studied bacteria, gram-positive endospore forming rods (39%), gram positive rods without endospores (17%), and gram-negative rods (44%) were found. The following methods were used to test for biosurfactant production: oil spreading, emulsification, and hemolytic activity. All strains showed the ability to disperse the diesel oil, while 77% and 44% of the strains showed hemolysis and emulsification of diesel oil, respectively. Rhamnolipids production was observed in four strains that were classified on the basis of the 16S rRNA sequences as Pseudomonas aeruginosa. Only those strains showed the rhlAB gene involved in rhamnolipids synthesis, and antibacterial activity against Escherichia coli, P. aeruginosa, Staphylococcus aureus, Bacillus cereus, Erwinia carotovora, and Ralstonia solanacearum. The highest production of rhamnolipids was 565.7 mg/L observed in mineral medium containing olive oil (pH 8). With regard to the capacity to degrade diesel oil, it was observed that 7 strains were positive in reduction of the dye 2,6-dichlorophenolindophenol (2,6-DCPIP) while 16 had the gene alkane mono-oxygenase (alkB), and the producers of rhamnolipids were positive in both tests. Several bacterial strains have shown high potential to be explored further for bioremediation purposes due to their simultaneous ability to emulsify, disperse, and degrade diesel oil. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:262-270, 2016.

  10. Isolation of bacteria causing urinary tract infection and their antibiotic resistance profile

    Directory of Open Access Journals (Sweden)

    Leandro Antonio Soares

    2010-11-01

    Full Text Available Urinary tract infection (UTI is among the most frequent causes bringing male and female patients to the municipal health units in search of treatment. This paper aims at identifying the microorganisms responsible for this infection and at establishing their resistance profile against the antibiotics most commonly used in the municipal network. One hundred and twenty samples from patients clinically suspect to have UTI were collected and differentiated in CLED, MacConkey e chromogenic EC culture media in the Microbiology Laboratory I of the “Centro Universitário Positivo-UNICEP”. Positive samples were identified and characterized by antibiogram. 63,64% of the infections were caused by Escherichia coli and 18,18% by Staphylococcus aureus. More than 60% of the infections occurred in the age range from 12 to 33 years. The high number of samples found contaminated is an indicator for a certain difficulty in following the instructions for sample collection. Another relevant data is that 35,8% of the analyzed samples came from pregnant women. The antibiotics to which the bacteria responsible for UTI are sensitive are in great part not available at the Unified Health System but most of the isolated E.coli bacteria and 100% of Saureus showed sensitivity to the drugs Nitrofurantoin and Sulfametoxazole-trimetropim, which are available in the health units. With a compatible clinical picture, an empirical treatment with the referred drugs can be considered adequate, however post-therapy control examinations would be ideal for avoiding the appearance of resistant strains in the community.

  11. Isotopologue signatures of nitrous oxide produced by nitrate-ammonifying bacteria isolated from soil

    Science.gov (United States)

    Behrendt, Undine; Well, Reinhard; Giesemann, Anette; Ulrich, Andreas; Augustin, Jürgen

    2015-04-01

    Agricultural soils are the largest single source of anthropogenic N2O to the atmosphere, primarily driven by microbiological processes such as denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Both processes occur under similar conditions of low oxygen concentration and therefore, source partitioning of emitted N2O is difficult. Understanding what controls the dynamics and reaction equilibrium of denitrification and DNRA is important and may allow the development of more effective mitigation strategies. 15N site preference (SP), i.e. the difference between 15N of the central and peripheral N-position of the asymmetric N2O molecule, differs depending on processes involved in N2O formation. Hence investigation of the isotopomer ratios of formed N2O potentially presents a reliable mean to identify its source. In this study, bacterial isolates obtained from organic soils were screened for their ability to reduce nitrate/nitrite to ammonium and to release N2O to the atmosphere. Taxonomic characterisation of the strains revealed that N2O formation was only detected in ammonifying strains affiliated to several genera of the family Enterobacteriaceae and strains belonging to the genus Bacillus and Paenibacillus. Sampling of N2O was conducted by incubation of strains under oxic and anoxic conditions. Investigation of the 15N site preference showed SP values in the range of 39 to 57 o . Incubation conditions had no influence on the SP. The lowest values were achieved by a strain of the species Escherichia coli which was included in this study as a DNRA reference bacterium harbouring the NrfA gene that is coding the nitrite reductase, associated with respiratory nitrite ammonification. Soil isolates showed SP-values higher than 40 o . Comparison of these results with SP-values of N2O produced by denitrifying bacteria in pure cultures (-5 to 0 o )^[1, 2]revealedsignificantdifferences.Incontrast,N_2OproducedbydenitrifyingfungidisplayedSP - valuesinarangeof

  12. Isolation and Identification of Crude Oil Degrading and Biosurfactant Producing Bacteria from the Oil-Contaminated Soils of Gachsaran

    Directory of Open Access Journals (Sweden)

    Seyyedeh Zahra Hashemi

    2016-03-01

    Full Text Available Background and Objectives: Petroleum hydrocarbons are harmful to the environment, human health, and all other living creatures. Oil and its byproducts in contact with water block sunshine to phytoplanktons and thus break the food chain and damage the marine food source. This study aims to isolate the crude oil degrading and biosurfactant producing bacteria from the oil contaminated soils of Gachsaran, Iran. Materials and Methods: Isolation was performed in peptone-water medium with yeast extract. Oil displacement area, emulsification index and bacterial phylogeny using 16S rRNA analysis were studied. Results and Conclusion: Three isolates were able to degrade the crude oil. In the first day, there were two phases in the medium; after a few days, these three bacteria degraded the crude oil until there was only one phase left in the medium. One strain was selected as a superior strain by homogenizing until the medium became clear and transparent. This method confirmed that the strain produces biosurfactant. According to the morphological and biochemical tests, the strain isolated from the oil contaminated soils is a member of Bacillus subtilis, so to study the bacterial phylogeny and taxonomy of the strain, an analysis of 16S rRNA was carried out, and the phylogenic tree confirmed them. The results verified that oil contaminated soils are good source for isolation of the biosurfactant producing bacteria.

  13. Assessment of the in vitro bioactive properties of lactic acid bacteria isolated from native ecological niches of Ecuador.

    Science.gov (United States)

    Benavides, Ana B; Ulcuango, Mario; Yépez, Lucía; Tenea, Gabriela N

    Lactic acid bacteria are known for their biotechnological potential. In various regions of Ecuador numerous indigenous biological resources are largely undocumented. In this study, we evaluated the potential probiotic characteristics and antagonistic in vitro properties of some lactic acid bacteria from native niches of the subtropical rain forests of Ecuador. These isolates were identified according to their morphological properties, standard API50CH fermentation profile and RAPD-DNA polymorphism pattern. The selected isolates were further evaluated for their probiotic potential. The isolates grew at 15°C and 45°C, survived at a pH ranging from 2.5 to 4.5 in the presence of 0.3% bile (>90%) and grew under sodium chloride conditions. All selected isolates were sensitive to ampicillin, amoxicillin and cefuroxime and some showed resistance to gentamicin, kanamycin and tetracycline. Moreover, the agar well diffusion assay showed that the supernatant of each strain at pH 3.0 and pH 4.0, but not at pH 7.0 exhibited increased antimicrobial activity (inhibition zone >15mm) against two foodborne pathogens, Escherichia coli and Salmonella spp. To our knowledge, this is the first report describing the antagonistic activity against two foodborne pathogens and the probiotic in vitro potential of lactic acid bacteria isolated from native biota of Ecuador.

  14. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Raghupathi, Prem Krishnan; Herschend, Jakob

    2015-01-01

    examined for multispecies biofilm formation. Eight strains from each sampling site were chosen and all possible combinations of four member co-cultures were tested for enhanced biofilm formation at 15°C and 24°C. In approximately 20% of the multispecies consortia grown at 15°C, the biofilm formation......Bacterial attachment and biofilm formation can lead to poor hygienic conditions in food processing environments. Furthermore, interactions between different bacteria may induce or promote biofilm formation. In this study, we isolated and identified a total of 687 bacterial strains from seven...... different locations in a meat processing environment and evaluated their biofilm formation capability. A diverse group of bacteria was isolated and most were classified as poor biofilm producers in a Calgary biofilm device assay. Isolates from two sampling sites, the wall and the meat chopper, were further...

  15. Diversity of lactic acid bacteria isolated from Brazilian water buffalo mozzarella cheese.

    Science.gov (United States)

    Silva, Luana Faria; Casella, Tiago; Gomes, Elisangela Soares; Nogueira, Mara Correa Lelles; De Dea Lindner, Juliano; Penna, Ana Lúcia Barretto

    2015-02-01

    The water buffalo mozzarella cheese is a typical Italian cheese which has been introduced in the thriving Brazilian market in the last 10 y, with good acceptance by its consumers. Lactic acid bacteria (LAB) play an important role in the technological and sensory quality of mozzarella cheese. In this study, the aim was to evaluate the diversity of the autochthones viable LAB isolated from water buffalo mozzarella cheese under storage. Samples were collected in 3 independent trials in a dairy industry located in the southeast region of Brazil, on the 28th day of storage, at 4 ºC. The LAB were characterized by Gram staining, catalase test, capacity to assimilate citrate, and production of CO2 from glucose. The diversity of LAB was evaluated by RAPD-PCR (randomly amplified polymorphic DNA-polymerase chain reaction), 16S rRNA gene sequencing, and by Vitek 2 system. Twenty LAB strains were isolated and clustered into 12 different clusters, and identified as Streptococcus thermophilus, Enterococcus faecium, Enterococcus durans, Leuconostoc mesenteroides subsp. mesenteroides, Lactobacillus fermentum, Lactobacillus casei, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus helveticus. Enterococcus species were dominant and citrate-positive. Only the strains of L. mesenteroides subsp. mesenteroides and L. fermentum produced CO2 from glucose and were citrate-positive, while L. casei was only citrate positive. This is the first report which elucidates the LAB diversity involved in Brazilian water buffalo mozzarella cheese. Furthermore, the results show that despite the absence of natural whey cultures as starters in production, the LAB species identified are the ones typically found in mozzarella cheese.

  16. Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

    Science.gov (United States)

    Li, Dongxia; Ni, Kuikui; Pang, Huili; Wang, Yanping; Cai, Yimin; Jin, Qingsheng

    2015-01-01

    A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC 43971T, Micrococcus luteus ATCC 4698T and Escherichia coli ATCC 11775T were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at 100°C), but the antimicrobial activity was eliminated after treatment at 121°C for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory. PMID:25924957

  17. Antibiogram of isolated bacteria from Omisanjana hand-dug well water and flowing stream

    Directory of Open Access Journals (Sweden)

    O.A. Toba

    2012-09-01

    Full Text Available Water samples were obtained from ten (10 wells around Omisanjana stream, Ado-Ekiti to determine the microbiological and physicochemical quality. The samples were analyzed for the total bacterial and coliform count and the isolated organisms were identified using standard techniques which were further screened for susceptibility to various antibiotics commonly used in the community. The total bacterial count ranged from 2.6 x 103 to 10.9 x 104 CFU/ml and the total coliform counts ranging from 3.0 x 102 to 9.3 x104 CFU/ml; which exceeded the WHO standard for drinking water. The organisms isolated belonged to eleven genera, among which Staphylococcus aureus showed highest frequency (24.6% while Acinetobacter spp. with least frequency (4.3%. The physicochemical properties of the water accord with the WHO standard with pH range of (6.2-71, temperature (26.9-29.2, turbidity (-0.8 - 6.5 NTU, conductivity (0.04-0.23µS/cm, total hardness (14-80 mgL-1, TDS (34 to166 mgL-1 and TSS of (29 to 122 mgL-1. Higher level of resistance to the antibiotics tested was more prominent in the E.coli than in Staphylococcus aureus. Although some strains were susceptible to some commonly used antibiotics, but the resistant bacteria encountered pose a serious public health risk especially with the increasing rate of transfer of resistant genes from one bacterium to another. There is therefore need to treat water obtained from wells in the community to make it safe for domestic use.

  18. Identification and antimicrobial activity detection of lactic Acid bacteria isolated from corn stover silage.

    Science.gov (United States)

    Li, Dongxia; Ni, Kuikui; Pang, Huili; Wang, Yanping; Cai, Yimin; Jin, Qingsheng

    2015-05-01

    A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC 43971(T), Micrococcus luteus ATCC 4698(T) and Escherichia coli ATCC 11775(T) were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at 100°C), but the antimicrobial activity was eliminated after treatment at 121°C for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.

  19. Isolation and characterization of bacteriocin-producing lactic acid bacteria from ready-to-eat food products.

    Science.gov (United States)

    Kelly, W J; Asmundson, R V; Huang, C M

    1996-12-01

    Lactic acid bacteria isolated from a range of foods sold in ready-to-eat form were screened for bacteriocin production. Twenty-two bacteriocin-producing cultures were isolated from 14 of the 41 foods sampled. Bacteriocin-producing isolates from meat, fish and dairy products were Lactobacillus and Leuconostoc species typically found associated with these products. Most of these isolates gave only a narrow inhibitory spectrum although two showed activity against Listeria monocytogenes. Fruit and vegetable products gave a broader range of organisms but most of the bacteriocin-producing cultures were found to be strains of Lactococcus. Several lactococci produced a nisin-like activity, and showed a broad inhibitory spectrum against the indicator strains tested. The ease with which bacteriocin-producing strains could be isolated implies that they are already being safely consumed in food, and highlights the potential for using bacteriocin-producing cultures for biopreservation, especially in association with minimally processed products.

  20. Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions.

    Science.gov (United States)

    Li, Fengmei; Guo, Shuhai; Hartog, Niels; Yuan, Ye; Yang, Xuelian

    2016-02-01

    Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria capable of growing under electrokinetic conditions were isolated using an adjusted acclimation and enrichment procedure based on soil contaminated with heavy PAHs in the presence of an electric field. Their ability to degrade heavy PAHs under an electric field was individually investigated in artificially contaminated soils. The results showed that strains PB4 (Pseudomonas fluorescens) and FB6 (Kocuria sp.) were the most efficient heavy PAH degraders under electrokinetic conditions. They were re-inoculated into a polluted soil from an industrial site with a PAH concentration of 184.95 mg kg(-1). Compared to the experiments without an electric field, the degradation capability of Pseudomonas fluorescens and Kocuria sp. was enhanced in the industrially polluted soil under electrokinetic conditions. The degradation extents of total PAHs were increased by 15.4 and 14.0% in the electrokinetic PB4 and FB6 experiments (PB4 + EK and FB6 + EK) relative to the PB4 and FB6 experiments without electrokinetic conditions (PB4 and FB6), respectively. These results indicated that P. fluorescens and Kocuria sp. could efficiently degrade heavy PAHs under electrokinetic conditions and have the potential to be used for the electro-bioremediation of PAH-contaminated soil, especially if the soil is contaminated with heavy PAHs.

  1. Effect of human isolated probiotic bacteria on preventing Campylobacter jejuni colonization of poultry.

    Science.gov (United States)

    Cean, Ada; Stef, Lavinia; Simiz, Eliza; Julean, Calin; Dumitrescu, Gabi; Vasile, Aida; Pet, Elena; Drinceanu, Dan; Corcionivoschi, Nicolae

    2015-02-01

    This study was performed in order to determine whether human isolated probiotic bacteria can be effective in reducing Campylobacter jejuni infection of chicken intestinal cells, in vitro, and in decreasing its colonization abilities within the chicken gut. Our results show that the probiotic strains Lactobacillus paracasei J. R, L. rhamnosus 15b, L. lactis Y, and L. lactis FOa had a significant effect on C. jejuni invasion of chicken primary cells, with the strongest inhibitory effect detected when a combination of four was administered. In regard to the in vivo effect, using all four strains in one combination prevented mucus colonization in the duodenum and cecum. Moreover, the pathogen load in the lumen of these two compartments was significantly reduced. When probiotics were introduced during the early growth period, the presence of the pathogen in feces was increased (p>0.05), but when they were given during the last week of growth, there was no significant effect. In conclusion, our data indicate that these four new probiotic strains are able to cause modifications in the chicken intestinal mucosa and can reduce the ability of C. jejuni to invade, in vitro, and to colonize, in vivo. These probiotics are now proven to be effective even when introduced in broiler's feed 7 days before slaughter, which makes them cost-effective for the producers.

  2. Exopolysaccharides isolated from hydrothermal vent bacteria can modulate the complement system.

    Science.gov (United States)

    Courtois, Anthony; Berthou, Christian; Guézennec, Jean; Boisset, Claire; Bordron, Anne

    2014-01-01

    The complement system is involved in the defence against bacterial infection, or in the elimination of tumour cells. However, disturbances in this system contributes to the pathogenesis of various inflammatory diseases. The efficiency of therapeutic anti-tumour antibodies is enhanced when the complement system is stimulated. In contrast, cancer cells are able to inhibit the complement system and thus proliferate. Some marine molecules are currently being developed as new drugs for use in humans. Among them, known exopolyssacharides (EPSs) generally originate from fungi, but few studies have been performed on bacterial EPSs and even fewer on EPSs extracted from deep-sea hydrothermal vent microbes. For use in humans, these high molecular weight EPSs must be depolymerised. Furthermore, the over-sulphation of EPSs can modify their biological activity. The aim of this study was to investigate the immunodulation of the complement system by either native or over-sulphated low molecular weight EPSs isolated from vent bacteria in order to find pro or anti-activators of complement.

  3. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    Energy Technology Data Exchange (ETDEWEB)

    You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, No. 200, Rd. Chung-Pei, Chungli 320, Taiwan (China); Teng, Jun-Yu, E-mail: nickprometheus@yahoo.com.tw [Department of Civil Engineering, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-12-15

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  4. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Raina

    2016-08-01

    Full Text Available Bacterial communities associated with healthy corals produce antimicrobial compounds that inhibit the colonization and growth of invasive microbes and potential pathogens. To date, however, bacteria-derived antimicrobial molecules have not been identified in reef-building corals. Here, we report the isolation of an antimicrobial compound produced by Pseudovibrio sp. P12, a common and abundant coral-associated bacterium. This strain was capable of metabolizing dimethylsulfoniopropionate (DMSP, a sulfur molecule produced in high concentrations by reef-building corals and playing a role in structuring their bacterial communities. Bioassay-guided fractionation coupled with nuclear magnetic resonance (NMR and mass spectrometry (MS, identified the antimicrobial as tropodithietic acid (TDA, a sulfur-containing compound likely derived from DMSP catabolism. TDA was produced in large quantities by Pseudovibrio sp., and prevented the growth of two previously identified coral pathogens, Vibrio coralliilyticus and V. owensii, at very low concentrations (0.5 μg/mL in agar diffusion assays. Genome sequencing of Pseudovibrio sp. P12 identified gene homologs likely involved in the metabolism of DMSP and production of TDA. These results provide additional evidence for the integral role of DMSP in structuring coral-associated bacterial communities and underline the potential of these DMSP-metabolizing microbes to contribute to coral disease prevention.

  5. Biodegradation of geosmin in drinking water by novel bacteria isolated from biologically active carbon.

    Science.gov (United States)

    Zhou, Beihai; Yuan, Rongfang; Shi, Chunhong; Yu, Liying; Gu, Junnong; Zhang, Chunlei

    2011-01-01

    Three strains of Gram-negative bacteria capable of removing geosmin from drinking water were isolated from biologically active carbon and identified to be Chryseobacterium sp., Sinorhizobium sp. and Stenotrophomonas sp. based on physio-biochemistry analysis and 16S rRNA gene sequence analysis. Removal efficiencies of 2 mg/L geosmin in mineral salts medium were 84.0%, 80.2% and 74.4% for Chryseobacterium sp., Sinorhizobium sp. and Stenotrophomonas sp., respectively, while removal efficiencies of 560 ng/L geosmin in filter influent were 84.8%, 82.3% and 82.5%, respectively. The biodegradation of geosmin was determined to be a pseudo first-order reaction, with rate constants at 2 mg/L and 560 ng/L being 0.097 and 0.086 day(-1), 0.089 and 0.084 day(-1), 0.074 and 0.098 day(-1) for the above mentioned degraders, respectively. The biomass of culture in the presence of geosmin was much higher than that in the absence of geosmin.

  6. Biofilm-forming capacity in biogenic amine-producing bacteria isolated from dairy products.

    Directory of Open Access Journals (Sweden)

    Maria eDiaz

    2016-05-01

    Full Text Available Biofilms on the surface of food industry equipment are reservoirs of potentially food-contaminating bacteria - both spoilage and pathogenic. However, the capacity of biogenic amine (BA-producers to form biofilms has remained largely unexamined. BAs are low molecular weight, biologically active compounds that in food can reach concentrations high enough to be a toxicological hazard. Fermented foods, especially some types of cheese, accumulate the highest BA concentrations of all. The present work examines the biofilm-forming capacity of 56 BA-producing strains belonging to three genera and 10 species (12 Enterococcus faecalis, 6 Enterococcus faecium, 6 Enterococcus durans, 1 Enterococcus hirae, 12 Lactococcus lactis, 7 Lactobacillus vaginalis, 2 Lactobacillus curvatus, 2 Lactobacillus brevis, 1 Lactobacillus reuteri and 7 Lactobacillus parabuchneri, all isolated from dairy products. Strains of all the tested species - except for L. vaginalis - were able to produce biofilms on polystyrene and adhered to stainless steel. However, the biomass produced in biofilms was strain-dependent. These results suggest that biofilms may provide a route via which fermented foods can become contaminated by BA-producing microorganisms.

  7. Effects of probiotic bacteria on gastrointestinal motility in guinea-pig isolated tissue

    Institute of Scientific and Technical Information of China (English)

    Matteo Massi; Patrizia Brigidi; Pierfranco Ioan; Roberta Budriesi; Alberto Chiarini; Beatrice Vitali; Karen M Lammers; Paolo Gionchetti; Massimo Campieri; Anthony Lembo

    2006-01-01

    AIM: To evaluate the intestinal motility changes evoked by 8 bacterial strains belonging to Bifidobacterium,Lactobacillus and Streptococcus genera within the probiotic preparation VSL#3.METHODS: Ileum and proximal colon segments isolated from guinea-pigs were used as a study model.Entire cells and cell fractions (cell debris, cell wall fraction, cytoplasmatic fraction, proteinaceous and nonproteinaceous cytoplasmatic components) of VSL#3strains and, as controls, Escherichia coli, Salmonella aboni and Bacillus licheniforrnis were tested in this in vitro model.RESULTS: Among the bacterial cell fractions tested,only the cytoplasmatic fraction modified intestinal motility. Lactobacillus strains stimulated the contraction of ileum segment, whereas all probiotic strains tested induced proximal colon relaxation response. The non-proteinaceous cytoplasmatic components were responsible for the colon relaxation.CONCLUSION: The results obtained in this study suggest that the proximal colon relaxation activity showed by the probiotic bacteria could be one of the possible mechanisms of action by which probiotics exert their positive effects in regulating intestinal motility.

  8. Plasmid profile of bacteria isolated from tears of HIV/AIDS patients

    Directory of Open Access Journals (Sweden)

    O B Ajayi

    2009-01-01

    Full Text Available Objective: The purpose of this study is to determine the presence and transfer of plasmids in bacteria isolated from tears of HIV/AIDS patients, their sensitivity and resistance to commercially available antibiotics. Design: This was a cross sectional experimental study. Materials and methods:One hundred tears samples from HIV/ AIDS patients and fifty tears samples from HIV/AIDS negative patients were screened for resistance to 14 commercially available antibiotics using disc diffusion method. Result: Three multiple antibiotics resistant strains of staphylococcus aureus and four multiple antibiotics resistance strains of Pseudomonas aeruginosa were identified. staphylococcus aureus strains showed 100% resistance to Ampiclox and erythromycin, 66.6% to Perfloxacin, amoxicillin and septrin, 33.33% to ciprofloxacin. Pseudomonas aeruginosa strains showed 100% resistance to streptomycin, amoxicillin, septrin and chloramphenicol. Only I strain of staphylococcus aureus showed presence of plasmid which was not transferable to Escherichia coli because of presence of disulphide cross--linked cell wall. Other strains of both staphylococcus aureus and Pseudomonas aeruginosa remained resistant after curing . Conclusion: Further studies are needed in this area to show if antibiotic resistance in HIV/AIDS positive patients could be as a result of plasmid as well as other factors.

  9. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    Science.gov (United States)

    Petatán-Sagahón, Iván; Anducho-Reyes, Miguel Angel; Silva-Rojas, Hilda Victoria; Arana-Cuenca, Ainhoa; Tellez-Jurado, Alejandro; Cárdenas-Álvarez, Isabel Oyuki; Mercado-Flores, Yuridia

    2011-01-01

    Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease. PMID:22016606

  10. Biodegradation of geosmin in drinking water by novel bacteria isolated from biologically active carbon

    Institute of Scientific and Technical Information of China (English)

    Beihai Zhou; Rongfang Yuan; Chunhong Shi; Liying Yu; Junnong Gu; Chunlei Zhang

    2011-01-01

    Three strains of Gram-negative bacteria capable of removing geosmin from drinking water were isolated from biologically active carbon and identified to be Chryseobacterium sp., Sinorhizobium sp.and Stenotrophomonas sp.based on physio-biochemistry analysis and 16S rRNA gene sequence analysis.Removal efficiencies of 2 mg/L geosmin in mineral salts medium were 84.0%, 80.2% and 74.4% for Chryseobacterium sp., Sinorhizobium sp.and Stenotrophomonas sp., respectively, while removal efficiencies of 560 ng/L geosmin in filter influent were 84.8%, 82.3% and 82.5%, respectively.The biodegradation of geosmin was determined to be a pseudo first-order reaction, with rate constants at 2 mg/L and 560 ng/L being 0.097 and 0.086 day-1, 0.089 and 0.084 day-1, 0.074 and 0.098 day-1 for the above mentioned degraders, respectively.The biomass of culture in the presence of geosmin was much higher than that in the absence of geosmin.

  11. Isolation and partial characterization of halotolerant lactic acid bacteria from two Mexican cheeses.

    Science.gov (United States)

    Morales, Fredy; Morales, Jesús I; Hernández, César H; Hernández-Sánchez, Humberto

    2011-07-01

    Isolated strains of halotolerant or halophilic lactic acid bacteria (HALAB) from Cotija and doble crema cheeses were identified and partially characterized by phenotypic and genotypic methods, and their technological abilities were studied in order to test their potential use as dairy starter components. Humidity, a(w), pH, and salt concentration of cheeses were determined. Genotypic diversity was evaluated by randomly amplified polymorphic DNA-polymerase chain reaction. Molecular identification and phylogenetic reconstructions based on 16S rRNA gene sequences were performed. Additional technological abilities such as salt tolerance, acidifying, and proteolytic and lipolytic activities were also investigated. The differences among strains reflected the biodiversity of HALAB in both types of cheeses. Lactobacillus acidipiscis, Tetragenococcus halophilus, Weissella thailandensis, and Lactobacillus pentosus from Cotija cheese, and L. acidipiscis, Enterococcus faecium, Lactobacillus plantarum, Lactobacillus farciminis, and Lactobacillus rhamnosus from doble crema cheese were identified based on 16S rRNA. Quantitative and qualitative assessments showed strains of T. halophilus and L. plantarum to be proteolytic, along with E. faecium, L. farciminis, and L. pentosus to a lesser extent. Lipolytic activity could be demonstrated in strains of E. faecium, L. pentosus, L. plantarum, and T. halophilus. Strains belonging to the species L. pentosus, L. plantarum, and E. faecium were able to acidify the milk media. This study evidences the presence of HALAB that may play a role in the ripening of cheeses.

  12. CIPROFLOXACIN RESISTANCE PATTERN AMONG BACTERIA ISOLATED FROM PATIENTS WITH COMMUNITY-ACQUIRED URINARY TRACT INFECTION

    Directory of Open Access Journals (Sweden)

    Ana Carolina Costa REIS

    2016-01-01

    Full Text Available SUMMARY Objective: To identify the main bacterial species associated with community-acquired urinary tract infection (UTI and to assess the pattern of ciprofloxacin susceptibility among bacteria isolated from urine cultures. Methods: We conducted a retrospective study in all the patients with community-acquired UTI seen in Santa Helena Laboratory, Camaçari, Bahia, Brazil during five years (2010-2014. All individuals who had a positive urine culture result were included in this study. Results: A total of 1,641 individuals met the inclusion criteria. Despite the fact that participants were female, we observed a higher rate of resistance to ciprofloxacin in males. The most frequent pathogens identified in urine samples were Escherichia coli, Klebsiella pneumoniae and Staphylococcus saprophyticus. Antimicrobial resistance has been observed mainly for ampicillin, sulfamethoxazole + trimethoprim and ciprofloxacin. Moreover, E. coli has shown the highest rate of ciprofloxacin resistance, reaching 36% of ciprofloxacin resistant strains in 2014. Conclusion: The rate of bacterial resistance to ciprofloxacin observed in the studied population is much higher than expected, prompting the need for rational use of this antibiotic, especially in infections caused by E. coli. Prevention of bacterial resistance can be performed through control measures to limit the spread of resistant microorganisms and a rational use of antimicrobial policy.

  13. CIPROFLOXACIN RESISTANCE PATTERN AMONG BACTERIA ISOLATED FROM PATIENTS WITH COMMUNITY-ACQUIRED URINARY TRACT INFECTION

    Science.gov (United States)

    REIS, Ana Carolina Costa; SANTOS, Susana Regia da Silva; de SOUZA, Siane Campos; SALDANHA, Milena Góes; PITANGA, Thassila Nogueira; OLIVEIRA, Ricardo Riccio

    2016-01-01

    SUMMARY Objective: To identify the main bacterial species associated with community-acquired urinary tract infection (UTI) and to assess the pattern of ciprofloxacin susceptibility among bacteria isolated from urine cultures. Methods: We conducted a retrospective study in all the patients with community-acquired UTI seen in Santa Helena Laboratory, Camaçari, Bahia, Brazil during five years (2010-2014). All individuals who had a positive urine culture result were included in this study. Results: A total of 1,641 individuals met the inclusion criteria. Despite the fact that participants were female, we observed a higher rate of resistance to ciprofloxacin in males. The most frequent pathogens identified in urine samples were Escherichia coli, Klebsiella pneumoniae and Staphylococcus saprophyticus. Antimicrobial resistance has been observed mainly for ampicillin, sulfamethoxazole + trimethoprim and ciprofloxacin. Moreover, E. coli has shown the highest rate of ciprofloxacin resistance, reaching 36% of ciprofloxacin resistant strains in 2014. Conclusion: The rate of bacterial resistance to ciprofloxacin observed in the studied population is much higher than expected, prompting the need for rational use of this antibiotic, especially in infections caused by E. coli. Prevention of bacterial resistance can be performed through control measures to limit the spread of resistant microorganisms and a rational use of antimicrobial policy. PMID:27410913

  14. Methodological variations in the isolation of genomic DNA from Streptococcus bacteria

    Directory of Open Access Journals (Sweden)

    Mônica Moreira

    2010-08-01

    Full Text Available In this work, genomic DNA of Streptococcus pyogenes, S. mutans and S. sobrinus was isolated using two methods: either using the detergent cetyltrimethylammonium bromide (CTAB at 65ºC; or by applying ultrasound to a mixture of silica and celite in CTAB. The composite method that used ultrasound was the more efficient, allowing the straightforward extraction of genomic DNA from Gram-positive bacteria with good quality and reproducibility.O gênero Streptococcus encontra-se amplamente distribuído na natureza e algumas espécies constituem a microbiota humana da cavidade bucal, como Streptococcus pyogenes, que pode estar associado a importantes doenças humanas, Streptococcus mutans e Streptococcus sobrinus, relacionados à cárie dental. O DNA genômico destas três espécies foi isolado utilizando-se dois métodos, o primeiro utilizando o detergente brometo de cetiltrimetilamônio (CTAB à 65ºC e outro associando ultra-som a uma mistura de sílica e celite em CTAB. O método que possibilitou a extração do DNA genômico das bactérias Gram positivas, com qualidade, boa reprodutibilidade fácil execução foi aquele que utilizou ultra-som associado à sílica e celite em CTAB.

  15. Isolation of alkalophilic CGTase-producing bacteria and characterization of cyclodextrin-glycosyltransferase

    Directory of Open Access Journals (Sweden)

    Higuti lma Hiroko

    2003-01-01

    Full Text Available One hundred and twenty five soil samples were collected from the regions of roots of corn, cassava, potato, bean, sugar cane, soya, and pumpkin. From these, 75 strains were isolated that produced a yellowish halo surrounding the colonies, due to a phenolphtalein-cyclodextrin (CD complex, and these were selected as alkalophilic CGTase-producing bacteria. All the 75 strains were identified as Bacillus firmus by microscopy and biochemical tests. The activity of the CGTase's varied from 2² to 2(10 dilutions,when assayed by CD-trichloroethylene (TCE-complex precipitation. Strain 31 that produced the enzyme at the higher level was selected, and its enzyme was partially purified by starch adsorption (x 17 in a yield of 51%. Maximum enzyme activity occurred at pH 5.5 and 8.5. At pH 5.5, the optimum temperature was 60°C. On increased from 30°C to 85°C, the thermodynamic parameter for activation energy was 8.27 kcal.mol-1. The enzyme was inhibited by Ca2+, Mg2+, Fe2+, Cu2+, Mn2+, and Zn2+.

  16. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances).

    Science.gov (United States)

    Hassanshahian, Mehdi; Ahmadinejad, Mohammad; Tebyanian, Hamid; Kariminik, Ashraf

    2013-08-15

    Petroleum products spill and leakage have become two major environmental challenges in Iran. Sampling was performed in the petroleum reservoir waste water of Tehran and Kerman Provinces of Iran. Alkane degrading bacteria were isolated by enrichment in a Bushnel-Hass medium, with hexadecane as sole source of carbon and energy. The isolated strains were identified by amplification of 16S rDNA gene and sequencing. Specific primers were used for identification of alkane hydroxylase gene. Fifteen alkane degrading bacteria were isolated and 8 strains were selected as powerful degradative bacteria. These 8 strains relate to Rhodococcus jostii, Stenotrophomonas maltophilia, Achromobacter piechaudii, Tsukamurella tyrosinosolvens, Pseudomonas fluorescens, Rhodococcus erythropolis, Stenotrophomonas maltophilia, Pseudomonas aeruginosa genera. The optimum concentration of hexadecane that allowed high growth was 2.5%. Gas chromatography results show that all strains can degrade approximately half of hexadecane in one week of incubation. All of the strains have alkane hydroxylase gene which are important for biodegradation. As a result, this study indicates that there is a high diversity of degradative bacteria in petroleum reservoir waste water in Iran.

  17. Isolation and identification of microorganisms including lactic acid bacteria and their use in microbial deacidification of wines from domestic vineyards.

    Science.gov (United States)

    Drozdz, Iwona; Makarewicz, Malgorzata; Tuszyński, Tadeusz

    2013-01-01

    The aim of this study was to identify various bacteria isolated from grapes and their wines. Additionally we investigated the capacity of lactic acid bacteria for microbiological deacidification of wines produced in Poland. We have identified Oenococcus oeni, Lactobacillus acidophilus and Lactobacillus delbrueckii. During the microbial deacidification process, we observed decreases of total acidity and increases of volatile acidity, with statistically significant changes noted for O. oeni in Marechal Foch and Seyval Blanc, and for Lb. acidophilus in Frontenac. On the other hand, a statistically significant increase in pH was observed in Marechal Foch and Seyval Blanc following deacidification by O. oeni.

  18. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment.

    Science.gov (United States)

    Røder, Henriette L; Raghupathi, Prem K; Herschend, Jakob; Brejnrod, Asker; Knøchel, Susanne; Sørensen, Søren J; Burmølle, Mette

    2015-10-01

    Bacterial attachment and biofilm formation can lead to poor hygienic conditions in food processing environments. Furthermore, interactions between different bacteria may induce or promote biofilm formation. In this study, we isolated and identified a total of 687 bacterial strains from seven different locations in a meat processing environment and evaluated their biofilm formation capability. A diverse group of bacteria was isolated and most were classified as poor biofilm producers in a Calgary biofilm device assay. Isolates from two sampling sites, the wall and the meat chopper, were further examined for multispecies biofilm formation. Eight strains from each sampling site were chosen and all possible combinations of four member co-cultures were tested for enhanced biofilm formation at 15 °C and 24 °C. In approximately 20% of the multispecies consortia grown at 15 °C, the biofilm formation was enhanced when comparing to monospecies biofilms. Two specific isolates (one from each location) were found to be present in synergistic combinations with higher frequencies than the remaining isolates tested. This data provides insights into the ability of co-localized isolates to influence co-culture biofilm production with high relevance for food safety and food production facilities.

  19. In vitro Characterization of Bacteriocin Produced by Lactic Acid Bacteria Isolated from Nem Chua, a Traditional Vietnamese Fermented Pork.

    Science.gov (United States)

    Pilasombut, Komkhae; Rumjuankiat, Kittaporn; Ngamyeesoon, Nualphan; Duy, Le Nguyen Doan

    2015-01-01

    The aim of this study was to screen and In vitro characterize the properties of bacteriocin produced by lactic acid bacteria isolated from Vietnamese fermented pork (Nem chua). One hundred and fifty LAB were isolated from ten samples of Nem chua and screened for bacteriocin-producing lactic acid bacteria. Antimicrobial activity of bacteriocin was carried out by spot on lawn method against both gram positive and gram negative bacteria. One isolate, assigned as KL-1, produced bacteriocin and showed inhibitory activity against Lactobacillus sakei, Leuconostoc mesenteroides and Enterococcus faecalis. To characterize the bacteriocin-producing strain, optimum temperature, incubation period for maximum bacteriocin production and identification of bacteriocin-producing strain were determined. It was found that the optimum cultivation temperature of the strain to produce the maximum bacteriocin activity (12,800 AU/mL) was obtained at 30℃. Meanwhile, bacteriocin production at 6,400 AU/mL was found when culturing the strain at 37℃ and 42℃. The isolate KL-1 was identified as L. plantarum. Antimicrobial activity of cell-free supernatant was completely inhibited by proteolytic enzyme of trypsin, alpha-chymotrypsin and proteinase K. Bacteriocin activity was stable at high temperature up to 100℃ for 10 min and at 4℃ storage for 2 d. However, the longer heating at 100℃ and 4℃ storage, its activity was reduced.

  20. Isolation of Environmental Bacteria from Surface and Drinking Water in Mafikeng, South Africa, and Characterization Using Their Antibiotic Resistance Profiles

    Directory of Open Access Journals (Sweden)

    Suma George Mulamattathil

    2014-01-01

    Full Text Available The aim of this study was to isolate and identify environmental bacteria from various raw water sources as well as the drinking water distributions system in Mafikeng, South Africa, and to determine their antibiotic resistance profiles. Water samples from five different sites (raw and drinking water were analysed for the presence of faecal indicator bacteria as well as Aeromonas and Pseudomonas species. Faecal and total coliforms were detected in summer in the treated water samples from the Modimola dam and in the mixed water samples, with Pseudomonas spp. being the most prevalent organism. The most prevalent multiple antibiotic resistance phenotype observed was KF-AP-C-E-OT-K-TM-A. All organisms tested were resistant to erythromycin, trimethoprim, and amoxicillin. All isolates were susceptible to ciprofloxacin and faecal coliforms and Pseudomonas spp. to neomycin and streptomycin. Cluster analysis based on inhibition zone diameter data suggests that the isolates had similar chemical exposure histories. Isolates were identified using gyrB, toxA, ecfX, aerA, and hylH gene fragments and gyrB, ecfX, and hylH fragments were amplified. These results demonstrate that (i the drinking water from Mafikeng contains various bacterial species and at times faecal and total coliforms. (ii The various bacteria are resistant to various classes of antibiotics.

  1. Phenotypic and technological diversity of lactic acid bacteria and staphylococci isolated from traditionally fermented sausages in southern Greece.

    Science.gov (United States)

    Drosinos, Eleftherios H; Paramithiotis, Spiros; Kolovos, George; Tsikouras, Ioannis; Metaxopoulos, Ioannis

    2007-05-01

    The physicochemical and microbiological characteristics of spontaneously fermented sausages made by two medium-sized enterprises (MSE) located in southern Greece have been studied. A total of 300 lactic acid bacteria and 300 staphylococcal strains have been isolated and identified by their physiological characteristics. Lactobacillus plantarum strains were found to dominate the lactic acid bacteria microbiota in most of the cases with L. sakei strains prevailing in some of them and L. rhamnosus strains occasionally accompanying the dominant lactic acid bacteria microbiota. On the other hand, S. saprophyticus strains were found to dominate the staphylococcal microbiota in all spontaneously fermented sausages with of S. simulans, S. xylosus, S. gallinarum and S. cohnii cohnii strains being sporadically present. Following the identification, an evaluation of their technological properties, namely proteolytic and lipolytic capacities as well as production of biogenic amines and antimicrobial compounds, took place. None of the lactic acid bacteria and staphylococci was found to possess lipolytic activity whereas a total of 6 lactic acid bacteria and 51 staphylococci strains were found to be able to hydrolyse either the sarcoplasic, myofibrillar or both protein fractions. Furthermore, only one L. sakei strain and 185 staphylococci strains were found to possess decarboxylase activity against lysine, tyrosine, ornithine or histidine. Finally none of the staphylococcal microbiota and 3 lactic acid bacteria strains were found to be able to produce antimicrobial compounds of proteinaceous nature against Listeria monocytogenes.

  2. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China

    Energy Technology Data Exchange (ETDEWEB)

    Wei Gehong [College of Life Science, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A and F University, Yangling Shaanxi 712100 (China)], E-mail: weigehong@yahoo.com.cn; Fan Lianmei; Zhu Wenfei; Fu Yunyun; Yu Jianfu; Tang Ming [College of Life Science, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A and F University, Yangling Shaanxi 712100 (China)

    2009-02-15

    A total of 108 strains of bacteria were isolated from root nodules of wild legumes growing in gold mine tailings in northwest of China and were tested for heavy metal resistance. The results showed that the bacterial strain CCNWRS33-2 isolated from Lespedeza cuneata was highly resistant to copper, cadmium, lead and zinc. The strain had a relatively high mean specific growth rate under each heavy metal stress test and exhibited a high degree of bioaccumulation ability. The partial sequence of the copper resistance gene copA was amplified from the strain and a sequence comparison with our Cu-resistant PCR fragment showed a high homology with Cu-resistant genes from other bacteria. Phylogenetic analysis based on the 16S rRNA gene sequence showed that CCNWRS33-2 belongs to the Rhizobium-Agrobacterium branch and it had 98.9% similarity to Agrobactrium tumefaciens LMG196.

  3. Production of two bacteriocins in various growth conditions produced by gram-positive bacteria isolated from chicken cecum.

    Science.gov (United States)

    Wang, Qiuju; Cui, Yizhe; Wang, Wenmei; Xu, Jili; Xu, Li

    2012-01-01

    Lactobacillus plantarum CLP29 and Enterococcus faecium CLE34 isolated from the cecal contents of young broiler chicks were identified based on physiological and biochemical characteristics, and identification was confirmed by 16S rRNA sequencing. Both bacteria showed a broad range of inhibitory action against bacteria such as Salmonella and Escherichia coli and produced two peptides, plantaricin CLP29 and enterocin CLE34. Treatment with proteinase K, trypase, or benase resulted in the loss of activity of the two peptides, confirming their proteinaceous nature. The highest activity levels for both bacteria were recorded in de Man - Rogosa - Sharpe agar at pH 5.0, 6.0, and 7.0, at 37 °C. Carbon and nitrogen sources affected the antibacterial activities of the two bacteriocins in different combinations, which suggested that the antibacterial abilities of different bacteriocins produced in nutrient sources were various.

  4. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    Science.gov (United States)

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-04

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product.

  5. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria.

    Science.gov (United States)

    Abdelmaksoud, Abdallah A; Koparde, Vishal N; Sheth, Nihar U; Serrano, Myrna G; Glascock, Abigail L; Fettweis, Jennifer M; Strauss, Jerome F; Buck, Gregory A; Jefferson, Kimberly K

    2016-03-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12% 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively.

  6. Isolation of multiple drug-resistant enteric bacteria from feces of wild Western Lowland Gorilla (Gorilla gorilla gorilla) in Gabon.

    Science.gov (United States)

    Mbehang Nguema, Pierre Philippe; Okubo, Torahiko; Tsuchida, Sayaka; Fujita, Shiho; Yamagiwa, Juichi; Tamura, Yutaka; Ushida, Kazunari

    2015-05-01

    Prevalence of drug-resistant bacteria in wildlife can reveal the actual level of anthropological burden on the wildlife. In this study, we isolated two multiple drug-resistant strains, GG6-2 and GG6-1-1, from 27 fresh feces of wild western lowland gorillas in Moukalaba-Doudou National Park, Gabon. Isolates were identified as Achromobacter xylosoxidans and Providencia sp., respectively. Minimum inhibitory concentrations of the following 12 drugs-ampicillin (ABPC), cefazolin (CEZ), cefotaxime (CTX), streptomycin (SM), gentamicin (GM), kanamycin (KM), tetracycline (TC), nalidixic acid (NA), ciprofloxacin (CPFX), colistin (CL), chloramphenicol (CP) and trimethoprim (TMP)-were determined. Isolate GG6-2 was resistant to all antimicrobials tested and highly resistant to CTX, SM, TC, NA and TMP. Isolate GG6-1-1 was resistant to ABPC, CEZ, TC, CL, CP and TMP.

  7. Characterization of Electricity Generated by Soil in Microbial Fuel Cells and the Isolation of Soil Source Exoelectrogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Yun-Bin Jiang

    2016-11-01

    Full Text Available Soil has been used to generate electrical power in microbial fuel cells (MFCs and exhibited several potential applications. This study aimed to reveal the effect of soil properties on the generated electricity and the diversity of soil source exoelectrogenic bacteria. Seven soil samples were collected across China and packed into air-cathode MFCs to generate electricity over a 270 d period. The Fe(III-reducing bacteria in soil were enriched and sequenced by Illumina pyrosequencing. Culturable strains of Fe(III-reducing bacteria were isolated and identified phylogenetically. Their exoelectrogenic ability was evaluated by polarization measurement. The results showed that soils with higher organic carbon content but lower soil pH generated higher peak voltage and charge. The sequencing of Fe(III-reducing bacteria showed that Clostridia were dominant in all soil samples. At the family level, Clostridiales Family XI. incertae sedis were dominant in soils with lower organic carbon content but higher pH (>8, while Clostridiaceae, Lachnospiraceae and Planococcaceae were dominant in soils with higher organic carbon content but lower pH. The isolated culturable strains were allied phylogenetically to fifteen different species, of which eleven were Clostridium. The others were Robinsoniella peoriensis, Hydrogenoanaerobacterium saccharovorans, Eubacterium contortum and Oscillibacter ruminantium. The maximum power density generated by the isolates in the MFCs ranged from 16.4 to 28.6 mW m-2. We concluded that soil organic carbon content had the most important effect on power generation and that the Clostridiaceae were the dominant exoelectrogenic bacterial group in soil. This study might lead to the discovery of more soil source exoelectrogenic bacteria species.

  8. Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela

    Directory of Open Access Journals (Sweden)

    Maura Lina Rojas Pirela

    2014-12-01

    Full Text Available The effect of contamination with mercury (Hg in the deep subsurface bacterial communities in the region of El Callao (Bolívar State, Venezuela was investigated. Bacterial communities from two deep levels (-288 m and -388 m in a gold mine were studied with the aim of describe the most relevant features of their colonizing indigenous culturable bacteria. Antibiotic and heavy metals resistance patterns, presence of the merA gene and plasmids in resistant isolates were evaluated. A high frequency of resistant indigenous bacteria to Hg and other heavy metals was found. From 76 Hg-resistant isolates tested 73.7 % were, in addition, resistant to ampicillin, 86.8% to chloramphenicol, 67.1 % for tetracycline, 56.6 % streptomycin, and 51.3 % kanamycin. Furthermore, it was found that 40.74 % (-328 mm and 26.53 % (-388 m of Hg-resistant bacteria were simultaneously resistant to both four and five of these antibiotics. The presence of low and high molecular weight plasmids was detected and, despite that isolated showed resistance to mercurial compounds, the presence of the gene merA was detected only in 71.05 % of strains. These results suggest that exposure to Hg could be a selective pressure on the proliferation of antibiotic-resistant bacteria and promote the preservation and propagation of these resistance genes. However, the existence of such resistances to these depths could also support the idea that antibiotic resistance in these bacteria is natural and has a more ancient origin than their exposure to Hg.

  9. Isolation and characterization of resin acid degrading bacteria found in effluent from a bleached kraft pulp mill.

    Science.gov (United States)

    Morgan, C A; Wyndham, R C

    1996-05-01

    Thirteen resin acid degrading bacteria enriched on abietic or dehydroabietic acids were isolated from waste water from the aerated stabilization basin of a bleached kraft pulp mill. Standard biochemical tests were used to characterize each isolate. Each isolate was tested for its ability to degrade six abietane- and pimarane-type resin acids. Resin acid concentrations were determined by high pressure liquid chromatography and UV absorbance. Cluster analysis based on phenotypic characteristics identified two distinct clusters of degraders that differed in their ability to utilize carbohydrates as carbon sources. Fatty acid methyl ester analysis of representative isolates from each cluster identified A19-6a and D11-13 as Comamonas and Alcaligenes species, respectively. To determine genotypic relatedness, enterobacterial repetitive intergenic consensus sequences were used to amplify genomic DNA fragments from 10 isolates. These results supported the phenotypic analysis for all isolates tested except A19-5 and A19-6b. These two organisms were clustered closely together based on phenotype but had distinctly different banding patterns, suggesting that they are not related genotypically. All isolates degraded a subset of the six resin acid congeners. Isolates A19-3, A19-6a, A19-6b, and D11-37 were the most effective at degrading all six congeners.

  10. The frequency of resistance to antibiotics of most frequently isolated bacteria from blood cultures during the period 1997-2002

    Directory of Open Access Journals (Sweden)

    Mirović Veljko

    2004-01-01

    Full Text Available The aim of this study was to determine the frequency of resistance to antibiotics of the most frequently isolated bacteria from blood cultures of hospitalized patients during the period 1997-2002. The resistance to antibiotics was determined by disk diffusion method according to National Committee for Clinical Laboratory Standards procedures. The majority of staphylococci isolates were resistant to methicillin, and the proportion of methicillin-resistant Staphylococcus aureus was stable (76.8-81.6%, during the follow-up period. None of the staphylococci isolates were resistant to vancomycin, but there was a very high incidence of high-level resistance of enterococci to aminoglycosides (47.2-72.2%. In 1998, only one strain among enterococci was resistant to vancomycin (Enterococcus faecium, VanA fenotype. Enterococcus spp isolates expressed variable frequency of resistance to ampicillin (15-40.1% during the follow-up period. Among Enterobacteriaceae there were no isolates resistant to imipenem, but dramatic increase of the resistance to ceftriaxone was found from 35.9% in 1997 to 95.9% in 2002 (p<0.001. Extended spectrum beta-lactamases production was found in all the species of enterobacteria isolates. Resistance to imipenem was observed in Acinetobacter spp isolates in 2002 for the first time. Pseudomonas spp isolates expressed high and very variable resistance to all antibiotics tested during the follow-up period.

  11. Isolation and Screening of Bacteria for Their Diazotrophic Potential and Their Influence on Growth Promotion of Maize Seedlings in Greenhouses.

    Science.gov (United States)

    Kifle, Medhin H; Laing, Mark D

    2015-01-01

    Poor soil fertility is one of the major constraints for crop production. Nitrogen is the most limiting nutrient for increasing crop productivity. Therefore, there is a need to identify diazotrophic inoculants as an alternative or supplement to N-fertilizers for sustainable agriculture. In the current study, a number of free-living diazotrophic bacteria were isolated from soils collected from maize rhizosphere and from leaves and roots of maize within the KwaZulu-Natal Province, Republic of South Africa. Ninety-two isolates were selected for further screening because they were able to grow on N-free media containing different carbon sources. Isolates that were very slow to grow on N-free media were discarded. The isolates were screened in vitro for diazotrophic potential tests for ammonia production and acetylene reduction. Ethylene (C2H4) production was quantified and ranged from 4 to 73 nmoles of C2H4h(-1) culture(-1). The top 20 isolates were re-screened on maize seedlings, and eight isolates significantly (P = 0.001) enhanced some growth parameters of maize above the un-inoculated control. Isolates that showed significant effect on at least two growth parameters were identified at species or genera level. In conclusion, selected diazotrophic isolates may be potentially beneficial but they should be tested more in greenhouse and field conditions with maize to confirm their potential for application as biofertilizers.

  12. Molecular characterization of nitrogen-fixing bacteria isolated from brazilian agricultural plants at São Paulo state

    Science.gov (United States)

    Reinhardt, Érica. L.; Ramos, Patrícia L.; Manfio, Gilson P.; Barbosa, Heloiza R.; Pavan, Crodowaldo; Moreira-Filho, Carlos A.

    2008-01-01

    Fourteen strains of nitrogen-fixing bacteria were isolated from different agricultural plant species, including cassava, maize and sugarcane, using nitrogen-deprived selective isolation conditions. Ability to fix nitrogen was verified by the acetylene reduction assay. All potentially nitrogen-fixing strains tested showed positive hybridization signals with a nifH probe derived from Azospirillum brasilense. The strains were characterized by RAPD, ARDRA and 16S rDNA sequence analysis. RAPD analyses revealed 8 unique genotypes, the remaining 6 strains clustered into 3 RAPD groups, suggesting a clonal origin. ARDRA and 16S rDNA sequence analyses allowed the assignment of 13 strains to known groups of nitrogen-fixing bacteria, including organisms from the genera Azospirillum, Herbaspirillum, Pseudomonas and Enterobacteriaceae. Two strains were classified as Stenotrophomonas ssp. Molecular identification results from 16S rDNA analyses were also corroborated by morphological and biochemical data. PMID:24031239

  13. Molecular characterization of nitrogen-fixing bacteria isolated from brazilian agricultural plants at São Paulo state.

    Science.gov (United States)

    Reinhardt, Erica L; Ramos, Patrícia L; Manfio, Gilson P; Barbosa, Heloiza R; Pavan, Crodowaldo; Moreira-Filho, Carlos A

    2008-07-01

    Fourteen strains of nitrogen-fixing bacteria were isolated from different agricultural plant species, including cassava, maize and sugarcane, using nitrogen-deprived selective isolation conditions. Ability to fix nitrogen was verified by the acetylene reduction assay. All potentially nitrogen-fixing strains tested showed positive hybridization signals with a nifH probe derived from Azospirillum brasilense. The strains were characterized by RAPD, ARDRA and 16S rDNA sequence analysis. RAPD analyses revealed 8 unique genotypes, the remaining 6 strains clustered into 3 RAPD groups, suggesting a clonal origin. ARDRA and 16S rDNA sequence analyses allowed the assignment of 13 strains to known groups of nitrogen-fixing bacteria, including organisms from the genera Azospirillum, Herbaspirillum, Pseudomonas and Enterobacteriaceae. Two strains were classified as Stenotrophomonas ssp. Molecular identification results from 16S rDNA analyses were also corroborated by morphological and biochemical data.

  14. Isolation of highly active monoclonal antibodies against multiresistant gram-positive bacteria.

    Directory of Open Access Journals (Sweden)

    Friederike S Rossmann

    Full Text Available Multiresistant nosocomial pathogens often cause life-threatening infections that are sometimes untreatable with currently available antibiotics. Staphylococci and enterococci are the predominant Gram-positive species associated with hospital-acquired infections. These infections often lead to extended hospital stay and excess mortality. In this study, a panel of fully human monoclonal antibodies was isolated from a healthy individual by selection of B-cells producing antibodies with high opsonic killing against E. faecalis 12030. Variable domains (VH and VL of these immunoglobulin genes were amplified by PCR and cloned into an eukaryotic expression vector containing the constant domains of a human IgG1 molecule and the human lambda constant domain. These constructs were transfected into CHO cells and culture supernatants were collected and tested by opsonophagocytic assay against E. faecalis and S. aureus strains (including MRSA. At concentrations of 600 pg/ml, opsonic killing was between 40% and 70% against all strains tested. Monoclonal antibodies were also evaluated in a mouse sepsis model (using S. aureus LAC and E. faecium, a mouse peritonitis model (using S. aureus Newman and LAC and a rat endocarditis model (using E. faecalis 12030 and were shown to provide protection in all models at a concentration of 4 μg/kg per animal. Here we present a method to produce fully human IgG1 monoclonal antibodies that are opsonic in vitro and protective in vivo against several multiresistant Gram-positive bacteria. The monoclonal antibodies presented in this study are significantly more effective compared to another monoclonal antibody currently in clinical trials.

  15. Antimicrobial and Herbal Drug Resistance in Enteric Bacteria Isolated from Faecal Droppings of Common House Lizard/Gecko (Hemidactylus frenatus

    Directory of Open Access Journals (Sweden)

    Bhoj R. Singh

    2013-01-01

    Full Text Available From 194 faecal dropping samples of common house geckos collected from offices (60, houses (88, integrated farm units (IFS,18 and hostels, guest houses, and dining rooms of different canteen/mess (HGM, 28, 326 bacterial isolates of enteric bacteria belonging to 17 genera and 34 species were detected. Escherichia coli were the most frequently (39 isolated followed by Citrobacter freundii (33, Klebsiella pneumonia (27, Salmonella indica (12, Enterobacter gergoviae (12, and Ent. agglomerans (11. Other important bacteria isolated from gecko droppings were Listonella damsela (2, Raoultella terrigena (3, S. salamae (2, S. houtenae (3, Edwardsiella tarda (4, Edwardsiella hoshinae (1, and Klebsiella oxytoca (2. Of the 223 isolates tested for antimicrobial drug sensitivity, 27 (12.1% had multiple drug resistance (MDR. None of the salmonellae or edwardsiellae had MDR however, MDR strains were significantly more common among Escherichia spp. (P=1.9×10-5 and isolates from IFS units (P=3.58×10-23. The most effective herbal drug, Ageratum conyzoides extract, inhibited growth of only 27.8% of strains tested followed by ethanolic extract of Zanthoxylum rhetsa (13.9%, eucalyptus oil (5.4%, patchouli oil (5.4%, lemongrass oil (3.6%, and sandalwood oil (3.1%, and Artemisia vulgaris essential oil (3.1%.

  16. Isolation and Identification of Pathogenic Bacteria from Brackish Waters of Chilika Lagoon, Odisha, India for Pharmaceutical Use

    Directory of Open Access Journals (Sweden)

    Subhashree Parida

    2012-09-01

    Full Text Available Aims: The present investigation was undertaken in order to isolate bacteria from eighteen different water samples collected from three different sectors of ‘Chilika’ lagoon of India and to study the resistance against ten different antibiotics viz., norfloxacin, tetracycline, ciprofloxacin, neomycin, nalidixic acid, ofloxacin, chloramphenicol, nitrofurantoin, streptomycin and amoxicillin as well as their serological implications.Methodology and Results: Four different pathogenic bacteria species viz., Shigella dysenteriae, Streptococcus lactis, Bacillus cereus and Klebsiella pneumoniae were isolated which showed a wide range of sensitivity to norfloxacin,tetracycline, ciprofloxacin, ofloxacin and nitrofurantoin. S. dysenteriae was sensitive to streptomycin where as other isolates were found to be resistant. Agarose gel electrophoresis failed to reveal plasmid DNA band indicating that theobserved resistance was perhaps encoded by nucleotide sequences harboured on the chromosomal DNA. Bacterial isolates were used as antigen for the production of polyclonal antibodies in rabbits.Conclusion, significance and impact of study:All the isolates exhibited strong antigenic character with specific serological relationship which can be implicated towards development of novel and pharmaceutically effective antibacterial products.

  17. Isolation of oxamyl-degrading bacteria and identification of cehA as a novel oxamyl hydrolase gene

    Directory of Open Access Journals (Sweden)

    Konstantina eRousidou

    2016-04-01

    Full Text Available Microbial degradation is the main process controlling the environmental dissipation of the nematicide oxamyl. Despite that, little is known regarding the microorganisms involved in its biotransformation. We report the isolation of four oxamyl-degrading bacterial strains from an agricultural soil exhibiting enhanced biodegradation of oxamyl. Multilocus sequence analysis (MLSA assigned the isolated bacteria to different subgroups of the genus Pseudomonas. The isolated bacteria hydrolyzed oxamyl to oxamyl oxime, which was not further transformed, and utilized methylamine as a C and N source. This was further supported by the detection of methylamine dehydrogenase in three of the four isolates. All oxamyl-degrading strains carried a gene highly homologous to a carbamate-hydrolase gene cehA previously identified in carbaryl- and carbofuran-degrading strains. Transcription analysis verified its direct involvement in the hydrolysis of oxamyl. Selected isolates exhibited relaxed degrading specificity and transformed all carbamates tested including the oximino carbamates aldicarb and methomyl (structurally related to oxamyl and the aryl-methyl carbamates carbofuran and carbaryl which share with oxamyl only the carbamate moiety

  18. Isolation of Oxamyl-degrading Bacteria and Identification of cehA as a Novel Oxamyl Hydrolase Gene

    Science.gov (United States)

    Rousidou, Konstantina; Chanika, Eleni; Georgiadou, Dafne; Soueref, Eftychia; Katsarou, Demetra; Kolovos, Panagiotis; Ntougias, Spyridon; Tourna, Maria; Tzortzakakis, Emmanuel A.; Karpouzas, Dimitrios G.

    2016-01-01

    Microbial degradation is the main process controlling the environmental dissipation of the nematicide oxamyl. Despite that, little is known regarding the microorganisms involved in its biotransformation. We report the isolation of four oxamyl-degrading bacterial strains from an agricultural soil exhibiting enhanced biodegradation of oxamyl. Multilocus sequence analysis (MLSA) assigned the isolated bacteria to different subgroups of the genus Pseudomonas. The isolated bacteria hydrolyzed oxamyl to oxamyl oxime, which was not further transformed, and utilized methylamine as a C and N source. This was further supported by the detection of methylamine dehydrogenase in three of the four isolates. All oxamyl-degrading strains carried a gene highly homologous to a carbamate-hydrolase gene cehA previously identified in carbaryl- and carbofuran-degrading strains. Transcription analysis verified its direct involvement in the hydrolysis of oxamyl. Selected isolates exhibited relaxed degrading specificity and transformed all carbamates tested including the oximino carbamates aldicarb and methomyl (structurally related to oxamyl) and the aryl-methyl carbamates carbofuran and carbaryl which share with oxamyl only the carbamate moiety. PMID:27199945

  19. Comparison of antibacterial-coated and non-coated suture material in intraoral surgery by isolation of adherent bacteria

    Directory of Open Access Journals (Sweden)

    Klaus Pelz

    2015-09-01

    Full Text Available Objectives. In general surgery the incidence of postoperative wound infections is reported to be lower using triclosan-coated sutures. In intraoral surgery, sutures are faced with different bacterial species and the question arises whether the antibacterial-coated suture material has the same positive effects. Materials and Methods. Triclosan-coated and uncoated suture materials were applied in 17 patients undergoing wisdom tooth extraction. Postoperatively, sutures were removed and adherent bacteria were isolated, colony-forming units (cfu were counted, and species identified. Results. Oral bacteria were found in high numbers (cfu>10[sup]7[/sup] on both Vicryl and the triclosan-coated Vicryl Plus. The total number of bacteria isolated from Vicryl Plus was 37% higher than for Vicryl, mainly due to increased numbers of anaerobes. The number of bacterial strains identified was higher for Vicryl ( n=203 than for Vicryl Plus (n=198, but the number of pathogens was higher on Vicryl Plus (n=100 than on Vicryl (n=97. Fewer Gram-positive strains were found on Vicryl Plus (n=95 than on Vicryl (n=107 and, conversely, more Gram-negative strains on Vicryl Plus (103vs.96. Conclusions. In terms of the total number of oral bacteria, and especially oral pathogens, that adhered to suture material, no reduction was demonstrated for Vicryl Plus. The use of triclosan-coated suture material offers no advantage in intraoral surgery.

  20. Antibiotic susceptibilities of bacteria isolated within the oral flora of Florida blacktip sharks: guidance for empiric antibiotic therapy.

    Science.gov (United States)

    Unger, Nathan R; Ritter, Erich; Borrego, Robert; Goodman, Jay; Osiyemi, Olayemi O

    2014-01-01

    Sharks possess a variety of pathogenic bacteria in their oral cavity that may potentially be transferred into humans during a bite. The aim of the presented study focused on the identification of the bacteria present in the mouths of live blacktip sharks, Carcharhinus limbatus, and the extent that these bacteria possess multi-drug resistance. Swabs were taken from the oral cavity of nineteen live blacktip sharks, which were subsequently released. The average fork length was 146 cm (±11), suggesting the blacktip sharks were mature adults at least 8 years old. All swabs underwent standard microbiological work-up with identification of organisms and reporting of antibiotic susceptibilities using an automated microbiology system. The oral samples revealed an average of 2.72 (±1.4) bacterial isolates per shark. Gram-negative bacteria, making up 61% of all bacterial isolates, were significantly (pshark gender or fork length with bacterial density or antibiotic resistance was observed. Antibiotics with the highest overall susceptibility rates included fluoroquinolones, 3rd generation cephalosporins and sulfamethoxazole/trimethoprim. Recommended empiric antimicrobial therapy for adult blacktip shark bites should encompass either a fluoroquinolone or combination of a 3rd generation cephalosporin plus doxycycline.

  1. Investigating on the Correlation Between Some Biological Activities of Marine Sponge-Associated Bacteria Extracts and Isolated Diketopiperazines.

    Science.gov (United States)

    Abd El-Hady, Faten K; Fayad, Walid; Iodice, Carmine; El-Shahid, Zeinab A; Abdel-Aziz, Mohamed S; Crudele, Egle; Tommonaro, Giuseppina

    2017-01-01

    Marine organisms have been considered as the richest sources of novel bioactive metabolites, which can be used for pharmaceutical purposes. In the last years, the interest for marine microorganisms has grown for their enormous biodiversity and for the evidence that many novel compounds isolated from marine invertebrates are really synthesized by their associated bacteria. Nevertheless, the discovery of a chemical communication Quorum sensing (QS) between bacterial cells and between bacteria and host has gained the researchers to expand the aim of their study toward the role of bacteria associated with marine invertebrates, such as marine sponge. In the present paper, we report the evaluation of biological activities of different extracts of bacteria Vibrio sp. and Bacillus sp. associated with marine sponges Dysidea avara and Ircinia variabilis, respectively. Moreover, we evaluated the biological activities of some diketopiperazines (DKPs), previously isolated, and able to activate QS mechanism. The results showed that all extracts, fractions, and DKPs showed low scavenging activity against DPPH and superoxide anion, low cytotoxic and anti-tyrosinase activities, but no antimicrobial and acetylcholinesterase inhibitory activities. One DKP [cyclo-(trans-4-hydroxy-L-prolyl-L-leucine)] has the highest α-glucosidase inhibitory activity even than the standard acarbose.

  2. Inhibition of food-related bacteria by antibacterial substances produced by Pseudomonas sp. strains isolated from pasteurized milk

    OpenAIRE

    Ana Beatriz Ferreira Rangel; Jean Thiago Alves Soares; Mariana Maciel Pereira; Bruna Rachel de Britto Peçanha; Leonardo Emanuel de Oliveira Costa; Janaína dos Santos Nascimento

    2013-01-01

    In this work, the production of antimicrobial substances by strains of Pseudomonas sp. isolated from pasteurized milk and their potential action against food-related bacteria were investigated. Samples of pasteurized milk were purchased from arbitrarily chosen commercial establishments in the city of Rio de Janeiro, Brazil. Of the four samples analyzed, three presented several typical colonies of Pseudomonas. About 100 colonies were chosen and subjected to biochemical tests for confirmation o...

  3. Isolation, identification and optimization of ethanol producing bacteria from Saccharomyces-based fermentation process of alcohol industries in Iran

    OpenAIRE

    Hoda Ebrahimi; Mojtaba Mohseni

    2013-01-01

    Introduction: Due to the vast growth of world population, consumption of a lot of energy, limited energy supply and rising prices of fuel oil in the future, other alternative energy source is essential. Ethanol is renewable and a safe fuel and it is mainly based on microbial fermentation. The purpose of this study was isolation of high ethanol producing bacteria from the fermentation process of alcohol industries and optimization of growth conditions to be introduced to the industries. Materi...

  4. Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria

    OpenAIRE

    Hoefman, Sven; van der Ha, David; De Vos, Paul; Boon, Nico; Heylen, Kim

    2012-01-01

    Summary Methane‐oxidizing bacteria (MOB) have a large potential as a microbial sink for the greenhouse gas methane as well as for biotechnological purposes. However, their application in biotechnology has so far been hampered, in part due to the relative slow growth rate of the available strains. To enable the availability of novel strains, this study compares the isolation of MOB by conventional dilution plating with miniaturized extinction culturing, both performed after an initial enrichme...

  5. Phenotypical and genotypical characteristics of root-nodulating bacteria isolated from annual Medicago spp. in Soummam Valley (Algeria)

    OpenAIRE

    Sebbane, N.; Sahnoune, M.; Zakhia, Frédéric; Willems, A.; Benallaoua, S.; De Lajudie, Philippe

    2006-01-01

    Aims: In the framework of agro-pastoral system management using local annual medics coupled with their native root-nodulating bacteria to extend pasture zones, increase forage yields and improve ovine and bovine breeding in Algeria, we investigated diversity of rhizobia from annual Medicago spp. (Medicago arabica, Medicago polymorpha, Medicago minima and Medicago orbicularis). Methods and Results: Ten nodulating-isolates were characterized by morphological, cultural, physiological and biochem...

  6. INOCULATION AND ISOLATION OF PLANT GROWTH-PROMOTING BACTERIA IN MAIZE GROWN IN VITÓRIA DA CONQUISTA, BAHIA, BRAZIL

    Directory of Open Access Journals (Sweden)

    Joelma da Silva Santos

    2015-02-01

    Full Text Available Maize is among the most important crops in the world. This plant species can be colonized by diazotrophic bacteria able to convert atmospheric N into ammonium under natural conditions. This study aimed to investigate the effect of inoculation of the diazotrophic bacterium Herbaspirillum seropedicae (ZAE94 and isolate new strains of plant growth-promoting bacteria in maize grown in Vitória da Conquista, Bahia, Brazil. The study was conducted in a greenhouse at the Experimental Area of the Universidade Estadual do Sudoeste da Bahia. Inoculation was performed with peat substrate, with and without inoculation containing strain ZAE94 of H. seropedicae and four rates of N, in the form of ammonium sulfate (0, 60, 100, and 140 kg ha-1 N. After 45 days, plant height, dry matter accumulation in shoots, percentage of N, and total N (NTotal were evaluated. The bacteria were isolated from root and shoot fragments of the absolute control; the technique of the most probable number and identification of bacteria were used. The new isolates were physiologically characterized for production of indole acetic acid (IAA and nitrogenase activity. We obtained 30 isolates from maize plants. Inoculation with strain ZAE94 promoted an increase of 14.3 % in shoot dry mass and of 44.3 % in NTotal when associated with the rate 60 kg ha-1 N. The strains N11 and N13 performed best with regard to IAA production and J06, J08, J10, and N15 stood out in acetylene reduction activity, demonstrating potential for inoculation of maize.

  7. Isolation and characterisation of 1-alkyl-3-methylimidazolium chloride ionic liquid-tolerant and biodegrading marine bacteria.

    Directory of Open Access Journals (Sweden)

    Julianne Megaw

    Full Text Available The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC, and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure.

  8. [Evaluation of epidemic risk from pathogenic and opportunistic bacteria isolated from water of its various use types].

    Science.gov (United States)

    Zagaĭnova, A V; Talaeva, Iu G; Dmitrieva, R A; Ingel', F I; Iurchenko, V V; Artemova, T Z; Nedachin, A E; Gipp, E K; Butorina, N N; Snegirev, D V

    2010-01-01

    The investigation was concerned with wild gram-positive and gram-negative microorganisms (E. coli spp., Klebsiella spp., Salmonella spp., and the nonfermentative bacteria Pseudomonas spp.) isolated from the waters of different types, as well as museum cultures (E. coli strain 1257, E. coli strain 675, Salmonella enteritidis ATCC 5765, Staphylococcus aureus 906, and Pseudomonas aeruginosa ATCC 10145). The wild strains were isolated from water when conducting experimental and field studies; these are able to survive in the waters disinfected by various procedures (a guanidine-containing disinfectant in non-toxic concentrations; photo-activated decontamination with sensitizers; exposure to magnetic and ultrasound waves). The cytotoxic, adhesive, and invasive activities of the bacteria isolated from environmental water objects increased on their cultivation on nutrient growth media, by simulating their possible effects in man. The developed experimental approach makes it possible to estimate the hazard of potentially pathogenic bacteria in one test trial, by applying the BGM cells and may be used to assess the microbial risk.

  9. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals.

    Science.gov (United States)

    Chiboub, Manel; Saadani, Omar; Fatnassi, Imen Challougui; Abdelkrim, Souhir; Abid, Ghassen; Jebara, Moez; Jebara, Salwa Harzalli

    2016-01-01

    The inoculation of plants with plant-growth-promoting rhizobacteria has become a priority in the phytoremediation of heavy-metal-contaminated soils. A total of 82 bacteria were isolated from Sulla coronaria root nodules cultivated on four soil samples differently contaminated by heavy metals. The phenotypic characterization of these isolates demonstrated an increased tolerance to cadmium reaching 4.1mM, and to other metals, including Zn, Cu and Ni. Polymerase Chain Reaction/Restriction Fragment Length Polymorphism (PCR/RFLP) analysis showed a large diversity represented by genera related to Agrobacterium sp., R. leguminosarum, Sinorhizobium sp., Pseudomonas sp., and Rhizobium sp. Their symbiotic effectiveness was evaluated by nodulation tests. Taking into consideration efficiency and cadmium tolerance, four isolates were chosen; their 16SrRNA gene sequence showed that they belonged to Pseudomonas sp. and the Rhizobium sullae. The selected consortium of soil bacteria had the ability to produce plant-growth-promoting substances such as indole acetic acid and siderophore. The intracellular Cd accumulation was enhanced by increasing the time of incubation of the four soil bacteria cultivated in a medium supplemented with 0.1mM Cd. The existence of a cadmium-resistant gene was confirmed by PCR. These results suggested that Sulla coronaria in symbiosis with the consortium of plant-growth-promoting rhizobacteria (PGPR) could be useful in the phytoremediation of cadmium-contaminated soils.

  10. Characterization of nitrogen-fixing bacteria from a temperate saltmarsh lagoon, including isolates that produce ethane from acetylene.

    Science.gov (United States)

    Tibbles, B J; Rawlings, D E

    1994-01-01

    Nitrogen-fixing bacteria were isolated from sediments and water of a saltmarsh lagoon on the west coast of South Africa, and characterized according to factors that regulate nitrogen fixation in the marine environment. The majority of isolates were assigned to the Photobacterium or Vibrio genera on the basis of physiological and biochemical characteristics. One isolate was further assigned to the species Vibrio diazotrophicus. Carbohydrate utilization by each diazotrophic isolate was examined. Abilities of the isolates to utilize a range of mono-, di-, and polysaccharides largely reflected the predicted availability of organic carbon and energy in the lagoon, except that chitin was not utilized. Biochemical tests on the utilization of combined nitrogen showed that one isolate could utilize nitrate, and that this strain was susceptible to full repression of nitrogenase activity by 10mM nitrate. Urease activity was not detected in any of the isolates. In the absence of molybdenum two of the isolates, a Photobacterium spp. and V. diazotrophicus, reduced acetylene to ethylene and ethane, a property frequently associated with the activity of alternative nitrogenases. Addition of 25µM molybdenum inhibited ethane production by V. diazotrophicus, but stimulated ethylene and ethane production by the Photobacterium isolate. Addition of 28µM vanadium did not appear to regulate ethane production by either strain. Assays of nitrogenase activity in sediments from which some isolates were obtained indicated that molybdenum was not limiting nitrogenase activity at naturally-occurring concentrations. Southern hybridizations of the chromosomes of these strains with the anfH and vnfH genes of Azotobacter vinelandii and the nifH gene of Klebsiella pneumoniae indicated the presence of only one nitrogenase in these isolates.

  11. Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants.

    Science.gov (United States)

    Ashassi-Sorkhabi, H; Moradi-Haghighi, M; Zarrini, G; Javaherdashti, R

    2012-02-01

    In this work, two novel iron oxidizing bacteria (IOB), namely Gordonia sp. MZ-89 and Enterobacter sp. M01101, were isolated from sewage treatment plants and identified by biochemical and molecular methods. Then, microbially influenced corrosion (MIC) of carbon steel in the presence of these bacteria was investigated. The electrochemical techniques such as potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS) were used to measure the corrosion rate and observe the corrosion mechanism. The results showed that the existence of these microorganisms decreased the corrosion potential and enhanced the corrosion rate. Scanning electron microscopy (SEM) images revealed the ground boundary attacks and pitting on carbon steel samples in the presence of these bacteria after polarization. Corrosion scales were identified with X-ray diffraction (XRD). It was demonstrated that these bacteria can greatly affect the crystalline phase of corrosion products that also confirmed by SEM results. It was inferred that these bacteria were responsible for the corrosion of carbon steel, especially in the form of localized corrosion.

  12. Antibiotic resistance profile of bacteria isolated from raw milk samples of cattle and buffaloes

    Directory of Open Access Journals (Sweden)

    Tahlina Tanzin

    2016-03-01

    Conclusion: Two different species of bacteria i.e., S. aureus and E. coli are contaminating with milk samples. The pathogenic bacteria can be controlled effectively by using Ciprofloxacin and Levofloxacin in the case of mastitis in cattle and buffaloes in Bangladesh. [J Adv Vet Anim Res 2016; 3(1.000: 62-67

  13. Pesticide-Tolerant Bacteria Isolated from Agricultural Canals in the Lower Rio Grande Valley of South Texas

    Directory of Open Access Journals (Sweden)

    Sandra P. Aguirre

    2010-01-01

    Full Text Available Atrazine and oxamyl are commonly-used pesticides in the Lower Rio Grande Valley of South Texas. Problem statement: Pesticides may become environmental contaminants due to overuse, runoff and other mechanisms and may impact non-target organisms and ecosystems. Pesticides may be degraded by indigenous microorganisms or by abiotic means. In this study, waterborne bacteria from agricultural canals were examined to assess potential atrazine and oxamyl degradation in the Lower Rio Grande Valley. Approach: Water samples were collected March 2007 and June 2009 and inoculated onto agar media containing either atrazine or oxamyl to estimate densities of atrazine-tolerant and oxamyl-tolerant bacteria. Bacterial isolates were characterized morphologically by visually observing colony shape and size and by gram-staining. Commercial test strips and microplates were used to differentiate biochemical and nutritional capabilities of bacteria and an inhibition disk assay was employed to determine pesticide sensitivity. Results: Average density of atrazine-tolerant bacteria was 2,233 cfu mL-1 in March 2007 and 12, 845 cfu mL-1 in June 2009. Average density of oxamyl-tolerant bacteria was 330 cfu mL-1 in 2007 and 1,158 cfu mL-1 in 2009.66.7% of bacteria were Gram-negative. Most isolates were resistant to atrazine or oxamyl regardless of which pesticide medium they were originally grown. Only 2 of 30 tested isolates displayed intermediate and sensitive inhibition phenotypes, respectively, to oxamyl. Biochemical profiles were generally 70% or greater in similarity but still displayed diverse phenotypes. About half of isolates exhibited a unique biochemical phenotypic profile. Microbial communities in the canals could metabolize a variety of organic compounds and demonstrated high carbon substrate utilization and activity. Conclusion: Overall, indigenous pesticide-tolerant microorganisms were present in lowto- moderate densities, displayed diverse

  14. Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria.

    Science.gov (United States)

    Hoefman, Sven; van der Ha, David; De Vos, Paul; Boon, Nico; Heylen, Kim

    2012-05-01

    Methane-oxidizing bacteria (MOB) have a large potential as a microbial sink for the greenhouse gas methane as well as for biotechnological purposes. However, their application in biotechnology has so far been hampered, in part due to the relative slow growth rate of the available strains. To enable the availability of novel strains, this study compares the isolation of MOB by conventional dilution plating with miniaturized extinction culturing, both performed after an initial enrichment step. The extinction approach rendered 22 MOB isolates from four environmental samples, while no MOB could be isolated by plating. In most cases, extinction culturing immediately yielded MOB monocultures making laborious purification redundant. Both type I (Methylomonas spp.) and type II (Methylosinus sp.) MOB were isolated. The isolated methanotrophic diversity represented at least 11 different strains and several novel species based on 16S rRNA gene sequence dissimilarity. These strains possessed the particulate (100%) and soluble (64%) methane monooxygenase gene. Also, 73% of the strains could be linked to a highly active fast-growing mixed MOB community. In conclusion, miniaturized extinction culturing was more efficient in rapidly isolating numerous MOB requiring little effort and fewer materials, compared with the more widely applied plating procedure. This miniaturized approach allowed straightforward isolation and could be very useful for subsequent screening of desired characteristics, in view of their future biotechnological potential.

  15. Native soil bacteria isolates in Mexico exhibit a promising antagonistic effect against Fusarium oxysporum f. sp. radicis-lycopersici.

    Science.gov (United States)

    Cordero-Ramírez, Jesús Damián; López-Rivera, Raquel; Figueroa-Lopez, Alejandro Miguel; Mancera-López, María Elena; Martínez-Álvarez, Juan Carlos; Apodaca-Sánchez, Miguel Ángel; Maldonado-Mendoza, Ignacio Eduardo

    2013-10-01

    Sinaloa state accounts for 23% of Mexico's tomato production. One constraint on this important crop is the Fusarium crown and root rot, caused by Fusarium oxysporum f. sp. radicis-lycopersici, which has been reported to reduce crop yield by up to 50%. In this study, we set out to identify bacterial populations which could be used to control this disease through natural antagonism. Five tomato rhizospheric soil samples were collected, dried for 1-week, and homogenized. Sub-samples were used to prepare an aqueous solution used to isolate microorganisms in pure cultures. Organisms were purified and grown separately, and used to generate a collection of 705 bacterial isolates. Thirty-four percent from this bank (254 strains) was screened against Forl, finding 27 bacteria displaying in vitro Forl growth inhibition levels from 5% to 60%. These isolates belonged to the genus Bacillus and their 16Sr DNA sequences showed that they are closely related to seven species and they were putatively designated as: B. subtilis, B. cereus, B. amyloliquefaciens, B. licheniformis, B. thuringiensis, B. megaterium, and B. pumilus. One isolate belonged to the genus Acinetobacter. Two B. subtilis isolates (144 and 151) and one B. cereus isolate (171) showed the best antagonistic potential against FCRRT when evaluated on seedlings. Plate and activity assays indicate that these isolates include a diverse repertoire of functional antagonistic traits that might explain their ability to control FCRRT. Moreover, bacteria showed partial hemolytic activity, and future research will be directed at ensuring that their application will be not harmful for humans and effective against Forl in greenhouse or field conditions.

  16. Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes.

    Science.gov (United States)

    Sorokin, D; Tourova, T; Schmid, M C; Wagner, M; Koops, H P; Kuenen, J G; Jetten, M

    2001-09-01

    Five mixed samples prepared from the surface sediments of 20 north-east Mongolian soda lakes with total salt contents from 5 to 360 g/l and pH values from 9.7 to 10.5 were used to enrich for alkaliphilic ammonia-oxidizing bacteria. Successful enrichments at pH 10 were achieved on carbonate mineral medium containing 0.6 M total Na(+) and < or =4 mM NH(4)Cl. Five isolates (ANs1-ANs5) of ammonia-oxidizing bacteria capable of growth at pH 10 were obtained from the colonies developed on bilayered gradient plates. The cells were motile and coccoid, with well-developed intracytoplasmic membranes (ICPM) and carboxysomes. At pH 10.0, ammonia was toxic for growth at concentrations higher than 5 mM NH(4)Cl. The bacteria were able to grow within the salinity range of 0.1-1.0 M of total Na+ (optimum 0.3 M). In media containing 0.3-0.6 M total Na(+), optimal growth in batch cultures occurred in the presence of a bicarbonate/carbonate buffer system within the pH range 8.5-9.5, with the highest pH limit at pH 10.5. At pH lower than 8.0, growth was slower, most probably due to decreasing free ammonia. The pH profile of the respiratory activity was broader, with limits at 6.5-7.0 and 11.0 and an optimum at 9.5-10.0. In pH-controlled, NH(3)-limited continuous culture, isolate ANs5 grew up to pH 11.3, which is the highest pH limit known for ammonia-oxidizing bacteria so far. This showed the existence of extremely alkali-tolerant ammonia-oxidizing bacteria in the soda lakes. Comparative 16S rDNA sequence analysis of the five isolates demonstrated that they possess identical 16S rDNA genes and that they are closely related to Nitrosomonas halophila (sequence similarity 99.3%), a member of the beta-subclass of the Proteobacteria. This affiliation was confirmed by comparative sequence analysis of the amoA gene, encoding the active-site subunit of the ammonia-monoxygenase, of one of the isolates. DNA-DNA hybridization data further supported that the soda lake isolates are very similar to

  17. The First Report of Drug Resistant Bacteria Isolated from the Brown-Banded Cockroach, Supella longipalpa, in Ahvaz, South-western Iran.

    Directory of Open Access Journals (Sweden)

    Babak Vazirianzadeh

    2014-06-01

    Full Text Available The brown-banded cockroach, Supella longipalpa is known as a carrier of pathogenic bacteria in urban environments, but its role is not well documented regarding the carriage of antibiotic-resistant pathogenic bacteria in Iran. The aim of this study was to determine the resistance bacteria isolated from the brown-banded cockroach in Ahvaz, south west of Iran.Totally 39 cockroaches were collected from kitchen area of houses and identified. All specimens were cultured to isolate the bacterial agents on blood agar and MacConky agar media. The microorganisms were identified using necessary differential and biochemical tests. Antimicrobial susceptibility tests were performed for isolated organisms by Kirby-Bauer's disk diffusion according to NCLI guideline, using 18 antibiotics.From the 39 collected S. langipalpa, 179 bacterial agents were isolated, 92 of alimentary ducts and 87 of external body surfaces. Isolated bacteria from cockroaches were identified as Enterobacter spp., Klebsiella spp., Citrobacter spp., Escherichia coli, Salmonella spp., Proteus spp., coagulase negative staphylococci, Serratia marcescens, Staphylococcus aureus, and Bacillus species. The pattern resistance rates were determined for gram negative bacilli and gram positive cocci regarding 18 antibiotics.The brown-banded cockroach can be involved in the spread of drug resistant bacteria and increases the possibility of contacting human environment to drug resistant bacteria. Therefore, the potential of removing this insect should be improved. This is the first original report of drug resistant bacteria isolated from the brown-banded cockroach of Iran.

  18. Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses.

    Science.gov (United States)

    Franciosi, Elena; Carafa, Ilaria; Nardin, Tiziana; Schiavon, Silvia; Poznanski, Elisa; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M

    2015-01-01

    "Nostrano-cheeses" are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of "Nostrano-cheeses" and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus.

  19. Isolation and Taxonomic Identity of Bacteriocin-Producing Lactic Acid Bacteria from Retail Foods and Animal Sources.

    Science.gov (United States)

    Henning, Chris; Vijayakumar, Paul; Adhikari, Raj; Jagannathan, Badrinath; Gautam, Dhiraj; Muriana, Peter M

    2015-03-19

    Bacteriocin-producing (Bac⁺) lactic acid bacteria (LAB) were isolated from a variety of food products and animal sources. Samples were enriched in de Man, Rogosa, and Sharpe (MRS) Lactocilli broth and plated onto MRS agar plates using a "sandwich overlay" technique. Inhibitory activity was detected by the "deferred antagonism" indicator overlay method using Listeria monocytogenes as the primary indicator organism. Antimicrobial activity against L. monocytogenes was detected by 41 isolates obtained from 23 of 170 food samples (14%) and 11 of 110 samples from animal sources (10%) tested. Isolated Bac⁺ LAB included Lactococcus lactis, Lactobacillus curvatus, Carnobacterium maltaromaticum, Leuconostoc mesenteroides, and Pediococcus acidilactici, as well as Enterococcus faecium, Enterococcus faecalis, Enterococcus hirae, and Enterococcus thailandicus. In addition to these, two Gram-negative bacteria were isolated (Serratia plymuthica, and Serratia ficaria) that demonstrated inhibitory activity against L. monocytogenes, Staphylococcus aureus, and Enterococcus faecalis (S. ficaria additionally showed activity against Salmonella Typhimurium). These data continue to demonstrate that despite more than a decade of antimicrobial interventions on meats and produce, a wide variety of food products still contain Bac⁺ microbiota that are likely eaten by consumers and may have application as natural food preservatives.

  20. Cellulose degrading bacteria isolated from industrial samples and the gut of native insects from Northwest of Argentina.

    Science.gov (United States)

    Manfredi, Adriana P; Perotti, Nora I; Martínez, María A

    2015-12-01

    The raw materials used to produce bioethanol mostly are food crops, which has led to conflicts on food security. It is, therefore, recommended the gradual replacement for second generation substrates such as lignocellulosic materials. Herein, cellulolytic bacteria were isolated from the gut content of native larvae from Lepidoptera, Coleoptera, and adults of Isoptera. Few environmental samples from the pulp and paper feedstock were also assessed. A total of 233 isolates were obtained using enrichment cultures and classic criteria. Interestingly, several halo-forming colonies were found to be bacterial consortia that presented difficulties to take apart the microbial members. Those pure isolates which hydrolyzed cellulose in larger extend (45 strains) were selected and identified by means of 16S rRNA sequence analysis. Firmicutes was the prevalent phylum (62.2%) being Bacillus spp. the most frequent genus, while Paenibacillus, Brevibacillus, Cohnella, and Staphylococcus species were less frequent. The phylum Actinobacteria (6.7%) was represented by isolates related to Agromyces spp. and Microbacterium spp. Regarding Gram-negative bacteria (31.1%), the more depicted genus was Pseudomonas spp., and members of Achromobacter spp., Enterobacter spp., and Bacteroidetes phylum were also selected. These native bacterial strains are expected to enlarge the cellulolytic toolbox for efficient biomass deconstruction.

  1. Isolation of Lactic Acid Bacteria from Malaysian Non-Broiler Chicken (Gallus gallus Intestine with Potential Probiotic for Broiler Feeding

    Directory of Open Access Journals (Sweden)

    Tengku Haziyamin Tengku Abdul Hamid

    2011-12-01

    Full Text Available Probiotic supplement can function as substitute for antibiotics especially in the broiler chicken feeding which can form an integral part of organic farming. Broiler forms one of an important protein source in South East Asia. Lactic acid bacteria (LAB are important inhabitants of animal intestine and are useful source of probiotic microorganisms. Non-broiler chicken could be an ideal source of probiotic microorganisms that can be utilized for large scale broiler feeding. Our studies have successfully identified, through morphological and biochemical tests, 11 LAB isolates from gastrointestinal tract of local non-broiler chicken (Gallus gallus. These isolates have the ability to utilize lactose as part of their metabolism process and all showed negative reactions on catalase test. Out of the eleven (11 isolates, three (3 isolates were Gram-positive cocci and remaining isolates were of Gram-positive bacilli. Three isolates (E4, E11 and E17 showed at least 10 mm inhibitory effects on disc diffusion test against pathogenic bacteria Salmonella typhimurium. The partial 16S rRNA gene sequencing showed that one isolate (E17 has 89% similarity with Lactobacillus rhamnosus. These LAB strains isolated from Malaysian domestic non-broiler chicken gastrointestinal tract can potentially be used as a component for probiotics formulation in poultry feeding.ABSTRAK: Makanan tambahan probiotik boleh berfungsi sebagai pengganti antibiotik terutamanya dalam pemakanan ayam pedaging yang akan membentuk bahagian kamiran dalam penternakan organik. Ayam pedaging merupakan sumber protein penting di Asia Tenggara. Bakteria asid laktik (lactic acid bacteria (LAB merupakan penghuni penting dalam usus haiwan dan merupakan sumber penting dalam mikroorganisma probiotik. Ayam bukan pedaging sesuai dijadikan sumber mikroorganisma probiotik agar dapat digunakan sebagai pemakanan ayam pedaging secara besar-besaran. Kajian telah berjaya mengenal pasti, melalui kaedah morfologi dan

  2. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas.

    Science.gov (United States)

    Koskinen, Perttu E P; Beck, Steinar R; Orlygsson, Jóhann; Puhakka, Jaakko A

    2008-11-01

    Microbial fermentations are potential producers of sustainable energy carriers. In this study, ethanol and hydrogen production was studied by two thermophilic bacteria (strain AK15 and AK17) isolated from geothermal springs in Iceland. Strain AK15 was affiliated with Clostridium uzonii (98.8%), while AK17 was affiliated with Thermoanaerobacterium aciditolerans (99.2%) based on the 16S rRNA gene sequence analysis. Both strains fermented a wide variety of sugar residues typically found in lignocellulosic materials, and some polysaccharides. In the batch cultivations, strain AK17 produced ethanol from glucose and xylose fermentations of up to 1.6 mol-EtOH/mol-glucose (80% of the theoretical maximum) and 1.1 mol-EtOH/mol-xylose (66%), respectively. The hydrogen yields by AK17 were up to 1.2 mol-H2/ mol-glucose (30% of the theoretical maximum) and 1.0 mol-H2/mol-xylose (30%). The strain AK15 produced hydrogen as the main fermentation product from glucose (up to 1.9 mol-H2/mol-glucose [48%]) and xylose (1.1 mol-H2/mol-xylose [33%]). The strain AK17 tolerated exogenously added ethanol up to 4% (v/v). The ethanol and hydrogen production performance from glucose by a co-culture of the strains AK15 and AK17 was studied in a continuous-flow bioreactor at 60 degrees C. Stable and continuous ethanol and hydrogen co-production was achieved with ethanol yield of 1.35 mol-EtOH/mol-glucose, and with the hydrogen production rate of 6.1 mmol/h/L (H2 yield of 0.80 mol-H2/mol-glucose). PCR-DGGE analysis revealed that the AK17 became the dominant bacterium in the bioreactor. In conclusion, strain AK17 is a promising strain for the co-production of ethanol and hydrogen with a wide substrate utilization spectrum, relatively high ethanol tolerance, and ethanol yields among the highest reported for thermoanaerobes.

  3. Toxigenic potential and heat survival of spore-forming bacteria isolated from bread and ingredients.

    Science.gov (United States)

    De Bellis, Palmira; Minervini, Fiorenza; Di Biase, Mariaelena; Valerio, Francesca; Lavermicocca, Paola; Sisto, Angelo

    2015-03-16

    Fifty-four spore-forming bacterial strains isolated from bread ingredients and bread, mainly belonging to the genus Bacillus (including Bacillus cereus), together with 11 reference strains were investigated to evaluate their cytotoxic potential and heat survival in order to ascertain if they could represent a risk for consumer health. Therefore, we performed a screening test of cytotoxic activity on HT-29 cells using bacterial culture filtrates after growing bacterial cells in Brain Heart Infusion medium and in the bread-based medium Bread Extract Broth (BEB). Moreover, immunoassays and PCR analyses, specifically targeting already known toxins and related genes of B. cereus, as well as a heat spore inactivation assay were carried out. Despite of strain variability, the results clearly demonstrated a high cytotoxic activity of B. cereus strains, even if for most of them it was significantly lower in BEB medium. Cytotoxic activity was also detected in 30% of strains belonging to species different from B. cereus, although, with a few exceptions (e.g. Bacillus simplex N58.2), it was low or very low. PCR analyses detected the presence of genes involved in the production of NHE, HBL or CytK toxins in B. cereus strains, while genes responsible for cereulide production were not detected. Production of NHE and HBL toxins was also confirmed by specific immunoassays only for B. cereus strains even if PCR analyses revealed the presence of related toxin genes also in some strains of other species. Viable spore count was ascertained after a heat treatment simulating the bread cooking process. Results indicated that B. amyloliquefaciens strains almost completely survived the heat treatment showing less than 2 log-cycle reductions similarly to two strains of B. cereus group III and single strains belonging to Bacillus subtilis, Bacillus mojavensis and Paenibacillus spp. Importantly, spores from strains of the B. cereus group IV exhibited a thermal resistance markedly lower than B

  4. Multiple Antibiotic Resistance and Heavy Metal Resistance Profile of Bacteria Isolated from Giant Freshwater Prawn (Macrobrachium rosenbergii) Hatchery

    Institute of Scientific and Technical Information of China (English)

    S W Lee; M Najiah; W Wendy; A Zahrol; M Nadirah

    2009-01-01

    In this article,antibiogram and heavy metal resistance profile of bacteria isolated from giant freshwater prawn (Macrobrachium rosenbergii) hatchery in Malaysia are described.Although giant freshwater prawn was introduced into Malaysia since the 1980s,there was no database information on antibiogram and heavy metal resistance profile of bacteria from giant freshwater prawn (M.rosenbergii) hatchery in Malaysia.Therefore,this study was carried out to determine the effectiveness of antibiotic and heavy metal resistance profile to control bacterial diseases in M.rosenbergii hatchery.The results can provide valuable information for local M.rosenbergii post-larval producer.Antibiotic sensitivity test was carried out by disk-diffusion method against 15 types of antibiotics as follows:oxolinic acid (2 μg),ampicillin (10 μg),erythromycin (15 μg),furazolidone (15 μg),lincomycin (15 μg),amoxicillin (25 μg),col istin sulphate (25 μg),doxycycline (30 μg),florfenicol (30 μg),flumequine (30 μg),nalidixic acid (30 μg),tetracycline (30 μg),oleandomyein (15 μg),fosfomycin (50 μg),and spiramycin (100 μg),whereas heavy metal resistance profile of the present bacterial isolates was determined by 2-fold agar dilution technique.In this study,5 types of bacteria were successfully isolated;they were Aeromonas spp.(n= 77),Escherichia coil (n = 73),Edwardsiella spp.(n = 62),Salmonella spp.(n= 75),and Vibrio spp.(n = 43).The result showed that furazolidone was the most effective antibiotic to control the bacteria isolated in this study,approximately 89.7% of the bacterial isolates were sensitive to this antibiotic.Multiple antibiotic resistance (MAR) index indicated that the hatchery water source and M.rosenbergii post-larval and sediment tanks were at high-risk exposure to the tested antibiotic.Furthermore,all the tested heavy metals (Cd2+,Cr6+ Hg2+,and Cu2+) failed to inhibit the growth of the bacterial isolates.Therefore,it indicated that the water source of the hatchery is

  5. Isolation and characterization of bacteria with antibacterial properties from Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Etyemez, Miray; Balcazar, Jose Luis

    2016-04-01

    One hundred and twenty bacterial isolates were obtained from the intestinal mucus of Nile tilapia (Oreochromis niloticus) and screened for antagonistic activity and adherence abilities. Based on in vitro antagonism against two pathogens (Streptococcus iniae and Edwardsiella piscicida), five isolates were selected and identified by 16S rRNA gene sequence analysis. All antagonistic isolates were affiliated to the genus Bacillus, which showed inhibitory activity against S. iniae. Only the isolate B191 (closely related to Bacillus mojavensis) inhibited the growth of both pathogens. Moreover, isolate B191 adhered significantly better to fish intestinal mucus than other antagonistic isolates. According to our results, these bacterial isolates, particularly isolate B191, should be further studied to explore their probiotic effects under in vivo conditions.

  6. Antimicrobial Activity and Antibiotic Sensitivity of Three Isolates of Lactic Acid Bacteria From Fermented Fish Product, Budu

    Directory of Open Access Journals (Sweden)

    Liasi, S. A.

    2009-01-01

    Full Text Available Three isolates of lactic acid bacteria (LAB from the fermented food product, Budu, were identified as genus lactobacillus (Lactobacillus casei LA17, Lactobacillus plantarum LA22 and L. paracasei LA02, and the highest population was Lb. paracasei LA02. The antibacterial agent produced by the isolates inhibited the growth of a range of gram-positive and gram-negative microorganisms. Antimicrobial sensitivity test to 18 different types of antibiotic were evaluated using the disc diffusion method. Inhibition zone diameter was measured and calculated from the means of five determinations and expressed in terms of resistance or susceptibility. All the LAB isolates were resistant to colestin sulphate, streptomycin, amikacin, norfloxacin, nalidixic acid, mecillinam, sulphanethoxazole/ trimethoprim, kanamycin, neomycin, bacitracin and gentamycin but susceptible to erythromycin, penicillin G, chloramphenicol, tetracycline, ampicillin and nitrofurantion.

  7. ANTIBACTERIAL RESISTANCE PATTERN OF PSEUDOMONAS AERUGINOSA CO - ISOLATED WITH OTHER AEROBIC BACTERIA FROM BURN WOUNDS IN TERTIARY CARE HOSPITAL

    Directory of Open Access Journals (Sweden)

    Kalpana

    2014-01-01

    Full Text Available The antibacterial resistance pattern of 118 isolates from burn wounds in patients with thermal burns showing growth of Pseudomonas aeruginosa mixed with other aerobic bacteria over a period of two years ( January 2009 - Decemb er2010 were studied. Pseudomonas aeruginosa was found to be mixed with Klebsiella pneumoniae 63 ( 53.38% the most followed by Escherichia coli 27 ( 22.88% and other aerobic isolates. Pseudomonas aeruginosa was found to be highly resistant to Ceftazidime ( 72.88% and least to Imipenem ( 9.32%. Klebsiella pneumoniae was found to be most resistant to Ampicillin ( 100% and least to Amikacin ( 23.72%. Antibiotic susceptibility testing was performed for the other isolates as well

  8. Molecular identification of phosphate-solubilizing native bacteria isolated from the rhizosphere of Prosopis glandulosa in Mexicali valley.

    Science.gov (United States)

    Moreno-Ramírez, L; González-Mendoza, D; Cecena-Duran, C; Grimaldo-Juarez, O

    2015-03-31

    One of the main limitations in intensive crop production in Northwestern Mexico is the dependence on the use of phosphate fertilizer. In this study, we isolated indigenous microorganisms with phosphate solubilization capacities from mesquite (Prosopis glandulosa) present in the Mexicali valley. In total, 4 bacteria were isolated from the rhizosphere of mesquite, including ICA01, ICA02Ba, ICA03Bs, and ICA04Ma. The bacterial isolates were identified based on their phenotypic and 16S rRNA gene sequencing data to be Acinetobacter calcoaceticus. The results showed that ICA01 was the most efficient in solubilizing phosphate, followed by ICA02Ba and ICA03Bs, while ICA04Ma showed the lowest phosphate-solubilizing activity. The pH value of the culture medium decreased with bacterial growth, suggesting that these strains produce organic acids that solubilize phosphorus. These results will be useful for biotechnological studies and A. calcoaceticus may be employed for biofertilization programs in northwest Mexico.

  9. Susceptibility of bacteria isolated from pigs to tiamulin and enrofloxacin metabolites

    DEFF Research Database (Denmark)

    Lykkeberg, Anne Kruse; Halling-Sørensen, Bent; Jensen, Lars Bogø

    2007-01-01

    -tiamulin (8 alpha-HTIA), and the ENR metabolites were: ciprofloxacin (CIP) and enrofloxacin N-oxide (ENR-N). Bacteria, all of porcine origin, we're selected as representatives of bacterial infections (Stap4ylococcus hyicus and Actinobacillus pleuropneumoniae), zoonotic bacteria (Campylobacter coli......:Susceptibilities to metabolites of tiamulin (TIA) and enrofloxacin (ENR) were tested using selected bacteria with previously defined minimal inhibitory concentrations,(,MIC). The TIA metabolites tested were: N-deethyl-tiamulin (I)TIA), 2 beta-hydroxy-tiamulin (2 beta-HTIA),and Sammhydroxy......) and indicator bacteria (Escherichia coli and Furthermore the effects of ithese compounds were tested on the microbial community of active sludge to test any negative effect on colony forming units,(CFU). DTIA had a potency of 12.5-50% of the potency of T1A. 2-HTIA:and 8 alpha HTIA had,potenciesless, than 1...

  10. Characterization of anti-listerial lactic acid bacteria isolated from Thai fermented fish products

    DEFF Research Database (Denmark)

    Østergaard, Anya; Embarek, Peter Karim Ben; Wedell-Neergaard, C.

    1998-01-01

    to a mesophilic fish spoilage bacterium tan Aeromonas sp.). Inhibition of Gram-negative bacteria was attributed to production of lactic acid. Most strains were identified as Lactobacillus spp., and all grew well at ambient temperatures (25-37 degrees C) and tolerated up to 6.5% NaCl. Glucose was fermented rapidly......Thai fermented fish products were screened for lactic acid bacteria capable of inhibiting Listeria sp. (Listeria innocua). Of 4150 assumed lactic acid bacteria colonies from MRS agar plates that were screened by an agar-overlay method 58 (1.4%) were positive. Forty four of these strains were...... further characterized and 43 strains were inhibitory against Listeria monocytogenes. The strains were inhibitory to other Gram- positive (lactic acid) bacteria probably because of production of bacteriocins. All 44 strains inhibited both Vibrio cholerae and Vibrio parahaemolyticus and 37 were inhibitory...

  11. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates.

    Science.gov (United States)

    López-Moreno, Angélica; Sepúlveda-Sánchez, José David; Mercedes Alonso Guzmán, Elia Mercedes; Le Borgne, Sylvie

    2014-01-01

    Heterotrophic CaCO3-precipitating bacteria were isolated from biofilms on deteriorated ignimbrites, siliceous acidic rocks, from Morelia Cathedral (Mexico) and identified as Enterobacter cancerogenus (22e), Bacillus sp. (32a) and Bacillus subtilis (52g). In solid medium, 22e and 32a precipitated calcite and vaterite while 52g produced calcite. Urease activity was detected in these isolates and CaCO3 precipitation increased in the presence of urea in the liquid medium. In the presence of calcium, EPS production decreased in 22e and 32a and increased in 52g. Under laboratory conditions, ignimbrite colonization by these isolates only occurred in the presence of calcium and no CaCO3 was precipitated. Calcium may therefore be important for biofilm formation on stones. The importance of the type of stone, here a siliceous stone, on biological colonization is emphasized. This calcium effect has not been reported on calcareous materials. The importance of the effect of calcium on EPS production and biofilm formation is discussed in relation to other applications of CaCO3 precipitation by bacteria.

  12. POTENCY OF LIGNOCELLULOSE DEGRADING BACTERIA ISOLATED FROM BUFFALO AND HORSE GASTROINTESTINAL TRACT AND ELEPHANT DUNG FOR FEED FIBER DEGRADATION

    Directory of Open Access Journals (Sweden)

    A. Wahyudi

    2014-10-01

    Full Text Available Lignin is limiting factor for cellulose and hemicellulose degradation in rumen. Isolation andselection bacteria from buffalo and horse gastrointestinal tract and elephant dung could be foundbacteria that have superiority to degrade lignin, xylan, and cellulose. Those animals were chosenbecause they were herbivores that consume low quality crude fiber as their main energy sources.Lignocellulose degrading bacteria were isolated by Hungate selective media, by using lignin (tannicacid, xylan, and cellulose as selective substrates. The morphological identification used an enrichmentmedia by measuring color, colony size, diffusion zone, clear zone, and biochemical identification usingproduction of ligninase, xylanase, and cellulase enzymes. The best lignocellulose degrading bacteriathen was determined by the morphological and biochemical character. This study showed thatlignocellulose degrading bacteria could be found in gastrointestinal tract of buffalo and horse, andelephant dung. Highest number colony was found in samples from buffalo's colon (376, followed byhorse's cecum (203, elephant’s dung (46, buffalo’s cecum (23, buffalo's rumen (9 and horse’s colon(7. The highest isolates activity of lignolytic, xylanolytic, and cellulolytic were reached by buffalo’scecum (7.64, horse's cecum (6.27, and buffalo’s colon (2.48. Meanwhile the highest enzymesproductivities were: buffalo’s cecum (0.0400 µmol, horse’s cecum (1.3912 µmol and buffalo’s colon(0.1971 µmol. Based on morphologycal character and biochemical test, it could be concluded thatlignolytic from buffalo’s cecum, xylanolytic from horse’s cecum, and cellulolytic from buffalo’s colonwere the superior isolates and they were 99% analyzed as Enterococcus casseliflavus/gallinarumspecies.

  13. Determination of antimicrobial and heavy metal resistance profiles of some bacteria isolated from aquatic amphibian and reptile species.

    Science.gov (United States)

    Hacioglu, Nurcihan; Tosunoglu, Murat

    2014-01-01

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from aquatic animals (Lissotriton vulgaris, Pelophylax ridibundus, Emys orbicularis, Mauremys rivulata, and Natrix natrix) in Turkey (Kavak Delta). A total of 153 bacteria have been successfully isolated from cloaca and oral samples of the aquatic amphibians and reptilians which were found, namely, Aeromonas sp. (n = 29), Plesiomonas sp. (n = 7), Vibrio sp. (n = 12), Citrobacter sp. (n = 12), Enterobacter sp. (n = 11), Escherichia sp. (n = 22), Klebsiella sp. (n = 22), Edwardsiella sp. (n = 6), Hafnia sp. (n = 1), Proteus sp. (n = 19), Providencia sp. (n = 8), and Pseudomonas sp. (n = 4). In terms of antibiotic and heavy metal susceptibility testing, each isolate was tested against 12 antibiotics and 4 metals. There was a high incidence of resistance to cefoxitin (46.40 %), ampicillin (44.44 %), erythromycin (35.29 %), and a low incidence of resistance to gentamicin (6.53 %), kanamycin (8.49 %), chloramphenicol (9.15 %), and cefotaxime (10.45 %). The multiple antibiotic resistance index of each bacterial species indicated that bacteria from raised amphibians and reptiles have been exposed to tested antibiotics, with results ranging from 0 to 0.58. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from100 to >3,200 μg/mL. According to these results, a significant occurrence of bacteria in the internal organs of reptiles and amphibians, with a high incidence of resistance against antibiotics and heavy metals, may risk aquatic animals and the public health. These data appoint the importance of epidemiological surveillance and microbiological monitoring and reinforce the need to implement environment protection programs for amphibian and reptile species.

  14. Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates

    Directory of Open Access Journals (Sweden)

    Praveen Dahiya

    2012-01-01

    Full Text Available The in vitro antibacterial activity of various solvents and water extracts of aloe vera, neem, bryophyllum, lemongrass, tulsi, oregano, rosemary and thyme was assessed on 10 multi-drug resistant clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains including Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. The zone of inhibition as determined by agar well diffusion method varied with the plant extract, the solvent used for extraction, and the organism tested. Klebsiella pneumoniae 2, Escherichia coli 3 and Staphylococcus aureus 3 were resistant to the plant extracts tested. Moreover, water extracts did not restrain the growth of any tested bacteria. Ethanol and methanol extracts were found to be more potent being capable of exerting significant inhibitory activities against majority of the bacteria investigated. Staphylococcus aureus 1 was the most inhibited bacterial isolate with 24 extracts (60% inhibiting its growth whereas Escherichia coli 2 exhibited strong resistance being inhibited by only 11 extracts (28%. The results obtained in the agar diffusion plates were in fair correlation with that obtained in the minimum inhibitory concentration tests. The minimum inhibitory concentration of tulsi, oregano, rosemary and aloe vera extracts was found in the range of 1.56-6.25 mg/ml for the multi-drug resistant Staphylococcus aureus isolates tested whereas higher values (6.25-25 mg/ml were obtained against the multi-drug resistant isolates Klebsiella pneumoniae 1 and Escherichia coli 1 and 2. Qualitative phytochemical analysis demonstrated the presence of tannins and saponins in all plants tested. Thin layer chromatography and bioautography agar overlay assay of ethanol extracts of neem, tulsi and aloe vera indicated flavonoids and tannins as major active compounds against methicillin-resistant Staphylococcus aureus.

  15. Phytochemical Screening and Antimicrobial Activity of Some Medicinal Plants Against Multi-drug Resistant Bacteria from Clinical Isolates.

    Science.gov (United States)

    Dahiya, Praveen; Dahiya, P; Purkayastha, Sharmishtha

    2012-09-01

    The in vitro antibacterial activity of various solvents and water extracts of aloe vera, neem, bryophyllum, lemongrass, tulsi, oregano, rosemary and thyme was assessed on 10 multi-drug resistant clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains including Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. The zone of inhibition as determined by agar well diffusion method varied with the plant extract, the solvent used for extraction, and the organism tested. Klebsiella pneumoniae 2, Escherichia coli 3 and Staphylococcus aureus 3 were resistant to the plant extracts tested. Moreover, water extracts did not restrain the growth of any tested bacteria. Ethanol and methanol extracts were found to be more potent being capable of exerting significant inhibitory activities against majority of the bacteria investigated. Staphylococcus aureus 1 was the most inhibited bacterial isolate with 24 extracts (60%) inhibiting its growth whereas Escherichia coli 2 exhibited strong resistance being inhibited by only 11 extracts (28%). The results obtained in the agar diffusion plates were in fair correlation with that obtained in the minimum inhibitory concentration tests. The minimum inhibitory concentration of tulsi, oregano, rosemary and aloe vera extracts was found in the range of 1.56-6.25 mg/ml for the multi-drug resistant Staphylococcus aureus isolates tested whereas higher values (6.25-25 mg/ml) were obtained against the multi-drug resistant isolates Klebsiella pneumoniae 1 and Escherichia coli 1 and 2. Qualitative phytochemical analysis demonstrated the presence of tannins and saponins in all plants tested. Thin layer chromatography and bioautography agar overlay assay of ethanol extracts of neem, tulsi and aloe vera indicated flavonoids and tannins as major active compounds against methicillin-resistant Staphylococcus aureus.

  16. Isolation of bacteria capable of growth with 2-methylisoborneol and geosmin as the sole carbon and energy sources.

    Science.gov (United States)

    Guttman, Lior; van Rijn, Jaap

    2012-01-01

    Using a relatively simple enrichment technique, geosmin and 2-methylisoborneol (MIB)-biodegrading bacteria were isolated from a digestion basin in an aquaculture unit. Comparison of 16S rRNA gene sequences affiliated one of the three isolates with the Gram-positive genus Rhodococcus, while the other two isolates were found to be closely related to the Gram-negative family Comamonadaceae (Variovorax and Comamonas). Growth rates and geosmin and MIB removal rates by the isolates were determined under aerated and nonaerated conditions in mineral medium containing either of the two compounds as the sole carbon and energy source. All isolates exhibited their fastest growth under aerobic conditions, with generation times ranging from 3.1 to 5.7 h, compared to generation times of up to 19.1 h in the nonaerated flasks. Incubation of the isolates with additional carbon sources caused a significant increase in their growth rates, while removal rates of geosmin and MIB were significantly lower than those for incubation with only geosmin or MIB. By fluorescence in situ hybridization, members of the genera Rhodococcus and Comamonas were detected in geosmin- and MIB-enriched sludge from the digestion basin.

  17. Identification, stress tolerance, and antioxidant activity of lactic acid bacteria isolated from tropically grown fruits and leaves.

    Science.gov (United States)

    Fessard, Amandine; Bourdon, Emmanuel; Payet, Bertrand; Remize, Fabienne

    2016-07-01

    From 6 samples of tropically grown fruits and leaves, 10 lactic acid bacteria belonging Leuconostoc, Weissella, and Lactobacillus species were isolated and identified by 16S rRNA gene sequencing and (GTG)5 fingerprinting. Acidification kinetics determined from BHI broth cultures showed genus-related patterns. In particular, Weissella cibaria appeared to act as a potent acidifier. Tolerance of isolates to acid, oxidative, or salt stress was highly variable and strain dependent. Isolate S14 (Leuconostoc pseudomesenteroides) growth was not affected by the presence of 0.05% H2O2, while Lactobacillus spp. isolates (S17 and S29) were the most tolerant to pH 4.5. The growth of 4 isolates, S5 (Leuconostoc mesenteroides), S14 and S10 (Leuconostoc pseudomesenteroides), and S27 (W. cibaria), was not affected by 5% NaCl. Nutritional beneficial properties were examined through measurement of antioxidant activities of short-term fermented pineapple juice, such as LDL oxidation and polyphenol content, and through exopolysaccharide formation from sucrose. Two isolates, S14 and S27, increased the antioxidant capacity of pineapple juice. The robust capacity of W. cibaria and of Leuconostoc pseudomesenteroides for vegetable lactic fermentation aimed to ameliorate food nutritional and functional quality was highlighted.

  18. Isolation of methanotrophic bacteria from a london landfill: a preliminary study using molecular and stable isotopic techniques.

    Science.gov (United States)

    Sriskantharajah, S.; Cutting, S.; Lowry, D.; Grassineau, N.; Nisbet, E.

    2003-04-01

    Methane emissions from landfills are an important source of European greenhouse emissions, and could be reduced by a biological management program that used methanotrophs in landfill cover soils. Topsoil samples taken from a London Landfill were incubated on Nitrate Mineral Salts medium in the presence of methane. The resulting colonies were probed for methanotrophic DNA using PCR amplification. DNA from methanotroph positive colonies was cloned and sequenced for identification. Isolates belonging to the genera Methylocaldum, Methylomonas and Methylosinus were detected. Phylogenetic analysis suggests the presence of possible new species. In addition dried samples of the isolates were analysed for their stable carbon isotope (δ 13C) composition. The results were δ 13C values of -27 per mil and -25 per mil for Methylomonas isolates, -35 per mil and -44 per mil for Methylosinus isolates, -58 per mil and -60 per mil for some of the Methylocaldum isolates and -35 per mil and -45 per mil for the others. This isotopic variation is reflected in a phylogenetic tree of the isolates. The differences shown in the δ 13C analysis could be due to differing biochemical properties, and if the technique is further developed, it may be used for rapid identification of bacteria useful in landfill management for reducing methane emissions. The results suggest that useful reductions in methane emissions could be achieved by a careful design of landfill cover to culture methanotrophs.

  19. Aislamiento e Identificación de Bacterias y Levaduras Resistentes a Petróleo Isolation and Identification of Petroleum Resistant Bacteria and Yeast

    Directory of Open Access Journals (Sweden)

    Ismael Acosta-Rodríguez

    2011-01-01

    Full Text Available Se aislaron diferentes microorganismos de varios ríos de la Huasteca Potosina en México, los cuales crecen en presencia de petróleo como única fuente de carbono. Se determinó la actividad de alcohol oxidasa por un método colorimétrico. La bacteria más frecuentemente encontrada fue Pseudomonas aeruginosa (50% y se encontró solamente una levadura, Candida albicans (6.25%. Además, presentan buena actividad de alcohol oxidasa en la fracción citosólica con diferentes sustratos. Se concluye que estos microorganismos pueden ser utilizados para la eliminación y degradación de petróleo en sitios contaminados.Different microorganisms were isolated from various rivers of the Huasteca Potosina, in Mexico that grow in the presence of petroleum as the sole carbon source. The activity of alcohol oxidase was determined by a colorimetric method. The most common bacteria present in the samples were Pseudomonas aeruginosa (50% and only one type of yeast was found, Candida albicans (6.25%. Furthermore, they show good activity of alcohol oxidase in the cytosolic fraction with different substrates. It was concluded that this microorganisms could be used for decontamination of aquatic habitats polluted with petroleum.

  20. Antimicrobial effect of Salvia officinalis L. against selected group of bacteria isolated from chickens meat

    Directory of Open Access Journals (Sweden)

    Jana Petrová

    2013-10-01

    Full Text Available The effect of Salvia officinalis L. essential oil as well as vacuum packaging in extending the shelf life of fresh chicken’s breast meat stored at 4 °C was investigated. In a preliminary experiment Salvia officinalis L. essential oil  were used at concentrations 2% v/w while vacuum packaging. Microbiological properties of fresh chicken breast meat were monitored over a 16 days period. For this experiment three groups were used. First group was control with air packaging second was with vacuum packaging condition and was treated with essential oil on the surface of fresh chicken breast meat. From the microbiological indicators in this experiment total count of bacteria and coliform bacteria were observed. The total count of bacteria on the meat after killing animals was 2.97 log cfu.g-1 and number of coliform bacteria was 0.33 log cfu.g-1. The total count of bacteria on the chicken breast meat after 4, 8, 12 and 16 days gradually increased. The same number of coliform bacteria in extending self-life gradually increased. The highest number of both groups of microorganisms was in the control group with air condition and lowest number of both bacterial groups was in the group with salvia essential oil treatment.

  1. Isolation of endophytic bacteria from arboreal species of the Amazon and identification by sequencing of the 16S rRNA encoding gene

    Directory of Open Access Journals (Sweden)

    Mariza M. Coêlho

    2011-01-01

    Full Text Available Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla, were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species.

  2. Optimisation of Environmental Factors on Oil Degrading Bacteria Isolated from Coastal Water and Sediments in Sri Lanka

    Directory of Open Access Journals (Sweden)

    GY Liyanage

    2015-12-01

    Full Text Available Better understanding of the mechanisms of hydrocarbon degrading microorganisms and effect of some environmental factors is critical for the optimisation of the bioremediation processes. Temperature, pH, nitrate and phosphate are the major factors that influence there mediation process of bacterium. In the present study, optimisations some selected physico-chemical parameters (temperature, pH, nitrate and phosphate were carried out on Bacillus cereus, Enterobacter sp. and Enterobacter ludwigii which were previously isolated as potential oil degraders. The bacteria showed maximum degradation of crude oil at 33o C where the desirable pH was 8.6 for all the isolates except E. ludwigii (pH 5.4. A significant degradation (p < 0.05 of oil was detected by B. cereus (80% to 98%, Enterobacter sp. (73% to 90% and E. ludwigii (70% to 83% respectively with increasing of nitrate concentration from 0.1 to 2.5 ppm. Significant degradation of oil was not detected in the control and when bacteria were enriched with phosphate. Results of this study revealed that the bacterial remediation of oil is governed by nutritional status with special emphasis of nitrate enrichment in the environment. Thus, the results revealed that bacteria could be a useful tool to remove oil from the contaminated environment as eco-friendly, low cost application.

  3. Diversity and antimicrobial properties of lactic acid bacteria isolated from rhizosphere of olive trees and desert truffles of Tunisia.

    Science.gov (United States)

    Fhoula, Imene; Najjari, Afef; Turki, Yousra; Jaballah, Sana; Boudabous, Abdelatif; Ouzari, Hadda

    2013-01-01

    A total of 119 lactic acid bacteria (LAB) were isolated, by culture-dependant method, from rhizosphere samples of olive trees and desert truffles and evaluated for different biotechnological properties. Using the variability of the intergenic spacer 16S-23S and 16S rRNA gene sequences, the isolates were identified as the genera Lactococcus, Pediococcus, Lactobacillus, Weissella, and Enterococcus. All the strains showed proteolytic activity with variable rates 42% were EPS producers, while only 10% showed the ability to grow in 9% NaCl. In addition, a low rate of antibiotic resistance was detected among rhizospheric enterococci. Furthermore, a strong antibacterial activity against plant and/or pathogenic bacteria of Stenotrophomonas maltophilia, Pantoea agglomerans, Pseudomonas savastanoi, the food-borne Staphylococcus aureus, and Listeria monocytogenes was recorded. Antifungal activity evaluation showed that Botrytis cinerea was the most inhibited fungus followed by Penicillium expansum, Verticillium dahliae, and Aspergillus niger. Most of the active strains belonged to the genera Enterococcus and Weissella. This study led to suggest that environmental-derived LAB strains could be selected for technological application to control pathogenic bacteria and to protect food safety from postharvest deleterious microbiota.

  4. CHARACTERISTICS, STABILITY AND ANTIMICROBIAL ACTIVITY OF LACTIC ACID BACTERIA (Leuconostoc sp ISOLATED FROM BROILER’S CAECUM DURING STORAGE

    Directory of Open Access Journals (Sweden)

    S. Sumarsih

    2014-10-01

    Full Text Available Lactic acid bacteria (LAB is one of the natural microbe which widely used as fermentation agents.The purpose of this study was to examine the characteristics, stability and antimicrobial properties oflactic acid bacteria (Leuconostoc sp isolated from broiler’s caecum during storage. This research wasconducted by the Complete Randomized Design with 4 treatments (time of storage: 0, 2, 4 dan 6 weekswith 12 replications. Parameters observed were total number and stability properties of Leuconostoc spisolate which known as lactic acid bacteria. The results obtained total number of Leuconostoc sp isolatewere significantly (P<0.05 decreased from 8 x 107 to 1 x 103 Colony Forming Unit (CFU/mL duringstorage. Stability properties of Leuconostoc sp isolate were not affected by the time of storage.Antimicrobial activity of Leuconostoc sp were significantly (P<0.05 decreased from 9.94 to 8.68, 7.23and 6.14 mm during storage at 2, 4 and 6 weeks.

  5. Isolation and molecular identification of landfill bacteria capable of growing on di-(2-ethylhexyl) phthalate and deteriorating PVC materials.

    Science.gov (United States)

    Latorre, Isomar; Hwang, Sangchul; Montalvo-Rodriguez, Rafael

    2012-01-01

    Waste materials containing Di-(2-ethylhexyl) phthalate (DEHP), a suspected endocrine disruptor and reasonably anticipated human carcinogen, are typically disposed of in landfills. Despite this, very few studies had been conducted to isolate and identify DEHP-degrading bacteria in landfill leachate. Therefore, this study was conducted to isolate and characterize bacteria in landfill leachate growing on DEHP as the sole carbon source and deteriorating PVC materials. Four strains LHM1, LHM2, LHM3 and LHM4, not previously reported as DEHP-degraders, were identified via 16S rRNA gene sequence. Gram-positive strains LHM1 and LHM2 had a greater than 97% similarity with Chryseomicrobium imtechense MW 10(T) and Lysinibacillus fusiformis NBRC 15717(T), respectively. Gram-negative strains LHM3 and LHM4 were related to Acinetobacter calcoaceticus DSM 30006(T) (90.7% similarity) and Stenotrophomonas pavanii ICB 89(T) (96.0% similarity), respectively. Phylogenetic analysis also corroborated these similarities of strains LHM1 and LHM2 to the corresponding bacteria species. Strains LHM2 and LHM4 grew faster than strains LHM1 and LHM3 in the enrichment where DEHP was the sole carbon source. When augmented to the reactors with PVC shower curtains containing DEHP, strains LHM1 and LHM2 developed greater optical densities in the solution phase and thicker biofilm on the surfaces of the shower curtains.

  6. Diversity and Antimicrobial Properties of Lactic Acid Bacteria Isolated from Rhizosphere of Olive Trees and Desert Truffles of Tunisia

    Directory of Open Access Journals (Sweden)

    Imene Fhoula

    2013-01-01

    Full Text Available A total of 119 lactic acid bacteria (LAB were isolated, by culture-dependant method, from rhizosphere samples of olive trees and desert truffles and evaluated for different biotechnological properties. Using the variability of the intergenic spacer 16S-23S and 16S rRNA gene sequences, the isolates were identified as the genera Lactococcus, Pediococcus, Lactobacillus, Weissella, and Enterococcus. All the strains showed proteolytic activity with variable rates 42% were EPS producers, while only 10% showed the ability to grow in 9% NaCl. In addition, a low rate of antibiotic resistance was detected among rhizospheric enterococci. Furthermore, a strong antibacterial activity against plant and/or pathogenic bacteria of Stenotrophomonas maltophilia, Pantoea agglomerans, Pseudomonas savastanoi, the food-borne Staphylococcus aureus, and Listeria monocytogenes was recorded. Antifungal activity evaluation showed that Botrytis cinerea was the most inhibited fungus followed by Penicillium expansum, Verticillium dahliae, and Aspergillus niger. Most of the active strains belonged to the genera Enterococcus and Weissella. This study led to suggest that environmental-derived LAB strains could be selected for technological application to control pathogenic bacteria and to protect food safety from postharvest deleterious microbiota.

  7. Encapsulation in alginate enhanced the plant growth promoting activities of two phosphate solubilizing bacteria isolated from the phosphate mine of Gafsa

    OpenAIRE

    Mounira Ben Farhat; Salma Taktek; Hichem Chouayekh

    2014-01-01

    To develop a maize inoculant allowing the use of sparingly soluble inorganic phosphates, the potential of two phosphate solubilizing bacteria isolated from the Gafsa rock phosphate mine, namely Serratia marcescens CTM 50650 and Enterobacter sp. US468 was assessed. At first, these phosphate solubilizing bacteria were analyzed for plant growth promoting activities like acid and alkaline phosphatase, and indole acetic acid production. Both isolates produced alkaline and acid phosphatase at 35.73...

  8. Fe and P solubilization under limiting conditions by bacteria isolated from Carex kobomugi roots at the Hasaki coast.

    Science.gov (United States)

    Matsuoka, Hiroaki; Akiyama, Masaru; Kobayashi, Katsuichiro; Yamaji, Keiko

    2013-03-01

    Our objective was simply to report a sedge species, Carex kobomugi Ohwi that has beneficial bacterial associations under low Fe and P conditions of the Hasaki coast, Japan. C. kobomugi is the dominant species in our study area and grows closest to the sea. C. kobomugi showed higher Fe and P content, while these nutrients were less available under alkaline root-zone soil. Within the roots, mycorrhizal fungal colonization was absent, and endophytic fungal colonization was low. On the contrary, endophytic bacteria (e.g. Bacillus sp., Streptomyces luteogriseus, and Pseudomonas fluorescens) were isolated, which exhibited both siderophore production and inorganic phosphate solubilization under Fe or P limited conditions. Our results suggest that colonization of root tissue by these bacteria contribute to the Fe and P uptakes by C. kobomugi by increasing availability in the soil.

  9. Inhibitory Effects of Gallic Acid Isolated from Caesalpinia mimosoides Lamk on Cholangiocarcinoma Cell Lines and Foodborne Pathogenic Bacteria.

    Science.gov (United States)

    Rattanata, Narintorn; Klaynongsruang, Sompong; Daduang, Sakda; Tavichakorntrakool, Ratree; Limpaiboon, Temduang; Lekphrom, Ratsami; Boonsiri, Patcharee; Daduang, Jureerut

    2016-01-01

    Gallic acid was isolated from Caesalpinia mimosoides Lamk and the structure s identified based on spectroscopic analysis and comparison with authentic compound. In this study we compared the ability of natural gallic acid (nGA) and commercial gallic acid (cGA) to inhibit the proliferation of cholangiocarcinoma cell lines (M213, M214) and foodborne pathogenic bacteria (Salmonella spp. and Plesiomonas shigelloides). Both nGA and cGA had the same inhibitory effects on cell proliferation by inducing apoptosis of cholangiocarcinoma cell lines. In addition, nGA inhibited growth of foodborne pathogenic bacteria in the same manner as cGA. Our results suggest that nGA from Caesalpinia mimosoides Lamk is a potential anticancer and antibacterial compound. However, in vivo studies are needed to elucidate the specific mechanisms involved.

  10. Demonstration isolation and identification of culturable microfungi and bacteria in horse hair and dandruff. Immunochemical comparison with allergic components.

    Science.gov (United States)

    Gravesen, S; Løwenstein, H; Weeke, B

    1978-04-01

    Horse hiar and dandruff have been investigated for their content of microfungi and bacteria. Inoculation and incubation on V-8 agar containing penicillin and streptomycin, with subsequent colony counting and identification, revealed more than nine and five different genera of microfungi and bacteria respectively, in horse hair and dandruff. Isolation and cultivation of the quantitatively dominating species, and preparation of an extract of these were performed, followed by immunochemical comparison with extract of the horse hair and dandruff using crossed-line immuno-electrophoresis. As no immunochemical identity was demonstrated it was concluded that the identified microorganisms might serve as a guideline to suspected sensitizing substances when patients with a typical case history of horse allergy do not react to extracts of horse hair and dandruff.

  11. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia.

    Science.gov (United States)

    Elazzazy, Ahmed M; Abdelmoneim, T S; Almaghrabi, O A

    2015-07-01

    Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems.

  12. Antibiotic susceptibility profile of bacteria isolated from natural sources of water from rural areas of East Sikkim

    Directory of Open Access Journals (Sweden)

    Shubra Poonia

    2014-01-01

    Full Text Available Background: Contamination of water, food, and environment with antibiotic-resistant bacteria poses a serious public health issue. Objective: The objective was to study the bacterial pollution of the natural sources of water in east Sikkim and to determine the antimicrobial profile of the bacterial isolates. Materials and Methods: A total of 225 samples, 75 each during winter, summer, and monsoon season were collected from the same source in every season for bacteriological analysis by membrane filtration method. Antibiotic susceptibility test was performed using standard disc diffusion method. Results: A total of 19 bacterial species of the genera Escherichia, Klebsiella, Proteus, Salmonella, Shigella, Enterobacter, Citrobacter, Morganella, Pseudomonas, Acinetobacter, Flavobacterium, and Serratia were isolated and their antimicrobial sensitivity tested. Generally, most bacterial isolates except Salmonella and Shigella species were found resistant to commonly used antibiotics such as ampicillin (57.5%, trimethoprim/sulfamethoxaole (39.1%, amoxicillin/clavulanic acid (37.4%, cefixime (34.5%, tetracycline (29.1%, ceftazidime (26.3%, ofloxacin (25.9%, amikacin (8.7%, and gentamicin (2.7% but sensitive to imipenem and piperacillin/tazobactam. Conclusion: Natural sources of water in east Sikkim are grossly contaminated with bacteria including enteropathogens. The consumption of untreated water from these sources might pose health risk to consumers.

  13. Antibiotic combinatorial approach utilized against extended spectrum beta-lactamase (ESBL bacteria isolates from Enugu, South Eastern Nigeria

    Directory of Open Access Journals (Sweden)

    Ruth A. Afunwa

    2014-04-01

    Full Text Available Introduction: Antibiotic options in the treatment of extended spectrum beta-lactamase (ESBL producing bacteria are very limited. The purpose of this study was to analyze several commonly applied antibiotics in quite various novel combinations for use against ESBL-producing bacteria isolates.Methods: Total of 460 samples of urine, throat and anal swab were collected from volunteers and patients from nursery, primary and secondary schools and from other individuals in the community. Hospital and community isolates comprised of 65% and 35% respectively. The identification and characterization of the isolates were done by standard culturing and in vitro antibiotic sensitivity procedures.Results: The antibiotic combination studies showed that the combination of gentamicin with the other antibiotics had predominantly synergistic effects. The percentage synergistic effect for the combinations of gentamicin/pefloxacin was 69%, gentamicin/[Amoxicillin and clavulanic acid] 72%, gentamicin/ceftriaxone 68%, gentamicin/cefuroxime 81.9%, and gentamicin/ciprofloxacin 80.6%, against the community and hospital derived ESBL producing organisms of both Enterobacteriaceae and Pseudomonas species.Conclusion: Good antimicrobial monitoring exercise and corresponding antimicrobial screening activities should work towards a dynamic approach to generate effective treatment options using combination therapy.

  14. Intravenous immunoglobulin enhances the killing activity and autophagy of neutrophils isolated from immunocompromised patients against multidrug-resistant bacteria.

    Science.gov (United States)

    Matsuo, Hidemasa; Itoh, Hiroshi; Kitamura, Naoko; Kamikubo, Yasuhiko; Higuchi, Takeshi; Shiga, Shuichi; Ichiyama, Satoshi; Kondo, Tadakazu; Takaori-Kondo, Akifumi; Adachi, Souichi

    2015-08-14

    Intravenous immunoglobulin (IVIG) is periodically administered to immunocompromised patients together with antimicrobial agents. The evidence that supports the effectiveness of IVIG is mostly based on data from randomized clinical trials; the underlying mechanisms are poorly understood. A recent study revealed that killing of multidrug-resistant bacteria and drug-sensitive strains by neutrophils isolated from healthy donors is enhanced by an IVIG preparation. However, the effectiveness of IVIG in immunocompromised patients remains unclear. The present study found that IVIG increased both killing activity and O2(-) release by neutrophils isolated from six patients receiving immune-suppressive drugs after hematopoietic stem cell transplantation (HSCT); these neutrophils killed both multidrug-resistant extended-spectrum β-lactamase-producing Escherichia coli (E. coli) and multidrug-resistant Pseudomonas aeruginosa (P. aeruginosa). Moreover, IVIG increased the autophagy of the neutrophils, which is known to play an important role in innate immunity. These results suggest that IVIG promotes both the killing activity and autophagy of neutrophils isolated from immunocompromised patients against multidrug-resistant bacteria.

  15. Phenotypic differences between coryneform bacteria isolated from seminal fluid of healthy men and men with chronic prostatitis syndrome

    Science.gov (United States)

    Ivanov, Iuri B; Gritsenko, Viktor A; Kuzmin, Michael D

    2009-01-01

    We compared the potential phenotypic properties of coryneform bacteria associated with chronic prostatitis syndrome (CPS), such as secretory inhibitor of lysozyme (SIL) and secretory inhibitor of platelet microbicidal protein (SIPMP). A total of 110 clinical isolates of coryneform bacteria isolated from the seminal fluid of healthy men and men with CPS were tested. SIPMP production was tested by inhibiting platelet microbicidal protein (PMP) bioactivity against Bacillus subtilis, and was expressed as percentage of inhibition of PMP bactericidal activity. SIL production was tested by inhibiting lysozyme activity against Micrococcus lysodeikticus and was expressed in microgram per millilitre of inactivated lysozyme. A significantly higher proportion of CPS strains (58.7% vs. 19.2 %) was SIPMP-positive compared with non-CPS strains (P < 0.01). Of the CPS strains tested, 77.8% were SIL-positive compared with 34% of the non-CPS isolates (P < 0.05). These results suggest that the diagnosis of CPS should not rely solely on classical parameters, for example, the identification and counting of microorganisms, but the functional significance of these parameters must be estimated, possibly by the concentration of different bacterial substrains, detection of opportunistic microorganisms with pathogenic properties, such as pronounced resistance to the cationic antimicrobial peptides, and/or the ability to inhibit the antimicrobial host defence factors. PMID:19448644

  16. The effects of metabolite molecules produced by drinking water-isolated bacteria on their single and multispecies biofilms.

    Science.gov (United States)

    Simões, Lúcia Chaves; Simões, Manuel; Vieira, Maria João

    2011-08-01

    The elucidation of the mechanisms by which diverse species survive and interact in drinking water (DW) biofilm communities may allow the identification of new biofilm control strategies. The purpose of the present study was to investigate the effects of metabolite molecules produced by bacteria isolated from DW on biofilm formation. Six opportunistic bacteria, viz. Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp. isolated from a drinking water distribution systems (DWDS) were used to form single and multispecies biofilms in the presence and absence of crude cell-free supernatants produced by the partner bacteria. Biofilms were characterized in terms of mass and metabolic activity. Additionally, several physiological aspects regulating interspecies interactions (sessile growth rates, antimicrobial activity of cell-free supernatants, and production of iron chelators) were studied to identify bacterial species with biocontrol potential in DWDS. Biofilms of Methylobacterium sp. had the highest growth rate and M. mucogenicum biofilms the lowest. Only B. cepacia was able to produce extracellular iron-chelating molecules. A. calcoaceticus, B. cepacia, Methylobacterium sp. and M. mucogenicum biofilms were strongly inhibited by crude cell-free supernatants from the other bacteria. The crude cell-free supernatants of M. mucogenicum and S. capsulata demonstrated a high potential for inhibiting the growth of counterpart biofilms. Multispecies biofilm formation was strongly inhibited in the absence of A. calcoaceticus. Only crude cell-free supernatants produced by B. cepacia and A. calcoaceticus had no inhibitory effects on multispecies biofilm formation, while metabolite molecules of M. mucogenicum showed the most significant biocontrol potential.

  17. Bacterias solubilizadoras de fosfato inorgánico aisladas de suelos de la región sojera Phosphate inorganic solubilizing bacteria isolated from soybean region soils

    Directory of Open Access Journals (Sweden)

    Leticia Andrea Fernández

    2005-07-01

    ía de los aislamientos de la microflora. No se destacó la capacidad de solubilización de fosfato de la cepa comercial con respecto a lo observado en los aislamientos de este trabajo. Nuestros resultados permiten concluir que existen aislamientos de bacterias del suelo con diferente capacidad solubilizadora de fósforo inorgánico y que las cepas de Bradyrhizobium sp. muestran capacidades de solubilización comparables a las de otros géneros bacterianos.The present research focuses on the study of the ability to solubilize inorganic phosphate of different bacterial groups as well as of Bradyrhizobium sp. strains isolated from soybean soils. Soil samples were collected and the microflora as well as the total number of bacteria, fungi, and solubilizers was assessed. The phosphate solubilization ability of the predominant bacterial groups, of 250 Bradyrhizobium sp. strains, and of 10 collection strains was tested in Petri dishes containing NBRIP supplemented with 5 g L-1 of tricalcium phosphate. The size of solubilizing halos was measured and those colonies showing halos larger than 4 mm were isolated. Solubilized phosphate was quantitavely estimated in broth with and without buffer in these strains and it was compared with a commercial strain. The total bacteria mean values reached 5.1 106 (0.06% solubilizers while the total fungi reached 3.3 104 (9.70% solubilizers. No significant differences in the number of solubilizing bacteria were observed in the different soils. Fourteen solubilizing strains were obtained: 10 from microflora and 4 Bradyrhizobium sp. strains whose halos ranged from 4 to 15 mm. All collection strains except MSDJ G49 solubilized phosphate in the plate assay. The amounts of solubilized phosphate by the strains of microflora varied from 3% to 24.1% in a liquid medium without buffer while with buffer varied from 0.07% to 4.82%. In a liquid medium without buffer, the strains of Bradyrhizobium sp. solubilized in percentages ranging from 7.1% to 8

  18. Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp.

    Science.gov (United States)

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Leo, Vincent Vineeth; Gupta, Vijai Kumar; Singh, Bhim Pratap

    2016-12-01

    6 was reported to produce altogether three phytohormones (IAA, Kinetin and 6-Benzyladenine). This study is the first report that bacteria isolated from C. colebrookianum has biocontrol as well as PGP abilities endowed with phytohormones production and can be used for the preparation of bioinoculant for plant growth promotion.

  19. Modified sublimation to isolate phenanthrene-degrading bacteria of the genera Sphingomonas and Burkholderia from Xiamen oil port.

    Science.gov (United States)

    Huang, X; Tian, Y; Luo, Y R; Liu, H J; Zheng, Wei; Zheng, T L

    2008-01-01

    Sublimation was developed by Alley and Brown (2000) in order to isolate bacterial strains that were capable of degrading water insoluble compounds. In this study, sublimation was modified by the use of nutritional agar plates, instead of mineral salt agar, to isolate phenanthrene-degrading bacteria from a mixed culture that had been enriched under the selective pressure of high phenanthrene content. Five strains were obtained with different morphology and degradation ability. Based on the 16S rDNA sequence, two of them were classified as species of the genus Sphingomonas; the others as species of the genus Burkholderia. Denaturing gradient gel electrophoresis (DGGE) was introduced to detect dynamic changes in the bacterial community during enrichment batch culture, and to determine any correlation between the five isolates and the phenanthrene-degrading consortium. The DGGE profile indicated that these five isolates corresponded to four dominant bands of the consortium. Compared to traditional means of isolation, we concluded that modified sublimation is effective and more convenient.

  20. High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water.

    Directory of Open Access Journals (Sweden)

    David W Verner-Jeffreys

    Full Text Available BACKGROUND: Antimicrobials are used to directly control bacterial infections in pet (ornamental fish and are routinely added to the water these fish are shipped in to suppress the growth of potential pathogens during transport. METHODOLOGY/PRINCIPAL FINDINGS: To assess the potential effects of this sustained selection pressure, 127 Aeromonas spp. isolated from warm and cold water ornamental fish species were screened for tolerance to 34 antimicrobials. Representative isolates were also examined for the presence of 54 resistance genes by a combination of miniaturized microarray and conventional PCR. Forty-seven of 94 Aeromonas spp. isolates recovered from tropical ornamental fish and their carriage water were tolerant to > or =15 antibiotics, representing seven or more different classes of antimicrobial. The quinolone and fluoroquinolone resistance gene, qnrS2, was detected at high frequency (37% tested recent isolates were positive by PCR. Class 1 integrons, IncA/C broad host range plasmids and a range of other antibiotic resistance genes, including floR, bla(TEM-1, tet(A, tet(D, tet(E, qacE2, sul1, and a number of different dihydrofolate reductase and aminoglycoside transferase coding genes were also detected in carriage water samples and bacterial isolates. CONCLUSIONS: These data suggest that ornamental fish and their carriage water act as a reservoir for both multi-resistant bacteria and resistance genes.

  1. Alkane-degrading bacteria at the soil-litter interface: comparing isolates with T-RFLP-based community profiles.

    Science.gov (United States)

    Giebler, Julia; Wick, Lukas Y; Chatzinotas, Antonis; Harms, Hauke

    2013-10-01

    Alkane-degrading bacteria were isolated from uncontaminated soil microcosms, which had been incubated with maize litter as natural alkane source. The isolates served to understand spatio-temporal community changes at the soil-litter interface, which had been detected using alkB as a functional marker gene for bacterial alkane degraders. To obtain a large spectrum of isolates, liquid subcultivation was combined with a matrix-assisted enrichment (Teflon membranes, litter). Elevated cell numbers of alkane degraders were detected by most probable number counting indicating enhanced alkane degradation potential in soil in response to litter treatment. Partial 16S rRNA gene sequencing of 395 isolates revealed forty different phylogenetic groups [operational taxonomic units (OTUs)] and spatio-temporal shifts in community composition. Ten OTUs comprised so far unknown alkane degraders, and five OTUs represented putative new bacterial genera. The combination of enrichment methods yielded a higher diversity of isolates than liquid subcultivation alone. Comparison of 16S rRNA gene T-RFLP profiles indicated that many alkane degraders present in the enrichments were not detectable in the DNA extracts from soil microcosms. These possibly rare specialists might represent a seed bank for the alkane degradation capacity in uncontaminated soil. This relevant ecosystem function can be fostered by the formation of the soil-litter interface.

  2. Survey of antimicrobial susceptibility patterns of the bacteria of the Bacteroides fragilis group isolated from the intestinal tract of children

    Directory of Open Access Journals (Sweden)

    Viviane Nakano

    2004-05-01

    Full Text Available The bacteria of the Bacteroides fragilis group are considered important clinical pathogens and they are the most common anaerobes isolated from human endogenous infections. In this study, the susceptibility patterns to antibiotics and metals of 114 species of the B. fragilis group isolated from children with and without diarrhea were determined. Susceptibility was assayed by using an agar dilution method with Wilkins-Chalgren agar. All B. fragilis strains were resistant to lead and nickel, but susceptible to metronidazole and imipenem. beta-lactamase production was detected by using biological and nitrocefin methods, respectively, in 50% and 90.6% of the isolates of children with diarrhea and in 60% and 90% of the isolates of children without diarrhea. Our results show an increase of antibiotics and metals resistance in this microbial group, and a periodic evaluation of the antimicrobial susceptibility is needed. In Brazil, the contamination for antibiotics or metal ions is often observed, and it is suggested an increase the antimicrobial resistance surveillance of this microbial group, mainly those isolated from children's diarrhea.

  3. Extraction, isolation and purification of exopolysaccharide from lactic acid bacteria using ethanol precipitation method

    Directory of Open Access Journals (Sweden)

    Vivek K. Bajpai

    2016-09-01

    Full Text Available Lactic acid bacteria are classified ‘Generally Recognized As Safe’ (GRAS with most effective potential to divert significant amount of fermentable sugars towards the biosynthesis of functional exopolysaccharide. Exopolysaccharides from lactic acid bacteria are receiving a renewed interest due to the claims of human health benefits, such as modulation of immune response system and more importantly in food and pharma industries as a texturizer, viscosifer, emulsifier and syneresis-lowering agent. Its purification methodology involves: a Extraction of cell-free supernatant from lactic acid bacteria; b Denature of protein using trichloroacetic acid; c Ethanol precipitation; d Dialysis; and e Freeze drying. However, depending on nature of research, compounds can be further purified using scanning electron microscopy (SEM, infrared spectrum (IR; and nuclear magnetic resonance (NMR spectral analyses.

  4. Multidrug Resistance in Quinolone-Resistant Gram-Negative Bacteria Isolated from Hospital Effluent and the Municipal Wastewater Treatment Plant.

    Science.gov (United States)

    Vaz-Moreira, Ivone; Varela, Ana Rita; Pereira, Thamiris V; Fochat, Romário C; Manaia, Célia M

    2016-03-01

    This study is aimed to assess if hospital effluents represent an important supplier of multidrug-resistant (MDR) Gram-negative bacteria that, being discharged in the municipal collector, may be disseminated in the environment and bypassed in water quality control systems. From a set of 101 non-Escherichia coli Gram-negative bacteria with reduced susceptibility to quinolones, was selected a group of isolates comprised by those with the highest indices of MDR (defined as nonsusceptibility to at least one agent in six or more antimicrobial categories, MDR ≥6) or resistance to meropenem or ceftazidime (n = 25). The isolates were identified and characterized for antibiotic resistance phenotype, plasmid-mediated quinolone resistance (PMQR) genes, and other genetic elements and conjugative capacity. The isolates with highest MDR indices were mainly from hospital effluent and comprised ubiquitous bacterial groups of the class Gammaproteobacteria, of the genera Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Klebsiella, and Pseudomonas, and of the class Flavobacteriia, of the genera Chryseobacterium and Myroides. In this group of 25 strains, 19 identified as Gammaproteobacteria harbored at least one PMQR gene (aac(6')-Ib-cr, qnrB, qnrS, or oqxAB) or a class 1 integron gene cassette encoding aminoglycoside, sulfonamide, or carbapenem resistance. Most of the E. coli J53 transconjugants with acquired antibiotic resistance resulted from conjugation with Enterobacteriaceae. These transconjugants demonstrated acquired resistance to a maximum of five classes of antibiotics, one or more PMQR genes and/or a class 1 integron gene cassette. This study shows that ubiquitous bacteria, other than those monitored in water quality controls, are important vectors of antibiotic resistance and can be disseminated from hospital effluent to aquatic environments. This information is relevant to support management options aiming at the control of this public health problem.

  5. Susceptibility of bacteria isolated from pigs to tiamulin and enrofloxacin metabolites.

    Science.gov (United States)

    Lykkeberg, Anne Kruse; Halling-Sørensen, Bent; Jensen