WorldWideScience

Sample records for chromium vi reduction

  1. [Bioremediation of chromium (VI) contaminated site by reduction and microbial stabilization of chromium].

    Science.gov (United States)

    Zheng, Jia-Chuan; Zhang, Jian-Rong; Liu, Xi-Wen; Xu, Qian; Shi, Wei-Lin

    2014-10-01

    Chromium (VI) contaminated soil samples were collected from a chemical plant in Suzhou. Firstly, the reduced soil was prepared by adding reagent (Stone-sulfure reagent) into polluted soil to transfer most chromium (VI) into chromium (III), then a nutrient solution was introduced into the reduced soil, and the stabilized soil was obtained after 60 days culturing. The chromium (VI) content of the three kinds of soil was analyzed. The results showed that the chromium (VI) content in toxicity characteristic leaching liquid (TCLL) dropped by 96. 8% (from 8.26 mg · L(-1) to 0.26 mg · L(-1)), and the total chromium content dropped by 95.7% (from 14.66 mg · L(-1) to 0.63 mg · L(-1)) after bioremediation in 5% nutrient solution. Additionally, the durability of chromium stabilization was tested by potassium permanganate oxidation and sterilization of microbe-treated soil. After oxidation, the chromium (VI) content in TCLL of the reduced soil was increased from 8.26 mg · L(-1) to 14.68 mg · L(-1). However, the content after bioremediation was decreased to 2.68 mg · L(-1). The results of sterilization demonstrated that the death of microbe had no significant effect on the stabilization of chromium. Consequently, the research in this paper demonstrated the feasibility of bioremediation of chromium (VI) polluted soil through reduction followed by stabilization/soilidification, and provided a technique with low cost but high efficiency.

  2. Reduction of chromium (VI by the indirect action of Thiobacillus thioparus

    Directory of Open Access Journals (Sweden)

    E. Donati

    2003-03-01

    Full Text Available The microbial reduction of chromium(VI to chromium(III has been one of the most widely studied forms of metal bioremediation. Recently, we have found that Thiobacillus ferrooxidans and Thiobacillus thiooxidans, growing on elemental sulphur, can indirectly promote chromium(VI reduction by producing reducing agents such as sulphite and thiosulphate, which abiotically reduce chromium(VI. Those species of Thiobacillus are acidophilic bacteria which grow optimally at pH values lower than 4. However, most of those reducing agents are stabilised at higher pH values. Thus, the present paper reports on the ability to reduce chromium(VI using another specie of Thiobacilli, Thiobacillus thioparus, which is able to grow at pH close to 7.0. T. thioparus cultures were carried out in a fermentation vessel containing medium and sulphur as the sole energy source and maintained at 30ºC and 400 rpm. The pH was adjusted to 6.0, 7.0 or 8.0 and maintained with the automatic addition of KOH. Our results show high chromium (VI reduction values (close to 100% at the end of bacterial growth at the three pH values. The results of these experiments are very promising for development of a microbiological process to be used in the detoxification of chromium(VI-polluted effluents.

  3. Reduction of Chromium-VI by Chromium Resistant Lactobacilli: A Prospective Bacterium for Bioremediation

    OpenAIRE

    Mishra, Ritesh; Sinha, Vartika; Kannan, Ambrose; Upreti, Raj K.

    2012-01-01

    Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr (VI) and Cr (III). Highly soluble hexavalent chromium is carcinogenic due to its oxidizing nature. It is well established that the intestinal bacteria including Lactobacilli have regulatory effect on intestinal homeostasis and a breakdown in the relationship between intestinal cells and bacteria results in the manifestation of gastrointestinal (GI) disorders. In this study Cr (VI) resistance was developed in La...

  4. Inhibition of nitrate reduction by chromium (VI) in anaerobic soil microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Kourtev, P. S.; Nakatsu, C. H.; Konopka, Allan

    2009-10-01

    Chromium (VI) is often found as a co-contaminant at sites polluted with organic compounds. We used microcosms amended with glucose or protein, nitrate and increasing concentrations of chromium to study nitrate reduction in Cr(VI) polluted soils. Organic carbon stimulated bacterial activity, but the addition of Cr(VI) caused a lag and then slower rates 5 of CO2 accumulation. Nitrate reduction only occurred after Cr(VI) had been reduced. Bacterial activity was again inhibited when Cr(VI) was added a second time; thus not all Cr-sensitive bacteria were removed in the first phase. Glucose and protein selected for relatively similar bacterial communities, as assayed by PCR-DGGE of the 16S rRNA gene; this selection was modified by the addition of 10 Cr(VI). Cr-resistant bacteria isolated from microcosms were closely related to members of Bacillus, Enterococcus and Propionibacterium sp. Our results indicate that carbon utilization and nitrate reduction in these soils in the presence of Cr(VI) are contingent upon the reduction of the added heavy metal by a limited subset of the bacterial community. The amount of Cr(VI) required to inhibit nitrate reduction was 10-fold less than for aerobic catabolism of the same 15 substrate. We hypothesize that the resistance level of a microbial process is directly related to the diversity of microbes capable of conducting it.

  5. Study of reduction of chromium (VI by calcium polysulfide using spectrophotometric method

    Directory of Open Access Journals (Sweden)

    Batukhan Tatykaev

    2013-05-01

    Full Text Available The paper presents  the results of the study on reduction  of  Cr2O72-   to   Cr3 +  by aqueous solution of calcium polysulfide  using spectrophotometric method. Concentrations  of Cr (VI were determined on the basis of the absorption spectrum at the wavelength range 350 - 372 nm. The change of the concentration of Cr (VI during on reduction by calcium polysulfide has been shown.  The influence of pH on the rate of reducing of Cr (VI to Cr (III was considered: the rate of reducing of hexavalent chromium decreases with increasing pH. The data obtained show that recycling Cr (VI in industrial scale potentially effective at  the pH = 5.

  6. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate.

    Science.gov (United States)

    Sarkar, Binoy; Naidu, Ravi; Krishnamurti, Gummuluru S R; Megharaj, Mallavarapu

    2013-01-01

    Unlike lower valent iron (Fe), the potential role of lower valent manganese (Mn) in the reduction of hexavalent chromium (Cr(VI)) in soil is poorly documented. In this study, we report that citrate along with Mn(II) and clay minerals (montmorillonite and kaolinite) reduce Cr(VI) both in aqueous phase and in the presence of dissolved organic carbon (SDOC) extracted from a forest soil. The reduction was favorable at acidic pH (up to pH 5) and followed the pseudo-first-order kinetic model. The citrate (10 mM) + Mn(II) (182.02 μM) + clay minerals (3% w/v) system in SDOC accounted for complete reduction of Cr(VI) (192.32 μM) in about 72 h at pH 4.9. In this system, citrate was the reductant, Mn(II) was a catalyst, and the clay minerals acted as an accelerator for both the reductant and catalyst. The clay minerals also serve as a sink for Cr(III). This study reveals the underlying mechanism of the Mn(II)-induced reduction of Cr(VI) by organic ligand in the presence of clay minerals under certain environmental conditions.

  7. Reduction of Health Risks Due to Chromium(VI)Using Mesquite: A Potential Cr Phytoremediator

    Energy Technology Data Exchange (ETDEWEB)

    Gardea-Torresdey, Jorge L.; Aldrich, Mary V.; Peralta-Videa, Jose R.; Parsons, Jason G.

    2004-03-29

    Chromium is a transition metal extensively used in industry. Cr mining and industrial operations account for chromium wastes at Superfund sites in the United States. A study was performed to investigate the possibility of using mesquite (Prosopis spp.), which is an indigenous desert plant species, to remove Cr from contaminated sites. In this study, mesquite plants were grown in an agar-based medium containing 75 mg L-1 and 125 mg L-1 of Cr(VI). The Cr content of leaf tissue (992 mg kg-1 of dry weight, from 125 mg L-1 of Cr(VI)) indicated that mesquite could be classified as a chromium hyperaccumulator. X-ray absorption spectroscopy (XAS) studies performed to experimental samples showed that mesquite roots absorbed some of the supplied Cr(VI). However, the data analyses of plant tissues demonstrated that the absorbed Cr(VI) was fully reduced to Cr(III) in the leaf tissue.

  8. Heterogeneous kinetics of the reduction of chromium (VI) by elemental iron

    International Nuclear Information System (INIS)

    Zero valent iron (ZVI) has been extensively used as a reactive medium for the reduction of Cr(VI) to Cr(III) in reactive permeable barriers. The kinetic rate depends strongly on the superficial oxidation of the iron particles used and the preliminary washing of ZVI increases the rate. The reaction has been primarily modelled using a pseudo-first-order kinetics which is inappropriate for a heterogeneous reaction. We assumed a shrinking particle type model where the kinetic rate is proportional to the available iron surface area, to the initial volume of solution and to the chromium concentration raised to a power α which is the order of the chemical reaction occurring at surface. We assumed α = 2/3 based on the likeness to the shrinking particle models with spherical symmetry. Kinetics studies were performed in order to evaluate the suitability of this approach. The influence of the following parameters was experimentally studied: initial available surface area, chromium concentration, temperature and pH. The assumed order for the reaction was confirmed. In addition, the rate constant was calculated from data obtained in different operating conditions. Digital pictures of iron balls were periodically taken and the image treatment allowed for establishing the time evolution of their size distribution.

  9. Chromium(VI) reduction by ascorbate: role of reactive intermediates in DNA damage in vitro.

    OpenAIRE

    Stearns, D M; Courtney, K D; Giangrande, P H; Phieffer, L S; Wetterhahn, K E

    1994-01-01

    Reaction of chromium(VI) with one equivalent of ascorbate was studied by electron paramagnetic resonance spectroscopy in the presence of 0.10 M 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) at room temperature in 0.10 M (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]) (HEPES) and 0.05 M tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl) buffers (pH 7.0 room temperature). Chromium(V), ascorbyl radical, and carbon-based DMPO-radical adducts were observed. A higher level of Cr(V) was ob...

  10. Reductive activation with cysteine represents a chromium(III)-dependent pathway in the induction of genotoxicity by carcinogenic chromium(VI).

    Science.gov (United States)

    Zhitkovich, Anatoly; Quievryn, George; Messer, Joseph; Motylevich, Zhanna

    2002-10-01

    Induction of DNA damage by carcinogenic hexavalent chromium compounds [Cr(VI)] results from its reduction to lower oxidation states. Reductive metabolism of Cr(VI) generates intermediate Cr(V/IV)species, organic radicals, and finally Cr(III), which forms stable complexes with many biological ligands, including DNA. To determine the biological significance of different reaction products, we examined genotoxic responses and the formation of DNA damage during reduction of Cr(VI) by its biological reducer, cysteine. We have found that cysteine-dependent activation of Cr(VI) led to the formation of Cr-DNA and cysteine-Cr-DNA adducts as well as interstrand DNA cross-links. The yield of binary and ternary DNA adducts was relatively constant at different concentrations of Cr(VI) and averaged approximately 54 and 45%, respectively. Interstrand DNA cross-links accounted on average for 1% of adducts, and their yield was even less significant at low Cr(VI) concentrations. Reduction of Cr(VI) in several commonly used buffers did not induce detectable damage to the sugar-phosphate backbone of DNA. Replication of Cr(VI)-modified plasmids in intact human fibroblasts has shown that cysteine-dependent metabolism of Cr(VI) resulted in the formation of mutagenic and replication-blocking DNA lesions. Selective elimination of Cr-DNA adducts from Cr(VI)-treated plasmids abolished all genotoxic responses, indicating that nonoxidative, Cr(III)-dependent reactions were responsible for the induction of both mutagenicity and replication blockage by Cr(VI). The demonstration of the mutagenic potential of Cr-DNA adducts suggests that these lesions can be explored in the development of specific and mechanistically important biomarkers of exposure to toxic forms of Cr.

  11. Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes

    International Nuclear Information System (INIS)

    Highlights: ► Chromium(VI) reduction and EDTA oxidization were conducted by photoelectrocatalysis. ► Apply the concept of cationic exchange membrane to enhance the conversion efficiency. ► The optimum TiO2 loading of 1 g/L was observed at acidic pH with current density 4 mA/cm2. ► Transformation pathway of EDTA was determined from analyzed byproducts and molecular orbital package analysis. -- Abstract: A novel technology of photoelectrocatalysis (PEC) combining with cationic exchange membrane (CEM) was proposed for simultaneous reduction of chromium(VI) and oxidization of EDTA. The application of CEM was used to enhance the efficiency for prevention of the re-oxidation of reduced chromium with the electron–hole pairs. In this study, effects of current density, pH, TiO2 dosage, hydraulic retention time (HRT), light intensity and EDTA/Cr(VI) molar ratio were all investigated. The results showed that the optimum conversion efficiency occurred at 4 mA/cm2 with the presence of CEM. Higher conversion efficiencies were observed at lower pH due to the electrostatic attractions between positive charged Ti-OH2+, and negatively charged Cr(VI) and EDTA. The optimum TiO2 loading of 1 g/L was depended mainly on the acidic pH range, especially at higher HRT and irradiation intensity. In addition, higher EDTA/Cr(VI) molar ratio enhanced the reduction efficiency of Cr(VI), indicating EDTA plays the role of hole scavenger in this system. Moreover, incomplete EDTA decomposition contributes to the occurrence of intermediates, including nitrilotriacetic acid, iminodiacetic acid, glycine, oxamic acid, lyoxylic acid, oxalic acid, acetic acid and formic acid, as identified by GC/MS. Consequently, transformation pathway was determined from these analyzed byproducts and molecular orbital package analysis

  12. Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hung-Te, E-mail: der11065@hotmail.com [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China); Chen, Shiao-Shing, E-mail: f10919@ntut.edu.tw [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China); Tang, Yi-Fang, E-mail: sweet39005@hotmail.com [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China); Hsi, Hsing-Cheng, E-mail: hchsi@ntut.edu.tw [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China)

    2013-03-15

    Highlights: ► Chromium(VI) reduction and EDTA oxidization were conducted by photoelectrocatalysis. ► Apply the concept of cationic exchange membrane to enhance the conversion efficiency. ► The optimum TiO{sub 2} loading of 1 g/L was observed at acidic pH with current density 4 mA/cm{sup 2}. ► Transformation pathway of EDTA was determined from analyzed byproducts and molecular orbital package analysis. -- Abstract: A novel technology of photoelectrocatalysis (PEC) combining with cationic exchange membrane (CEM) was proposed for simultaneous reduction of chromium(VI) and oxidization of EDTA. The application of CEM was used to enhance the efficiency for prevention of the re-oxidation of reduced chromium with the electron–hole pairs. In this study, effects of current density, pH, TiO{sub 2} dosage, hydraulic retention time (HRT), light intensity and EDTA/Cr(VI) molar ratio were all investigated. The results showed that the optimum conversion efficiency occurred at 4 mA/cm{sup 2} with the presence of CEM. Higher conversion efficiencies were observed at lower pH due to the electrostatic attractions between positive charged Ti-OH{sub 2}{sup +}, and negatively charged Cr(VI) and EDTA. The optimum TiO{sub 2} loading of 1 g/L was depended mainly on the acidic pH range, especially at higher HRT and irradiation intensity. In addition, higher EDTA/Cr(VI) molar ratio enhanced the reduction efficiency of Cr(VI), indicating EDTA plays the role of hole scavenger in this system. Moreover, incomplete EDTA decomposition contributes to the occurrence of intermediates, including nitrilotriacetic acid, iminodiacetic acid, glycine, oxamic acid, lyoxylic acid, oxalic acid, acetic acid and formic acid, as identified by GC/MS. Consequently, transformation pathway was determined from these analyzed byproducts and molecular orbital package analysis.

  13. Simultaneous Reduction of Vanadium (V) and Chromium (VI) in Wastewater by Nanosized ZnWO4 Photocatalysis.

    Science.gov (United States)

    Zhao, Zengying; Zhang, Baogang; Chen, Daimei; Guo, Zhanhu; Peng, Zhijian

    2016-03-01

    Vanadium (V, V) and chromium (Cr, VI) are simultaneously photocatalytically reduced to less-toxic V(VI) and Cr(III) by mimetic solar light with ZnWO4 nanoparticles prepared by hydrothermal synthesis. The reduction efficiencies can reach 68.8% for V(V) and 97.3% for Cr(VI) in 3 h, respectively, which are comparable to those by microbial fuel cell technology carried out in over 10 days. The prepared ZnWO4 nanoparticles are characterized by XRD, SEM, EDS, TEM, and Uv-vis-DRS tests. Electrochemical calculation shows high acidity benefits the rapid reduction of V(V) and Cr(VI). In addition, the applied ZnWO4 nanoparticles can be recycled and reused for 5 repeated photocatalytic reduction runs. And after 5 runs, the recycled ZnWO4 nanoparticles can also present good photocatalytic activity with a reduction efficiency of about 60% for V(V) and 90% for Cr(VI). The new procedure on the simultaneous reduction of V(V) and Cr(VI) by photocatalysis may be promisingly applied in contaminated wastewaters, combining the remediation and possible V and Cr recovery.

  14. Chromium isotope variation along a contaminated groundwater plume: a coupled Cr(VI)- reduction, advective mixing perspective

    Science.gov (United States)

    Bullen, T.; Izbicki, J.

    2007-12-01

    Chromium (Cr) is a common contaminant in groundwater, used in electroplating, leather tanning, wood preservation, and as an anti-corrosion agent. Cr occurs in two oxidation states in groundwater: Cr(VI) is highly soluble and mobile, and is a carcinogen; Cr(III) is generally insoluble, immobile and less toxic than Cr(VI). Reduction of Cr(VI) to Cr(III) is thus a central issue in approaches to Cr(VI) contaminant remediation in aquifers. Aqueous Cr(VI) occurs mainly as the chromate (CrO22-) and bichromate (HCrO2-) oxyanions, while Cr(III) is mainly "hexaquo" Cr(H2O)63+. Cr has four naturally-occurring stable isotopes: 50Cr, 52Cr, 53Cr and 54Cr. When Cr(VI) is reduced to Cr(III), the strong Cr-O bond must be broken, resulting in isotopic selection. Ellis et al. (2002) demonstrated that for reduction of Cr(VI) on magnetite and in natural sediment slurries, the change of isotopic composition of the remnant Cr(VI) pool was described by a Rayleigh fractionation model having fractionation factor ɛCr(VI)-Cr(III) = 3.4‰. We attempted to use Cr isotopes as a monitor of Cr(VI) reduction at a field site in Hinkley, California (USA) where groundwater contaminated with Cr(VI) has been under assessment for remediation. Groundwater containing up to 5 ppm Cr(VI) has migrated down-gradient from the contamination source through the fluvial to alluvial sediments to form a well-defined plume. Uncontaminated groundwater in the aquifer immediately adjacent to the plume has naturally-occurring Cr(VI) of 4 ppb or less (CH2M-Hill). In early 2006, colleagues from CH2M-Hill collected 17 samples of groundwater from within and adjacent to the plume. On a plot of δ53Cr vs. log Cr(VI), the data array is strikingly linear and differs markedly from the trend predicted for reduction of Cr(VI) in the contaminated water. There appear to be two groups of data: four samples with δ53Cr >+2‰ and Cr(VI) 15 ppb. Simple mixing lines between the groundwater samples having <4 ppb Cr(VI), taken to be

  15. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations.

    Science.gov (United States)

    Gheju, M; Balcu, I

    2011-11-30

    This work presents investigations on the total removal of chromium from Cr(VI) aqueous solutions by reduction with scrap iron and subsequent precipitation of the resulted cations with NaOH. The process was detrimentally affected by a compactly passivation film occurred at scrap iron surface, mainly composed of Cr(III) and Fe(III). Maximum removal efficiency of the Cr(total) and Fe(total) achieved in the clarifier under circumneutral and alkaline (pH 9.1) conditions was 98.5% and 100%, respectively. The optimum precipitation pH range which resulted from this study is 7.6-8.0. Fe(total) and Cr(total) were almost entirely removed in the clarifier as Fe(III) and Cr(III) species; however, after Cr(VI) breakthrough in column effluent, chromium was partially removed in the clarifier also as Cr(VI), by coprecipitation with cationic species. As long the column effluent was free of Cr(VI), the average Cr(total) removal efficiency of the packed column and clarifier was 10.8% and 78.8%, respectively. Our results clearly indicated that Cr(VI) contaminated wastewater can be successfully treated by combining reduction with scrap iron and chemical precipitation with NaOH.

  16. Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes.

    Science.gov (United States)

    Hsu, Hung-Te; Chen, Shiao-Shing; Tang, Yi-Fang; Hsi, Hsing-Cheng

    2013-03-15

    A novel technology of photoelectrocatalysis (PEC) combining with cationic exchange membrane (CEM) was proposed for simultaneous reduction of chromium(VI) and oxidization of EDTA. The application of CEM was used to enhance the efficiency for prevention of the re-oxidation of reduced chromium with the electron-hole pairs. In this study, effects of current density, pH, TiO2 dosage, hydraulic retention time (HRT), light intensity and EDTA/Cr(VI) molar ratio were all investigated. The results showed that the optimum conversion efficiency occurred at 4mA/cm(2) with the presence of CEM. Higher conversion efficiencies were observed at lower pH due to the electrostatic attractions between positive charged TiOH2(+), and negatively charged Cr(VI) and EDTA. The optimum TiO2 loading of 1g/L was depended mainly on the acidic pH range, especially at higher HRT and irradiation intensity. In addition, higher EDTA/Cr(VI) molar ratio enhanced the reduction efficiency of Cr(VI), indicating EDTA plays the role of hole scavenger in this system. Moreover, incomplete EDTA decomposition contributes to the occurrence of intermediates, including nitrilotriacetic acid, iminodiacetic acid, glycine, oxamic acid, lyoxylic acid, oxalic acid, acetic acid and formic acid, as identified by GC/MS. Consequently, transformation pathway was determined from these analyzed byproducts and molecular orbital package analysis. PMID:23380448

  17. Influence of soil minerals on chromium(VI reduction by sulfide under anoxic conditions

    Directory of Open Access Journals (Sweden)

    Kim Chulsung

    2007-04-01

    Full Text Available Abstract The effects of soil minerals on chromate (CrVIO42-, noted as Cr(VI reduction by sulfide were investigated in the pH range of 7.67 to 9.07 under the anoxic condition. The examined minerals included montmorillonite (Swy-2, illite (IMt-2, kaolinite (KGa-2, aluminum oxide (γ-Al2O3, titanium oxide (TiO2, P-25, primarily anatase, and silica (SiO2. Based on their effects on Cr(VI reduction, these minerals were categorized into three groups: (i minerals catalyzing Cr(VI reduction – illite; (ii minerals with no effect – Al2O3; and (iii minerals inhibiting Cr(VI reduction- kaolinite, montmorillonite, SiO2 and TiO2 . The catalysis of illite was attributed primarily to the low concentration of iron solubilized from the mineral, which could accelerate Cr(VI reduction by shuttling electrons from sulfide to Cr(VI. Additionally, elemental sulfur produced as the primary product of sulfide oxidation could further catalyze Cr(VI reduction in the heterogeneous system. Previous studies have shown that adsorption of sulfide onto elemental sulfur nanoparticles could greatly increase sulfide reactivity towards Cr(VI reduction. Consequently, the observed rate constant, kobs, increased with increasing amounts of both iron solubilized from illite and elemental sulfur produced during the reaction. The catalysis of iron, however, was found to be blocked by phenanthroline, a strong complexing agent for ferrous iron. In this case, the overall reaction rate at the initial stage of reaction was pseudo first order with respect to Cr(VI, i.e., the reaction kinetics was similar to that in the homogeneous system, because elemental sulfur exerted no effect at the initial stage prior to accumulation of elemental sulfur nanoparticles. In the suspension of kaolinite, which belonged to group (iii, an inhibitive effect to Cr(VI reduction was observed and subsequently examined in more details. The inhibition was due to the sorption of elemental sulfur onto kaolinite, which

  18. Reduction of Chromium(VI) by Locally Isolated Pseudomonas sp. C-171

    OpenAIRE

    Rahman, Mujeeb Ur; GUL, Shereen; HAQ, Mohammad Zahoor UL

    2007-01-01

    A strain of Pseudomonas sp. C-171 capable of tolerating hexavalent chromium (Cr+6) up to 2000 ppm as potassium dichromate was isolated from domestic sewage. The Cr+6 reduction was checked by growing the isolated strain in a medium containing potassium dichromate as Cr+6 source. The rate of growth of Pseudomonas sp. C-171 decreased with the increase in Cr+6 concentration of the medium. The maximum rate of chromium reduction was observed during the log phase of bacterium growth. The reduction o...

  19. [Reduction Kinetics of Cr (VI) in Chromium Contaminated Soil by Nanoscale Zerovalent Iron-copper Bimetallic].

    Science.gov (United States)

    Ma, Shao-yun; Zhu, Fang; Shang, Zhi-feng

    2016-05-15

    Nanoscale zerovalent iron-copper bimetallic (nZVI/Cu) was produced by liquid-phase reduction and characterized by SEM and XRD. The remediation of Cr (VI) contaminated soil was conducted with nZVI/Cu, and the affecting factors and reduction kinetics were investigated. The results indicated that nZVI/Cu was effective in the degradation of Cr(VI) in soil at an initial pH of 7 at 30'C.After 10 min of reaction, Cr(VI) in the soil was completely degraded when the. concentration of nZVI/Cu was 2 g · L⁻' and the concentration of Cr(VI) in contaminated soil was 88 mg · kg⁻¹. nZVI/Cu amount, pH value, reaction temperature, and the concentration of humic acid affected the degradation of Cr(VI). The removal efficiency of Cr(VI)--increased with increasing reaction temperature and decreased with increasing initial pH value. Humic acid had a certain impact on the degradation of Cr(W) in soil. The removal of Cr (VI) followed the pseudo first order reduction kinetics model, and the relationship between the reduction rate and the reaction temperature accorded with Arrhenius law, and the reaction activation energy (Ea) was 104.26 kJ · mol⁻¹. PMID:27506053

  20. Chromium(VI) reduction by catechol(amine)s results in DNA cleavage in vitro

    DEFF Research Database (Denmark)

    Pattison, D I; Davies, Michael Jonathan; Levina, A;

    2001-01-01

    Catechols are found extensively in nature both as essential biomolecules and as the byproducts of normal oxidative damage of amino acids and proteins. They are also present in cigarette smoke and other atmospheric pollutants. Here, the interactions of reactive species generated in Cr(VI)/catechol......(amine) mixtures with plasmid DNA have been investigated to model a potential route to Cr(VI)-induced genotoxicity. Reduction of Cr(VI) by 3,4-dihydroxyphenylalanine (DOPA) (1), dopamine (2), or adrenaline (3) produces species that cause extensive DNA damage, but the products of similar reactions with catechol (4......) or 4-tert-butylcatechol (5) do not damage DNA. The Cr(VI)/catechol(amine) reactions have been studied at low added H(2)O(2) concentrations, which lead to enhanced DNA cleavage with 1 and induce DNA cleavage with 4. The Cr(V) and organic intermediates generated by the reactions of Cr(VI) with 1 or 4...

  1. Polyacrylonitrile/manganese acetate composite nanofibers and their catalysis performance on chromium (VI) reduction by oxalic acid.

    Science.gov (United States)

    Zhang, Chengcheng; Li, Xiang; Bian, Xiujie; Zheng, Tian; Wang, Ce

    2012-08-30

    Polyacrylonitrile(PAN)/manganese acetate(Mn(CH(3)COO)(2)) composite nanofibers have been fabricated by electrospinning, a simple and effective technology. The obtained composite nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The composite nanofibers are amorphous in structure, continuous, even and smooth. At the same time, the reduction performance of Cr(VI) by oxalic acid in the presence of the composite nanofibers is also investigated. The results indicate that the composite nanofibers have exhibited excellent catalysis performance for Cr(VI) reduction from a Cr(2)O(7)(2-)-containing solution by oxalic acid. And the critical parameters, such as the catalyst dosage, oxalic acid content, chromium concentration, the pH value of the reaction solution and light have important impact on the reduction process. Under the simulated solar light irradiation, after only 60 min, 1.2mM initial Cr(VI) solution was reduced absolutely in the presence of PAN/Mn(CH(3)COO)(2) composite nanofibers containing 17.5 wt.% Mn(CH(3)COO)(2) by 0.3 mL 0.5M oxalic acid. In light, the reduction of Cr(VI) by oxalic acid is markedly accelerated. PMID:22709851

  2. Polyacrylonitrile/manganese acetate composite nanofibers and their catalysis performance on chromium (VI) reduction by oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chengcheng [Jilin University Alan G MacDiarmid Institute, Changchun 130012 (China); Li, Xiang, E-mail: xiangli@jlu.edu.cn [Jilin University Alan G MacDiarmid Institute, Changchun 130012 (China); Bian, Xiujie; Zheng, Tian [Jilin University Alan G MacDiarmid Institute, Changchun 130012 (China); Wang, Ce, E-mail: cwang@jlu.edu.cn [Jilin University Alan G MacDiarmid Institute, Changchun 130012 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer We have successfully prepared PAN/Mn(CH{sub 3}COO){sub 2} composite nanofibers. Black-Right-Pointing-Pointer The nanofibers exhibit excellent catalysis performance for Cr(VI) reduction. Black-Right-Pointing-Pointer The nanofibers are effective and environment-friendly materials to remove Cr(VI). - Abstract: Polyacrylonitrile(PAN)/manganese acetate(Mn(CH{sub 3}COO){sub 2}) composite nanofibers have been fabricated by electrospinning, a simple and effective technology. The obtained composite nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The composite nanofibers are amorphous in structure, continuous, even and smooth. At the same time, the reduction performance of Cr(VI) by oxalic acid in the presence of the composite nanofibers is also investigated. The results indicate that the composite nanofibers have exhibited excellent catalysis performance for Cr(VI) reduction from a Cr{sub 2}O{sub 7}{sup 2-}-containing solution by oxalic acid. And the critical parameters, such as the catalyst dosage, oxalic acid content, chromium concentration, the pH value of the reaction solution and light have important impact on the reduction process. Under the simulated solar light irradiation, after only 60 min, 1.2 mM initial Cr(VI) solution was reduced absolutely in the presence of PAN/Mn(CH{sub 3}COO){sub 2} composite nanofibers containing 17.5 wt.% Mn(CH{sub 3}COO){sub 2} by 0.3 mL 0.5 M oxalic acid. In light, the reduction of Cr(VI) by oxalic acid is markedly accelerated.

  3. Elucidating the Molecular Basis and Regulation of Chromium (VI) Reduction by Shewanella oneidensis MR-1 Using Biochemical, Genomic, and Proteomic Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Hettich, Robert L.

    2006-10-30

    Although microbial metal reduction has been investigated intensively from physiological and biochemical perspectives, little is known about the genetic basis and regulatory mechanisms underlying the ability of certain bacteria to transform, detoxify, or immobilize a wide array of heavy metals contaminating DOE-relevant environments. The major goal of this work is to elucidate the molecular components comprising the chromium(VI) response pathway, with an emphasis on components involved in Cr(VI) detoxification and the enzyme complex catalyzing the terminal step in Cr(VI) reduction by Shewanella oneidensis MR-1. We have identified and characterized (in the case of DNA-binding response regulator [SO2426] and a putative azoreductase [SO3585]) the genes and gene products involved in the molecular response of MR-1 to chromium(VI) stress using whole-genome sequence information for MR-1 and recently developed proteomic technology, in particular liquid chromatographymass spectrometry (LC-MS), in conjunction with conventional protein purification and characterization techniques. The proteome datasets were integrated with information from whole-genome expression arrays for S. oneidensis MR-1 (as illustrated in Figure 1). The genes and their encoded products identified in this study are of value in understanding metal reduction and bacterial resistance to metal toxicity and in developing effective metal immobilization strategies.

  4. Chromium(III) and chromium(VI) surface treated galvanized steel for outdoor constructions: environmental aspects.

    Science.gov (United States)

    Lindström, David; Hedberg, Yolanda; Odnevall Wallinder, Inger

    2010-06-01

    The long-term degradation of chromium(III) (Zn-Cr(III)) and chromium(VI)-based (Zn-Cr(VI)) surface treatments on galvanized steel and their capacities to hinder the release of zinc induced by atmospheric corrosion at nonsheltered urban and marine exposure conditions for 2 years are investigated. Compared to bare zinc sheet, both surface treatments revealed high corrosion protection abilities and capacities to hinder the release of zinc, still evident after 2 years of exposure. The zinc barrier properties of the thinner Zn-Cr(VI) (10 nm) treatment were during the first 100 days of urban exposure slightly improved compared with Zn-Cr(III) (35 nm). However, their long-term protection capacities were inverse. Released concentrations of total chromium correspond to annual release rates less than 0.000032 (Zn-Cr(III)) and 0.00014 g Cr m(-2) yr(-1) (Zn-Cr(VI)) after 1 year of urban exposure. Aging by indoor storage of the surface treatments prior to outdoor exposure reduced the released Cr concentrations from the surface treatments. No Cr(VI) was released from the aged surfaces but from the freshly exposed Zn-Cr(VI). Marine exposure conditions resulted in a faster reduction of chromate to chromium(III)oxide compared with urban conditions, and a significantly lower amount of both chromium(III) and chromium(VI) released from Zn-Cr(VI) at the marine site compared with the urban site. PMID:20462267

  5. Biosorption potency of Aspergillus niger for removal of chromium (VI).

    Science.gov (United States)

    Srivastava, Shaili; Thakur, Indu Shekhar

    2006-09-01

    Aspergillus niger isolated from soil and effluent of leather tanning mills had higher activity to remove chromium. The potency of Aspergillus niger was evaluated in shake flask culture by absorption of chromium at pH 6 and temperature 30 degrees C. The results of the study indicated removal of more than 75% chromium by Aspergillus niger determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometry after 7 days. Study of microbial Cr(VI) reduction and identification of reduction intermediates has been hindered by the lack of analytical techniques that can identify the oxidation state with subcellular spatial resolution. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), which indicated an accumulation of chromium in the fungal mycelium. PMID:16874547

  6. Chromium(III) -- chromium(VI) interconversions in seawater

    NARCIS (Netherlands)

    Weijden, C.H. van der; Reith, M.

    1982-01-01

    The stable form of dissolved chromium in oxygenated seawater is Cr(VI). But Cr(III)-species are also present at an analytically significant level. It is shown that Cr(III) is oxidized only slowly by dissolved oxygen, and that manganese oxide is a strong catalyst for such oxidation. However, the low

  7. 29 CFR 1910.1026 - Chromium (VI).

    Science.gov (United States)

    2010-07-01

    ... Enhancements In Lieu of LEV Retrofitting • Eductors. Many chemical baths are currently mixed via air agitation... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide...

  8. Reduction of Hexavalent Chromium by Viable Cells of Chromium Resistant Bacteria Isolated from Chromite Mining Environment

    OpenAIRE

    Satarupa Dey; Baishali Pandit; A. K. Paul

    2014-01-01

    Environmental contamination of hexavalent chromium [Cr(VI)] is of serious concern for its toxicity as well as mutagenic and carcinogenic effects. Bacterial chromate reduction is a cost-effective technology for detoxification as well as removal of Cr(VI) from polluted environment. Chromium resistant and reducing bacteria, belonging to Arthrobacter, Pseudomonas, and Corynebacterium isolated from chromite mine overburden and seepage samples of Orissa, India, were found to tolerate 12–18 mM Cr(VI...

  9. Thermal stabilization of chromium(VI) in kaolin.

    Science.gov (United States)

    Wei, Yu-Ling; Chiu, Shu-Yuan; Tsai, Hsien-Neng; Yang, Yaw-Wen; Lee, Jyh-Fu

    2002-11-01

    Reduction of Cr(VI) by heating may be a useful detoxification mechanism for thermal immobilization. Using X-ray absorption spectroscopy, the change of speciation of chromium in 105 degrees C dried 3.7% Cr(VI)-sorbed kaolin further heated at 500, 900, or 1100 degrees C was studied. The 105 degrees C dried 3.7% Cr(VI)-sorbed kaolin sample was prepared by mixing 1.5 L of 0.257 M CrO3 solution (pH 0.71) with 0.5 kg of kaolin powder for 48 h, and then the slurry was heated (dried) at 105 degrees C until a constant weight was reached. The toxicity characteristic leaching procedure method was used to determine the percentage of leached chromium from all heated samples. In all 500-900 degrees C heated Cr(VI)-sorbed kaolin samples, Cr2O3 transformed from the hydrated Cr(VI) by a 4-h heat application was identified by the X-ray absorption near edge structure and extended X-ray absorption fine structure (EXAFS) spectroscopy as the key species that is leaching-resistant due to its low solubility. For the 1100 degrees C heated Cr(VI)-sorbed kaolin sample, the Fourier transform of its EXAFS spectrum indicates that the intensity of the peaks at 2.45 (Cr-Cr shell of Cr2O3) and 5.00 A (Cr-Cr and Cr-O shells of Cr2O3) without phase shift correction is either relatively smaller or disappearing, compared with that of the 500-900 degrees C heated Cr(VI)-sorbed kaolin samples. It is suggested that chromium octahedra were bridged to silica tetrahedra and incorporated in minerals formed at 1100 degrees C, such as mullite or sillimanite, since these phases were detected by XRD. Cr of this form is not easily leached. PMID:12433175

  10. Selective reduction of Cr(VI) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 photocatalysis.

    Science.gov (United States)

    Zheng, Shan; Jiang, Wenjun; Rashid, Mamun; Cai, Yong; Dionysiou, Dionysios D; O'Shea, Kevin E

    2015-02-03

    The highly toxic Cr(VI) is a critical component in the Chromated Copper Arsenate (CCA) formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI) to less toxic Cr(III) in the presence of arsenate, As(V), and copper, Cu(II). The rapid conversion of Cr(VI) to Cr(III) during UV/TiO2 photocatalysis occurs over a range of concentrations, solution pH and at different Cr:As:Cu ratios. The reduction follows pseudo-first order kinetics and increases with decreasing solution pH. Saturation of the reaction solution with argon during UV/TiO2 photocatalysis had no significant effect on the Cr(VI) reduction demonstrating the reduction of Cr(VI) is independent of dissolved oxygen. Reduction of Cu(II) and As(V) does not occur under the photocatalytic conditions employed herein and the presence of these two in the tertiary mixtures had a minimal effect on Cr(VI) reduction. The Cr(VI) reduction was however, significantly enhanced by the addition of formic acid, which can act as a hole scavenger and enhance the reduction processes initiated by the conduction band electron. Our results demonstrate UV/TiO2 photocatalysis effectively reduces Cr(VI) in mixed waste streams under a variety of conditions.

  11. Simultaneous determination of chromium(III) and chromium(VI) in aqueous solutions by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jøns, O; Nielsen, B

    1992-01-01

    A method for the simultaneous determination of chromium(iii) and chromium(vi) in a flow system based on chemiluminescence was developed. A Dionex cation-exchange guard column was used to separate chromium(iii) from chromium(vi), and chromium(vi) was reduced by potassium sulfite, whereupon both sp...

  12. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag

    International Nuclear Information System (INIS)

    Hexavalent chromium (Cr) is a toxic element causing serious environmental threat. Recently, more and more attention is paid to the bio-remediation of Cr (VI) in the contaminated soils. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag at a steel-alloy factory in Hunan Province, China, was investigated in the present study. The results showed that when sufficient nutrients were amended into the contaminated soils, total Cr (VI) concentration declined from the initial value of 462.8 to 10 mg kg-1 at 10 days and the removal rate was 97.8%. Water soluble Cr (VI) decreased from the initial concentration of 383.8 to 1.7 mg kg-1. Exchangeable Cr (VI) and carbonates-bound Cr (VI) were removed by 92.6% and 82.4%, respectively. Meanwhile, four Cr (VI) resistant bacterial strains were isolated from the soil under the chromium-containing slag. Only one strain showed a high ability for Cr (VI) reduction in liquid culture. This strain was identified as Pannonibacter phragmitetus sp. by gene sequencing of 16S rRNA. X-ray photoelectron spectroscope (XPS) analysis indicated that Cr (VI) was reduced into trivalent chromium. The results suggest that indigenous bacterial strains have potential application for Cr (VI) remediation in the soils contaminated by chromium-containing slag.

  13. Effects of Chromium(VI) and Chromium(III) on Desulfovibrio vulgaris Cells

    Energy Technology Data Exchange (ETDEWEB)

    M.E. Clark; A. Klonowska; S.B. Thieman; B. Giles; J.D. Wall; and M.W. Fields

    2007-04-19

    Desulfovibrio vulgaris ATCC 29579 is a well studied sulfate reducer that has known capabilities of reducing heavy metals and radionuclides, like chromium and uranium. Cultures grown in a defined medium (i.e. LS4D) had a lag period of approximately 40 h when exposed to 50 μMof Cr(VI). Substrate analysis revealed that although chromium is reduced within the first 5 h, growth does not resume for another 35 h. During this time, small amounts of lactate are still utilized but the reduction of sulfate does not occur. Sulfate reduction occurs concurrently with the accumulation of acetate approximately 40 h after inoculation, when growth resumes. Similar amounts of hydrogen are produced during this time compared to hydrogen production by cells not exposed to Cr(VI); therefore an accumulation of hydrogen cannot account for the utilization of lactate. There is a significant decrease in the carbohydrate to protein ratio at approximately 25 h, and this result indicated that lactate is not converted to glycogen. Most probable number analysis indicated that cell viability decreased steadily after inoculation and reached approximately 6 x 104 cells/ml 20 h post-chromium exposure. Regeneration of reducing conditions during chromium exposure does not induce growth and in fact may make the growth conditions even more unfavorable. This result suggested that an increase in Eh was not solely responsible for the decline in viability. Cell pellets collected 10 h after chromium-exposure were unable to resume growth when suspended into fresh medium. Supernatants from these pellets were able to support cell growth upon re- inoculation. D. vulgaris cells treated with a non-dose dependent addition of ascorbate at the same time of Cr(VI) addition did not enter a lag period. Ascorbate added 3 h post-Cr(VI) exposure did not prevent the growth lag. These results indicated that Desulfovibrio utilized lactate to reduce Cr(VI) without the reduction of sulfate, that the decline in cell viability and

  14. Chromium reduction in Pseudomonas putida.

    OpenAIRE

    Ishibashi, Y.; Cervantes, C; Silver, S

    1990-01-01

    Reduction of hexavalent chromium (chromate) to less-toxic trivalent chromium was studied by using cell suspensions and cell-free supernatant fluids from Pseudomonas putida PRS2000. Chromate reductase activity was associated with soluble protein and not with the membrane fraction. The crude enzyme activity was heat labile and showed a Km of 40 microM CrO4(2-). Neither sulfate nor nitrate affected chromate reduction either in vitro or with intact cells.

  15. Treatment of hexavalent chromium Cr (VI) in tanning effluent

    International Nuclear Information System (INIS)

    Most common chemical used in chrome tanning is basic chromium sulphate (BCS). Manufacturing of BCS involves many steps producing liquid waste. Waste generated at every stage contains Cr (VI), which must be reduced to Cr (III) before being disposed to the environment. Different methods were studied for the reduction of toxic Cr (III). Pickle liquor (waste of electroplating industry) can also be used for the reduction of hexavalent chromium Cr (vi) along with other reducing materials / chemicals. In an electroplating process metal is treated with HCl or H/sub 2/SO/sub 4/ to remove scales and rust, the pickled items are then washed with water, washing contains FeCl/sub 2/ or fees/sub 4/ respectively called pickle liquor. During waste treatment pH adjustment to 6.0 - 9.0 and settling the sludge, is discharged to the lagoon. The sludge obtained is dried and disposed off in landfills. Other reducing agents like sodium bisulphite and sulfur dioxide were also studied, but pickle liquor was found to be more effective and economical. (author)

  16. Biosorption of Chromium (VI) from Aqueous Solutions onto Fungal Biomass

    OpenAIRE

    Ismael Acosta R.; Xöchitl Rodríguez; Conrado Gutiérrez; Ma. de Guadalupe Moctezuma

    2004-01-01

    The biosorption of chromium (VI) on eighteen different natural biosorbents: Natural sediment, chitosan, chitin, Aspergillus flavus I-V, Aspergillus fumigatus I-ll, Helmintosporium sp, Cladosporium sp, Mucor rouxii mutant, M. rouxii IM-80, Mucor sp-I and 2, Candida albicans and Cryptococcus neoformans was studied in this work. It was found that the biomass of C. neoformans, natural sediment, Helmintosporium sp and chitosan was more efficient to remove chromium (VI) (determined spectrophotometr...

  17. Anaerobic bio-removal of uranium (VI) and chromium (VI): Comparison of microbial community structure

    International Nuclear Information System (INIS)

    Several microbial communities, obtained from uranium contaminated and non-contaminated samples, were investigated for their ability to remove uranium (VI) and the cultures capable for this removal were further assessed on their efficiency for chromium (VI) removal. The highest efficiency for removal of both metals was observed on a consortium from a non-contaminated soil collected in Monchique thermal place, which was capable to remove 91% of 22 mg L-1 U(VI) and 99% of 13 mg L-1 Cr(VI). This study revealed that uranium (VI) removing communities have also ability to remove chromium (VI), but when uranium (VI) was replaced by chromium (VI) several differences in the structure of all bacterial communities were observed. TGGE and phylogenetic analysis of 16S rRNA gene showed that the uranium (VI) removing bacterial consortia are mainly composed by members of Rhodocyclaceae family and Clostridium genus. On the other hand, bacteria from Enterobacteriaceae family were detected in the community with ability for chromium (VI) removal. The existence of members of Enterobacteriaceae and Rhodocyclaceae families never reported as chromium or uranium removing bacteria, respectively, is also a relevant finding, encouraging the exploitation of microorganisms with new abilities that can be useful for bioremediation.

  18. Anaerobic bio-removal of uranium (VI) and chromium (VI): Comparison of microbial community structure

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Monica [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Faleiro, Maria Leonor [IBB - Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Chaves, Sandra; Tenreiro, Rogerio [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biodiversidade, Genomica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande 1749-016 Lisboa (Portugal); Santos, Erika [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, Maria Clara, E-mail: mcorada@ualg.pt [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-04-15

    Several microbial communities, obtained from uranium contaminated and non-contaminated samples, were investigated for their ability to remove uranium (VI) and the cultures capable for this removal were further assessed on their efficiency for chromium (VI) removal. The highest efficiency for removal of both metals was observed on a consortium from a non-contaminated soil collected in Monchique thermal place, which was capable to remove 91% of 22 mg L{sup -1} U(VI) and 99% of 13 mg L{sup -1} Cr(VI). This study revealed that uranium (VI) removing communities have also ability to remove chromium (VI), but when uranium (VI) was replaced by chromium (VI) several differences in the structure of all bacterial communities were observed. TGGE and phylogenetic analysis of 16S rRNA gene showed that the uranium (VI) removing bacterial consortia are mainly composed by members of Rhodocyclaceae family and Clostridium genus. On the other hand, bacteria from Enterobacteriaceae family were detected in the community with ability for chromium (VI) removal. The existence of members of Enterobacteriaceae and Rhodocyclaceae families never reported as chromium or uranium removing bacteria, respectively, is also a relevant finding, encouraging the exploitation of microorganisms with new abilities that can be useful for bioremediation.

  19. Reduction of hexavalent chromium by ferrous iron: A process of chromium isotope fractionation and its relevance to natural environments

    DEFF Research Database (Denmark)

    Døssing, Lasse Nørbye; Dideriksen, Knud; Stipp, Susan Louise Svane;

    2011-01-01

    Stable chromium (Cr) isotopes can be used as a tracer for changing redox conditions in modern marine systems and in the geological record. We have investigated isotope fractionation during reduction of Cr(VI)aq by Fe(II)aq. Reduction of Cr(VI)aq by Fe(II)aq in batch experiments leads to significant...

  20. Selective and sensitive detection of chromium(VI) in waters using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Weldy, Effie; Wolff, Chloe; Miao, Zhixin; Chen, Hao

    2013-09-01

    From 2000 through 2011, there were 14 criminal cases of violations of the Clean Water Act involving the discharge of chromium, a toxic heavy metal, into drinking and surface water sources. As chromium(VI), a potential carcinogen present in the environment, represents a significant safety concern, it is currently the subject of an EPA health risk assessment. Therefore, sensitive and selective detection of this species is highly desired. This study reports the analysis of chromium(VI) in water samples by electrospray ionization mass spectrometry (ESI-MS) following its reduction and complexation with ammonium pyrrolidinedithiocarbamate (APDC). The reduction and subsequent complexation produce a characteristic [Cr(III)O]-PDC complex which can be detected as a protonated ion of m/z 507 in the positive ion mode. The detection is selective to chromium(VI) under acidic pH, even in the presence of chromium(III) and other metal ions, providing high specificity. Different water samples were examined, including deionized, tap, and river waters, and sensitive detection was achieved. In the case of deionized water, quantification over the concentration range of 3.7 to 148ppb gave an excellent correlation coefficient of 0.9904 using the enhanced MS mode scan. Using the single-reaction monitoring (SRM) mode (monitoring the characteristic fragmentation of m/z 507 to m/z 360), the limit of detection (LOD) was found to be 0.25ppb. The LOD of chromium(VI) for both tap and river water samples was determined to be 2.0ppb. A preconcentration strategy using simple vacuum evaporation of the aqueous sample was shown to further improve the ESI signal by 15 fold. This method, with high sensitivity and selectivity, should provide a timely solution for the real-world analysis of toxic chromium(VI).

  1. Chemodynamics of chromium reduction in soils: Implications to bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Choppala, Girish [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia); Bolan, Nanthi, E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia); Seshadri, Balaji [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia)

    2013-10-15

    Highlights: • Examined the effects of sorption, pH and C sources on Cr(VI) reduction and toxicity. • The rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and pH. • The proton dynamics in Cr(VI) reduction was assessed in relation to remediation. • A novel black carbon showed the highest reduction rate of Cr(VI) in soils. • Black carbon decreased the bioavailability and phytotoxicity of Cr(VI) in soils. -- Abstract: Chromium toxicity in soils can be mitigated by reduction of Cr(VI) to Cr(III) which is influenced by the presence of free Cr(VI) species in soil solution, and the supply of protons and electrons. In this study, the effects of Cr(VI) adsorption (i.e. availability of free Cr(VI) species in soil solution), soil pH (i.e. supply of protons) and three electron donor carbon sources [black carbon (BC), chicken manure biochar (CMB) and cow manure (CM)] on the reduction of Cr(VI) to Cr(III) in soils were investigated. The results indicated that the rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and soil pH, which is attributed to decreased supply of free Cr(VI) ions and protons, respectively. Among the three different amendments tested, BC showed the highest rate of Cr(VI) reduction followed by CM and CMB. Furthermore, addition of BC, CM and CMB decreased the bioavailability of Cr(VI) in contaminated soils. The high efficiency of BC on Cr(VI) reduction was due to the electron donor's functional groups such as phenolic, hydroxyl, carbonyl and amides. The study demonstrated that free form of Cr(VI) ions in soil solution and carbon amendments enriched with acidic functional groups favored the reduction of Cr(VI), thereby mitigating its bioavailability and toxicity in contaminated soils.

  2. Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: iron dissolution and humic acid adsorption.

    Science.gov (United States)

    Liu, Tongzhou; Tsang, Daniel C W; Lo, Irene M C

    2008-03-15

    In zerovalent iron treatment systems, the presence of multiple solution components may impose combined effects that differ from corresponding individual effects. The copresence of humic acid and hardness (Ca2+/Mg2+) was found to influence Cr(VI) reduction by Feo and iron dissolution in a way different from their respective presence in batch kinetics experiments with synthetic groundwater at initial pH 6 and 9.5. Cr(VI) reduction rate constants (k(obs)) were slightly inhibited by humic acid adsorption on iron filings (decreases of 7-9% and 10-12% in the presence of humic acid alone and together with hardness, respectively). The total amount of dissolved Fe steadily increased to 25 mg L(-1) in the presence of humic acid alone because the formation of soluble Fe-humate complexes appeared to suppress iron precipitation. Substantial amounts of soluble and colloidal Fe-humate complexes in groundwater may arouse aesthetic and safety concerns in groundwater use. In contrast, the coexistence of humic acid and Ca2+/Mg2+ significantly promoted aggregation of humic acid and metal hydrolyzed species, as indicated by XPS and TEM analyses, which remained nondissolved (>0.45 microm) in solution. These metal-humate aggregates may impose long-term impacts on PRBs in subsurface settings.

  3. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Deng Lin [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Wang Hongli [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Deng Nansheng [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China)]. E-mail: nsdengwhu@163.com

    2006-11-16

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps ({lambda}=365nm, 250W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0mgL{sup -1} and initial algae concentration ranged from ABS{sub algae} (the absorbency of algae)=0.025 to ABS{sub algae}=0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250W metal halide lamps was V{sub 0}=kC{sub 0}{sup 0.1718}A{sub algae}{sup 0.5235} (C{sub 0} was initial concentration of Cr(VI); A{sub algae} was initial concentration of algae) under the condition of pH 4.

  4. Natural and induced reduction of hexavalent chromium in soil

    Science.gov (United States)

    Leita, Liviana; Margon, Alja; Sinicco, Tania; Mondini, Claudio; Valentini, Massimiliano; Cantone, Pierpaolo

    2013-04-01

    Even though naturally elevated levels of chromium can be found naturally in some soils, distressing amounts of the hexavalent form (CrVI) are largely restricted to sites contaminated by anthropogenic activities. In fact, the widespread use of chromium in various industries and the frequently associated inadequate disposal of its by-products and wastes have created serious environmental pollution problems in many parts of the world. CrVI is toxic to plants, animals and humans and exhibits also mutagenic effects. However, being a strong oxidant, CrVI can be readily reduced to the much less harmful trivalent form (CrIII) when suitable electron donors are present in the environment. CrIII is relatively insoluble, less available for biological uptake, and thus definitely less toxic for web-biota. Various electron donors in soil can be involved in CrVI reduction in soil. The efficiency of CrVI reducing abiotic agents such as ferrous iron and sulphur compounds is well documented. Furthermore, CrVI reduction is also known to be significantly enhanced by a wide variety of cell-produced monosaccharides, including glucose. In this study we evaluated the dynamics of hexavalent chromium (CrVI) reduction in contaminated soil amended or not with iron sulphate or/and glucose and assessed the effects of CrVI on native or glucose-induced soil microbial biomass size and activity. CrVI negatively affected both soil microbial activity and the size of the microbial biomass. During the incubation period, the concentration of CrVI in soil decreased over time whether iron sulphate or/and glucose was added or not, but with different reduction rates. Soil therefore displayed a natural attenuation capacity towards chromate reduction. Addition of iron sulphate or/and glucose, however, increased the reduction rate by both abiotic and biotic mechanisms. Our data suggest that glucose is likely to have exerted an indirect role in the increased rate of CrVI reduction by promoting growth of

  5. Extractive removal of chromium (VI) from industrial waste solution.

    Science.gov (United States)

    Agrawal, Archana; Pal, Chandana; Sahu, K K

    2008-11-30

    Extractive removal of Cr (VI) was carried out from chloride solutions using cyanex 923 mixed with kerosene. The efficiency of this extractant was studied under various experimental conditions, such as concentration of different mineral acids in the aqueous phase, concentration of cyanex 923 and Cr (VI) present in the initial aqueous feed, temperature and time of extraction, organic to aqueous (O/A) phase ratio. Percentage Cr (VI) extraction decreases with the increase in temperature at varying concentration of cyanex 923. The interference of the impurities usually associated with Cr (VI) such as Cr (III), Cu, Ni, Fe (II), Zn, Chloride and sulphate, etc., were examined under the optimized conditions and only Zn was found to interfere. Under the optimum experimental conditions 98.6-99.9% of Cr (VI) was extracted in 3-5 min at O/A of 2 with the initial feed concentration of 1g/L of Cr (VI). The extracted Cr (VI) was quantitatively stripped with 1M NaOH and the organic phase obtained after the stripping of Cr (VI) was washed with dilute HCl solution to neutralize any NaOH trapped/adhered to the solvent and then with distilled water. This regenerated solvent was reused in succeeding extraction of chromium (VI). Finally a few experiments were performed with the synthetic effluent from an electroplating industry.

  6. Elucidating the Molecular Basis and Regulation of Chromium(VI) Reduction by Shewanella oneidensis MR-1 and Resistance to Metal Toxicity Using Integrated Biochemical, Genomic and Proteomic Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Dorothea K. Thompson; Robert Hettich

    2007-02-06

    Shewanella oneidensis MR-1 is a model environmental organism that possesses diverse respiratory capacities, including the ability to reduce soluble Cr(VI) to sparingly soluble, less toxic Cr(III). Chromate is a serious anthropogenic pollutant found in subsurface sediment and groundwater environments due to its widespread use in defense and industrial applications. Effective bioremediation of chromate-contaminated sites requires knowledge of the molecular mechanisms and regulation of heavy metal resistance and biotransformation by dissimilatory metal-reducing bacteria. Towards this goal, our ERSP-funded work was focused on the identification and functional analysis of genes/proteins comprising the response pathways for chromate detoxification and/or reduction. Our work utilized temporal transcriptomic profiling and whole-cell proteomic analyses to characterize the dynamic molecular response of MR-1 to an acute chromate shock (up to 90 min) as well as to a 24-h, low-dose exposure. In addition, we have examined the transcriptome of MR-1 cells actively engaged in chromate reduction. These studies implicated the involvement of a functionally undefined DNA-binding response regulator (SO2426) and a putative azoreductase (SO3585) in the chromate stress response of MR-1.

  7. Microbial reduction of hexavalent Chromium under vadose zone conditions

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, D S.(unknown); Brockman, Fred J.(BATTELLE (PACIFIC NW LAB)); Bowman, Robert (VISITORS); Kieft, Thomas L.(BATTELLE (PACIFIC NW LAB))

    2003-01-01

    Hexavalent chromium[Cr(VI)] is a common constituent of wastes associated with nuclear reactor operation and fuel processing. Improper disposal at facilities in arid and semi-arid regions has led to contamination of underlying vadose zones and aquifers. The objectives of this study were to assess the potential for immobilizing Cr(VI) contamination using a native microbial community to reduce soluble Cr(VI) to insoluble Cr(III) under conditions similar to those found in the vadose zone, and to evaluate the potential for enhancing biological reduction of Cr(VI) through the addition of nutrients. Batch microcosm and unsaturated flow column experiments were performed. Native microbial communities in subsurface sediments with no prior Cr(VI) exposure were shown to be capable of Cr(VI) reduction. In both the batch and column experiments, Cr(VI) reduction and loss from the aqueous phase were enhanced by adding high levels of both nitrate (NO3-) and organic carbon (molasses). Nutrient amendments resulted in up to 87% Cr(VI) reduction in unsaturated batch experiments. Molasses and nitrate additions to 15-cm length unsaturated flow columns receiving 65 mg L-1 Cr(VI) resulted in microbially mediated reduction and immobilization of 10% of the Cr during a 45-day experiment. All of the immobilized Cr was in the form of Cr (III), as shown by XANES analysis. This suggests that biostimulation of microbial Cr(VI) reduction in vadose zones by nutrient amendment is a promising strategy; and that immobilization of close to 100% of Cr contamination could be achieved in a thick vadose zone with longer flow paths and longer contact times than in this experiment.

  8. Selective Chromium(VI) Ligands Identified Using Combinatorial Peptoid Libraries

    Science.gov (United States)

    Knight, Abigail S.; Zhou, Effie Y.; Pelton, Jeffrey G.; Francis, Matthew B.

    2013-01-01

    Hexavalent chromium (Cr(VI)) is a world-wide water contaminant that is currently without cost-effective and efficient remediation strategies. This is in part due to a lack of ligands that can bind it amid an excess of innocuous ions in aqueous solution. We present herein the design and application of a peptoid-based library of ligand candidates for toxic metal ions. A selective screening process was used to identify members of the library that can bind to Cr(VI) species at neutral pH and in the presence of a large excess of spectator ions. Eleven sequences were identified, and their affinities were compared using titrations monitored with UV-Vis spectroscopy. To identify the interactions involved in coordination and specificity, we evaluated the effects of sequence substitutions and backbone variation in the highest affinity structure. Additional characterization of the complex formed between this sequence and Cr(VI) was performed using NMR spectroscopy. To evaluate the ability of the developed sequences to remediate contaminated solutions, the structures were synthesized on a solid-phase resin and incubated with environmental water samples that contained simulated levels of chromium contamination. The synthetic structures demonstrated the ability to reduce the amount of toxic chromium to levels within the range of the EPA contamination guidelines. In addition to providing some of the first selective ligands for Cr(VI), these studies highlight the promise of peptoid sequences as easily-prepared components of environmental remediation materials. PMID:24195610

  9. Facile Synthesis of g-C3N4 Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium(VI under Visible Light

    Directory of Open Access Journals (Sweden)

    Xiaoya Yuan

    2016-09-01

    Full Text Available Graphitic-C3N4 nanosheets (CN/ZnO photocatalysts (CN/ZnO with different CN loadings were successfully prepared via a simple precipitation-calcination in the presence of exfoliated C3N4 nanosheets. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, UV-Vis diffuse reflectance spectroscopy (DRS and photoluminescence spectra (PL. The results showed that hexagonal wurzite-phase ZnO nanoparticles were randomly distributed onto the CN nanosheets with a well-bonded interface between the two components in the CN/ZnO composites. The performance of the photocatalytic Cr(VI reduction indicated that CN/ZnO exhibited better photocatalytic activity than pure ZnO under visible-light irradiation and the photocatalyst composite with a lower loading of CN sheets eventually displayed higher activity. The enhanced performance of CN/ZnO photocatalysts could be ascribed to the increased absorption of the visible light and the effective transfer and separation of the photogenerated charge carriers.

  10. Biosorption of aqueous chromium(VI) by Tamarindus indica seeds.

    Science.gov (United States)

    Agarwal, G S; Bhuptawat, Hitendra Kumar; Chaudhari, Sanjeev

    2006-05-01

    The effectiveness of low cost agro-based materials namely, Tamarindus indica seed (TS), crushed coconut shell (CS), almond shell (AS), ground nut shell (GS) and walnut shell (WS) were evaluated for Cr(VI) removal. Batch test indicated that hexavalent chromium sorption capacity (q(e)) followed the sequence q(e)(TS) > q(e)(WS) > q(e)(AS) > q(e)(GS) > q(e)(CS). Due to high sorptive capacity, tamarind seed was selected for detailed sorption studies. Sorption kinetic data followed first order reversible kinetic fit model for all the sorbents. The equilibrium conditions were achieved within 150 min under the mixing conditions employed. Sorption equilibria exhibited better fit to Freundlich isotherms (R>0.92) than Langmuir isotherm (R approximately = 0.87). Hexavalent chromium sorption by TS decreased with increase in pH, and slightly reduced with increase in ionic strength. Cr(VI) removal by TS seems to be mainly by chemisorption. Desorption of Cr(VI) from Cr(VI) laden TS was quite less by distilled water and HCl. Whereas with NaOH, maximum desorption achieved was about 15.3%. When TS was used in downflow column mode, Cr(VI) removal was quite good but head loss increased as the run progressed and was stopped after 200 h.

  11. Chromium(VI) transport and fate in unsaturated zone and aquifer: 3D Sandbox results.

    Science.gov (United States)

    Zhao, Xingmin; Sobecky, Patricia A; Zhao, Lanpo; Crawford, Patrice; Li, Mingtang

    2016-04-01

    The simulation of Cr(VI) behavior in an unsaturated zone and aquifer, using a 3D experimental set-up were performed to illustrate the distribution, transport and transformation of Cr(VI), and further to reveal the potential harm of Cr(VI) after entering the groundwater. The result indicated that chromium(VI) was transported in the vertical direction, meanwhile, was transported in the horizontal direction under the influence of groundwater flow. The direction and distance away from the pollution source zone had great effect on the chromium(VI) concentration. At the sampling sites near the pollution source zone, there was a sudden increase of chromium(VI) concentration. The concentration of chromium(III) concentration in some random effluent samples was not detected. Chromium had not only transported but also had fraction and specie transformation in the unsaturated zone and aquifer. The relative concentration of residue fraction chromium was decreased with time. The content of Fe-Mn oxide fraction chromium was increased with time. The relative content of exchangeable and carbonate-bound fraction chromium was lower and the content variations were not obvious. Chromium(VI) (91-98%) was first reduced to chromium(III) rapidly. The oxidation reaction occurred later and the relative content of chromium(VI) was increased again. The presence of manganese oxides under favorable soil conditions can promote the reoxidation of Cr(III) to Cr(VI).

  12. Hexavalent Chromium Reduction and Its Distribution in the Cell and Medium by Chromium Resistant Fusarium solani

    Directory of Open Access Journals (Sweden)

    Mousumi Sen

    2013-01-01

    Full Text Available In the present work, batch biosorption of Cr(VI was studied using the fungal strain isolated from soil. The fungal strain was characterized as Fusarium solani. The total Cr distribution in the biomass (fungus and in the media obtained from the experiment conducted at 500 mg l -1 initial Cr(VI concentration and pH 5.0. The results indicated both intracellular and extracellular accumulation and enzymatic reduction of Cr(VI and this was supported by the Transmission Electron Microscopic (TEM observation at the same Cr(VI concentration and pH value. Chromium elution from Fusarium solani containing Cr was then tried out using a number of chromium eluting reagents and a maximum Cr could be eluted using 0.5N sodium hydroxide solution without destructing the biomass structure. The total Cr was recovered by pH adjustment from both biomass and media was found to be 44% of the initial Cr(VI concentration (500 mg l-1.

  13. Photocatalytic Reduction of Hexavalent Chromium Induced by Photolysis of Ferric/tartrate Complex

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xianghua; Ding, Shimin; Zhang, Lixian [Yangtze Normal Univ., Fuling (China)

    2012-11-15

    Photocatalytic reduction of hexavalent chromium (Cr(VI)) in ferric-tartrate system under irradiation of visible light was investigated. Effects of light resources, initial pH value and initial concentration of various reactants on Cr(VI) photocatalytic reduction were studied. Photoreaction kinetics was discussed and a possible photochemical pathway was proposed. The results indicate that Fe(III)-tartrate system is able to rapidly and effectively photocatalytically reduce Cr(VI) utilizing visible light. Initial pH variations results in the concentration changes of Fe(III)-tartrate complex in this system, and pH at 3.0 is optimal for Cr(VI) photocatalytic reduction. Efficiency of Cr(VI) photocatalytic reduction increases with increasing initial concentrations of Cr(VI), Fe(III) and tartrate. Kinetics analysis indicates that initial Fe(III) concentration affects Cr(VI) photoreduction most significantly.

  14. Radiometric and spectrophotometric studies of the behavior of chromium(VI) oxide in concentrated perchloric acid

    Energy Technology Data Exchange (ETDEWEB)

    Pezzin, S.H.; Collins, C.H.; Collins, K.E. [Universidade Estadual de Campinas (Brazil). Inst. de Quimica; Archundia, C. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares

    1997-11-01

    A study of the behavior of {sup 51}CrO{sub 3} in 70% HClO{sub 4} over the temperature range from 20 to 194 C by means of Cr-51 labelling, UV-VIS spectrophotometry and ion exchange chromatography, shows that the solubility of {sup 51}CrO{sub 3} depends on a competition between the dissolution process and the acid reduction of solution phase Cr(VI). These processes occur simultaneously and are dependent on both the temperature and the concentration of Cr(VI), as shown by comparison between radiometric measurements (where total chromium can be accurately determined) and spectrophotometric measurements (where only the Cr(VI) is detectable at the wavelengths studied). These conclusions are confirmed by PbCrO{sub 4} precipitation of {sup 51}Cr(VI), where at 194 C, 97% of the total chromium appears as Pb{sup 51}CrO{sub 4} while at 86 C only 5% does. Cation exchange chromatography of the solution after brief contact of {sup 51}CrO{sub 3} with concentrated HClO{sub 4} at 20 C shows only traces of {sup 51}Cr(VI), most of the radioactivity eluting as {sup 51}Cr(H{sub 2}O){sup 3+}{sub 6}, with smaller amounts of species with +2 and +1 charges. These results imply serious limitations to the spectrophotometric determination of low concentrations of total chromium in alloys or in biological material which use dissolution in 70% HClO{sub 4} as a primary analytical step. (orig.)

  15. Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant.

    Science.gov (United States)

    Adki, Vinayak S; Jadhav, Jyoti P; Bapat, Vishwas A

    2013-02-01

    Hexavalant chromium [Cr(VI)] tolerance and accumulation in in vitro grown Nopalea cochenillifera Salm. Dyck. plants was investigated. A micropropagation protocol was establish for a rapid multiplication of N. cochenillifera and [Cr(VI)] tolerance and accumulation was studied in in vitro grown cultures. Cr concentration was estimated by atomic absorption spectroscopy in roots and shoots to confirm plant's hyperaccumulation capacity. Plants showed tolerance up to 100 μM K(2)Cr(2)O(7) without any significant changes in root growth after 16 days treatment; whereas, chlorophyll content in plants treated with 1 and 10 μM K(2)Cr(2)O(7) were not so different than the control plant. The levels of lipid peroxidation and protein oxidation increased significantly (p 100 μM) inhibited the activities of CAT and SOD. Roots accumulated a maximum of 25,263.396 ± 1,722.672 mg Cr Kg(-1) dry weight (DW); while the highest concentration of Cr in N. cochenillifera shoots was 705.714 ± 32.324 mg Cr Kg(-1) DW. N. cochenillifera could be a prospective hyperaccumulator plant of Cr(VI) and a promising candidate for phytoremediation purposes. PMID:22914913

  16. Chromium(VI) but not chromium(III) species decrease mitoxantrone affinity to DNA.

    Science.gov (United States)

    Nowicka, Anna M; Stojek, Zbigniew; Hepel, Maria

    2013-01-31

    Binding of mitoxantrone (MXT) to double-stranded DNA has been investigated as a model drug-DNA binding system to evaluate the effects of various forms of chromium on the binding properties. We have found that Cr(III), which binds strongly to DNA, does not affect the MXT affinity to DNA. In contrast, Cr(VI), in the form of chromate ions CrO(4)(2-), decreases the MXT affinity to DNA despite electrostatic repulsions with phosphate-deoxyribose chains of DNA. The MXT-DNA binding constant was found to decrease from (1.96 ± 0.005) × 10(5) to (0.77 ± 0.018) × 10(5) M(-1) for Cr(VI) concentration changing from 0 to 30 μM. The influence of Cr(VI) on MXT-DNA binding has been attributed to the oxidation of guanine residue, thus interrupting the intercalation of MXT into the DNA double helix at the preferential CpG intercalation site. This supposition is corroborated by the observed increase in the MXT binding site size from 2 bp (base pairs) to 4-6 bp in the presence of Cr(VI). The measurements of the MXT-DNA binding constant and the MXT binding site size on a DNA molecule have been carried out using spectroscopic, voltammetric, and nanogravimetric techniques, providing useful information on the mechanism of the interactions.

  17. Simultaneously photocatalytic treatment of hexavalent chromium (Cr(VI)) and endocrine disrupting compounds (EDCs) using rotating reactor under solar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngji [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Yonsei University, Department of Chemical and Biomolecular Engineering, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Joo, Hyunku [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Her, Namguk [Korea Army Academy at Young-Cheon, Department of Chemistry and Environmental Science, 135-1 Changhari, Kokyungmeon, Young-cheon, Gyeongbuk 770-849 (Korea, Republic of); Yoon, Yeomin [University of South Carolina, Department of Civil and Environmental Engineering, Columbia, SC 29208 (United States); Sohn, Jinsik [Kookmin University, School of Civil and Environmental Engineering, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Kim, Sungpyo [Korea University, Department of Environmental Engineering, Sejong 339-700 (Korea, Republic of); Yoon, Jaekyung, E-mail: jyoon@kier.re.kr [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2015-05-15

    Highlights: • Self-rotating reactor including TiO{sub 2} NTs is applied under solar irradiation. • Simultaneously photocatalysis of Cr(VI) and EDCs is observed to be up to 95%. • Photocatalytic reactions of Cr(VI) and EDCs are favorable under acidic pH. • Charge interaction and hole scavenge between TiO{sub 2} and pollutants are synergy factors. - Abstract: In this study, simultaneous treatments, reduction of hexavalent chromium (Cr(VI)) and oxidation of endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and 17β-estradiol (E2), were investigated with a rotating photocatalytic reactor including TiO{sub 2} nanotubes formed on titanium mesh substrates under solar UV irradiation. In the laboratory tests with a rotating type I reactor, synergy effects of the simultaneous photocatalytic reduction and oxidation of inorganic (Cr(VI)) and organic (BPA) pollutants were achieved. Particularly, the concurrent photocatalytic reduction of Cr(VI) and oxidation of BPA was higher under acidic conditions. The enhanced reaction efficiency of both pollutants was attributed to a stronger charge interaction between TiO{sub 2} nanotubes (positive charge) and the anionic form of Cr(VI) (negative charge), which are prevented recombination (electron–hole pair) by the hole scavenging effect of BPA. In the extended outdoor tests with a rotating type II reactor under solar irradiation, the experiment was extended to examine the simultaneous reduction of Cr(VI) in the presence of additional EDCs, such as EE2 and E2 as well as BPA. The findings showed that synergic effect of both photocatalytic reduction and oxidation was confirmed with single-component (Cr(VI) only), two-components (Cr(VI)/BPA, Cr(VI)/EE2, and Cr(VI)/E2), and four-components (Cr(VI)/BPA/EE2/E2) under various solar irradiation conditions.

  18. Surface Reactions Limiting Chromium(VI) Generation from Naturally Derived Chromium(III) Minerals

    Science.gov (United States)

    Hausladen, D.; Fendorf, S. E.

    2015-12-01

    Chromium(III)-bearing minerals, commonly found in serpentinite and ultramaphic rocks, are ubiquitous in California soils and along convergent plate boundaries worldwide. Elevated concentrations of carcinogenic Cr(VI) have been measured in groundwater throughout the state, even in aquifers untouched by anthropogenic contamination. In most natural systems, manganese oxides are the only known, kinetically viable, oxidant of Cr(III). Numerous laboratory studies have demonstrated a finite capacity of Mn-oxides to generate Cr(VI) before surface alterations inhibit further Cr-oxidation. The extent to which these processes dictate the inhibition, and subsequent regeneration, of Mn-oxidation capacity within structured soils and sediments is not well understood. Here we use artificial soil aggregates made of Fe(III),Cr(III)-hydroxide-coated quartz sand and surrounded by aerated solute flow (pH 8, 30mM HEPES, 10mM HCO3-) to investigate C(VI) generation within ultramafic rock derived sediment and processes inhibiting manganese reactivity. We found that while Cr(VI)-production scaled with Cr-mineral solubility; Cr(VI) effluent concentrations from aggregates of both lower and higher solubility Cr(III)-minerals peaked very soon after reaction with birnessite (within 2 days and 4 days, respectively). Once Cr(VI) production plateaued (t=22 days) aggregate influent was acidified (pH 5, 30mM C2H3O2-). Despite increasing Cr(III) solubility at lower pH, aqueous Cr(VI) production further decreased. A secondary pulse of Cr(VI) generation was seen only after the surrounding solute returned to initial conditions (pH 8). As with the initial pulse, Cr(VI) concentration scaled with mineral solubility. Collectively, our results demonstrate the extent that natural fluctuations in groundwater composition, both as a result of irrigation or precipitation events, have the potential to both regenerate and inhibit Mn-oxide surfaces. These synthetic soil aggregates provide insight into how fluctuating

  19. Phytoremediation potential and nutrient status of Barringtonia acutangula Gaerth. Tree seedlings grown under different chromium (CrVI) treatments.

    Science.gov (United States)

    Kumar, Dharmendra; Tripathi, Durgesh Kumar; Chauhan, Devendra Kumar

    2014-02-01

    To investigate the effect of different chromium (CrVI) treatments on seedlings of semi-aquatic plant Barringtonia acutangula, hydroponic experiments were conducted. Results revealed that B. acutangula could tolerate much higher CrVI concentration accumulated about 751-2,703 mg kg(-1) dry weight in roots and 50-1,101 mg kg(-1) dry weight in shoots, respectively, under 1.0, 2.0, 3.0, 4.0, and 5.0 mM chromium treatments. CrVI exposure at 1.0-4.0 mM does not exhibit toxicity signs; however, up to 4.0 mM CrVI exposure causes significant decline in growth parameters. Content of macronutrients such as Ca and K decreased under different Cr treatments in roots and shoots, while Mg content of roots and shoots did not influence at the range of 1.0-4.0 mM Cr; however, significant decrease at 5.0 mM Cr, besides P content, significantly shows increasing trends, respectively. Interestingly, sulfur content of roots and shoots show increasing trends at 1.0-2.0 mM Cr; however, severe decrease of up to 3.0-5.0 mM is shown in CrVI treatments. Furthermore, micronutrients content were enhanced under CrVI treatments excluding Cu and Fe since they show significant reduction in shoots as well as in roots. Bioaccumulation factor were also calculated on the basis of results obtained which shows the value of >1 without viewing chromium toxicity symptoms. This study demonstrated that B. acutangula could tolerate CrVI concentrations up to 1.0-4.0 mM Cr which may be useful in chromium phytoremediation programs. PMID:24399023

  20. Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor

    International Nuclear Information System (INIS)

    Highlights: ► Elemental sulfur can be used as electron acceptor for sulfide production. ► Biogenically produced sulfide reduces Cr(VI) to the much less toxic and immobile form of Cr(III). ► Sulfur packed bioreactor is efficient for Cr(VI) containing wastewater treatment. ► Reduced form of chromium precipitates in the bioreactor. - Abstract: The most commonly used approach for the detoxification of hazardous industrial effluents and wastewaters containing Cr(VI) is its reduction to the much less toxic and immobile form of Cr(III). This study investigates the cleanup of Cr(VI) containing wastewaters using elemental sulfur as electron acceptor, for the production of hydrogen sulfide that induces Cr(VI) reduction. An elemental sulfur reducing packed-bed bioreactor was operated at 28–30 °C for more than 250 days under varying influent Cr(VI) concentrations (5.0–50.0 mg/L) and hydraulic retention times (HRTs, 0.36–1.0 day). Ethanol or acetate (1000 mg/L COD) was used as carbon source and electron donor. The degree of COD oxidation varied between 30% and 85%, depending on the operating conditions and the type of organic carbon source. The oxidation of organic matter was coupled with the production of hydrogen sulfide, which reached a maximum concentration of 750 mg/L. The biologically produced hydrogen sulfide reduced Cr(VI) chemically to Cr(III) that precipitated in the reactor. Reduction of Cr(VI) and removal efficiency of total chromium always exceeded 97% and 85%, respectively, implying that the reduced chromium was retained in the bioreactor. This study showed that sulfur can be used as an electron acceptor to produce hydrogen sulfide that induces efficient reduction and immobilization of Cr(VI), thus enabling decontamination of Cr(VI) polluted wastewaters.

  1. Chromium(VI) release from leather and metals can be detected with a diphenylcarbazide spot test

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten Stendahl;

    2015-01-01

    at 0.5 ppm without interference from other pure metals, alloys, or leather. A market survey using the test showed no chromium(VI) release from work tools (0/100). However, chromium(VI) release from metal screws (7/60), one earring (1/50), leather shoes (4/100) and leather gloves (6/11) was observed. We...... leather and metal articles. The spot test has the potential to become a valuable screening tool....

  2. Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: Effect of scrap iron shape and size.

    Science.gov (United States)

    Gheju, M; Balcu, I

    2010-10-15

    Hexavalent chromium reduction with scrap iron has the advantage that two wastes are treated simultaneously. The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using as reducing agent the following scrap iron shapes and sizes: (1) spiral fibers, (2) shavings, and (3) powder. The shape and size of scrap iron were found to have a significant influence on chromium and iron species concentration in column effluent, on column effluent pH and on Cr(VI) reduction mechanism. While for large scrap iron particles (spiral fibers) homogeneous reduction is the dominant Cr(VI) reduction process, for small scrap iron particles (powder) heterogeneous reduction appears to be the dominant reaction contributing to Cr(VI) reduction. All three shapes and sizes investigated in this work have both advantages and disadvantages. If found in sufficient quantities, scrap iron powder seem to be the optimum shape and size for the continuous reduction of Cr(VI), due to the following advantages: (1) the greatest reduction capacity, (2) the most important pH increase in column effluent (up to 6.3), (3) no chromium was detected in the column effluent during the first 60 h of the experiment, and (4) the lowest steady-state Cr(VI) concentration observed in column effluent (3.7 mg/L). But, despite of a lower reduction capacity in comparison with powder particles, spiral fibers and shavings have the advantage to result in large quantities from the mechanic processing of steel.

  3. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John F. Stolz

    2011-06-15

    A major challenge for the bioremediation of radionuclides (i.e., uranium, technetium) and metals (i.e., Cr(VI), Hg) is the co-occurrence of nitrate as it can inhibit metal transformation. Denitrification (nitrate reduction to dinitrogen gas) is considered the most important ecological process. For many metal and metalloid reducing bacteria, however, ammonia is the end product through respiratory nitrate reduction (RNRA). The focus of this work was to determine how RNRA impacts Cr(VI) transformation. The goal was to elucidate the specific mechanism(s) that limits Cr(VI) reduction in the presence of nitrate and to use this information to develop strategies that enhance Cr(VI) reduction (and thus detoxification). Our central hypothesis is that nitrate impacts the biotransformation of metals and metalloids in three ways 1) as a competitive alternative electron acceptor (inhibiting transformation), 2) as a co-metabolite (i.e., concomitant reduction, stimulating transformation), and 3) as an inducer of specific proteins and pathways involved in oxidation/reduction reactions (stimulating transformation). We have identified three model organisms, Geobacter metallireducens (mechanism 1), Sulfurospirillum barnesii, (mechasism 2), and Desulfovibrio desulfuricans (mechanisms 3). Our specific aims were to 1) investigate the role of Cr(VI) concentration on the kinetics of both growth and reduction of nitrate, nitrite, and Cr(VI) in these three organisms; 2) develop a profile of bacterial enzymes involved in nitrate transformation (e.g., oxidoreductases) using a proteomic approach; 3) investigate the function of periplasmic nitrite reductase (Nrf) as a chromate reductase; and 4) develop a strategy to maximize microbial chromium reduction in the presence of nitrate. We found that growth on nitrate by G. metallireducens was inhibited by Cr(VI). Over 240 proteins were identified by LC/MS-MS. Redox active proteins, outer membrane heavy metal efflux proteins, and chemotaxis sensory

  4. Chromium isotope inventory of Cr(VI)-polluted groundwaters at four industrial sites in Central Europe

    Science.gov (United States)

    Novak, Martin; Martinkova, Eva; Chrastny, Vladislav; Stepanova, Marketa; Curik, Jan; Szurmanova, Zdenka; Cron, Marcel; Tylcer, Jiri; Sebek, Ondrej

    2016-04-01

    Chromium is one of the most toxic elements, especially in its dissolved Cr(VI) form. In the Czech Republic (Central Europe), massive contamination of groundwater has been reported at more than 200 industrial operations. Under suitable conditions, i.e., low Eh, and high availability of reductive agents, Cr(VI) in groundwater may be spontaneously reduced to solid, largely non-toxic Cr(III). This process is associated with a Cr isotope fractionation, with the residual liquid Cr(VI) becoming enriched in the heavier isotope 53Cr. At industrial operations that have been closed and/or where no further leakage of Cr(VI) occurs, the contaminated groundwater plume may be viewed as a closed system. At such sites, an increasing degree of Cr(VI) reduction should result in an increasing del53/52Cr value of the residual liquid. Here we present del53/52Cr systematics at four contaminated Czech sites, focusing on groundwaters. At two of the four sites (Zlate Hory, Loucna) we were also able to analyze the source of contamination. Chromium in the electroplating solutes was isotopically relatively light, with del53/52Cr values 4.0 per mil (mean of +1.7 per mil); at Letnany, del53/52Cr ranged between +2.0 and +4.5 per mil (mean of +3.2 per mil); and at Velesin, del53/52Cr ranged between +0.5 and +4.5 per mil (mean of +2.7 per mil). Cr(VI) reduction may proceed at Zlate Hory and Loucna, where del53/52Cr(VI) values in groundwater were on average higher than those of the contamination source. At these two sites, our Cr isotope data are not consistent with the existing estimates of the amount of dissolved and precipitated Cr: The pool size of solid Cr(III) in the soil was estimated at 6600 and 500 kg at Zlate Hory and Loucna, respectively. At the same time, the pool size of dissolved Cr(VI) was estimated at 50 and 1.2 kg at Zlate Hory and Loucna, respectively. It follows that, at both sites, less than 1 % of the entire Cr that had leaked into the aquifer an a liquid form remained in the

  5. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor

    International Nuclear Information System (INIS)

    The electrochemical reduction of Cr(VI)-Cr(III) in wastewater by iron and copper-iron bimetallic plates was evaluated and optimized. Iron has been used as a reducing agent, but in this work a copper-iron galvanic system in the form of bimetallic plates is applied to reducing hexavalent chromium. The optimal pH (2) and ratio of copper to iron surface areas (3.5:1) were determined in batch studies, achieving a 100% reduction in about 25 min. The Cr(VI) reduction kinetics for the bimetallic system fit a first order mechanism with a correlation of 0.9935. Thermodynamic analysis shows that the Cr(VI) reduction is possible at any pH value. However, at pH values above 3.0 for iron and 5.5 for chromium insoluble species appear, indicating that the reaction will be hindered. Continuous column studies indicate that the bimetallic copper-iron galvanic system has a reduction capacity of 9.5890 mg Cr(VI) cm-2 iron, whereas iron alone only has a capacity of 0.1269 mg Cr(VI) cm-2. The bimetallic copper-iron galvanic system is much more effective in reducing hexavalent chromium than iron alone. The exhausted plates were analyzed by SEM, EDS, and XRD to determine the mechanism and the surface effects, especially surface fouling.

  6. Ultrasensitive photoelectrochemical determination of chromium(VI) in water samples by ion-imprinted/formate anion-incorporated graphitic carbon nitride nanostructured hybrid.

    Science.gov (United States)

    Fang, Tian; Yang, Xiaomin; Zhang, Lizhi; Gong, Jingming

    2016-07-15

    A rapid and highly sensitive photoelectrochemical (PEC) method has been proposed for the determination of trace amounts of chromium in water samples under visible-light irradiation. Here, a unique nanostructured hybrid of formate anion incorporated graphitic carbon nitride (F-g-C3N4) is smartly integrated with a Cr(VI) ion-imprinted polymer (IIP) as a photoactive electrode (denoted as IIP@F-g-C3N4). The nanohybrid of F-g-C3N4 exhibits an enhanced charge separation with substantially improved PEC responses versus g-C3N4. The newly designed IIP@F-g-C3N4 PEC sensor exhibits high sensitivity and selectivity for the determination of Cr(VI) because it offers efficient photogenerated electron reduction toward Cr(VI). The PEC analysis is highly linear over Cr(VI) concentrations ranging from 0.01 to 100.00ppb with a detection limit of 0.006ppb (S/N=3). Our approach can be used to detect Cr(VI), Cr(III) and the total chromium level in aqueous solution through oxidation of Cr(III) to Cr(VI) and the determination of the total chromium as Cr(VI). In practical applications, this low-cost and sensitive assay has been successfully applied for speciation determination of chromium in environmental water samples.

  7. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington.

    Science.gov (United States)

    VanEngelen, Michael R; Peyton, Brent M; Mormile, Melanie R; Pinkart, Holly C

    2008-11-01

    Hexavalent chromium is one of the most widely distributed environmental contaminants. Given the carcinogenic and mutagenic consequences of Cr(VI) exposure, the release of Cr(VI) into the environment has long been a major concern. While many reports of microbial Cr(VI) reduction are in circulation, very few have demonstrated Cr(VI) reduction under alkaline conditions. Since Cr(VI) exhibits higher mobility in alkaline soils relative to pH neutral soils, and since Cr contamination of alkaline soils is associated with a number of industrial activities, microbial Cr(VI) reduction under alkaline conditions requires attention.Soda lakes are the most stable alkaline environments on earth, and contain a wide diversity of alkaliphilic organisms. In this study, a bacterial isolate belonging to the Halomonas genus was obtained from Soap Lake, a chemically stratified alkaline lake located in central Washington State. The ability of this isolate to reduce Cr(VI) and Fe(III) was assessed under alkaline (pH = 9), anoxic, non-growth conditions with acetate as an electron donor. Metal reduction rates were quantified using Monod kinetics. In addition, Cr(VI) reduction experiments were carried out in the presence of Fe(III) to evaluate the possible enhancement of Cr(VI) reduction rates through electron shuttling mechanisms. While Fe(III) reduction rates were slow compared to previously reported rates, Cr(VI) reduction rates fell within range of previously reported rates. PMID:18401687

  8. Screen-printed sensor for batch and flow injection potentiometric chromium(VI) monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Moreno, Raul A.; Gismera, M.J.; Sevilla, M.T.; Procopio, Jesus R. [Facultad de Ciencias, Universidad Autonoma de Madrid, Departamento de Quimica Analitica y Analisis Instrumental, Madrid (Spain)

    2010-05-15

    A disposable screen-printed electrode was designed and evaluated for direct detection of chromium(VI) in batch and flow analysis. The carbon screen-printed electrode was modified with a graphite-epoxy composite. The optimal graphite-epoxy matrix contains 37.5% graphite powder, 12.5% diphenylcarbohydrazide, a selective compound for chromium(VI), and 50% epoxy resin. The principal analytical parameters of the potentiometric response in batch and flow analysis were optimized and calculated. The screen-printed sensor exhibits a response time of 20 {+-} 1 s. In flow analysis, the analytical frequency of sampling is 70 injections per hour using 0.1 M NaNO{sub 3} solution at pH 3 as the carrier, a flow rate of 2.5 mL.min{sup -1}, and an injection sample volume of 0.50 mL. The sensor shows potentiometric responses that are very selective for chromium(VI) ions and optimal detection limits in both static mode (2.1 x 10{sup -7} M) and online analysis (9.4 x 10{sup -7} M). The disposable potentiometric sensor was employed to determine toxicity levels of chromium(VI) in mineral, tap, and river waters by flow-injection potentiometry and batch potentiometry. Chromium(VI) determination was also carried out with successful results in leachates from municipal solid waste landfills. (orig.)

  9. Behaviour of chromium(VI) in stormwater soil infiltration systems

    DEFF Research Database (Denmark)

    Cederkvist, Karin; Ingvertsen, Simon T.; Jensen, Marina B.;

    2013-01-01

    mm in 2 h) and extreme (100 mm in 3 h) rain events. The objectives were to understand the behaviour of the anionic and toxic Cr(VI) in soil at neutral pH and to asses treatment efficiency towards Cr(VI). During normal rain events Cr(VI) was largely retained (more than 50, even though pH was neutral...

  10. Packed-bed column biosorption of chromium(VI) and nickel(II) onto Fenton modified Hydrilla verticillata dried biomass.

    Science.gov (United States)

    Mishra, Ashutosh; Tripathi, Brahma Dutt; Rai, Ashwani Kumar

    2016-10-01

    The present study represents the first attempt to investigate the biosorption potential of Fenton modified Hydrilla verticillata dried biomass (FMB) in removing chromium(VI) and nickel(II) ions from wastewater using up-flow packed-bed column reactor. Effects of different packed-bed column parameters such as bed height, flow rate, influent metal ion concentration and particle size were examined. The outcome of the column experiments illustrated that highest bed height (25cm); lowest flow rate (10mLmin(-1)), lowest influent metal concentration (5mgL(-1)) and smallest particle size range (0.25-0.50mm) are favourable for biosorption. The maximum biosorption capacity of FMB for chromium(VI) and nickel(II) removal were estimated to be 89.32 and 87.18mgg(-1) respectively. The breakthrough curves were analyzed using Bed Depth Service Time (BDST) and Thomas models. The experimental results obtained agree to both the models. Column regeneration experiments were also carried out using 0.1M HNO3. Results revealed good reusability of FMB during ten cycles of sorption and desorption. Performance of FMB-packed column in treating secondary effluent was also tested under identical experimental conditions. Results demonstrated significant reduction in chromium(VI) and nickel(II) ions concentration after the biosorption process. PMID:27400422

  11. Adsorption of Chromium(VI from Aqueous Solutions by Coffee Polyphenol-Formaldehyde/Acetaldehyde Resins

    Directory of Open Access Journals (Sweden)

    Khudbudin Mulani

    2013-01-01

    Full Text Available Removal of chromium(VI from wastewater is essential as it is toxic. Thus, removal of chromium(VI was performed using coffee polyphenol-formaldehyde/acetaldehyde resins as adsorbents. Adsorbent resins were prepared by condensation of decaffeinated coffee powder with formaldehyde/acetaldehyde and used for the removal of Cr(VI ions from aqueous solutions. A simple and sensitive solid phase extraction procedure was applied for the determination of chromium at trace levels by spectroscopic method using 1,5-diphenylcarbazide reagent. The adsorption of Cr(VI on the coffee polyphenol-formaldehyde/acetaldehyde resins was monitored by FTIR and EDX analysis. The metal adsorption parameters such as contact time, pH, Cr(VI ion concentration, and adsorbent dose were investigated. For Cr(VI, the maximum adsorption capacity of coffee polyphenol-formaldehyde resins was 98% at pH 2. The experimental results showed that Cr(VI bound strongly with coffee polyphenol-formaldehyde/acetaldehyde resins and utilization of resins could be improved greatly by reuse.

  12. A Comprehensive Review on Nickel (II) And Chromium VI Toxicities - Possible Antioxidant (Allium Sativum Linn) Defenses

    OpenAIRE

    Kusal K. Das

    2009-01-01

    The toxicity associated with nickel (II) and chromium (VI) is mainly due to generation of reactive oxygen species (ROS) with subsequent oxidative deterioration of biological macromolecules. Both nickel and chromium can generate free radicals (FR) directly from molecular oxygen in a two step process to produce superoxide anion and in continued process, produce highly toxic hydroxyl radical. The pro-oxidative effects are compounded by fact that they also inhibit antioxidant enzymes and deplete ...

  13. Removal of chromium (VI) from aqueous solution using treated oil palm fibre.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ibrahim, Naimah; Aziz, Hamidi Abdul; Adlan, Mohd Nordin; Sabiani, Nor Habsah Md; Zinatizadeh, Ali Akbar Lorestani; Kutty, Shamsul Rahman Mohamed

    2008-04-01

    This study proposed an oil palm by-product as a low-cost adsorbent for the removal of hexavalent chromium [Cr (VI)] from aqueous solution. Adsorption of Cr (VI) by sulphuric acid and heat-treated oil palm fibre was conducted using batch tests. The influence of pH, contact time, initial chromium concentration and adsorbent dosage on the removal of Cr (VI) from the solutions was investigated. The optimum initial pH for maximum uptake of Cr (VI) from aqueous solution was found to be 1.5. The removal efficiency was found to correlate with the initial Cr (VI) concentration, adsorbent dosage as well as the contact time between Cr (VI) and the adsorbent. The adsorption kinetics tested with pseudo first order and pseudo second order models yielded high R(2) values from 0.9254 to 0.9870 and from 0.9936 to 0.9998, respectively. The analysis of variance (ANOVA) showed significant difference between the R(2) values of the two models at 99% confidence level. The Freundlich isotherm (R(2)=0.8778) described Cr (VI) adsorption slightly better than the Langmuir isotherm (R(2)=0.8715). Difficulty in desorption of Cr (VI) suggests the suitability of treated oil palm fibre as a single-use adsorbent for Cr (VI) removal from aqueous solution. PMID:17714862

  14. Reduction of hexavalent chromium by fasted and fed human gastric fluid. II. Ex vivo gastric reduction modeling.

    Science.gov (United States)

    Kirman, Christopher R; Suh, Mina; Hays, Sean M; Gürleyük, Hakan; Gerads, Russ; De Flora, Silvio; Parker, William; Lin, Shu; Haws, Laurie C; Harris, Mark A; Proctor, Deborah M

    2016-09-01

    To extend previous models of hexavalent chromium [Cr(VI)] reduction by gastric fluid (GF), ex vivo experiments were conducted to address data gaps and limitations identified with respect to (1) GF dilution in the model; (2) reduction of Cr(VI) in fed human GF samples; (3) the number of Cr(VI) reduction pools present in human GF under fed, fasted, and proton pump inhibitor (PPI)-use conditions; and (4) an appropriate form for the pH-dependence of Cr(VI) reduction rate constants. Rates and capacities of Cr(VI) reduction were characterized in gastric contents from fed and fasted volunteers, and from fasted pre-operative patients treated with PPIs. Reduction capacities were first estimated over a 4-h reduction period. Once reduction capacity was established, a dual-spike approach was used in speciated isotope dilution mass spectrometry analyses to characterize the concentration-dependence of the 2nd order reduction rate constants. These data, when combined with previously collected data, were well described by a three-pool model (pool 1 = fast reaction with low capacity; pool 2 = slow reaction with higher capacity; pool 3 = very slow reaction with higher capacity) using pH-dependent rate constants characterized by a piecewise, log-linear relationship. These data indicate that human gastric samples, like those collected from rats and mice, contain multiple pools of reducing agents, and low concentrations of Cr(VI) (<0.7 mg/L) are reduced more rapidly than high concentrations. The data and revised modeling results herein provide improved characterization of Cr(VI) gastric reduction kinetics, critical for Cr(VI) pharmacokinetic modeling and human health risk assessment. PMID:27396814

  15. Chromium Isotope Behaviour During Aerobic Microbial Reduction Activities

    Science.gov (United States)

    Zhang, Q.; Amor, K.; Porcelli, D.; Thompson, I.

    2014-12-01

    Microbial activity is a very important, and possibly even the dominant, reduction mechanism for many metals in natural water systems. Isotope fractionations during microbial metal reduction can reflect one major mechanism in metal cycling in the environment, and isotopic signatures can be used to identify and quantify reduction processes during biogeochemical cycling in the present environment as well as in the past. There are many Cr (VI)-reducing bacteria that have been discovered and isolated from the environment, and Cr isotopes were found to be fractionated during microbial reduction processes. In this study, Cr reduction experiments have been undertaken to determine the conditions under which Cr is reduced and the corresponding isotope signals that are generated. The experiments have been done with a facultative bacteria Pseudomonas fluorescens LB 300, and several parameters that have potential impact on reduction mechanisms have been investigated. Electron donors are important for bacteria growth and metabolism. One factor that can control the rate of Cr reduction is the nature of the electron donor. The results show that using citrate as an electron donor can stimulate bacteria reduction activity to a large extent; the reduction rate is much higher (15.10 mgˑL-1hour-1) compared with experiments using glucose (6.65 mgˑL-1ˑhour-1), acetate (4.88 mgˑL-1hour-1) or propionate (4.85 mgˑL-1hour-1) as electron donors. Groups with higher electron donor concentrations have higher reduction rates. Chromium is toxic, and when increasing Cr concentrations in the medium, the bacteria reduction rate is also higher, which reflects bacteria adapting to the toxic environment. In the natural environment, under different pH conditions, bacteria may metabolise in different ways. In our experiments with pH, bacteria performed better in reducing Cr (VI) when pH = 8, and there are no significant differences between groups with pH = 4 or pH = 6. To investigate this further, Cr

  16. Reduction of Hexavalent Chromium Using L-Cysteine Capped Nickel Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Razium Ali Soomro

    2013-06-01

    Full Text Available The aim of this study was to reduce the highly toxic hexavalent chromium Cr(VI into less toxic chromium Cr(III species by using nickel nanoparticles (Ni NPs as catalysts in order to provide safety to the aqueous environment. In the first phase Ni NPs were synthesized in ethylene glycol and capped with l-cysteine by a modified microwave irradiation method using NaOH as the accelerator. The formed Ni NPs were characterized by various techniques such as UV-Visible spectroscopy, Fourier Transform Infra-red (FTIR spectroscopy and Scanning Electron Microscopy (SEM. In the second phase the formed Ni NPs were immobilized on glass surfaces and employed as catalyst for the reduction of Cr(VI ions. According to observations, 99% reduction of Cr(VI ions was achieved in the presence of 0.5 mg of Ni NPs catalyst in just five minutes as compared to nickel powder that showed only 16% reduction in 15 minutes. The study has a great impact on the aqueous pollution control of Cr(VI especially caused by the discharge of waste water from several industries utilizing Cr(VI containing salt as one of the essential gradients.

  17. BIOSORPTION OF CHROMIUM (VI FROM INDUSTRIAL EFFLUENT BY WILD ANDMUTANT TYPE STRAIN OF SACCHAROMYCES CEREVISIAE AND ITS IMMOBILIZED FORM

    Directory of Open Access Journals (Sweden)

    K Selvam, K Arungandhi, B Vishnupriya, T Shanmuga priya and M Yamuna

    2013-01-01

    Full Text Available Biosorption of chromium was studied by wild type Saccharomyces cerevisiae strain, mutant strain, immobilized-wild type and mutant strain. Chromium absorption pattern was observed in all experimental conditions. Hexavalent chromium (VI was analyzed by diphenyl carbazide method, by oxidizing the trivalent chromium (III. The percentage efficiency of wild type S. cerevisiae and its mutant strain, immobilized-wild type and mutant strain were 94.8%, 98.7%, 97.4% and 100% respectively. S. cerevisiae mutant strain and their immobilized form was found to be effective in biosorption of chromium (VI than the wild type forms.

  18. Prevention of chromium(VI) formation by improving the tannery processes

    OpenAIRE

    Font Vallès, Joaquim; Rius Carrasco, Antoni; Marsal Monge, Agustín; Hauber, Christiane; Tommaselli, Michelle

    2006-01-01

    This work has been funded by the European Commission through the Chrom6less Project (CRAFT -1999-71638). The objectives of the project were: - Establishment of the analytical methodology which provided reproducible results that may be free of interferences. - Identification of the factors that facilitated or impeded the transformation of Cr(III) to Cr(VI). - Establishment of the best conditions that allowed the production of chromium(VI) free leather, even during the l...

  19. Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Lu, Anhuai; Ding, Hongrui; Yan, Yunhua; Wang, Changqiu; Zen, Cuiping; Wang, Xin [The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Jin, Song [MWH Americas, 3665 JFK Parkway, Suite 206, Fort Collins, CO 80525 (United States); Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    2009-07-15

    Cathodic reduction of hexavalent chromium (Cr(VI)) and simultaneous power generation were successfully achieved in a microbial fuel cell (MFC) containing a novel rutile-coated cathode. The selected rutile was previously characterized to be sensitive to visible light and capable of both non-photo- and photocatalysis. In the MFCs containing rutile-coated cathode, Cr(VI) was rapidly reduced in the cathode chamber in presence and absence of light irradiation; and the rate of Cr(VI) reduction under light irradiation was substantially higher than that in the dark. Under light irradiation, 97% of Cr(VI) (initial concentration 26 mg/L) was reduced within 26 h, which was 1.6 x faster than that in the dark controls in which only background non-photocatalysis occurred. The maximal potential generated under light irradiation was 0.80 vs. 0.55 V in the dark controls. These results indicate that photocatalysis at the rutile-coated cathode in the MFCs might have lowered the cathodic overpotential, and enhanced electron transfer from the cathode to Cr(VI) for its reduction. In addition, photoexcited electrons generated during the cathode photocatalysis might also have contributed to the higher Cr(VI) reduction rates when under light irradiation. This work assessed natural rutile as a novel cathodic catalyst for MFCs in power generation; particularly it extended the practical merits of conventional MFCs to cathodic reduction of environmental contaminants such as Cr(VI). (author)

  20. Electroanalytical sensing of chromium(III) and (VI) utilising gold screen printed macro electrodes.

    Science.gov (United States)

    Metters, Jonathan P; Kadara, Rashid O; Banks, Craig E

    2012-02-21

    We report the fabrication of gold screen printed macro electrodes which are electrochemically characterised and contrasted to polycrystalline gold macroelectrodes with their potential analytical application towards the sensing of chromium(III) and (VI) critically explored. It is found that while these gold screen printed macro electrodes have electrode kinetics typically one order of magnitude lower than polycrystalline gold macroelectrodes as is measured via a standard redox probe, in terms of analytical sensing, these gold screen printed macro electrodes mimic polycrystalline gold in terms of their analytical performance towards the sensing of chromium(III) and (VI), whilst boasting additional advantages over the macro electrode due to their disposable one-shot nature and the ease of mass production. An additional advantage of these gold screen printed macro electrodes compared to polycrystalline gold is the alleviation of the requirement to potential cycle the latter to form the required gold oxide which aids in the simplification of the analytical protocol. We demonstrate that gold screen printed macro electrodes allow the low micro-molar sensing of chromium(VI) in aqueous solutions over the range 10 to 1600 μM with a limit of detection (3σ) of 4.4 μM. The feasibility of the analytical protocol is also tested through chromium(VI) detection in environmental samples.

  1. Toxic hexavalent chromium reduction by Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium

    Science.gov (United States)

    Rehman, Fatima; Faisal, Muhammad

    2015-05-01

    Three bacterial strains Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium were investigated when grown in Luria-Bertani (LB) medium at 500 μg/mL Cr(VI). The hexavalent chromium reduction was measured by growing the strains in DeLeo and Ehrlich (1994) medium at 200 and 400 μg/mL K2CrO4. The optimal Cr (VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 51%, 39%, and 41%, respectively, at an initial K2CrO4 concentration of 200 μg/mL at pH 3 and temperature 37°C. At an initial chromate concentration of 400 μg/mL, the Cr(VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 24%, 19%, and 18%, respectively at pH 3 at 37°C after 24 h. These strains have ability to reduce toxic hexavalent chromium to the less mobile trivalent chromium at a wide range of different environmental conditions and can be useful for the treatment of contaminated wastewater and soils.

  2. BIOSORPTION OF CHROMIUM (VI) FROM INDUSTRIAL EFFLUENT BY WILD ANDMUTANT TYPE STRAIN OF SACCHAROMYCES CEREVISIAE AND ITS IMMOBILIZED FORM

    OpenAIRE

    K Selvam, K Arungandhi, B Vishnupriya, T Shanmuga priya and M Yamuna

    2013-01-01

    Biosorption of chromium was studied by wild type Saccharomyces cerevisiae strain, mutant strain, immobilized-wild type and mutant strain. Chromium absorption pattern was observed in all experimental conditions. Hexavalent chromium (VI) was analyzed by diphenyl carbazide method, by oxidizing the trivalent chromium (III). The percentage efficiency of wild type S. cerevisiae and its mutant strain, immobilized-wild type and mutant strain were 94.8%, 98.7%, 97.4% and 100% respectively. S. cerevisi...

  3. Effect of Chromium(VI Toxicity on Enzymes of Nitrogen Metabolism in Clusterbean (Cyamopsis tetragonoloba L.

    Directory of Open Access Journals (Sweden)

    Punesh Sangwan

    2014-01-01

    Full Text Available Heavy metals are the intrinsic component of the environment with both essential and nonessential types. Their excessive levels pose a threat to plant growth and yield. Also, some heavy metals are toxic to plants even at very low concentrations. The present investigation (a pot experiment was conducted to determine the affects of varying chromium(VI levels (0.0, 0.5, 1.0, 2.0, and 4.0 mg chromium(VI kg−1 soil in the form of potassium dichromate on the key enzymes of nitrogen metabolism in clusterbean. Chromium treatment adversely affect nitrogenase, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate dehydrogenase in various plant organs at different growth stages as specific enzyme activity of these enzymes decreased with an increase in chromium(VI levels from 0 to 2.0 mg chromium(VI kg−1 soil and 4.0 mg chromium(VI kg−1 soil was found to be lethal to clusterbean plants. In general, the enzyme activity increased with advancement of growth to reach maximum at flowering stage and thereafter decreased at grain filling stage.

  4. Bioremediation of Chromium (VI from Textile Industry’s Effluent and Contaminated Soil Using Pseudomonas putida

    Directory of Open Access Journals (Sweden)

    Deepali

    2011-01-01

    Full Text Available Nine bacterial colonies were screened for the Cr(VI removal efficiency and out of these three bacterial strains Pseudomonas putida, Pseudomonas aeruginosa and Bacillus sp. were isolated from soil and used to remove Cr(VI from aqueous solution. The effect of time and concentrations on the removal rate of hexavalent chromium were studied using batch experiment. Maximum Cr (VI removal was noted 75.0% by Bacillus sp. at 10mg/l, 69.70% by Pseudomonas aeruginosa at 40mg/l and 90.88% by Pseudomonas putida at 10mg/l of synthetic solution, during 96 hours. Among these three bacteria, the maximum Cr(VI removal was reported by Pseudomonas putida on lower concentration. On the basis of highest removal rate, Pseudomonas putida was selected and used for further chromium removal from samples. It was found to be removed the highest Cr(VI by 82.92%, from effluent and 74.41% from soil during 96 hours. The present study depicts that bacteria removes chromium efficiently and this could be used for industrial waste management and other environmental contaminants.

  5. Hexavalent chromium reduction by chromate-resistant haloalkaliphilic Halomonas sp. M-Cr newly isolated from tannery effluent

    OpenAIRE

    Mabrouk, Mona E.M.; Arayes, Mervat A.; Sabry, Soraya A.

    2014-01-01

    The current study aimed to isolate and characterize a chromate-resistant bacterium from tannery effluent, able to reduce Cr(VI) aerobically at high pH and salinity. Environmental contamination by hexavalent chromium, Cr(VI), presents a serious public health problem. Enrichment led to the isolation of 12 bacteria displaying different degrees of chromate reduction. Phenotypic characterization and phylogenetic analysis based on 16S rDNA sequence comparison indicated that the most potent strain b...

  6. Reduction U(VI) using jones reductor

    International Nuclear Information System (INIS)

    Reduction of dissolved oxide uranium in sulfuric acid use of reductor Jones Zn (Hg) was carried out. The reduced uranium sulfate solution was analyzed its U(IV) by measuring its absorbance on 652 nm and compared to oxidation U(IV) solution with KMnO4 solution. It was found that the comparison was in a good agreement. However, measuring of absorbance of U(VI) solution on 429 nm result of oxidation U(IV) with KMnO4 solution was not change. (author)

  7. Box-Behnken experimental design for chromium(VI) ions removal by bacterial cellulose-magnetite composites.

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jinga, Sorin Ion; Mihalache, Nicoleta; Botez, Adriana; Matei, Cristian; Berger, Daniela; Damian, Celina Maria; Ionita, Valentin

    2016-10-01

    In this study bacterial cellulose-magnetite composites were synthesised for the removal of chromium(VI) from aqueous solutions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and X-ray Photoelectron Spectroscopy (XPS) were used to characterize the bacterial cellulose-magnetite composites and to reveal the uniform dispersion of nanomagnetite in the BC matrix. Magnetic properties were also measured to confirm the magnetite immobilization on bacterial cellulose membrane. The effects of initial Cr(VI) concentration, solution pH and solid/liquid ratio upon chromium removal were examined using the statistical Box-Behnken Design. Because of the possibility of magnetite dissolution during chromium(VI) adsorption, the degree of iron leaching was also analysed in the same conditions as Cr(VI) adsorption. From the factors affecting chromium(VI) adsorption the most important was solution pH. The highest Cr(VI) removal efficiency was observed at pH 4, accompanied by the lowest iron leaching in the solution. The adsorption experiments also indicated that the adsorption process of chromium(VI) is well described by Freundlich adsorption model. Our results proved that the BC-magnetite composites could be used for an efficient removal of chromium(VI) from diluted solutions with a minimum magnetite dissolution during operation. PMID:27343705

  8. Evaluating the risk of chromium reoxidation in aquifer sediments following a reductive bioremediation treatment

    Science.gov (United States)

    Varadharajan, C.; Nico, P. S.; Yang, L.; Han, R.; Bill, M.; Larsen, J.; Van Hise, A.; Molins, S.; Steefel, C.; Conrad, M. E.; Lim, H.; Brodie, E. L.; Beller, H. R.

    2011-12-01

    Remediation of chromium contamination typically involves reducing the toxic and soluble hexavalent form, Cr(VI), to the relatively harmless and mostly immobile trivalent state, Cr(III). The objective of this study is to investigate the potential for reduced chromium precipitates to be remobilized under oxidizing conditions that are expected to be prevalent some time after the bioremediation treatment is completed. In an initial phase of the experiment, reduction under anaerobic conditions was observed for over 12 months by subjecting flow-through columns containing homogenized sediments from the Hanford 100H aquifer to different dominant electron acceptors, i.e. NO3-, Fe(III), or SO42-, in the presence of 5 μM Cr(VI) and 5 mM lactate. Cr(VI) was depleted in the effluent solutions of the nitrate-treated columns, all of which exhibited denitrification, as well as in sulfate-amended columns in which fermentative conditions became dominant (with a minor amount of sulfate reduction). In the second phase of the study, oxygenated water with 2 mM nitrate was flowed through the denitrifying and fermentative columns for several months, without addition of Cr(VI) or lactate. The results show that the chromium that precipitated in the denitrifying columns was steadily mobilized under the oxidizing conditions, although the concentration of Cr(VI) in the effluent remained low (effluent from the fermentative sulfate-amended column. Reducing conditions were sustained in the fermentative column despite the continuous influx of O2, as indicated by the decrease of nitrate and accumulation of nitrite, potentially due to the presence of sulfides precipitated during the initial reducing phase of the experiment. The results from this study suggest that the biogeochemical conditions present during the reductive treatment phase can substantially impact the long-term sustainability of the remediation effort.

  9. A revised model of ex-vivo reduction of hexavalent chromium in human and rodent gastric juices

    International Nuclear Information System (INIS)

    Chronic oral exposure to hexavalent chromium (Cr-VI) in drinking water has been shown to induce tumors in the mouse gastrointestinal (GI) tract and rat oral cavity. The same is not true for trivalent chromium (Cr-III). Thus reduction of Cr-VI to Cr-III in gastric juices is considered a protective mechanism, and it has been suggested that the difference between the rate of reduction among mice, rats, and humans could explain or predict differences in sensitivity to Cr-VI. We evaluated previously published models of gastric reduction and believe that they do not fully describe the data on reduction as a function of Cr-VI concentration, time, and (in humans) pH. The previous models are parsimonious in assuming only a single reducing agent in rodents and describing pH-dependence using a simple function. We present a revised model that assumes three pools of reducing agents in rats and mice with pH-dependence based on known speciation chemistry. While the revised model uses more fitted parameters than the original model, they are adequately identifiable given the available data, and the fit of the revised model to the full range of data is shown to be significantly improved. Hence the revised model should provide better predictions of Cr-VI reduction when integrated into a corresponding PBPK model. - Highlights: • Hexavalent chromium (Cr-VI) reduction in gastric juices is a key detoxifying step. • pH-dependent Cr-VI reduction rates are explained using known chemical speciation. • Reduction in rodents appears to involve multiple pools of electron donors. • Reduction appears to continue after 60 min, although more slowly than initial rates

  10. A revised model of ex-vivo reduction of hexavalent chromium in human and rodent gastric juices

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, Paul M., E-mail: schlosser.paul@epa.gov; Sasso, Alan F.

    2014-10-15

    Chronic oral exposure to hexavalent chromium (Cr-VI) in drinking water has been shown to induce tumors in the mouse gastrointestinal (GI) tract and rat oral cavity. The same is not true for trivalent chromium (Cr-III). Thus reduction of Cr-VI to Cr-III in gastric juices is considered a protective mechanism, and it has been suggested that the difference between the rate of reduction among mice, rats, and humans could explain or predict differences in sensitivity to Cr-VI. We evaluated previously published models of gastric reduction and believe that they do not fully describe the data on reduction as a function of Cr-VI concentration, time, and (in humans) pH. The previous models are parsimonious in assuming only a single reducing agent in rodents and describing pH-dependence using a simple function. We present a revised model that assumes three pools of reducing agents in rats and mice with pH-dependence based on known speciation chemistry. While the revised model uses more fitted parameters than the original model, they are adequately identifiable given the available data, and the fit of the revised model to the full range of data is shown to be significantly improved. Hence the revised model should provide better predictions of Cr-VI reduction when integrated into a corresponding PBPK model. - Highlights: • Hexavalent chromium (Cr-VI) reduction in gastric juices is a key detoxifying step. • pH-dependent Cr-VI reduction rates are explained using known chemical speciation. • Reduction in rodents appears to involve multiple pools of electron donors. • Reduction appears to continue after 60 min, although more slowly than initial rates.

  11. Improved biosorption for Cr(VI) reduction and removal by Arthrobacter viscosus using zeolite

    OpenAIRE

    Silva, Bruna Andreia Nogueira Airosa; Figueiredo, Hugo; Quintelas, C.; Neves, Isabel C.; Tavares, M.T.

    2012-01-01

    The aim of the present work was to optimize the reduction and removal of chromium from aqueous solutions by a biosorption system consisting of a bacteria supported on a zeolite. The system proposed combines the biosorption properties of Arthrobacter viscosus, with the ion exchange capacity of NaY zeolite. Experiments were also performed without the zeolite for comparison purposes. Experimental parameters such as solution pH, biomass concentration and initial Cr(VI) concentration were investig...

  12. Adsorption and desorption characteristics of imidazole-modified silica for chromium(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhike, E-mail: wzk@htu.cn; Ye, Cunling; Wang, Xueyuan; Li, Juan

    2013-12-15

    Imidazole-modified silica adsorbent with chloride as counter ion (SilprIm-Cl) was synthesized and characterized by scanning electron microscope, infrared spectra, thermogravimetric analysis, elemental analysis and BET analysis. The adsorption of chromium(VI) from aqueous solutions onto the SilprIm-Cl was investigated at varying pH, contact time, initial Cr(VI) concentration, adsorbent amount and temperature. The experimental results showed that the modification of silica with imidazole enhanced significantly the adsorption capacity for Cr(VI). The SilprIm-Cl was of primary anion-exchange adsorption nature, pH and excess Cl{sup −} ions in solutions affected significantly the adsorption of chromium(VI). The adsorption isotherms would be well defined with Langmuir model instead of Freundlich model. The adsorption process follows the pseudo-second-order kinetics. The maximum adsorption capacity of Cr(VI) of 47.79 mg g{sup −1} with an initial Cr(VI) concentration of 150 mg L{sup −1} was achieved at pH of 2.0. The adsorption–desorption experiments of the SilprIm-Cl exhibited that the adsorbent could be regenerated and reused eight times at least by simple washings with NaCl and water in turn.

  13. Reduction of hexavalent chromium by fasted and fed human gastric fluid. I. Chemical reduction and mitigation of mutagenicity.

    Science.gov (United States)

    De Flora, Silvio; Camoirano, Anna; Micale, Rosanna T; La Maestra, Sebastiano; Savarino, Vincenzo; Zentilin, Patrizia; Marabotto, Elisa; Suh, Mina; Proctor, Deborah M

    2016-09-01

    Evaluation of the reducing capacity of human gastric fluid from healthy individuals, under fasted and fed conditions, is critical for assessing the cancer hazard posed by ingested hexavalent chromium [Cr(VI)] and for developing quantitative physiologically-based pharmacokinetic models used in risk assessment. In the present study, the patterns of Cr(VI) reduction were evaluated in 16 paired pre- and post-meal gastric fluid samples collected from 8 healthy volunteers. Human gastric fluid was effective both in reducing Cr(VI), as measured by using the s-diphenylcarbazide colorimetric method, and in attenuating mutagenicity in the Ames test. The mean (±SE) Cr(VI)-reducing ability of post-meal samples (20.4±2.6μgCr(VI)/mL gastric fluid) was significantly higher than that of pre-meal samples (10.2±2.3μgCr(VI)/mL gastric fluid). When using the mutagenicity assay, the decrease of mutagenicity produced by pre-meal and post-meal samples corresponded to reduction of 13.3±1.9 and 25.6±2.8μgCr(VI)/mL gastric fluid, respectively. These data are comparable to parallel results conducted by using speciated isotope dilution mass spectrometry. Cr(VI) reduction was rapid, with >70% of total reduction occurring within 1min and 98% of reduction is achieved within 30min with post-meal gastric fluid at pH2.0. pH dependence was observed with decreasing Cr(VI) reducing capacity at higher pH. Attenuation of the mutagenic response is consistent with the lack of DNA damage observed in the gastrointestinal tract of rodents following administration of ≤180ppm Cr(VI) for up to 90days in drinking water. Quantifying Cr(VI) reduction kinetics in the human gastrointestinal tract is necessary for assessing the potential hazards posed by Cr(VI) in drinking water. PMID:27404458

  14. Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process

    International Nuclear Information System (INIS)

    In this study, suspended cerium oxide nanoparticles stabilized with hexamethylenetetramine were used for the removal of dissolved chromium VI in pure water. Several concentrations of adsorbent and adsorbate were tested, trying to cover a large range of possible real conditions. Results showed that the Freundlich isotherm represented well the adsorption equilibrium reached between nanoparticles and chromium, whereas adsorption kinetics could be modeled by a pseudo-second-order expression. The separation of chromium-cerium nanoparticles from the medium and the desorption of chromium using sodium hydroxide without cerium losses was obtained. Nanoparticles agglomeration and morphological changes during the adsorption-desorption process were observed by TEM. Another remarkable result obtained in this study is the low toxicity in the water treated by nanoparticles measured by the Microtox commercial method. These results can be used to propose this treatment sequence for a clean and simple removal of drinking water or wastewater re-use when a high toxicity heavy metal such as chromium VI is the responsible for water pollution.

  15. Hexavalent Chromium Reduction under Fermentative Conditions with Lactate Stimulated Native Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Somenahally, Anil C [ORNL; Mosher, Jennifer J [ORNL; Yuan, Tong [University of Oklahoma; Phelps, Tommy Joe [ORNL; Brown, Steven D [ORNL; Yang, Zamin Koo [ORNL; Hazen, Terry C [ORNL; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Palumbo, Anthony Vito [ORNL; Van Nostrand, Dr. Joy D. [Oklahoma University; Zhou, Jizhong [University of Oklahoma; Elias, Dwayne A [ORNL

    2013-01-01

    Microbial reduction of toxic hexavalent chromium (Cr(VI)) in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher [Cr(VI)] may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI) concentrations on community structure and on the Cr(VI)-reduction potential of groundwater communities at Hanford, WA. Steady state continuous flow bioreactors were used to grow native communities enriched with lactate (30 mM) and continuously amended with Cr(VI) at 0.0 (No-Cr), 0.1 (Low-Cr) and 3.0 (High-Cr) mg/L. Microbial growth, metabolites, Cr(VI), 16S rRNA gene sequences and GeoChip based functional gene composition were monitored for 15 weeks. Temporal trends and differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) levels were below detection from week 1 until week 15. With lactate enrichment, native bacterial diversity substantially decreased as Pelosinus spp., and Sporotalea spp., became the dominant groups, but did not significantly differ between Cr concentrations. The Archaea diversity also substantially decreased after lactate enrichment from Methanosaeta (35%), Methanosarcina (17%) and others, to mostly Methanosarcina spp. (95%). Methane production was lower in High-Cr reactors suggesting some inhibition of methanogens. Several key functional genes were distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant microbes, Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result 3.0 mg/L Cr(VI) did not impact the overall bacterial community structure.

  16. Hexavalent chromium reduction under fermentative conditions with lactate stimulated native microbial communities.

    Directory of Open Access Journals (Sweden)

    Anil C Somenahally

    Full Text Available Microbial reduction of toxic hexavalent chromium (Cr(VI in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher [Cr(VI] may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI concentrations on community structure and on the Cr(VI-reduction potential of groundwater communities at Hanford, WA. Steady state continuous flow bioreactors were used to grow native communities enriched with lactate (30 mM and continuously amended with Cr(VI at 0.0 (No-Cr, 0.1 (Low-Cr and 3.0 (High-Cr mg/L. Microbial growth, metabolites, Cr(VI, 16S rRNA gene sequences and GeoChip based functional gene composition were monitored for 15 weeks. Temporal trends and differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI levels were below detection from week 1 until week 15. With lactate enrichment, native bacterial diversity substantially decreased as Pelosinus spp., and Sporotalea spp., became the dominant groups, but did not significantly differ between Cr concentrations. The Archaea diversity also substantially decreased after lactate enrichment from Methanosaeta (35%, Methanosarcina (17% and others, to mostly Methanosarcina spp. (95%. Methane production was lower in High-Cr reactors suggesting some inhibition of methanogens. Several key functional genes were distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant microbes, Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI reduction, and as a result 3.0 mg/L Cr(VI did not impact the overall bacterial community structure.

  17. Biochemical study on the protective role of folic acid in rabbits treated with chromium (VI).

    Science.gov (United States)

    El-Demerdash, Fatma M; Yousef, Mokhtar I; Elaswad, Fathia A M

    2006-01-01

    Deleterious effects of chromium (VI) compounds are diversified affecting almost all the organ systems in a wide variety of animals. Therefore, the present study was carried out to determine the effectiveness of folic acid (FA) in alleviating the toxicity of chromium (VI) on certain biochemical parameters, lipid peroxidation, and enzyme activities of male New Zealand white rabbits. Six rabbits per group were assigned to one of four treatment groups: 0 mg FA and 0 mg Cr(VI)/kg BW (control); 8.3 microg FA/kg BW; 5 mg Cr(VI)/kg BW; 5 mg Cr(VI) plus 8.3 microg FA/kg BW, respectively. Rabbits were orally administered their respective doses every day for 10 weeks. Results obtained showed that Cr(VI) significantly (P content of sulfhydryl groups (SH groups) in liver, testes, brain, kidney, and lung. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AlP), acid phosphatase (AcP), and lactate dehydrogenase (LDH) were significantly decreased in liver and testes due to Cr(VI) administration. Also, AlP and AcP activities were significantly decreased in kidney and lung. The activity of acetylcholinesterase (AChE) was significantly decreased in brain and plasma. Contrariwise, the activities of AST and ALT were significantly increased in plasma, while AlP and AcP decreased. Chromium (VI) treatment caused a significant decrease in plasma total protein (TP) and globulin, and increased total lipids (TL), cholesterol, glucose, urea, creatinine, and bilirubin concentrations. Folic acid alone significantly decreased the levels of free radicals in liver, brain, and kidney, and increased the content of SH-group. The activities of AST, ALT, and LDH in liver; AST, ALT, AlP, AcP, and LDH in testes; AcP in kidney; AlP and AcP in lung, and LDH in brain were significantly increased. Plasma TP and albumin were increased, while urea and creatinine were decreased. The presence of FA with Cr(VI) restored the changes in enzyme activities and

  18. Cr(VI reduction by cell-free extract of thermophillic Bacillus fusiformis NTR9

    Directory of Open Access Journals (Sweden)

    Pranee Pattanapipitpaisal

    2013-08-01

    Full Text Available Residual chromium compounds in discharged effluents is a serious problem, due to hexavalent chromium or chromate[Cr(VI] being extremely toxic and showing mutagenic and carcinogenic effects on biological systems. The bacterial enzymaticCr(VI reduction can occur and this could be an effective method of detoxifying Cr(VI polluted effluent. The present studycharacterized Cr(VI reductase activity of cell-free extracts (CFE of thermophilic chromate-reducing bacteria, Bacillusfusiformis NTR9. Results showed that the optimum temperature and pH for Cr(VI reductase activity of CFE was 80°C andpH 7, respectively. The reductase activity remained at 60.34% and 26.44% after 30 minutes of exposure to 70 and 90°C,respectively, suggesting a heat stable enzyme. Moreover, the enzyme was resistant under acidic and neutral condition but itsstability was decreased under alkaline condition. The Cr(VI reductase activity of CFE was enhanced when exposed in Cu2+and Fe3+ by 188.19% and 180.38%, respectively. The Cr(VI reductase activity could be reduced to 72.19% and 8.95% in thepresence of Mn2+ and Ag+, respectively. Mg2+, Zn2+, As3+ and electron acceptors like sulfate and nitrate had no affect on Cr(VIreductase activity. The external electron donors (glucose, glycerol, citrate, malate, succinate, and acetate, but not NADHwere essential to improve the chromate reductase activity of NTR9 strain. The chromate reductase was mainly associatedwith the soluble fraction in the cytoplasm of the bacterial cell. The molecular weight of the enzyme was 20 KDa. The resultsshowed that Cr(VI reductase could be a good candidate for detoxification of Cr(VI in industrial effluents.

  19. Thermal detoxification and bloating of chromium(VI) with bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y.-L., E-mail: yulin@thu.edu.t [Department of Environmental Science and Engineering, Tunghai University, Taichung 40704, Taiwan (China); Hsieh, H.-F.; Peng, Y.-S.; Yang, J.-C. [Department of Environmental Science and Engineering, Tunghai University, Taichung 40704, Taiwan (China); Paul Wang, H. [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Sustainable Environmental Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Lin, C.-Y.; Shih, W.-L.; Hsu, C.-C. [Department of Environmental Science and Engineering, Tunghai University, Taichung 40704, Taiwan (China)

    2010-07-21

    This study stabilizes and bloats Cr(VI)-sorbed bentonite by heating at high temperature. Cr leaching decreases with increasing temperatures. Heating the sample at 1100 {sup o}C results in a non-detectable Cr concentration in the leachate, equivalent to a Cr leaching percent less than 0.001% (i.e., Cr TCLP concentration <0.018 mg of Cr L{sup -1} of leachate). Morphology observed with a scanning electron microscopy indicates the occurrence of sintering of the sample heated at 1100 {sup o}C. The heated samples also show the occurrence of a vesicant process at 1100 {sup o}C. X-ray absorption spectroscopy results indicate that heating at 500 {sup o}C for 4 h can convert approximately 87% Cr(VI) into Cr(III) that is negligibly toxic; Cr{sub 2}O{sub 3} was detected to be the most abundant Cr species. After heating at higher temperatures, namely 900-1100 {sup o}C, almost all doped Cr(VI) is reduced to Cr(III) as inferred from the height of the pre-edge peak of XANES spectra and/or from XANES simulation.

  20. CHROMIUM (VI ADSORPTION ONTO ACTIVATED KRAFT LIGNIN PRODUCED FROM ALFA GRASS (STIPA TENACISSIMA

    Directory of Open Access Journals (Sweden)

    Nassima Tazrouti

    2009-05-01

    Full Text Available Activated lignin having a surface area of 1023 m2 g-1 has been prepared from sulfate lignin that was treated by 30% H2O2 and carbonized at 300 °C in order to test the chromium (VI adsorption from aqueous solution. The influence of contact time, pH, initial concentrations of adsorbent and adsorbate, and temperature on the adsorption capacity were investi-gated. The maximum removal of Cr(VI was found to be 92.36 % at pH=2 and a contact time of 80 min. Optimal concentration of lignin and Cr(VI were found to be 3.8 g L-1 and 180 mg L-1, respectively. The adsorption kinetics data fitted well with a pseudo-second-order equation, and the rate of removal of chromium was found to speed up with increasing temperature. Activation energy for the adsorption process was found to be 18.19 kJ mol-1. The Langmuir and Freundlich adsorption isotherm models were applied to describe the isotherm and isotherm constants for the adsorption of Cr (VI on lignin. These constants and correlation coefficients of the isotherm models were calculated and compared. Results indicated that Cr (VI uptake could be described by the Langmuir adsorption model. The maximum adsorption capacity (qm of Cr (VI on lignin was 75.75 mg g-1 at 40°C. The dimensionless equilibrium parameter (RL signified a favorable adsorption of Cr (VI on lignin and was found to be between 0.0601 and 0.818 (0VI from waste water.

  1. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.

    Science.gov (United States)

    Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi

    2015-11-01

    Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.

  2. Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron.

    Science.gov (United States)

    Di Palma, L; Gueye, M T; Petrucci, E

    2015-01-01

    Iron sulphate (FeSO4) and colloidal nano zero-valent iron (nZVI) as reducing agents were compared, with the aim of assessing their effectiveness in hexavalent chromium [Cr(VI)] removal from a contaminated industrial soil. Experiments were performed on soil samples collected from an industrial site where a nickel contamination, caused by a long-term productive activity, was also verified. The influence of reducing agents amount with respect to chromium content and the effectiveness of deoxygenation of the slurry were discussed. The soil was fully characterized before and after each test, and sequential extractions were performed to assess chemico-physical modifications and evaluate metals mobility induced by washing. Results show that both the reducing agents successfully lowered the amount of Cr(VI) in the soil below the threshold allowed by Italian Environmental Regulation for industrial reuse. Cr(VI) reduction by colloidal nZVI proved to be faster and more effective: the civil reuse of soil [Cr(VI)<2mg/kg] was only achieved using colloidal nZVI within 60min adopting a nZVI/Cr(VI) molar ratio of 30. The reducing treatment resulted in an increase in the amount of chromium in the oxide-hydroxide fraction, thus confirming a mechanism of chromium-iron hydroxides precipitation. In addition, a decrease of nickel (Ni) and lead (Pb) content in soil was also observed when acidic conditions were established. PMID:25139286

  3. Reduction of chromium oxide from slags

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Paredes, J.

    2005-12-01

    Full Text Available Experimental and theoretical work were performed to estimate the effect of slag basicity and amount of reducing agents on the reduction of chromium oxide from the slag which interacted with molten steel at 1,600 °C. The slag system contained CaO, MgO, SiO2, CaF2 and Cr2O3 together with Fe-alloys (Fe-Si and Fe-Si-Mg. The CaF2 and MgO contents in the slags were 10 mass % each; Cr2O3 was 25%. The amount of the ferroalloys ranged from 12.5 to 50 g per 100 g of slag. The (CaO+MgO/SiO2 ratio was held at 1 and 2. The Cr yield was determined using both Fe-alloys as reducing agents. Some estimations were made to determine the theoretical effect of temperature, slag basicity, (CaO+MgO/SiO2, and amount of reducing agents in the slag on the chromium recovery. The FACT (Facility for the Analysis of Chemical Thermodynamics computational package is used to determine the equilibrium between the slag and molten steel.

    En el presente trabajo se realiza un estudio teórico y experimental para determinar el efecto de la basicidad de la escoria y la cantidad de agentes reductores sobre la reducción de óxidos de cromo contenidos en la escoria, la cual está en contacto con acero líquido a 1.600 °C. La escoria se prepara con los reactivos CaO, MgO, SiO2, CaF2 y ferroaleaciones (Fe-Si y Fe-Si-Mg. Los contenidos de CaF2 y MgO en la escoria son de 10 %, cada uno, y el de Cr2O3 es 25 %. La cantidad de la ferroaleación varía de 12,5 a 50 g por cada 100 g de escoria. La relación (CaO+MgO/SiO2 tiene los valores de 1 y 2. Se determina la eficiencia de recuperación de cromo empleando los dos tipos de ferroaleaciones. Se realizaron cálculos para determinar el efecto teórico de la temperatura, la basicidad de la escoria, (CaO+MgO/SiO2, y la cantidad de agentes reductores sobre la reducci

  4. Transcriptomic Analysis of Cultured Whale Skin Cells Exposed to Hexavalent Chromium [Cr(VI)

    OpenAIRE

    Pabuwal, Vagmita; Boswell, Mikki; Pasquali, Amanda; Wise, Sandra S.; Kumar, Suresh; Shen, Yingjia; Garcia, Tzintzuni; LaCerte, Carolyne; Wise, John Pierce; Warren, Wesley; Walter, Ronald B.

    2013-01-01

    Hexavalent chromium Cr(VI) is known to produce cytotoxic effects in humans and is a highly toxic environmental contaminant. Interestingly, it has been shown that free ranging sperm whales (Phyester macrocephalus) may have exceedingly high levels of Cr in their skin. Also, it has been demonstrated that skin cells from whales appear more resistant to both cytotoxicity and clastogenicity upon Cr exposure compared to human cells. However, the molecular genetic mechanisms employed in whale skin ce...

  5. A Comprehensive Review on Nickel (II And Chromium VI Toxicities - Possible Antioxidant (Allium Sativum Linn Defenses

    Directory of Open Access Journals (Sweden)

    Kusal K.Das

    2009-12-01

    Full Text Available The toxicity associated with nickel (II and chromium (VI is mainly due to generation of reactive oxygen species (ROS with subsequent oxidative deterioration of biological macromolecules. Both nickel and chromium can generate free radicals (FR directly from molecular oxygen in a two step process to produce superoxide anion and in continued process, produce highly toxic hydroxyl radical. The pro-oxidative effects are compounded by fact that they also inhibit antioxidant enzymes and deplete intracellular glutathione. Garlic (Allium sativum has played an important dietary and medicinal role throughout the history of mankind. Garlic has the potential to enhance the endogenous antioxidant status in nickel as well as hexavalent chromium induced lipid peroxidation in normal and diabetic rats.

  6. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens

    Directory of Open Access Journals (Sweden)

    Thompson Vicki S

    2006-01-01

    Full Text Available Abstract Background Chromium is a transition metal most commonly found in the environment in its trivalent [Cr(III] and hexavalent [Cr(VI] forms. The EPA maximum total chromium contaminant level for drinking water is 0.1 mg/l (0.1 ppm. Many water sources, especially underground sources, are at low temperatures (less than or equal to 15 Centigrade year round. It is important to evaluate the possibility of microbial remediation of Cr(VI contamination using microorganisms adapted to these low temperatures (psychrophiles. Results Core samples obtained from a Cr(VI contaminated aquifer at the Hanford facility in Washington were enriched in Vogel Bonner medium at 10 Centigrade with 0, 25, 50, 100, 200, 400 and 1000 mg/l Cr(VI. The extent of Cr(VI reduction was evaluated using the diphenyl carbazide assay. Resistance to Cr(VI up to and including 1000 mg/l Cr(VI was observed in the consortium experiments. Reduction was slow or not observed at and above 100 mg/l Cr(VI using the enrichment consortium. Average time to complete reduction of Cr(VI in the 30 and 60 mg/l Cr(VI cultures of the consortium was 8 and 17 days, respectively at 10 Centigrade. Lyophilized consortium cells did not demonstrate adsorption of Cr(VI over a 24 hour period. Successful isolation of a Cr(VI reducing organism (designated P4 from the consortium was confirmed by 16S rDNA amplification and sequencing. Average time to complete reduction of Cr(VI at 10 Centigrade in the 25 and 50 mg/l Cr(VI cultures of the isolate P4 was 3 and 5 days, respectively. The 16S rDNA sequence from isolate P4 identified this organism as a strain of Arthrobacter aurescens, a species that has not previously been shown to be capable of low temperature Cr(VI reduction. Conclusion A. aurescens, indigenous to the subsurface, has the potential to be a predominant metal reducer in enhanced, in situ subsurface bioremediation efforts involving Cr(VI and possibly other heavy metals and radionuclides.

  7. Adsorption Studies of Chromium(VI) on Activated Carbon Derived from Mangifera indica (Mango) Seed Shell

    Science.gov (United States)

    Mise, Shashikant; Patil, Trupti Nagendra

    2015-09-01

    The removal of chromium(VI) from synthetic sample by adsorption on activated carbon prepared from Mangifera indica (mango) seed shell have been carried out at room temperature 32 ± 1 °C. The removal of chromium(VI) from synthetic sample by adsorption on two types of activated carbon, physical activation and chemical activation (Calcium chloride and Sodium chloride), Impregnation Ratio's (IR) 0.25, 0.50, 0.75 for optimum time, optimum dosages and variation of pH were studied. It is observed that contact time differs for different carbons i.e. for physically and chemically activated carbons. The contact time decreases for chemically activated carbon compared to the physically activated carbon. It was observed that as dosage increases the adsorption increased along with the increase in impregnation ratio. It was also noted that as I.R. increases the surface area of Mangifera indica shell carbon increased. These dosage data were considered in the construction of isotherms and it was found that adsorption obeys Freundlich Isotherm and does not obey Langmuir Isotherm. The maximum removal of chromium (VI) was obtained in highly acidic medium at a pH of 1.50.

  8. Reduction of Cr(VI) to Cr(III) by green rust - sulphate

    Science.gov (United States)

    Skovbjerg, L.; Stipp, S.

    2003-04-01

    Chromium is widely used in industrial processes such as leather tanning, electro-plating and as colour pigments. Unfortunately, hexavalent chromium is both toxic and very soluble so it can be a problem for groundwater resources. Given the right redox conditions, however, Cr(VI) can be reduced to trivalent chromium, which is much less soluble and is an essential trace nutrient. Fe(II), an element common in soil and sediments under anaerobic conditions, can serve as a reducing agent for Cr(VI). Green Rust (GR) is a layered Fe(II),Fe(III)-hydroxide with various anions compensating charge in the interlayers. It is very effective in reducing Cr(VI) to Cr(III). GR exists in nature and is thought to be precursor for the formation of Fe(III)-oxides and oxyhydroxides at the redox boundary. It may be that the formation of GR is a key process in the effectiveness of reactive barriers for groundwater remediation that are based on Fe(0). The purpose of this work is to investigate the mechanisms controlling Cr(VI) reduction by Green Rust, to examine the effect of Cr adsorption and incorporation on GR morphology and composition, and to define the role of parameters such as interlayer anion, initial Cr(VI) concentration and time. We are using freshly synthesised material that has not been dried to avoid structural changes that may accompany dehydration and rehydration. X-Ray Diffraction (XRD) is used to characterise mineral structural changes and Atomic Force Microscopy (AFM), to examine changes in morphology as reactions take place. By adjusting the concentration of Cr(VI), we can control the rate of surface change and we can observe the nanoscale particles directly.

  9. Chromium reduction from slag on electromelting of stainless steel

    International Nuclear Information System (INIS)

    Specific features of chromium reduction from the slag on electromelting of stainless steel type Kh18N10T according to one- or two-slag procedure were studied. It was shown that one-slag melting technology allows double decrease of chromium losses in the form of incompletely reduced oxides. This occurs due to additional chemical reactions between metal and slag on their combined pouring into the ladle. 1 ref.; 3 figs

  10. Novel reduction of Cr(VI) from wastewater using a naturally derived microcapsule loaded with rutin-Cr(III) complex.

    Science.gov (United States)

    Qi, Yun; Jiang, Meng; Cui, Yuan-Lu; Zhao, Lin; Liu, Shejiang

    2015-03-21

    The harmfulness of carcinogenic hexavalent chromium (Cr(VI)) is dramatically decreased when Cr(VI) is reduced to trivalent chromium (Cr(III)). Rutin, a natural flavonoid, exhibits excellent antioxidant activity by coordinating metal ions. In this study, a complex containing rutin and Cr(III) (rutin-Cr(III)) was synthesized and characterized. The rutin-Cr(III) complex was much easier to reduce than rutin. The reduction of the rutin-Cr(III) complex was highly pH-dependent, with 90% of the Cr(VI) being reduced to Cr(III) in 2h under optimal conditions. A biodegradable, sustained-release system encapsulating the rutin-Cr(III) complex in a alginate-chitosan microcapsule (rutin-Cr(III) ACMS) was also evaluated, and the reduction of Cr(VI) was assessed. This study also demonstrated that low-pH solutions increased the reduction rate of Cr(VI). The environmentally friendly microcapsules can reduce Cr(VI) for prolonged periods of time and can easily biodegrade after releasing the rutin-Cr(III) complex. Given the excellent performance of rutin-Cr(III) ACMS, the microcapsule system represents an effective system for the remediation of Cr(VI) pollution.

  11. Chromium(VI) stimulates Fyn to initiate innate immune gene induction in human airway epithelial cells

    Science.gov (United States)

    Nemec, Antonia A.; Zubritsky, Lindsey M.; Barchowsky, Aaron

    2009-01-01

    Mechanisms for pathogenic metal signaling in airway injury or disease promotion are poorly understood. It is widely believed that one mechanism for pathogenic and possible carcinogenic effects of inhaled chromium (Cr(VI)) is inhibition of inducible gene transactivation. However, we recently reported that Cr(VI) inhibition of Sp1-dependent transactivation required signal transducer and activator of transcription 1 (STAT1)-dependent expression of an inhibitory protein in airway epithelium. Thus, Cr(VI) exposures can induce genes and we hypothesized this induction resulted from Cr(VI) signaling through an innate immune-like STAT1-dependent pathway initiated by Fyn. Exposure of human airway epithelial (BEAS-2B) cells to Cr(VI) selectively transactivated STAT-responsive interferon-stimulated response element (ISRE) and induced ISRE-driven transactivation of interferon regulatory factor 7 (IRF7), without affecting the gamma interferon-activated site (GAS)-driven IRF1 expression. Cr(VI)-induced IRF7 was absent or greatly reduced in cells that lacked STAT1, were treated with the Src family kinase inhibitor, PP2, or lacked Fyn. Expressing Fyn, but not Src, in mouse embryonic fibroblasts cells null for Src, Yes, and Fyn restored Cr(VI)-stimulated STAT1 tyrosine phosphorylation and IRF7 expression. Finally, shRNA knockdown of Fyn in BEAS-2B cells prevented Cr(VI)-activated STAT1 transactivation of IRF7. These data support a novel mechanism through which Cr(VI) stimulates Fyn to initiate interferon-like signaling for STAT1-dependent gene transactivation. PMID:19994902

  12. The role of intracellular zinc in chromium(VI)-induced oxidative stress, DNA damage and apoptosis.

    Science.gov (United States)

    Rudolf, Emil; Cervinka, Miroslav

    2006-09-25

    Several studies have demonstrated that zinc is required for the optimal functioning of the skin. Changes in intracellular zinc concentrations have been associated with both improved protection of skin cells against various noxious factors as well as with increased susceptibility to external stress. Still, little is known about the role of intracellular zinc in hexavalent chromium (Cr(VI))-induced skin injury. To address this question, the effects of zinc deficiency or supplementation on Cr(VI)-induced cytotoxicity, oxidative stress, DNA injury and cell death were investigated in human diploid dermal fibroblasts during 48 h. Zinc levels in fibroblasts were manipulated by pretreatment of cells with 100 microM ZnSO4 and 4 or 25 microM zinc chelator TPEN. Cr(VI) (50, 10 and 1 microM) was found to produce time- and dose-dependent cytotoxicity resulting in oxidative stress, suppression of antioxidant systems and activation of p53-dependent apoptosis which is reported for the first time in this model in relation to environmental Cr(VI). Increased intracellular zinc partially attenuated Cr(VI)-induced cytotoxicity, oxidative stress and apoptosis by enhancing cellular antioxidant systems while inhibiting Cr(VI)-dependent apoptosis by preventing the activation of caspase-3. Decreased intracellular zinc enhanced cytotoxic effects of all the tested Cr(VI) concentrations, leading to rapid loss of cell membrane integrity and nuclear dispersion--hallmarks of necrosis. These new findings suggest that Cr(VI) as a model environmental toxin may damage in deeper regions residing skin fibroblasts whose susceptibility to such toxin depends among others on their intracellular Zn levels. Further investigation of the impact of Zn status on skin cells as well as any other cell populations exposed to Cr(VI) or other heavy metals is warranted.

  13. Antioxidant Activity of Lawsonia inermis Extracts Inhibits Chromium(VI-Induced Cellular and DNA Toxicity

    Directory of Open Access Journals (Sweden)

    Gunjan Guha

    2011-01-01

    Full Text Available Hexavalent chromium Cr(VI is a very strong oxidant which consequently causes high cytotoxicity through oxidative stress. Prevention of Cr(VI-induced cellular damage has been sought in this study in aqueous and methanolic extracts of Lawsonia inermis Linn. (Lythraceae, commonly known as Henna. The extracts showed significant (P < .05 potential in scavenging free radicals (DPPH• and ABTS•+ and Fe3+, and in inhibiting lipid peroxidation. DNA damage caused by exposure of pBR322 to Cr(VI-UV is markedly inhibited by both extracts in varying degrees. A distinct decline in Cr(VI-induced cytotoxicity was noticed in MDA-MB-435S (human breast carcinoma cells with an increase in dosage of both extracts individually. Furthermore, both extracts proved to contain a high content of phenolic compounds which were found to have a strong and significant (P < .05 positive correlation to the radical scavenging potential, lipid peroxidation inhibition capacity and cyto-protective efficiency against Cr(VI-induced oxidative cellular damage. HPLC analysis identified some of the major phenolic compounds in both extracts, which might be responsible for the antioxidant potential and the properties of DNA and cyto-protection. This study contributes to the search for natural resources that might yield potent therapeutic drugs against Cr(VI-induced oxidative cell damage.

  14. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI by an indigenously isolated bacterial strain

    Directory of Open Access Journals (Sweden)

    Das Alok

    2010-01-01

    Full Text Available Background : Hexavalent chromium [Cr(VI], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter. Materials and Methods: Our investigation involved microbial remediation of Cr(VI without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30oC. At about 50 mg/L initial Cr(VI concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI.

  15. Reduction of Cr(VI) and survival in Cr-contaminated sites by Caulobacter crescentus

    Science.gov (United States)

    Hu, P.; Chakraborty, R.; Brodie, E. L.; Andersen, G. L.; Hazen, T. C.

    2008-12-01

    The Caulobacter spp. is known to be able to live in low-nutrient environments, a characteristic of most heavy metal-contaminated sites. Recent studies have shown that Caulobacter crescentus can grow in chemically defined medium containing up to 1 mM uranium. Whole-genome transcriptional analysis and electron microscopic imaging of heavy metal stresses in Caulobacter crescentus also provided insight and evidence that the bacterium used an array of defensive mechanisms to deal with heavy metal stresses. In addition to up-regulated enzymes protecting against oxidative stress, DNA repair and down-regulated potential chromium transport, one of the major gene groups respond to chromium stress is "electron transport process and cytochrome oxidases", including cytochrome c oxidases, raising the possibility that the cells can employ the cytochromes to reduce chromium. Analysis of the microbial community at the chromium contaminated DOE site at Hanford, WA revealed the presence of Caulobacter spp. As an oligotroph, Caulobacter can play a significant role in chromium reduction in the environment where the nutrients are limited. This result was confirmed by both 16S rDNA based microarray (Phylochip) as well as by MDA-based clone library data. Based on these results we further investigated the capability of this organism to reduce Cr(VI) using the well known model strain Caulobacter crescentus CB15N. Preliminary cell suspension experiments were set up with glucose as the electron donor and Cr(VI) as the electron acceptor in phosphate based M2 salts buffer. After 22 hours almost 27% of Cr(VI) was reduced in the incubations containing active cells relative to the controls containing heat killed cells. Also, in another set of controls with no electron acceptor added, cells showed no increase in cell density during that time demonstrating that the reduction of Cr(VI) by cells of Caulobacter was due to biological activity. Future experiments will investigate the components

  16. Ultrasound-assisted cloud point extraction for speciation and indirect spectrophotometric determination of chromium(III) and (VI) in water samples

    Science.gov (United States)

    Hashemi, Mahdi; Daryanavard, Seyed Mosayeb

    Ultrasound-assisted cloud point extraction (UACPE) procedure was developed for speciation and indirect spectrophotometric determination of chromium(III) and (VI) in environmental water samples. The method is based on the reduction of Cr(VI) by iodide in acidic media and subsequently formation of I3- anion. The I3- formed can further react with cetyltrimethylammonium bromide (CTAB) and induce its clouding due to formation of an ion-association complex. The formed complex was separated from solution and dissolved in ethanol for spectrophotometric measurement. Cerium(IV) ammonium sulphate was chosen as an oxidizing reagent for pre-oxidation step of Cr(III) to Cr(VI) species before the addition of iodide to the system, up to chromium in trivalent can be determined by the procedure. Experimental parameters for both spectrophotometric reaction and extraction procedure have been optimized. Under optimized conditions Cr(VI) can be determined in the range 20-400 ng mL-1 (R2 = 0.999). Detection limit, preconcentration factor and relative standard deviation were 12 ng mL-1, 20.0 and 2.2% (n = 5), respectively with 10 mL sample volumes. The proposed method has been successfully applied for determination of chromium(V) in spiked water, synthetic seawater and electroplating wastewater samples with average recoveries of 100.1, 99.4 and 99.1%, respectively.

  17. Spectrophotometric Quantification of Toxicologically Relevant Concentrations of Chromium(VI in Cosmetic Pigments and Eyeshadow Using Synthetic Lachrymal Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Sarah Wurster

    2012-01-01

    Full Text Available Chromium(VI salts are possible contaminants of the chromium(III pigments used as colorants in eyeshadow preparations. The use of products containing these contaminants poses acute risks for sensitization and contact allergies. Chromium(VI compounds are also classified as carcinogenic to humans (IARC group 1. An analytical method to analyse trace levels of chromium(VI in eyeshadow was developed in this study. The method is based on an extraction of the chromium(VI from the sample using a maximum extraction with alkali and additionally with synthetic lachrymal fluid to simulate physiological conditions. Following derivatization with 1,5-diphenylcarbazide, the extracted chromium(VI is then quantified by spectrophotometry (540 nm. Validation tests indicated a method standard deviation (inter- and intraday of 8.7% and a linear range up to 25 mg/kg. The average recovery was 107.9%, and the detection limit was 2.7 mg/kg. The applicability of the procedure was confirmed by the analysis of pigments and authentic eyeshadow matrices.

  18. Remoción de Cromo (VI por una Cepa de Paecilomyces sp Resistente a Cromato Removal of Chromium (VI in a Chromate-Resistant Strain of Paecilomyces sp

    Directory of Open Access Journals (Sweden)

    Juan F Cárdenas-González

    2011-01-01

    Full Text Available Se analizó la capacidad de remoción de Cr(VI de una cepa de Paecilomyces sp. Cuando el hongo se incubó en medio mínimo con glucosa y otras fuentes de carbono comerciales y de bajo costo, como azúcar moscabada y piloncillo ó glicerol, en presencia de 50 mg/L de Cr(VI, removió totalmente el Cr(VI. La reducción a Cr(III ocurre en el medio de cultivo después de 7 días de incubación a 28°C, pH 4.0, y un inoculo de 38 mg. El hongo también redujo eficientemente la concentración de Cr(VI a partir de tierra contaminada. Los resultados indican que la cepa de Paecilomyces sp tiene la capacidad de reducir Cr(VI a Cr(III, y por lo tanto puede utilizarse para eliminar la contaminación por Cr(VI.The ability to reduce chromium (VI by a fungal strain of Paecilomyces sp was studied. When it was incubated in minimal medium with glucose and other inexpensive commercial carbon sources such as unrefined and brown sugar or glycerol, in the presence of 50 mg/L of Cr(VI, the strain caused complete removal of Cr(VI. The reduction to Cr (III occurs in the growth medium after 7 days of incubation, at 28°C, pH 4.0, and inoculum of 38 mg. Also, the fungi efficiently reduced the concentration of Cr(VI from contaminated soil wastes. The results indicate that the fungal strain of Paecilomyces sp has the capacity of reducing Cr(VI to Cr(III, and therefore it could be useful for the removal of Cr(VI pollution.

  19. Synthesis and characterization of polyaniline/zeolite nanocomposite for the removal of chromium(VI from aqueous solution

    Directory of Open Access Journals (Sweden)

    Abdulsalam A. Shyaa

    2015-01-01

    Batch adsorption experiments were used to investigate the effect of various experimental parameters on the equilibrium adsorption of chromium(VI on PANI/zeolite nanocomposite. The adsorption characteristics of the composite toward Cr(VI in dilute aqueous solution were followed spectrophotometrically. The effect of contact time, size of the sorbent and the concentration of Cr(VI in solution on the metal uptake behavior of the composite were studied. It has been observed that the capacity of chromium adsorption on PANI/zeolite increases with initial metal concentration, the metal ion adsorption on surfactant is well represented by the Freundlich isotherm.

  20. Cr(VI) adsorption and reduction by humic acid coated on magnetite.

    Science.gov (United States)

    Jiang, Wenjun; Cai, Quan; Xu, Wei; Yang, Mingwei; Cai, Yong; Dionysiou, Dionysios D; O'Shea, Kevin E

    2014-07-15

    Easily separable humic acid coated magnetite (HA-Fe3O4) nanoparticles are employed for effective adsorption and reduction of toxic Cr(VI) to nontoxic Cr(III). The adsorption and reduction of Cr(VI) is effective under acidic, neutral, and basic pH conditions. The chromium adsorption nicely fits the Langmuir isotherm model, and the removal of Cr(VI) from aqueous media by HA-Fe3O4 particles follows pseudo-second-order kinetics. Characterization of the Cr-loaded HA-Fe3O4 materials by X-ray absorption near edge structure spectroscopy (XANES) indicates Cr(VI) was reduced to Cr(III) while the valence state of the iron core is unchanged. Fe K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray diffraction measurements also indicate no detectable transformation of the Fe3O4 core occurs during Cr(VI) adsorption and reduction. Thus, suggesting HA on the surface of HA-Fe3O4 is responsible for the reduction of Cr(VI) to Cr(III). The functional groups associated with HA act as ligands leading to the Cr(III) complex via a coupled reduction-complexation mechanism. Cr K-edge EXAFS demonstrates the Cr(III) in the Cr-loaded HA-Fe3O4 materials has six neighboring oxygen atoms likely in an octahedral geometry with average bond lengths of 1.98 Å. These results demonstrate that easily separable HA-Fe3O4 particles have promising potential for removal and detoxification of Cr(VI) in aqueous media.

  1. Bio-reduction of Cr(VI) by exopolysaccharides (EPS) from indigenous bacterial species of Sukinda chromite mine, India.

    Science.gov (United States)

    Harish, R; Samuel, Jastin; Mishra, R; Chandrasekaran, N; Mukherjee, A

    2012-07-01

    Chrome mining activity has contributed intensively towards pollution of hexavalent chromium around Sukinda Valley, Orissa, India. In an attempt to study the specific contribution of exopolysaccharides (EPS) extracted from indigenous isolates towards Cr(VI) reduction, three chromium (VI) tolerant strains were isolated from the effluent mining sludge. Based on the tolerance towards Cr(VI) and EPS production capacity, one of them was selected for further work. The taxonomic identity of the selected strain was confirmed to be Enterobacter cloacae (showing 98% similarity in BLAST search to E. cloacae) through 16S rRNA analysis. The EPS production was observed to increase with increasing Cr(VI) concentration in the growth medium, highest being 0.078 at 100 mg/l Cr(VI). The extracted EPS from Enterobacter cloacae SUKCr1D was able to reduce 31.7% of Cr(VI) at 10 mg/l concentration, which was relevant to the prevailing natural concentrations at Sukinda mine effluent sludge. The FT-IR spectral studies confirmed the surface chemical interactions of hexavalent chromium with EPS.

  2. A spectrophotometric study of cerium IV and chromium VI species in nuclear fuel reprocessing process streams

    Science.gov (United States)

    Nickson, I. D.; Boxall, C.; Jackson, A.; Whillock, G. O. H.

    2010-03-01

    Nuclear fuel reprocessing schemes such as PUREX and UREX utilise HNO3 media. An understanding of the corrosion of process engineering materials such as stainless steel in such media is a major concern for the nuclear industry. Two key species are cerium and chromium which, as Ce(IV), Cr(VI), may act as corrosion accelerants. An on-line analytical technique for these quantities would be useful for determining the relationship between corrosion rate and [Ce(IV)] and [Cr(VI)]. Consequently, a strategy for simultaneous quantification of Ce(IV), Cr(VI) and Cr(III) in the presence of other ions found in average burn-up Magnox / PWR fuel reprocessing stream (Fe, Mg, Nd, Al) is being developed. This involves simultaneous UV-vis absorbance measurement at 620, 540, 450 nm, wavelengths where Ce and Cr absorb but other ions do not. Mixed solutions of Cr(VI) and Ce(IV) are found to present higher absorbance values at 540 nm than those predicted from absorbances recorded from single component solutions of those ions. This is attributed to the formation of a 3:1 Cr(VI)-Ce(IV) complex and we report on the complexation and UV-visible spectrophotometric characteristics of this species. To the best of our knowledge this is the first experimental study of this complex in aqueous nitric acid solution systems.

  3. Selective extraction of chromium (VI) from multicomponent acidic solutions by emulsion liquid membranes using tributhylphosphate as carrier

    International Nuclear Information System (INIS)

    The facilitated extraction of Cr(VI) through an emulsion liquid membrane (ELM) was investigated, using tributyl phosphate (TBP) as mobile carrier. The emulsion liquid membrane phase consists of kerosene as diluent, TBP as carrier, SPAN 80 as surfactant and (NH4)2CO3 solution as stripping phase. The extraction of chromium (VI) has been studied under various experimental conditions and have been determined the influences of surfactant concentration, extractant concentration, stripping solution base concentration, mixing speed, phase ratio, treatment ratio, chromium (VI) and HCl concentrations of the feed solution. It was observed that the extraction rate of Cr(VI) was affected by changes of surfactant concentration, extractant concentration, stripping solution base concentration, and mixing speed. The results obtained showed that by appropriate selection of the extraction and stability conditions, nearly all of chromium (VI) ions present in the feed solution were extracted within 2-4 min. The separation factors of chromium (VI) with respect to cobalt, nickel, copper, cadmium and zinc ions, based on initial feed concentration, have experimentally determined.

  4. "Involvement of metabolic reactive intermediate Cr (IV in Chromium (VI cytotoxic effects "

    Directory of Open Access Journals (Sweden)

    Pourahmad J

    2001-08-01

    Full Text Available Addition of Cr VI (dichromate to isolated rat hepatocytes results in rapid glutathione oxidation, reactive oxygen species (ROS formation, lipid peroxidation, decreased mitochondrial membrane potential and lysosomal membrane rupture before hepatocyte lysis occurred. Cytotoxicity was prevented by ROS scavengers, antioxidants, and glutamine (ATP generator. Hepatocyte dichlorofluorescin oxidation to dichlorofluorescein (DCF to determine ROS formation was inhibited by mannitol (a hydroxyl radical scavenger or butylated hydroxyanisole and butylated hydroxytoluene (antioxidants. The Cr VI reductive mechanism required for toxicity is not known. Cytochrome P450 inhibitors, Particularly CYP 2E1 inhibitors, but not inhibitors of DT diaphorase or glutathione reductase also prevented cytotoxicity. This suggests that P450 reductase and/or reduced cytochrome P450 contributes to Cr VI reduction to Cr IV. Glutathione depleted hepatocytes were resistant to Cr (VI toxicity and much less dichlorofluorescin oxidation occurred. Reduction of dichromate by glutathione or cysteine in vitro was also accompanied by oxygen uptake and was inhibited by Mn II (a Cr IV reductant. Cr VI induced cytotoxicity and ROS formation was also inhibited by Mn II, which suggests that, Cr IV and Cr IV GSH mediate "ROS" formation in isolated hepatocytes. In conclusion Cr VI cytotoxicity is associated with mitochondrial/lysosomal toxicity by the metabolic reactive intermediate Cr IV and “ROS”.

  5. Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatment

    OpenAIRE

    Trivedi, Mahendra; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal

    2015-01-01

    Chromium (VI) oxide (CrO3) has gained extensive attention due to its versatile physical and chemical properties. The objective of the present study was to evaluate the impact of biofield treatment on physical, thermal and structural properties of CrO3 powder. In this study, CrO3 powder was divided into two parts i.e. control and treatment. Control part was remained as untreated and treated part received Mr. Trivedi’s biofield treatment. Subsequently, control and treated CrO3 samples were char...

  6. Photocatalytic reduction of hexavalent chromium at gold nanoparticles modified titania nanotubes

    International Nuclear Information System (INIS)

    N-[3-(Trimethoxysilyl)propyl]ethylenediamine (EDAS) silicate supported titanium dioxide nanotubes-gold ((TiO2 NTs-Au)NCM) nanocomposite material (EDAS/(TiO2 NTs-Au)NCM) was prepared by deposition–precipitation method and characterized by diffuse reflectance spectra, X-ray diffraction pattern, Brunauer–Emmett–Teller surface area analysis, transmission electron micrographs, scanning electron micrographs and energy-dispersive X-ray spectra analysis. The photocatalytic activity of the EDAS/(TiO2 NTs-Au)NCM in the film form was investigated towards the reduction of toxic hexavalent chromium (Cr(VI)) into trivalent chromium (Cr(III)) in the presence of oxalic acid as an electron donor. The EDAS/(TiO2 NTs-Au)NCM film exhibited higher photocatalytic activity when compared to the photocatalytic activities of pristine TiO2 nanoparticles and TiO2 nanotubes (TiO2 NTs) which can be attributed to the effective photoinduced interfacial charge transfer from the (TiO2 NTs-Au)NCM to Cr(VI) through Au nanoparticles (Aunps). The Aunps present in the TiO2 NTs act as an electron sink for the photogenerated electrons that minimizes the charge recombination process at the TiO2 NTs. The Aunps on the TiO2 NTs surface facilitates the transfer of photogenerated electrons to the Cr(VI) leading to the formation of Cr(III) ions. - Highlights: • Gold modified titania nanotubes are used to design solid-phase photocatalyst. • Gold nanoparticles deposition increases the surface area of titania nanotubes. • Gold on titania nanotubes improves the photocatalytic reduction of Cr(VI). • The holes produced at the titania nanotubes are scavenged by oxalic acid. • Gold modified titania nanotubes is a potential candidate for treatment of heavy metals

  7. Hexavalent chromium [Cr(VI)] removal by the electrochemical ion-exchange process.

    Science.gov (United States)

    Dharnaik, Amit Shivputra; Ghosh, Pranab Kumar

    2014-01-01

    In the present investigation, the performance of a laboratory-scale plate and frame-type electrochemical ion-exchange (EIX) cell on removal ofhexavalent chromium from synthetic wastewater containing 5 mg/l of Cr(VI) was evaluated under varying applied voltages. Ruthenium dioxide-coated titanium plate (RuO2/Ti) was used as anode and stainless steel plates as cathode. The EIX cell was run at different hydraulic retention time (HRT). Before using in the electrochemical cell, the capacity of ion-exchange resin was evaluated through kinetic and isotherm equilibrium tests in batch mode. The batch kinetic study result showed that the equilibrium time for effective ion exchange with resin is 2 h. The isotherm equilibrium data fit well to both Freundlich and Langmuir isotherms. Maximum capacity (qm) of resin calculated from Langmuir isotherm was 71.42 mg/g. Up to 99% of chromium removal was noticed in the EIX cell containing fresh resin at applied voltages of 10 V and higher. Migration of chromium ion to anode chamber was not noticed while performing the experiment with fresh resin. As high as 50% removal of chromium was observed from the middle chamber containing exhausted resin at an applied voltage of 25 V when the influent flow rate was maintained at 45 min of HRT. The performance of the reactor was increased to 72% when the influent flow rate was decreased to maintain at 90 min of HRT. Build-up of chromium in the anode chamber took place when exhausted resin was used in the process. PMID:25145180

  8. The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions.

    Science.gov (United States)

    Alguacil, Francisco José; López-Delgado, Aurora; Alonso, Manuel; Sastre, Ana Maria

    2004-11-01

    The behaviour of the phosphine oxides Cyanex 921 and Cyanex 923 in the facilitated transport of chromium (VI) from chloride solutions is described. Transport is studied as a function of several variables such as stirring speeds of the aqueous phases, membrane phase diluent, hydrochloric acid concentration in the source phase and chromium and carrier concentrations. The separation of chromium (VI) from other metals presented in the source phase as well as the behaviour of phosphine oxides with respect to other neutral organophosphorous derivatives (tri-n-butylphosphate (TBP) and dibutyl butylphosphonate (DBBP)) are also investigated. Moreover, by using hydrazine sulphate in the receiving phase, Cr(VI) is immediately reduced to the less toxic Cr(III).

  9. Hexavalent Chromium (Cr(VI)) Down-Regulates Acetylation of Histone H4 at Lysine 16 through Induction of Stressor Protein Nupr1.

    Science.gov (United States)

    Chen, Danqi; Kluz, Thomas; Fang, Lei; Zhang, Xiaoru; Sun, Hong; Jin, Chunyuan; Costa, Max

    2016-01-01

    The environmental and occupational carcinogen Hexavalent Chromium (Cr(VI)) has been shown to cause lung cancer in humans when inhaled. In spite of a considerable research effort, the mechanisms of Cr(VI)-induced carcinogenesis remain largely unknown. Nupr1 (nuclear protein 1) is a small, highly basic, and unfolded protein with molecular weight of 8,800 daltons and is induced by a variety of stressors. Studies in animal models have suggested that Nupr1 is a key factor in the development of lung and pancreatic cancers, with little known about the underlying molecular mechanisms. Here we report that the level of Nupr1 is significantly increased in human bronchial epithelial BEAS2B cells following exposure to Cr(VI) through epigenetic mechanisms. Interestingly, Cr(VI) exposure also results in the loss of acetylation at histone H4K16, which is considered a 'hallmark' of human cancer. Cr(VI)-induced reduction of H4K16 acetylation appears to be caused by the induction of Nupr1, since (a) overexpression of Nupr1 decreased the levels of both H4K16 acetylation and the histone acetyltransferase MOF (male absent on the first; also known as Kat8, Myst 1), which specifically acetylates H4K16; (b) the loss of acetylation of H4K16 upon Cr(VI) exposure is greatly compromised by knockdown of Nupr1. Moreover, Nupr1-induced reduction of H4K16 acetylation correlates with the transcriptional down-regulation at several genomic loci. Notably, overexpression of Nupr1 induces anchorage-independent cell growth and knockdown of Nupr1 expression prevents Cr(VI)-induced cell transformation. We propose that Cr(VI) induces Nupr1 and rapidly perturbs gene expression by downregulating H4K16 acetylation, thereby contributing to Cr(VI)-induced carcinogenesis. PMID:27285315

  10. Phosphinic acid functionalized carbon nanotubes for sensitive and selective sensing of chromium(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Deep, Akash, E-mail: dr.akashdeep@csio.res.in; Sharma, Amit L.; Tuteja, Satish K.; Paul, A.K.

    2014-08-15

    Highlights: • SWCNTs have been conjugated with bis(2,4,4-trimethylpentyl) phosphinic acid (PA/d). • SWCNT-PA/d adduct is demonstrated for electrochemical sensing of Cr(VI). • Linear response is obtained for 0.01–10 ppb Cr(VI). • Sensitivity and the limit of detection are 35 ± 4 nA/ppb and 0.01 ppb, respectively. • Proposed sensing of Cr(VI) is selective with respect to many other metals. - Abstract: Single-walled carbon nanotubes (SWCNTs) have been functionalized with a phosphinic acid derivative ‘bis(2,4,4-trimethylpentyl) phosphinic acid’ (PA/d). It has been achieved by treating the chlorinated SWCNTs with PA/d at 80 °C. Successful functionalization and different nanomaterial properties have been investigated by UV–vis–NIR, FTIR, Raman spectroscopy, AFM and FE-SEM. PA/d conjugated SWCNTs (CNT–PA) are dispersible in some common organic solvents, e.g. CH{sub 2}Cl{sub 2}, DMF, CHCl{sub 3}, and THF. The ‘CNT–PA’ complex was spin-casted on boron doped silicon wafer. Thus fabricated sensing electrode is demonstrated for sensitive and selective electrochemical sensing of chromium(VI) ions. A linear response is obtained over a wide range of Cr(VI) concentration (0.01–10 ppb). The sensor's sensitivity and the limit of detection are observed to be 35 ± 4 nA/ppb and 0.01 ppb, respectively. The practical utility of the proposed sensor is demonstrated by determining the Cr(VI) concentration in an industrial effluent sample and an underground water sample.

  11. Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron.

    Science.gov (United States)

    Di Palma, L; Gueye, M T; Petrucci, E

    2015-01-01

    Iron sulphate (FeSO4) and colloidal nano zero-valent iron (nZVI) as reducing agents were compared, with the aim of assessing their effectiveness in hexavalent chromium [Cr(VI)] removal from a contaminated industrial soil. Experiments were performed on soil samples collected from an industrial site where a nickel contamination, caused by a long-term productive activity, was also verified. The influence of reducing agents amount with respect to chromium content and the effectiveness of deoxygenation of the slurry were discussed. The soil was fully characterized before and after each test, and sequential extractions were performed to assess chemico-physical modifications and evaluate metals mobility induced by washing. Results show that both the reducing agents successfully lowered the amount of Cr(VI) in the soil below the threshold allowed by Italian Environmental Regulation for industrial reuse. Cr(VI) reduction by colloidal nZVI proved to be faster and more effective: the civil reuse of soil [Cr(VI)hydroxide fraction, thus confirming a mechanism of chromium-iron hydroxides precipitation. In addition, a decrease of nickel (Ni) and lead (Pb) content in soil was also observed when acidic conditions were established.

  12. Study on application of biological iron sulfide composites in treating vanadium-extraction wastewater containing chromium (VI) and chromium reclamation.

    Science.gov (United States)

    Xie, Yi-Fei; Li, Xu-Dong; Li, Fu-De

    2013-04-01

    In this study, the Cr(VI)-resistant properties and regeneration characteristics of biological iron sulfide composites were investigated, which consist of sulfate reducing bacteria (SRB) and its in situ synthesized nanosized iron sulfides. Then the application of the composites in treating vanadium-extraction wastewater containing high concentration Cr(VI) and reclaiming Cr were performed. It was found that SRB in composites still survived after being used to treat vanadium-extraction wastewater, which could reduce reaction products Fe3+ and sulphur into Fe2+ and S2 by using them as the electron accepters and thus regenerating biological iron sulfide composites. The SRB also could be resistant to 600 mgl(-1) Cr(VI) and reduce it gradually. Based on the Cr(VI)-resistant properties and regeneration characteristics of the composites, a reduction-regeneration recirculation process for treating vanadium-extraction wastewater and reclamation of Cr was developed. The results indicated that the contaminants in effluent reached the Chinese discharge standard of pollutants for vanadium industry (GB 26452-2011), i.e. the concentration of total Cr(TCr) was less than 0.912 mgl(-1), Cr(VI) was less than 0.017 mgl(-1) and V was less than 0.260 mgl(-1). After 10 cycles of treatment, the Cr2O3 content in sludge reached 41.03%, and the ratio of Cr2O3/FeO was 7.35. The sludge reached the chemical and metallurgical (hydrometallurgy) grade of chromite ore and could be reclaimed. PMID:24620597

  13. Chromium speciation in particulate matter samples (Cr(VI)/Cr(III) stability in solutions of leaching agents)

    International Nuclear Information System (INIS)

    Complete text of publication follows. In recent years extensive research was conducted to estimate the bioavailability and toxicity of metals in environmental samples. Substantial health risk could be associated with high particulate matter concentrations in ambient air and with a consumption of contaminated food-stuffs, both accompanied by an occurrence of toxic elements. One of the main causes of exceedance of ambient air quality limit values is traffic, despite emissions reductions. Among other factors, the mobility of an element is usually related to its chemical properties and the toxicity mainly to its oxidation state. Thus, chromium in the hexavalent form, Cr(VI), has long been recognized as a carcinogen and mutagen at low sub-ppm levels. Therefore, in this work, the presence and stability of Cr(VI)/Cr(III) species have been determined in particular matter of urban dust samples (the modified BCR three step sequential extraction procedure). For testing of stability and presence of Cr species a coupled technique connecting on-line HPLC with element-sensitive detector ICP-OES has been used (chromium was detected on line 205,560 nm). The anion exchange column Hamilton PRP-X100 (250 x 4,6 mm, 5 μm, PEEK, (Hamilton, USA)) was used for separation of Cr species. Optimal conditions for the separation were following: mobile phase 50 mmol x l-1 CH3COOH and 10 mmol xl-1 NaClO4 (pH 7.0; flow rate 1.5 ml x min-1), injected 200 μl of the sample, addition of 30 μg x ml-1 CDTA to the sample for a transfer of Cr(III) to anion complex. This combined technique allowed to determine 10 μg of Cr(III) and 13 μg of Cr(VI) in the sample (absolute LOD). It was found out that all three extraction agents used for a fractionation of elements negatively influenced the stability of Cr(VI) species in the solution immediately after their contact with the sample. The quantitatively smallest influence was found for the acetic acid. Probably this is a reason why only species of Cr

  14. Plutonium(VI) accumulation and reduction by lichen biomass: correlation with U(VI).

    Science.gov (United States)

    Ohnuki, Toshihiko; Aoyagi, Hisao; Kitatsuji, Yoshihiro; Samadfam, Mohammad; Kimura, Yasuhiko; William Purvis, O

    2004-01-01

    The uptake of plutonium(VI) and uranium(VI) by lichen biomass was studied in the foliose lichen Parmotrema tinctorum to elucidate the migration behavior of Pu and U in the terrestrial environment. Pu and U uptake by P. tinctorum averaged 0.040+/-0.010 and 0.055+/-0.015 g gdry (-1), respectively, after 96 h incubation with 4.0 x 10(14) mol 1(-1) Pu solutions of pH 3, 4 and 5. SEM observations showed that the accumulated Pu is evenly distributed on the upper and lower surfaces of P. tinctorum, in contrast to U(VI), which accumulated in both cortical and medullary layers. UV/VIS absorption spectroscopy demonstrates that a fraction of Pu(VI) in the solution is reduced to Pu(V) by the organic substances released from P. tinctorum, and the accumulated Pu on the surface is reduced to Pu(IV), while U(VI) keeps the oxidation state of VI. Since the solubility of Pu(IV) hydroxides is very low, reduced Pu(VI) does not penetrate to the medullary layers, but is probably precipitated as Pu(IV) hydroxides on the cortical lichen surface. It is concluded that the uptake and reduction of Pu(VI) by lichens is important to determine the mobilization and oxidation states of Pu in the terrestrial environment. PMID:15381325

  15. Chromium(Ⅵ) Reduction in Wheat Rhizosphere

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Reduction of Cr(Ⅵ) to Cr(Ⅲ) were studied in a fresh wheat rhizosphere soil (Kuroboku, high humic andosol) pretreated with a basal fertilizer consisting of (NH4)2SO4, P2O5 and KH2PO4 and with K2Cr2O7 by using a rhizobox system. It was found that rhizosphere exerted a positive effect on Cr(Ⅵ) reduction.Part of the reason was the decrease of pH in the rhizosphere due to application of (NH4)2SO4, implying that application of physiologically acid fertilizers would reduce Cr(Ⅵ) toxicity to plants.

  16. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies

    OpenAIRE

    Alma Rosa Netzahuatl-Muñoz; María del Carmen Cristiani-Urbina; Eliseo Cristiani-Urbina

    2015-01-01

    The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model describ...

  17. Occurrence and speciation of polymeric chromium(III), monomeric chromium(III) and chromium(VI) in environmental samples.

    Science.gov (United States)

    Hu, Ligang; Cai, Yong; Jiang, Guibin

    2016-08-01

    Laboratory experiments suggest that polymeric Cr(III) could exist in aqueous solution for a relative long period of time. However, the occurrence of polymeric Cr(III) has not been reported in environmental media due partially to the lack of method for speciating polymeric Cr. We observed an unknown Cr species during the course of study on speciation of Cr in the leachates of chromated-copper-arsenate (CCA)-treated wood. Efforts were made to identify structure of the unknown Cr species. Considering the forms of Cr existed in the CCA-treated woods, we mainly focused our efforts to determine if the unknown species were polymeric Cr(III), complex of Cr/As or complex of Cr with dissolved organic matter (DOM). In order to evaluate whether polymeric Cr(III) largely exist in wood leachates, high performance liquid chromatography coupled with inductively coupled mass spectrometry (HPLC-ICPMS was used) for simultaneous speciation of monomeric Cr(III), polymeric Cr(III), and Cr(VI). In addition to wood leachates where polymeric Cr (III) ranged from 39.1 to 67.4%, occurrence of the unknown Cr species in other environmental matrices, including surface waters, tap and waste waters, was also investigated. It was found that polymeric Cr(III) could exist in environmental samples containing μg/L level of Cr, at a level up to 60% of total Cr, suggesting that polymeric Cr(III) could significantly exist in natural environments. Failure in quantifying polymeric Cr(III) would lead to the underestimation of total Cr and bias in Cr speciation. The environmental implication of the presence of polymeric Cr(III) species in the environment deserves further study. PMID:27156211

  18. [Remediation of chromium (VI) contaminated soils using permeable reactive composite electrodes technology].

    Science.gov (United States)

    Fu, Rong-Bing; Liu, Fang; Ma, Jin; Zhang, Chang-Bo; He, Guo-Fu

    2012-01-01

    Electrokinetic transport processes have been shown to have potential for the effective removal of heavy metals from soils. However, pH changes near the anode and cathode limit their widespread application in the remediation of contaminated soils. Permeable reactive composite electrodes (PRCE) were made by attaching reactive materials such as Fe(0) and zeolite to the electrodes, and the effects of the composite electrodes on pH control, chromium removal efficiency and Cr speciation changes were studied in the electrokinetic remediation process of Cr( VI) contaminated soil. Composite electrodes consisting of permeable reactive materials gave better pH control and Cr removal efficiency compared to traditional electrodes, and a Fe(0) + zeolite reactive layer in the anode exhibited the best performance compared to zeolite or Fe(0) alone. After 5 days of electrokinetic remediation with a DC voltage of 2 V x cm(-1), the Fe(0) + zeolite reactive layer lowered the pH fluctuation, maintained the soil pH in the range of 5.5 to 8.5, raised the Cr(VI) removal efficiency up to 97% in any soil section, produced lower Cr(III) residues, enhanced the amount of Cr retention up to 8 and 1.8 times respectively, and transformed 98% of the Cr(VI) into lower toxicity Cr(III). This study provides a theoretical basis for the exploitation of permeable reactive composite electrodes which are a practical option for future applications. PMID:22452223

  19. Near-anode focusing phenomenon caused by the high anolyte concentration in the electrokinetic remediation of chromium(VI)-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong, E-mail: lidongbayan@cqu.edu.cn [School of Resources and Environmental Science, Chongqing University, Chongqing, 400030 (China); Xiong, Zhen; Nie, Yang; Niu, Yuan-Yuan; Wang, Li [School of Resources and Environmental Science, Chongqing University, Chongqing, 400030 (China); Liu, Yuan-Yuan [School of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400030 (China)

    2012-08-30

    Graphical abstract: Mechanism illustration of the focusing band by ion-induced potential gradient well trapping effect (IIPGWTE), Cr(VI) denotes the CrO{sub 4}{sup 2-}/HCrO{sub 4}{sup -} ions; ION denotes all other ions except Cr(VI) ions. The potential gradient (Ea) and ions' velocity (v{sub a}) in the soil near the anode was lower than that in other parts (Ec, v{sub c}) forming a potential gradient well, because of invasion of anolytes (from the left end). Highlights: Black-Right-Pointing-Pointer High anolyte concentration causes focusing phenomena in soil near anode. Black-Right-Pointing-Pointer Low pH value aggravates the focusing phenomenon. Black-Right-Pointing-Pointer Focusing phenomenon significantly increase the remediation duration and energy consumption. - Abstract: The effects of the concentration and the low pH value of anolyte on the electrokinetic remediation (EKR) of chromium-contaminated soil were investigated using chromium-spiked kaolin-gypsum soil. Results of visual observation and X-ray fluorescence analysis show that high anolyte concentrations could cause an ion-induced potential gradient well trapping effect on the soil near the anode, and consequently cause a focusing phenomenon (FP) without chemical precipitation. This FP significantly prolonged the remediation duration and reduced chromium removal. The low pH value of soil aggravated the FP, resulting in a quasi-dead zone near the anode caused by the reduction in soil resistance, rather than the adsorption of chromium (VI) ions. The high anolyte concentration also resulted in high energy consumption. The FP and low pH value collectively decreased the energy efficiency by more than 96%. This kind of FP can be predicted via the online monitoring of the potential gradient profiles of the soil between the electrodes in the EKR.

  20. Assessment of chromium(VI) release from 848 jewellery items by use of a diphenylcarbazide spot test

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Hamann, Dathan;

    2016-01-01

    We recently evaluated and validated a diphenylcarbazide(DPC)-based screening spot test that can detect the release of chromium(VI) ions (≥0.5 ppm) from various metallic items and leather goods (1). We then screened a selection of metal screws, leather shoes, and gloves, as well as 50 earrings...

  1. Interaction of Cr(VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2 under aerobic conditions.

    Science.gov (United States)

    He, Da; Zheng, Maosheng; Ma, Tao; Li, Can; Ni, Jinren

    2015-06-01

    Inhibition of efficient denitrification in presence of toxic heavy metals is one of the current problems encountered in municipal wastewater treatment plants. This paper presents how to remove hexavalent chromium (Cr(VI)) and nitrate simultaneously by the novel strain Pseudomonas aeruginosa PCN-2 under aerobic conditions. The capability of strain PCN-2 for Cr(VI) and nitrate reduction was confirmed by PCR analysis of gene ChrR, napA, nirS, cnorB, nosZ, while Cr(VI) reduction was proved via an initial single-electron transfer through Cr(V) detection using electron paramagnetic resonance. Experimental results demonstrated that Cr(VI) and nitrate reduction by strain PCN-2 was much faster at pH 8-9 and higher initial cell concentration. However, increasing Cr(VI) concentration would inhibit aerobic denitrification process and result in an significant delay of nitrate reduction or N2O accumulation, which was attributed to competition between three electron acceptors, i.e., Cr(VI), O2 and nitrate in the electron transport chain.

  2. Interaction of Cr(VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2 under aerobic conditions.

    Science.gov (United States)

    He, Da; Zheng, Maosheng; Ma, Tao; Li, Can; Ni, Jinren

    2015-06-01

    Inhibition of efficient denitrification in presence of toxic heavy metals is one of the current problems encountered in municipal wastewater treatment plants. This paper presents how to remove hexavalent chromium (Cr(VI)) and nitrate simultaneously by the novel strain Pseudomonas aeruginosa PCN-2 under aerobic conditions. The capability of strain PCN-2 for Cr(VI) and nitrate reduction was confirmed by PCR analysis of gene ChrR, napA, nirS, cnorB, nosZ, while Cr(VI) reduction was proved via an initial single-electron transfer through Cr(V) detection using electron paramagnetic resonance. Experimental results demonstrated that Cr(VI) and nitrate reduction by strain PCN-2 was much faster at pH 8-9 and higher initial cell concentration. However, increasing Cr(VI) concentration would inhibit aerobic denitrification process and result in an significant delay of nitrate reduction or N2O accumulation, which was attributed to competition between three electron acceptors, i.e., Cr(VI), O2 and nitrate in the electron transport chain. PMID:25795449

  3. Reduction of Cr(VI) to Cr(III) using silicon nanowire arrays under visible light irradiation.

    Science.gov (United States)

    Fellahi, Ouarda; Barras, Alexandre; Pan, Guo-Hui; Coffinier, Yannick; Hadjersi, Toufik; Maamache, Mustapha; Szunerits, Sabine; Boukherroub, Rabah

    2016-03-01

    We report an efficient visible light-induced reduction of hexavalent chromium Cr(VI) to trivalent Cr(III) by direct illumination of an aqueous solution of potassium dichromate (K2Cr2O7) in the presence of hydrogenated silicon nanowires (H-SiNWs) or silicon nanowires decorated with copper nanoparticles (Cu NPs-SiNWs) as photocatalyst. The SiNW arrays investigated in this study were prepared by chemical etching of crystalline silicon in HF/AgNO3 aqueous solution. The Cu NPs were deposited on SiNW arrays via electroless deposition technique. Visible light irradiation of an aqueous solution of K2Cr2O7 (10(-4)M) in presence of H-SiNWs showed that these substrates were not efficient for Cr(VI) reduction. The reduction efficiency achieved was less than 10% after 120 min irradiation at λ>420 nm. Addition of organic acids such as citric or adipic acid in the solution accelerated Cr(VI) reduction in a concentration-dependent manner. Interestingly, Cu NPs-SiNWs was found to be a very efficient interface for the reduction of Cr(VI) to Cr(III) in absence of organic acids. Almost a full reduction of Cr(VI) was achieved by direct visible light irradiation for 140 min using this photocatalyst.

  4. Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning.

    Science.gov (United States)

    Li, Lei; Li, Yanxiang; Cao, Lixia; Yang, Chuanfang

    2015-07-10

    Stacked chitosan nanofibers with an average diameter of 75 nm were successfully produced by electrospinning using 5 wt% chitosan in acetic acid as the spinning solution. The fibers were then cross-linked with glutaraldehyde to remove chromium [Cr(VI)] from water via static adsorption. It was found that the adsorption correlated well with pseudo-second order kinetic model, and followed a mixed isotherm of Freundlich and Langmuir. The maximum nanofibers adsorption capacity was 131.58 mg/g, more than doubled that of chitosan powders. Common co-ions such as Cl(-), NO3(-), Na(+), Ca(2+) and Mg(2+) had little or no effect on the adsorption but SO4(2-) was an exception. Fourier transform infrared spectroscopy and X-ray photoelectron spectrophotometer analyses indicated that both amino and hydroxyl groups of chitosan were engaged in the adsorption. PMID:25857976

  5. Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium (VI) removal.

    Science.gov (United States)

    Riaz, Tabinda; Ahmad, Adnan; Saleemi, Sidra; Adrees, Muhammad; Jamshed, Fahad; Hai, Abdul Moqeet; Jamil, Tahir

    2016-11-20

    Blended membranes of polyurethane and cellulose acetate were prepared, characterized and investigated for their performance. Various ratios of cellulose acetate were employed to prepare four different blend membranes. The characteristics of both pure and blend membranes were investigated and results were compared to distinguish their properties. Functional group analysis was carried out by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) of pure and blend samples. Contact angle measurement and water content were evaluated to determine the membrane hydrophilicity. Moreover, the membrane morphology was studied by scanning electron microscopy (SEM). The membrane permeation properties and ability to reject chromium (VI) ions were tested at various pH and pressure by utilizing different salt concentrations. PMID:27561531

  6. Abiotic reductive immobilization of U(VI) by biogenic mackinawite.

    Science.gov (United States)

    Veeramani, Harish; Scheinost, Andreas C; Monsegue, Niven; Qafoku, Nikolla P; Kukkadapu, Ravi; Newville, Matt; Lanzirotti, Antonio; Pruden, Amy; Murayama, Mitsuhiro; Hochella, Michael F

    2013-03-01

    During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U(VI) reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe 1+x S, x = 0 to 0.11) to reduce U(VI) abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS, and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U(VI) indicate the formation of nanoparticulate UO2. This study suggests the relevance of sulfide-bearing biogenic minerals in mediating abiotic U(VI) reduction, an alternative pathway in addition to direct enzymatic U(VI) reduction. PMID:23373896

  7. Effects of chromium(III and VI) on spring barley and maize biomass yield and content of nitrogenous compounds.

    Science.gov (United States)

    Wyszkowski, Mirosław; Radziemska, Maja

    2010-01-01

    The aim of this study was to (1) determine the effects of trivalent Cr(III) or hexavalent chromium Cr(VI) soil contamination on biomass yield and nitrogenous compound content of spring barley (Hordeum vulgare L.) as the main crop and subsequently maize (Zea mays L.) grown successively, and (2) examine whether the neutralizing additives applied (compost, zeolite, and calcium oxide) may be effective in reducing adverse impact of chromium (Cr) on crops. Spring barley yield was markedly decreased by Cr compounds, particularly Cr(VI). In contrast, maize yield was significantly increased by Cr(VI). Hexavalent Cr exerted a greater effect than the Cr(III) form on nitrogen levels in spring barley. Chromium significantly increased ammonia nitrogen content in maize. The accumulation of NO(3)(-)-N in plants treated with Cr(VI) was lower than in controls. The application of compost, zeolite, and calcium oxide onto the soil increased yield of maize only in pots containing Cr(III). Neutralizing additives exerted a positive, increased effect on the N-total content of maize but not spring barley, which was apparent with calcium oxide. Accumulation of NH(4)(+)-N in maize in pots with Cr(VI) was increased by all additives applied. The content of nitrate nitrogen in spring barley was predominantly affected by addition of compost and calcium oxide into the soil, producing a significant rise in NO(3)(-)-N content. Chromium, especially Cr(VI), used at doses of 100 and 150 mg/kg soil exerted adverse effects in treated plants, particularly spring barley.

  8. Application of artificial neural network (ANN in Biosorption modeling of Chromium (VI from aqueous solutions

    Directory of Open Access Journals (Sweden)

    F Mohammadi

    2016-03-01

    Full Text Available Background and Objectives: In this work, biosorption of hexavalent chromium from aqueous solution with excess municipal sludge was studied. Moreover, the performance of neural networks to predict the biosorption rate was investigated. Materials and Methods: The effect of operational parameters including initial metal concentration, initial pH, agitation speed, adsorbent dosage, and agitation time on the biosorption of chromium was assessed in a batch system. A part of the experimental results was modeled using Feed-Forward Back propagation Neural Network (FFBP-ANN. Another part of the test results was simulated to assess the model accuracy. Transfer function in the hidden layers and output layers and the number of neurons in the hidden layers were optimized. Results: The maximum removal of chromium obtained from batch studies was more than 96% in 90 mg/L initial concentration, pH 2, agitation speed 200 rpm and adsorbent dosage 4 g/L. Maximum biosorption capacity was 41.69 mg/g. Biosorption data of Cr(VI are described well by Freundlich isotherm model and adsorption kinetic followed pseudo-second order model.  Tangent sigmoid function determined was the most appropriate transfer function in the hidden and output layer. The optimal number of neurons in hidden layers was 13. Predictions of model showed excellent correlation (R=0.984 with the target vector. Simulations performed by the developed neural network model showed good agreement with experimental results. Conclusion: Overall, it can be concluded that excess municipal sludge performs well for the removal of Cr ions from aqueous solution as a biological and low cost biosorbent. FFBP-ANN is an appropriate technique for modeling, estimating, and prediction of biosorption process If the Levenberg-Marquardt training function, tangent sigmoid transfer function in the hidden and output layers and the number of neurons is between 1.6 to 1.8 times the input data, proper predication results could be

  9. Potential for chromium (VI) bioremediation by the aquatic carnivorous plant Utricularia gibba L. (Lentibulariaceae).

    Science.gov (United States)

    Augustynowicz, Joanna; Łukowicz, Krzysztof; Tokarz, Krzysztof; Płachno, Bartosz Jan

    2015-07-01

    The aquatic carnivorous plant Utricularia gibba has one of the smallest known genomes among flowering plants, and therefore, it is an excellent model organism for physiological and developmental studies. The main aim of our work was to check whether the ubiquitous U. gibba might be useful for the phytoremediation of the highly toxic and mobile hexavalent chromium in waters. Plants were incubated for 1 week in a 50 μM (2.6 mg dm(-3)) Cr(VI) solution in laboratory conditions. Our results revealed that the plant exhibits a very high accumulation capacity for Cr. The accumulation level was higher than 780 mg kg(-1) and a bioconcentration factor >300. On the other hand, the plants showed a low tolerance to the elevated Cr concentration, which was expressed in a significant decrease of the photosystem II activity. However, the most pronounced negative influence of chromate was found on the morphology and activity of the traps. Due to its high accumulation capacity, we suggest that U. gibba may be efficient in the removal of chromate over a short time scale. It can also provide a new molecular resource for studying the mechanisms of Cr(VI) detoxification. PMID:25634365

  10. Chromium(III, VI) speciation analysis with preconcentration on a maleic acid-functionalized XAD sorbent

    International Nuclear Information System (INIS)

    Chromium may exist in environmental waters as Cr(III) and Cr(IV), the latter being the toxic and carcinogenic form. Since atomic absorption spectrometry (AAS) and inductively coupled plasma atomic emission spectrometry can only yield information on total Cr concentration, a polymer resin bearing O,O-donor chelating groups such as the maleic acid-functionalized XAD-(CO)CH-CH-COOH resin was synthesized to selectively retain Cr(III) at pH 4.0-5.5. The dynamic breakthrough capacity of the resin for Cr(III) at pH 5.0 was 7.52 mg g-1, and the preconcentration factor extended to 250-300. Chromium(III) in the presence of 250-fold Cr(VI)--which was not retained--could be effectively preconcentrated on the NH4+-form of the resin and determined by AAS or diphenylcarbazide (DPC) spectrophotometry. When Cr(VI) was reduced to Cr(III) with Na2SO3 solution brought to pH 1 by the addition of 1 M H2SO4, and preconcentrated on the resin, total Cr could be determined. The developed method was validated with a blended coal sample CRM-1632. Since the adsorption behavior as a function of pH of possible interferent metal ions, e.g. Ni(II), Co(II), Cu(II), Cd(II), Zn(II), Pb(II) and Fe(III), was similar to that of Cr(III), selective elution of Cr(III) from the resin was realized using a mixture of 1 wt.% H2O2+1 M NH3. The eluate containing Cr as chromate could be directly analyzed by diphenyl carbazide spectrophotometry without any adverse effect from the common interferents of this method, i.e. Fe(III), Cu(II) Hg(II), VO3-, MoO42- and WO42-. Various synthetic waste solutions typical of electroplating bath effluents containing Cr, Cu, Ni, Zn, Na, Ca, cyanide (and chemical oxidation demand (COD), achieved by glucose addition) were subjected to pretreatment procedures such as hypochlorite oxidation (of cyanide) and catalytic oxidation (of COD) with peroxodisulfate. Chromium determination gave satisfactory results. The combined column preconcentration--selective elution

  11. Near-anode focusing phenomenon caused by the high anolyte concentration in the electrokinetic remediation of chromium(VI)-contaminated soil.

    Science.gov (United States)

    Li, Dong; Xiong, Zhen; Nie, Yang; Niu, Yuan-Yuan; Wang, Li; Liu, Yuan-Yuan

    2012-08-30

    The effects of the concentration and the low pH value of anolyte on the electrokinetic remediation (EKR) of chromium-contaminated soil were investigated using chromium-spiked kaolin-gypsum soil. Results of visual observation and X-ray fluorescence analysis show that high anolyte concentrations could cause an ion-induced potential gradient well trapping effect on the soil near the anode, and consequently cause a focusing phenomenon (FP) without chemical precipitation. This FP significantly prolonged the remediation duration and reduced chromium removal. The low pH value of soil aggravated the FP, resulting in a quasi-dead zone near the anode caused by the reduction in soil resistance, rather than the adsorption of chromium (VI) ions. The high anolyte concentration also resulted in high energy consumption. The FP and low pH value collectively decreased the energy efficiency by more than 96%. This kind of FP can be predicted via the online monitoring of the potential gradient profiles of the soil between the electrodes in the EKR. PMID:22738769

  12. Cr (VI electromechimal reduction using RVG 4OOO graphite felt as the electrode

    Directory of Open Access Journals (Sweden)

    E.O. Vilar

    2003-09-01

    Full Text Available Even in at very low concentrations, heavy metals in industrial waste constitute environmental and health risks. The U.S. Department of Health and Human Services has recognized as chromium compounds and defined carcinogens the level acceptable in drinking water as being only 0.05 ppm. The objective of this work was the electrochemical reduction of hexavalent chromium Cr (VI to Cr (III ions in a dilute synthetic solution of K2Cr2O7 and Na2SO4 (0.05N. A plug-flow reactor with an RVG 4000 graphite felt (Le Carbone Lorraine, France electrode was used for this work. Its morphological characteristics such as specific variables surface, porosity, average fibre diameter and permeability were determined. The influencing process selectivity such as initial concentration of Cr (VI, solution pH, current intensity and conversion yield are considered. The fractional conversion achieved in the plug-flow reactor in the present work, was about 90%.

  13. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.

    Science.gov (United States)

    Gheju, M; Iovi, A; Balcu, I

    2008-05-01

    The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using long-term column experiments, for aqueous Cr(VI) solutions having low buffering capacities, over the pH range of 2.00-7.30. The results showed that the initial pH of Cr(VI) solution significantly affects the reduction capacity of scrap iron. The highest reduction capacity was determined to be 19.2 mg Cr(VI)/g scrap iron, at pH 2.50, and decreased with increasing the initial pH of Cr(VI) solution. A considerable decrease in scrap iron reduction capacity (25%) was also observed at pH 2.00, as compared to pH 2.50, due to the increased contribution of H(+) ions to the corrosion of scrap iron, which leads to a rapid decrease in time of the scrap iron volume. Over the pH range of 2.50-7.30, hexavalent chromium concentration increases slowly in time after its breakthrough in column effluent, until a steady-state concentration was observed; similarly, over the same pH range, the amount of solubilized Cr(III) in treated column effluent decreases in time, until a steady-state concentration was observed. The steady-state concentration in column effluent decreased for Cr(VI) and increased for Cr(III) with decreasing the initial pH of Cr(VI) solution. No steady-state Cr(VI) or Cr(III) concentrations in column effluent were observed at pH 2.00. Over the entire studied pH range, the amount of Fe(total) in treated solution increases as the initial pH of column influent is decreased; the results show also a continuously decrease in time of Fe(total) concentration, for a constant initial pH, due to a decrease in time of iron corrosion rate. Cr(III) concentration in column effluent also continuously decreased in time, for a constant initial pH, over the pH range of 2.50-7.30. This represents an advantage, because the amount of precipitant agent used to remove Fe(total) and Cr(III) from the column effluent will also decrease in time. The optimum pH for Cr(VI) reduction with scrap iron in

  14. The oxidation and reduction of chromium of stainless steels in an eletric arc furnace

    Directory of Open Access Journals (Sweden)

    B. Arh

    2011-07-01

    Full Text Available The oxidation of chromium during the elaboration of stainless steels occurs with oxygen in solution blown inthe melt and with oxides in the slag. A higher content of silicon in the furnace charge decreases the extent of oxidation of chromium, however, the efficient reduction of chromium from the slag is of essential importance for a minimal loss of chromium. In this survey, the theory of the oxidation of chromium, its reduction from the slag and the conditions for the formation of foaming slag are discussed.

  15. Chi-square analysis of the reduction of ATP levels in L-02 hepatocytes by hexavalent chromium

    Directory of Open Access Journals (Sweden)

    Yang Yuan

    2012-06-01

    Full Text Available This study explored the reduction of adenosine triphosphate (ATP levels in L-02 hepatocytes by hexavalent chromium (Cr(VI using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%. The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI group (P < 0.05. The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.

  16. Photocatalytic reduction of hexavalent chromium at gold nanoparticles modified titania nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Pandikumar, Alagarsamy; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com

    2013-09-16

    N-[3-(Trimethoxysilyl)propyl]ethylenediamine (EDAS) silicate supported titanium dioxide nanotubes-gold ((TiO{sub 2} NTs-Au){sub NCM}) nanocomposite material (EDAS/(TiO{sub 2} NTs-Au){sub NCM}) was prepared by deposition–precipitation method and characterized by diffuse reflectance spectra, X-ray diffraction pattern, Brunauer–Emmett–Teller surface area analysis, transmission electron micrographs, scanning electron micrographs and energy-dispersive X-ray spectra analysis. The photocatalytic activity of the EDAS/(TiO{sub 2} NTs-Au){sub NCM} in the film form was investigated towards the reduction of toxic hexavalent chromium (Cr(VI)) into trivalent chromium (Cr(III)) in the presence of oxalic acid as an electron donor. The EDAS/(TiO{sub 2} NTs-Au){sub NCM} film exhibited higher photocatalytic activity when compared to the photocatalytic activities of pristine TiO{sub 2} nanoparticles and TiO{sub 2} nanotubes (TiO{sub 2} NTs) which can be attributed to the effective photoinduced interfacial charge transfer from the (TiO{sub 2} NTs-Au){sub NCM} to Cr(VI) through Au nanoparticles (Au{sub nps}). The Au{sub nps} present in the TiO{sub 2} NTs act as an electron sink for the photogenerated electrons that minimizes the charge recombination process at the TiO{sub 2} NTs. The Au{sub nps} on the TiO{sub 2} NTs surface facilitates the transfer of photogenerated electrons to the Cr(VI) leading to the formation of Cr(III) ions. - Highlights: • Gold modified titania nanotubes are used to design solid-phase photocatalyst. • Gold nanoparticles deposition increases the surface area of titania nanotubes. • Gold on titania nanotubes improves the photocatalytic reduction of Cr(VI). • The holes produced at the titania nanotubes are scavenged by oxalic acid. • Gold modified titania nanotubes is a potential candidate for treatment of heavy metals.

  17. Conversion of Chromium(III) Propionate to Chromate/dichromate(VI) by the Advanced Oxidation Process. Pretreatment of a Biomimetic Complex for Metal Analysis

    OpenAIRE

    Lynn Rodman, D.; Carrington, Nathan A.; Xue, Zi-Ling

    2006-01-01

    The use of H2O2 and UV irradiation to remove organic ligands in a chromium(III) complex for the subsequent chromium analysis is reported. The Advanced Oxidation Process (AOP) using a 5.5-W UV lamp, H2O2 and Fe2+/Fe3+ as catalyst (photo Fenton process) was found to give complete and quantitative Cr(III) → Cr(VI) conversion and removal of ligands in chromium(III) propionate [Cr3O(O2CCH2CH3)6(H2O)3]NO3, a biomimetic chromium species, as subsequent chromium analyses by the 1,5-diphenylcarbazide m...

  18. The influence of Chromium supplied by tanning and wet finishing processes on the formation of cr(vi in leather

    Directory of Open Access Journals (Sweden)

    W. F. Fuck

    2011-06-01

    Full Text Available Chromium used in leather manufacturing can be oxidized from the trivalent to the hexavalent state, causing environmental concerns. In this study, the influence of Cr(III from tanning, deacidification pH, fatliquors, chrome retanning and vegetable retanning on the formation of Cr(VI in leather was analyzed by comparing natural and aged samples. In wet-blue leather, even after aging and in fatliquored leathers that did not suffer the aging process, the presence of Cr(VI was always below the detection limit of 3 mg/kg. Considering the presence of Cr(VI, the supply of chromium during the retanning step had a more significant effect than during the tanning. In the fatliquoring process with sulfites, fish and synthetic fatliquor leather samples contained Cr(VI when aged, and the highest concentration detected was 26.7 mg/kg. The evaluation of Cr(VI formation led to recommendations for regulation in the leather industry.

  19. The influence of Chromium supplied by tanning and wet finishing processes on the formation of cr(vi) in leather

    OpenAIRE

    W. F. Fuck; M Gutterres; N. R. Marcílio; S. Bordingnon

    2011-01-01

    Chromium used in leather manufacturing can be oxidized from the trivalent to the hexavalent state, causing environmental concerns. In this study, the influence of Cr(III) from tanning, deacidification pH, fatliquors, chrome retanning and vegetable retanning on the formation of Cr(VI) in leather was analyzed by comparing natural and aged samples. In wet-blue leather, even after aging and in fatliquored leathers that did not suffer the aging process, the presence of Cr(VI) was always below the ...

  20. Permeation of chromium salts through human skin in vitro

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Fullerton, A; Avnstorp, C;

    1992-01-01

    of the dichromate solution. Chromium skin levels increased with increasing concentrations of applied chromium salts up to 0.034 M Cr. The amount of chromium in recipient phase and skin layers increased with increasing pH when the applied solution contained potassium dichromate. This was ascribed to a decreased skin...... barrier function of the skin. The amount of chromium found in all skin layers after application of chromium chloride decreased with increasing pH due to lower solubility of the salt. The % of chromium found in the recipient phase as chromium(VI) increased with increasing total chromium concentration...... indicating a limited reduction ability of the skin in vitro....

  1. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater

    Science.gov (United States)

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization’s maximum contaminant level for drinking water (50 μg L−1) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 μg L−1. To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to ~1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged from 0 to 42 μg kg−1, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a

  2. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    Science.gov (United States)

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70 °C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations using 1,5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to 1.9 μM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal

  3. Electrochemical reduction of hexavalent chromium in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, S. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    Electrochemical reduction of hexavalent chromium (Cr{sup +6}) to its trivalent state (Cr{sup +3}) is showing promising results in treating ground water at Lawrence Livermore National Laboratory`s (LLNL`s) Main Site. An electrolytic cell using stainless-steel and brass electrodes has been found to offer the most efficient reduction while yielding the least amount of precipitate. Trials have successfully lowered concentrations of Cr{sup +6} to below 11 parts per billion (micrograms/liter), the California state standard. We ran several trials to determine optimal voltage for running the cell; each trial consisted of applying a voltage between 6V and 48V for ten minutes through samples obtained at Treatment Facility C(TFC). No conclusive data has been obtained yet.

  4. Simultaneous Adsorption of Chromium (VI) and Phosphate by Calcined Mg-Al-CO{sub 3} Layered Double Hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiulan; Wu, Yuhong [Taiyuan Univ. of Technology, Shanxi (China)

    2014-06-15

    The adsorption characteristics of chromium (VI) and phosphate on calcined Mg-Al-CO{sub 3} layered double hydroxides (CLDH) were investigated in single and binary systems. A series of batch experiments were performed to study the influence of various experimental parameters. In this study, CLDH exhibited a high adsorption capacity for Cr (VI) and P in a single system. The experimental data were close to the theoretical adsorption capacity given by the Langmuir isotherm, the calculating adsorption capacities of Cr (VI) and P were up to 70.42 mg/g and 97.09 mg/g, respectively. It was found that the initial pH was approximately 6 and it took 24 h to reach equilibrium when P and Cr (VI) were added simultaneously. The experimental data were best fitted by a pseudo-second-order kinetics model. Competitive adsorption between Cr (VI) and P existed in the binary system. The presence of Cr (VI) had no significant influence on P adsorption. However, the suppression of Cr (VI) adsorption was obvious when the initial concentration of P was up to 10 mg/L with a concentration of 0.5 g/L of CLDH.

  5. Lead, mercury, cadmium, chromium, nickel, copper, zinc, calcium, iron, manganese and chromium (VI) levels in Nigeria and United States of America cement dust.

    Science.gov (United States)

    Ogunbileje, J O; Sadagoparamanujam, V-M; Anetor, J I; Farombi, E O; Akinosun, O M; Okorodudu, A O

    2013-03-01

    This study was aimed at investigating the relative abundance of heavy metals in cement dust from different cement dust factories in order to predict their possible roles in the severity of cement dust toxicity. The concentrations of total mercury (Hg), copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), manganese (Mn), lead (Pb), iron (Fe) and chromium (VI) (Cr (VI)) levels in cement dust and clinker samples from Nigeria and cement dust sample from the United States of America (USA) were determined using graphite furnace atomic absorption (GFAAS), while Zn and Ca were measured by flame atomic absorption spectrophotometry (FAAS), and Cr (VI) by colorimetric method. Total Cu, Ni and Mn were significantly higher in cement dust sample from USA (pcement dust compared with Nigeria cement dust or clinker (pcement dust and clinker (pMercury was more in both Nigeria cement dust and clinker (pcement dust contain mixture of metals that are known human carcinogens and also have been implicated in other debilitating health conditions. Additionally, it revealed that metal content concentrations are factory dependent. This study appears to indicate the need for additional human studies relating the toxicity of these metals and their health impacts on cement factory workers. PMID:23261125

  6. Speciation determination of chromium(III) and (VI) using preconcentration cloud point extraction with flame atomic absorption spectrometry (FAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, K. [Department of Environmental Sciences, S.V. University, Tirupati, 517502 A.P. (India); Kumar, K. Suresh; Prasad, B.; Suvardhan, K. [Department of Chemistry, S. V. University, Tirupati, 517502 A.P. (India); Lekkala, Ramesh Babu [Department of Environmental Sciences, S.V. University, Tirupati, 517502 A.P. (India); Janardhanam, K. [Department of Environmental Sciences, S.V. University, Tirupati, 517502 A.P. (India)], E-mail: Kandukurijanardhanam@gmail.com

    2008-02-11

    bis-[2-Hydroxy-1-naphthaldehyde] thiourea was synthesized and preconcentration cloud point extraction (CPE) for speciation determination of chromium(III) and (VI) in various environmental samples with flame atomic absorption spectrometry (FAAS) has been developed. Chromium(III) complexes with bis-[2-hydroxynaphthaldehyde] thiourea is subsequently entrapped in the surfactant micelles. After complexation of chromium(III) with reagent, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant Triton X-100 after centrifugation. The effect of pH, concentration of chelating agent, surfactant, equilibration temperature and time on CPE was studied. The relative standard deviation was 2.13% and the limits of detection were around 0.18 {mu}g L{sup -1}.

  7. Oxidation state of chromium associated with cell surfaces of Shewanella oneidensis during chromate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Andrew L.; Lowe, Kristine; Daulton, Tyrone L.; Jones-Meehan, Joanne; Little, Brenda J

    2002-12-30

    Employing electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS), we demonstrate that in both aerobic and anaerobic culture Shewanella oneidensis cells are capable of chromate reduction. No Cr(VI) or Cr(V) species were identified at the cell surfaces in Cr 2p{sub 3/}ore photoelectron spectra. More chromium was associated with cell surfaces recovered from anaerobic medium than aerobic. Multiplet-splitting models derived for Cr(III) and Cr(IV) were employed to determine contributions from each ion to Cr 2p{sub 3/2} photopeaks collected from the various cell treatments. Whilst in all cases Cr(III) was the major ion associated with cell surfaces, a significant contribution was identified due to Cr(IV) in anaerobically grown cells. The Cr(IV) contribution was far less when cells were grown aerobically. Moreover, when anaerobically grown cells were exposed to oxygen very little re-oxidation of Cr-precipitates occurred, the precipitates were again identified as a mixture of Cr(III) and Cr(IV). A positive relationship was observed between amounts of chromium and phosphorous associated with cell surfaces resulting from the various treatments, suggesting the precipitates included Cr(III)-phosphate. The fact that Cr(IV) remained associated with precipitates following re-oxidation suggests that under anaerobic conditions the intermediate ion is afforded sufficient stability to be incorporated within the precipitate matrix and thus conferred a degree of protection from oxidation.

  8. Chromium (VI) biosorption by immobilized Aspergillus niger in continuous flow system with special reference to FTIR analysis.

    Science.gov (United States)

    Chhikara, S; Hooda, A; Rana, L; Dhankhar, R

    2010-09-01

    Aspergillus niger was treated with acid and immobilized in calcium alginate matrix. The dynamic removal of Cr (VI) ion was studied using continuously fed column packed with immobilized biosorbent beads. Column experiments were carried out to study the effect of various bed heights (20, 30, 40 cm) under different flow rates (5, 7.5, 10 ml min(-1)) on efficiency of biosorption. The maximum time (1020 minutes; 17 hr) before breakthrough point was observed in case of 40 cm bed height with flow rate of 5ml min(-1). FTIR analysis of acid treated immobilized A. niger was used fora qualitative and preliminary analysis of chemical functional groups present on its cell wall which provided the information on nature of cell wall and Cr (VI) interaction during the process of biosorption. The IR spectra of biosorbent recorded before and after chromium biosorption had shown some changes in the band patterns, which were finally analyzed and was found that chemical interaction such as ion-exchange between carboxyl (-COOH), hydroxyl (-OH) and amine (-NH2) group of biosorbent and Chromium ion were mainlyinvolved in biosorption of Cr (VI) onto A. niger cell wall surface. The biosorbed metal was eluted from biosorbent by using 0.1 M H2SO4 as eluant. Immobilized biosorbent could be reused for five consecutive biosorption and desorption cycles without apparent loss of efficiency after its reconditioning. Considering all above factors together this paper discusses the efficient chromium biosorption process carried out by immobilized A. niger biosorbent. PMID:21387903

  9. In vitro development of resistance to arsenite and chromium-VI in Lactobacilli strains as perspective attenuation of gastrointestinal disorder.

    Science.gov (United States)

    Upreti, Raj K; Sinha, Vartika; Mishra, Ritesh; Kannan, Ambrose

    2011-05-01

    Inadvertent intake of inorganic arsenic and chromium through drinking water and food causing their toxic insults is a major health problem. Intestinal bacteria including Lactobacilli play important regulatory roles on intestinal homeostasis, and their loss is known to cause gastrointestinal (GI) disorders. Probiotic Lactobacilli resistance to arsenite and chromium-VI could be an importantfactorfor the perspective attenuation of Gl-disorders caused by these toxic metals/metalloid. In the present study resistance of arsenite (up to 32 ppm), Cr-VI (up to 64 ppm), and arsenite plus Cr-VI (32 ppm each) were developed under in vitro condition following chronological chronic exposures in Lactobacilli strains. Comparative study of biochemical parameters such as membrane transport enzymes and structural constituents; dehydrogenase and esterase activity tests, which are respective indicators for respiratory and energy producing processes, and the general heterotrophic activity of cells, of resistant strains showed similarities with their respective normal parent strains. The resistant strains were also found to be sensitive to antibiotics. Findings indicate that these resistant probiotic Lactobacilli would be useful in the prophylactic interventions of arsenic and chromium GI-toxicity.

  10. Transcriptomic analysis of cultured whale skin cells exposed to hexavalent chromium [Cr(VI)].

    Science.gov (United States)

    Pabuwal, Vagmita; Boswell, Mikki; Pasquali, Amanda; Wise, Sandra S; Kumar, Suresh; Shen, Yingjia; Garcia, Tzintzuni; Lacerte, Carolyne; Wise, John Pierce; Wise, John Pierce; Warren, Wesley; Walter, Ronald B

    2013-06-15

    Hexavalent chromium Cr(VI) is known to produce cytotoxic effects in humans and is a highly toxic environmental contaminant. Interestingly, it has been shown that free ranging sperm whales (Phyester macrocephalus) may have exceedingly high levels of Cr in their skin. Also, it has been demonstrated that skin cells from whales appear more resistant to both cytotoxicity and clastogenicity upon Cr exposure compared to human cells. However, the molecular genetic mechanisms employed in whale skin cells that might lead to Cr tolerance are unknown. In an effort to understand the underlying mechanisms of Cr(VI) tolerance and to illuminate global gene expression patterns modulated by Cr, we exposed whale skin cells in culture to varying levels of Cr(VI) (i.e., 0.0, 0.5, 1.0 and 5.0 μg/cm²) followed by short read (100 bp) next generation RNA sequencing (RNA-seq). RNA-seq reads from all exposures (≈280 million reads) were pooled to generate a de novo reference transcriptome assembly. The resulting whale reference assembly had 11K contigs and an N50 of 2954 bp. Using the reads from each dose (0.0, 0.5, 1.0 and 5.0 μg/cm²) we performed RNA-seq based gene expression analysis that identified 35 up-regulated genes and 19 down-regulated genes. The experimental results suggest that low dose exposure to Cr (1.0 μg/cm²) serves to induce up-regulation of oxidative stress response genes, DNA repair genes and cell cycle regulator genes. However, at higher doses (5.0 μg/cm²) the DNA repair genes appeared down-regulated while other genes that were induced suggest the initiation of cytotoxicity. The set of genes identified that show regulatory modulation at different Cr doses provide specific candidates for further studies aimed at determination of how whales exhibit resistance to Cr toxicity and what role(s) reactive oxygen species (ROS) may play in this process. PMID:23584427

  11. Linear sweep anodic stripping voltammetry: Determination of Chromium (VI) using synthesized gold nanoparticles modified screen-printed electrode

    Indian Academy of Sciences (India)

    Salamatu Aliyu Tukur; Nor Azah Yusof; Reza Hajian

    2015-06-01

    A highly sensitive electrochemical sensor has been constructed for determination of Cr(VI) with the lowest limit of detection (LOD) reported to date using gold nanoparticles (AuNPs) modified screen-printed electrode (SPE). The modification of SPE by casting pure AuNPs increases the sensitivity for detection of Cr(VI) ion using anodic stripping voltammetry. Cr(VI) ions are reduced to chromium metal on SPE-AuNPs by applying deposition potential of –1.1 V for 180 s. Afterwards, the oxidation peak current of chromium is obtained by linear sweep voltammetry in the range of −1.0 V to 0.2 V. Under the optimized conditions (HClO4, 0.06 mol L−1; deposition potential, –1.1 V; deposition time, 180s; scan rate, 0.1 V s−1), the limit of detection (LOD) was 1.6 pg mL−1. The fabricated electrode was successfully used for detection of Cr(VI) in tap and seawater.

  12. Reduction of chromium oxides with calcium carbide during thestainless steelmaking process

    Directory of Open Access Journals (Sweden)

    B. Arh

    2015-04-01

    Full Text Available An efficient reduction of chromium from slag requires an appropriate reduction agent for the given steelmaking technology. The usual slag reduction praxis consists of carbon injections and additions of ferrosilicon and aluminum.Reduction of chromium containing slags with calcium carbide is an appealing alternative. Calcium carbide is a strong reduction agent that unlike ferrosilicon and aluminum also provides the possibility of foaming slag formation.Experimental work regarding chromium slag reduction with calcium carbide towards usual slag reduction praxis is described in this work. The results show that higher reduction rates in the stage of refining period of the melt and higher level of overall chromium reduction from slag can be reached with the blowing of CaC2.

  13. Electron transfer. 75. Reduction of carboxylato-bound chromium(V) with vanadium(IV). Intervention of chromium(IV)

    International Nuclear Information System (INIS)

    The chelated (carboxylato)chromium(V) anion bis(2-hydroxy-2-ethylbutyrato)oxochromate(V) (I), [(Lig)2Cr(O)]-, reacts with oxovanadium(IV) to form a strongly absorbing species (lambda/sub max/ = 515 nm; epsilon = 1.7 x 103 M-1) in the presence of 2-hydroxy-2-ethylbutyric acid buffers (pH 2-4). EPR data support 1:1 stoichiometry with VO2+ in deficiency, indicating the formation of a chromium(IV) species by reduction. With excess VO2+ a chromium(III) product was obtained. Spectral and ion-exchange properties of this product correspond to those observed for the titanium(III) and iron(II) reductions of chromium(V) and are consistent with the formulation of the product as a bis(hydroxycarboxylate) chelate of (H2O)2Cr/sup III/. With excess vanadium(IV), the reaction exhibits triphasic kinetics. The remaining step of the reaction is the reduction of the chromium(IV) intermediate with VO2+. Rates for all steps increase with decreasing [H+] and level off at low [H+]. The limiting rate constants for the formation of the chromium(IV) intermediate by the (Lig)3Cr(O)2- and (Lig)2Cr(O)- pathways are 2.8 x 103 and 2.2 x 102 M-1s-1. The bimolecular limiting rate constant for the reduction of chromium(IV) is computed to be 7.7 x 102 M-1 s-1. 33 references, 7 tables

  14. ADSORPTION OF CHROMIUM (VI FROM AQUEOUS SOLUTIONS BY DIFFERENT ADMIXTURES – A BATCH EQUILIBRIUM TEST STUDY

    Directory of Open Access Journals (Sweden)

    K. SHIVA PRASHANTH KUMAR

    2014-08-01

    Full Text Available Wide variety of inorganic compounds such as nutrients and trace metals, organic chemicals, radioactive contaminants and pathogens are commonly present as contaminants in the groundwater. Migration of contaminants in soil involves important mechanisms such as molecular diffusion, dispersion under physical processes, adsorption, precipitation and oxidation - reduction under chemical processes and biodegradation under biological process. Cr (VI is a major and dangerous contaminant as per the ground water is concerned. There are numerous research work carried out with concentrated efforts by the researchers towards removal of Cr (VI contaminant from aqueous solutions. There are few studies relevant to Cr (VI removal with respect to utilization of low cost admixtures and also soil type. In the present study, different low cost admixtures like rice husk (RH, shredded tyre (ST and fly ash (FA are used to understand the performance in removal of Cr (VI from aqueous solution and also two different soil types are used along with the admixture. The results are discussed in terms of sorption capacity and performance of individual admixture and combination of admixture with soil in removal of contaminant. The fly ash, rice husk and shredded tyre admixtures are used and the results revealed that the shredded tyre showed higher performance in removal of contaminant concentration. Also, the soil which has more fine particle content (size<0.075 mm IS sieve showed reasonable reduction in concentration of contaminant at the lower levels of contaminant initial concentration. The sorption capacity results of Cr (VI contaminant, treated with various admixtures are further validated with the published work of other investigators. The shredded tyre (ST showed more adsorption capacity, i.e., 3.283 mg/g at pH of 4.8. For other admixtures, adsorption capacity value is varying in the range of 0.07 mg/g to 1.7 mg/g. Only in case of activated alumina and modified saw dust

  15. Redução de cromo hexavalente por bactérias isoladas de solos contaminados com cromo Reduction of hexavlent chromium by isolated bacteria of contaminated soils with chromium

    Directory of Open Access Journals (Sweden)

    Daniele Conceição

    2007-12-01

    Full Text Available A redução do Cr(VI para Cr(III diminui a toxidade deste metal no ambiente, uma vez que o Cr(III é insolúvel às membranas biológicas. Assim, a redução microbiana do Cr(VI é uma alternativa para reduzir os impactos ambientais causados por este metal, utilizado em diversos processos industriais. O objetivo deste trabalho foi selecionar microrganismos a partir de solo contaminado com cromo e caracterizar sua capacidade de redução do Cr(VI durante o crescimento celular. A atividade de redução do Cr(VI pelos isolados foi quantificada com o reagente de s-difenilcarbazida. No isolamento, foram obtidas 20 bactérias resistentes a cromo(VI; seis destas foram capazes de reduzir acima de 100mg L-1 Cr(VI em 24 horas. As bactérias selecionadas foram eficientes na redução do Cr(VI e apresentam potencial para outros estudos, visando à aplicação em processos de biorremediação.The reduction of Cr(VI to Cr(III decrease the toxic effect of this metal in the environment, because Cr(III is insoluble to the biological membranes. The microbial reduction of Cr(VI it is an alternative to reduce the environmental impacts caused by this metal used in several industrial processes. The objective of this research was to select microorganisms from chromium contaminated soil and to characterize their ability to reduce Cr(VI. The activity of reduction of Cr(VI for the isolated was quantified with s-diphenylcarbazide. A group of 20 chromium resistant bacteria were isolated; six of these were able to reduce 100mg L-1 Cr(VI in 24 hours. The isolated bacteria, from contaminated soil can remediate chromate and presented potential for other studies seeking their application in bioremediation processes.

  16. An organic-reagent-free method for determination of chromium(VI) in steel alloys, sewage sludge and wastewater.

    Science.gov (United States)

    Fan, Jing; Sun, Yuping; Wang, Jianji; Fan, Maohong

    2009-04-27

    One of the active areas of green chemistry research and development is in the development of new analytical methods and techniques that reduce and eliminate the use and generation of hazardous substances. In this work, a rapid and organic-reagent-free method was developed for the determination of chromium(VI) by sequential injection analysis (SIA). The method was based on the detection of a blue unstable intermediate compound resulting from the reaction of Cr(VI) with hydrogen peroxide (H(2)O(2)) in acidic medium. H(2)O(2) and its reaction products were environmentally friendly, and chromogenic reagents and organic solvents were not used in the proposed method. Different SIA parameters have been optimized and used to obtain the analytical figures of merit. Under the optimum experimental conditions, the linear range for Cr(VI) was 0.5-100.0 microg mL(-1), and the detection limit was 0.16 microg mL(-1). The sample throughput was 80 h(-1), and the total volume of only 145 microL was consumed in each determination of Cr(VI). The method was applied for the determination of Cr(VI) in seven real samples, including alloy steel, sewage sludge and wastewater samples, and the results were compared with those obtained by atomic absorption spectrometry as well as with the certified value of Cr(VI) in standard reference material. Statistical analysis revealed that there was no significant difference at 95% confidence level. PMID:19362620

  17. Kinetics of hexavalent chromium reduction by iron metal

    Institute of Scientific and Technical Information of China (English)

    Huijing QIAN; Yanjun WU; Yong LIU; Xinhua XU

    2008-01-01

    The kinetics of Cr(Ⅵ) reduction to Cr(Ⅲ) by metallic iron (Fe0) was studied in batch reactors for a range of reactant concentrations, pH and temperatures. Nearly 86.8% removal efficiency for Cr(Ⅵ) was achieved when Fe0 concentration was 6 g/L (using commercial iron powder (200 mesh) I n 120 min). The reduction ofhexavalent chro-mium took place on the surface of the iron particles following pseudo-first order kinetics. The rate of Cr(Ⅵ) reduction increased with increasing Fe0 addition and temperature but inversely with initial pH. The pseudo-first-order rate coeffi-cients (kobs) were determined as 0.0024, 0.010, 0.0268 and 0.062 8 min-1 when iron powder dosages were 2, 6, 10 and 14 g/L at 25℃ and pH 5.5, respectively. According to the Arrehenius equation, the apparent activation energy of 26.5 kJ/mol and pre-exponential factor of 3 330 min-1 were obtained at the temperature range of 288-308 K. Different Fe0 types were compared in this study. The reactivity was in the order starch-stabilized Fe0 nanoparticlesFe0 nano-particlesFe0 powderFe0 filings. Electrochemical analysis of the reaction process showed that Cr(Ⅲ) and Fe(Ⅲ) hydroxides should be the dominant final products.

  18. MODELING HEXAVALENT CHROMIUM REDUCTION IN GROUND- WATER IN FIELD-SCALE TRANSPORT AND LABORATORY BATCH EXPERIMENTS

    Science.gov (United States)

    A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical cond...

  19. Groundwater contaminated with hexavalent chromium [Cr (VI]: a health survey and clinical examination of community inhabitants (Kanpur, India.

    Directory of Open Access Journals (Sweden)

    Priti Sharma

    Full Text Available BACKGROUND: We assessed the health effects of hexavalent chromium groundwater contamination (from tanneries and chrome sulfate manufacturing in Kanpur, India. METHODS: The health status of residents living in areas with high Cr (VI groundwater contamination (N = 186 were compared to residents with similar social and demographic features living in communities having no elevated Cr (VI levels (N = 230. Subjects were recruited at health camps in both the areas. Health status was evaluated with health questionnaires, spirometry and blood hematology measures. Cr (VI was measured in groundwater samples by diphenylcarbazide reagent method. RESULTS: Residents from communities with known Cr (VI contamination had more self-reports of digestive and dermatological disorders and hematological abnormalities. GI distress was reported in 39.2% vs. 17.2% males (AOR = 3.1 and 39.3% vs. 21% females (AOR = 2.44; skin abnormalities in 24.5% vs. 9.2% males (AOR = 3.48 and 25% vs. 4.9% females (AOR = 6.57. Residents from affected communities had greater RBCs (among 30.7% males and 46.1% females, lower MCVs (among 62.8% males and less platelets (among 68% males and 72% females than matched controls. There were no differences in leucocytes count and spirometry parameters. CONCLUSIONS: Living in communities with Cr (VI groundwater is associated with gastrointestinal and dermatological complaints and abnormal hematological function. Limitations of this study include small sample size and the lack of long term follow-up.

  20. Hexavalent chromium reduction by immobilized cells of Bacillus sphaericus AND 303

    Directory of Open Access Journals (Sweden)

    Arundhati Pal

    2013-06-01

    Full Text Available Bacillus sphaericus AND 303, a Cr(VI-resistant and reducing bacterium reported from serpentine outcrops of Andaman was evaluated for Cr(VI reduction using immobilized cells under batch culture. Screening of inert matrices for entrapment of whole cells indicated that polyvinyl alchohol-alginate was the most effective one reducing 87.5% of 20 µM Cr(VI in 24 h. The rate of chromate reduction was dependent on initial Cr(VI and biomass concentrations. The PVA cell beads were recycled three times without cell leakage and disintegration. The reduction efficiency was improved in the presence of glucose and glycerol as electron donors leading to complete reduction. However, the presence of additional metal ions was inhibitory to Cr(VI reduction. It could be emphasized that PVA-alginate immobilized cells of B. sphaericus AND 303 could be used as a continuous bioprocess in treating Cr(VI contaminated effluents.

  1. Investigations on photoelectrocatalytic reduction of Cr(VI) over titanium dioxide anode and metal cathode

    International Nuclear Information System (INIS)

    Photocatalytic and photoelectrocatalytic (PEC) reductions of Cr(VI) based on TiO2 thin films were investigated under various conditions. Photogenerated electrons transferred from TiO2 thin film to cathode can contribute to PEC reduction of Cr(VI) only when the Fermi level of cathode lies above the chemical potential of Cr(VI), almost independent on the applied voltage of the direct current. In addition, the TiO2-coated anode is the major site that accommodates the PEC reduction of Cr(VI) with hole scavenger citric acid, regardless of the Fermi level of the cathode. Although electron transfer from TiO2 to Cr(VI) is an exothermic process, the photogenerated holes in TiO2 can markedly hamper Cr(VI) reduction over the TiO2 thin film by oxidizing the lower-valence Cr back to Cr(VI), which may be counteracted by the citric acid. This research provides some in-depth insights on developing photocatalysts which enable highly efficient PEC reduction of Cr(VI) in the future. - Highlights: • Cr(VI) reduction on TiO2 photoanode is dominant with the addition of citric acid. • Cr(VI) is reduced on photocathode with Fermi level above Cr(VI) chemical potential. • Photogenerated holes can hamper Cr(VI) photoreduction over TiO2

  2. Importance of c-Type cytochromes for U(VI reduction by Geobacter sulfurreducens

    Directory of Open Access Journals (Sweden)

    Leang Ching

    2007-03-01

    Full Text Available Abstract Background In order to study the mechanism of U(VI reduction, the effect of deleting c-type cytochrome genes on the capacity of Geobacter sulfurreducens to reduce U(VI with acetate serving as the electron donor was investigated. Results The ability of several c-type cytochrome deficient mutants to reduce U(VI was lower than that of the wild type strain. Elimination of two confirmed outer membrane cytochromes and two putative outer membrane cytochromes significantly decreased (ca. 50–60% the ability of G. sulfurreducens to reduce U(VI. Involvement in U(VI reduction did not appear to be a general property of outer membrane cytochromes, as elimination of two other confirmed outer membrane cytochromes, OmcB and OmcC, had very little impact on U(VI reduction. Among the periplasmic cytochromes, only MacA, proposed to transfer electrons from the inner membrane to the periplasm, appeared to play a significant role in U(VI reduction. A subpopulation of both wild type and U(VI reduction-impaired cells, 24–30%, accumulated amorphous uranium in the periplasm. Comparison of uranium-accumulating cells demonstrated a similar amount of periplasmic uranium accumulation in U(VI reduction-impaired and wild type G. sulfurreducens. Assessment of the ability of the various suspensions to reduce Fe(III revealed no correlation between the impact of cytochrome deletion on U(VI reduction and reduction of Fe(III hydroxide and chelated Fe(III. Conclusion This study indicates that c-type cytochromes are involved in U(VI reduction by Geobacter sulfurreducens. The data provide new evidence for extracellular uranium reduction by G. sulfurreducens but do not rule out the possibility of periplasmic uranium reduction. Occurrence of U(VI reduction at the cell surface is supported by the significant impact of elimination of outer membrane cytochromes on U(VI reduction and the lack of correlation between periplasmic uranium accumulation and the capacity for uranium

  3. Adsorption of chromium(VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups

    Science.gov (United States)

    Anirudhan, T. S.; Nima, J.; Divya, P. L.

    2013-08-01

    This study successfully synthesized a new adsorbent by ethylation of glycidylmethacrylate grafted aminated titanium dioxide densified cellulose (Et-AMPGDC), to remove chromium(VI) from aqueous solutions. The adsorbent was characterized by the FTIR, XRD, SEM and TG-DTG measurements. Batch adsorption technique using Et-AMPGDC was applied for the removal of Cr(VI) from aqueous solution and waste water. The contact time necessary to attain equilibrium and the optimum pH were found to be 1 h and 4.5, respectively. The kinetics of sorption of Cr(VI) ions was described by a pseudo-second-order kinetic model. The equilibrium isotherm data were analyzed using the Langmuir and Freundlich isotherm equations and the adsorption process was reflected by Langmuir isotherm. The maximum adsorption capacity was evaluated to be 123.60 mg/g. The electroplating industrial wastewater samples were treated with Et-AMPGDC to demonstrate its efficiency in removing Cr(VI) from wastewater. Almost complete removal was possible with 100 mg of the adsorbent from 50 mL of wastewater sample. Desorption efficiency was achieved by treatment with 0.1 M NaOH and five adsorption-desorption cycles were performed without significant decrease in adsorption capacity.

  4. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction.

    Science.gov (United States)

    Barrera-Díaz, Carlos E; Lugo-Lugo, Violeta; Bilyeu, Bryan

    2012-07-15

    Hexavalent chromium is of particular environmental concern due to its toxicity and mobility and is challenging to remove from industrial wastewater. It is a strong oxidizing agent that is carcinogenic and mutagenic and diffuses quickly through soil and aquatic environments. It does not form insoluble compounds in aqueous solutions, so separation by precipitation is not feasible. While Cr(VI) oxyanions are very mobile and toxic in the environment, Cr(III) cations are not. Like many metal cations, Cr(III) forms insoluble precipitates. Thus, reducing Cr(VI) to Cr(III) simplifies its removal from effluent and also reduces its toxicity and mobility. In this review, we describe the environmental implications of Cr(VI) presence in aqueous solutions, the chemical species that could be present and then we describe the technologies available to efficiently reduce hexavalent chromium. PMID:22608208

  5. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings.

    Science.gov (United States)

    Tripathi, Durgesh Kumar; Singh, Vijay Pratap; Prasad, Sheo Mohan; Chauhan, Devendra Kumar; Dubey, Nawal Kishore

    2015-11-01

    The present study was aimed to investigate the effect of silicon nanoparticles (SiNp) against Cr (VI) phytotoxicity in pea seedlings. Results show that Cr(VI, 100 μM) significantly (P < 0.05) declined growth of pea which was accompanied by the enhanced level of Cr. Additionally, photosynthetic pigments and chlorophyll fluorescence parameters like F(v)/F(m), F(v)/F0 and qP were decreased while NPQ significantly (P < 0.05) increased under Cr(VI) treatment. Superoxide radical, hydrogen peroxide and malondialdehyde (MDA-lipid peroxidation) contents were enhanced by Cr(VI). Activities of antioxidant enzymes like superoxide dismutase and ascorbate peroxidase were increased by Cr (VI) while activities of catalase, glutathione reductase and dehydroascorbate reductase were inhibited significantly (P < 0.05). Micro and macronutrients also show decreasing trends (except S) under Cr(VI) treatment. However, addition of SiNp together with Cr(VI) protects pea seedlings against Cr(VI) phytotoxicity hence improved growth was noticed. In conclusion, the results of this study show that Cr(VI) causes negative impact on pea seedlings, however; SiNp protects pea seedlings against Cr(VI) phytotoxicity by reducing Cr accumulation and oxidative stress, and up-regulating antioxidant defense system and nutrient elements.

  6. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings.

    Science.gov (United States)

    Tripathi, Durgesh Kumar; Singh, Vijay Pratap; Prasad, Sheo Mohan; Chauhan, Devendra Kumar; Dubey, Nawal Kishore

    2015-11-01

    The present study was aimed to investigate the effect of silicon nanoparticles (SiNp) against Cr (VI) phytotoxicity in pea seedlings. Results show that Cr(VI, 100 μM) significantly (P < 0.05) declined growth of pea which was accompanied by the enhanced level of Cr. Additionally, photosynthetic pigments and chlorophyll fluorescence parameters like F(v)/F(m), F(v)/F0 and qP were decreased while NPQ significantly (P < 0.05) increased under Cr(VI) treatment. Superoxide radical, hydrogen peroxide and malondialdehyde (MDA-lipid peroxidation) contents were enhanced by Cr(VI). Activities of antioxidant enzymes like superoxide dismutase and ascorbate peroxidase were increased by Cr (VI) while activities of catalase, glutathione reductase and dehydroascorbate reductase were inhibited significantly (P < 0.05). Micro and macronutrients also show decreasing trends (except S) under Cr(VI) treatment. However, addition of SiNp together with Cr(VI) protects pea seedlings against Cr(VI) phytotoxicity hence improved growth was noticed. In conclusion, the results of this study show that Cr(VI) causes negative impact on pea seedlings, however; SiNp protects pea seedlings against Cr(VI) phytotoxicity by reducing Cr accumulation and oxidative stress, and up-regulating antioxidant defense system and nutrient elements. PMID:26298805

  7. Performance Study of Chromium (VI Removal in Presence of Phenol in a Continuous Packed Bed Reactor by Escherichia coli Isolated from East Calcutta Wetlands

    Directory of Open Access Journals (Sweden)

    Bhaswati Chakraborty

    2013-01-01

    Full Text Available Organic pollutants, like phenol, along with heavy metals, like chromium, are present in various industrial effluents that pose serious health hazard to humans. The present study looked at removal of chromium (VI in presence of phenol in a counter-current continuous packed bed reactor packed with E. coli cells immobilized on clay chips. The cells removed 85% of 500 mg/L of chromium (VI from MS media containing glucose. Glucose was then replaced by 500 mg/L phenol. Temperature and pH of the MS media prior to addition of phenol were 30°C and 7, respectively. Hydraulic retention times of phenol- and chromium (VI-containing synthetic media and air flow rates were varied to study the removal efficiency of the reactor system. Then temperature conditions of the reactor system were varied from 10°C to 50°C, the optimum being 30°C. The pH of the media was varied from pH 1 to pH 12, and the optimum pH was found to be 7. The maximum removal efficiency of 77.7% was achieved for synthetic media containing phenol and chromium (VI in the continuous reactor system at optimized conditions, namely, hydraulic retention time at 4.44 hr, air flow rate at 2.5 lpm, temperature at 30°C, and pH at 7.

  8. Cr stable isotopes as indicators of Cr(VI) reduction in groundwater: a detailed time-series study of a point-source plume.

    Science.gov (United States)

    Berna, Emily C; Johnson, Thomas M; Makdisi, Richard S; Basu, Anirban

    2010-02-01

    Chromium stable isotope ratios show promise as indicators of Cr(VI) reduction in groundwater, but no published study has yet demonstrated that expected relationships between (53)Cr/(52)Cr and Cr(VI) concentration, position, and time occur in an actual groundwater plume. We present an extensive data set from a point-source plume in Berkeley, CA; data extend over 5 years and 14 locations covering the entire plume. We interpret the data using a Rayleigh distillation model with an effective fractionation factor that incorporates an intrinsic fractionation factor determined from incubations of site sediments and accounts for reservoir effects in the restricted subsurface zones where Cr(VI) reduction is thought to occur. The groundwater (53)Cr/(52)Cr and Cr(VI) concentration data are consistent with a scenario where the system has reached a steady state: Cr(VI) reduction continues, the extent of reduction at any point is constant over time, reduction proceeds to completion at the downgradient edge of the plume, and the plume is no longer advancing. The overall consistency of the results with a reasonable model for the site supports the use of Cr isotope-based estimates of reduction, but we discuss current uncertainties and limitations of the approach as well. PMID:20039722

  9. STEMS AND THEIR ASHES OF SOME HERBAL PLANTS AS ADSORBENTS IN THE REMOVAL OF CHROMIUM (VI FROM WASTE WATERS

    Directory of Open Access Journals (Sweden)

    V. Krishna Veni

    2013-03-01

    Full Text Available A thorough investigation is made to explore the surface sorption abilities of powders of stems and their ashes of some herbal plants in controlling the Chromium (VI pollution in waste waters. It is found that the powders of stems and their ashes of Achyranthes aspera, Mentha, Emblica officinalis, Hybiscus roja sinensis, Ocimum sanctum and Psidium guajava have strong affinity towards Chromate at low pH values. % of removal of Chromate is found to be pH sensitive and also depends on sorption concentration and time of equilibration. The conditions for the maximum extraction of Chromate at minimum dosage of sorbent and equilibration time have been optimized. More than 90.0% of removal of Chromate is found. Sorbent concentrations and time needed for the maximum removal of Chromate is less for the ashes of stems than with the raw stem powders. The presence of ten fold excesses of Cations : Ca2+, Mg2+ , Cu2, Zn2+ and Ni2 + and anions like NO3 - ,Chloride, Fluoride and Carbonate have marginally effected the % removal of Chromium (VI while Sulphate and Phosphate showed some interference with some sorbents but even with them, the % of extractability never comes down to 71.0%. The adoptability of the methodologies developed in this work are tested with respect to diverse waste water samples collected from industrial effluents and in natural lakes and found to be remarkably successful.

  10. A plan for study of hexavalent chromium, CR(VI) in groundwater near a mapped plume, Hinkley, California, 2016

    Science.gov (United States)

    Izbicki, John A.; Groover, Krishangi

    2016-01-22

    The Pacific Gas and Electric Company (PG&E) Hinkley compressor station, in the Mojave Desert 80 miles northeast of Los Angeles, is used to compress natural gas as it is transported through a pipeline from Texas to California. Between 1952 and 1964, cooling water used at the compressor station was treated with a compound containing chromium to prevent corrosion. After cooling, the wastewater was discharged to unlined ponds, resulting in contamination of soil and groundwater in the underlying alluvial aquifer (Lahontan Regional Water Quality Control Board, 2013). Since 1964, cooling-water management practices have been used that do not contribute chromium to groundwater.In 2007, a PG&E study of the natural background concentrations of hexavalent chromium, Cr(VI), in groundwater estimated average concentrations in the Hinkley area to be 1.2 micrograms per liter (μg/L), with a 95-percent upper-confidence limit of 3.1 μg/L (CH2M-Hill, 2007). The 3.1 μg/L upper-confidence limit was adopted by the Lahontan Regional Water Quality Control Board (RWQCB) as the maximum background concentration used to map the plume extent. In response to criticism of the study’s methodology, and an increase in the mapped extent of the plume between 2008 and 2011, the Lahontan RWQCB (Lahontan Regional Water Quality Control Board, 2012) agreed that the 2007 PG&E background-concentration study be updated.The purpose of the updated background study is to evaluate the presence of natural and man-made Cr(VI) near Hinkley, Calif. The study also is to estimate natural background Cr(VI) concentrations in the aquifer upgradient and downgradient from the mapped Cr(VI) contamination plume, as well as in the plume and near its margins. The study was developed by the U.S. Geological Survey (USGS) in collaboration with a technical working group (TWG) composed of community members, the Independent Review Panel (IRP) Manager (Project Navigator, Ltd.), the Lahontan RWQCB, PG&E, and consultants for PG&E.&E.

  11. A plan for study of hexavalent chromium, CR(VI) in groundwater near a mapped plume, Hinkley, California, 2016

    Science.gov (United States)

    Izbicki, John A.; Groover, Krishangi

    2016-01-01

    The Pacific Gas and Electric Company (PG&E) Hinkley compressor station, in the Mojave Desert 80 miles northeast of Los Angeles, is used to compress natural gas as it is transported through a pipeline from Texas to California. Between 1952 and 1964, cooling water used at the compressor station was treated with a compound containing chromium to prevent corrosion. After cooling, the wastewater was discharged to unlined ponds, resulting in contamination of soil and groundwater in the underlying alluvial aquifer (Lahontan Regional Water Quality Control Board, 2013). Since 1964, cooling-water management practices have been used that do not contribute chromium to groundwater.In 2007, a PG&E study of the natural background concentrations of hexavalent chromium, Cr(VI), in groundwater estimated average concentrations in the Hinkley area to be 1.2 micrograms per liter (μg/L), with a 95-percent upper-confidence limit of 3.1 μg/L (CH2M-Hill, 2007). The 3.1 μg/L upper-confidence limit was adopted by the Lahontan Regional Water Quality Control Board (RWQCB) as the maximum background concentration used to map the plume extent. In response to criticism of the study’s methodology, and an increase in the mapped extent of the plume between 2008 and 2011, the Lahontan RWQCB (Lahontan Regional Water Quality Control Board, 2012) agreed that the 2007 PG&E background-concentration study be updated.The purpose of the updated background study is to evaluate the presence of natural and man-made Cr(VI) near Hinkley, Calif. The study also is to estimate natural background Cr(VI) concentrations in the aquifer upgradient and downgradient from the mapped Cr(VI) contamination plume, as well as in the plume and near its margins. The study was developed by the U.S. Geological Survey (USGS) in collaboration with a technical working group (TWG) composed of community members, the Independent Review Panel (IRP) Manager (Project Navigator, Ltd.), the Lahontan RWQCB, PG&E, and consultants for PG&E.&E.

  12. Advances in preparation of modified activated carbon and its applications in the removal of chromium (VI) from aqueous solutions

    Science.gov (United States)

    Deng, Z. L.; Liang, M. N.; Li, H. H.; Zhu, Z. J.

    2016-08-01

    The wastewater in which Cr(VI) is not fully treated has drawn environment researchers’ attention increasingly, due to its environmental pollution and harms to human health. Thus a high efficiency of modified activated carbon (MAC) to remove Cr(VI) has become one of the hot topics among environmental material research. This paper introduces the modification methods from the physical structure features and chemical properties of the activated carbon (AC) surface. At the same time, it briefly analyses the chemical characteristics of Cr(VI) in aqueous solutions, and on the basis of the aforementioned introduces the modification methods of the surface chemical characteristics of AC, such as: oxidation modification, reduction modification, loaded metal modification, and microwave modification. Combining studies on removing Cr(VI) from aqueous solutions by MAC in recent years, this paper anticipates the new trends of preparing MAC and the points in absorption research, offering some suggestions for future studies.

  13. Brief report on thermodynamics of chromium slags and kinetic modelling of chromite reduction (1995-96)

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yamping; Holappa, L. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1996-12-31

    This article summaries the research work on thermodynamics of chromium slags and kinetic modelling of chromite reduction. The thermodynamic properties of FeCr slag systems were calculated with the regular solution model. The effects of CaO/MgO ratio, Al{sub 2}0{sub 3} amount as well as the slag basicity on the activities of chromium oxides and the oxidation state of chromium were examined. The calculated results were compared to the experimental data in the literature. In the kinetic modelling of the chromite reduction, the reduction possibilities and tendencies of the chromite constitutes with CO were analysed based on the thermodynamic calculation. Two reaction models, a structural grain model and a multi-layers reaction model, were constructed and applied to simulate the chromite pellet reduction and chromite lumpy ore reduction, respectively. The calculated reduction rates were compared with the experimental measurements and the reaction mechanisms were discussed. (orig.) SULA 2 Research Programme; 4 refs.

  14. Forensic investigation of a chromium(VI) groundwater plume in Thiva, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotakis, I. [National Technical Univ. of Athens, Zografou (Greece); Dermatas, D. [National Technical Univ. of Athens, Zografou (Greece); Vatseris, C. [Intergeo-Environmental Technology Ltd., Thessaloniki (Greece); Chrysochoou, M. [Univ. of Connecticut, Storrs, CT (United States); Papassiopi, N. [National Technical Univ. of Athens, Zografou (Greece); Xenidis, A. [National Technical Univ. of Athens, Zografou (Greece); Vaxevanidou, K. [National Technical Univ. of Athens, Zografou (Greece)

    2015-01-01

    We conducted a forensic investigation with the aim of decoupling the contribution of geogenic and anthropogenic Cr(VI) sources in the wider area of Thiva. Groundwater and topsoil samples were collected from two Cr(VI) groundwater plumes of 160 μg/L and 75 μg/L. A series of evidence support the view that the origin of Cr(VI) detected in groundwater is mainly geogenic. These are: (a) the presence of Cr in topsoil of the wider area, (b) the moderate Cr(VI) groundwater concentrations, (c) the high Ni levels within the Cr(VI) plumes, (d) the predominance of Mn(IV), which is a prerequisite for Cr(III) oxidation to Cr(VI), and (e) the absence of co-contaminants. This study also revealed that, although both Cr(VI) plumes are clearly of geogenic origin, the plume with the elevated Cr(VI) values, in the north of Thiva town, exhibits also an anthropogenic component, which can potentially be attributed to the alkaline environment associated with the old uncontrolled landfill of Thiva and the industrial cluster located in this area.

  15. Chromium (VI removal from aqueous solutions by purolite base anion-exchange resins with gel structure

    Directory of Open Access Journals (Sweden)

    Balan Catalin

    2013-01-01

    Full Text Available The removal of Cr (VI from aqueous solution using two strong base anionic resins with gel structure, Purolite A-400 (styrene-divinylbenzene matrix and Purolite A-850 (acrylic matrix was investigated in batch technique. The sorption efficiency was determined as a function of phases contact time, solution pH, resin dose, temperature and initial Cr (VI concentration. The percentage of Cr (VI removed reaches maximum values (up to 99 % in the pH range 4 - 5.3 under a resin dose of 6 g/L and of Cr (VI concentration up to 100 mg/L. An increase in temperature has a positive effect on the Cr (VI sorption process. The equilibrium sorption data were fitted with the Freundlich, Langmuir and Dubinin-Radushkevich isotherm models, using both linear and nonlinear regression method. The Langmuir model very well verifies the experimental data and gives the maximum sorption capacity of 120.55 mg Cr (VI/g and 95.82 mg Cr (VI/g for A-400 and A-850 resins, respectively. The thermodynamic study and mean free energy of sorption values calculated using Dubinin-Radushkevich equation indicated the sorption is a chemical endothermic process. The kinetic data were well described by pseudo-second order kinetic equation and the sorption process is controlled by external (film diffusion and intraparticle diffusion.

  16. Sorption of chromium (VI) by Mg/Fe hydrotalcite type compunds

    Energy Technology Data Exchange (ETDEWEB)

    García-Sosa, I., E-mail: irma.garcia@inin.gob.mx; Cabral-Prieto, A., E-mail: agustin.cabral@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Química (Mexico); Nava, N., E-mail: tnava@imp.mx; Navarrete, J. [Instituto Mexicano del Petróleo (Mexico); Olguín, M. T., E-mail: teresa.olguin@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Química (Mexico); Escobar, Luis, E-mail: luis.escobar@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Física (Mexico); López-Castañares, R., E-mail: rlc@anuies.mx; Olea-Cardoso, O., E-mail: olc@anuies.mx [Universidad Autónoma del Edo. de México, Facultad de Química (Mexico)

    2015-06-15

    The synthesis by co-precipitation and characterization by X-ray diffraction, Raman and Mössbauer spectroscopies of Mg-Fe-hydrotalcite compounds, and their sorption capacities for Cr(VI) in aqueous media were carried out. The average sorption capacity of Cr(VI) for the non-thermal treated samples was of 6.2 mg/g. The ferrihydrite was omnipresent in all prepared hydrotalcite samples. A brief discussion is made on the role of both the hydrotalcite and ferrihydrite for removing such amount of Cr(VI)

  17. Determination of Hexavalent Chromium (Cr(VI)) Concentrations via Ion Chromatography and UV-Vis Spectrophotometry in Samples Collected from Nacogdoches Wastewater Treatment Plant, East Texas (USA)

    OpenAIRE

    Onchoke, Kefa K.; Sasu, Salomey A.

    2016-01-01

    The concentration of hexavalent chromium (Cr(VI)), a toxic environmental pollutant and carcinogen, was determined in samples collected from Nacogdoches Wastewater Treatment Plant (NWWTP) using ion chromatography and UV-visible spectrophotometry (IC, UV-Vis). On reaction with 1,5-diphenylcarbazide (DPC) Cr+6 forms a 1,5-diphenylcarbazide-Cr(VI) complex, which is then analyzed at 530 nm and 540 nm, respectively. Via ion chromatography Cr(VI) concentrations were in the range of 0.00190±0.0020 an...

  18. A MIXED CHEMICAL REDUCTANT FOR TREATING HEXAVALENT CHROMIUM IN A CHROMITE ORE PROCESSING SOLID WASTE

    Science.gov (United States)

    We evaluated a method for delivering ferrous iron into the subsurface to enhance chemical reduction of Cr(VI) in a chromite ore processing solid waste (COPSW). The COPSW is characterized by high pH (8.5 -11.5), high Cr(VI) concentrations in the solid phase (up to 550 mg kg-1) and...

  19. Equilibrium and kinetic study on chromium (VI removal from simulated waste water using gooseberry seeds as a novel biosorbent

    Directory of Open Access Journals (Sweden)

    J. Aravind

    2015-07-01

    Full Text Available Gooseberry seed (Phyllanthus acidus was used as an adsorbent to determine its feasibility for the removal of Cr(VI. Various parameters such as pH, temperature, contact time, initial metal concentration and adsorbent dosage were investigated to determine the biosorption performance. Equilibrium was attained within 60 minutes and maximum removal of 96% was achieved under the optimum conditions at pH 2. The adsorption phenomenon demonstrated here was monolayer represented by Langmuir isotherm with R2 value of 0.992 and the Langmuir constants k and q0 was found to be 0.0061 (L/mg and 19.23 (mg/g. The adsorption system obeyed Pseudo second order kinetics with R2 value of 0.999. The results of the present study indicated that gooseberry seed powder can be employed as adsorbent for the effective removal of hexavalent chromium economically.

  20. Accurate quantification of total chromium and its speciation form Cr(VI) in water by ICP-DRC-IDMS and HPLC/ICP-DRC-IDMS.

    Science.gov (United States)

    Markiewicz, Barbara; Komorowicz, Izabela; Barałkiewicz, Danuta

    2016-05-15

    Two analytical procedures have been developed for the determination of total chromium (TCr) and its highly toxic species, i.e. Cr(VI) in water samples using the following methods: inductively coupled plasma dynamic reaction cell isotope dilution mass spectrometry (ICP-DRC-IDMS) and high performance liquid chromatography inductively coupled plasma dynamic reaction cell isotope dilution mass spectrometry (HPLC/ICP-DRC-IDMS). Spectral interferences, predominantly occurring in chromium determination, were removed using a dynamic reaction cell (DRC). The presented procedures facilitate the quantification of trace amounts - below 1 µg L(-1) of TCr and individual Cr species - in various water matrices including drinking water and still bottled water with different mineral composition. Special attention has been paid to the adequate preparation of isotopically enriched (53)Cr(VI) standard solution in order to avoid artifacts in chromium speciation. Both procedures were fully validated as well as establishing the traceability and estimation of the uncertainty of measurement were carried out. Application of all of the above mentioned elements and of the isotope dilution technique, which provides the highest quality of metrological traceability, allowed to obtain reliable and high quality results of chromium determination in water samples. Additionally, the comparison of two methods: HPLC/ICP-DRC-MS and HPLC/ICP-DRC-IDMS for Cr(VI) determination, was submitted basing on the validation parameters. As a result, the lower values for these parameters were obtained using the second method. PMID:26992546

  1. "Involvement of metabolic reactive intermediate Cr (IV) in Chromium (VI) cytotoxic effects "

    OpenAIRE

    Pourahmad J; O’Brien PJ

    2001-01-01

    Addition of Cr VI (dichromate) to isolated rat hepatocytes results in rapid glutathione oxidation, reactive oxygen species (ROS) formation, lipid peroxidation, decreased mitochondrial membrane potential and lysosomal membrane rupture before hepatocyte lysis occurred. Cytotoxicity was prevented by ROS scavengers, antioxidants, and glutamine (ATP generator). Hepatocyte dichlorofluorescin oxidation to dichlorofluorescein (DCF) to determine ROS formation was inhibited by mannitol (a hydroxyl radi...

  2. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant.

    Science.gov (United States)

    Buendía-González, L; Orozco-Villafuerte, J; Cruz-Sosa, F; Barrera-Díaz, C E; Vernon-Carter, E J

    2010-08-01

    The bioaccumulation of Cr(VI) and Cd(II) in Prosopis laevigata and the effect of these heavy metals on plant growth were assessed. P. laevigata seeds were cultured during 50 days on modified Murashige-Skoog medium supplemented with four different concentrations of Cr(VI) (0-3.4mM) and Cd(II) (0-2.2mM), respectively. Heavy metals did not stop germination, but smaller plants with fewer leaves and secondary roots were produced. Seedlings showed an accumulation of 8176 and 21,437 mg Cd kg(-1) and of 5461 and 8090 mg Cr kg(-1) dry weight, in shoot and root, when cultured with 0.65 mM Cd(II) and 3.4mM Cr(VI), respectively. These results indicated that significant translocation from the roots unto aerial parts took place. A bioaccumulation factor greater than 100 for Cd and 24 for Cr was exhibited by the seedlings. P. laevigata can be considered as a potential hyperaccumulator of Cd(II) and Cr(VI) species and considered as a promising candidate for phytoremediation purposes.

  3. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant.

    Science.gov (United States)

    Buendía-González, L; Orozco-Villafuerte, J; Cruz-Sosa, F; Barrera-Díaz, C E; Vernon-Carter, E J

    2010-08-01

    The bioaccumulation of Cr(VI) and Cd(II) in Prosopis laevigata and the effect of these heavy metals on plant growth were assessed. P. laevigata seeds were cultured during 50 days on modified Murashige-Skoog medium supplemented with four different concentrations of Cr(VI) (0-3.4mM) and Cd(II) (0-2.2mM), respectively. Heavy metals did not stop germination, but smaller plants with fewer leaves and secondary roots were produced. Seedlings showed an accumulation of 8176 and 21,437 mg Cd kg(-1) and of 5461 and 8090 mg Cr kg(-1) dry weight, in shoot and root, when cultured with 0.65 mM Cd(II) and 3.4mM Cr(VI), respectively. These results indicated that significant translocation from the roots unto aerial parts took place. A bioaccumulation factor greater than 100 for Cd and 24 for Cr was exhibited by the seedlings. P. laevigata can be considered as a potential hyperaccumulator of Cd(II) and Cr(VI) species and considered as a promising candidate for phytoremediation purposes. PMID:20347590

  4. Aminopyridine modified Spirulina platensis biomass for chromium(VI) adsorption in aqueous solution.

    Science.gov (United States)

    Bayramoglu, Gulay; Akbulut, Aydin; Arica, M Yakup

    2016-01-01

    Chemical modification of Spirulina platensis biomass was realized by sequential treatment of algal surface with epichlorohydrin and aminopyridine. Adsorptive properties of Cr(VI) ions on native and aminopyridine modified algal biomass were investigated by varying pH, contact time, ionic strength, initial Cr(VI) concentration, and temperature. FTIR and analytical analysis indicated that carboxyl and amino groups were the major functional groups for Cr(VI) ions adsorption. The optimum adsorption was observed at pH 3.0 for native and modified algal biomasses. The adsorption capacity was found to be 79.6 and 158.7 mg g(-1), for native and modified algal biomasses, respectively. For continuous system studies, the experiments were conducted to study the effect of important design parameters such as flow rate and initial concentration of metal ions, and the maximum sorption capacity was observed at a flow rate of 50 mL h(-1), and Cr(VI) ions concentration 200 mg L(-1) with modified biomass. Experimental data fitted a pseudo-second-order equation. The regeneration performance was observed to be 89.6% and 94.3% for native and modified algal biomass, respectively. PMID:27533866

  5. Characterization of U(VI) reduction in contaminated sediments with slow-degrading electron donor source

    Science.gov (United States)

    Wu, W.; Watson, D. B.; Zhang, G.; Mehlhorn, T.; Lowe, K.; Earles, J.; Phillips, J.; Kelly, S. D.; Boyanov, M.; Kemner, K. M.; Schadt, C.; Criddle, C. S.; Jardine, P. M.; Brooks, S. C.

    2011-12-01

    In order to select sustainable, high efficiency and cost effective electron donor source, oleate and emulsified vegetable oil (EVO) were tested uranium (VI) reduction in comparison with ethanol in microcosms using uranium contaminated sediments and groundwater from the US DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site. The effect of initial sulfate concentration on U(VI) reduction was also tested. Both oleate and EVO were effective electron donor sources for U(VI) reduction. Accumulation of acetate as a major product and the removal of aqueous U(VI) were observed and were associated with sulfate reduction. Both oleate and EVO supported U(VI) reduction but at slower rates with a comparable but slightly lower extent of reduction than ethanol. X-ray absorption near-edge spectroscopy (XANES) analysis confirmed reduction of U(VI) to U(IV). The extent of U(VI) reduction in solid phase was negatively influenced by aqueous calcium concentration. The majority of electrons of the three substrates were consumed by sulfate reduction, Fe(III) reduction, and methanogenesis. Initial U(VI) concentration in the aqueous phase increased with increased sulfate concentration (1 versus 5 mM), likely due to U(VI) desorption from the solid phase. At the higher initial sulfate concentration more U(VI) was reduced and fewer electrons were used in methanogenesis. Analysis of bacterial and archeal populations using 16S rRNA gene libraries showed a significant increase in Deltaproteobacteria after biostimulation. The microbial community structures developed with oleate and EVO were significantly distinct from those developed with ethanol. Bacteria similar to Desulforegula spp. was predominant for oleate and EVO degradation but were not observed in ethanol-amended microcosms. Known U(VI)-reducing bacteria in the microcosms amended with the three electron donor sources included iron(III) reducing Geobacter spp. but in lower abundances than sulfate-reducing Desulfovibrio spp. The

  6. Effect of some non functional surfactants and electrolytes on the hexavalent chromium reduction by glycerol. A mechanistic study

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A.; Ghosh, S.K.; Saha, R.; Nandi, R.; Saha, B. [Burdwan Univ., WB (India). Dept. of Chemistry; Gosh, T. [A.B.N. Seal College, Coochbehar, WB (India). Dept. of Chemistry

    2011-11-15

    Hexavalent chromium is a widespread environmental contaminant and a known human carcinogen. Kinetics of reduction of hexavalent chromium by bio-molecule glycerol in micellar media have been studied spectrophotometrically. The cytoplasmic reduction of hexavalent chromium to trivalent chromium occurs in micro-heterogeneous systems. In vitro, the micelles are considered to mimic the cellular membranes. The electron transfer processes occurring in the micellar systems is considered as model to obtain insight into the electron transport process prevailing in biological systems. Micellar media is also a probe to establish the mechanistic paths of reduction of hexavalent chromium to trivalent chromium. Effects of electrolytes common to biological system are studied to establish the proposed reaction mechanism strongly. (orig.)

  7. Biosorption of copper(II and chromium(VI by modified tea fungus

    Directory of Open Access Journals (Sweden)

    Šćiban Marina B.

    2012-01-01

    Full Text Available The tea fungus was found to have good adsorption capacities for heavy metal ions. In this work it was treated with HCl or NaOH at 20°C or 100°C, with the aim to improve its adsorption ability. The sorption of Cu(II and Cr(VI ions from aqueous solutions by raw and treated tea fungus was investigated in the batch mode. The largest quantity of adsorbed Cu(II, of about 55 mg/g, was achieved by tea fungus modified with NaOH at 100°C. For Cr(VI, the largest quantity of adsorbed anions, of about 58 mg/g, was achieved by the adsorbent modified with NaOH at 20°C. It was shown that acid modification of tea fungus biomass was not effective. [Projekat Ministarstva nauke Republike Srbije, br. III 43005 i br. TR 31002

  8. Bioadsorción de Cromo (VI en Solución Acuosa por la Biomasa Celular de Cryptococcus neoformans y Helminthosporium sp Biosorption of Chromium (VI from Aqueous Solutions by Fungal Biomass of Cryptococcus neoformans and Helminthosporium sp

    Directory of Open Access Journals (Sweden)

    I. Acosta

    2005-01-01

    Full Text Available Se determinó la bioadsorción de Cromo (VI en solución por la biomasa celular de la levadura capsulada Cryptococcus neoformans y del hongo micelial Helminthosporium sp, por el método colorimétrico de la difenilcarbazida. La biomasa de C. neoformans fue más eficiente en la remoción de Cromo (VI en solución (98% que la de Helminthosporium sp (65%. La mayor bioadsorción para C. neoformans fue a pH=2.0 +/- 0.2, mientras que para Helminthosporium sp fue a pH=4.0 +/- 0.2, ambas a 28oC durante 24 horas con 0.2 mg/L de biomasa celular. Se concluye que las biomasas fúngicas remueven eficientemente Cromo (VI en solución y pueden utilizarse para descontaminar nichos acuáticos contaminados con este metal.A determination was made on the biosorption of dissolved Chromium (VI using cellular biomass of the encapsulated yeast Cryptococcus neoformans and the mycelial fungus Helminthosporium sp. using a diphenylcarbazide colorimetric method. The C. neoformans biomass was more efficient in removing Chromium (VI from solution (98% than the Helminthosporium sp. (65%. The highest biosorption for C. neoformans was at pH 2.0 + 0.02, while for Helminthosporium sp this occurred at pH 4.0 + 0.2 , both at 28°C for 24 h employing 0.2 mg/L of cellular biomass. It is concluded that the fungal biomasses efficiently removed Chromium (VI from solution and could be used for decontamination of aquatic habitats polluted with this metal.

  9. Role of direct reactivity with metals in chemoprotection by N-acetylcysteine against chromium(VI), cadmium(II), and cobalt(II).

    Science.gov (United States)

    Luczak, Michal W; Zhitkovich, Anatoly

    2013-12-01

    The antioxidant N-acetylcysteine (NAC) is widely used for the assessment of the role of reactive oxygen species (ROS) in various biological processes and adverse drug reactions. NAC has been found to effectively inhibit the toxicity of carcinogenic metals, which was attributed to its potent ROS-suppressive properties. However, the absence of redox activity among some metals and findings from genetic models suggested a more diverse, smaller role of oxidative stress in metal toxicity. Here, we examined mechanisms of chemoprotection by NAC against Cd(II), Co(II), and Cr(VI) in human cells. We found that NAC displayed a broad-spectrum chemoprotective activity against all three metals, including suppression of cytotoxicity, apoptosis, p53 activation, and HSP72 and HIF-1α upregulation. Cytoprotection by NAC was independent of cellular glutathione. NAC strongly inhibited the uptake of all three metals in histologically different types of human cells, explaining its high chemoprotective potential. A loss of Cr(VI) accumulation by cells was caused by NAC-mediated extracellular reduction of chromate to membrane-impermeative Cr(III). Suppression of Co(II) uptake resulted from a rapid formation of Co(II)-NAC conjugates that were unable to enter cells. Our results demonstrate that NAC acts through more than one mechanism in preventing metal toxicity and its chemoprotective activity can be completely ROS-independent. Good clinical safety and effectiveness in Co(II) sequestration suggest that NAC could be useful in the prevention of tissue accumulation and toxic effects of Co ions released by cobalt-chromium hip prostheses.

  10. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles

    International Nuclear Information System (INIS)

    Highlights: ► Organo-montmorillonite supported iron nanoparticles were found to be more efficient in the removal of Cr(VI) than unsupported iron nanoparticles. ► The iron nanoparticles were accommodated by the sectional structure of the clay minerals which were helpful to protect the nanoparticles from aggregating. ► XPS and XANES provided some direct information about the reduction mechanisms. ► The structure of the supported iron nanoparticles was stable in the reaction with Cr(VI). - Abstract: Iron nanoparticles exhibit greater reactivity than micro-sized Fe0, and they impart advantages for groundwater remediation. In this paper, supported iron nanoparticles were synthesized to further enhance the speed and efficiency of remediation. Natural montmorillonite and organo-montmorillonite were chosen as supporting materials. The capacity of supported iron nanoparticles was evaluated, compared to unsupported iron nanoparticles, for the reduction of aqueous Cr(VI). The reduction of Cr(VI) was much greater with organo-montmorillonite supported iron nanoparticles and fitted the pseudo-second order equation better. With a dose at 0.47 g/L, a total removal capacity of 106 mg Cr/g Fe0 was obtained. Other factors that affect the efficiency of Cr(VI) removal, such as pH values, the initial Cr(VI) concentration and storage time of nanoparticles were investigated. X-ray photoelectron spectrometry (XPS) and X-ray absorption near edge structure (XANES) were used to figure out the mechanism of the removal of Cr(VI). XPS indicated that the Cr(VI) bound to the particle surface was completely reduced to Cr(III) under a range of conditions. XANES confirmed that the Cr(VI) reacted with iron nanoparticles was completely reduced to Cr(III).

  11. Evaluation of batch biosorption of chromium (vi) from aqueous solution by chemically modified polyalthia longifolia leaves

    International Nuclear Information System (INIS)

    Removal of toxic metals from surface water is a significant matter of concern. Biosorption is emerging as an economical and eco friendly methodology for the removal of toxic chemicals from waste water. Optimization of operating conditions has a large impact on the efficiency of this process. Simple untreated and chemically modified Polyalthia longifolia leaves were used to study biosorption of Cr (VI) from aqueous media within various experimental conditions and their efficiency of biosorption were compared. The effects of different conditions, such as contact time of solution with bio sorbent, temperature, pH, biosorbent dose and agitation speed for the removal of Cr (VI) were studied. It is found that acid treated Polyalthia longifolia leaves have greater biosorption capacity as compared to untreated and base treated leaves. Langmuir and Freundlich isotherms were also applied to evaluate maximum biosorption capacity of simple untreated and chemically modified Polyalthia longifolia leaves for Cr (VI). This research work is of great importance in regard of practical waste water treatment by biosorption. (author)

  12. Removal of chromium(VI) from wastewater using phosphoric acid treated activated carbon

    Science.gov (United States)

    Suganthi, N.

    2013-06-01

    Activated carbon prepared by phosphoric acid treatment of tamarind nuts (seeds) was investigated for the removal of Cr(VI) from aqueous solutions. The characteristics of phosphorylated tamarind nut carbon (PTNC) were evaluated for porosity and surface area. The effect of contact time, pH, adsorbent dose and particle size variation were studied to evaluate the potential applicability of carbon for treating Cr(VI) containing wastewater. The adsorbent data were modeled by Langmiur and Freundlich classical adsorption isotherms. The kinetic studies showed that Cr(VI) adsorption on PTNC was in compliance with the pseudo-second-order kinetic model. Desorption studies indicated that ion-exchange mechanism was operating. The continuous adsorption was studied in glass columns of 2.5 cm diameter using electroplating wastewater to ascertain the practical applicability of PTNC in large scale. The mechanism of adsorption was found to be ion-exchange process and was supported by FTIR spectroscopy. The surface modification after adsorption was confirmed by SEM studies.

  13. Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue.

    Science.gov (United States)

    Chrysochoou, Maria; Dermatas, Dimitris

    2007-03-15

    The Rietveld method allows the quantification of crystalline phases and amorphous material identified by X-ray powder diffraction (XRPD) and other diffraction methods. The method assists in determining the speciation of contaminants in solid matrices both qualitatively and quantitatively in a statistically defensible approach, as it does not focus on a microscale. Rietveld was applied to chromite ore processing residue (COPR), a cementitious waste containing hexavalent chromium. Calcium aluminum chromium oxide hydrates (CACs) were the crystalline phases identified by XRPD that bind Cr(6+) in COPR according to their chemical formula. Rietveld quantification, combined with mass balances on Cr(6+), showed that CACs may bind Cr(6+) in variable percentages, ranging from 25% to 85%. Analysis of duplicate samples showed that material variability is the predominant factor of uncertainty in evaluating the role of CACs in Cr(6+) speciation, provided that a consistent quantification strategy is pursued. The choice of strategy was performed on the basis of the pertinent literature, preliminary analyses of the equipment and the software settings, and mass balances. The correlation between the average CAC-bound Cr(6+) concentration and the total Cr(6+) for five samples (R(2)=0.94), extracted from different zones and soil borings, suggests that CACs are a primary sink for Cr(6+) in COPR. PMID:16842911

  14. Effect of Garlic (Allium sativum) on Heavy Metal (Nickel II and ChromiumVI) Induced Alteration of Serum Lipid Profile in Male Albino Rats

    OpenAIRE

    Kusal K. Das; Dhundasi, Salim A; Swastika N. Das; Amrita Das Gupta

    2008-01-01

    We have studied the effect of simultaneous oral treatment of aqueous garlic extract (Allium sativum) on heavy metal (nickel II and chromium VI) induced changes in serum lipid profile. Nickel sulfate and potassium dichromate treated rats showed a significant increase in serum low density lipoprotein-cholesterol (LDL-C), very low density lipoprotein-cholesterol (VLDL-C) and triglyceride (TG) level as well as decrease in serum high density lipoprotein-cholesterol (HDL-C) level. Simultaneous garl...

  15. Synthesis of chromium and ferrochromium alloy in molten salts by the electro-reduction method

    Directory of Open Access Journals (Sweden)

    Ge X.

    2015-01-01

    Full Text Available In this work, we successfully applied the Fray-Farthing-Chen Cambridge electro-reduction process on the preparation of chromium from chromium oxide, and for the first time, the synthesis of ferrochromium alloy from chromium oxide and iron oxide mixture and the chromite ore in molten calcium chloride. The present work systematically investigated the influences of sintered temperature of the solid precursor, electrochemical potential, electrolysis temperature and time on the products by using a set of advanced characterization techniques, including XRD and SEM/EDS analyses. In particular, our results show that this process is energy-friendly and technically-feasible for the direct extraction of ferrochromium alloy from chromite ore. Our findings thus provide useful insights for designing a novel green process to produce ferrochromium alloy from low-grade chromite ore or stainless steel slag.

  16. Effects of combining biological treatment and activated carbon on hexavalent chromium reduction.

    Science.gov (United States)

    Orozco, A M Ferro; Contreras, E M; Zaritzky, N E

    2011-02-01

    The objectives of the present work were: (a) to analyze the Cr(VI) removal by combining activated sludge (AS) with powdered activated carbon (PAC), (b) to analyze the effect of PAC and Cr(VI) on the growth kinetics of activated sludge, and (c) to determine if the combined method (AS-PAC) for Cr(VI) removal can be considered additive or synergistic with respect to the individual processes. Chromate removal was improved by increasing PAC concentrations in both PAC and AS-PAC systems. Cr(VI) removal using the AS-PAC system was higher than using AS or PAC. The increase of Cr(VI) caused longer lag phase and lower observed specific growth rate (μ(obs)), biomass yield (Y(X/S)), and specific growth substrate consumption rate (q(S)) of activated sludge; additionally, PAC did not enhance the growth kinetic parameters (μ(obs), Y(X/S), q(S)). Cr(VI) reduction in AS-PAC system was the result of the additive effect of each individual Cr(VI) removal process. PMID:21123053

  17. Preparation of Polyacrylonitrile/Ferrous Chloride Composite Nanofibers by Electrospinning for Efficient Reduction of Cr(VI).

    Science.gov (United States)

    Zhou, Shilin; Liu, Fang; Zhang, Qian; Chen, Bor-Yann; Lin, Chin-Jung; Chang, Chang-Tang

    2015-08-01

    In this study, A novel adsorbent material of polyacrylonitrile (PAN)/ferrous chloride (FeCl2) composite nanofibers is prepared by electrospinning, a simple and effective method. The obtained composite nanofibers have a non-uniform morphology and structure and a large specific surface area of 13.8 m2 g-1. Fourier transform infrared spectroscopy (FTIR) revealed that Fe2+ was successful introduced into the composite nanofibers. Furthermore, the PAN/FeC12 composite nanofibers exhibited excellent performance in Cr removal, especially when reacted with reduction from a Cr(VI) standard containing solution, which has much faster removal efficiency than the previous report of Lin et al. (2011). The results of the adsorption isotherm show that the data fitted well to the Langmuir isotherm model. The maximum adsorption of chromium ions composite nanofibers is 108 mgCr/gFeCl2. An attempted model prediction of the transient dynamics of adsorption-desorption elucidated the feasible kinetic analysis of Cr6+ from the PAN/FeCl2 composite nanofibers. This kinetic modeling can be used both for adsorption of heavy metals wastewater and for organic-adsorption and biosorption of diverse wastewaters. The PAN/FeCl2 composite nanofibers producted in this study exhibit high efficiency in Cr(VI) removal from wastewater, and may be used as a reference for future investigation. PMID:26369157

  18. Preparation of Polyacrylonitrile/Ferrous Chloride Composite Nanofibers by Electrospinning for Efficient Reduction of Cr(VI).

    Science.gov (United States)

    Zhou, Shilin; Liu, Fang; Zhang, Qian; Chen, Bor-Yann; Lin, Chin-Jung; Chang, Chang-Tang

    2015-08-01

    In this study, A novel adsorbent material of polyacrylonitrile (PAN)/ferrous chloride (FeCl2) composite nanofibers is prepared by electrospinning, a simple and effective method. The obtained composite nanofibers have a non-uniform morphology and structure and a large specific surface area of 13.8 m2 g-1. Fourier transform infrared spectroscopy (FTIR) revealed that Fe2+ was successful introduced into the composite nanofibers. Furthermore, the PAN/FeC12 composite nanofibers exhibited excellent performance in Cr removal, especially when reacted with reduction from a Cr(VI) standard containing solution, which has much faster removal efficiency than the previous report of Lin et al. (2011). The results of the adsorption isotherm show that the data fitted well to the Langmuir isotherm model. The maximum adsorption of chromium ions composite nanofibers is 108 mgCr/gFeCl2. An attempted model prediction of the transient dynamics of adsorption-desorption elucidated the feasible kinetic analysis of Cr6+ from the PAN/FeCl2 composite nanofibers. This kinetic modeling can be used both for adsorption of heavy metals wastewater and for organic-adsorption and biosorption of diverse wastewaters. The PAN/FeCl2 composite nanofibers producted in this study exhibit high efficiency in Cr(VI) removal from wastewater, and may be used as a reference for future investigation.

  19. Toxicity of combined chromium(VI) and phenanthrene pollution on the seed germination, stem lengths, and fresh weights of higher plants.

    Science.gov (United States)

    Hu, Shuangqing; Gu, Hairong; Cui, Chunyan; Ji, Rong

    2016-08-01

    Studies of the interaction and toxicity of pollutant combinations such as heavy metals and PAHs are of practical importance in the remediation and monitoring of the industrial soil environment. This study investigated the single and combined toxicity of chromium(VI) and phenanthrene on three important higher plants: mung beans (Phaseolus aureus), pakchoi cabbage (Brassica chinensis), and rice (Oryza sativa). In experiments using artificial soil matrix, the EC10 and EC20 of the two pollutants, alone and in combination, were analyzed with respect to seed germination, stem length, and above-ground fresh weight of these higher plants. The additive index method was used to evaluate the combined biological toxicity of chromium(VI) and phenanthrene. The results showed that the EC20 of chromium(VI) on the stem lengths of mung beans, pakchoi cabbage, and rice was 289, 248, and 550 mg kg(-1), respectively. The corresponding EC20 values for the fresh weights of the three plants were 334, 307, and 551 mg kg(-1). The EC20 of phenanthrene on the stem lengths of mung beans, pakchoi cabbage, and rice was 528, 426, and 628 mg kg(-1), respectively. The corresponding EC20 values for the fresh weights of the three plants were 696, 585, and 768 mg kg(-1). The EC20 of a combination of chromium(VI) and phenanthrene on the stem lengths of mung beans, pakchoi cabbage, and rice was 192, 173, and 279 mg kg(-1), respectively, and 200, 205, and 271 mg kg(-1) for the fresh weights of the three plants. The single and combined exposure of soil to chromium(VI) and phenanthrene had deleterious effects on plants in the early stage of growth. Overall, pakchoi cabbage was more sensitive than mung beans and rice. The two pollutants exerted synergistic effects on the stem lengths and above-ground fresh weights of both mung beans and rice but antagonistic effects on pakchoi cabbage. The results of this study also suggested pakchoi cabbage as a sensitive indicator of soil pollution. PMID

  20. Biomolecular and Isotopic Signatures Related to Cr(VI) Reduction by a Sulfate-Reducing Bacterium Isolated from the Hanford 100H Aquifer

    Science.gov (United States)

    Han, R.; Qin, L.; Geller, J. T.; Chakraborty, R.; Christensen, J. N.; Beller, H. R.

    2011-12-01

    Chromium contamination of groundwater is widespread within the Dept. of Energy (DOE) complex. At DOE's Hanford 100H area, we have conducted Cr bioremediation (in situ reductive immobilization) studies involving injection of a lactate-containing polymer, and have observed sequential use of the dissolved electron acceptors present in groundwater (namely, oxygen, nitrate, and sulfate). Sulfate-reducing bacteria are of particular interest for chromate reduction because they can reduce Cr(VI) enzymatically (e.g., using cytochrome c3 or thioredoxin reductase) and abiotically with hydrogen sulfide, the end product of their respiration. In this poster, we use studies of a sulfate-reducing bacterium isolated from the Hanford 100H aquifer, Desulfovibrio vulgaris strain RCH1, to explore (a) isotopic signatures that might allow us to distinguish between enzymatic and sulfide-mediated Cr(VI) reduction and (b) biomolecular signatures (gene or transcript copy number of diagnostic genes) that might be used as proxies of in situ metabolic rates. In order to differentiate between the mechanisms of Cr reduction by sulfate reducers, we analyzed the isotopic fractionation during Cr(VI) reduction by strain RCH1. Cell suspension studies of strain RCH1 demonstrated that Cr(VI) reduction could occur in the presence of lactate (electron donor) alone or with both lactate and sulfate. Cr(VI) reduction in the presence of lactate and sulfate was 25-30% more rapid than enzymatic Cr reduction when only lactate was added, suggesting that biogenic hydrogen sulfide increases the specific rate of Cr(VI) reduction beyond purely enzymatic activity. Cr isotopic measurements showed different fractionation behavior for the lactate-only and lactate+sulfate systems, with fractionation (epsilon) values of 2.3 and 1.66 per mil, respectively. In order to determine whether gene or transcript copy number for diagnostic sulfate and chromate reduction genes could serve as proxies to estimate in situ metabolic

  1. Synchrotron-based imaging of chromium and γ-H2AX immunostaining in the duodenum following repeated exposure to Cr(VI) in drinking water.

    Science.gov (United States)

    Thompson, Chad M; Seiter, Jennifer; Chappell, Mark A; Tappero, Ryan V; Proctor, Deborah M; Suh, Mina; Wolf, Jeffrey C; Haws, Laurie C; Vitale, Rock; Mittal, Liz; Kirman, Christopher R; Hays, Sean M; Harris, Mark A

    2015-01-01

    Current drinking water standards for chromium are for the combined total of both hexavalent and trivalent chromium (Cr(VI) and Cr(III)). However, recent studies have shown that Cr(III) is not carcinogenic to rodents, whereas mice chronically exposed to high levels of Cr(VI) developed duodenal tumors. These findings may suggest the need for environmental standards specific for Cr(VI). Whether the intestinal tumors arose through a mutagenic or non-mutagenic mode of action (MOA) greatly impacts how drinking water standards for Cr(VI) are derived. Herein, X-ray fluorescence (spectro)microscopy (µ-XRF) was used to image the Cr content in the villus and crypt regions of duodena from B6C3F1 mice exposed to 180 mg/l Cr(VI) in drinking water for 13 weeks. DNA damage was also assessed by γ-H2AX immunostaining. Exposure to Cr(VI) induced villus blunting and crypt hyperplasia in the duodenum--the latter evidenced by lengthening of the crypt compartment by ∼2-fold with a concomitant 1.5-fold increase in the number of crypt enterocytes. γ-H2AX immunostaining was elevated in villi, but not in the crypt compartment. µ-XRF maps revealed mean Cr levels >30 times higher in duodenal villi than crypt regions; mean Cr levels in crypt regions were only slightly above background signal. Despite the presence of Cr and elevated γ-H2AX immunoreactivity in villi, no aberrant foci indicative of transformation were evident. These findings do not support a MOA for intestinal carcinogenesis involving direct Cr-DNA interaction in intestinal stem cells, but rather support a non-mutagenic MOA involving chronic wounding of intestinal villi and crypt cell hyperplasia. PMID:25352572

  2. Rice husk: an alternate and low cost material for treating chromium (VI) containing water

    International Nuclear Information System (INIS)

    This paper shows the ability of the native rice husk to remove ions of Cr (VI) in simulated water from tanneries in laboratory conditions. The influences of the variables pH, metal concentration, dosage and contact time on adsorption process was evaluated. It was found a removal more than 94% at pH value of 1, dosage of 3 g/L, concentration of 3 mg/L, at a speed of 127 rpm and at a time of 720 min. The results were evaluated with a 95% level of significance using the statistical tool ANOVA. The information regarding the balance process was fitted to the models of Freundlich, Langmuir, Dubinin-Raduskevich and Thempkin obtaining a better correlation with the Langmuir isotherm with an adsorption capacity of 1.25 mg/g at a pH value of 1. In order to prove the occurrence of structural changes on the adsorbent material, analysis was performed through the DRIFT technique (diffuse reflectance infrared spectroscopy) before and after the removal process and as well abromatological analyses to determine any variation in its composition.

  3. Ferrous sulphate mono and heptahydrate reduction of hexavalent chromium in cement: effectiveness and storability

    Directory of Open Access Journals (Sweden)

    Valverde, J. L.

    2005-09-01

    Full Text Available In Community legislation, substances containing hexavalent chromium are classified as carcinogenic, mutagenic and sensitizing. In cement, hexavalent chromium intensifies sensitization and may set off severe allergic reactions in workers in routine contact with the product, whether in the factory or on construction sites. The allergic or contact dermatitis causes is a very painful disease that may lead to permanent worker disability. According to Directive 2003/53/EC of the European Parliament and the Council, Governments of all member countries will be required to prohibit the marketing and use, as of 17 January 2005, of any cement or cement preparation containing more than 2 ppm of chromium (VI. Hexavalent chromium can be reduced with ferrous sulphate to trivalent chromium, which is water-insoluble and therefore innocuous to the skin. The present paper reports the effects of adding ferrous sulphate mono- or heptahydrate to a commercial cement and the storage time of the mix on the concentration of hexavalent chromium. The salts studied were found to effectively reduce hexavalent chromium in cement for at least three months.

    Las sustancias que contienen cromo hexavalente están clasificadas en la legislación comunitaria como sustancias carcinogénicas, mutagénicas y sensibilizantes. El cromo hexavalente del cemento potencia la sensibilización y provoca graves reacciones alérgicas que sufren bastante a menudo los trabajadores que lo manipulan habitualmente, ya sea en fábrica o en el sector de la construcción. La dermatitis alérgica o de contacto que produce es muy dolorosa y puede dejar a los trabajadores en estado de discapacidad. La Directiva 2003/53/CE del Parlamento Europeo y del Consejo, exige a los Gobiernos de los países miembros, que a partir del 17 de enero de 2005, prohiban el uso y la comercialización de todos aquellos cementos y preparados que contengan cemento, cuyo contenido en cromo (VI soluble, una vez hidratados

  4. Kinetics of Voluminal Reduction of Chromium Ore Fines Containing Coal by Microwave Heating

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin; WANG She-bin; ZHANG Meng; LIU Jin-ying; ZHOU Jian-xiong

    2008-01-01

    The kinetics of voluminal reduction of chromium ore fines containing coal(COFCC)by microwave heating was studied.When the molar ratio of carbon to oxygen was 0.84 and that of CaO to SiO2 was 0.39 in COFCC,the temperature-rising rate of COFCC by microwave heating was 62.5℃/min,68.75℃/min,70.59℃/rain,and 72.22℃/min at 1 000℃,1100℃,1200℃,and 1300℃,respectively.The results show that the voluminal reduction of COFCC by microwave heating at solid-solid phase is first order reaction,with the apparent activation energy of 51.480 kJ/mol.The limiting step of reaction rate for the overall reaction is the mass transfer of CO in the reduced product layer between dielectric particles of chromium ore and coal.

  5. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden

    Directory of Open Access Journals (Sweden)

    Dey Satarupa

    2013-01-01

    Full Text Available Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gramnegative (58% bacteria. The phenotypically distinguishable bacterial isolates (130 showed wide degree of tolerance to chromium (2-8 mM when tested in peptone yeast extract glucose agar medium. Isolates (92 tolerating 2 mM chromium exhibited different degrees of Cr+6 reducing activity in chemically defined Vogel Bonner (VB broth and complex KSC medium. Three potent isolates, two belonging to Arthrobacter spp. and one to Pseudomonas sp. were able to reduce more than 50 and 80% of 2 mM chromium in defined and complex media respectively. Along with Cr+6 (MIC 8.6-17.8 mM, the isolates showed tolerance to Ni+2, Fe+3, Cu+2 and Co+2 but were extremely sensitive to Hg+2 followed by Cd+2, Mn+2 and Zn+2. In addition, they were resistant to antibiotics like penicillin, methicillin, ampicillin, neomycin and polymyxin B. During growth under shake-flask conditions, Arthrobacter SUK 1201 and SUK 1205 showed 100% reduction of 2 mM Cr+6 in KSC medium with simultaneous formation of insoluble precipitates of chromium salts. Both the isolates were also equally capable of completely reducing the Cr+6 present in mine seepage when grown in mine seepage supplemented with VB concentrate.

  6. THE CONSEQUENCES ON BLOOD GSH DYNAMICS ON WISTAR FEMALE RATS AT AD LIBITUM CHROMIUM (VI ADMINISTRATION DURING THE GESTATION AFTER THE WEAN

    Directory of Open Access Journals (Sweden)

    CORINA GRĂVILĂ

    2013-07-01

    Full Text Available Chromium (VI is a widely used industrial chemical, extensively used in paints, metal finishes, steel including stainless steel manufacturing, alloy cast irons, chrome, and wood treatment. In nature chromium occurs in divalent, trivalent and hexavalent forms. Hexavalent chromium predominates over the trivalent form in natural waters. We have studied the influence of potassium dichromate (K2Cr2O7 on blood GSH values in rats. This study was carried out on 28 Wistar adult female rats, divided in 3 experimental groups (E and one control group (C. The rats were feed with 25ppm (LOAEL, 50ppm and 75ppm potassium dichromate, ad libitum, in drinking water, during the gestation. The control batch received tap water. Reduced glutathione (GSH was measured quantitatively after the wean using a Perkin-Elmer spectrophotometer, through Beutler et al. method, at 412nm. This study reports that potassium dichromate exposure induced the depletion of blood GSH because Cr(VI can generate reactive oxygen species (ROS. It can induce oxidative stress and toxicity.

  7. Reduction and removal of Cr(VI) from aqueous solutions using modified byproducts of beer production.

    Science.gov (United States)

    Cui, Haojie; Fu, Minglai; Yu, Shen; Wang, Ming Kuang

    2011-02-28

    Biosorption, as an effective and low-cost technology treating industrial wastewaters containing Cr(VI), has become a significant concern worldwide. In this work, acid-modified byproducts of beer production (BBP) were used to remove Cr(VI) from aqueous solutions. Removal of Cr(VI) increases as the pH is decreased from 4.0 to 1.5, but the maximum of total Cr removal is obtained in a pH range from 2.0 to 2.5. Nearly 60% of the initial Cr(VI) (100 mg L(-1)) was adsorbed or reduced to Cr(III) within the first 10 min at pH 2.0. The Cr(VI) removal capability of acid-modified BBP materials was almost completely retained after regenerating with acid. FT-IR and XPS spectra revealed that carboxylate and carboxyl groups on the surface of modified BBP materials play a major role in Cr(VI) binding and reduction, whereas amide and other groups play a minor role in the Cr(VI) removal process.

  8. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    Science.gov (United States)

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively. PMID:26971177

  9. Dispersion of Iron Nanoparticles by Polymer-Based Hybrid Material for Reduction of Hexavalent Chromium

    Directory of Open Access Journals (Sweden)

    Syed Wasim Ali

    2015-01-01

    Full Text Available A gel type acrylic acid resin, based on ethyl acrylate-co-1,7-octadiene, has been synthesized by suspension polymerization at 20% cross-linking and subsequent hydrolysis by H2SO4. Capacity of the resin was observed to be 8.90 meq/g or 3.28 meq/mL. The iron nanoparticles used in this study were synthesized by ferrous sulphate method by using LiBH4 as a reductant and characterized by SEM, TEM, XRD, surface area, and electrical properties. Later, the resin was applied for the dispersion of iron nanoparticles over its surface for the reduction of Cr(VI and subsequent adsorption of Fe(III and Cr(III as byproducts. In the column studies the reduction of Cr(VI and the adsorption of Cr(III and Fe(III have been observed up to 240 μmole/L.

  10. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils.

    Science.gov (United States)

    Wu, Song-Lin; Chen, Bao-Dong; Sun, Yu-Qing; Ren, Bai-Hui; Zhang, Xin; Wang, You-Shan

    2014-09-01

    In a greenhouse pot experiment, dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon[Linn.] Pers.), inoculated with and without arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, were grown in chromium (Cr)-amended soils (0 mg/kg, 5 mg/kg, 10 mg/kg, and 20 mg/kg Cr[VI]) to test whether arbuscular mycorrhizal (AM) symbiosis can improve Cr tolerance in different plant species. The experimental results indicated that the dry weights of both plant species were dramatically increased by AM symbiosis. Mycorrhizal colonization increased plant P concentrations and decreased Cr concentrations and Cr translocation from roots to shoots for dandelion; in contrast, mycorrhizal colonization decreased plant Cr concentrations without improvement of P nutrition in bermudagrass. Chromium speciation analysis revealed that AM symbiosis potentially altered Cr species and bioavailability in the rhizosphere. The study confirmed the protective effects of AMF on host plants under Cr contaminations.

  11. The Electrochemical Reduction of Chromium Sesquioxide in Molten Calcium Chloride under Cathodic Potential Control

    Science.gov (United States)

    Schwandt, Carsten; Fray, Derek J.

    2007-11-01

    Electrochemical polarization and reduction experiments are reported which were performed with a three-terminal cell and a molten salt electrolyte consisting of calcium chloride with additions of calcium oxide. Employing a metal cathode, a graphite anode and a pseudo-reference electrode also made from graphite, polarization measurements were carried out with the aim to validate the performance of the pseudo-reference electrode and to assess the stability of the electrolyte. Using a chromium sesquioxide cathode in conjunction with a graphite anode and a graphite pseudo-reference electrode, electrochemical reduction experiments were conducted under potentiostatic control. The key results are: a graphite pseudo-reference electrode has been shown to be appropriate in the present type of molten salt electrochemical experiments that take place on a time scale of many hours; the conversion of chromium oxide into chromium metal has been accomplished under cathodic potential control and in the absence of calcium metal deposition; a significant amount of calcium oxide in the calcium chloride has been found necessary to preclude anodic chlorine formation throughout the entire experiment; a considerable overpotential has been identified at the anode.

  12. Plutonium(IV) peroxide formation in nitric medium and kinetics Pu(VI) reduction by hydrogen peroxide

    International Nuclear Information System (INIS)

    Reduction of plutonium (VI) to Pu(IV) with hydrogen peroxide is a step in industrial processes used to purify plutonium nitrate solutions. This operation must be carefully controlled, in order to avoid any formation of the Pu(IV) peroxide green precipitate and to obtain exclusively Pu(IV). This led us to study the acidity and Pu and H2O2 concentrations influences on the precipitate appearance and to perform a Pu(VI) reduction kinetic study on a wide range of acidities ([HNO3]: 0.5 to 8 M), plutonium concentrations ([Pu(VI)]: 0.1 to 0.8 M) and [H2O2]/[Pu(VI)] ratio (from 1 to 8). Thus, the domain of Pu(IV) peroxide formation and the reactional paths were established. With the exception of 0.5 M nitric acid medium, the kinetic curves show two distinct regims: the first one corresponds to an induction period where the Pu(VI) concentration doesn't change, the second corresponds to a linear decrease of Pu(VI). An increase of the temperature greatly accelerates the Pu(VI) reduction rate while [H2O2]/[Pu(VI)] has almost no influence. The Pu(VI) total reduction time decreases when initial concentration of plutonium increases. By increasing nitric acid concentration from 0.5 M to 6 M, the total Pu(VI) reduction time decreases. This time increases when [HNO3] varies from 6 M to 8 M. (orig.)

  13. Bioremediation of chromium solutions and chromium containing wastewaters.

    Science.gov (United States)

    Malaviya, Piyush; Singh, Asha

    2016-08-01

    Cr(VI) represents a serious threat to human health, living resources and ecological system as it is persistent, carcinogenic and toxic, whereas, Cr(III), another stable oxidation state of Cr, is less toxic and can be readily precipitated out of solution. The conventional methods of Cr(VI) removal from wastewaters comprise of chemical reduction followed by chemical precipitation. However, these methods utilize large amounts of chemicals and generate toxic sludge. This necessitates the need for devising an eco-technological strategy that would use the untapped potential of the biological world for remediation of Cr(VI) containing wastewaters. Among several viable approaches, biotransformation of Cr(VI) to relatively non-toxic Cr(III) by chromium resistant bacteria offers an economical- and environment-friendly option for its detoxification. Various studies on use of Cr(VI) tolerant viable bacterial isolates for treatment of Cr(VI) containing solutions and wastewater have been reported. Therefore, a detailed account of mechanisms and processes involved in bioreduction of Cr(VI) from solutions and wastewaters by bacterial isolates are the focus of this review article in addition to a discussion on toxicity of Cr(VI) on bacterial strains and various factors affecting Cr(VI) bioreduction. PMID:25358056

  14. Microbial reduction of uranium(VI) in sediments of different lithologies collected from Sellafield

    International Nuclear Information System (INIS)

    Highlights: • U(VI)(aq) mobility can be controlled by stimulating biogeochemical interactions. • Indigenous microbes in varied sediments reduced U(VI) to insoluble U(IV). • Sediment cell numbers and amount of bioavailable Fe(III) could limit this process. - Abstract: The presence of uranium in groundwater at nuclear sites can be controlled by microbial processes. Here we describe the results from stimulating microbial reduction of U(VI) in sediment samples obtained from a nuclear-licensed site in the UK. A variety of different lithology sediments were selected to represent the heterogeneity of the subsurface at a site underlain by glacial outwash deposits and sandstone. The natural sediment microbial communities were stimulated via the addition of an acetate/lactate electron donor mix and were monitored for changes in geochemistry and molecular ecology. Most sediments facilitated the removal of 12 ppm U(VI) during the onset of Fe(III)-reducing conditions; this was reflected by an increase in the proportion of known Fe(III)- and U(VI)-reducing species. However U(VI) remained in solution in two sediments and Fe(III)-reducing conditions did not develop. Sequential extractions, addition of an Fe(III)-enrichment culture and most probable number enumerations revealed that a lack of bioavailable iron or low cell numbers of Fe(III)-reducing bacteria may be responsible. These results highlight the potential for stimulation of microbial U(VI)-reduction to be used as a bioremediation strategy at UK nuclear sites, and they emphasise the importance of both site-specific and borehole-specific investigations to be completed prior to implementation

  15. Abiotic Reductive Immobilization of U(VI) by Biogenic Mackinawite

    Energy Technology Data Exchange (ETDEWEB)

    Veeramani, Harish; Scheinost, Andreas; Monsegue, Niven; Qafoku, Nikolla; Kukkadapu, Ravi K.; Newville, Mathew; Lanzirotti, Anthony; Pruden, Amy; Murayama, Mitsuhiro; Hochella, Michael F.

    2013-03-01

    During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in-situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U6+ reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe1+xS, x = 0 to 0.11) to reduce U6+ abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U6+ indicate the formation of nanoparticulate UO2. This study suggests the relevance of Fe(II) and sulfide bearing biogenic minerals in mediating abiotic U6+ reduction, an alternative pathway in addition to direct enzymatic U6+ reduction.

  16. Soil humic acids may favour the persistence of hexavalent chromium in soil

    International Nuclear Information System (INIS)

    The interaction between hexavalent chromium Cr(VI), as K2CrO4, and standard humic acids (HAs) in bulk solution was studied using three complementary analytical methods: UV-Visible spectroscopy, X-ray absorption spectroscopy and differential pulse stripping voltammetry. The observed UV-Vis and X-ray absorption spectra showed that, under our experimental conditions, HAs did not induce reduction of Cr(VI) to its trivalent chemical form. The interaction between Cr(VI) and HAs has rather led to the formation of Cr(VI)-HAs micelles via supramolecular chemical processes. The reported results could contribute towards explaining the relative persistence of ecotoxic hexavalent chromium in soils. - Humic acids (HAs) did not induce reduction of Cr(VI) to its trivalent chemical form, as the interaction between Cr(VI) and HAs rather led to the formation of Cr(VI)-HAs micelles via supramolecular chemical processes.

  17. Electrochemically enhanced reduction of hexavalent chromium in contaminated clay: Kinetics, energy consumption, and application of pulse current

    DEFF Research Database (Denmark)

    Sun, Tian Ran; Pamukcu, Sibel; Ottosen, Lisbeth M.;

    2015-01-01

    Electrochemically enhanced reduction of Cr(VI) in clay medium is a technique based on inputting extra energy into the clay to drive the favorable redox reaction. In this study, the reducing reagent Fe(II) was transported into Cr(VI) spiked kaolinite clay by direct current to investigate...

  18. U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens.

    Science.gov (United States)

    Orellana, Roberto; Leavitt, Janet J; Comolli, Luis R; Csencsits, Roseann; Janot, Noemie; Flanagan, Kelly A; Gray, Arianna S; Leang, Ching; Izallalen, Mounir; Mester, Tünde; Lovley, Derek R

    2013-10-01

    Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors.

  19. Effect of Set Potential on Hexavalent Chromium Reduction and Electricity Generation from Biocathode Microbial Fuel Cells

    KAUST Repository

    Huang, Liping

    2011-06-01

    Setting a biocathode potential at ?300 mV improved the subsequent performance of an MFC for Cr(VI) reduction compared to a control (no set potential). With this set potential, the startup time was reduced to 19 days, the reduction of Cr(VI) was improved to 19.7 mg/L d, and the maximum power density was increased to 6.4 W/m3 compared to the control (26 days, 14.0 mg/L d and 4.1 W/m3). Set potentials of ?150 mV and ?300 mV also improved system performance and led to similarly higher utilization of metabolic energy gained (PMEG) than set potentials of +200 mV and ?450 mV. We observed putative pili at ?150 and ?300 mV potentials, and aggregated precipitates on bacterial surfaces in both poised and nonpoised controls. These tests show that there are optimal potentials that can be set for developing a Cr(VI) biocathode. © 2011 American Chemical Society.

  20. Thermal incorporation behavior during the reduction and stabilization of chromium wastes

    OpenAIRE

    Yang, Jun; 楊駿

    2015-01-01

    The possibility of employing periclase to stabilize chromium in chromium wastes into spinel-based ceramics through thermal method was investigated by heating mixture of simulated chromium waste and magnesium oxide. Different types of magnesium oxide precursors were introduced to incorporate chromium oxide into magnesiochromite (MgCr2O4) ranging from 550 ºC to 1350 ºC. Magnesium oxide precursors of both types can effectively incorporate chromium oxide but via different mechanisms. Three main f...

  1. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.

    Science.gov (United States)

    Song, Tian-Shun; Jin, Yuejuan; Bao, Jingjing; Kang, Dongzhou; Xie, Jingjing

    2016-11-01

    In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48h, at 40mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions. PMID:27262274

  2. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals

    Science.gov (United States)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce; Kovarik, Libor

    2014-05-01

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfonate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10, 20, and 30 °C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10 °C, though at 30 °C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  3. Reduction And Immobilization Of Hexavalent Chromium By Microbially Reduced Fe-bearing Clay Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce W.; Kovarik, Libor

    2014-05-15

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10°, 20°, and 30°C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10°C, though at 30°C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  4. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1.

    Science.gov (United States)

    Fredrickson, J K; Kostandarithes, H M; Li, S W; Plymale, A E; Daly, M J

    2000-05-01

    Deinococcus radiodurans is an exceptionally radiation-resistant microorganism capable of surviving acute exposures to ionizing radiation doses of 15,000 Gy and previously described as having a strictly aerobic respiratory metabolism. Under strict anaerobic conditions, D. radiodurans R1 reduced Fe(III)-nitrilotriacetic acid coupled to the oxidation of lactate to CO(2) and acetate but was unable to link this process to growth. D. radiodurans reduced the humic acid analog anthraquinone-2,6-disulfonate (AQDS) to its dihydroquinone form, AH(2)DS, which subsequently transferred electrons to the Fe(III) oxides hydrous ferric oxide and goethite via a previously described electron shuttle mechanism. D. radiodurans reduced the solid-phase Fe(III) oxides in the presence of either 0.1 mM AQDS or leonardite humic acids (2 mg ml(-1)) but not in their absence. D. radiodurans also reduced U(VI) and Tc(VII) in the presence of AQDS. In contrast, Cr(VI) was directly reduced in anaerobic cultures with lactate although the rate of reduction was higher in the presence of AQDS. The results are the first evidence that D. radiodurans can reduce Fe(III) coupled to the oxidation of lactate or other organic compounds. Also, D. radiodurans, in combination with humic acids or synthetic electron shuttle agents, can reduce U and Tc and thus has potential applications for remediation of metal- and radionuclide-contaminated sites where ionizing radiation or other DNA-damaging agents may restrict the activity of more sensitive organisms. PMID:10788374

  5. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, J.K.; Kostandarithes, H.M.; Li, S.W.; Plymake, A.E.; Daly, M.J.

    2000-05-01

    Deinococcus radiodurans is an exceptionally radiation-resistant microorganism capable of surviving acute exposures to ionizing radiation doses of 15,000 Gy and previously described as having a strictly aerobic respiratory metabolism. Under strict anaerobic conditions, D. radiodurans R1 reduced Fe(III)-nitrilotriacetic acid coupled to the oxidation of lactate to CO{sub 2} and acetate but was unable to link this process to growth. D. radiodurans reduced the humic acid analog anthraquinone-2,6-disulfonate (AQDS) to its dihydroquinone form, AH{sub 2}DS, which subsequently transferred electrons to the Fe(III) oxides hydrous ferric oxide and goethite via a previously described electron shuttle mechanism. D. radiodurans reduced the solid-phase Fe(III) oxides in the presence of either 0.1 mM AQDS or leonardite humic acids (2 mg ml{sup {minus}1}) but not in their absence. D. radiodurans also reduced U(VI) and Tc(VII) in the presence of AQDS. In contrast, Cr(VI) was directly reduced in anaerobic cultures with lactate although the rate of reduction was higher in the presence of AQDS. The results are the first evidence that D. radiodurans can reduce Fe(III) coupled to the oxidation of lactate or other organic compounds. Also, D. radiodurans, in combination with humic acids or synthetic electron shuttle agents, can reduce U and Tc and thus has potential applications for remediation of metal- and radionuclide-contaminated sites where ionizing radiation or other DNA-damaging agents may restrict the activity of more sensitive organisms.

  6. A kinetic study of biological Cr(VI) reduction in trickling filters with different filter media types

    International Nuclear Information System (INIS)

    Two pilot-scale trickling filters were used in order to estimate Cr(VI) reduction through biological mechanisms in biofilm reactors operated in SBR mode with recirculation using different filter media types, i.e. plastic media and calcitic gravel. The feed concentrations of Cr(VI) examined were about 5, 10, 20, 30, 50 and 100 mg/l, while the concentration of the organic carbon was constant at 400 mg/l, in order to avoid carbon limitations in the bulk liquid. Maximum reduction rates of 4.8 and 4.7 g Cr(VI)/d were observed for feed Cr(VI) concentration of about 5 mg Cr(VI)/l, for the filters with the plastic support material and the gravel media, respectively. The reduction rates were significantly affected by the feed Cr(VI) concentration in both bioreactors. A dual-enzyme kinetic model was used in order to describe Cr(VI) reduction by aerobically grown mixed cultures. Model predictions were found to correspond very closely to experimental quantitative observations of Cr(VI) reduction at both pilot-scale trickling filters used

  7. EPR studies of chromium(V) intermediates generated via reduction of chromium(VI) by DOPA and related catecholamines

    DEFF Research Database (Denmark)

    Pattison, D I; Lay, P A; Davies, Michael Jonathan

    2000-01-01

    previously but have been reassigned as octahedral Cr(V) species with mixed catechol-derived ligands, [CrV(semiquinone)2(catecholate)]+. Experiments with excess K2Cr2O7 show complex behavior with the catecholamines and TBC. Several weak Cr(V) signals are detected after mixing, and the spectra evolve over time.......969, but the species responsible for this signal was not identified. Several other minor Cr signals are detected, which are attributed (by comparison with isoelectronic V(IV) species) to Cr(V) complexes coordinated by a single catecholamine ligand (and auxiliary ligands e.g. H2O), or to [Cr(O)L2]- (L = diolato......) species with a sixth ligand (e.g. H2O). Addition of catalase or deoxygenation of the solutions did not affect the main EPR signals. When the substrates were in excess (pH > 4.5), primary and secondary (cyclized) semiquinones were also detected. Semiquinone stabilization by Zn(II) complexation yielded...

  8. Reduction kinetics of the dioxouranium(VI) ion bound to synthetic polyelectrolytes in aqueous solutions

    International Nuclear Information System (INIS)

    The characterization of actinide ion interactions with naturally occurring polyelectrolytes (e.g., humic substances) is necessary for developing a satisfactory model of actinide behavior in ecosystems. Synthetic polyelectrolytes having only carboxylic acid functional groups can be used to assess the importance of these groups in humic substances. This study examines the reduction of the dioxouranium (VI) ion in the presence of poly (acrylic acid) and poly (maleic acid) using a viologen radical generated by pulse-radiolysis techniques. The observed rate parameters for dioxo-uranium (VI) reduction show unexpected results as a function of polyelectrolyte concentration, degree of neutralization, and contact time. These results along with a possible mechanistic interpretation are discussed

  9. Chromate reduction is expedited by bacteria engineered to produce the compatible solute trehalose.

    Science.gov (United States)

    Frederick, Tamlyn M; Taylor, Erin A; Willis, Jennifer L; Shultz, Matthew S; Woodruff, Peter J

    2013-08-01

    The toxicity and solubility of chromium(VI) can be decreased by certain microbes that reduce chromium(VI) to chromium(III). However, these bacteria do not escape unscathed from this process. Chromium(VI) reduction damages the essential macromolecules of living systems. Trehalose protects organisms from chemical stress but has not been tested in the context of bioremediation. We engineered bacteria to produce trehalose and found that they then reduced 1 mM chromium(VI) to chromium(III), whereas wild-type cells were only able to reduce half that amount. Thus, by providing bacteria with a biochemical defense against the side-effects of chromate reduction may be a new approach to cleaning up sites that are contaminated with high levels of chromate. PMID:23563698

  10. Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite-like compounds

    International Nuclear Information System (INIS)

    In under-developed countries, industries such as paint and pigment manufacturing, leather tanning, chrome plating and textile processing, usually discharge effluents containing Cr(VI) and Cr(III) into municipal sanitary sewers. It has been reported that Cr(VI) acts as a powerful epithelial irritant and as a human carcinogen. In the present work, hydrotalcite-like compounds with a Mg/Al ratio = 2 were synthesized by the sol-gel method. The hydrotalcite-like compounds and their corresponding thermally treated products were characterized by powder X-ray diffraction, infrared spectroscopy and N2 adsorption. The hydrotalcite-like compounds and the heated solids were used as adsorbents for Cr(VI) in aqueous solutions. Adsorption isotherm studies of Cr(VI) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models. The Cr(VI) adsorption isotherm data fit best to the Langmuir isotherm model. The maximum Cr(VI) uptake by hydrotalcite and the heated solids was determined using the Langmuir equation and was found to range between 26 and 29 mg Cr(VI)/g adsorbent.

  11. Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite-like compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Ramirez, Esthela, E-mail: ramosre@quijote.ugto.mx [Centro de Investigaciones en Quimica Inorganica de la Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, C.P. 36050, Guanajuato, Gto. (Mexico); Gutierrez Ortega, Norma L.; Conteras Soto, Cesar A. [Centro de Investigaciones en Quimica Inorganica de la Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, C.P. 36050, Guanajuato, Gto. (Mexico); Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, km 36.5, La Marquesa, Coyoacan Mexico, C.P. 52750 (Mexico); Olguin Gutierrez, Maria T. [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, km 36.5, La Marquesa, Coyoacan Mexico, C.P. 52750 (Mexico)

    2009-12-30

    In under-developed countries, industries such as paint and pigment manufacturing, leather tanning, chrome plating and textile processing, usually discharge effluents containing Cr(VI) and Cr(III) into municipal sanitary sewers. It has been reported that Cr(VI) acts as a powerful epithelial irritant and as a human carcinogen. In the present work, hydrotalcite-like compounds with a Mg/Al ratio = 2 were synthesized by the sol-gel method. The hydrotalcite-like compounds and their corresponding thermally treated products were characterized by powder X-ray diffraction, infrared spectroscopy and N{sub 2} adsorption. The hydrotalcite-like compounds and the heated solids were used as adsorbents for Cr(VI) in aqueous solutions. Adsorption isotherm studies of Cr(VI) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models. The Cr(VI) adsorption isotherm data fit best to the Langmuir isotherm model. The maximum Cr(VI) uptake by hydrotalcite and the heated solids was determined using the Langmuir equation and was found to range between 26 and 29 mg Cr(VI)/g adsorbent.

  12. Differential Isotopic Fractionation during Cr(VI) Reduction by an Aquifer-Derived Bacterium under Aerobic versus Denitrifying Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Han, R.; Qin, L.; Brown, S. T.; Christensen, J. N.; Beller, H. R.

    2012-01-27

    We studied Cr isotopic fractionation during Cr(VI) reduction by Pseudomonas stutzeri strain RCH2. Finally, despite the fact that strain RCH2 reduces Cr(VI) cometabolically under both aerobic and denitrifying conditions and at similar specific rates, fractionation was markedly different under these two conditions (ε was ~2‰ aerobically and ~0.4‰ under denitrifying conditions).

  13. Environmental Factors Affecting Chromium-Manganese Oxidation-Reduction Reactions in Soil

    Institute of Scientific and Technical Information of China (English)

    D.O.P.TREBIEN; L.BORTOLON; M.J.TEDESCO; C.A.BISSANI; F.A.O.CAMARGO

    2011-01-01

    Disposal of chromium (Cr) hexavalent form, Cr(Ⅵ), in soils as additions in organic fertilizers, liming materials or plant nutrient sources can be dangerous since Cr(Ⅵ) can be highly toxic to plants, animals, and humans. In order to explore soil conditions that lead to Cr(Ⅵ) generation, this study were performed using a Paleudult (Dystic Nitosol) from a region that has a high concentration of tannery operations in the Rio Grande do Sul State, southern Brazil. Three laboratory incubation experiments were carried out to examine the influences of soil moisture content and concentration of cobalt and organic matter additions on soil Cr(Ⅵ) formation and release and manganese (Mn) oxide reduction with a salt of chromium chloride (CrCl3) and tannery sludge as inorganic and organic sources of Cr(Ⅲ), respectively. The amount of Cr(Ⅲ) oxidation depended on the concentration of easily reducible Mn oxides and the oxidation was more intense at the soil water contents in which Mn(Ⅲ/Ⅳ) oxides were more stable. Soluble organic compounds in soil decreased Cr(Ⅵ) formation due to Cr(Ⅲ) complexation. This mechanism also resulted in the decrease in the oxidation of Cr(Ⅲ) due to the tannery sludge additions. Chromium(Ⅲ) oxidation to Cr(Ⅵ) at the solid/solution interface involved the following mechanisms:the formation of a precursor complex on manganese (Mn) oxide surfaces, followed by electron transfer from Cr(Ⅲ) to Mn(Ⅲ or Ⅳ),the formation of a successor complex with Mn(Ⅱ) and Cr(Ⅵ), and the breakdown of the successor complex and release of Mn(Ⅱ) and Cr(Ⅵ) into the soil solution.

  14. Biotite dissolution and Cr(VI) reduction at elevated pH and ionic strength

    Science.gov (United States)

    He, Y. Thomas; Bigham, Jerry M.; Traina, Samuel J.

    2005-08-01

    The effects of elevated pH, ionic strength, and temperature on sediments in the vadose zone are of primary importance in modeling contaminant transport and understanding the environmental impact of tank leakage at nuclear waste storage facilities like those of the Hanford site. This study was designed to investigate biotite dissolution under simulated high level waste (HLW) conditions and its impact on Cr(VI) reduction and immobilization. Biotite dissolution increased with NaOH concentrations in the range of 0.1 to 2 mol L -1. There was a corresponding release of K, Fe, Si, and Al to solution, with Si and Al showing a complex pattern due to the formation of secondary zeolite minerals. Dissolved Fe concentrations were an order of magnitude lower than the other elements, possibly due to the formation of green rust and Fe(OH) 2. The reduction of Cr(VI) to Cr(III) also increased with increased NaOH concentration. A homogeneous reduction of chromate by Fe(II) aq released through biotite dissolution was probably the primary pathway responsible for this reaction. Greater ionic strengths increased biotite dissolution and consequently increased Fe(II) aq release and Cr(VI) removal. The results indicated that HLW would cause phyllosilicate dissolution and the formation of secondary precipitates that would have a major impact on radionuclide and contaminant transport in the vadose zone at the Hanford site.

  15. El té verde en la quimioprevención in vivo del daño genotóxico inducido por metales cancerígenos (cromo [VI] Green tea and its role on chemoprevention in vivo of genotoxic damage induced by carcinogenic metals (Chromium [VI

    Directory of Open Access Journals (Sweden)

    M. C. García-Rodríguez

    2012-08-01

    treatment with chromium trioxide, (iv treatment with green tea and chromium trioxide. The green tea was administrated via intragastric tube every 12 hours over two days (4 doses of 0.25 ml infusions 1.6 g/7.5 ml and ad libitum (5.6 ml/day for 10 days infusions of 3.2 g/100 ml, while chromium trioxide was administrated via intraperitoneal (20 mg/kg. Blood samples were obtained from the caudal vein, the number of MN in EPC was assessed at 0, 24, 48 and 72 hours after the treatments. Results: The group treated with green tea showed no significant statistical changes in the average of MN. On the other hand, the group that was dosed with the chromium trioxide showed an increase between 4 and 8 MN, which was statistically significant when compared with control group, which confirmed the genotoxic damage. When the green tea treatment was administered before the application of chromium trioxide, there was a decrease in MN frequencies of 31 and 62% at 72 hours, 20 and 35% at 48 hours and 18 and 31% at 24 hours with intragastric and ad libitum respectively, compared with the group treated only with chromium trioxide. Hence, green tea reduced the genotoxic damage induced by chromium trioxide, and the highest protection was presented at 72 hours. Conclusions: Our findings support the protective effects of green tea against the damage of genetic material, induced by metal compounds such as chromium [VI], suggesting that its antioxidant compounds are those that have a chemopreventive effect on the EOX generated by the Cr [VI] during its reduction to Cr (III. The fact that the largest decrease in the frequency of MN was observed at 72 hours and ad libitum treatment, suggests that, the protective effect depends on the bioavailability, pharmacodynamics and pharmacokinetics of the active ingredient in green tea, so the administration of green tea for a long period of time before the exposure to Cr [VI] could have a more consistent preventive effect.

  16. Flow-through Column Experiments and Modeling of Microbially Mediated Cr(VI) Reduction at Hanford 100H

    Science.gov (United States)

    Yang, L.; Molins, S.; Beller, H. R.; Brodie, E. L.; Steefel, C.; Nico, P. S.; Han, R.

    2010-12-01

    Microbially mediated Cr(VI) reduction at the Hanford 100H area was investigated by flow-through column experiments. Three separate experiments were conducted to promote microbial activities associated with denitrification, iron and sulfate reduction, respectively. Replicate columns packed with natural sediments from the site under anaerobic environment were injected with 5mM Lactate as the electron donor and 5 μM Cr(VI) in all experiments. Sulfate and nitrate solutions were added to act as the main electron acceptors in the respective experiments, while iron columns relied on the indigenous sediment iron (and manganese) oxides as electron acceptors. Column effluent solutions were analyzed by IC and ICP-MS to monitor the microbial consumption/conversion of lactate and the associated Cr(VI) reduction. Biogeochemical reactive transport modeling was performed to gain further insights into the reaction mechanisms and Cr(VI) bioreduction rates. All experimental columns showed a reduction of the injected Cr(VI). Columns under denitrifying conditions showed the least Cr(VI) reduction at early stages (cell growth, and the smallest change in Cr(VI) concentrations during the course of the experiment. In contrast, columns under sulfate-reducing/fermentative conditions exhibited the greatest Cr(VI) reduction capacity. Two sulfate columns evolved to complete lactate fermentation with acetate and propionate produced in the column effluent after 40 days of experiments. These fermenting columns showed a complete removal of injected Cr(VI), visible precipitation of sulfide minerals, and a significant increase in effluent Fe and Mn concentrations. Reactive transport simulations suggested that direct reduction of Cr(VI) by Fe(II) and Mn(II) released from the sediment could account for the observed Cr(VI) removal. The biogeochemical modeling was employed to test two hypotheses that could explain the release of Fe(II) and Mn(II) from the column sediments: 1) acetate produced by lactate

  17. Batch, Kinetic and Equilibrium Studies of Chromium (Vi From Aqueous Phase Using Activated Carbon Derived From Lantana Camara Fruit

    Directory of Open Access Journals (Sweden)

    K. Nithya

    2015-12-01

    Full Text Available Batch experiments have been conducted to determine the maximum adsorption capacity of activated carbon derived from Lantana camara fruit to remove hexavalent chromium from aqueous solution. The removal efficiency and uptake capacity of the biosorbent were determined by varying several batch level parameters. Highest removal efficiency of the biosorbent was found to be almost 99% under optimal conditions. Maximum monolayer adsorption capacity was determined to be 86 mg/g. The experimental data best fitted with Langmuir adsorption isotherm and pseudo second order model. These findings conclude that the selected biosorbent has more promising features in binding hexavalent chromium in aqueous media.

  18. Nitrification inhibition by hexavalent chromium Cr(VI)--Microbial ecology, gene expression and off-gas emissions.

    Science.gov (United States)

    Kim, Young Mo; Park, Hongkeun; Chandran, Kartik

    2016-04-01

    The goal of this study was to investigate the responses in the physiology, microbial ecology and gene expression of nitrifying bacteria to imposition of and recovery from Cr(VI) loading in a lab-scale nitrification bioreactor. Exposure to Cr(VI) in the reactor strongly inhibited nitrification performance resulting in a parallel decrease in nitrate production and ammonia consumption. Cr(VI) exposure also led to an overall decrease in total bacterial concentrations in the reactor. However, the fraction of ammonia oxidizing bacteria (AOB) decreased to a greater extent than the fraction of nitrite oxidizing bacteria (NOB). In terms of functional gene expression, a rapid decrease in the transcript concentrations of amoA gene coding for ammonia oxidation in AOB was observed in response to the Cr(VI) shock. In contrast, transcript concentrations of the nxrA gene coding for nitrite oxidation in NOB were relatively unchanged compared to Cr(VI) pre-exposure levels. Therefore, Cr(VI) exposure selectively and directly inhibited activity of AOB, which indirectly resulted in substrate (nitrite) limitation to NOB. Significantly, trends in amoA expression preceded performance trends both during imposition of and recovery from inhibition. During recovery from the Cr(VI) shock, the high ammonia concentrations in the bioreactor resulted in an irreversible shift towards AOB populations, which are expected to be more competitive in high ammonia environments. An inadvertent impact during recovery was increased emission of nitrous oxide (N2O) and nitric oxide (NO), consistent with recent findings linking AOB activity and the production of these gases. Therefore, Cr(VI) exposure elicited multiple responses on the microbial ecology, gene expression and both aqueous and gaseous nitrogenous conversion in a nitrification process. A complementary interrogation of these multiple responses facilitated an understanding of both direct and indirect inhibitory impacts on nitrification. PMID:26874778

  19. Natural biosorbents (garlic stem and horse chesnut shell) for removal of chromium(VI) from aqueous solutions.

    Science.gov (United States)

    Parlayıcı, Şerife; Pehlivan, Erol

    2015-12-01

    The biosorption of Cr(VI) by the garlic stem (GS)-Allium sativum L. and horse chesnut shell (HCS)-Aesculus hippocastanum plant residues in a batch type reactor was studied in detail for the purpose of wastewater treatment. The influence of initial Cr(VI) concentration, time, and pH was investigated to optimize Cr(VI) removal from aqueous solutions and equilibrium isotherms and kinetic data. This influence was evaluated. The adsorption capacity of the GS and the HCS for Cr(VI) was determined with the Langmuir and Freundlich isotherm models, and the data was fitted to the Langmuir. The adsorption capacity of the GS and the HCS was found to be 103.09 and 142.85 mg/g of adsorbent from a solution containing 3000 ppm of Cr(VI), respectively. The GS's capacity was considerably lower than that of the HCS in its natural form. Gibbs free energy was spontaneous for all interactions, and the adsorption process exhibited exothermic enthalpy values. The HCS was shown to be a promising biosorbent for Cr(VI) removal from aqueous solutions. PMID:26581609

  20. Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell

    OpenAIRE

    Dong Young Chung; Hyoung-il Kim; Young-Hoon Chung; Myeong Jae Lee; Sung Jong Yoo; Alok D. Bokare; Wonyong Choi; Yung-Eun Sung

    2014-01-01

    We propose a method to enhance the fuel cell efficiency with the simultaneous removal of toxic heavy metal ions. Carbon monoxide (CO), an intermediate of methanol oxidation that is primarily responsible for Pt catalyst deactivation, can be used as an in-situ reducing agent for hexavalent chromium (Cr (VI)) with reactivating the CO-poisoned Pt catalyst. Using electro-oxidation measurements, the oxidation of adsorbed CO molecules coupled with the concurrent conversion of Cr (VI) to Cr (III) was...

  1. RICE BRAN CARBON: AN ALTERNATIVE TO COMMERCIAL ACTIVATED CARBON FOR THE REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Syed Hadi Hasan

    2010-06-01

    Full Text Available Rice bran carbon (RBC prepared from rice bran (an agricultural waste was successfully utilized for the removal of hexavalent chromium from aqueous solution. The potentiality of RBC was tested and compared with commercial activated carbon (CAC, and it was found that RBC removed 95% of hexavalent chromium at pH 2, 1000 µM Cr(VI concentration, temperature 30 oC, and adsorbent dose of 2 g/L. The maximum uptake of total chromium obtained by applying the Langmuir isotherm model was 138.88 mg/g for RBC, which was found comparable to that obtained by utilizing CAC (116.28 mg/g at 40 oC. The removal of Cr(VI was found maximum at a proton to chromium ratio of 10 and chromium to carbon ratio of 0.052, and these ratios were found to be applicable over a range of Cr(VI concentrations. The removal of Cr(VI, at low pH (< 2.0, was not only due to sorption of Cr(VI but also because of reduction of Cr(VI into less toxic Cr(III, which was also adsorbed on the surface of the sorbent. The rate of reduction removal of Cr(VI followed pseudo-first order kinetics, whereas the sorption of total chromium followed pseudo-second order kinetics for both the types of activated carbons.

  2. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Liao, Y.P.; Jons, O.

    1997-01-01

    A sensitive method for the simultaneous determination of chromium(III) and chromium(VI) was chromatography and chemiluminescence detection. Two Dionex ion-exchange guard columns in series, CG5 and AG7, were used to separate chromium(III) from chromium(VI). Chromium(VI) was reduced by potassium su...

  3. A chromium nitride/carbon nitride containing graphitic carbon nanocapsule hybrid as a Pt-free electrocatalyst for oxygen reduction.

    Science.gov (United States)

    Zhao, Lu; Wang, Lei; Yu, Peng; Zhao, Dongdong; Tian, Chungui; Feng, He; Ma, Jing; Fu, Honggang

    2015-08-11

    Chromium nitride nanoparticles supported on graphitic carbon nanocapsules containing carbon nitride (CrN/GC) have been synthesized by a solvothermal-assisted ion-exchange route. As a Pt-free catalyst, the CrN/GC hybrid exhibits superior activity, stability, methanol immunity and a dominant 4-electron pathway towards oxygen reduction reaction.

  4. INJECTION OF A FERROUS SULFATE/SODIUM DITHIONITE REDUCTANT FOR IN-SITU TREATMENT OF HEXAVALENT CHROMIUM

    Science.gov (United States)

    An in situ pilot study was conducted to evaluate the performance of a ferrous iron-based reductant solution in treating hexavalent chromium within a saturated zone source area at a former industrial site in Charleston, South Carolina (USA). The hexavalent source area, consisting...

  5. SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: Mechanism, effect of pH, humic acid and sustained reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xia, E-mail: lygsunxia@163.com [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); School of Chemistry and Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Yan, Yubo [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Han, Weiqing [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2014-02-15

    Highlights: • Zero-valent iron nanoparticles were incorporated in the pores of SBA-15 rods. • Mechanism of the Cr(VI) removal by NZVIs/SBA-15 was proposed. • A low pH value was in favor of the Cr(VI) removal. • Humic acid (HA) had a negligible effect on the reactivity of NZVIs/SBA-15. • The stable reduction of NZVIs/SBA-15 was observed within six cycles. -- Abstract: Nanoscale zero-valent iron particles (NZVIs) were incorporated inside the channels of SBA-15 rods by a “two solvents” reduction technique and used to remove Cr(VI) from groundwater. The resulting NZVIs/SBA-15 composites before and after reaction were characterized by N{sub 2} adsorption/desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Results helped to propose the mechanism of Cr(VI) removal by NZVIs/SBA-15, where Cr(VI) in aqueous was firstly impregnated into the channels of the silica, then adsorbed on the surfaces of the incorporated NZVIs and reduced to Cr(III) directly in the inner pores of the silica. Corrosion products included Fe{sub 2}O{sub 3}, FeO(OH), Fe{sub 3}O{sub 4} and Cr{sub 2}FeO{sub 4}. Batch experiments revealed that Cr(VI) removal decreased from 99.7% to 92.8% when the initial solution pH increased from 5.5 to 9.0, accompanied by the decrease of the k{sub obs} from 0.600 to 0.024 min{sup −1}. Humic acid (HA) had a little effect on the removal efficiency of Cr(VI) by NZVIs/SBA-15 but could decrease the reduction rate. The stable reduction of NZVIs/SBA-15 was observed within six cycles. NZVIs/SBA-15 composites offer a promising alternative material to remove heavy metals from groundwater.

  6. Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • LbL films based on PANI and polysaccharides of seaweeds were produced and applied sensors of Cr (VI). - Abstract: This paper proposes a new application for natural polysaccharides (agar and carrageenan), both extracted from the cell wall of red seaweeds. Thin films were prepared by the Layer-by-Layer (LbL) self-assembly technique onto ITO (tin-doped indium oxide), where the polysaccharides of interest were deposited in layers alternating with polyaniline (PANI). The films developed were characterized by cyclic voltammetry (CV), ultraviolet–visible spectroscopy (UV–vis) and atomic force microscopy (AFM). Results showed the presence of agar as well as carrageenan, which improves the electrochemical stability of the conducting polymer in an acid medium. The interactions at the molecular level between PANI and the biopolymers affected the most appropriate sequence of deposition as employed in the process of material immobilization and also influenced the resulting morphology. Among the films studied, the most promising system as regards electrochemical measurements was the ITO/agar/PANI system, which was subsequently employed in the electrochemical detection of chromium (VI)

  7. Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption.

    Science.gov (United States)

    Montoya-Suarez, Sergio; Colpas-Castillo, Fredy; Meza-Fuentes, Edgardo; Rodríguez-Ruiz, Johana; Fernandez-Maestre, Roberto

    2016-01-01

    Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer-Emmett-Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78-82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35-0.37 mg/g, and methylene blue adsorption was 40-110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills.

  8. Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption.

    Science.gov (United States)

    Montoya-Suarez, Sergio; Colpas-Castillo, Fredy; Meza-Fuentes, Edgardo; Rodríguez-Ruiz, Johana; Fernandez-Maestre, Roberto

    2016-01-01

    Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer-Emmett-Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78-82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35-0.37 mg/g, and methylene blue adsorption was 40-110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills. PMID:26744931

  9. Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Farias, Emanuel Airton de; Corrêa dos Santos, Marianne; Araujo Dionísio, Natália de; Quelemes, Patrick V.; Souza Almeida Leite, José Roberto de [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eaton, Peter [UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto (Portugal); Alves da Silva, Durcilene [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eiras, Carla, E-mail: eiras@cnpq.br [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Laboratório Interdisciplinar de Materiais Avançados, LIMAV, CCN, UFPI, Teresina, PI 64049-550 (Brazil)

    2015-10-15

    Graphical abstract: - Highlights: • LbL films based on PANI and polysaccharides of seaweeds were produced and applied sensors of Cr (VI). - Abstract: This paper proposes a new application for natural polysaccharides (agar and carrageenan), both extracted from the cell wall of red seaweeds. Thin films were prepared by the Layer-by-Layer (LbL) self-assembly technique onto ITO (tin-doped indium oxide), where the polysaccharides of interest were deposited in layers alternating with polyaniline (PANI). The films developed were characterized by cyclic voltammetry (CV), ultraviolet–visible spectroscopy (UV–vis) and atomic force microscopy (AFM). Results showed the presence of agar as well as carrageenan, which improves the electrochemical stability of the conducting polymer in an acid medium. The interactions at the molecular level between PANI and the biopolymers affected the most appropriate sequence of deposition as employed in the process of material immobilization and also influenced the resulting morphology. Among the films studied, the most promising system as regards electrochemical measurements was the ITO/agar/PANI system, which was subsequently employed in the electrochemical detection of chromium (VI)

  10. Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell

    Science.gov (United States)

    Chung, Dong Young; Kim, Hyoung-Il; Chung, Young-Hoon; Lee, Myeong Jae; Yoo, Sung Jong; Bokare, Alok D.; Choi, Wonyong; Sung, Yung-Eun

    2014-12-01

    We propose a method to enhance the fuel cell efficiency with the simultaneous removal of toxic heavy metal ions. Carbon monoxide (CO), an intermediate of methanol oxidation that is primarily responsible for Pt catalyst deactivation, can be used as an in-situ reducing agent for hexavalent chromium (Cr (VI)) with reactivating the CO-poisoned Pt catalyst. Using electro-oxidation measurements, the oxidation of adsorbed CO molecules coupled with the concurrent conversion of Cr (VI) to Cr (III) was confirmed. This concept was also successfully applied to a methanol fuel cell to enhance its performance efficiency and to remove toxic Cr (VI) at the same time.

  11. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel.

    Science.gov (United States)

    Kumar, P Albino; Ray, Manabendra; Chakraborty, Saswati

    2007-05-01

    A resinous polymer, aniline formaldehyde condensate (AFC) coated on silica gel was used as an adsorbent in batch system for removal of hexavalent chromium from aqueous solution by considering the effects of various parameters like reaction pH, dose of AFC coated silica gel, initial Cr(VI) concentration and aniline to formaldehyde ratio in AFC synthesis. The optimum pH for total chromium [Cr(VI) and Cr(III)] adsorption was observed as 3. Total chromium adsorption was second order and equilibrium was achieved within 90-120 min. Aniline to formaldehyde ratio of 1.6:1 during AFC synthesis was ideal for chromium removal. Total chromium adsorption followed Freundlich's isotherm with adsorption capacity of 65 mg/g at initial Cr(VI) 200mg/L. Total chromium removal was explained as combinations of electrostatic attraction of acid chromate ion by protonated AFC, reduction of Cr(VI) to Cr(III) and bond formation of Cr(III) with nitrogen atom of AFC. Almost 40-84% of adsorbed chromium was recovered during desorption by NaOH, EDTA and mineral acids. AFC coated silica gel can be effectively used for treatment of chromium containing wastewaters as an alternative.

  12. Plutonium(V/VI) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1.

    Science.gov (United States)

    Icopini, Gary A; Lack, Joe G; Hersman, Larry E; Neu, Mary P; Boukhalfa, Hakim

    2009-06-01

    We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures. PMID:19363069

  13. Catalysis of Manganese(Ⅱ) on Chromium(Ⅵ) Reduction by Citrate

    Institute of Scientific and Technical Information of China (English)

    LI Chen; LAN Ye-Qing; DENG Bao-Lin

    2007-01-01

    The catalysis of manganese(Ⅱ) (Mn2+) on chromium(Ⅵ) (Cr6+) reduction by citrate was studied through batch experiments with the concentration of citrate greatly in excess of Cr6+ at 25℃ and in pH ranges of 4.0 to 5.0. Results showed that at pH 4.5 within 22 h direct reduction of Cr6+ by citrate was not observed, but for the same time when Mn2+ (50 to 200 μmol L-1 was added,nearly all Cr6+ was rdeuced ,with the higher initial Mn2+ concentration having faster Cr6+ reduction. In the initial stage of the reaction, the Cr6+ reduction could be described with a pseudo-first-order kinetics equation. In the later stage of the reaction, plots of lnc(Cr6+) versus t, where c(Cr6+) is the Cr6+ concentration in the reaction and t is the reaction time, deviated from the initial linear trend. The deviations suggested that the pseudo-first-order kinetics did not apply to the whole experimental period and that some reaction intermediates could have greatly accelerated Cr6+ reduction by citrate. The catalysis of the intermediates increased with the reaction time and gradually reached stability. Then, the plot of lnc(Cr6+) versus t in the presence of Mn2+ was linear again, with the rate constant increasing by 102 times compared with the absence of Mn2+. Complexation between Mn2+ and citrate was likely a prerequisite for the catalysis of Mn2+ on the reaction. Additional experiments showed that introducing ethylenediaminetetraacetic acid (EDTA) into the reaction system strongly suppressed the catalysis of Mn2+.

  14. An efficient ultrasound assisted approach for the impregnation of room temperature ionic liquid onto Dowex 1 × 8 resin matrix and its application toward the enhanced adsorption of chromium (VI)

    International Nuclear Information System (INIS)

    Highlights: ► Ultrasound assisted impregnation of an ionic liquid in a Dowex resin matrix is studied through various physicochemical and spectroscopic techniques. ► Chromium is adsorbed with a high adsorption capacity of 230.9 mg g−1. ► The adsorbent is regenerated using HCl–ascorbic acid mixture. ► Chromium could be effectively detoxified from an industrial effluent and the developed method was validated with the analysis of a certified reference material. - Abstract: The work discussed in this paper is based on the utilization of ultrasound in conjunction with an ionic liquid (Aliquat 336) impregnated Dowex 1 × 8 resin for the effective adsorption of chromium. Ionic liquids are known for their selectivity toward metal extraction and ultrasonic medium offers efficient energy transfer for impregnating the ionic liquid in the resin matrix. The molecular interaction between the ionic liquid impregnated resin and chromium was studied through various physicochemical and spectroscopic techniques. The influence of various analytical parameters on the adsorption of Cr(VI) such as pH, adsorbent dosage, temperature and interference of foreign ions was studied in detail. Chromium (VI) was quantitatively adsorbed in the pH range of 3.5–4, with a high adsorption capacity of 230.9 mg g−1 in conformity with the Langmuir isotherm model. The study of thermodynamic parameters showed that the adsorption process is exothermic and spontaneous. The adsorbent could be regenerated using 1 mol L−1 HCl–0.28 mol L−1 ascorbic acid mixture. Chromium could be effectively detoxified from an industrial effluent and finally the developed method was validated with the analysis of a certified reference material (BCR-715). The obtained results indicated that the ultrasonic assisted impregnation of the room temperature ionic liquid significantly enhances and improves the removal efficiency of Cr(VI).

  15. An efficient ultrasound assisted approach for the impregnation of room temperature ionic liquid onto Dowex 1 Multiplication-Sign 8 resin matrix and its application toward the enhanced adsorption of chromium (VI)

    Energy Technology Data Exchange (ETDEWEB)

    Kalidhasan, S.; Santhana Krishna Kumar, A. [Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani-Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. Dist 500 078, AP (India); Vidya Rajesh [Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani-Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. Dist 500 078, AP (India); Rajesh, N., E-mail: nrajesh05@gmail.com [Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani-Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. Dist 500 078, AP (India)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Ultrasound assisted impregnation of an ionic liquid in a Dowex resin matrix is studied through various physicochemical and spectroscopic techniques. Black-Right-Pointing-Pointer Chromium is adsorbed with a high adsorption capacity of 230.9 mg g{sup -1}. Black-Right-Pointing-Pointer The adsorbent is regenerated using HCl-ascorbic acid mixture. Black-Right-Pointing-Pointer Chromium could be effectively detoxified from an industrial effluent and the developed method was validated with the analysis of a certified reference material. - Abstract: The work discussed in this paper is based on the utilization of ultrasound in conjunction with an ionic liquid (Aliquat 336) impregnated Dowex 1 Multiplication-Sign 8 resin for the effective adsorption of chromium. Ionic liquids are known for their selectivity toward metal extraction and ultrasonic medium offers efficient energy transfer for impregnating the ionic liquid in the resin matrix. The molecular interaction between the ionic liquid impregnated resin and chromium was studied through various physicochemical and spectroscopic techniques. The influence of various analytical parameters on the adsorption of Cr(VI) such as pH, adsorbent dosage, temperature and interference of foreign ions was studied in detail. Chromium (VI) was quantitatively adsorbed in the pH range of 3.5-4, with a high adsorption capacity of 230.9 mg g{sup -1} in conformity with the Langmuir isotherm model. The study of thermodynamic parameters showed that the adsorption process is exothermic and spontaneous. The adsorbent could be regenerated using 1 mol L{sup -1} HCl-0.28 mol L{sup -1} ascorbic acid mixture. Chromium could be effectively detoxified from an industrial effluent and finally the developed method was validated with the analysis of a certified reference material (BCR-715). The obtained results indicated that the ultrasonic assisted impregnation of the room temperature ionic liquid significantly

  16. The Photocatalytic Reduction of Hexavalent Chromium by Controllable Mesoporous Anatase TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vorrada Loryuenyong

    2014-01-01

    Full Text Available Titania (TiO2 nanoparticles with periodical mesopore size (up to 150 Å have successfully been synthesized by sol-gel template method, using titanium(IV tetraisopropoxide as a starting precursor and isopropanol as a solvent. Different quantities of activated carbon (0%, 5%, and 10% by weight were used as templates to control the porosity and particle size of titania nanoparticles. The templates were completely removed during the calcination in air at 500°C for 3 hr. The results showed that the specific surface area of titania is increased with increasing activated carbon content. The optical bandgap of synthesized titania exhibits a blue shift by 0.3–0.6 eV when compared to the reported value for the bulk anatase and rutile phases. The photocatalytic activity of porous titania is determined with its reduction efficiency of hexavalent chromium (Cr6+. The reduction efficiency is optimized under ultraviolet illumination.

  17. Combined adsorption and reduction of Cr(VI) from aqueous solution on polyaniline/multiwalled carbon nanotubes composite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiahong; Yin, Xiaolong; Ma, Hongrui [Shannxi University of Science and Technology, Xi' an (China); Tang, Wei [Shaanxi Research Institute of Agricultural Products Processing Technology, Xi' an (China)

    2015-09-15

    Polyaniline/multiwalled carbon nanotube (PANI-MWCNT) was prepared by bounding polyaniline on the surface of oxidized multiwalled carbon nanotube. The structure and surface properties of synthesized composites were characterized by Fourier transformed infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscope (TEM), and its adsorption capability for aqueous Cr(VI) was also studied. Characterized results showed that polyaniline was successfully anchored on the surface of MWCNT. From adsorption experiments the maximum adsorption amount of Cr(VI) onto PANI-MWCNTs was 28.25, 31.75 and 36.76 mg·g{sup -1} at 15, 25 and 35 .deg. C. Thermodynamic parameters showed that the Cr(VI) adsorption process was endothermic, spontaneous and feasible. Cr(VI) adsorption followed pseudo-second-order kinetics. Cr(VI) adsorption on the adsorbent decreases with increasing solution pH. The presence of anions in solution almost has no effect on Cr(VI) adsorption, indicating good selectivity. XPS analysis confirms that electrostatic interaction, reduction and chelation contribute to enhanced Cr(VI) removal. Cr(VI) loaded absorbent can be readily desorbed in 0.1mol·L{sup -1} of NaOH solution, and the desorption rate was 84.12%.

  18. Solid phase extraction of chromium(VI) using Aliquat336 immobilized on a thin film of multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    We report on a novel and selective method for the preconcentration and determination of Cr(VI) in aqueous samples. Cr(VI) is adsorbed - in a 'batch mode' - on multiwalled carbon nanotubes covered with Aliquat 336 and then determined directly, i.e., on the solid, by X-ray fluorescence spectrometry. This reduces the number of reagents and minimizes sample handling. The method combines the advantages of solid-phase extraction with the benefits of the XRF method in that the large areas required by the carbon nanotubes make them a promising solid sorbent for preconcentration. The enrichment factor was calculated after considering that the thin film obtained from the 10 mL solution of 1 mg L-1 of Cr(VI) has a real thickness of 0.04 mm and a final diameter of 16.7 mm, so that the volume deposited on the pellet is 0.0088 cm3 and the preconcentration factor is 1000. (author)

  19. Optimization of operational conditions for batchwise biosorption of chromium (VI) using chemically treated alstonia scholaris leaves as biosorbent

    International Nuclear Information System (INIS)

    Biosorption has attracted attention as a cost-effective tool for the treatment of metal-bearing wastewater. While using novel bio sorbents, optimization of operating conditions becomes more important for the efficiency of the process. In this study, a novel biosorbent i.e. Alstonia scholaris leaves were used for biosorption of Cr (VI) from aqueous media. The effect of various parameters, such as contact time of solution with biosorbent, temperature, pH, biosorbent dose and agitation speed were studied. A comparative study of modification of biosorbent using acid and base was also performed. It has been found that acid treated Alstonia scholaris leaves have greater biosorption capacity as compared to untreated and base treated leaves. Optimum conditions for removing Cr (VI) using acid treated biosorbent were: 0.2 g/50 mL of biosorbent, 50 deg. C temperature, 15 minutes contact time, 300 rpm stirring speed and 2.0 pH. Langmuir and Freundlich isotherms were also employed to evaluate maximum biosorption capacity of untreated and chemically treated Alstonia scholaris leaves for Cr (VI). (author)

  20. Resistance of Solid-Phase U(VI) to Microbial Reduction during In Situ Bioremediation of Uranium-Contaminated Groundwater

    OpenAIRE

    Ortiz-Bernad, Irene; Anderson, Robert T.; Vrionis, Helen A.; Lovley, Derek R.

    2004-01-01

    Speciation of solid-phase uranium in uranium-contaminated subsurface sediments undergoing uranium bioremediation demonstrated that although microbial reduction of soluble U(VI) readily immobilized uranium as U(IV), a substantial portion of the U(VI) in the aquifer was strongly associated with the sediments and was not microbially reducible. These results have important implications for in situ uranium bioremediation strategies.

  1. Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters.

    Science.gov (United States)

    Henryk, Kołoczek; Jarosław, Chwastowski; Witold, Żukowski

    2016-01-01

    Batch adsorption experiments were performed for the removal of chromium (III) and chromium (VI) ions from aqueous solutions using Canadian peat and coconut fiber. The Langmuir model was used to describe the adsorption isotherm. The maximum adsorption for peat reached 18.75 mg/g for Cr(III) and 8.02 mg/g for Cr(VI), whereas the value for fiber was slightly higher and reached 19.21 mg/g for Cr(III) and 9.54 mg/g for Cr(VI). Both chromium forms could be easily eluted from the materials. The adsorption of chromium forms to organic matter could be explained in terms of formation of donor-acceptor chemical covalent bound with hydroxyl groups as ligands and chromium as the central atom in the formed complex. The chromate-reducing activities were monitored with the use of electron paramagnetic resonance spectroscopy. The results showed that both adsorption and reduction occurred simultaneously and the maximum adsorption capacity of hexavalent chromium being equal to 95% for fiber and 92% for peat was obtained at pH 1.5. The reduction of Cr(VI) in wastewaters began immediately and disappeared after 20 h. Both materials contained yeast and fungi species which can be responsible for reduction of chromium compounds, due to their enzymatic activity (Chwastowski and Koloczek (Acta Biochim Pol 60: 829-834, 2013)). The reduction of Cr(VI) is a two-phase process, the first phase being rapid and based on chemical reaction and the second phase having biological features. After the recovery step, both types of organic materials can be used again for chromium adsorption without any loss in the metal uptake. Both of the materials could be used as biofilters in the wastewater treatment plants.

  2. Microfluidic Flow through Polyaniline Supported by Lamellar-Structured Graphene for Mass-Transfer-Enhanced Electrocatalytic Reduction of Hexavalent Chromium.

    Science.gov (United States)

    Ji, Qinghua; Yu, Dawei; Zhang, Gong; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui

    2015-11-17

    Owing to its high efficiency and environmental compatibility, electroreduction holds great promise for the detoxification of aqueous Cr(VI). However, the typical electroreduction system often shows poor mass transfer, which results in slow reduction kinetics and hence higher energy consumption. Here, we demonstrate a flow-through electrode of polyaniline supported on lamellar-structured graphene (LGS-PANI) for electrocatalytic reduction of Cr(VI). The reaction kinetics of the LGS-PANI flow-through electrodes are 6.4 times (at acidic condition) and 17.3 times (at neutral condition) faster than traditional immersed parallel-plate electrodes. Computational fluid dynamics simulation suggests that the flow-through mode greatly enhances the mass transfer and that the nanoscale convection induced by the PANI nanodots increases the nanoscale mass transport in the interfacial region of the electrode/solution. In situ Raman spectroscopy shows that the PANI-Cr(VI) redox reactions are dominated by the leucoemeraldine/emeraldine transition at 1.5 V cell voltage, which also remarkably contributes to the fast reaction kinetics. Using single-pass flow-through mode, the LGS-PANI electrode reaches an average reduction efficiency of 99.8% with residual Cr(VI) concentration of 22.3 ppb (initial [Cr(VI)] = 10 ppm, flux = 20 L h(-1) m(-2)). A long-term stability test shows that the LGS-PANI maintains stable performance over 40 days of operation and achieves >98% reduction efficiency, with average current efficiency of as high as 99.1% (initial [Cr(VI)] = 10 ppm, flux = 50 L h(-1) m(-2)).

  3. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures.

    Science.gov (United States)

    Zhou, Lu; Liu, Yunguo; Liu, Shaobo; Yin, Yicheng; Zeng, Guangming; Tan, Xiaofei; Hu, Xi; Hu, Xinjiang; Jiang, Luhua; Ding, Yang; Liu, Shaoheng; Huang, Xixian

    2016-10-01

    To investigate the relationship between Cr(VI) adsorption mechanisms and physio-chemical properties of biochar, ramie residues were oxygen-limited pyrolyzed under temperature varying from 300 to 600°C. Batch adsorption experiments indicated that higher pyrolysis temperature limits Cr(VI) sorption in terms of capacity and affinity due to a higher aromatic structure and fewer polar functional groups in biochar. Both electrostatic (physical) and ionic (chemical) interactions were involved in the Cr(VI) removal. For low-temperature biochar, the simple physical adsorption was limited and the significant improvement in Cr(VI) sorption was attributed to abundant carboxyl and hydroxyl groups. The adsorption-reduction mechanisms could be concluded that Cr(VI) ions were electrostatically attracted by the positively charged biochar surface and reduced to Cr(III), and then the converted Cr(III) was retained or discharged into the solution. The study demonstrates ramie residues can be converted into biochar as a low-cost and effective sorbent for Cr(VI) removal. PMID:27376834

  4. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594.

    Science.gov (United States)

    Sandana Mala, John Geraldine; Unni Nair, Balachandran; Puvanakrishnan, Rengarajulu

    2006-06-01

    Chromium toxicity is of prime concern due to chrome tanning processes in the leather sector. Chrome tanning results in the discharge of toxic levels of chromium causing pollution hazards. Chromium levels of Cr(III) and Cr(VI) were high above permissible limits in chrome samples after chrome tanning. The potential of Aspergillus niger MTCC 2594 to accumulate chromium as well as its biosorption capacity is investigated in this study. Bioaccumulation of Cr(III) and Cr(VI) in the spent chrome liquor has resulted in a 75-78% reduction of the initial Cr content in 24-36 h. A. niger biomass is found to be very effective in the biosorption of Cr(III) and Cr(VI) in spent chrome liquor. Maximum adsorption of 83% for biosorption of Cr(III) at 48 h and 79% of Cr(VI) at 36 h in spent chrome liquor is observed. The biosorption characteristics fit well with Langmuir and Freundlich isotherms and the adsorption parameters are evaluated. The biosorption of Cr also follows Lagergren kinetics. A. niger biomass is effectively used for the biosorption of chromium with 79-83% Cr removal in 36-48 h.

  5. Chromium (VI) ion adsorption features of chitosan film and its chitosan/zeolite conjugate 13X film

    OpenAIRE

    Maria Teresa Tavares; Galba M. de Campos-Takaki; Villanueva, Emílio R.; Rosa Valéria S. Amorim; Anabelle C. L. Batista

    2011-01-01

    This research evaluated the importance of the adsorption properties of chitosan a chitosan/zeolite conjugate film for the removal of Cr(VI) ions from solutions in the 5–260 mg/L concentration range, when the pH was adjusted to 4.0 and 6.0. The uptake capacities of the films formed by chitosan and by the chitosan/zeolite conjugate were calculated by mass balance. The equilibrium isotherms were fitted to the Langmuir, Freundlich and Redlich-Peterson models. The chitosan film seems to be a good ...

  6. Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions

    International Nuclear Information System (INIS)

    Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.

  7. Study on the electrolytic reduction of Uranium-VI to Uranium-IV in a nitrate system

    International Nuclear Information System (INIS)

    The determination of the best conditions to prepare hydrazine stabilized uranium (IV) nitrate solutions for utilization in Purex flowsheets is dealt with. Electrolytic reduction of U(VI) has been selected as the basic method, using an open electrolytic cell with titanum and platinum electrodes. The hydrazine concentration, the current density, acidity, U(VI) concentration and reduction time were the parameters studied and U(IV)/U(VI) ratio was used to evaluate the degree of reduction. From the results it could be concluded that the technique is reliable. The U(IV) solutions remains constant for at least two weeks and can be used in the chemical processing of irradiated uranium fuels. (Author)

  8. Removal of Chromium(VI from Aqueous Solutions Using Fe3O4 Magnetic Polymer Microspheres Functionalized with Amino Groups

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2015-12-01

    Full Text Available Magnetic polymer microspheres (MPMs using glycidylmethacrylate (GMA as a functional monomer were synthesized in the presence of Fe3O4 nanoparticles via dispersion polymerization. After polymerization, the magnetic polymer microbeads were modified with ethylenediamine (EDA. The obtained ethylenediamine-functionalized magnetic microspheres (EDA-MPMs were characterized by scanning electron microscope (SEM, X-ray diffraction (XRD, vibrating-sample magnetometer (VSM and Fourier transform infrared (FT-IR spectroscopy. Then the EDA-MPMs were applied as adsorbents for the removal of Cr(VI from aqueous solution. Langmuir equation was appropriate to describe the experimental data. The maximum adsorption capacities obtained from the Langmuir model were 236.9, 242.1 and 253.2 mg/g at 298, 308 and 318 K, respectively. The Cr(VI adsorption equilibrium was established within 120 min and the adsorption kinetics was compatibly described by the pseudo-second order equation. The thermodynamic parameters (ΔG°, ΔH°, ΔS° of the sorption process revealed that the adsorption was spontaneous and was an endothermic process. The regeneration study demonstrated that the EDA-MPMs could be repeatedly utilized with no significant loss of adsorption efficiency.

  9. Removal of hexavalent chromium in carbonic acid solution by oxidizing slag discharged from steelmaking process in electric arc furnace

    Science.gov (United States)

    Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu

    2014-02-01

    Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.

  10. Reduction of the U(VI) ion. A fast conductimetry study

    Energy Technology Data Exchange (ETDEWEB)

    Broszkiewicz, R.K. (Institute of Nuclear Chemistry and Technology, Warsaw (Poland)); Vojnovic, B.; Michael, B.D. (Mount Vernon Hospital, Northwood (UK). Gray Lab.)

    1991-01-01

    The reduction of U(VI) by e{sub aq}{sup -} was followed by means of fast conductimetry in acid and conductimetry and spectrophotometry in alkaline solutions. In alkaline solutions, the biomolecular rate constant of reaction between UO{sub 4}{sup 2-} and e{sub aq}{sup -} was determined. Analytical methods applied in this work were too fast to follow the slow disproportionation of produced U(V)-ion, but it has been observed that in alkaline solutions it probably goes via a dimeric ion (U(V)){sub 2}, which protonates with a rate {kappa}{sub 7} = 1.30 x 10{sup 5}s{sup -1}. (author).

  11. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden

    OpenAIRE

    Dey Satarupa; A. K. Paul

    2013-01-01

    Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gram-negative (58%) bacteria. The phenotypically distinguishable bacterial isolates (130) showed wide degree of tolerance to chromium (2–8 mM) when tested in peptone yeast extract glucose agar medium. Isolates (92) tolerating 2 mM chromium exhibited different degrees of Cr+6 reducing activity in chemically d...

  12. Ferrous sulphate mono and heptahydrate reduction of hexavalent chromium in cement: effectiveness and storability

    OpenAIRE

    Valverde, J. L.; Lobato, J.; I. Fernández; Marijuán, L.; Pérez-Mohedano, S.; Talero, R.

    2005-01-01

    In Community legislation, substances containing hexavalent chromium are classified as carcinogenic, mutagenic and sensitizing. In cement, hexavalent chromium intensifies sensitization and may set off severe allergic reactions in workers in routine contact with the product, whether in the factory or on construction sites. The allergic or contact dermatitis causes is a very painful disease that may lead to permanent worker disability. According to Directive 2003/53/EC of the European Parliament...

  13. Synergetic Transformations of Multiple Pollutants Driven by Cr(VI)-Sulfite Reactions.

    Science.gov (United States)

    Jiang, Bo; Liu, Yukun; Zheng, Jingtang; Tan, Minghui; Wang, Zhaohui; Wu, Mingbo

    2015-10-20

    Reduction of Cr(VI) is often deemed necessary to detoxify chromium contaminants; however, few investigations utilized this reaction for the purpose of treating other industrial wastewaters. Here a widely used Cr(VI)-sulfite reaction system was upgraded to simultaneously transform multiple pollutants, namely, the reduction of Cr(VI) and oxidation of sulfite and other organic/inorganic pollutants in an acidic solution. As(III) was selected as a probe pollutant to examine the oxidation capacity of a Cr(VI)-sulfite system. Both (•)OH and SO4(•-) were considered as the primary oxidants for As(III) oxidation, based on the results of electron spin resonance, fluorescence spectroscopy, and specific radicals quenching. As(III)-scavenging, oxidative radicals greatly accelerated Cr(VI) reduction and simultaneously consumed less sulfite. In comparison with a Cr(VI)-H2O2 system with 50 μM Cr(VI), Cr(VI), the sulfite system had excellent performance for both As(III) oxidation and Cr(VI) reduction at pH 3.5. Moreover, in this escalated process, less sulfite was required to reduce Cr(VI) than the traditional Cr(VI) reduction by sulfite process. This effectively improves the environmental compatibility of this Cr(VI) detoxification process, alleviating the potential for SO2 release and sulfate ion production in water. Generally, this study provides an excellent example of a "waste control by waste" strategy for the detoxification of multiple industrial pollutants. PMID:26384045

  14. Model-based Analysis of Mixed Uranium(VI) Reduction by Biotic and Abiotic Pathways During in Situ Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2013-10-24

    Uranium bioremediation has emerged as a potential strategy of cleanup of radionuclear contamination worldwide. An integrated geochemical & microbial community model is a promising approach to predict and provide insights into the bioremediation of a complicated natural subsurface. In this study, an integrated column-scale model of uranium bioremediation was developed, taking into account long-term interactions between biotic and abiotic processes. It is also combined with a comprehensive thermodynamic analysis to track the fate and cycling of biogenic species. As compared with other bioremediation models, the model increases the resolution of the connection of microbial community to geochemistry and establishes direct quantitative correlation between overall community evolution and geochemical variation, thereby accurately predicting the community dynamics under different sedimentary conditions. The thermodynamic analysis examined a recently identified homogeneous reduction of U(VI) by Fe(II) under dynamic sedimentary conditions across time and space. It shows that the biogenic Fe(II) from Geobacter metabolism can be removed rapidly by the biogenic sulphide from sulfate reducer metabolism, hence constituting one of the reasons that make the abiotic U(VI) reduction thermodynamically infeasible in the subsurface. Further analysis indicates that much higher influent concentrations of both Fe(II) and U(VI) than normal are required to for abiotic U(VI) reduction to be thermodynamically feasible, suggesting that the abiotic reduction cannot be an alternative to the biotic reduction in the remediation of uranium contaminated groundwater.

  15. Absorption Reduction Capacity with Chromium (Cr and Cadmium (Cd Contaminants of Vetiver Phytoremediation Process on Compost Soil

    Directory of Open Access Journals (Sweden)

    Ahamad Zubair

    2016-01-01

    Full Text Available This study aims to analyze the large of reduction capacity of chromium metals and cadmium in the soil compost media and absorption capacity of chrome and cadmium in phytoremediation process of vetiver; to compare the reduction-absorption capacities of chromium and cadmium metals in phytoremediation process of vetiver (Vetivera zizanioides. The study was carried out for 2 months with a range of sampling every 7 days, and then analyzed by using Atomic Absorption Spectrophotometer (AAS. Contaminants used as artificial contaminants containing heavy metals chromium (Cr and cadmium (Cd. This study is an experimental research includes two variables. First, the variations of Cr concentrations used were 400 ppm, 600 ppm and 800 ppm and Cd concentrations used were 40 ppm, 60 ppm, 800 ppm. Secondly, the variations of total plant are 3, 6, and 9 plant. The period of observation is made every week. Planting media used is compost soil with compost and clay composition of 20%, 30% and 40%. The results of study showed that there are a significant relationship between the reduction capacity of Cr and Cd of compost soil and the absorption capacity of Cr and Cd for vetiver (Vetiveria zizanioides. The higher of Cr and Cd decreases in soil followed by increased levels of Cr and Cd in vetiver (Vetiveria zizanioides. The capacity of Cr reduction varies between 57% - 86% and Cd 36% - 64% where as the absorption capacity of vetiver on Cr between 38% - 75% and Cd between 34%-74%. The capacity of reduction-absorption of Cr is relatively higher than Cd in phytoremediation process of vetiver.

  16. Permeable Reactive Biobarriers for In Situ Cr(VI) Reduction: Bench Scale Tests Using Cellulomonas sp. Strain ES6

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar Viamajala; Brent M. Peyton; Robin Gerlach; Vaideeswaran; William A. Apel; James N. Petersen

    2008-12-01

    Chromate (Cr(VI)) reduction studies were performed in bench scale flow columns using the fermentative subsurface isolate Cellulomonas sp. strain ES6. In these tests, columns packed with either quartz sand or hydrous ferric oxide (HFO)-coated quartz sand, were inoculated with strain ES6 and fed nutrients to stimulate growth before nutrient-free Cr(VI) solutions were injected. Results show that in columns containing quartz sand, a continuous inflow of 2 mg/L Cr(VI) was reduced to below detection limits in the effluent for durations of up to 5.7 residence times after nutrient injection was discontinued proving the ability of strain ES6 to reduce chromate in the absence of an external electron donor. In the HFO-containing columns, Cr(VI) reduction was significantly prolonged and effluent Cr(VI) concentrations remained below detectable levels for periods of up to 66 residence times after nutrient injection was discontinued. Fe was detected in the effluent of the HFO-containing columns throughout the period of Cr(VI) removal indicating that the insoluble Fe(III) bearing solids were being continuously reduced to form soluble Fe(II) resulting in prolonged abiotic Cr(VI) reduction. Thus, growth of Cellulomonas within the soil columns resulted in formation of permeable reactive barriers that could reduce Cr(VI) and Fe(III) for extended periods even in the absence of external electron donors. Other bioremediation systems employing Fe(II)-mediated reactions require a continuous presence of external nutrients to regenerate Fe(II). After depletion of nutrients, contaminant removal within these systems occurs by reaction with surface-associated Fe(II) that can rapidly become inaccessible due to formation of crystalline Fe-minerals or other precipitates. The ability of fermentative organisms like Cellulomonas to reduce metals without continuous nutrient supply in the subsurface offers a viable and economical alternative technology for in situ remediation of Cr(VI

  17. Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: Important role of dissolved organic matter from biochar

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Biochar-derived dissolved organic matter (DOM) effectively reduced Cr(VI) and oxidized As(III). • Cr(VI) and As(III) could serve as a redox couple. • Cr(VI) and As(III) redox conversion was more effective in the ice phase than aqueous phase. • FTIR and ESR showed that biochar DOM served as both electron donor and acceptor. - Abstract: This study evaluated the impact of DOM from two biochars (sugar beet tailing and Brazilian pepper) on Cr(VI) reduction and As(III) oxidation in both ice and aqueous phases with a soil DOM as control. Increasing DOM concentration from 3 to 300 mg C L−1 enhanced Cr(VI) reduction from 20% to 100% and As(III) oxidation from 6.2% to 25%; however, Cr(VI) reduction decreased from 80–86% to negligible while As(III) oxidation increased from negligible to 18–19% with increasing pH from 2 to 10. Electron spin resonance study suggested semiquinone radicals in DOM were involved in As(III) oxidation while Fourier transform infrared analysis suggested that carboxylic groups in DOM participated in both Cr(VI) reduction and As(III) oxidation. During Cr(VI) reduction, part of DOM (∼10%) was oxidized to CO2. The enhanced conversion of Cr(VI) and As(III) in the ice phase was due to the freeze concentration effect with elevated concentrations of electron donors and electron acceptors in the grain boundary. Though DOM enhanced both Cr(VI) reduction and As(III)oxidation, Cr(VI) reduction coupled with As(III) oxidation occurred in absence of DOM. The role of DOM, Cr(VI) and/or As(III) in Cr and As transformation may provide new insights into their speciation and toxicity in cold regions

  18. Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: Important role of dissolved organic matter from biochar

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiaoling [Department of Soil and Water Science, University of Florida, Gainesville, FL 32611 (United States); Ma, Lena Q., E-mail: lqma@ufl.edu [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046 (China); Department of Soil and Water Science, University of Florida, Gainesville, FL 32611 (United States); Gress, Julia; Harris, Willie [Department of Soil and Water Science, University of Florida, Gainesville, FL 32611 (United States); Li, Yuncong [Soil and Water Science Department, Tropical Research and Education Center, University of Florida, Homestead, FL 33031-3314 (United States)

    2014-02-01

    Graphical abstract: - Highlights: • Biochar-derived dissolved organic matter (DOM) effectively reduced Cr(VI) and oxidized As(III). • Cr(VI) and As(III) could serve as a redox couple. • Cr(VI) and As(III) redox conversion was more effective in the ice phase than aqueous phase. • FTIR and ESR showed that biochar DOM served as both electron donor and acceptor. - Abstract: This study evaluated the impact of DOM from two biochars (sugar beet tailing and Brazilian pepper) on Cr(VI) reduction and As(III) oxidation in both ice and aqueous phases with a soil DOM as control. Increasing DOM concentration from 3 to 300 mg C L{sup −1} enhanced Cr(VI) reduction from 20% to 100% and As(III) oxidation from 6.2% to 25%; however, Cr(VI) reduction decreased from 80–86% to negligible while As(III) oxidation increased from negligible to 18–19% with increasing pH from 2 to 10. Electron spin resonance study suggested semiquinone radicals in DOM were involved in As(III) oxidation while Fourier transform infrared analysis suggested that carboxylic groups in DOM participated in both Cr(VI) reduction and As(III) oxidation. During Cr(VI) reduction, part of DOM (∼10%) was oxidized to CO{sub 2}. The enhanced conversion of Cr(VI) and As(III) in the ice phase was due to the freeze concentration effect with elevated concentrations of electron donors and electron acceptors in the grain boundary. Though DOM enhanced both Cr(VI) reduction and As(III)oxidation, Cr(VI) reduction coupled with As(III) oxidation occurred in absence of DOM. The role of DOM, Cr(VI) and/or As(III) in Cr and As transformation may provide new insights into their speciation and toxicity in cold regions.

  19. Reduction of Uranium(VI) under Sulfate-reducing Conditions in the Presence of Fe(III)-(hydr)oxides

    Energy Technology Data Exchange (ETDEWEB)

    Sani, Rajesh K.; Peyton, Brent M.; Amonette, James E.; Geesey, Gill G.

    2004-06-01

    U(VI) dissolved in a modified lactate-C medium (either sulfate- or lactate-limited) was reacted with a mixture of an Fe(III)-(hydr)oxide mineral (hematite, goethite, or ferrihydrite) and quartz under anoxic conditions and equivalent mineral surface areas. After sorption equilibration, the suspensions were inoculated with a sulfate-reducing bacterium (SRB, Desulfovibrio desulfuricans G20). Inoculation of the suspensions containing sulfate-limited medium yielded significant SRB growth, along with concomitant reduction of sulfate and removal of U(VI) from solution. Inoculation of the suspensions containing lactate-limited medium yielded similar results while lactate was still present. Once the lactate was depleted, however, some of the U that had been removed from solution was re-solubilized in the hematite treatment and, to a lesser extent, in the goethite treatment. No re-solubilization was observed in the lactate-limited ferrihydrite treatment even after a prolonged incubation of four months. Analysis by U L3-edge XANES spectroscopy of mineral specimens sampled without inoculation yielded a typical U(VI) spectrum. Mineral specimens sampled at the end of the experiment yielded spectra similar to that of uraninite, thus providing strong evidence for SRB-promoted removal of U(VI) from solution by reductive precipitation of uraninite. Consequently, U re-solubilization was attributed to re-oxidation of the uraninite by Fe(III) present in the (hydr)oxide phases. Our results thus suggest that inoculation with SRB mediates reduction of soluble U(VI) to an insoluble U(IV) oxide so long as a suitable electron donor is available. Depletion of the electron donor may result in partial re-oxidation of the U(IV) to soluble U(VI) species when the surfaces of crystalline Fe(III) (hydr)oxides are incompletely reduced by reaction with SRB-generated sulfide.

  20. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    OpenAIRE

    Wang, Yuanmin; Sevinc, Papatya C.; Balchik, Sara M.; Fridrickson, Jim; Shi, Liang; Lu, H. Peter

    2013-01-01

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles ads...

  1. Facile Synthesis of n-type (AgIn)(x)Zn(2(1-x))S2/p-type Ag2S Nanocomposite for Visible Light Photocatalytic Reduction To Detoxify Hexavalent Chromium.

    Science.gov (United States)

    Abdullah, Hairus; Kuo, Dong-Hau

    2015-12-01

    n-type (AgIn)(x)Zn(2(1-x))S2/p-type Ag2S nanocomposites with 10%, 20%, and 30% Ag2S loading were successfully synthesized via the simple solvothermal and sol gel methods. The as-prepared nanocomposites were characterized, and their visible light photocatalytic reductions were tested for detoxification of hexavalent chromium (Cr(VI)). The results showed only 20 mg of the as-prepared nanocomposites could reduce 100 mL of 20 ppm potassium dichromate by almost 100% in less than 90 min without adding any hole scavenger agents and pH adjustment (pH = 7). The good photocatalytic reduction was related to the narrower bandgap of (AgIn)(x)Zn(2(1-x))S2 solid solution because of the hybridized orbitals of Ag, In, Zn, and S and low recombination rate of photogenerated electron and hole pairs due to the effectiveness of p-type Ag2S and n-type (AgIn)(x)Zn(2(1-x))S2 nanoheterojunctions. This work not only gives a contribution to the creation of visible light photocatalysis for wide-bandgap semiconductors, but also extends our technological viewpoints in designing highly efficient metal sulfide photocatalyst. To the best of our knowledge, this work is the first finding of a high photocatalytic reduction of hexavalent chromium under visible light illumination by simultaneously using both concepts of p-n nanoheterojunction and solid solution in our photocatalyst design. In this present work, these concepts were used to replace the use of hole scavenger agents, which were commonly used by many other works to retard the recombination rate of photoinduced electron and hole pairs for photodegradation of hexavalent chromium. PMID:26575792

  2. Radiation-induced reduction of chromium(Ⅵ) in aqueous solution by γ-irradiation in a laboratory-scale

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Radiation-induced reduction of chromium(Ⅵ)(Cr(Ⅵ) by γ-irradiation was studied with an initial concentration of 42 mg/L in aqueous solutions. Several factors which might affect the reduction of Cr(Ⅵ) to Cr(Ⅲ) were examined. pH of aqueous solution affects the reduction efficiency significantly. Acidic condition of aqueous solution accelerates the process. At pH 2, a reduction of 86.2%was achieved with the absorbed dose of 15 kGy, while, with the same dose, at pH 5 and 7, the reduction of Cr (Ⅵ) were only 36.3%and 22.2%, respectively. Ethanol (0.1% in V:V) and sodium carbonate (1 mmol/L) were added into the solution respectively as relatively non-toxic hydroxyl radical scavengers. Reduction rate increased greatly in the presence of ethanol at each pH. Reduction efficiency of Cr(Ⅵ) was enhanced in neutral condition with the addition of sodium carbonate, however, no enhancement was found in acidic condition. The reduction of Cr(Ⅵ) was restrained when the solution was saturated with oxygen; however, the restraint was not significant.

  3. Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction.

    Science.gov (United States)

    Mystrioti, C; Xanthopoulou, T D; Papassiopi, N; Xenidis, A

    2016-01-01

    The effectiveness of five plant extracts and juices, i.e. extracts of Camellia sinensis (green tea, GT), Syzygium aromaticum (clove, CL), Mentha spicata (spearmint, SM), Punica granatum juice (pomegranate, PG) and Red Wine (RW), for the production of nanoiron suspensions and their application for Cr(VI) reduction was investigated. Polyphenols contained in extracts act as reducing agents for iron ions in aqueous solutions, forming thus iron nanoparticles, and stabilize the nanoparticles produced from further oxidation and agglomeration. The maximum amount of polyphenols extracted per g of herbs was obtained at herb mass to water volume ratio varying from 10 to 20g/L. Suspensions of nanoparticles with sizes below 60nm were produced by mixing iron chloride solution with the plant extracts and juices investigated. The maximum concentration of nanoiron in suspensions was estimated to 22mM, obtained using RW and PG at a mixing ratio of iron solution to extract equal to 2. Lower concentrations, up to 18mM, were achieved using GT and CL extracts. Therefore, PG juice and RW were considered as more effective for nanoiron production, and, together with GT extracts, they were selected for the production of nanoiron suspensions, which have been proven effective for Cr(VI) reduction, reaching removal capacity as high as 500mg Cr(VI) per g of iron in nanoparticles. PMID:26356183

  4. Combined remediation technology for the reduction and bioleaching of hexavalent chromium from soils using acidithiobacillus thiooxidans

    OpenAIRE

    Fonseca, B.; Rodrigues, Joana Lúcia; Mendes, T.S.; Queiroz, A.M.; Tavares, T

    2014-01-01

    Contamination of soils due to the release of effluents or deposition of wastes containing hexavalent chromium has been arising serious environmental problems. Therefore, the development of cost effectiveness but also ecological cleaning techniques is a matter of great concern among the scientific community. Bioremediation is attracting more and more attention due to its efficiency, low impact in the ecosystems and low cost. In particular, this study approaches a bioleaching tec...

  5. Modeling of kinetics of Cr(VI) sorption onto grape stalk waste in a stirred batch reactor

    International Nuclear Information System (INIS)

    Recently, Cr(VI) removal by grape stalks has been postulated to follow two mechanisms, adsorption and reduction to trivalent chromium. Nevertheless, the rate at which both processes take place and the possible simultaneity of both processes has not been investigated. In this work, kinetics of Cr(VI) sorption onto grape stalk waste has been studied. Experiments were carried out at different temperatures but at a constant pH (3 ± 0.1) in a stirred batch reactor. Results showed that three steps take place in the process of Cr(VI) sorption onto grape stalk waste: Cr(VI) sorption, Cr(VI) reduction to Cr(III) and the adsorption of the formed Cr(III). Taking into account the evidences above mentioned, a model has been developed to predict Cr(VI) sorption on grape stalks on the basis of (i) irreversible reduction of Cr(VI) to Cr(III) reaction, whose reaction rate is assumed to be proportional to the Cr(VI) concentration in solution and (ii) adsorption and desorption of Cr(VI) and formed Cr(III) assuming that all the processes follow Langmuir type kinetics. The proposed model fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The proposed model would be helpful for researchers in the field of Cr(VI) biosorption to design and predict the performance of sorption processes.

  6. Modeling of kinetics of Cr(VI) sorption onto grape stalk waste in a stirred batch reactor.

    Science.gov (United States)

    Escudero, Carlos; Fiol, Nuria; Poch, Jordi; Villaescusa, Isabel

    2009-10-15

    Recently, Cr(VI) removal by grape stalks has been postulated to follow two mechanisms, adsorption and reduction to trivalent chromium. Nevertheless, the rate at which both processes take place and the possible simultaneity of both processes has not been investigated. In this work, kinetics of Cr(VI) sorption onto grape stalk waste has been studied. Experiments were carried out at different temperatures but at a constant pH (3+/-0.1) in a stirred batch reactor. Results showed that three steps take place in the process of Cr(VI) sorption onto grape stalk waste: Cr(VI) sorption, Cr(VI) reduction to Cr(III) and the adsorption of the formed Cr(III). Taking into account the evidences above mentioned, a model has been developed to predict Cr(VI) sorption on grape stalks on the basis of (i) irreversible reduction of Cr(VI) to Cr(III) reaction, whose reaction rate is assumed to be proportional to the Cr(VI) concentration in solution and (ii) adsorption and desorption of Cr(VI) and formed Cr(III) assuming that all the processes follow Langmuir type kinetics. The proposed model fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The proposed model would be helpful for researchers in the field of Cr(VI) biosorption to design and predict the performance of sorption processes.

  7. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yubing [School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206 (China); Institute of Plasma Physics, Chinese Academy of Science, P.O. Box 1126, Hefei, 230031 (China); Ding, Congcong; Cheng, Wencai [Institute of Plasma Physics, Chinese Academy of Science, P.O. Box 1126, Hefei, 230031 (China); Wang, Xiangke, E-mail: xkwang@ipp.ac.cn [School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206 (China); Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-09-15

    Graphical abstract: - Highlights: • Sorption and in-situ reduction of U(VI) is observed. • The composites are more effective for U(VI) removal and solidification. • The inner-sphere surface complexes are observed. - Abstract: The reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized by chemical deposition method and were characterized by SEM, high resolution TEM, Raman and potentiometric acid-base titrations. The characteristic results showed that the nZVI nanoparticles can be uniformly dispersed on the surface of rGO. The removal of U(VI) on nZVI/rGO composites as a function of contact time, pH and U(VI) initial concentration was investigated by batch technique. The removal kinetics of U(VI) on nZVI and nZVI/rGO were well simulated by a pseudo-first-order kinetic model and pseudo-second-order kinetic model, respectively. The presence of rGO on nZVI nanoparticles increased the reaction rate and removal capacity of U(VI) significantly, which was attributed to the chemisorbed OH{sup −} groups of rGO and the massive enrichment of Fe{sup 2+} on rGO surface by XPS analysis. The XRD analysis revealed that the presence of rGO retarded the transformation of iron corrosion products from magnetite/maghemite to lepidocrocite. According to the fitting of EXAFS spectra, the U-C (at ∼2.9 Å) and U-Fe (at ∼3.2 Å) shells were observed, indicating the formation of inner-sphere surface complexes on nZVI/rGO composites. Therefore, the nZVI/rGO composites can be suitable as efficient materials for the in-situ remediation of uranium-contaminated groundwater in the environmental pollution management.

  8. Does the presence of microplastics influence the acute toxicity of chromium(VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations.

    Science.gov (United States)

    Luís, Luís G; Ferreira, Pedro; Fonte, Elsa; Oliveira, Miguel; Guilhermino, Lúcia

    2015-07-01

    Toxicological interactions between microplastics (MP) and other environmental contaminants are of grave concern. Here, the potential influence of MP in the short-term toxicity of chromium to early juveniles of Pomatoschistus microps was investigated. Three null hypotheses were tested: (1) exposure to Cr(VI) concentrations in the low ppm range does not induce toxic effects on juveniles; (2) the presence of microplastics in the water does not influence the acute toxicity of Cr(VI) to juveniles; (3) the environmental conditions of the natural habitat where fish developed do not influence their sensitivity to Cr(VI)-induced acute stress. Fish were collected in the estuaries of Minho (M-est) and Lima (L-est) Rivers (NW Iberian Peninsula) that have several abiotic differences, including in the water and sediment concentrations of various environmental contaminants. After acclimatization to laboratory conditions, two 96h acute bioassays were carried out with juveniles from both estuaries to: (i) investigate the effects of Cr(VI) alone; (ii) investigate the effects of Cr(VI) in the presence of MP (polyethylene spheres 1-5μm ∅). Cr(VI) alone induced mortality (96h-LC50s: 14.4-30.5mg/l) and significantly decreased fish predatory performance (≤74%). Thus, in the range of concentrations tested (5.6-28.4mg/l) Cr(VI) was found to be toxic to P. microps early juveniles, therefore, we rejected hypothesis 1. Under simultaneous exposure to Cr(VI) and MP, a significant decrease of the predatory performance (≤67%) and a significant inhibition of AChE activity (≤31%) were found. AChE inhibition was not observed in the test with Cr(VI) alone and MP alone caused an AChE inhibition ≤21%. Mixture treatments containing Cr(VI) concentration ≥3.9mg/l significantly increased LPO levels in L-est fish, an effect that was not observed under Cr(VI) or MP single exposures. Thus, toxicological interactions between Cr(VI) and MP occurred, therefore, we rejected hypothesis 2. In the

  9. A model to describe the adsorption and reduction of Cr (VI) from an aqueous solution by Agave lechuguilla biomass

    OpenAIRE

    J. Romero-González; I. Cano-Rodríguez; J.C. Walton; Peralta-Videa, J.R.; Rodríguez, E.; Gardea-Torresdey, J. L.

    2005-01-01

    The biosorption and reduction of Cr (VI) onto packed columns of Agave lechuguilla were analyzed using an advection-dispersion with a first order reaction (ADR) model and its analytical solution. Design parameters, such as an axial dispersion coefficient, a retardation factor, a distribution coefficient, and a general first-order decay constant, were estimated as functions of inlet metal ion concentration, pH, operation time, flow rate, cross-sectional column area, the density and length of th...

  10. An experimental study on the inhibitory effect of high concentration bicarbonate on the reduction of U(VI) in groundwater by functionalized indigenous microbial communities

    International Nuclear Information System (INIS)

    The anaerobic microcosms amended with 30 mM bicarbonate and without bicarbonate were established, respectively, and the reduction of U(VI) in the microcosms by functionalized indigenous microbial communities was investigated. Results of the chemical extraction and XANES analysis showed that the proportions of U(IV) in the microcosms amended with bicarbonate were 10 % lower than without bicarbonate at day 46. The amount of Cellulomonadaceae, Desulfovibrionaceae, Peptococcaceae and Veillonellaceae amended with bicarbonate was lower than without bicarbonate, so the reduction of U(VI) was less. The experimental results show that the high concentration bicarbonate has a significantly inhibitory effect on the reduction of U(VI). (author)

  11. Integrated Ecogenomics Study for Bioremediation of Cr(VI) at Hanford 100H Area

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Chakraborty, Romy

    2008-08-12

    Hexavalent chromium is a widespread contaminant found in groundwater. In order to stimulate microbially mediated Cr(VI)-reduction, a poly-lactate compound was injected into Cr(VI)-contaminated aquifers at site 100H at Hanford. Investigation of bacterial community composition using high-density DNA microarray analysis of 16S rRNA gene products revealed a stimulation of Pseudomonas, Desulfovibrio and Geobacter species amongst others. Enrichment of these organisms coincided with continued Cr(VI) depletion. Functional gene-array analysis of DNA from monitoring well indicated high abundance of genes involved in nitrate-reduction, sulfate-reduction, iron-reduction, methanogenesis, chromium tolerance/reduction. Clone-library data revealed Psedomonas was the dominant genus in these samples. Based on above results, we conducted lab investigations to study the dominant anaerobic culturable microbial populations present at this site and their role in Cr(VI)-reduction. Enrichments using defined anaerobic media resulted in isolation of an iron-reducing, a sulfate-reducing and a nitrate-reducing isolate among several others. Preliminary 16S rDNA sequence analysis identified the isolates as Geobacter metallireducens, Pseudomonas stutzeri and Desulfovibrio vulgaris species respectively. The Pseudomonas isolate utilized acetate, lactate, glycerol and pyruvate as alternative carbon sources, and reduced Cr(VI). Anaerobic washed cell suspension of strain HLN reduced almost 95?M Cr(VI) within 4 hr. Further, with 100?M Cr(VI) as sole electron-acceptor, cells grew to 4.05 x 107 /ml over 24 h after an initial lag, demonstrating direct enzymatic Cr(VI) reduction coupled to growth. These results demonstrate that Cr(VI)-immobilization at Hanford 100H site could be mediated by direct microbial metabolism in addition to indirect chemical reduction of Cr(VI) by end-products of microbial activity.

  12. Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light.

    Science.gov (United States)

    Li, Ying; Chen, Cheng; Zhang, Jing; Lan, Yeqing

    2015-05-01

    The catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid with simulated solar light was investigated. The results demonstrated that Cu(II) could significantly accelerate Cr(VI) reduction and the reaction obeyed to pseudo zero-order kinetics with respect to Cr(VI). The removal of Cr(VI) was related to the initial concentrations of Cu(II), citric acid, and the types of organic acids. The optimal removal of Cr(VI) was achieved at pH 4, and the rates of Cu(II) photocatalytic reduction of Cr(VI) by organic acids were in the order: tartaric acid (two α-OH groups, two -COOH groups)>citric acid (one α-OH group, three -COOH groups)>malic acid (one α-OH group, two -COOH groups)>lactic acid (one α-OH group, one -COOH group)≫succinic acid (two -COOH groups), suggesting that the number of α-OH was the key factor for the reaction, followed by the number of -COOH. The formation of Cu(II)-citric acid complex could generate Cu(I) and radicals through a pathway of metal-ligand-electron transfer, promoting the reduction of Cr(VI). This study is helpful to fully understanding the conversion of Cr(VI) in the existence of both organic acids and Cu(II) with solar light in aquatic environments.

  13. Impregnation synthesis of TiO{sub 2}/hydroniumjarosite composite with enhanced property in photocatalytic reduction of Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Junjun [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Xu, Zhihui, E-mail: xuzhihui@njau.edu.cn [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Zhang, Ming [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Xu, Jiangyan [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Fang, Di, E-mail: Di.Fang@njau.edu.cn [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Ran, Wei [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2015-02-15

    In this paper, a series of novel TiO{sub 2}/hydroniumjarosite composite photocatalysts were synthesized by deposition–precipitation method. XRD, UV–vis DRS, TEM, BET, PL spectra and EIS were used to characterize the composite photocatalysts. The photocatalytic performance of the composite catalysts were examined on the Cr(VI) reduction under ultraviolet irradiation in aqueous suspension. The results show that TiO{sub 2}/hydroniumjarosite composites exhibit enhanced photocatalytic activity with a maximum reduction rate of 98.0%, while the Cr(VI) reduction efficiency is only 36.0% over P25 under the same conditions. The increased light absorption intensity and the decreased electron–hole pair recombination rate in TiO{sub 2} with the introduction of hydroniumjarosite are responsible for better catalytic property of TiO{sub 2}/hydroniumjarosite catalysts. It would be of great promise for the industrial application of this catalyst with high potocatalytic performance to reduce Cr(VI) for wastewater treatment. - Highlights: • TiO{sub 2}/hydroniumjarosite with different TiO{sub 2} content was prepared using deposition–precipitation method. • The sample prepared with the TiO{sub 2}/Fe{sup 3+} mole ratio of 75:25 exhibited the highest catalytic efficiency. • The enhanced catalytic activity can be attributed to the formation of TiO{sub 2}/hydroniumjarosite heterostructure.

  14. Metaproteomics Identifies the Protein Machinery Involved in Metal and Radionuclide Reduction in Subsurface Microbiomes and Elucidates Mechanisms and U(VI) Reduction Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Pfiffner, Susan M. [Univ. of Tennessee, Knoxville, TN (United States); Löffler, Frank [Univ. of Tennessee, Knoxville, TN (United States); Ritalahti, Kirsti [Univ. of Tennessee, Knoxville, TN (United States); Sayler, Gary [Univ. of Tennessee, Knoxville, TN (United States); Layton, Alice [Univ. of Tennessee, Knoxville, TN (United States); Hettich, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-31

    The overall goal for this funded project was to develop and exploit environmental metaproteomics tools to identify biomarkers for monitoring microbial activity affecting U speciation at U-contaminated sites, correlate metaproteomics profiles with geochemical parameters and U(VI) reduction activity (or lack thereof), elucidate mechanisms contributing to U(VI) reduction, and provide remediation project managers with additional information to make science-based site management decisions for achieving cleanup goals more efficiently. Although significant progress has been made in elucidating the microbiology contribution to metal and radionuclide reduction, the cellular components, pathway(s), and mechanisms involved in U trans-formation remain poorly understood. Recent advances in (meta)proteomics technology enable detailed studies of complex samples, including environmental samples, which differ between sites and even show considerable variability within the same site (e.g., the Oak Ridge IFRC site). Additionally, site-specific geochemical conditions affect microbial activity and function, suggesting generalized assessment and interpretations may not suffice. This research effort integrated current understanding of the microbiology and biochemistry of U(VI) reduction and capitalize on advances in proteomics technology made over the past few years. Field-related analyses used Oak Ridge IFRC field ground water samples from locations where slow-release substrate biostimulation has been implemented to accelerate in situ U(VI) reduction rates. Our overarching hypothesis was that the metabolic signature in environmental samples, as deciphered by the metaproteome measurements, would show a relationship with U(VI) reduction activity. Since metaproteomic and metagenomic characterizations were computationally challenging and time-consuming, we used a tiered approach that combines database mining, controlled laboratory studies, U(VI) reduction activity measurements, phylogenetic

  15. On-line pre-reduction of Se(VI) by thiourea for selenium speciation by hydride generation

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Jianhua [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Wang Qiuquan [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)]. E-mail: qqwang@xmu.edu.cn; Ma Yuning [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Yang Limin [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Huang Benli [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2006-07-15

    In this study, thiourea (TU) was novelly developed as a reduction reagent for on-line pre-reduction of selenium(VI) before conventional hydride generation (HG) by KBH{sub 4}/NaOH-HCl. After TU on-line pre-reduction, the HG efficiency of Se(VI) has been greatly improved and because even higher than that of the same amount of Se(IV) obtained in the conventional HG system. The possible pre-reduction mechanism is discussed. The detection limit (DL) of selenate reaches 10 pg mL{sup -1} when using on-line TU pre-reduction followed by HG atomic fluorescence detection. When TU pre-reduction followed by HG is used as an interface between ion-pair high performance liquid chromatography and atomic fluorescence spectrometry, selenocystine, selenomethionine, selenite and selenate can be measured simultaneously and quantitatively. The DLs of these are 0.06, 0.08, 0.05 and 0.04 ng mL{sup -1}, respectively, and the relative standard deviations of 9 duplicate runs for all the 4 species are less than 5%. Furthermore, it was successfully applied to Se speciation analysis of cultured garlic samples, and validated by determination of total selenium and selenium species in certified reference material NIST 1946.

  16. Assessment of the removal mechanism of hexavalent chromium from aqueous solutions by olive stone.

    Science.gov (United States)

    Martín-Lara, María Ángeles; Calero de Hoces, Mónica; Ronda Gálvez, Alicia; Pérez Muñoz, Antonio; Trujillo Miranda, Ma Carmen

    2016-01-01

    The objectives of this study were to study the removal mechanism of Cr(VI) by natural olive stone (OS) and to present a sequential-batch process for the removal of total chromium (original Cr(VI) and Cr(III) derived from reduction of Cr(VI) during biosorption at acidic conditions). First, experiments were conducted varying pH from 1 to 4, and showed that a combined effect of biosorption and reduction is involved in the Cr(VI) removal. Then, X-ray photoelectron spectroscopy and desorption tests were employed to verify the oxidation state of the chromium bound to OS and to elucidate the removal mechanism of Cr(VI) by this material. The goal of these tests was to confirm that Cr(III) is the species mainly absorbed by OS. Finally, the possibility of total chromium removal by biosorption in a sequential-batch process was analyzed. In the first stage, 96.38% of Cr(VI) is removed by OS and reduced to Cr(III). In the second stage, approximately 31% of the total Cr concentration was removed. However, the Cr(III) released in the first stage is not completely removed, and it could suggest that the Cr(III) could be in a hydrated compound or a complex, which could be more difficult to remove under these conditions. PMID:27232404

  17. Application of NAA Method to Study Chromium Uptake by Arthrobacter oxydans

    CERN Document Server

    Tsibakhashvili, N Ya; Kalabegishvili, T L; Kirkesali, E I; Frontasyeva, M V; Pomyakushina, E V; Pavlov, S S

    2002-01-01

    To study chromium uptake by Arthrobacter oxydans (Cr(VI)-reducer bacteria isolated from Columbia basalt rocks, USA) instrumental neutron activation analysis method was applied. It was established that chromate accumulation is dose-dependent and it is more intesive in the interval of concentrations of Cr(VI) (10-50 mg/l). At low concentrations of Cr(VI) (up to 50 mg/l) the most intensive formation of Cr(V) was also found (using ESR method). Besides, it was estimated that reduction from Cr(VI) to Cr(V) is faster process than the uptake of Cr(VI). According to ENAA measurements Cr(III), in constant to Cr(VI), is not accumulated in Arthrobacter oxydans cells up to concentration of 200 mg/l. Using epithermal neutron activation analysis the background levels of 17 major, minor and trace elements were determined in Arthrobacter oxydans.

  18. Microbial biotechnology for remediation of aquatic habitats polluted with chromium

    Directory of Open Access Journals (Sweden)

    Viorica Coşier

    2008-12-01

    Full Text Available Chromium may occur in nine different forms of oxidation ranging from ?II to +VI, with forms II, III and VI as the most commonly encountered. In Cluj county, chromium pollution dates well back in time and has caused important dysfunction to the mechanical-biological wastewater purification station of the city of Cluj (Coşier & Diţă 1996. The purpose of this study was to develop one microbial method able to reduce hexavalent chromium (mobile, permeable to cell membrane, carcinogenic and mutagenic (Ishikawa et al 1994 to the trivalent form (insoluble and an essential element for humans (Song et al 2006. Different sources of chromium-reducing bacteria and many sources of carbon and energy added to the Kvasnikov mineral basal medium (Komori et al 1990 with increasing amount of chromate (200- 1000 mg/l were tested. Two bacterial strains, able to reduce even 1000 mg chromate/l, were isolated in pure culture. For one of these bacterial strains, we determined the optimum conditions for the reduction of Cr (VI.

  19. Metaproteomics Identifies the Protein Machinery Involved in Metal and Radionuclide Reduction in Subsurface Microbiomes and Elucidates Mechanisms and U(VI) Reduction Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Pfiffner, Susan M. [Univ. of Tennessee, Knoxville, TN (United States); Löffler, Frank [Univ. of Tennessee, Knoxville, TN (United States); Ritalahti, Kirsti [Univ. of Tennessee, Knoxville, TN (United States); Sayler, Gary [Univ. of Tennessee, Knoxville, TN (United States); Layton, Alice [Univ. of Tennessee, Knoxville, TN (United States); Hettich, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-31

    The overall goal for this funded project was to develop and exploit environmental metaproteomics tools to identify biomarkers for monitoring microbial activity affecting U speciation at U-contaminated sites, correlate metaproteomics profiles with geochemical parameters and U(VI) reduction activity (or lack thereof), elucidate mechanisms contributing to U(VI) reduction, and provide remediation project managers with additional information to make science-based site management decisions for achieving cleanup goals more efficiently. Although significant progress has been made in elucidating the microbiology contribution to metal and radionuclide reduction, the cellular components, pathway(s), and mechanisms involved in U trans-formation remain poorly understood. Recent advances in (meta)proteomics technology enable detailed studies of complex samples, including environmental samples, which differ between sites and even show considerable variability within the same site (e.g., the Oak Ridge IFRC site). Additionally, site-specific geochemical conditions affect microbial activity and function, suggesting generalized assessment and interpretations may not suffice. This research effort integrated current understanding of the microbiology and biochemistry of U(VI) reduction and capitalize on advances in proteomics technology made over the past few years. Field-related analyses used Oak Ridge IFRC field ground water samples from locations where slow-release substrate biostimulation has been implemented to accelerate in situ U(VI) reduction rates. Our overarching hypothesis was that the metabolic signature in environmental samples, as deciphered by the metaproteome measurements, would show a relationship with U(VI) reduction activity. Since metaproteomic and metagenomic characterizations were computationally challenging and time-consuming, we used a tiered approach that combines database mining, controlled laboratory studies, U(VI) reduction activity measurements, phylogenetic

  20. Cr(VI) sorption/desorption on untreated and mussel-shell-treated soil materials: fractionation and effects of pH and chromium concentration

    Science.gov (United States)

    Otero, M.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J. C.; Arias-Estévez, M.; Fernández-Sanjurjo, M. J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.

    2015-04-01

    We used batch-type experiments to study Cr(VI) sorption/desorption on granitic material, forest soil, pyritic material, mussel shell, and on forest soil and granitic material amended with 12 t ha-1 (1.2 kg m -2) shell, considering the effects of varying Cr(VI) concentration and pH. Sequential extractions were carried out to fractionate adsorbed Cr(VI) and to determine the stability of Cr(VI) retention. The pyritic material had the highest Cr(VI) retention capacity, whereas the granitic material showed the lowest retention potential. When high Cr concentrations were added, some saturation of the adsorbent surfaces became apparent, but Cr release remained low. The highest Cr retention was achieved at a very acid pH value, with release progressively increasing as a function of increasing pH. The amendment with 12 t ha-1 mussel shell did not cause marked changes in Cr(VI) retention. Sorption data were satisfactory adjusted to the Freundlich model. Regarding Cr(VI) fractionation, the soluble fraction (weakly bound) was dominant in mussel shell and in the unamended and amended granitic material, whereas more stable fractions dominated in the pyritic material (residual fraction) and in the forest soil (oxidizable fraction). In conclusion, the pyritic material presented the highest Cr(VI) retention capacity, while the retention was low and weak on the granitic material; mussel shell was not characterized by a marked Cr(VI) retention potential, and it did not cause remarkable increase in Cr(VI) retention when used to amend the granitic material or the forest soil.

  1. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.

    Science.gov (United States)

    Dhal, B; Thatoi, H N; Das, N N; Pandey, B D

    2013-04-15

    Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed. PMID:23467183

  2. Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: The role of Fe(II) and Fe(III)

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Sen; Chen, Yongheng; Xiang, Wu; Bao, Zhengyu; Liu, Chongxuan; Deng, Baolin

    2014-12-01

    The role of Fe(II) and Fe(III) on U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.92 to 9.03. For instance, at pH 6.92 the observed U(VI) reduction rates decreased by 80.7% and 82.3% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can be enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) probably acted as an electron shuttle to mediate the transfer of electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 can facilitate the U(VI) reductive immobilization in the contaminated groundwater.

  3. Potential of modified iron-rich foundry waste for environmental applications: Fenton reaction and Cr(VI) reduction.

    Science.gov (United States)

    Oliveira, Patrícia E F; Oliveira, Leandro D; Ardisson, José D; Lago, Rochel M

    2011-10-30

    A magnetic fraction (15%) from a waste of foundry sand (WFS), composed of sand, carbon, bentonite clay and iron (10%) was modified by thermal treatment at 400, 600 and 800°C under inert atmosphere. Mössbauer analyses showed that the thermal treatment increased the amount of Fe(3)O(4) from 25 to 55% by reduction of Fe(2)O(3) and highly dispersed Fe(3+) by the carbon present in the waste. The Fe(3)O(4) caused a significant increase on the activity of two important reactions with application in environmental remediation: the Fenton oxidation of indigo carmine dye with H(2)O(2) and the reduction of Cr(VI) to Cr(III). The magnetic fraction of WFS was also mixed with hematite (Fe(2)O(3)) and thermally treated at 400, 600 and 800°C. This treatment produced large amounts of surface Fe(3)O(4) and increased substantially the rate of Fenton reaction as well as Cr(VI) reduction. This reactivity combined with the presence of carbon (an adsorbent for organic contaminants), bentonite clay (an adsorbent for metallic contaminants) and the granulometry/packing/hydrodynamic features make WFS a promising material for use in reactive permeable barriers. PMID:21890267

  4. Competitive Biosorption of Chromium(VI), Iron(III) and Copper(II) Ions From Binary Metal Mixtures By R.arrhizus and C. vulgaris

    OpenAIRE

    SAĞ, Yeşim; AÇIKEL, Ünsal; AKSU, Zümriye; KUTSAL, Tülin

    1998-01-01

    In this study, the simultaneous adsorption process of Cr(VI), Fe(III) by R. arrhizus and C. vulgaris and Cu(II) in pairs of metal mixtures were investigated and compared to single component systems. The capabilities of the fungal and the algal biomass to bind two metals simultaneously in solution are shown as a function of pH, metal combinations and levels of metal concentration. The effects of the co-presence of Cr(VI)-Fe(III) and Cr(VI)-Cu(II) ions together in aquatic solutions on the bi...

  5. Scaling Effects of Cr(VI) Reduction Kinetics. The Role of Geochemical Heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li [Pennsylvania State Univ., State College, PA (United States); Li, Li [Pennsylvania State Univ., State College, PA (United States)

    2015-10-22

    The natural subsurface is highly heterogeneous with minerals distributed in different spatial patterns. Fundamental understanding of how mineral spatial distribution patterns regulate sorption process is important for predicting the transport and fate of chemicals. Existing studies about the sorption was carried out in well-mixed batch reactors or uniformly packed columns, with few data available on the effects of spatial heterogeneities. As a result, there is a lack of data and understanding on how spatial heterogeneities control sorption processes. In this project, we aim to understand and develop modeling capabilities to predict the sorption of Cr(VI), an omnipresent contaminant in natural systems due to its natural occurrence and industrial utilization. We systematically examine the role of spatial patterns of illite, a common clay, in determining the extent of transport limitation and scaling effects associated with Cr(VI) sorption capacity and kinetics using column experiments and reactive transport modeling. Our results showed that the sorbed mass and rates can differ by an order of magnitude due to of the illite spatial heterogeneities and transport limitation. With constraints from data, we also developed the capabilities of modeling Cr(VI) in heterogeneous media. The developed model is then utilized to understand the general principles that govern the relationship between sorption and connectivity, a key measure of the spatial pattern characteristics. This correlation can be used to estimate Cr(VI) sorption characteristics in heterogeneous porous media. Insights gained here bridge gaps between laboratory and field application in hydrogeology and geochemical field, and advance predictive understanding of reactive transport processes in the natural heterogeneous subsurface. We believe that these findings will be of interest to a large number of environmental geochemists and engineers, hydrogeologists, and those interested in contaminant fate and transport

  6. Remoción de Cromo (VI) por una Cepa de Paecilomyces sp Resistente a Cromato Removal of Chromium (VI) in a Chromate-Resistant Strain of Paecilomyces sp

    OpenAIRE

    Cárdenas-González, Juan F.; Martínez-Juárez, Víctor M.; Ismael Acosta-Rodríguez

    2011-01-01

    Se analizó la capacidad de remoción de Cr(VI) de una cepa de Paecilomyces sp. Cuando el hongo se incubó en medio mínimo con glucosa y otras fuentes de carbono comerciales y de bajo costo, como azúcar moscabada y piloncillo ó glicerol, en presencia de 50 mg/L de Cr(VI), removió totalmente el Cr(VI). La reducción a Cr(III) ocurre en el medio de cultivo después de 7 días de incubación a 28°C, pH 4.0, y un inoculo de 38 mg. El hongo también redujo eficientemente la concentración de Cr(VI) a parti...

  7. Catalysis of Dissolved and Adsorbed Iron in Soil Suspension for Chromium(Ⅵ) Reduction by Sulfide

    Institute of Scientific and Technical Information of China (English)

    LAN Ye-Qing; YANG Jun-Xiang; B. DENG

    2006-01-01

    The kinetics of Cr(Ⅵ) reduction by sulfide in soil suspensions with various pHs, soil compositions, and Fe(Ⅱ) concentrations was examined using batch anaerobic experimental systems at constant temperature. The results showed that the reaction rate of Cr(Ⅵ) reduction was in the order of red soil < yellow-brown soil < chernozem and was proportional to the concentration of HCl-extractable iron in the soils. Dissolved and adsorbed iron in soil suspensions played an important role in accelerating Cr(Ⅵ) reduction. The reaction involved in the Cr(Ⅵ) reduction by Fe(Ⅱ) to produce Fe(Ⅲ), which was reduced to Fe(Ⅱ) again by sulfide, could represent the catalytic pathway until about 70% of the initially present Cr(Ⅵ)was reduced. The catalysis occurred because the one-step reduction of Cr(Ⅵ) by sulfide was slower than the two-step process consisting of rapid Cr(Ⅵ) reduction by Fe(Ⅱ) followed by Fe(Ⅲ) reduction by sulfide. In essence, Fe(Ⅱ)/Fe(Ⅲ)species shuttle electrons from sulfide to Cr(Ⅵ), facilitating the reaction. The effect of iron, however, could be completely blocked by adding a strong Fe(Ⅱ)-complexing ligand, 1,10-phenanthroline, to the soil suspensions. In all the experiments,initial sulfide concentration was much higher than initial Cr(Ⅵ) concentration. The plots of ln c[Cr(Ⅵ)] versus reaction time were linear up to approximately 70% of Cr(Ⅵ) reduction, suggesting a first-order reaction kinetics with respect to Cr(Ⅵ). Elemental sulfur, the product of sulfide oxidation, was found to accelerate Cr(Ⅵ) reduction at a later stage of the reaction, resulting in deviation from linearity for the ln c[Cr(Ⅵ)] versus time plots.

  8. 污染场地六价铬的还原和微生物稳定化研究%Bioremediation of Chromium (Ⅵ(Contaminated Site by Reduction and Microbial Stabilization of Chromium

    Institute of Scientific and Technical Information of China (English)

    郑家传; 张建荣; 刘希雯; 许倩; 施维林

    2014-01-01

    Chromium(Ⅵ) contaminated soil samples were collected from a chemical plant in Suzhou. Firstly, the reduced soil was prepared by adding reagent (Stone-sulfure reagent) into polluted soil to transfer most chromium(Ⅵ) into chromium(Ⅲ), then a nutrient solution was introduced into the reduced soil, and the stabilized soil was obtained after 60 days culturing. The chromium(Ⅵ) content of the three kinds of soil was analyzed. The results showed that the chromium(Ⅵ) content in toxicity characteristic leaching liquid ( TCLL) dropped by 96. 8% ( from 8. 26 mg·L-1 to 0. 26 mg·L-1 ) , and the total chromium content dropped by 95. 7% ( from 14. 66 mg·L-1 to 0. 63 mg·L-1 ) after bioremediation in 5% nutrient solution. Additionally, the durability of chromium stabilization was tested by potassium permanganate oxidation and sterilization of microbe-treated soil. After oxidation, the chromium(Ⅵ) content in TCLL of the reduced soil was increased from 8. 26 mg·L-1 to 14. 68 mg·L-1 . However, the content after bioremediation was decreased to 2. 68 mg·L-1 . The results of sterilization demonstrated that the death of microbe had no significant effect on the stabilization of chromium. Consequently, the research in this paper demonstrated the feasibility of bioremediation of chromium (Ⅵ) polluted soil through reduction followed by stabilization/soilidification, and provided a technique with low cost but high efficiency.%通过采集苏州某化工原址场地铬污染土壤,首先加入石硫合剂使大部分六价铬[ Cr(Ⅵ)]还原,再加入营养液促进土著微生物大量生长,利用微生物还原稳定化土壤中的铬.培养60 d后,通过毒性浸出、土壤中剩余Cr(Ⅵ)测定等实验确定稳定化效果,结果表明,加入5%营养液培养后,土壤毒性浸出液中Cr(Ⅵ)浓度由原来的8.26 mg·L-1降低到0.26 mg·L-1,降低了96.8%,总铬浓度由原来14.66 mg·L-1降低到0.63 mg·L-1,降低了95.7%.另外,通过高锰酸钾氧化

  9. Chromium Resistant Bacteria: Impact on Plant Growth in Soil Microcosm

    Directory of Open Access Journals (Sweden)

    Sayel Hanane

    2014-07-01

    Full Text Available Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.

  10. IN SITU CHEMICAL REDUCTION OF CR(VI) IN GROUNDWATER USING A COMBINATION OF FERROUS SULFATE AND SODIUM DITHIONITE: A FIELD INVESTIGATION

    Science.gov (United States)

    A field pilot test was conducted to evaluate the effectiveness of a FeSO4 + Na2S2O4 reductant solution blend for in situ saturated zone treatment of dissolved-phase Cr(VI) at the former Macalloy Corporation site in Charleston, SC. The reductant blend was injected into the path o...

  11. Pyridine appended L-methionine: A novel chelating resin for pH dependent Cr speciation with scanning electron microscopic evidence and monitoring of yeast mediated green bio-reduction of Cr(VI) to Cr(III) in environmental samples

    International Nuclear Information System (INIS)

    Chemical speciation and pH dependent separation of Cr(III) and Cr(VI) species in environmental samples have been achieved by solid phase extraction using a new chelating resin containing pyridine appended L-methionine. Cr(III) is completely sorbed on the resin at pH 8.0 and Cr(VI) at pH 2.0. Hence a pH dependent separation of Cr(III) and Cr(VI) is possible with a limit of detection of 1.6 μg mL-1 and 0.6 μg mL-1 respectively. The sorption capacity of the resin for Cr(III) and Cr(VI) is 2.8 mmol g-1 and 1.3 mmol g-1 respectively. The sorption of chromium on the resin is supported by scanning electron microscopy (SEM). Complete desorption of Cr(III) and Cr(VI) from 1 g of Cr loaded resin was achieved using 10 mL of 2 mol L-1 HNO3 and 6 mL of 3 mol L-1 HNO3 respectively. Quantitative recoveries of Cr(III) (pH 8.0) and Cr(VI) (pH 2.0) were found to be 96.0% and 98.0% respectively. Reduction efficiency of Rhodotornula mucilaginosa yeast from Cr(VI) to Cr(III) was monitored with this new resin. Concentrations of metal ions were measured by flame atomic absorption spectroscopy (FAAS).

  12. Chromium(VI)-induced Production of Reactive Oxygen Species, Change of Plasma Membrane Potential and Dissipation of Mitochondria Membrane Potential in Chinese Hamster Lung Cell Cultures

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To examine whether Reactive Oxygen Species (ROS) is generated, and whether plasma membrane potential and mitochondrial membrane potential are depolarized in Chinese Hamster Lung (CHL) cell lines exposed to Cr (VI). Methods CHL cells were incubated with Cr(VI) at 10 μmol/L, 2.5 μmol/L, 0.65 μmol/L for 3 and 6 hours, respectively. The production of ROS was performed by using 2,7_dichlorofluorescin diacetate; The changes in plasma membrane potential were estimated using fluorescent cationic dye DiBAC4; And the changes in mitochondria membrane potential were estimated using fluorescent dye Rhodamine 123. Results The ROS levels in CHL cells increased in all treated groups compared with the control group (P<0.01); The plasma membrane potential and mitochondrial membrane potential in CHL cells dissipated after incubated with Cr(VI) at 10 μmol/L for 3 hours and 6 hours (P<0.01), at 2.5 μmol/L for 6 hours (P<0.01 or 0.05). Conclusion Cr(VI) causes the dissipation of plasma membrane potential and mitochondrial membrane potential in CHL cell cultures, and Cr(VI)_induced ROS may play a role in the injuries.

  13. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction

    International Nuclear Information System (INIS)

    Highlights: • NH2 functionalized MIL-125(Ti) was fabricated by a facile solvothermal method. • The photocatalyst could reduce Cr(VI)–Cr(III) under visible light irradiation. • The Ti3+–Ti4+ intervalence electron transfer is important for Cr(VI) reduction. • Used NH2-MIL-125(Ti) can be recycled for the photocatalytic reduction. - Abstract: Porous metal-organic frameworks (MOFs) have been arousing a great interest in exploring the application of MOFs as photocatalyst in environment remediation. In this work, two different MOFs, Ti-benzenedicarboxylate (MIL-125(Ti)) and amino-functionalized Ti-benzenedicarboxylate (NH2-MIL-125(Ti)) were successfully synthesized via a facile solvothermal method. The MIL-125(Ti) and NH2-MIL-125(Ti) were well characterized by XRD, SEM, XPS, N2 adsorption–desorption measurements, thermogravimetric analysis and UV–vis diffuse reflectance spectra (DRS). It is revealed that the NH2-MIL-125(Ti) has well crystalline lattice, large surface area and mesoporous structure, chemical and thermal stability, and enhanced visible-light absorption up to 520 nm, which was associated with the chromophore (amino group) in the organic linker. Compared with MIL-125(Ti), NH2-MIL-125(Ti) exhibited more efficient photocatalytic activity for Cr(VI) reduction from aqueous solution under visible-light irradiation. The addition of hole scavenger, the hole scavenger concentration and the pH value of the reaction solution played important roles in the photo-catalytic reduction of Cr(VI). The presence of Ti3+–Ti4+ intervalence electron transfer was the main reason for photo-excited electrons transportation from titanium-oxo clusters to Cr(VI), facilitating the Cr(VI) reduction under the acid condition. It was demonstrated that amino-functionalized Ti(IV)-based MOFs could be promising visible-light photocatalysts for the treatment of Cr(VI)-contained wastewater

  14. Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species

    OpenAIRE

    Sivakumar, D.

    2016-01-01

    The isolated fungi species of different kinds from chromium contaminated soil sites located in Nagalkeni, Chennai were used for reducing chromium(VI) in a tannery industry wastewater of Nagalkeni, Chennai.  The experiments were conducted to know biosorption potential of isolated fungi species for removing chromium(VI) in a tannery industry wastewater against the different pH, fungi biomass and chromium(VI) concentration (dilution ratio).  The results of this study indicated that the order of ...

  15. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    Science.gov (United States)

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  16. On-line preconcentration and determination of copper, lead and chromium(VI) using unloaded polyurethane foam packed column by flame atomic absorption spectrometry in natural waters and biological samples.

    Science.gov (United States)

    Anthemidis, Aristidis N; Zachariadis, George A; Stratis, John A

    2002-11-12

    A simple, sensitive and low cost, flow injection time-based method was developed for on-line preconcentration and determination of copper, lead and chromium(VI) at sub mug l(-1) levels in natural waters and biological samples. At the optimum pH, the on-line formed metal-ammonium pyrrolidine dithiocarbamate (APDC) complexes were sorbed on the unloaded commercial polyurethane foam (PUF), and subsequent eluted quantitatively by isobutylmethylketone and determined by flame atomic absorption spectrometry (FAAS). All chemical, and flow injection variables were optimized for the quantitative preconcentration of each metal and a study of interference level of various ions was also carried out. The system offered improved flexibility, low backpressure and applicability to all the studied metals. At a sample frequency of 36 h(-1) and a 60 s preconcentration time, the enhancement factor was 170, 131 and 28, the detection limit was 0.2, 1.8 and 2.0 mug l(-1), and the precision, expressed as relative standard deviation (s(r)), was 2.8 (at 10 mug l(-1)), 3.4 (at 50 mug l(-1)) and 3.6% (at 50 mug l(-1)) for Cu(II), Pb(II) and Cr(VI), respectively. The accuracy of the developed method was sufficient and evaluated by the analysis of certified reference materials and spiked water samples. Finally, the method was applied to the analysis of environmental samples. PMID:18968813

  17. The charge percolation mechanism and simulation of Ziegler–Natta polymerizations. Part VI. Mechanism of ethylene polymerization by supported chromium oxide

    Directory of Open Access Journals (Sweden)

    DRAGOSLAV STOILJKOVIC

    2007-11-01

    Full Text Available Despite intensive research over the last 50 years, many questions concerning ethylene polymerization by supported chromium oxide are still unanswered. Hence, the very fundamental issues of this polymerization are discussed in this paper. It is shown that a charge percolation mechanism (CPM of olefin polymerization by Ziegler–Natta transition metal complexes, recently proposed by us, can give the answers in this case, too.

  18. Biosorption system produced from biofilms supported on Faujasite (FAU) zeolite, process for obtaining it and its usage for removal of hexavalent chromium (Cr(VI))

    OpenAIRE

    Tavares, M. T.; Neves, Isabel C.

    2008-01-01

    The present invention refers to a biosorption system composed of a bacterial biofilm supported in synthetic zeolites, for usage in various types of industry for the removal of hexavalent chromium, through the retention of metal ions in the biofilm, in solutions with concentrations between 50 and 250 mgCr/L, process for obtaining it and respective usages. This process consists in obtaining a bacterial biofilm of Arthrobacter viscosus, supported on a faujasite (FAU) zeolite. The biofilm promote...

  19. Diverse anaerobic Cr(VI) tolerant bacteria from Cr(VI)-contaminated 100H site at Hanford

    Science.gov (United States)

    Chakraborty, R.; Phan, R.; Lam, S.; Leung, C.; Brodie, E. L.; Hazen, T. C.

    2007-12-01

    Hexavalent Chromium [Cr(VI)] is a widespread contaminant found in soil, sediment, and ground water. Cr(VI) is more soluble, toxic, carcinogenic, and mutagenic compared to its reduced form Cr(III). In order to stimulate microbially mediated reduction of Cr(VI), a poly-lactate compound HRC was injected into the chromium contaminated aquifers at site 100H at Hanford. Based on the results of the bacterial community composition using high-density DNA microarray analysis of 16S rRNA gene products, we recently investigated the diversity of the dominant anaerobic culturable microbial population present at this site and their role in Cr(VI) reduction. Positive enrichments set up at 30°C using specific defined anaerobic media resulted in the isolation of an iron reducing isolate strain HAF, a sulfate reducing isolate strain HBLS and a nitrate reducing isolate, strain HLN among several others. Preliminary 16S rDNA sequence analysis identifies strain HAF as Geobacter metallireducens, strain HLN as Pseudomonas stutzeri and strain HBLS as a member of Desulfovibrio species. Strain HAF isolated with acetate as the electron donor utilized propionate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Growth was optimal at 37°C, pH of 6.5 and 0% salinity. Strain HLN isolated with lactate as electron donor utilized acetate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Optimal growth was observed at 37°C, at a pH of 7.5 and 0.3% salinity. Anaerobic active washed cell suspension of strain HLN reduced almost 95 micromolar Cr(VI) within 4 hours relative to controls. Further, with 100 micromolar Cr(VI) as the sole electron acceptor, cells of strain HLN grew to cell numbers of 4.05X 107/ml over a period of 24hrs after an initial lag, demonstrating direct enzymatic Cr(VI) reduction by this species. 10mM lactate served as the sole electron donor. These results demonstrate that Cr(VI

  20. The oxygen isotope composition of dissolved chromate: a new tool for determining sources of chromium contamination in groundwater

    Science.gov (United States)

    Bullen, T.; Widory, D.

    2009-05-01

    Hexavalent chromium (Cr(VI)) is a widespread carcinogen in groundwater, derived from both anthropogenic and natural sources. A large range of chromium isotope composition has been demonstrated for dissolved Cr(VI) in groundwater, resulting from the large isotope fractionation accompanying reduction of Cr(VI) to trivalent chromium (Cr(III)). As a result, the isotopic composition of chromium in dissolved chromate is beginning to prove useful for determining the sources of chromium in contaminated groundwater, but considered alone can likewise be non-diagnostic due to overlapping compositional ranges of potential anthropogenic and natural sources. Based on the strong Cr-O bond in the chromate molecule implied by the large chromium isotope fractionation accompanying Cr(VI) reduction, we have proposed that oxygen will remain closely linked to chromium in the chromate molecule and thus can be used to better constrain chromate sources through a Cr-O "multi-tracer" approach. In a series of laboratory experiments using isotopically "enriched" water and "normal" chromate, we have demonstrated that there is insignificant isotopic exchange between oxygen in chromate and water for residence times as long as one year, and thus chromate will retain the oxygen isotope composition of its source during extended transport in groundwater. We have likewise demonstrated that sufficient chromate for oxygen isotope analysis can be successfully isolated from a chemically complex groundwater sample through a series of precipitation, ion exchange and heating procedures. Although our current approach of measuring 100 micromolar samples of chromate using TCEA- gas mass spectrometry is straightforward and robust, we are also developing a negative-ion thermal ionization mass spectrometry technique in order to greatly reduce the sample size requirement. We are currently applying this novel technique at an electric power facility in California and a metal plating facility in France in order to

  1. The potential impact of microbial Fe(III) reduction on subsurface U(VI) mobility at a low level radioactive waste storage site

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, M.J.; Livens, F.R.; Vaughan, D.J.; Lloyd, J.R. [Williamson Research Centre for Molecular Environmental Science and School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Beadle, I.; Small, J.S. [British Nuclear Fuels plc, Risley, Warrington WA3 6AS (United Kingdom)

    2005-07-01

    Full text of publication follows: Fe(III) oxy-hydroxides have the potential to be utilised as terminal electron acceptors by indigenous microbial communities in the British Nuclear Fuels (BNFL) low level radioactive waste storage site at Drigg (Cumbria, UK) and these organisms may have a critical control on the biogeochemical cycling of several environmentally important radionuclides. In terms of radiological impact at Drigg, uranium is the most significant contributor to radiological impact and it is strongly influenced by biogeochemical processes. In terms of mass (moles) it is also the most abundant radionuclide in the Drigg inventory. Thus, the potential biotic and abiotic effects of Fe(III) reduction on U(VI) mobility in the Drigg subsurface are of interest. Culture-dependent and molecular techniques showed that the sediments in and around the Drigg site contained a diversity of Fe(III)-reducing bacteria. A series of microcosm experiments were utilised to create environmentally relevant experimental conditions. Microcosms set up using Drigg sediment and synthetic ground water were spiked with 100 {mu}M U(VI) and acetate as an electron donor. U(VI) concentrations in groundwater were measured using a chemical assay while total U levels were determined using ICP-MS. Fe(II) levels were determined using the ferrozine method. Sediment surface areas were measured using BET analysis. The low surface area of the sediments resulted in only a small proportion of the 100 {mu}M U(VI) spike sorbing onto mineral surfaces. The addition of ferri-hydrite to some microcosms resulted in an immediate lowering of soluble U(VI) concentrations, suggesting that the formation of soluble U(VI) complexes were not responsible for the minimal adsorption. The presence of biogenic Fe(II) in the microcosms did not affect the soluble U(VI) concentration. Similarly, soluble U(VI) levels remained unchanged when sediments were spiked with U(VI) post-microbial Fe(III) reduction. However, a

  2. The potential impact of microbial Fe(III) reduction on subsurface U(VI) mobility at a low level radioactive waste storage site

    International Nuclear Information System (INIS)

    Full text of publication follows: Fe(III) oxy-hydroxides have the potential to be utilised as terminal electron acceptors by indigenous microbial communities in the British Nuclear Fuels (BNFL) low level radioactive waste storage site at Drigg (Cumbria, UK) and these organisms may have a critical control on the biogeochemical cycling of several environmentally important radionuclides. In terms of radiological impact at Drigg, uranium is the most significant contributor to radiological impact and it is strongly influenced by biogeochemical processes. In terms of mass (moles) it is also the most abundant radionuclide in the Drigg inventory. Thus, the potential biotic and abiotic effects of Fe(III) reduction on U(VI) mobility in the Drigg subsurface are of interest. Culture-dependent and molecular techniques showed that the sediments in and around the Drigg site contained a diversity of Fe(III)-reducing bacteria. A series of microcosm experiments were utilised to create environmentally relevant experimental conditions. Microcosms set up using Drigg sediment and synthetic ground water were spiked with 100 μM U(VI) and acetate as an electron donor. U(VI) concentrations in groundwater were measured using a chemical assay while total U levels were determined using ICP-MS. Fe(II) levels were determined using the ferrozine method. Sediment surface areas were measured using BET analysis. The low surface area of the sediments resulted in only a small proportion of the 100 μM U(VI) spike sorbing onto mineral surfaces. The addition of ferri-hydrite to some microcosms resulted in an immediate lowering of soluble U(VI) concentrations, suggesting that the formation of soluble U(VI) complexes were not responsible for the minimal adsorption. The presence of biogenic Fe(II) in the microcosms did not affect the soluble U(VI) concentration. Similarly, soluble U(VI) levels remained unchanged when sediments were spiked with U(VI) post-microbial Fe(III) reduction. However, a lowering in

  3. Reduction of U(VI) and Toxic Metals by Desulfovibrio Cytochrome C3

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D

    2013-04-11

    The central objective of our proposed research was twofold: 1) to investigate the structure-function relationship of Desulfovibrio desulfuricans (now Desulfovibrio alaskensis G20) cytochrome c3 with uranium and 2) to elucidate the mechanism for uranium reduction in vitro and in vivo. Physiological analysis of a mutant of D. desulfuricans with a mutation of the gene encoding the type 1 tetraheme cytochrome c3 had demonstrated that uranium reduction was negatively impacted while sulfate reduction was not if lactate were the electron donor. This was thought to be due to the presence of a branched pathway of electron flow from lactate leading to sulfate reduction. Our experimental plan was to elucidate the structural and mechanistic details of uranium reduction involving cytochrome c3.

  4. Chromium in drinking water: sources, metabolism, and cancer risks.

    Science.gov (United States)

    Zhitkovich, Anatoly

    2011-10-17

    Drinking water supplies in many geographic areas contain chromium in the +3 and +6 oxidation states. Public health concerns are centered on the presence of hexavalent Cr that is classified as a known human carcinogen via inhalation. Cr(VI) has high environmental mobility and can originate from anthropogenic and natural sources. Acidic environments with high organic content promote the reduction of Cr(VI) to nontoxic Cr(III). The opposite process of Cr(VI) formation from Cr(III) also occurs, particularly in the presence of common minerals containing Mn(IV) oxides. Limited epidemiological evidence for Cr(VI) ingestion is suggestive of elevated risks for stomach cancers. Exposure of animals to Cr(VI) in drinking water induced tumors in the alimentary tract, with linear and supralinear responses in the mouse small intestine. Chromate, the predominant form of Cr(VI) at neutral pH, is taken up by all cells through sulfate channels and is activated nonenzymatically by ubiquitously present ascorbate and small thiols. The most abundant form of DNA damage induced by Cr(VI) is Cr-DNA adducts, which cause mutations and chromosomal breaks. Emerging evidence points to two-way interactions between DNA damage and epigenetic changes that collectively determine the spectrum of genomic rearrangements and profiles of gene expression in tumors. Extensive formation of DNA adducts, clear positivity in genotoxicity assays with high predictive values for carcinogenicity, the shape of tumor-dose responses in mice, and a biological signature of mutagenic carcinogens (multispecies, multisite, and trans-sex tumorigenic potency) strongly support the importance of the DNA-reactive mutagenic mechanisms in carcinogenic effects of Cr(VI). Bioavailability results and kinetic considerations suggest that 10-20% of ingested low-dose Cr(VI) escapes human gastric inactivation. The directly mutagenic mode of action and the incompleteness of gastric detoxification argue against a threshold in low

  5. Development of U isotope fractionation as an indictor or U(VI) reduction in uranium plumes

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, Craig [Univ. of Illinois, Urbana-Champaign, IL (United States); Johnson, Thomas [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-02-16

    This is the final report for a university research project that advanced development of a new technology for identifying chemical reduction of uranium contamination in groundwater at the Rifle Field Challenge site. Reduction changes mobile hexavalent uranium into immobile U(IV). The stable isotope ratio (238U/235U) measurements of U using multicollector ICP-mass spectrometry were performed to understand the chemical reduction and sorption processes during various field experiments. In addition laboratory experiments were performed to better understand the isotopic fractionations. The main objectives of this project were completed during the project period and two peer-reviewed articles were published to disseminate the information gained.

  6. In Situ Spectral Kinetics of Cr(VI) Reduction by c-Type Cytochromes in A Suspension of Living Shewanella putrefaciens 200

    Science.gov (United States)

    Liu, Tongxu; Li, Xiaomin; Li, Fangbai; Han, Rui; Wu, Yundang; Yuan, Xiu; Wang, Ying

    2016-07-01

    Although c-type cytochromes (c-Cyts) mediating metal reduction have been mainly investigated with in vitro purified proteins of dissimilatory metal reducing bacteria, the in vivo behavior of c-Cyts is still unclear given the difficulty in measuring the proteins of intact cells. Here, c-Cyts in living Shewanella putrefaciens 200 (SP200) was successfully quantified using diffuse-transmission UV/Vis spectroscopy due to the strong absorbance of hemes, and the in situ spectral kinetics of Cr(VI) reduction by c-Cyts were examined over time. The reduced product Cr(III) observed on the cell surface may play a role in inhibiting the Cr(VI) reduction and reducing the cell numbers with high concentrations (>200 μM) of Cr(VI) evidenced by the 16S rRNA analysis. A brief kinetic model was established with two predominant reactions, redox transformation of c-Cyts and Cr(VI) reduction by reduced c-Cyts, but the fitting curves were not well-matched with c-Cyts data. The Cr(III)-induced inhibitory effect to the cellular function of redox transformation of c-Cyts was then added to the model, resulting in substantially improved the model fitting. This study provides a case of directly examining the reaction properties of outer-membrane enzyme during microbial metal reduction processes under physiological conditions.

  7. Temperature and ph kinetics for enhanced biosorption of cr (vi) by highly chromium resistant fungi gliocladium spp.zic/sub 2063/

    International Nuclear Information System (INIS)

    This study investigates the kinetics of Cr (VI) biosorption by locally isolated high Cr tolerant fungus Gliocladium sp. ZIC/sub 2063/. The effect of two most important variables pH and temperature was investigated for enhanced Cr (VI) biosorption. The applicability of the Langmuir and Freundlich models for the different parameters was tested. The result showed that the most suitable sorption temperature was 30 degree C with maximum biosorption rate of 185.69 mg/l. The data showed that the sorption process is spontaneous and exothermic in nature and that lower solution temperatures favors metal ion removal by the biomass. Similarly Cr (VI) uptake by Gliocladium sp. ZIC/sub 2063/ was maximum at optimum pH of 3.5. The findings of this investigation suggest that pH and temperature plays a significant role in enhancing the biosorption rate. The coefficient of determination (R2) of both models were mostly greater than 0.9. This indicates that biosorption data is best fitted in both models. (author)

  8. Synergistic photoelectrochemical reduction of Cr(VI) and oxidation of organic pollutants by g-C3N4/TiO2-NTs electrodes.

    Science.gov (United States)

    Zhang, Yi; Wang, Qiang; Lu, Jiani; Wang, Qi; Cong, Yanqing

    2016-11-01

    The g-C3N4/TiO2-NTs electrodes were synthesized by a dip-coating procedure followed by high-temperature annealing used in photoelectrochemical process. From the results, a simultaneous and rapid reduction of Cr(VI) and degradation of phenol in Cr(VI)/phenol system was observed with photoelectrocatalytic activity under UV-visible light irradiation than photocatalytic and electrocatalytic activities. The different kinds of Cr(VI)/organic pollutants systems were also investigated systematically. In addition, different scavengers were also added in Cr(VI)/phenol and Cr(VI)/benzyl alcohol systems to indicate that the hydroxyl radicals and superoxide radicals were the most major active species for the denomination of Cr(VI) and organic pollutants. The intermediates of phenol and benzyl alcohol were also detected during the reaction in order to deduce the photoelectrocatalysis mechanism underg-C3N4/TiO2-NTs electrodes that the charge separation was improved and subsequently electron-transfer efficiency was higher. PMID:27479456

  9. Synergistic photoelectrochemical reduction of Cr(VI) and oxidation of organic pollutants by g-C3N4/TiO2-NTs electrodes.

    Science.gov (United States)

    Zhang, Yi; Wang, Qiang; Lu, Jiani; Wang, Qi; Cong, Yanqing

    2016-11-01

    The g-C3N4/TiO2-NTs electrodes were synthesized by a dip-coating procedure followed by high-temperature annealing used in photoelectrochemical process. From the results, a simultaneous and rapid reduction of Cr(VI) and degradation of phenol in Cr(VI)/phenol system was observed with photoelectrocatalytic activity under UV-visible light irradiation than photocatalytic and electrocatalytic activities. The different kinds of Cr(VI)/organic pollutants systems were also investigated systematically. In addition, different scavengers were also added in Cr(VI)/phenol and Cr(VI)/benzyl alcohol systems to indicate that the hydroxyl radicals and superoxide radicals were the most major active species for the denomination of Cr(VI) and organic pollutants. The intermediates of phenol and benzyl alcohol were also detected during the reaction in order to deduce the photoelectrocatalysis mechanism underg-C3N4/TiO2-NTs electrodes that the charge separation was improved and subsequently electron-transfer efficiency was higher.

  10. Aqueous complexation reactions governing the rate and extent of biogeochemical U(VI) reduction

    International Nuclear Information System (INIS)

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments

  11. Remediation of Cr(VI) contaminated soil using long-duration sodium thiosulfate supported by micro–nano networks

    Energy Technology Data Exchange (ETDEWEB)

    He, Lulu [School of Life Sciences, Anhui Agricultural University, Hefei 230036 (China); Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Wang, Min; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Qiu, Guannan [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Zhang, Xin, E-mail: xinzhang@ahau.edu.cn [School of Life Sciences, Anhui Agricultural University, Hefei 230036 (China)

    2015-08-30

    Highlights: • This work aims to develop a long-duration remediation agent (LRA). • LRA was obtained using Na{sub 2}S{sub 2}O{sub 3} supported by attapulgite (ATP) micro–nano networks. • ATP micro–nano networks was induced by high-energy electron beam irradiation. • LRA can effectively control the migration of Cr(VI) and reducing Cr(VI) to Cr(III). • LRA displayed high performance on the remediation of heavy metal contaminated soil. - Abstract: In this work, a long-duration remediation agent (LRA) on hexavalent chromium (Cr(VI)) was developed using sodium thiosulfate (ST) supported by attapulgite (ATP) micro–nano networks induced through high-energy electron beam (HEEB) irradiation. The ATP networks could effectively reduce the leaching amount of Cr(VI) in soil. More importantly, the ATP networks could significantly control the leaching behavior of ST, and then prolong the duration and increase the reduction efficiency of ST on Cr(VI). As a result, LRA displayed high performance on controlling the migration of Cr(VI) and reducing Cr(VI) to Cr(III). Additionally, pot experiment indicated that LRA could effectively decrease the absorbed amount of Cr(VI) in corn, and reduce the inhibition effect of Cr(VI) on the growth of corn. Therefore, this work could provide a facile approach to remediate the Cr(VI)-contaminated soil and lower the harmful effect of Cr(VI) on crop.

  12. Influence of Reactive Transport on the Reduction of U(VI) in the Presence of Fe(III) and Nitrate: Implications for U(VI) Immobilization by Bioremediation/Biobarriers - Final Report

    International Nuclear Information System (INIS)

    Subsurface contamination by metals and radionuclides represent some of the most challenging remediation problems confronting the Department of Energy (DOE) complex. In situ remediation of these contaminants by dissimilatory metal reducing bacteria (DMRB) has been proposed as a potential cost effective remediation strategy. The primary focus of this research is to determine the mechanisms by which the fluxes of electron acceptors, electron donors, and other species can be controlled to maximize the transfer of reductive equivalents to the aqueous and solid phases. The proposed research is unique in the NABIR portfolio in that it focuses on (i) the role of flow and transport in the initiation of biostimulation and the successful sequestration of metals and radionuclides [specifically U(VI)], (ii) the subsequent reductive capacity and stability of the reduced sediments produced by the biostimulation process, and (iii) the potential for altering the growth of biomass in the subsurface by the addition of specific metabolic uncoupling compounds. A scientifically-based understanding of these phenomena are critical to the ability to design successful bioremediation schemes. The laboratory research will employ Shewanella putrefaciens (CN32), a facultative DMRB that can use Fe(III) oxides as a terminal electron acceptor. Sediment-packed columns will be inoculated with this organism, and the reduction of U(VI) by the DMRB will be stimulated by the addition of a carbon and energy source in the presence of Fe(III). Separate column experiments will be conducted to independently examine: (1) the importance of the abiotic reduction of U(VI) by biogenic Fe(II); (2) the influence of the transport process on Fe(III) reduction and U(VI) immobilization, with emphasis on methods for controlling the fluxes of aqueous species to maximize uranium reduction; (3) the reductive capacity of biologically-reduced sediments (with respect to re-oxidation by convective fluxes of O2 and NO3-) and

  13. Influence of Reactive Transport on the Reduction of U(VI) in the Presence of Fe(III) and Nitrate: Implications for U(VI) Immobilization by Bioremediation / Biobarriers- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    B.D. Wood

    2007-01-01

    Subsurface contamination by metals and radionuclides represent some of the most challenging remediation problems confronting the Department of Energy (DOE) complex. In situ remediation of these contaminants by dissimilatory metal reducing bacteria (DMRB) has been proposed as a potential cost effective remediation strategy. The primary focus of this research is to determine the mechanisms by which the fluxes of electron acceptors, electron donors, and other species can be controlled to maximize the transfer of reductive equivalents to the aqueous and solid phases. The proposed research is unique in the NABIR portfolio in that it focuses on (i) the role of flow and transport in the initiation of biostimulation and the successful sequestration of metals and radionuclides [specifically U(VI)], (ii) the subsequent reductive capacity and stability of the reduced sediments produced by the biostimulation process, and (iii) the potential for altering the growth of biomass in the subsurface by the addition of specific metabolic uncoupling compounds. A scientifically-based understanding of these phenomena are critical to the ability to design successful bioremediation schemes. The laboratory research will employ Shewanella putrefaciens (CN32), a facultative DMRB that can use Fe(III) oxides as a terminal electron acceptor. Sediment-packed columns will be inoculated with this organism, and the reduction of U(VI) by the DMRB will be stimulated by the addition of a carbon and energy source in the presence of Fe(III). Separate column experiments will be conducted to independently examine: (1) the importance of the abiotic reduction of U(VI) by biogenic Fe(II); (2) the influence of the transport process on Fe(III) reduction and U(VI) immobilization, with emphasis on methods for controlling the fluxes of aqueous species to maximize uranium reduction; (3) the reductive capacity of biologically-reduced sediments (with respect to re-oxidation by convective fluxes of O2 and NO3-) and

  14. U(VI) speciation and reduction in acid chloride fluids in hydrothermal conditions: from transport to deposition of uranium in unconformity-related deposits

    International Nuclear Information System (INIS)

    Circulations of acidic chloride brines in the earth's crust are associated with several types of uranium deposits, particularly unconformity-related uranium (URU) deposits. The spectacular high grade combined with the large tonnage of these deposits is at the origin of the key questions concerning the geological processes responsible for U transport and precipitation. The aim of this work is to performed experimental studies of U(VI) speciation and its reduction to U(IV) subsequently precipitation to uraninite under hydrothermal condition. About uranium transport, the study of U(VI) speciation in acidic brines at high temperature is performed by Raman and XAS spectroscopy, showing the coexistence of several uranyl chloride complexes UO2Cln2-n (n = 0 - 5). From this study, complexation constants are proposed. The strong capability of chloride to complex uranyl is at the origin of the transport of U(VI) at high concentration in acidic chloride brines. Concerning uranium precipitation, the reactivity of four potential reductants under conditions relevant for URU deposits genesis is investigated: H2, CH4, Fe(II) and the C-graphite. The kinetics of reduction reaction is measured as a function of temperature, salinity, pH and concentration of reductant. H2, CH4, and the C-graphite are very efficient while Fe(II) is not able to reduce U(VI) in same conditions. The duration of the mineralizing event is controlled by (i) the U concentration in the ore-forming fluids and (ii) by the generation of gaseous reductants, and not by the reduction kinetics. These mobile and efficient gaseous reductant could be at the origin of the extremely focus and massive character of ore in URU deposits. Finally, first partition coefficients uraninite/fluid of trace elements are obtained. This last part opens-up new perspectives on (i) REE signatures interpretation for a given type of uranium deposit (ii) and reconstruction of mineralizing fluids composition. (author)

  15. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hou [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yuan, Xingzhong, E-mail: yxz@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wu, Yan [College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Xiaohong [School of Business, Central South University, Changsha 410083 (China); Leng, Lijian; Wu, Zhibin; Jiang, Longbo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Li, Hui [Institute of Bio-energy, Hunan Academy of Forestry, Changsha 410004 (China)

    2015-04-09

    Highlights: • NH{sub 2} functionalized MIL-125(Ti) was fabricated by a facile solvothermal method. • The photocatalyst could reduce Cr(VI)–Cr(III) under visible light irradiation. • The Ti{sup 3+}–Ti{sup 4+} intervalence electron transfer is important for Cr(VI) reduction. • Used NH{sub 2}-MIL-125(Ti) can be recycled for the photocatalytic reduction. - Abstract: Porous metal-organic frameworks (MOFs) have been arousing a great interest in exploring the application of MOFs as photocatalyst in environment remediation. In this work, two different MOFs, Ti-benzenedicarboxylate (MIL-125(Ti)) and amino-functionalized Ti-benzenedicarboxylate (NH{sub 2}-MIL-125(Ti)) were successfully synthesized via a facile solvothermal method. The MIL-125(Ti) and NH{sub 2}-MIL-125(Ti) were well characterized by XRD, SEM, XPS, N{sub 2} adsorption–desorption measurements, thermogravimetric analysis and UV–vis diffuse reflectance spectra (DRS). It is revealed that the NH{sub 2}-MIL-125(Ti) has well crystalline lattice, large surface area and mesoporous structure, chemical and thermal stability, and enhanced visible-light absorption up to 520 nm, which was associated with the chromophore (amino group) in the organic linker. Compared with MIL-125(Ti), NH{sub 2}-MIL-125(Ti) exhibited more efficient photocatalytic activity for Cr(VI) reduction from aqueous solution under visible-light irradiation. The addition of hole scavenger, the hole scavenger concentration and the pH value of the reaction solution played important roles in the photo-catalytic reduction of Cr(VI). The presence of Ti{sup 3+}–Ti{sup 4+} intervalence electron transfer was the main reason for photo-excited electrons transportation from titanium-oxo clusters to Cr(VI), facilitating the Cr(VI) reduction under the acid condition. It was demonstrated that amino-functionalized Ti(IV)-based MOFs could be promising visible-light photocatalysts for the treatment of Cr(VI)-contained wastewater.

  16. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures

    International Nuclear Information System (INIS)

    Highlights: • No published or well recognized MOA for Cr(VI)-induced lung tumors exists. • MOA analysis for Cr(VI)-induced lung cancer was conducted to inform risk assessment. • Cr(VI) epidemiologic, toxicokinetic, toxicological, mechanistic data were evaluated. • Weight of evidence does not support a mutagenic MOA for Cr(VI)-induced lung cancer. • Non-linear approaches should be considered for evaluating Cr(VI) lung cancer risk. - Abstract: Inhalation of hexavalent chromium [Cr(VI)] is associated with increased lung cancer risk among workers in several industries, most notably chromate production workers exposed to high concentrations of Cr(VI) (≥100 μg/m3), for which clear exposure–response relationships and respiratory irritation and tissue damage have been reported. Data from this industry are used to assess lung cancer risk associated with environmental and current occupational exposures, occurring at concentrations that are significantly lower. There is considerable uncertainty in the low dose extrapolation of historical occupational epidemiology data to assess risk at current exposures because no published or well recognized mode of action (MOA) for Cr(VI)-induced lung tumors exists. We conducted a MOA analysis for Cr(VI)-induced lung cancer evaluating toxicokinetic and toxicological data in humans and rodents and mechanistic data to assess plausibility, dose–response, and temporal concordance for potential MOAs. Toxicokinetic data support that extracellular reduction of Cr(VI), which limits intracellular absorption of Cr(VI) and Cr(VI)-induced toxicity, can be overwhelmed at high exposure levels. In vivo genotoxicity and mutagenicity data are mostly negative and do not support a mutagenic MOA. Further, both chronic bioassays and the epidemiologic literature support that lung cancer occurs at exposures that cause tissue damage. Based on this MOA analysis, the overall weight of evidence supports a MOA involving deposition and accumulation of

  17. Removal of Cr (VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance

    International Nuclear Information System (INIS)

    The removal of Cr (VI) from aqueous solutions using black carbon (BC) isolated from the burning residues of wheat straw was investigated as a function of pH, contact time, reaction temperature, supporting electrolyte concentration and analytical initial Cr (VI) concentration in batch studies. The effect of surface properties on the adsorption behavior of Cr (VI) was investigated with scanning electron microscope (SEM) equipped with the energy dispersive X-ray spectroscope (EDS) and Fourier transform-infrared (FTIR) spectroscopy. The removal mechanism of Cr (VI) onto the BC was investigated and the result showed that the adsorption reaction consumed a large amount of protons along the reduction of Cr (VI) to Cr (III). The oxidation of the BC took place concurrently to the chromium reduction and led to the formation of hydroxyl and carboxyl functions. An initial solution pH of 1.0 was most favorable for Cr (VI) removal. The adsorption process followed the pseudo-second order equation and Freundlich isotherm very well. The Cr (VI) adsorption was temperature-dependent and almost independent on the sodium chloride concentrations. The maximum adsorption capacity for Cr (VI) was found at 21.34 mg/g in an acidic medium, which is comparable to other low-cost adsorbents.

  18. Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp. Strain 300A, Isolated from Hanford 300A Subsurface Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, B.; Cao, B.; McLean, Jeffrey S.; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K.; Beyenal, Haluk

    2012-11-07

    A facultative iron-reducing (Fe(III)-reducing) Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes (Fe(III)-NTA and Fe(III)-citrate) but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 µM) of either of electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 µM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We found that Paenibacillus sp. 300A also could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ~7:3 in PIPES and ~1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.

  19. On the removal of hexavalent chromium from a Class F fly ash.

    Science.gov (United States)

    Huggins, F E; Rezaee, M; Honaker, R Q; Hower, J C

    2016-05-01

    Coarse and fine samples of a Class F fly ash obtained from commercial combustion of Illinois bituminous coal have been exposed to two long-term leaching tests designed to simulate conditions in waste impoundments. ICP-AES analysis indicated that the coarse and fine fly ash samples contained 135 and 171mg/kg Cr, respectively. Measurements by XAFS spectroscopy showed that the ash samples originally contained 5 and 8% of the chromium, respectively, in the hexavalent oxidation state, Cr(VI). After exposure to water for more than four months, the percentage of chromium as Cr(VI) in the fly-ash decreased significantly for the coarse and fine fly-ash in both tests. Combining the XAFS data with ICP-AES data on the concentration of chromium in the leachates indicated that, after the nineteen-week-long, more aggressive, kinetic test on the coarse fly ash, approximately 60% of the Cr(VI) had been leached, 20% had been reduced to Cr(III) and retained in the ash, and 20% remained as Cr(VI) in the ash. In contrast, during the six-month-long baseline test, very little Cr was actually leached from either the coarse or the fine fly-ash (<0.1mg/kg); rather, about 66% and 20%, respectively, of the original Cr(VI) in the coarse and fine fly-ash was retained in the ash in that form, while the remainder, 34% and 80%, respectively, was reduced and retained in the ash as Cr(III). The results are interpreted as indicating that Cr(VI) present in Class F fly-ash can be reduced to Cr(III) when in contact with water and that such chemical reduction can compete with physical removal of Cr(VI) from the ash by aqueous leaching. PMID:26951722

  20. Chromium in leather footwear-risk assessment of chromium allergy and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Strandesen, Maria; Poulsen, Pia B;

    2012-01-01

    Background. Chromium-tanned leather footwear, which releases >3 ppm hexavalent Cr(VI), may pose a risk of sensitizing and eliciting allergic dermatitis. Objectives. To determine the content and potential release of chromium in leather footwear and to discuss the prevention of chromium contact...... allergy and dermatitis. Methods. Sixty pairs of leather shoes, sandals and boots (20 children's, 20 men's, and 20 women's) were purchased in Copenhagen and examined with X-ray fluorescence spectroscopy. Chromium was extracted according to the International Standard, ISO 17075. The detection level for Cr......(VI) was 3 ppm. Results. Chromium was identified in 95% of leather footwear products, the median content being 1.7% (range 0-3.3%). No association with store category or footwear category was found. A tendency for there to be a higher chromium content in footwear with high prices was shown (p(trend) = 0...

  1. FORMATION AND DESTRUCTION OF HEXAVALENT CHROMIUM IN A LABORATORY SWIRL FLAME INCINERATOR

    Science.gov (United States)

    The partitioning of chromium (Cr) in combustion systems was investigated theoretically and experimentally. Theoretical predictions were based on chemical equilibrium and suggested that hexavalent chromium [Cr(VI)] was favored by the presence of chlorine (Cl) and diminished by the...

  2. CHROMIUM ELECTROANALYSIS AT SCREEN PRINTED ELECTRODE MODIFIED BY THIN FILMS OF NICKEL

    Science.gov (United States)

    A rapid and potentially cost-effective electrochemical method is reported for analysis of chromium (VI) and Chromium(III) using a nickel modified screen printed carbon ink electrode. Electrochemical characteristics of nickel modified electrode as well voltammetric behavior f...

  3. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction.

    Science.gov (United States)

    Wang, Hou; Yuan, Xingzhong; Wu, Yan; Zeng, Guangming; Chen, Xiaohong; Leng, Lijian; Wu, Zhibin; Jiang, Longbo; Li, Hui

    2015-04-01

    Porous metal-organic frameworks (MOFs) have been arousing a great interest in exploring the application of MOFs as photocatalyst in environment remediation. In this work, two different MOFs, Ti-benzenedicarboxylate (MIL-125(Ti)) and amino-functionalized Ti-benzenedicarboxylate (NH2-MIL-125(Ti)) were successfully synthesized via a facile solvothermal method. The MIL-125(Ti) and NH2-MIL-125(Ti) were well characterized by XRD, SEM, XPS, N2 adsorption-desorption measurements, thermogravimetric analysis and UV-vis diffuse reflectance spectra (DRS). It is revealed that the NH2-MIL-125(Ti) has well crystalline lattice, large surface area and mesoporous structure, chemical and thermal stability, and enhanced visible-light absorption up to 520 nm, which was associated with the chromophore (amino group) in the organic linker. Compared with MIL-125(Ti), NH2-MIL-125(Ti) exhibited more efficient photocatalytic activity for Cr(VI) reduction from aqueous solution under visible-light irradiation. The addition of hole scavenger, the hole scavenger concentration and the pH value of the reaction solution played important roles in the photo-catalytic reduction of Cr(VI). The presence of Ti(3+)-Ti(4+) intervalence electron transfer was the main reason for photo-excited electrons transportation from titanium-oxo clusters to Cr(VI), facilitating the Cr(VI) reduction under the acid condition. It was demonstrated that amino-functionalized Ti(IV)-based MOFs could be promising visible-light photocatalysts for the treatment of Cr(VI)-contained wastewater.

  4. Delta Chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA

    Science.gov (United States)

    Izbicki, John A.; Bullen, Thomas D.; Martin, Peter; Schroth, Brian

    2012-01-01

    Chromium(VI) concentrations in groundwater sampled from three contaminant plumes in aquifers in the Mojave Desert near Hinkley, Topock and El Mirage, California, USA, were as high as 2600, 5800 and 330 μg/L, respectively. δ53/52Cr compositions from more than 50 samples collected within these plumes ranged from near 0‰ to almost 4‰ near the plume margins. Assuming only reductive fractionation of Cr(VI) to Cr(III) within the plume, apparent fractionation factors for δ53/52Cr isotopes ranged from εapp = 0.3 to 0.4 within the Hinkley and Topock plumes, respectively, and only the El Mirage plume had a fractionation factor similar to the laboratory derived value of ε = 3.5. One possible explanation for the difference between field and laboratory fractionation factors at the Hinkley and Topock sites is localized reductive fractionation of Cr(VI) to Cr(III), with subsequent advective mixing of native and contaminated water near the plume margin. Chromium(VI) concentrations and δ53/52Cr isotopic compositions did not uniquely define the source of Cr near the plume margin, or the extent of reductive fractionation within the plume. However, Cr(VI) and δ53/52Cr data contribute to understanding of the interaction between reductive and mixing processes that occur within and near the margins of Cr contamination plumes. Reductive fractionation of Cr(VI) predominates in plumes having higher εapp, these plumes may be suitable for monitored natural attenuation. In contrast, advective mixing predominates in plumes having lower εapp, the highly dispersed margins of these plumes may be difficult to define and manage.

  5. [IN VIVO EFFECT OF RED WINE UNDILUTED, DILUTED (75%) AND ALCOHOL-FREE ON THE GENOTOXIC DAMAGE INDUCED BY POTENTIAL CARCINOGENIC METALS: CHROMIUM [VI

    Science.gov (United States)

    García Rodríguez, María del Carmen; Mateos Nava, Rodrigo Aníbal; Altamirano Lozano, Mario

    2015-10-01

    Introducción: la carcinogénesis puede ser iniciada y promovida por el daño oxidativo al ADN. Los compuestos de cromo (Cr) [VI] generan estrés oxidativo (EOx) y son reconocidos como cancerígenos en humanos. En este sentido, se plantea que bebidas que presentan un alto potencial antioxidante, como el vino tinto, pudieran tener efectos protectores o moduladores del daño oxidativo al ADN. Objetivo: estudiar los efectos de la administración in vivo de vino tinto sin diluir, diluido (75%) y sin alcohol, sobre el daño genotóxico inducido por metales cancerígenos (Cr [VI]), mediante la evaluación de micronúcleos (MN) en eritrocitos policromáticos (EPC) de ratones (CD-1). Material y método: se conformaron aleatoriamente los siguientes grupos: (i) testigo, (ii) vino tinto sin diluir, diluido o sin alcohol (libre acceso), (iii) CrO3 (20 mg/kg por vía intraperitoneal) y (iv) vino tinto-CrO3. Las evaluaciones se realizaron en muestras de sangre obtenidas de la vena caudal, en las que se identificaron los MN en EPC antes, durante y después de los tratamientos. Resultados y discusión: el vino tinto (diluido y sin alcohol) fue capaz de disminuir los promedios de MN inducidos por el CrO3, lo que muestra su capacidad para modular in vivo el daño oxidativo al ADN causado por cancerígenos inductores de EOx. La administración únicamente de vino tinto sin diluir presentó efectos tóxicos. Conclusiones: nuestros resultados generan expectativas sobre el empleo de sustancias como el vino tinto en la protección o modulación del daño genotóxico, lo que podría conducir a su aplicación en los procesos de carcinogénesis y mutagénesis.

  6. Simulation on reduction of hexavalent chromium from groundwater using zero valent iron%Fe0去除地下水中六价铬的研究

    Institute of Scientific and Technical Information of China (English)

    李雅; 张增强; 唐次来; 易磊

    2011-01-01

    为了研究零价铁去除水中Cr(Ⅵ)的效果及影响因素.在实验室条件下,通过批试验,考察了铁粉预处理、铁粉用量、初始pH及阳离子对六价铬去除的影响.结果表明:零价铁能够有效、快速的去除污染水体中的六价铬,机理为氧化还原和共沉淀;其去除率受铁粉预处理、铁粉投加量、初始pH及阳离子的影响;在酸性条件下,Fe2+浓度可以作为六价铬是否完全去除的指示剂.%In order to provide guidance for practical application in the remediation of groundwater pollution, the influencing factors of reduction of hexavalent chromium from solution were studied by batch experiment at laboratory scale, such as pretreated, amount of iron, initial pH and cation. The results showed that hexavalent chromium was removed quickly and effectively by zero valent iron, removal mechanism was redox and coprecipitation;the removal ratio was effected by the pretreatment with acid and nickelaqe,the amount of iron,initial pH and cation;Fe2+ could be used as an indicator for complete reduction of hexavalent chromium in the acidic condition.

  7. Adsorção de cromo (VI por carvão ativado granular de soluções diluídas utilizando um sistema batelada sob pH controlado Chromium (VI adsorption by GAC from diluted solutions in batch system and controlled ph

    Directory of Open Access Journals (Sweden)

    Renata Santos Souza

    2009-09-01

    Full Text Available Na Amazônia o cromo é empregado principalmente na indústria de couro e de madeira, sendo responsável por vários problemas de saúde porque é tóxico para os seres vivos. A remoção de cromo de efluentes industriais é feita por meio de diversos processos como a adsorção. Este trabalho mostra os resultados da adsorção de Cr(VI por carvão ativado granular comercial (CAG como adsorvente de soluções diluídas empregando um sistema de adsorção batelada com controle de pH. Os grupos funcionais da superfície do CAG foram determinados pelo método de Boehm. Além disso, o efeito do pH na adsorção de Cr(VI, o equilíbrio e a cinética de adsorção foram estudados nas condições experimentais (pH = 6, MA = 6g, tempo de adsorção 90min.. Na superfície do CAG, os grupos carboxílicos foram determinados em maior concentração (MAS=0,43 mmol/gCAG, estes, presentes em concentrações elevadas aumentam a adsorção do metal, principalmente em valores de pH ácidos. A capacidade de adsorção é dependente do pH da solução, devido a sua influência nas propriedades de superfície do CAG e nas diferentes formas iônicas das soluções de Cr(VI. Os dados de equilíbrio da adsorção foram ajustados satisfatoriamente pela isoterma de Langmuir (R²=0,988, tipo favorável. A partir da cinética de adsorção a 5mg/L e 20mg/L, os resultados obtidos foram compatíveis com o valor limite preconizado na legislação nacional (Res. nº 357/05. Portanto, para o sistema experimental utilizando CAG foi eficiente na remoção de Cr(VI a partir de correntes líquidas contendo baixas concentrações do metal.In Amazonia, chromium is mainly used in the leather and wood industries. It is responsible for many health problems, because of its toxicity. These industries remove chromium waste by various processes, such as adsorption. This work shows the results of Cr(VI adsorption by commercial granular activated carbon (GAC as adsorbent from diluted

  8. Use of iron oxide magnetic nanosorbents for Cr (VI removal from aqueous solutions: A review

    Directory of Open Access Journals (Sweden)

    Nirmala Ilankoon

    2014-10-01

    Full Text Available This review paper focuses on the use of iron oxide nanosorbents for the removal of hexavalent Chromium [Cr(VI], from aqueous media. Cr(VI is a well-known toxic heavy metal, which can cause severe damages to the human health even with the presence of trace levels. Chromium continuously enters into water streams from different sources. Several methods are available for Cr(VI removal and some of them are well established in industrial scale whilst some are still in laboratory scale. Reduction followed by chemical precipitation, adsorption, electro-kinetic remediation, membrane separation processes and bioremediation are some of the removal techniques. Each method is associated with both advantages and disadvantages. Currently, the use of nanosorbents for the aqueous chromium removal is popular among researchers and iron oxide nanoparticles are the most frequently used nanosorbents. This review paper summarizes the performance of different iron oxide nanosorbents studied on the last decade. The direct comparison of these results is difficult due to different experimental conditions used in each study. Adsorption isotherms and adsorption kinetics models are also discussed in this review paper. The effect of solution pH, temperature, initial Cr(VI concentration, adsorbent dosage and other coexisting ions are also briefly discussed. From the results it is evident that, more attention needs to be paid on the industrial application of the technologies which were successful in the laboratory scale.

  9. [Mechanisms of Cr (VI) toxicity to fish in aquatic environment: A review].

    Science.gov (United States)

    Chen, Hong-xing; Wu, Xing; Bi, Ran; Li, Li-xia; Gao, Mi; Li, Dan; Xie, Ling-tian

    2015-10-01

    With increasing consumption and applications of chromium in metallurgy, electroplating, tanning process and stainless steel industry, chromium contamination has become a global environmental problem. In general, Cr(VI) has higher permeability across the cell membrane than Cr(III) and hence is considered more toxic than Cr(III). Oxidative stress could be induced following reactive oxygen species (ROS) normally produced in fish under Cr(VI) exposure due to its variable valences. Furthermore, the intermediates of Cr, e.g. Cr(V) and Cr(IV) , produced by cellular reduction processes can bind with DNA and result in mutagenic effects. These combined effects will threaten the growth, development and population structure of different fish species. In this paper, we reviewed published results on the toxic effects of Cr(VI) in fish at levels of molecules, tissues, organs and individuals. The mechanisms of toxicity and detoxification of Cr(VI) in various aspects were discussed. In addition, we also put forward perspectives on the toxicity of chromium in aquatic organisms. PMID:26995935

  10. Kinetics of reductive stripping of Np(VI) by acetohydroxamic acid from 30%TBP/kerosene to nitrate medium using a high-speed stirred cell

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanbo; Yan, Taihong; Zuo, Chen; Zheng, Weifang [China Institute of Atomic Energy, Beijing (China)

    2015-07-01

    The kinetics of reductive stripping of Np(VI) by Acetohydroxamic Acid from 30%TBP/kerosene was investigated using a high-speed stirred cell designed by ourselves. The phase separator for sampling was simple and powerful. The interfacial areas of different stirring speeds were determined by microphotograph method at 21 C before the experiments. The effects of the different parameters as well as temperature were investigated systemically. The results showed that, at 21 C the rate equation is -d[Np(VI)]/dt = k(S/V)[Np(VI)]{sup 0.78}[AHA]{sup 0.46}[HNO{sub 3}]{sup -0.20} - k'(S/V)[Np(V)]{sup 2.87}, where k = (8.7 ± 0.7) x 10{sup -7}(mol/L){sup -0.04} ms{sup -1}, k' = 1.1 ± 0.2(mol/L){sup -2.87} ms{sup -1}, as c[HNO{sub 3}] <=1.0 mol/L, -d[Np(VI)]/dt = k(S/V)[Np(VI)]{sup 0.78}[AHA]{sup 0.46}[HNO{sub 3}]{sup -1.42} - k'(S/V)[Np(V)]{sup 2.87}, where k = (3.2 ± 0.3) x 10{sup -7} (mol/L){sup 1.18} ms{sup -1}, k' = 1.1 ± 0.2(mol/L){sup -2.87} ms{sup -1} as c[HNO{sub 3}] > = 1.0 mol/L, and S is the interfacial area, V the organic phase volume. The reductive stripping process is controlled by chemical reactions (kinetics regime) taking place at the interface. The apparent activation energy is 13.5 ± 0.2 kJ/mol.

  11. MOF catalysis of Fe(II)-to-Fe(III) reaction for an ultrafast and one-step generation of the Fe2O3@MOF composite and uranium(vi) reduction by iron(ii) under ambient conditions.

    Science.gov (United States)

    Xiong, Yang Yang; Li, Jian Qiang; Yan, Chang Sheng; Gao, Heng Ya; Zhou, Jian Ping; Gong, Le Le; Luo, Ming Biao; Zhang, Le; Meng, Pan Pan; Luo, Feng

    2016-08-01

    Herein, we demonstrate that Zn-MOF-74 enables the ultrafast and one-step generation of the Fe2O3@MOF composite once Zn-MOF-74 contacts with FeSO4 solution. This unique reaction can be further applied in catalysis of U(vi) reduction by Fe(ii) under ambient conditions. The results provide a highly renovated strategy for U(vi) reduction by Fe(ii) just under ambient conditions, which completely subvert all established methods about U(vi) reduction by Fe(ii) in which O2- and CO2-free conditions are absolutely required. PMID:27380820

  12. Synergistic photocatalysis of Cr(VI) reduction and 4-Chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation.

    Science.gov (United States)

    Wang, Ji-Chao; Ren, Juan; Yao, Hong-Chang; Zhang, Lin; Wang, Jian-She; Zang, Shuang-Quan; Han, Li-Feng; Li, Zhong-Jun

    2016-07-01

    A series of Fe2O3 materials with hydroxyl are synthesized in different monohydric alcohol (C2-C5) solvents by solvothermal method and characterized by XRD, BET, XPS, TG and EA. The amount of hydroxyl is demonstrated to be emerged on the surface of the as-synthesized Fe2O3 particles and their contents are determined to be from 7.99 to 3.74 wt%. The Cr(VI) reduction experiments show that the hydroxyl content of Fe2O3 samples exacts great influence on the photocatalytic activity under visible light irradiation (λ>400 nm) and that the Fe2O3 sample synthesized in n-butyl alcohol exhibits the optimal photocatalytic activity. The synergistic photocatalysis for 4-Chlorophenol (4-CP) degradation and Cr(VI) reduction over above Fe2O3 sample is further investigated. The photocatalytic ratio of Cr(VI) reduction are enhanced from 24.8% to 70.2% while that of 4-CP oxidation are increased from 13.5% to 47.8% after 1 h visible light irradiation. The Fe2O3 sample keeps good degradation rates of mixed pollutants after 9 runs. The active oxygen intermediates O2(-)˙, ˙OH and H2O2 formed in the photoreaction process are discovered by ESR measurement and UV-vis test. The photocatalytic degradation mechanism is proposed accordingly. PMID:26954471

  13. Adsorption and reduction: combined effect of polyaniline emeraldine salt for removal of Cr(VI) from aqueous medium

    Indian Academy of Sciences (India)

    PURNIMA BARUAH; DEBAJYOTI MAHANTA

    2016-06-01

    In this study, we have reported the removal of Cr(VI) ions by polyaniline (PANI) particles from aqueous medium. PANI in its emeraldine salt (ES) form can interact with Cr(VI), which is present as HCrO$^{−}_4$ in two ways. The adsorption of HCrO$^{−}_4$ ions due to the electrostatic interaction between partially positively charged PANI backbone and Cr(VI) anions causes the major portion of Cr(VI) removal and a small portion of Cr(VI) is reduced to Cr(III) by PANI (ES). The adsorption follows Langmuir adsorption isotherm and second-order kinetic model. It is observed that the removal of Cr(VI) is negligibly effected by the presence of other anions in the aqueous medium. The adsorption capacity of PANI (ES) is found to be 123 mg g$^{−1}$, which is very high compared to activated carbonbased materials. The adsorbed anions can be desorbed by converting PANI emeraldine salt (ES) to PANI emeraldinebase (EB). The EB form of PANI can be converted into ES form by treating with acid, which can be reused as adsorbent. It is important to note that the PANI (ES) is oxidized by HCrO$^{−}_4$ ions which decrease the hydrophilicity of thesurface of PANI particles. This causes the decrease in adsorption capacity of recycled PANI.

  14. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sisman, S. Lara [Univ. of Virginia, Charlottesville, VA (United States); Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  15. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    International Nuclear Information System (INIS)

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  16. Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(VI) in the presence of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhen [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zhang, Yong-Xing [School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000 (China); Meng, Fan-Li; Jia, Yong; Luo, Tao; Yu, Xin-Yao; Wang, Jin; Liu, Jin-Huai [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Xing-Jiu, E-mail: xingjiuhuang@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-07-15

    Graphical abstract: - Highlights: • Porous single crystalline ZnO nanoplates were successfully synthesized. • The nanoplates were with 12 nm in thickness and tens nanometers in pore size. • A synergistic effect of enhanced Cr(VI) photoreduction and phenol degradation was observed. • A possible reaction mechanism was discussed. - Abstract: Porous single crystalline ZnO nanoplates were successfully synthesized through a facile and cost-effective hydrothermal process at low temperature condition, followed by annealing of the zinc carbonate hydroxide hydrate precursors. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) measurements. The porous single crystalline ZnO nanoplates are with 12 nm thickness and pore ranging from 10 nm to several tens of nanometers. The porous structure of the ZnO nanoplates caused large amount of surface defects which worked as photogenerated holes’ shallow trappers and largely restrained the recombination of photogenerated electrons and holes, resulting in a significantly high photocatalytic activity and durability toward the photoreduction of Cr(VI) under UV irradiation. Moreover, a synergistic effect, that is, increased photocatalytic reduction of Cr(VI) and degradation of phenol, can be observed. Furthermore, the synergistic photocatalytic mechanism has also been discussed. Those results present an enlightenment to employ porous single crystalline nanomaterials to remove Cr(VI) and organic pollutants simultaneously.

  17. Ultra-trace level speciated isotope dilution measurement of Cr(VI) using ion chromatography tandem mass spectrometry in environmental waters.

    Science.gov (United States)

    Mädler, Stefanie; Todd, Aaron; Skip Kingston, H M; Pamuku, Matt; Sun, Fengrong; Tat, Cindy; Tooley, Robert J; Switzer, Teresa A; Furdui, Vasile I

    2016-08-15

    The reliable analysis of highly toxic hexavalent chromium, Cr(VI), at ultra-trace levels remains challenging, given its easy conversion to non-toxic trivalent chromium. This work demonstrates a novel analytical method to quantify Cr(VI) at low ngL(-1) concentration levels in environmental water samples by using speciated isotope dilution (SID) analysis and double-spiking with Cr(III) and Cr(VI) enriched for different isotopes. Ion chromatography tandem mass spectrometry (IC-MS/MS) was used for the analysis of Cr(VI) as HCrO4(-) → CrO3(-). Whereas the classical linear multipoint calibration (MPC) curve approach obtained a method detection limit (MDL) of 7ngL(-1) Cr(VI), the modified SID-MS method adapted from U. S. EPA 6800 allowed for the quantification of Cr(VI) with an MDL of 2ngL(-1) and provided results corrected for Cr(VI) loss occurred after sample collection. The adapted SID-MS approach proved to yield more accurate and precise results than the MPC method, allowed for compensation of Cr(VI) reduction during sample transportation and storage while eliminating the need for frequent external calibration. The developed method is a complementary tool to routinely used inductively-coupled plasma (ICP) MS and circumvents typically experienced interferences.

  18. Ultra-trace level speciated isotope dilution measurement of Cr(VI) using ion chromatography tandem mass spectrometry in environmental waters.

    Science.gov (United States)

    Mädler, Stefanie; Todd, Aaron; Skip Kingston, H M; Pamuku, Matt; Sun, Fengrong; Tat, Cindy; Tooley, Robert J; Switzer, Teresa A; Furdui, Vasile I

    2016-08-15

    The reliable analysis of highly toxic hexavalent chromium, Cr(VI), at ultra-trace levels remains challenging, given its easy conversion to non-toxic trivalent chromium. This work demonstrates a novel analytical method to quantify Cr(VI) at low ngL(-1) concentration levels in environmental water samples by using speciated isotope dilution (SID) analysis and double-spiking with Cr(III) and Cr(VI) enriched for different isotopes. Ion chromatography tandem mass spectrometry (IC-MS/MS) was used for the analysis of Cr(VI) as HCrO4(-) → CrO3(-). Whereas the classical linear multipoint calibration (MPC) curve approach obtained a method detection limit (MDL) of 7ngL(-1) Cr(VI), the modified SID-MS method adapted from U. S. EPA 6800 allowed for the quantification of Cr(VI) with an MDL of 2ngL(-1) and provided results corrected for Cr(VI) loss occurred after sample collection. The adapted SID-MS approach proved to yield more accurate and precise results than the MPC method, allowed for compensation of Cr(VI) reduction during sample transportation and storage while eliminating the need for frequent external calibration. The developed method is a complementary tool to routinely used inductively-coupled plasma (ICP) MS and circumvents typically experienced interferences. PMID:27260441

  19. Cr (VI) induced oxidative stress and toxicity in cultured cerebellar granule neurons at different stages of development and protective effect of Rosmarinic acid.

    Science.gov (United States)

    Dashti, Abolfazl; Soodi, Maliheh; Amani, Nahid

    2016-03-01

    Chromium (Cr) is a widespread metal ion in the workplace, industrial effluent, and water. The toxicity of chromium (VI) on various organs including the liver, kidneys, and lung were studied, but little is known about neurotoxicity. In this study, neurotoxic effects of Cr (VI) have been investigated by cultured cerebellar granule neurons (CGNs). Immature and mature neurons were exposed to different concentrations of potassium dichromate for 24 h and cytotoxicity was measured by MTT assay. In addition, immature neurons were exposed for 5 days as regards cytotoxic effect in development stages. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the protective effect of Rosmarinic acid on mature and immature neurons exposed to potassium dichromate, were measured. Furthermore, lipid peroxidation, glutathione peroxidase (GPx), and acetylcholinesterase activity in mature neurons were assessed following exposure to potassium dichromate. The results indicate that toxicity of Cr (VI) dependent on maturation steps. Cr (VI) was less toxic for immature neurons. Also, Cr (VI) induced MMP reduction and ROS production in both immature and mature neurons. In Cr (VI) treated neurons, increased lipid peroxidation and GPx activity but not acetylcholinesterase activity was observed. Interestingly, Rosmarinic acid, as a natural antioxidant, could protect mature but not immature neurons against Cr (VI) induced toxicity. Our findings revealed vulnerability of mature neurons to Cr (VI) induced toxicity and oxidative stress. PMID:25213303

  20. A spectroscopic study of the effect of ligand complexation on the reduction of uranium(VI) by anthraquinone-2,6-disulfonate (AH{sub 2}DS)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Wagnon, K.B.; Ainsworth, C.C.; Liu, C.; Rosso, K.M.; Fredrickson, J.K. [Pacific Northwest National Lab., Richland, WA (United States)

    2008-07-01

    In this paper, the reduction rate of uranyl complexes with hydroxide, carbonate, EDTA, and desferriferrioxamine B (DFB) by anthraquinone-2,6-disulfonate (AH{sub 2}DS) is studied by stopped-flow kinetic technique under anoxic atmosphere. The apparent reaction rates varied with ligand type, solution pH, and U(VI) concentration. For each ligand, a single largest pseudo-1{sup st} order reaction rate constant, k{sub obs}, within the studied pH range was observed, suggesting the influence of pH-dependent speciation on the U(VI) reduction rate. The maximum reaction rate found in each case followed the order of OH{sup -} > CO{sub 3}{sup 2-} > EDTA > DFB, in reverse order of the trend of the thermodynamic stability of the uranyl complexes and ionic sizes of the ligands. The pH-dependent rates were modeled using a second-order rate expression that was assumed to be dependent on a single U(VI) complex and an AH{sub 2}DS species. By quantitatively comparing the calculated and measured apparent rate constants as a function of pH, species AHDS{sup 3-} was suggested as the primary reductant in all cases examined. Species UO{sub 2}CO{sub 3}(aq), UO{sub 2}HEDTA{sup -}, and (UO{sub 2}){sub 2}(OH){sub 2}{sup 2+} were suggested as the principal electron acceptors among the U(VI) species mixture in each of the carbonate, EDTA, and hydroxyl systems, respectively. (orig.)

  1. Role of Iron Anode Oxidation on Transformation of Chromium by Electrolysis

    Science.gov (United States)

    Sarahney, Hussam; Mao, Xuhui; Alshawabkeh, Akram N.

    2012-01-01

    The potential for chemical reduction of hexavalent chromium Cr(VI) in contaminated water and formation of a stable precipitate by Zero Valent Iron (ZVI) anode electrolysis is evaluated in separated electrodes system. Oxidation of iron electrodes produces ferrous ions causing the development of a reducing environment in the anolyte, chemical reduction of Cr(VI) to Cr(III) and formation of stable iron-chromium precipitates. Cr(VI) transformation rates are dependent on the applied electric current density. Increasing the electric current increases the transformation rates; however, the process is more efficient under lower volumetric current density (for example 1.5 mA L−1 in this study). The transformation follows a zero order rate that is dependent on the electric current density. Cr(VI) transformation occurs in the anolyte when the electrodes are separated as well as when the electrolytes (anolyte/catholyte) are mixed, as used in electrocoagulation. The study shows that the transformation occurs in the anolyte as a result of ferrous ion formation and the product is a stable Fe15Cr5(OH)60 precipitate. PMID:23284182

  2. Role of Iron Anode Oxidation on Transformation of Chromium by Electrolysis.

    Science.gov (United States)

    Sarahney, Hussam; Mao, Xuhui; Alshawabkeh, Akram N

    2012-12-30

    The potential for chemical reduction of hexavalent chromium Cr(VI) in contaminated water and formation of a stable precipitate by Zero Valent Iron (ZVI) anode electrolysis is evaluated in separated electrodes system. Oxidation of iron electrodes produces ferrous ions causing the development of a reducing environment in the anolyte, chemical reduction of Cr(VI) to Cr(III) and formation of stable iron-chromium precipitates. Cr(VI) transformation rates are dependent on the applied electric current density. Increasing the electric current increases the transformation rates; however, the process is more efficient under lower volumetric current density (for example 1.5 mA L(-1) in this study). The transformation follows a zero order rate that is dependent on the electric current density. Cr(VI) transformation occurs in the anolyte when the electrodes are separated as well as when the electrolytes (anolyte/catholyte) are mixed, as used in electrocoagulation. The study shows that the transformation occurs in the anolyte as a result of ferrous ion formation and the product is a stable Fe(15)Cr(5)(OH)(60) precipitate.

  3. An automatic micro-sequential injection bead injection lab-on-valve (muSI-BI-LOV) assembly for speciation analysis of ultra trace levels of Cr(III) and Cr(VI) incorporating on-line chemical reduction and employing detection by electrothermal atomic absorption spectrometry (ETAAS)

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald

    2005-01-01

    and determination of trace levels of Cr(III) and Cr(VI) in environmental samples. The method was validated by determination of chromium species in CRM and NIST standard reference materials, and by spike recoveries of surface waters. Statistical comparison of means between experimental results and the total chromium...... certified values for the CRM and NIST materials revealed the non-existence of significant differences at a 95% confidence level....

  4. Reduction of Pu(VI) on Fe surfaces: soft x-ray absorption and resonant inelastic scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, S.M.; Kvashnina, K.O.; Modin, A.; Nordgren, J. (Dept. of Physics and Materials Science, Uppsala Univ., Uppsala (Sweden)); Guo, J.H. (Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)); Shuh, D.K. (Chemical Science Div., Lawrence Berkeley National Laboratory, Berkeley, CA (United States)); Werme, L. (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2009-03-15

    Based on analysis of spectral shapes, their dependence on the energy of incident photons and comparison with model calculations and experimental data from the reference sample we can conclude that plutonium from the Pu(VI) solution sorbed on Fe surfaces is likely to be reduced and Pu species sorbed on the Fe foils are mainly in the form of Pu (IV). Current results correlate with what was observed for for Np (V) and U (VI) in our previous studies. Furthermore, combined analysis of present data with model atomic multiplet calculations of RIXS and XAS spectra suggests that significant presence of Pu(III) on the Fe foils is unlikely

  5. Evaluation of chromium in red blood cells as an indicator of exposure to hexavalent chromium: An in vitro study.

    Science.gov (United States)

    Devoy, Jérôme; Géhin, Antoine; Müller, Samuel; Melczer, Mathieu; Remy, Aurélie; Antoine, Guillaume; Sponne, Isabelle

    2016-07-25

    Chromium(VI) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and whole blood (i.e., including plasma) are indicative of recent exposure, chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure. Before recommending Cr in RBC as a biological indicator of Cr(VI) exposure, in-vitro studies must be undertaken to assess its reliability. The present study examines the relationship between the chromium added to a blood sample and that subsequently found in the RBC. After incubation of total blood with chromium, RBC were isolated, counted and their viability assessed. Direct analysis of chromium in RBC was conducted using Atomic Absorption Spectrometry. Hexavalent, but not trivalent Cr, was seen to accumulate in the RBC and we found a strong correlation between the Cr(VI) concentration added to a blood sample and the amount of Cr in RBC. This relationship appears to be independent of the chemical properties of the human blood samples (e.g., different blood donors or different reducing capacities). Even though in-vivo studies are still needed to integrate our understanding of Cr(VI) toxicokinetics, our findings reinforce the idea that a single determination of the chromium concentration in RBC would enable biomonitoring of critical cases of Cr(VI) exposure. PMID:27178267

  6. Recovery and reuse of hexavalent chromium from aqueous solutions by a hybrid technique of electrodialysis and ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri, R. [Sengunthar Engineering College, Tiruchengode (India). Dept. of Civil Engineering], e-mail: gay3civil@gmail.com; Senthil Kumar, P. [SSN College of Engineering, Chennai (India). Dept. of Chemical Engineering], E-mail: senthilkumarp@ssn.edu.in

    2010-01-15

    The chrome plating industry is one of the highly polluting industries whose effluent mainly consists of chromium(VI). This compound is highly toxic to aquatic life and human health. The rinse water constituents reflect the chrome plating bath characteristics; generally dead tank wash water contains about 1% of the plating bath concentration. Other metals and metal compounds usually considered as toxic can be precipitated out by suitably adjusting the pH of the wastewaters. However, Cr(VI) is soluble in almost all pH ranges and therefore an efficient treatment is required for the removal and recovery of chromium, and also for the reuse of wastewaters. The present study aims to recover the chromium by a hybrid technique of electrodialysis and ion exchange for the removal and concentration of chromate ions from the effluent. The different modes of operation like batch recirculation process, batch recirculation process with continuous dipping and continuous process were carried out to remove and recover the chromium from the effluent and the percentage reductions of chromium were found to be 98.69%, 99.18% and 100%, respectively. (author)

  7. Facile synthesis of AgI/BiOI-Bi2O3 multi-heterojunctions with high visible light activity for Cr(VI) reduction.

    Science.gov (United States)

    Wang, Qi; Shi, Xiaodong; Liu, Enqin; Crittenden, John C; Ma, Xiangjuan; Zhang, Yi; Cong, Yanqing

    2016-11-01

    AgI sensitized BiOI-Bi2O3 composite (AgI/BiOI-Bi2O3) with multi-heterojunctions was prepared using simple etching-deposition process. Different characterization techniques were performed to investigate the structural, optical and electrical properties of the as-prepared photocatalysts. It was found that the ternary AgI/BiOI-Bi2O3 composite exhibited: (1) improved photocurrent response, (2) smaller band gap, (3) greatly reduced charge transfer resistance and (4) negative shift of flat band potential, which finally led to easier generation and more efficient separation of photo-generated electron-hole pairs at the hetero-interfaces. Thus, for the reduction of Cr(VI), AgI/BiOI-Bi2O3 exhibited excellent photocatalytic activity under visible light irradiation at near neutral pH. AgI/BiOI-Bi2O3 was optimized when the initial molar ratio of KI to Bi2O3 and AgNO3 to Bi2O3 was 1:1 and 10%, respectively. The estimated kCr(VI) on optimized AgI/BiOI-Bi2O3 was about 16 times that on pure Bi2O3. Good stability was also observed in cyclic runs, indicating that the current multi-heterostructured photocatalyst is highly desirable for the remediation of Cr(VI)-containing wastewater. PMID:27239723

  8. Electrodeposition of chromium from trivalent chromium urea bath containing sulfate and chloride

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The reduction of Cr( Ⅲ) to Cr( Ⅱ ) on copper electrode in trivalent chromium urea bath containing chromium sulfate and chromium chloride as chromium source has been investigated by potentiodynamic sweep. The transfer coefficient α for reduction of Cr( Ⅲ ) to Cr( Ⅱ ) on copper electrode was calculated as 0.46. The reduction is a quasi-reversible process. J-t responses at different potential steps showed that the generation and adsorption characteristics of carboxylate bridged oligomer are relevant to cathode potential. The interface behavior between electrode and solution for Cr( Ⅲ ) complex is a critical factor influencing sustained electrode position of chromium. The hypotheses of the electro-inducing polymerization of Cr( Ⅲ ) was proposed. The potential scope in which sustained chromium deposits can be prepared is from- 1.3 V to- 1.7 V (vs SCE) in the urea bath. Bright chromium deposits with thickness of 30 μm can be prepared in the bath.

  9. Evaluation of the effects of various culture condition on Cr (VI)reduction by Shewanella oneidensis MR-1 in a novel high-throughputmini-bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Laidlaw, David; Gani, Kishen; Keasling, Jay D.

    2006-03-16

    The growth and Cr(VI) reduction by Shewanella oneidensisMR-1 was examined using a mini-bioreactor system that independentlymonitors and controls pH, dissolved oxygen, and temperature for each ofits 24, 10-mL reactors. Independent monitoring and control of eachreactor in the cassette allows the exploration of a matrix ofenvironmental conditions known to influence S. oneidensis chromiumreduction. S. oneidensis MR-1 grew in minimal medium without amino acidor vitamin supplementation under aerobic conditions but required serineand glycine supplementation under anaerobic conditions. Growth wasinhibited by dissolved oxygen concentrations>80 percent. Lactatetransformation to acetate was enhanced by low concentration of dissolvedoxygen during the logarithmic growth phase. Between 11 and 35oC, thegrowth rate obeyed the Arrhenius reaction rate-temperature relationship,with a maximum growth rate occurring at 35oC. S. oneidensis MR-1 was ableto grow over a wide range of pH (6-9). At neutral pH and temperaturesranging from 30-35oC, S. oneidensis MR-1 reduced 100 mu M Cr(VI) toCr(III) within 20 minutes in the exponential growth phase, and the growthrate was not affected by the addition of chromate; it reduced chromateeven faster at temperatures between 35 and 39oC. At low temperatures(<25oC), acidic (pH<6.5), or alkaline (pH>8.5) conditions, 100mu M Cr(VI) strongly inhibited growth and chromate reduction. Themini-bioreactor system enabled the rapid determination of theseparameters reproducibly and easily by performing very few experiments.Besides its use for examining parameters of interest to environmentalremediation, the device will also allow one to quickly assess parametersfor optimal production of recombinant proteins or secondarymetabolites

  10. 77 FR 61431 - Hexavalent Chromium Standards; Extension of the Office of Management and Budget's (OMB) Approval...

    Science.gov (United States)

    2012-10-09

    ... Occupational Safety and Health Administration Hexavalent Chromium Standards; Extension of the Office of...) approval of the information collection requirements specified in the Hexavalent Chromium Standards for... requirements specified in the Hexavalent Chromium (Cr(VI)) Standards for General Industry (29 CFR...

  11. Production of Nanocrystalline Magnetite for Adsorption of Cr(VI) Ions

    Science.gov (United States)

    Javadi, N.; Raygan, Sh.; Seyyed Ebrahimi, S. A.

    Higher environmental standards have made the removal of toxic metals such as hexavalent chromium from wastewater; an important problem for environmental protection. Iron oxide is a particularly interesting adsorbent to be considered for this application. In this study, a new method combining adsorption and magnetic separation was developed to remove Cr(VI) from wastewater. The nanocrystalline magnetite as adsorbent was produced via thermo- mechanical reduction of hematite. Various parameters which affect the adsorption of Cr(VI) such as time, pH, temperature and initial concentration were investigated using thermo-gravimeters (TG), X-Ray diffraction (XRD), scanning electron microscopy (SEM) and atomic adsorption spectroscopy (AAS) techniques. The maximum adsorption was occurred at pH 2. The adsorption data were fitted well to Langmuir isotherm model. The adsorption of Cr(VI) increased significantly with increasing of temperature and time.

  12. Investigating the thermodynamics of the reduction of U(VI) to U(V) by Fe(II) using ab initio methods

    International Nuclear Information System (INIS)

    In the present work, we have addressed an important redox reaction, the reduction of U(VI) to U(V) in the presence of Fe(II). Redox reactions are not only of fundamental interest, to understand them is essential when describing how chemical reactions of actinides in surface and groundwater systems affect their mobility in the biosphere, and the function of engineered systems for the containment of radioactive waste in underground repositories. In this context it is important to notice that spent nuclear fuel is predominantly a matrix of UO2 in which fission products and higher actinides are dispersed. In contact with water the fuel matrix will dissolve with a resulting release of the different radionuclides; the dissolution is a result of oxidation by radiolysis products or by intruding oxygen. In most technical system the nuclear waste is contained in canisters of iron/steel, which provide a large reduction capacity to the system and thus may prevent the transformation of sparingly soluble UO2 to more soluble U(VI) species. Corrosion and other redox reactions involving iron species are therefore of key importance for the safe performance of many nuclear waste installations; as these have to function over very long time periods it is highly desirable to base predictions of their future environmental effects on molecular understanding of the chemical reactions taking place

  13. Fabrication of bimodal-pore SrTiO3 microspheres with excellent photocatalytic performance for Cr(VI) reduction under simulated sunlight.

    Science.gov (United States)

    Yang, Dong; Sun, Yuanyuan; Tong, Zhenwei; Nan, Yanhu; Jiang, Zhongyi

    2016-07-15

    Solving the increasing contamination from toxic heavy metal ions in wastewater is an imperative issue in photocatalysis research area. In this study, three-dimensional (3D) porous SrTiO3 microspheres have been fabricated by a sol-gel-templating method using the agarose gel bead containing SrCO3 granules as the template. The resultant SrTiO3 microspheres, several tens of micrometers in diameter, exhibit a bimodal pore structure, in which the macropore about 70-150nm in size stems from SrCO3 granules and the mesopore about 3nm is formed via removing the agarose fiber embedded in the composite microspheres. The porous framework of SrTiO3 microspheres is assembled by regular single-crystalline SrTiO3 nanocubes with an edge length of 100±10nm. The highly interconnected porous network renders numerous pathways for the rapid mass transport, strong adsorption of reactants and multi-reflection of incident light. Moreover, the as-prepared SrTiO3 microspheres exhibit excellent photocatalytic performance for the Cr(VI) reduction under simulated sunlight, which can reduce nearly 100% Cr(VI) at pH 2 within 2h and retain a relatively high reduction ability after six recycles. PMID:27015378

  14. Investigating the thermodynamics of the reduction of U(VI) to U(V) by Fe(II) using ab initio methods

    Energy Technology Data Exchange (ETDEWEB)

    Wahlgren, Ulf [Stockholm Univ. (Sweden). Physics Dept.

    2003-07-01

    In the present work, we have addressed an important redox reaction, the reduction of U(VI) to U(V) in the presence of Fe(II). Redox reactions are not only of fundamental interest, to understand them is essential when describing how chemical reactions of actinides in surface and groundwater systems affect their mobility in the biosphere, and the function of engineered systems for the containment of radioactive waste in underground repositories. In this context it is important to notice that spent nuclear fuel is predominantly a matrix of UO{sub 2} in which fission products and higher actinides are dispersed. In contact with water the fuel matrix will dissolve with a resulting release of the different radionuclides; the dissolution is a result of oxidation by radiolysis products or by intruding oxygen. In most technical system the nuclear waste is contained in canisters of iron/steel, which provide a large reduction capacity to the system and thus may prevent the transformation of sparingly soluble UO{sub 2} to more soluble U(VI) species. Corrosion and other redox reactions involving iron species are therefore of key importance for the safe performance of many nuclear waste installations; as these have to function over very long time periods it is highly desirable to base predictions of their future environmental effects on molecular understanding of the chemical reactions taking place.

  15. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  16. LABORATORY STUDY FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) USING SODIUM METABISULFITE UNDER ACIDIC CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAM JB; GUTHRIE MD; LUECK KJ; AVILA M

    2007-07-18

    This report describes the results from RPP-PLAN-32738, 'Test Plan for the Effluent Treatment Facility to Reduce Chrome(VI) to Chrome(I1I) in the Secondary Waste Stream', using sodium metabisulfite. Appendix A presents the report as submitted by the Center for Laboratory Sciences (CLS) to CH2M HILL Hanford Group, Inc. The CLS carried out the laboratory effort under Contract Number 21065, release Number 30. This report extracts the more pertinent aspects of the laboratory effort.

  17. Radiation-induced reduction of U(VI) ion at 6>pH>4 as observed by fast conductimetry

    Energy Technology Data Exchange (ETDEWEB)

    Broszkiewicz, R.K. (Institute of Nuclear Chemistry and Technology, Dorodna (Poland)); Vojnovic, B.; Michael, B.D. (Mount Vernon Hospital, Northwood (United Kingdom). Gray Lab.)

    1992-01-01

    Reactions between U(VI) and ionic species produced upon irradiation of aqueous (pH 4.4 or 5.5) and acetonic solutions have been observed directly using a.c. conductivity. Apart from e{sub aq}{sup -} also H{sub 3}O{sup +} reacts rapidly with hydroxides of the UO{sub 2}{sup 2+}. An electron pulse of 20 ns duration starts a sequence of phenomena which does not terminate until ca. 10 s. (author).

  18. Chromium Isotopes in Marine Carbonates - an Indicator for Climatic Change?

    Science.gov (United States)

    Frei, R.; Gaucher, C.

    2010-12-01

    Chromium (Cr) stable isotopes experience an increased interest as a tracer of Cr (VI) reduction in groundwater and thus showed their potential as a monitor of remediation of anthropogenic and natural contamination in water (Berna et al., 2009; Izbicki et al., 2008). Chromium stable isotopes in Fe-rich chemical sediments (BIFs and Fe-cherts) have recently also been used as a tracer for Earth's atmospheric oxygenation through time (Frei et al., 2009). We have applied the Cr isotope system to organic-rich carbonates from a late Ediacaran succession in Uruguay (Polanco Formation), from which we have previously analyzed BIFs with extremely fractionated (δ53Cr up to 5.0 ‰) Cr isotope signatures that are part of an underlying deep water clastic sediment (shale-dominated) sequence (Yerbal Formation) deposited in a glacio-marine environment (Gaucher et al.,2004). δ53Cr values of organic rich carbonates correlate with positive and negative carbon isotope excursions (δ13C PDB between -3 and +3 ‰) and with systematic changes in strontium isotope compositions, commonly interpreted as to reflect fluctuations in organic (photosynthetic algae) production related to fluctuations in atmospheric oxygen and weathering intensities, respectively. Slightly positively fractioned δ53Cr values (up to +0.25‰), paralleling positive (δ13C PDB and 87Sr/86Sr ratio excursions would thereby trace elevated atmospheric oxygen levels/pulses possibly related to glacier retreat/melting stages that caused bioproductivity to increase. While the causal link between these multiple isotopic tracers and the mechanisms of Cr stripping into carbonates has to be further investigated in detail, the first indications from this study point to a potentially promising use of stable Cr isotopes in organic-rich carbonates to monitor fluctuations of atmospheric oxygen, particularly over the Neoproterozoic and Phanerozoic ice age periods. E.C. Berna et al. (2010) Cr stable isotopes as indicators of Cr(VI

  19. Determination of hexavalent chromium in cosmetic products by ion chromatography and postcolumn derivatization.

    Science.gov (United States)

    Kang, Eun Kyung; Lee, Somi; Park, Jin-Hee; Joo, Kyung-Mi; Jeong, Hye-Jin; Chang, Ih Seop

    2006-05-01

    Chromium hydroxide green [Cr(2)O(OH)(4)] and chromium oxide green (Cr(2)O(3)) are colouring agents for use in cosmetic products. These colourants may contain chromium (VI), which cause skin allergies through percutaneous adsorption on the skin. Eye shadow is a representative cosmetic product in which significant colourants are used. We analysed the chromium (VI) in the eye shadows by ion chromatography and post column derivatization. We optimize conditions of chromium (VI) analysis in eye shadows. During the pretreatment procedure, there are no exchange of chromium (III) to chromium (VI). This method has a limit of quantification for chromium (VI) of 1.0 microg l(-1), recovery rate of 100 +/- 3% and analysis time less than 10 min. This result is 300 times more sensitive than the high-performance liquid chromatography method. We applied the optimized method to analyse 22 eye shadows and 6 colouring agents. 2 out of 22 of the products contained more than 5 mg l(-1). In our previous work, 5 mg l(-1) of Cr represented a threshold level. There was much more Cr(VI) in the colouring agents. The Cr(VI) in one of the colouring agents was 97.6 mg l(-1). PMID:16689807

  20. Redução de cromo hexavalente por bactérias isoladas de solos contaminados com cromo Reduction of hexavlent chromium by isolated bacteria of contaminated soils with chromium

    OpenAIRE

    Daniele Conceição; Rodrigo Jacques; Fatima Bento; Amauri Simonetti; Pedro Selbach; Flavio Camargo

    2007-01-01

    A redução do Cr(VI) para Cr(III) diminui a toxidade deste metal no ambiente, uma vez que o Cr(III) é insolúvel às membranas biológicas. Assim, a redução microbiana do Cr(VI) é uma alternativa para reduzir os impactos ambientais causados por este metal, utilizado em diversos processos industriais. O objetivo deste trabalho foi selecionar microrganismos a partir de solo contaminado com cromo e caracterizar sua capacidade de redução do Cr(VI) durante o crescimento celular. A atividade de redução...

  1. Speciation of chromium in water samples with cloud point extraction separation and preconcentration and determination by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Liang Pei [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)], E-mail: liangpei@mail.ccnu.edu.cn; Sang Hongbo [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)

    2008-06-15

    A novel method has been developed for the speciation of chromium in natural water samples based on cloud point extraction (CPE) separation and preconcentration, and determination by graphite furnace atomic absorption spectrometry (GFAAS). In this method, Cr(III) reacts with 1-phenyl-3-methyl-4-benzoylpyrazol-5-one (PMBP) yielding a hydrophobic complex, which then is entrapped in the surfactant-rich phase, whereas Cr(VI) remained in aqueous phase. Thus, separation of Cr(III) and Cr(VI) could be realized. Total chromium was determined after the reduction of Cr(VI) to Cr(III) by using ascorbic acid as reducing reagent. PMBP was used not only as chelating reagent in CPE procedure, but also as chemical modifier in GFAAS determination of chromium. The detection limit for Cr(III) was 21 ng L{sup -1} with an enrichment factor of 42, and the relative standard deviation was 3.5% (n = 7, c = 10 ng mL{sup -1}). The proposed method has been applied to the speciation of chromium in natural water samples with satisfactory results.

  2. 铬污染土壤的微生物修复%REDUCTION OF CHROMIUM CONTAMINATED SOILS BY MICROORGANSIM

    Institute of Scientific and Technical Information of China (English)

    许友泽; 杨志辉; 向仁军

    2011-01-01

    The removal of Cr ( Ⅵ ) in chromium-contaminated soil by indigeous microorganism with leaching experiment was investigated. The effect of culture medium composition, amount of culture medium and pH of leachate on Cr( Ⅵ ) removal was investigated. The results showed that the water soluble Cr( Ⅵ ) in soils was completely when culture medium was added. Cr( Ⅵ ) concentration in leachate decreased from 700.3mg·L-1 to the concentration lower than detectable level after leaching. Cr(Ⅵ) removal was not complete with carbonbased culture medium. However Cr ( Ⅵ ) was completely remediated by combination of the carbon and the nitrogen source. The optimal carbon source was glucose, and the optimal quantity was 4g· L- 1 of carbon source and 5g·L-1 of nitrogen source. The optimal pH was 7.5-8.5.%采用淋溶实验研究微生物对铬污染土壤中Cr(Ⅵ)的修复,研究培养基成分、培养基添加量及淋溶液pH值对修复效果的影响.结果表明,培养基淋溶能完全修复铬污染土壤中水溶性Cr(Ⅵ),浸出液中Cr(Ⅵ)浓度由初始的700.3mg·L-1降低至检出限以下.单独加入碳源作为培养基时,土壤中Cr(Ⅵ)不能得到完全修复,碳源与氮源结合作为培养基时能完全修复土壤中Cr(Ⅵ).最佳碳源为葡萄糖,最佳碳源和氮源量分别为4 g·L-1和5 g·L-1.最佳pH值范围为7.5-8.5.

  3. Determination of hexavalent chromium in sludge incinerator emissions using ion chromatography and inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Arar, E.J.; Long, S.E. (Technology Applications, Inc., Cincinnati, OH (United States)); Martin, T.D.; Gold, S. (Environmental Monitoring Systems Lab., Cincinnati, OH (United States))

    1992-10-01

    A unique approach is described using ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) for the determination of hexavalent chromium [Cr(VI)] in wastewater sludge incinerator emissions. Quartz fiber filters, spiked with an isotopically enriched ([sup 50]Cr or [sup 53]Cr) chromate salt, were used to collect emission particulates. The enriched Cr(VI) isotope was used to monitor the reduction of Cr(IV) during sample collection using a pseudo-first-order reaction model and to calculate the rate of deposition of native Cr(VI) on the filters. At the end of the sampling period, the Cr(VI) was extracted from the filters with 0.1 N sodium hydroxide and determined by IC using postcolumn derivatization with 1,5-diphenylcarbohydrazide. To determine the ratio of enriched Cr(VI) to the native Cr(VI) emitted from the incinerator, an additional aliquot of the sample extract was preconcentrated by IC and the isotopic composition of the Cr(VI) fraction determined by ICP-MS. 21 refs., 4 figs., 3 figs.

  4. Hollow spheric Ag–Ag{sub 2}S/TiO{sub 2} composite and its application for photocatalytic reduction of Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dandan; Xu, Gangqiang; Chen, Feng, E-mail: fengchen@ecust.edu.cn

    2015-10-01

    Graphical abstract: - Highlights: • Hollow spheric Ag–Ag{sub 2}S/TiO{sub 2} composites were prepared. • Ag–Ag{sub 2}S/TiO{sub 2} composite shows prior UV and visible photocatalytic activities. • Schottky barrier between Ag and Ag{sub 2}S (TiO{sub 2}) promotes the photocatalytic activity. • Low bandgap of Ag{sub 2}S gives Ag–Ag{sub 2}S/TiO{sub 2} a good visible photocatalytic activity. • The photocatalytic activity of Ag–Ag{sub 2}S/TiO{sub 2} is maintained well after recycled. - Abstract: Hollow spheric Ag–Ag{sub 2}S was prepared by in-situ chemical transforming of sacrificial Cu{sub 2}S templates with AgNO{sub 3} solution. Hollow spheric Ag–Ag{sub 2}S/TiO{sub 2} composites were then prepared by assembling TiO{sub 2} grains around the Ag–Ag{sub 2}S spheres with hydrothermal treatment of Ag–Ag{sub 2}S with Ti precursor at 180 °C. X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) were adopted to characterize the as-prepared composite. Ag–Ag{sub 2}S/TiO{sub 2} composite has obvious absorption at both UV and visible regions, and shows prior photocatalytic activity for the reduction of Cr(VI) under both UV and visible irradiation. Particularly, the Ag–Ag{sub 2}S/TiO{sub 2}-5 and Ag–Ag{sub 2}S/TiO{sub 2}-10 show the highest activity for the photocatalytic reduction of Cr(VI) under UV and visible irradiation, respectively. The Schottky barrier between Ag and Ag{sub 2}S (and TiO{sub 2} as well) and the heterojunction between the Ag{sub 2}S and TiO{sub 2} are suggested as the main reasons that enhance the photocatalytic reduction of Cr(VI). The photocatalytic activity of Ag–Ag{sub 2}S/TiO{sub 2} composite is maintained well after being recycled several times.

  5. Visible light-responded C, N and S co-doped anatase TiO{sub 2} for photocatalytic reduction of Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Lei, X.F., E-mail: leixuefei69@163.com [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Institute of Metallurgical Resource and Environmental Engineering, Northeastern University, Shenyang 110819 (China); Liaoning Key Laboratory of Metallurgical Resource Recycling Science, Shenyang 110819 (China); Liaoning Engineering and Technology Research Center of Boron Resource, Comprehensive, Utilization, Shenyang 110819 (China); Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological, Utilization, Technology and Boron Materials, Shenyang 110819 (China); Xue, X.X.; Yang, H. [Institute of Metallurgical Resource and Environmental Engineering, Northeastern University, Shenyang 110819 (China); Liaoning Key Laboratory of Metallurgical Resource Recycling Science, Shenyang 110819 (China); Liaoning Engineering and Technology Research Center of Boron Resource, Comprehensive, Utilization, Shenyang 110819 (China); Liaoning Provincial Universities Key Laboratory of Boron Resource Ecological, Utilization, Technology and Boron Materials, Shenyang 110819 (China); Chen, C.; Li, X.; Pei, J.X.; Niu, M.C.; Yang, Y.T.; Gao, X.Y. [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2015-10-15

    The (C, N and S) co-doped TiO{sub 2} (TH-TiO{sub 2}) samples were synthesized by a sol-gel method calcined at 500 °C, employing butyl titanate as the titanium source and thiourea as the dopant. The structures of TH-TiO{sub 2} samples were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS), photoluminescence (PL) spectroscopy, Thermo gravimetry and differential thermal analysis (TG-DTA), Scanning electron microscopy (SEM) and nitrogen adsorption–desorption isotherms. The photocatalytic activities were checked through the photocatalytic reduction of Cr(VI) as a model compound under visible light irradiation. The results showed that the thiourea content played an important role on the microstructure and photocatalytic activity of the samples. According to XPS results, (C, N and S) atoms were successfully co-doped into the nanostructures of TH-TiO{sub 2} samples. TH-TiO{sub 2} samples with thiourea: Ti molar ratio of 1.5 exhibits higher photocatalytic activity than that of the other samples under visible light irradiation, which can be attributed to the synergic effect of the pure anatase structure, the higher light absorption characteristics in visible regions, separation efficiency of electron–hole pairs, the specific surface area and the optimum (C, N and S) content. - Graphical abstract: (C, N and S) co-doped TiO{sub 2} samples show good photocatalytic activity for Cr (VI) reduction under visible light irradiation. - Highlights: • (C, N and S) co-doping in TH-TiO{sub 2} samples can promote the formation of the pure anatase structure. • (C, N and S) atoms were successfully co-doped into the nanostructures of TH-TiO{sub 2} samples. • The band gap energy of TH-TiO{sub 2} samples reduced after (C, N and S) co-doping. • (C, N and S) co-doped TiO{sub 2} samples were effective for the photocatalytic reduction of Cr(VI) under visible light

  6. Biosorption of Hexavalent Chromium from Aqueous Medium with Opuntia Biomass

    OpenAIRE

    José A. Fernández-López; Angosto, José M.; María D. Avilés

    2014-01-01

    The biosorption of hexavalent chromium from aqueous solutions by Opuntia cladodes and ectodermis from cactus fruits was investigated. Both types of biomass are considered low-cost, natural, and ecofriendly biosorbents. Batch experiments were carried out to determine Cr(VI) biosorption capacity and the efficiency of the biosorption process under different pH, initial Cr(VI) concentration, and sorbent dosage. The biosorption of Cr(VI) by Opuntia biomass was highly pH dependent, favoring higher ...

  7. USE OF MICRO X-RAY ABSORPTION SPECTROSCOPY AND DIFFRACTION TO DELINEATE Cr(VI) SPECIATION IN COPR

    Energy Technology Data Exchange (ETDEWEB)

    CHRYSOCHOOU, M.; MOON, D. H.; FAKRA, S.; MARCUS, M.; DERMATAS, D.; CHRISTODOULATOS, C.

    2010-06-22

    The speciation of Cr(VI) in Cromite Ore Processing Residue was investigated by means of bulk XRD, and a combination of micro-XRF, -XAS and -XRD at the Advanced Light Source (ALS), Berkeley, CA, U.S.A.. Bulk XRD yielded one group of phases that contained explicitly Cr(VI) in their structure, Calcium Aluminum Chromium Oxide Hydrates, accounting for 60% of the total Cr(VI). Micro-analyses at ALS yielded complimentary information, confirming that hydrogarnets and hydrotalcites, two mineral groups that can host Cr(VI) in their structure by substitution, were indeed Cr(VI) sinks. Chromatite (CaCrO4) was also identified by micro-XRD, which was not possible with bulk methods due to its low content. The acquisition of micro-XRF elemental maps enabled not only the identification of Cr(VI)-binding phases, but also the understanding of their location within the matrix. This information is invaluable when designing Cr(VI) treatment, to optimize release and availability for reduction.

  8. Method of trivalent chromium concentration determination by atomic spectrometry

    Science.gov (United States)

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  9. Influence of Chelating Agents on Chromium Fate in Sediment

    Institute of Scientific and Technical Information of China (English)

    WANGXIAOCHANG; SUNJINHE; 等

    1996-01-01

    A laboratory investigation on reaction between chelating agents and chromium was conducted to evaluate the effect of chelating agents on the adsorption and desorption of chromium in sediment.The amount of adsorbed chromium(VI) in sediment decreased slightly by 5%-10% because of addition of chelating agents.Chelating agents inhibited the removal of Cr(Ⅲ)by sediment from solutions and the inhibiting effect was in the order:citric acid>tartaric acid>EDTA,Salicylic acid.No effect of chelating agents on desorption of chromium in sediment was observed.

  10. Characterization and application of the hetero-junction ZnFe2O4/TiO2 for Cr(VI) reduction under visible light

    Science.gov (United States)

    Rekhila, G.; Trari, M.; Bessekhouad, Y.

    2015-10-01

    The spinel ZnFe2O4 prepared by nitrate route is used as dispersed photons collector capable to sensitize TiO2 under visible light and to reduce Cr(VI) into trivalent state. The transport properties, optical and photo-electrochemical characterizations are correlated, to build the energetic diagram of the hetero-system ZnFe2O4/TiO2/CrO4 - solution. A gap of 1.97 eV is obtained for the spinel from the diffuse reflectance. The conduction band of ZnFe2O4 (-1.47 V SCE) favors the electrons injection into TiO2, permitting a physical separation of the charge carriers. The oxidation of oxalic acid by photoholes prevents the corrosion of the spinel. The best configuration ZnFe2O4 (75 %)/TiO2 (25 %) is used to catalyze the downhill reaction (2HCrO4 - + 3C2H4O4 + 1.5O2 + 8H+ → 2Cr3+ + 6CO2 + 11 H2O, ∆G° = -557 kcal mol-1). 60 % of Cr(VI) are reduced after 3 h of visible light illumination and the photoactivity follows a first-order kinetic with a half-life of 70 min. The water reduction competes with the HCrO4 - reduction which is the reason in the regression of the photoactivity; a hydrogen evolution rate of 24 µmol mg-1 h-1 is obtained.

  11. Biogeochemical Modeling of In Situ U(VI) Reduction and Immobilization with Emulsified Vegetable Oil as the Electron Donor at a Field Site in Oak Ridge, Tennessee

    Science.gov (United States)

    Tang, G.; Parker, J.; Wu, W.; Schadt, C. W.; Watson, D. B.; Brooks, S. C.; Orifrc Team

    2011-12-01

    A comprehensive biogeochemical model was developed to quantitatively describe the coupled hydrologic, geochemical and microbiological processes that occurred following injection of emulsified vegetable oil (EVO) as the electron donor to immobilize U(VI) at the Oak Ridge Integrated Field Research Challenge site (ORIFRC) in Tennessee. The model couples the degradation of EVO, production and oxidation of long-chain fatty acids (LCFA), glycerol, hydrogen and acetate, reduction of nitrate, manganese, ferrous iron, sulfate and uranium, and methanoganesis with growth of multiple microbial groups. The model describes the evolution of geochemistry and microbial populations not only in the aqueous phase as typically observed, but also in the mineral phase and therefore enables us to evaluate the applicability of rates from the literature for field scale assessment, estimate the retention and degradation rates of EVO and LCFA, and assess the influence of the coupled processes on fate and transport of U(VI). Our results suggested that syntrophic bacteria or metal reducers might catalyze LCFA oxidation in the downstream locations when sulfate was consumed, and competition between methanogens and others for electron donors and slow growth of methanogen might contribute to the sustained reducing condition. Among the large amount of hydrologic, geochemical and microbiological parameter values, the initial biomass, and the interactions (e.g., inhibition) of the microbial functional groups, and the rate and extent of Mn and Fe oxide reduction appear as the major sources of uncertainty. Our model provides a platform to conduct numerical experiments to study these interactions, and could be useful for further iterative experimental and modeling investigations into the bioreductive immobiliztion of radionuclide and metal contaminants in the subsurface.

  12. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    This study was undertaken to determine if chromium(+6) could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium(+3) to chromium(+6) by nitric acid; and the reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium(+3) to chromium(+6) was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the (+6) oxidation state and would not exist in the (+6) state in the final process waste solutions

  13. Standard test method for uranium by Iron (II) reduction in phosphoric acid followed by chromium (VI) titration in the presence of vanadium

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method, commonly referred to as the Modified Davies and Gray technique, covers the titration of uranium in product, fuel, and scrap materials after the material is dissolved. The test method is versatile and has been ruggedness tested. With appropriate sample preparation, this test method can give precise and unbiased uranium assays over a wide variety of material types (1, 2). Details of the titration procedure in the presence of plutonium with appropriate modifications are given in Test Method C1204. 1.2 Uranium levels titrated are usually 20 to 50 mg, but up to 200 mg uranium can be titrated using the reagent volumes stated in this test method. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determ...

  14. Hexavalent chromium and its effect on health: possible protective role of garlic (Allium sativum Linn).

    Science.gov (United States)

    Das, Kusal K; Dhundasi, Salim A; Das, Swastika N

    2011-01-01

    Hexavalent chromium or chromium (VI) is a powerful epithelial irritant and a confirmed human carcinogen. This heavy metal is toxic to many plants, aquatic animals, and bacteria. Chromium (VI) which consists of 10%-15% total chromium usage, is principally used for metal plating (H2Cr2O7), as dyes, paint pigments, and leather tanning, etc. Industrial production of chromium (II) and (III) compounds are also available but in small amounts as compared to chromium (VI). Chromium (VI) can act as an oxidant directly on the skin surface or it can be absorbed through the skin, especially if the skin surface is damaged. The prooxidative effects of chromium (VI) inhibit antioxidant enzymes and deplete intracellular glutathione in living systems and act as hematotoxic, immunotoxic, hepatotoxic, pulmonary toxic, and nephrotoxic agents. In this review, we particularly address the hexavalent chromium-induced generation of reactive oxygen species and increased lipid peroxidation in humans and animals, and the possible role of garlic (Allium sativum Linn) as a protective antioxidant. PMID:22865357

  15. Removal of Cr(VI from Water Using a New Reactive Material: Magnesium Oxide Supported Nanoscale Zero-Valent Iron

    Directory of Open Access Journals (Sweden)

    Alessio Siciliano

    2016-08-01

    Full Text Available The chromium pollution of water is an important environmental and health issue. Cr(VI removal by means of metallic iron is an attractive method. Specifically, nanoscopic zero valent iron (NZVI shows great reactivity, however, its applicability needs to be further investigated. In the present paper, NZVI was supported on MgO grains to facilitate the treatments for remediation of chromium-contaminated waters. The performances and mechanisms of the developed composite, in the removal of hexavalent chromium, were investigated by means of batch and continuous tests. Kinetic studies, under different operating conditions, showed that reduction of Cr(VI could be expressed by a pseudo second-order reaction kinetic. The reaction rate increased with the square of Fe(0 amount, while it was inversely proportional to the initial chromium concentration. The process performance was satisfactory also under uncontrolled pH, and a limited influence of temperature was observed. The reactive material was efficiently reusable for many cycles without any regeneration treatment. The performances in continuous tests were close to 97% for about 80 pore volume of reactive material.

  16. Photocatalytic reduction of Cr(VI) on the new hetero-system CuAl{sub 2}O{sub 4}/TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gherbi, R. [Laboratory of Reaction Engineering, Faculty of Mechanic and Engineering Processes, USTHB, BP 32, 16111 Algiers (Algeria); Nasrallah, N. [Laboratory of Reaction Engineering, Faculty of Mechanic and Engineering Processes, USTHB, BP 32, 16111 Algiers (Algeria); Equipe chimie et Ingenierie des procedes, UMR CNRS 6226, E.N.S.C.R., Avenue du General Leclerc, CS 50837, 35708 Rennes Cedex 7 (France); Amrane, A. [Equipe chimie et Ingenierie des procedes, UMR CNRS 6226, E.N.S.C.R., Avenue du General Leclerc, CS 50837, 35708 Rennes Cedex 7 (France); Maachi, R. [Laboratory of Reaction Engineering, Faculty of Mechanic and Engineering Processes, USTHB, BP 32, 16111 Algiers (Algeria); Trari, M., E-mail: solarchemistry@gmail.com [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32, 16111 Algiers (Algeria)

    2011-02-28

    Visible light driven HCrO{sub 4}{sup -} reduction was successfully achieved over the new hetero-system CuAl{sub 2}O{sub 4}/TiO{sub 2}. The spinel, elaborated by nitrate route, was characterized photo electrochemically. The optical gap was found to be 1.70 eV and the transition is directly allowed. The conduction band (-1.05 V{sub SCE}) is located below that of TiO{sub 2}, more negative than the HCrO{sub 4}{sup -}/Cr{sup 3+} level (+0.58 V{sub SCE}) yielding a thermodynamically feasible chromate reduction upon visible illumination. CuAl{sub 2}O{sub 4} is stable against photo corrosion by holes consumption reaction involving salicylic acid which favors the charges separation. There is a direct correlation between the dark adsorption and the photo activity. A reduction of more than 95% of chromate was achieved after 3 h irradiation at pH 2 with an optimal mass ratio (CuAl{sub 2}O{sub 4}/TiO{sub 2}) equal to 1/3. The reduction follows a first order kinetic with a half life of {approx}1 h and a quantum yield of 0.11% under polychromatic light. Prolonged illumination was accompanied by a deceleration of the Cr(VI) reduction thanks to the competitive water discharge. The hydrogen evolution, an issue of energetic concern, took place with a rate of 3.75 cm{sup 3} (g catalyst){sup -1} h{sup -1}.

  17. Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium

    Science.gov (United States)

    Madhavi, Vemula; Prasad, T. N. V. K. V.; Reddy, Ambavaram Vijaya Bhaskar; Ravindra Reddy, B.; Madhavi, Gajulapalle

    2013-12-01

    Zerovalent iron nanoparticles (ZVNI) were synthesized using a rapid, single step and completely green synthetic method from the leaf extracts of Eucalyptus globules and were characterized using the techniques Scanning Electron Microscopy (SEM), UV-Vis Spectroscopy, Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Zeta potential measurement. The FT-IR analysis reveals that the polyphenolic compounds present in the leaf extract may be responsible for the reduction and stabilization of the ZVNI. These nanoparticles were utilized for the adsorption of hexavalent chromium (Cr (VI)) and the concentration of Cr (VI) was determined using UV-Vis spectrometer after treating with ZVNI. Response and surface contour plots were drawn with the help of Mini-tab software to explain the adsorption of Cr (VI). The adsorption efficiency of Cr (VI) reaches to the highest value (98.1%) when the reaction time was about 30 min. and the ZVNI dosage was 0.8 g/L. The effective parameters such as adsorbent (ZVNI) dosage, initial Cr (VI) concentration and the kinetics were also examined.

  18. Contribution of photoelectron spectrometry and infrared spectrometry to the study of various oxidised forms of chromium

    International Nuclear Information System (INIS)

    Securate knowledge of internal surface of primary coolant circuits of PWR is required for an estimation of dissolution of used materials and for estimation of decontamination efficiency. The binding energies of various electron levels of chromium were determined by photoelectron spectrometry (ESCA), both for the metal and for certain compounds. Because of the intensities of the signals obtained the 2 p 3/2 level alone can be used for analytical purposes. Owing to a possible interference between this level due to hexavalent chromium and a satellite peak caused by trivalent chromium the method is not able to show up small amounts of chromium VI in chromium III. Simultaneous detection of the hexavalent and trivalent forms was achieved by infrared spectrometry. The problem of revealing traces of chromium VI in surface layers of trivalent chromium oxide has thus been solved

  19. Green route for the utilization of chrome shavings (chromium-containing solid waste) in tanning industry.

    Science.gov (United States)

    Rao, Jonnalagadda Raghava; Thanikaivelan, Palanisamy; Sreeram, Kalarical Janardhanan; Nair, Balachandran Unni

    2002-03-15

    Chromium-containing wastes from various industrial sectors are under critical review. Leather processing is one such industrial activity that generates chromium-bearing wastes in different forms. One of them is chrome shavings, and this contributes to an extent of 10% of the quantum of raw skins/hides processed, amounting to 0.8 million ton globally. In this study, the high protein content of chrome shavings has been utilized for reduction of chromium(VI) in the preparation of chrome tanning agent. This approach has been exploited for the development of two products: one with chrome shavings alone as reducing agent and the other with equal proportion of chrome shavings and molasses. The developed products exhibit more masking due to the formation of intermediate organic oligopeptides. This has been corroborated through the spectral, hydrolysis, and species-wise distribution studies. The formation of these organic masking agents helps in chrome tanning by shifting the precipitation point of chromium to relatively higher pH levels. Hence, the developed products find use as chrome tanning agents for leather processing, thus providing a means for better utilization of chrome shaving wastes. PMID:11944695

  20. Hexavalent chromium targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent caspase-3 activation in L-02 hepatocytes.

    Science.gov (United States)

    Xiao, Fang; Li, Yanhong; Dai, Lu; Deng, Yuanyuan; Zou, Yue; Li, Peng; Yang, Yuan; Zhong, Caigao

    2012-09-01

    Hexavalent chromium [Cr(VI)], which is used for various industrial applications, such as leather tanning and chroming, can cause a number of human diseases including inflammation and cancer. Cr(VI) exposure leads to severe damage to the liver, but the mechanisms involved in Cr(VI)-mediated toxicity in the liver are unclear. The present study provides evidence that Cr(VI) enhances reactive oxygen species (ROS) accumulation by inhibiting the mitochondrial respiratory chain complex (MRCC) I. Cr(VI) did not affect the expression levels of antioxidative proteins such as superoxide dismutase (SOD), catalase and thioredoxin (Trx), indicating that the antioxidative system was not involved in Cr(VI)-induced ROS accumulation. We found that ROS mediated caspase-3 activation partially depends on the downregulation of the heat shock protein (HSP) 70 and 90. In order to confirm our hypothesis that ROS plays a key role in Cr(VI)-mediated cytotoxicity, we used N-acetylcysteine (NAC) to inhibit the accumulation of ROS. NAC successfully blocked the inhibition of HSP70 and HSP90 as well as the activation of caspase-3, suggesting that ROS is essential in Cr(VI)-induced caspase-3 activation. By applying different MRCC substrates as electron donors, we also confirmed that Cr(VI) could accept the electrons leaked from MRCC I and the reduction occurs at MRCC I. In conclusion, the present study demonstrates that Cr(VI) induces ROS-dependent caspase-3 activation by inhibiting MRCC I activity, and MRCC I has been identified as a new target and a new mechanism for the apoptosis-inducing activity displayed by Cr(VI). PMID:22710416

  1. Towards A Modern Calibration Of The 238U/235U Paleoredox Proxy: Apparent Uranium Isotope Fractionation Factor During U(VI)-U(IV) Reduction In The Black Sea

    Science.gov (United States)

    Rolison, J. M.; Stirling, C. H.; Middag, R.; Rijkenberg, M. J. A.; De Baar, H. J. W.

    2015-12-01

    The isotopic compositions of redox-sensitive metals, including uranium (U), in marine sediments have recently emerged as powerful diagnostic tracers of the redox state of the ancient ocean-atmosphere system. Interpretation of sedimentary isotopic information requires a thorough understating of the environmental controls on isotopic fractionation in modern anoxic environments before being applied to the paleo-record. In this study, the relationship between ocean anoxia and the isotopic fractionation of U was investigated in the water column and sediments of the Black Sea. The Black Sea is the world's largest anoxic basin and significant removal of U from the water column and high U accumulation rates in modern underlying sediments have been documented. Removal of U from the water column occurs during the redox transition of soluble U(VI) to relatively insoluble U(IV). The primary results of this study are two-fold. First, significant 238U/235U fractionation was observed in the water column of the Black Sea, suggesting the reduction of U induces 238U/235U fractionation with the preferential removal of 238U from the aqueous phase. Second, the 238U/235U of underlying sediments is related to the water column through the isotope fractionation factor of the reduction reaction but is influenced by mass transport processes. These results provide important constraints on the use of 238U/235U as a proxy of the redox state of ancient oceans.

  2. Graphene oxide coated coordination polymer nanobelt composite material: a new type of visible light active and highly efficient photocatalyst for Cr(VI) reduction.

    Science.gov (United States)

    Shi, Gui-Mei; Zhang, Bin; Xu, Xin-Xin; Fu, Yan-Hong

    2015-06-28

    A visible light active photocatalyst was synthesized successfully by coating graphene oxide (GO) on a coordination polymer nanobelt (CPNB) using a simple colloidal blending process. Compared with neat CPNB, the resulting graphene oxide coated coordination polymer nanobelt composite material (GO/CPNB) exhibits excellent photocatalytic efficiency in the reduction of K2Cr2O7 under visible light irradiation. In the composite material, GO performs two functions. Firstly, it cuts down the band gap (E(g)) of the photocatalyst and extends its photoresponse region from the ultraviolet to visible light region. Secondly, GO exhibits excellent electron transportation ability that impedes its recombination with holes, and this can enhance photocatalytic efficiency. For GO, on its surface, the number of functional groups has a great influence on the photocatalytic performance of the resulting GO/CPNB composite material and an ideal GO"coater" to obtain a highly efficient GO/CPNB photocatalyst has been obtained. As a photocatalyst that may be used in the treatment of Cr(VI) in wastewater, GO/CPNB exhibited outstanding stability during the reduction of this pollutant.

  3. Chromium stable isotope systematic – implications for the redox evolution of the earth

    DEFF Research Database (Denmark)

    Døssing, Lasse Nørbye

    isotopes as modern soil profiles and indicate that oxidative weathering in the terrestrial environment started well before and after the Great Oxidation Event ~2.3 billion years ago. The signals of oxidative weathering on land are traceable in contemporaneous marine sediments such as Banded Iron Formations......The isotopic composition of chromium (Cr) holds great promise as a paleo-redox proxy.Whereas the reduction of oxidized Cr(VI) to Cr(III) yields a well-defined kineticfractionation, the fractionation imparted during oxidative weathering is only described theoretically. This thesis demonstrates...... that Cr isotopes fractionate during oxidative weathering of modern soil systems. The result is the retention of light Cr(III) and the release of heavy Cr(VI) to runoff. Deviations in Cr isotope compositions from mantle inventory values are ultimately attributed to oxidative weathering in modern systems...

  4. Cr(VI) reduction capability of humic acid extracted from the organic component of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    Barbara Scaglia; Fulvia Tambone; Fabrizio Adani

    2013-01-01

    The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).The kinetics of Cr(Ⅵ) reductions depended strongly on pH.The calculation of the apparent rate coefficients indicated that HAw was more efficient at reducing Cr(Ⅵ) than HAc,but was also more efficient than HAs from soil and peat.The reduction capability of HAs depends on the type of functional groups (i.e.,thiols and phenols) present,rather than the free radicals.HAw was more efficient at reducing Cr(Ⅵ) than HAc because more reactive phenols were present,i.e.,methoxy-and methyl-phenols.

  5. Study of the adsorption of Cr(VI) by tannic acid immobilised powdered activated carbon from micro-polluted water in the presence of dissolved humic acid.

    Science.gov (United States)

    Gong, Xujin; Li, Weiguang; Wang, Ke; Hu, Jinhua

    2013-08-01

    The adsorption of Cr(VI) (0.500 mg/L) onto food-grade tannic-acid immobilised powdered activated carbon (TA-PAC) in the presence of dissolved humic acid (DHA) was investigated at 280 K as a function of pH, along with the adsorption capacities and the adsorption isotherms for chromium ions. The results showed that the presence of DHA improved the adsorption capacities of Cr(VI) and its reduction product (Cr(III)) over a wide pH range (4.0-8.0). The main mechanism for metal-DHA complexation in the Cr(VI) system was the reduction of Cr(VI) followed by complexation between Cr(III) and DHA. The Freundlich isotherms yielded the best fits to all data (R(2)=0.9951, qm=5.639 mg/g) in the presence of DHA. The adsorption mechanisms of Cr(VI) onto TA-PAC in the presence of DHA were summarized into three categories: (i) binding by anion adsorption, (ii) Cr(VI) reduction followed by Cr(III) adsorption, and (iii) adsorption of Cr(III)-DHA complexes. PMID:23453800

  6. 黄壤、棕壤对铬(VI)吸附特性的研究%Study on Adsorption Properties of Chromium(VI)in Yellow Soil and Brown Soil

    Institute of Scientific and Technical Information of China (English)

    卜通达; 陈祖拥; 凌帮元

    2015-01-01

    通过振荡平衡法研究黄壤、棕壤对Cr(VI)的吸附行为,结果表明,在酸性条件下土壤对Cr(VI)的吸附量远高于碱性条件下的吸附量,随温度的升高黄壤、棕壤对Cr(VI)的吸附量增加。土壤本身理化性质不同,其对Cr(VI)的吸附量有很大差异;土壤吸附Cr(VI)量与游离铁铝氧化物及粘粒含量呈显著正相关,而与有机质及土壤pH值呈负相关。供试土壤等温吸附Cr(VI)量表现为黄壤>棕壤。随着土壤有机质含量的增加,土壤Cr(VI)的等温吸附平衡浓度下降,对Cr(VI)的吸附能力下降。%We performed a series of oscillation equilibrium experiments to simulate the adsorption behavior of Cr (VI)for the yellow soil and brown soil. The results show that under a acidic soil conditions,adsorption of Cr(VI)is far higher than that of in alkaline conditions. The Cr(VI)adsorption of yellow soil and brown soil rise with the tem⁃perature. The physical and chemical properties of soil are different,and its adsorption of Cr(VI)will be a big differ⁃ence. Soil adsorption amount of Cr(VI)was significantly positively related to the free iron/aluminum oxide and clay content,and negative associative to organic matter and pH. The adsorption of Cr(VI)in the isothermal tested was yel⁃low soil>brown soil. With the increase of organic matter content,the concentration of Cr(VI)in the isothermal ad⁃sorption equilibrium experiments decreased,and the adsorption capacity of Cr(VI)was subdued too.

  7. Optimizing the application of magnetic nanoparticles in Cr(VI) removal

    Science.gov (United States)

    Simeonidis, Konstantinos; Kaprara, Efthymia; Mitrakas, Manassis; Tziomaki, Magdalini; Angelakeris, Mavroidis; Vourlias, Georgios; Andritsos, Nikolaos

    2013-04-01

    The presence of heavy metals in aqueous systems is an intense health and environmental problem as implied by their harmful effects on human and other life forms. Among them, chromium is considered as an acutely hazardous compound contaminating the surface water from industrial wastes or entering the groundwater, the major source of drinking water, by leaching of chromite rocks. Chromium occurs in two stable oxidation states, Cr(III) and Cr(VI), with the hexavalent form being much more soluble and mobile in water having the ability to enter easily into living tissues or cells and thus become more toxic. Despite the established risks from Cr(VI)-containing water consumption and the increasing number of incidents, the E.U. tolerance limit for total chromium in potable water still stands at 50 μg/L. However, in the last years a worldwide debate concerning the establishment of a separate and very strict limit for the hexavalent form takes place. In practice, Cr(VI) is usually removed from water by various methods such as chemical coagulation/filtration, ion exchange, reverse osmosis and adsorption. Adsorption is considered as the simplest method which may become very effective if the process is facilitated by the incorporation of a Cr(VI) to Cr(III) reduction stage. This work studies the potential of using magnetic nanoparticles as adsorbing agents for Cr(VI) removal at the concentration levels met in contaminated drinking water. A variety of nanoparticles consisting of ferrites MFe2O4 (M=Fe, Co, Ni, Cu, Mn, Mg, Zn) were prepared by precipitating the corresponding bivalent or trivalent sulfate salts under controlled acidity and temperature. Electron microscopy and X-ray diffraction techniques were used to verify their crystal structure and determine the morphological characteristics. The mean particle size of the samples was found in the range 10-50 nm. Batch Cr(VI) removal tests were performed in aqueous nanoparticles dispersions showing the efficiency of ferrite

  8. Mucopolysaccharidosis VI

    OpenAIRE

    Harmatz Paul; Nicely Helen; Valayannopoulos Vassili; Turbeville Sean

    2010-01-01

    Abstract Mucopolysaccharidosis VI (MPS VI) is a lysosomal storage disease with progressive multisystem involvement, associated with a deficiency of arylsulfatase B leading to the accumulation of dermatan sulfate. Birth prevalence is between 1 in 43,261 and 1 in 1,505,160 live births. The disorder shows a wide spectrum of symptoms from slowly to rapidly progressing forms. The characteristic skeletal dysplasia includes short stature, dysostosis multiplex and degenerative joint disease. Rapidly ...

  9. Reduction of Hexavalent Chromium by Nanoscale Fe0 and Its Influencing Factors%纳米Fe0对Cr(Ⅵ)的还原及其影响因素

    Institute of Scientific and Technical Information of China (English)

    刘文文; 邹影; 司友斌

    2012-01-01

    An experiment was carried out on nanoscale zero-valent iron ( NZVI) reducing Cr ( VI) in water to explore effects of NZVI application rate, initial concentrations of Cr( VI) , initial pHs, and organic acids on the reduction. It was found that NZVI efficiently reduced Cr( VI) in water at a rate 7 and 13 times higher than that of iron powder and filings, respectively. Under the condition of the initial concentration of Cr( VI) being 20 mg · L and the NZVI application rate being 5 g · L-1 , the reduction rate reached 82. 7% after 24 h of incubation. Low pH solution promoted corrosion of NZVI, which raised Cr( VI) reduction rate. The highest reduction rate occured in solution being 3.0 in pH. Among organic acids , oxalic acid, malonic acid and succinic acid all significantly improved the effect of NZVI reducing Cr( VI) , and followed the order of oxalic acid > malonic acid > succinic acid.%采用纳米Fe0还原水溶液中的Cr(Ⅵ),考察纳米Fe0投加量、Cr(Ⅵ)初始浓度、溶液pH值和有机酸等因素对Cr(Ⅵ)还原的影响.结果表明,纳米Fe0对Cr(Ⅵ)的还原效果明显,其对Cr(Ⅵ)的还原率分别是铁粉和铁屑的7和13倍.Cr(Ⅵ)溶液初始质量浓度为20 mg·L-1、Fe0投加量为5g·L-1条件下,反应24 h时纳米Fe0对Cr(Ⅵ)的还原率达82.7%.溶液低pH值可以促进Fe0的腐蚀速度,提高反应速率,当pH值为3.0时还原效果最好.草酸、丙二酸和丁二酸对纳米Fe0还原Cr(Ⅵ)均有明显的促进作用,3种有机酸对Cr(Ⅵ)还原率的提高幅度由高到低依次为草酸、丙二酸和丁二酸.

  10. The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Jianguo Zhang; John L. Provis; Dingwu Feng; Jannie S.J. van Deventer [University of Melbourne, Melbourne, Vic. (Australia). Department of Chemical and Biomolecular Engineering

    2008-05-15

    The use of fly ash-based geopolymer binders to immobilize chromium is investigated in detail, with particular regard to the role of the sulfide ion as a reductant for Cr(VI) treatment. In the absence of sulfide, Cr added as Cr(VI) is highly leachable. However, addition of a small quantity of Na{sub 2}S reduces the Cr to Cr(III), and enables leaching efficiencies in excess of 99.9% to be reached after 90 days' exposure to deionized water, Na{sub 2}CO{sub 3} or MgSO{sub 4} solutions. Leaching in H{sub 2}SO{sub 4} is somewhat greater than this, due most probably to the oxidation of the Cr(III) present. Addition of the Cr(VI) as a highly soluble salt is preferable to its addition as a sparingly soluble salt, because a higher salt solubility means the Cr(VI) is more available for reduction prior to geopolymeric setting. The potential value of geopolymer technology as an immobilization process for problematic heavy metal waste streams is highlighted by these results, and the need for a full understanding of binder chemistry in any immobilization system outlined.

  11. DANGER OF HEXAVALENT CHROMIUM AND STRATEGY FOR THE REMEDITATION

    OpenAIRE

    Aniruddha Roy; Ayan Das; Nirmal Paul

    2013-01-01

    Some metals as micronutrients have a major role in the life and growth process of plants and animals. However, certain forms of some metals may also act as toxic material even in relatively small quantities. Chromium is such a metal, whose concentration above a certain limit may cause a serious problem to the health of living organisms. Chromium (Cr) may occur in several chemical forms in organic and inorganic systems. In biological systems only Cr (III) and Cr (VI) are signifi...

  12. Assessing uncertainty in published risk estimates using hexavalent chromium and lung cancer mortality as an example

    Science.gov (United States)

    Introduction: The National Research Council recommended quantitative evaluation of uncertainty in effect estimates for risk assessment. This analysis considers uncertainty across model forms and model parameterizations with hexavalent chromium [Cr(VI)] and lung cancer mortality a...

  13. Assessing model uncertainty using hexavalent chromium and lung cancer mortality as an example [Abstract 2015

    Science.gov (United States)

    Introduction: The National Research Council recommended quantitative evaluation of uncertainty in effect estimates for risk assessment. This analysis considers uncertainty across model forms and model parameterizations with hexavalent chromium [Cr(VI)] and lung cancer mortality a...

  14. Electrodeposition of black chromium from CR(III) ionic liquid solution

    OpenAIRE

    Eugénio, S.; Rangel, C. M.; Vilar, Rui

    2009-01-01

    Black chromium is an important coating material used in solar thermal systems as a spectrally selective surface. This coating is usually obtained by electrodeposition from sulphate free chromium (VI) aqueous solutions which represent a health and environmental hazard due to the presence of Cr(VI), a known toxic and carcinogenic agent. Recent developments in green chemistry have shown that ionic liquids can be used as electrolytes, allowing the deposition of a wide range of materials with negl...

  15. Suppression of interference in the AAS determination of chromium by use of ammonium bifluoride.

    Science.gov (United States)

    Purushottam, A; Naidu, P P; Lal, S S

    1973-07-01

    Addition of 1% of ammonium bifluoride successfully suppresses interference by diverse ions in the atomic-absorption determination of chromium(VI). If the sample solutions also contain chromium(III) addition of 1% of ammonium bifluoride and 0.2% of sodium sulphate is recommended for the suppression.

  16. Optimization and Modeling of Hexavalent Chromium Removal from Aqueous Solution Via Adsorption on Multiwalled Carbon Nanotubes

    OpenAIRE

    Mina Gholipour; Hassan Hashemipour Rafsanjani; Ataollah Soltani Goharrizi

    2011-01-01

    Hexavalent chromium and its derivatives are potential pollutant due to their mortal affects. Therefore, It is essential to remove these components from wastewaters before disposal. Adsorption can be effective and versatile method for removing of hexavalent chromium. In this article, removal of hexavalent chromium via adsorption on multiwalled carbon nanotubes was investigated as a function of adsorbent dosage, initial solution pH, initial Cr(VI) concentrations, contact time and temperature. T...

  17. Cathodic stripping voltammetric determination of chromium in coastal waters on cubic Nano-titanium carbide loaded gold nanoparticles modified electrode

    Directory of Open Access Journals (Sweden)

    Haitao eHan

    2015-09-01

    Full Text Available The novel cubical nano-titanium carbide loaded gold nanoparticles modified electrode for selective and sensitive detection of trace chromium (Cr in coastal water was established based on a simple approach. Nano-titanium carbide is used as the typical cubical nanomaterial with wonderful catalytic activity towards the reduction of Cr(VI. Gold nanoparticles with excellent physical and chemical properties can facilitate electron transfer and enhance the catalytic activity of the modified electrode. Taking advantage of the synergistic effects of nano-titanium carbide and gold nanoparticles, the excellent cathodic signal responses for the stripping determination of Cr(VI can be obtained. The detection limit of this method is calculated as 2.08 μg L-1 with the linear calibration curve ranged from 5.2 to 1040 μg L-1. This analytical method can be used to detect Cr(VI effectively without using any complexing agent. The fabricated electrode was successfully applied for the detection of chromium in coastal waters collected from the estuary giving Cr concentrations between 12.48 and 22.88 μg L-1 with the recovery between 96% and 105%.

  18. Chromium speciation in rainwater: temporal variability and atmospheric deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kieber, R.J.; Willey, J.D.; Zvalaren, S.D. [University of North Carolina at Wilmington, Wilmington, NC (United States). Dept. of Chemistry

    2002-12-15

    Chromium is released into the atmosphere by a variety of anthropogenic activities which include steel manufacturing, leather tanning, wood presentation and fossil fuel combustion. The concentrations of the various chromium species were determined in 89 rainwater samples collected in Wilmington, NC from October 1, 1999 to December 31, 2001. Volume weighted annual average concentrations of Cr{sub total}, particulate Cr, Cr(III)(aq), and Cr(VI)(aq) were 4.6, 2.2, 0.8 and 1.2 nM, respectively. There was distinct seasonal and diurnal variability in the concentrations of the various chromium species. Chromium emissions to the global atmosphere by both natural and anthropogenic sources are estimated to be 2.2 x 10{sup 9} mol/yr. Using rainwater concentration data along with other published rainwater Cr concentrations and an estimate for total global annual rain, the total global flux of chromium removed from the atmosphere via wet deposition is 2.1 x 10{sup 9} mol/yr. This represents complete removal of Cr and indicates that essentially all chromium released into the global atmosphere is removed via rain. About half this chromium is dissolved with roughly equal concentrations of toxic Cr(VI) and relatively harmless Cr(III) species. 48 refs., 4 figs., 3 tabs.

  19. Investigations of HRC®-Stimulated Bioreduction of Cr(VI) at Hanford 100H

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Hazen; B. Faybishenko; D. Joyner; S. Borglin; E.Brodie; S. Hubbard; K. Williams; J. Peterson; J. Wan; T. Tokunaga; Long, P.E.; Newcomer, D.; Koenigsberg, S.; Willet, A.

    2005-04-18

    Hypothesis: Lactate (Hydrogen Release Compound-HRC{trademark}) injection into chromium contaminated groundwater through an injection well will cause indirect or direct bioreduction of chromate [Cr(VI)] and precipitation of insoluble species of [Cr(III)] on soil particles, probably catalyzed at oxide surfaces, at the field scale. Objective: Assess the potential for immobilizing and detoxifying chromium-contaminated groundwater using lactate-stimulated bioreduction of Cr(VI) to Cr(III) at the Hanford Site's 100-H Area field site. Types of Research: A three-well system (injection well and upgradient and downgradient monitoring wells) was used for conducting the in situ biostimulation and monitoring. To assess the pre- and post-injection test groundwater conditions, we used an integrated monitoring approach, involving hydraulic, geochemical, microbial, and geophysical techniques and analytical methods, as well as conducted five Br-tracer injection tests and four pumping tests (concurrently with the Br-tracer tests). Groundwater biostimulation was conducted by injection of 40 lbs of {sup 13}C-labeled HRC into the injection well (over the depth interval from 44-50 ft) on 8/3/2004, followed by low-flow pumping (1.2 to 2.5 l/min) through the downgradient well (to ensure capture of groundwater flow lines passing through the injection well) for 27 days. Main Results: Although the total microbial population in sediments is relatively low (<10{sup 5} cells g-1) under background conditions, which is likely insufficient for direct enzymatic Cr(VI) reduction, several types of bacteria, e.g., Bacillus/Arthrobacter and Geobacter, are present in the Hanford sediments, which are known to reduce or sorb hexavalent chromium. The HRC injection stimulated microbial cell counts to reach the maximum of 2 x 10{sup 7} cells g{sup -1} 13-17 days after the injection, and generated highly reducing conditions. Geochemical and isotopic observations confirmed microbial metabolism of HRC. The

  20. Investigations of HRC®-Stimulated Bioreduction of Cr(VI) at Hanford 100H

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.; Faybishenko, B.; Joyner, D.; Borglin, S.; Brodie, E.; Hubbard, S.; Williams, K.; Peterson, J.; Wan, J.; Tokunaga, T.; Firestone, M.; Long, P.E.; Resch, C.T.; Cantrell, K.; Newcomer, D.; Koenigsberg, S.; Willet, A.

    2006-04-05

    Hypothesis: Lactate (Hydrogen Release Compound-HRC{trademark}) injection into chromium contaminated groundwater through an injection well will cause indirect or direct bioreduction of chromate [Cr(VI)] and precipitation of insoluble species of [Cr(III)] on soil particles, probably catalyzed at oxide surfaces, at the field scale. Objective: Assess the potential for immobilizing and detoxifying chromium-contaminated groundwater using lactate-stimulated bioreduction of Cr(VI) to Cr(III) at the Hanford Site's 100-H Area field site. Types of Research: A three-well system (injection well and upgradient and downgradient monitoring wells) was used for conducting the in situ biostimulation and monitoring. To assess the pre- and post-injection test groundwater conditions, we used an integrated monitoring approach, involving hydraulic, geochemical, microbial, and geophysical techniques and analytical methods, as well as conducted five Br-tracer injection tests and four pumping tests (concurrently with the Br-tracer tests). Groundwater biostimulation was conducted by injection of 40 lbs of {sup 13}C-labeled HRC into the injection well (over the depth interval from 44-50 ft) on 8/3/2004, followed by low-flow pumping (1.2 to 2.5 l/min) through the downgradient well (to ensure capture of groundwater flow lines passing through the injection well) for 27 days. Main Results: Although the total microbial population in sediments is relatively low (<10{sup 5} cells g{sup -1}) under background conditions, which is likely insufficient for direct enzymatic Cr(VI) reduction, several types of bacteria, e.g., Bacillus/Arthrobacter and Geobacter, are present in the Hanford sediments, which are known to reduce or sorb hexavalent chromium. The HRC injection stimulated microbial cell counts to reach the maximum of 2 x 10{sup 7} cells g{sup -1} 13-17 days after the injection, and generated highly reducing conditions. Geochemical and isotopic observations confirmed microbial metabolism of HRC

  1. DETERMINATION OF CHROMIUM(VI) IN DRUG CAPSULES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY AFTER CLOUD POINT EXTRACTION%浊点萃取-石墨炉原子吸收光谱法测定药物胶囊中的痕量铬(VI)

    Institute of Scientific and Technical Information of China (English)

    杨平; 陈为键; 陈婷; 温茂云; 陈春凤

    2013-01-01

    采用硝基苯胲铵盐(铜铁试剂)、吡咯烷基二硫代甲酸铵(APDC)为络合剂,Triton X-114为表面活性剂的浊点萃取体系分别富集药物胶囊中的痕量Cr(Ⅲ)和总铬,富集后的Cr(Ⅲ)和总铬用石墨炉原子吸收光谱法进行测定。讨论了溶液pH值、表面活性剂浓度、络合剂浓度、平衡温度、平衡时间等对浊点萃取效率的影响。在优化的实验条件下,Cr(Ⅵ)测定的检出限为0.031μg/L,相对标准偏差为1.2%,加标回收率为98.4%~102.1%。应用本法测定药物胶囊中的痕量Cr(Ⅵ),结果令人满意。%A method was developed for determining trace Cr(VI) and total chromium in drug capsules by graphite furnace atomic absorption spectrometry after cloud point extraction with Cupferron and ammonium pyrrolidine dithiocarbamate(APDC) as complexing agent, triton X-114 as surfactant. The main factors affecting the cloud point extraction, such as pH, concentrations of APDC, Cupferron and Triton X-114, equilibrium temperature and time were studied. Under the optimal conditions, the detection limit of Cr(VI) is 0.031μg/L (S/N=3) with RSD of 1.2% and recovery rate of 98.4% to 102.1%. It is satisfactory to apply the method to the determine trace Chromium in drug capsules samples.

  2. Chromium recovery from exhausted baths generated in plating processes and its reuse in the tanning industry.

    Science.gov (United States)

    Torras, Josep; Buj, Irene; Rovira, Miquel; de Pablo, Joan

    2012-03-30

    Chromium plating used for functional purposes provides an extremely hard, wear and corrosion resistant layer by means of electrolytic deposition. Typical layer thicknesses range between 2.5 and 500 μm. Chromium electroplating baths contain high concentrations of Cr(VI) with chromium trioxide (CrO(3)) as the chromium source. When because of technical or economic reasons a bath gets exhausted, a waste containing mainly chromium as dichromate as well as other heavy metals is generated. Chromium may then be purified for use in other industrial processes with different requirements. In this work, a sustainable system for using galvanic wastes as reagents in the leather tanning industry, thus reducing quantity of wastes to be treated, is presented. Metal cations present in the chromium exhausted bath were precipitated with NaOH. Then, the solution containing mainly soluble Cr(VI) was separated. By means of sodium sulphite in acidic conditions, Cr(VI) was reduced to Cr(III) as chromium (III) sulphate. From chromium (III) sulphate a basic Cr(III) sulphate may be obtained, which is one of most used compounds in the tanning industry. Cr(III) concentration in the final solution allows its reuse without concentration, but with a slight dilution. PMID:22326242

  3. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.

    Science.gov (United States)

    Zhang, Xue-Hong; Liu, Jie; Huang, Hai-Tao; Chen, Jun; Zhu, Yi-Nian; Wang, Dun-Qiu

    2007-04-01

    Leersia hexandra Swartz (Gramineae), which occurs in Southern China, has been found to be a new chromium hyperaccumulator by means of field survey and pot-culture experiment. The field survey showed that this species had an extraordinary accumulation capacity for chromium. The maximum Cr concentration in the dry leaf matter was 2978 mg kg(-1) on the side of a pond near an electroplating factory. The average concentration of chromium in the leaves was 18.86 times as that in the pond sediment, and 297.41 times as that in the pond water. Under conditions of the nutrient solution culture, it was found that L. hexandra had a high tolerance and accumulation capacity to Cr(III) and Cr(VI). Under 60 mg l(-1) Cr(III) and 10 mg l(-1) Cr(VI) treatment, there was no significant decrease of biomass in the leaves of L. hexandra (p>0.05). The highest bioaccumulation coefficients of the leaves for Cr(III) and Cr(VI) were 486.8 and 72.1, respectively. However, L. hexandra had a higher accumulation capacity for Cr(III) than for Cr(VI). At the Cr(III) concentration of 10 mg l(-1) in the culture solution, the concentration of chromium in leaves was 4868 mg kg(-1), while at the same Cr(VI) concentration, the concentration of chromium in leaves was only 597 mg kg(-1). These results confirmed that L. hexandra is a chromium hyperaccumulator which grows rapidly with a great tolerance to Cr and broad ecological amplitude. This species could provide a new plant resource that explores the mechanism of Cr hyperaccumulation, and has potential for usage in the phytoremediation of Cr-contaminated soil and water. PMID:17207838

  4. Genotoxicity of Tri- and Hexavalent Chromium Compounds In Vivo and Their Modes of Action on DNA Damage In Vitro

    OpenAIRE

    Zhijia Fang; Min Zhao; Hong Zhen; Lifeng Chen; Ping Shi; Zhiwei Huang

    2014-01-01

    Chromium occurs mostly in tri- and hexavalent states in the environment. Hexavalent chromium [Cr(VI)] compounds are extensively used in diverse industries, and trivalent chromium [Cr(III)] salts are used as micronutrients and dietary supplements. In the present work, we report that they both induce genetic mutations in yeast cells. They both also cause DNA damage in both yeast and Jurkat cells and the effect of Cr(III) is greater than that of Cr(VI). We further show that Cr(III) and Cr(VI) ca...

  5. 偶合反应流动注射化学发光法测定扑热息痛%Flow injection chemiluminescence determination of paracetamol with chromium (VI)-H202-luminol system

    Institute of Scientific and Technical Information of China (English)

    王书民; 樊雪梅; 苏智魁; 陈凤英; 刘萍

    2011-01-01

    As chromium(Ⅵ) can be reduced by paracetamol to chromium(Ⅲ) which enhance the CL intensity of luminol-H2O2system, a new chemiluminescent method for the determination of paracetamol was developed. The relative CL intensity was linearly related to the concentration of paracetamol in the range of 4. 0 × 10-9 ~4. 0 ×10-5mol/L with a detection limit of 1.0 × 10-9mol/L. The relative standard deviation( n = 8) for 4. 0 × 10-7mol/L paracetamol was 2. 7%. The method has been applied to the determination of paracetamol in the tablets.%基于扑热息痛还原铬(Ⅵ)和铬(Ⅲ)催化鲁米诺-过氧化氢的化学发光,建立了氧化还原偶合反应流动注射化学发光法测定扑热息痛的新方法.方法线性范围为4.0×10-9~4.0×10-5mol/L,检出限为1.0×10-9 mol/L.对4.0×10-7 mol/L扑热息痛平行测定8次,其标准偏差为2.7%.已将该方法用于片剂中扑热息痛含量测定.

  6. Chromium isotope composition of reducing and anoxic sediments from the Peru Margin and Cariaco Basin

    Science.gov (United States)

    Gueguen, B.; Planavsky, N.; Wang, X.; Algeo, T. J.; Peterson, L. C.; Reinhard, C. T.

    2014-12-01

    Chromium isotope systematics in marine sediments are now being used as a new redox proxy of the modern and ancient Earth's surface. Chromium is primarily delivered to the oceans by riverine inputs through weathering of Cr(III)-rich minerals present in the continental crust and oxidation of insoluble Cr(III) to soluble Cr(VI) species. Since oxidation-reduction reactions fractionate Cr isotopes whereby oxidized Cr(VI) species are preferentially enriched in heavy Cr isotopes, the Cr isotope composition of marine sediments may be useful tracers of redox conditions at the Earth's surface through geological time. Chromium is quantitatively removed in organic-rich sediments where reducing conditions prevail and promote reduction of Cr(VI) to Cr(III), and thus, these sediments should capture the ambient seawater Cr isotope composition. However, the isotopic composition of modern organic-rich sediments is poorly documented so far, and this step is essential for further modeling the global oceanic Cr isotope mass balance and assessing the effects of sedimentation and post-depositional processes on the marine Cr isotopes archive. In this study, we have characterized modern marine organic-rich sediments for their Cr isotope composition (δ53/52Cr) from two different settings, the Peru margin upwelling zone and the anoxic Cariaco Basin (Venezuela). Chromium isotopes were measured on a MC-ICP-MS (Nu Plasma) using a double-spike correction method. The authigenic fraction of shallow samples from the Peru margin sedimentary sequence with a high Total Organic Carbon (TOC) content (>10 wt%) yield an average δ53/52Crauthigenic value of +0.67 ±0.05 ‰ (2sd). However, although this value is close to the seawater value (Atlantic Ocean) and to Cariaco basin sediments (~ +0.6 ‰), reducing sediments from the Peru margin are on average isotopically slightly heavier, especially in samples having a low authigenic fraction and a low TOC content (δ53/52Crauthigenic values up to +1.30

  7. Studies on biological reduction of chromate by Streptomyces griseus

    Energy Technology Data Exchange (ETDEWEB)

    Poopal, Ashwini C. [Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008 (India); Laxman, R. Seeta, E-mail: rseetalaxman@yahoo.co.in [Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008 (India)

    2009-09-30

    Chromium is a toxic heavy metal used in various industries and leads to environmental pollution due to improper handling. The most toxic form of chromium Cr(VI) can be converted to less toxic Cr(III) by reduction. Among the actinomycetes tested for chromate reduction, thirteen strains reduced Cr(VI) to Cr(III), of which one strain of Streptomyces griseus (NCIM 2020) was most efficient showing complete reduction within 24 h. The organism was able to use a number of carbon sources as electron donors. Sulphate, nitrate, chloride and carbonate had no effect on chromate reduction during growth while cations such as Cd, Ni, Co and Cu were inhibitory to varying degrees. Chromate reduction was associated with the bacterial cells and sonication was the best method of cell breakage to release the enzyme. The enzyme was constitutive and did not require presence of chromate during growth for expression of activity. Chromate reduction with cell free extract (CFE) was observed without added NADH. However, addition of NAD(P)H resulted in 2-3-fold increase in activity. Chromate reductase showed optimum activity at 28 deg. C and pH 7.

  8. SPESIASI Cr(III) DAN Cr(VI) PADA LIMBAH CAIR INDUSTRI ELEKTROPLATING

    OpenAIRE

    Dian Windy Dwiasi; Dwi Kartika

    2008-01-01

    Speciation of Cr(III) and Cr(VI) in wastewater have been widely investigated. The species of Cr(III) and Cr(VI) in wastewater samples were determined by UV – Vis Spectrometry and Atomic Absorption Spectrometry (AAS). The method described is based upon the spectrophotometric determination of the magenta chromagen (λmax = 545 nm) formed when 1,5-diphenylcarbazide reacts with hexavalent chromium in sulphuric acid solution. Hexavalent chromium are determined by a calibration curve technique. The ...

  9. Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Simeonidis, K., E-mail: ksime@physics.auth.gr [Department of Mechanical Engineering, School of Engineering, University of Thessaly, Volos 38334 (Greece); Kaprara, E. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Samaras, T.; Angelakeris, M.; Pliatsikas, N.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Mitrakas, M. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Andritsos, N. [Department of Mechanical Engineering, School of Engineering, University of Thessaly, Volos 38334 (Greece)

    2015-12-01

    The potential of magnetite nanoparticles to be applied in drinking water treatment for the removal of hexavalent chromium is discussed. In this study, a method for their preparation which combines the use of low-cost iron sources (FeSO{sub 4} and Fe{sub 2}(SO{sub 4}){sub 3}) and a continuous flow mode, was developed. The produced magnetite nanoparticles with a size of around 20 nm, appeared relatively stable to passivation providing a removal capacity of 1.8 μg Cr(VI)/mg for a residual concentration of 50 μg/L when tested in natural water at pH 7. Such efficiency is explained by the reducing ability of magnetite which turns Cr(VI) to an insoluble Cr(OH){sub 3} form. The successful operation of a small-scale system consisting of a contact reactor and a magnetic separator demonstrates a way for the practical introduction and recovery of magnetite nanoparticles in water treatment technology. - Highlights: • Iron sulfates were used for the kilogram scale production of Fe{sub 3}O{sub 4} nanoparticles. • Studied particles showed a Cr(VI) removal capacity of 2 μg/mg in natural water. • Cr(VI) uptake is mostly based on its reduction and precipitation as Cr(OH){sub 3}. • A continuous flow reactor–magnetic separator operated with nanoparticles.

  10. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Gonzalez, J. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Peralta-Videa, J.R. [Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States); Rodriguez, E. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Ramirez, S.L. [Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States); Gardea-Torresdey, J.L. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States) and Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States)]. E-mail: jgardea@utep.edu

    2005-04-15

    The temperature dependence of the Cr(VI) bioadsorption and its possible reduction to Cr(III) by Agave lechuguilla biomass were studied. The experimental data obtained in batch experiments at different temperatures were fitted to the Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model. The adsorption equilibrium data fitted well with the Freundlich model. The average model parameters calculated from Freundlich's isotherms (adsorption capacity K{sub F} = 4 . 10{sup -2} mol . g{sup -1} and an average adsorption intensity value n = 13.07) showed that A. lechuguilla can be considered as an effective biomaterial for Cr(VI) removal from aqueous solution. Thermodynamic parameters ({delta}G{sup .}, {delta}H{sup .}, and {delta}S{sup .}) for Cr(VI) adsorption determined in the temperature range from (283 to 313) K suggest that a portion of Cr(VI) may be bound to functional groups on the surface of the adsorbent and then reduced to Cr(III). Additionally, the parameters of the Dubinin-Radushkevick equation indicated that the sorption of chromium species onto lechuguilla biomass mainly proceeds through binding surface functional groups.

  11. Chromium in diet

    Science.gov (United States)

    The best source of chromium is brewer's yeast. However, many people do not use brewer's yeast because it causes bloating ( abdominal distention ) and nausea . Other good sources of chromium include ...

  12. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil.

    Science.gov (United States)

    Bolan, N S; Adriano, D C; Natesan, R; Koo, B J

    2003-01-01

    In this study, seven organic amendments (biosolid compost, farm yard manure, fish manure, horse manure, spent mushroom, pig manure, and poultry manure) were investigated for their effects on the reduction of hexavalent chromium [chromate, Cr(VI)] in a mineral soil (Manawatu sandy soil) low in organic matter content. Addition of organic amendments enhanced the rate of reduction of Cr(VI) to Cr(III) in the soil. At the same level of total organic carbon addition, there was a significant difference in the extent of Cr(VI) reduction among the soils treated with organic amendments. There was, however, a significant positive linear relationship between the extent of Cr(VI) reduction and the amount of dissolved organic carbon in the soil. The effect of biosolid compost on the uptake of Cr(VI) from the soil, treated with various levels of Cr(VI) (0-1200 mg Cr kg(-1) soil), was examined with mustard (Brassica juncea L.) plants. Increasing addition of Cr(VI) increased Cr concentration in plants, resulting in decreased plant growth (i.e., phytotoxicity). Addition of the biosolid compost was effective in reducing the phytotoxicity of Cr(VI). The redistribution of Cr(VI) in various soil components was evaluated by a sequential fractionation scheme. In the unamended soil, the concentration of Cr was higher in the organic-bound, oxide-bound, and residual fractions than in the soluble and exchangeable fractions. Addition of organic amendments also decreased the concentration of the soluble and exchangeable fractions but especially increased the organic-bound fraction in soil.

  13. Titanium dioxide-gold nanocomposite materials embedded in silicate sol-gel film catalyst for simultaneous photodegradation of hexavalent chromium and methylene blue.

    Science.gov (United States)

    Pandikumar, Alagarsamy; Ramaraj, Ramasamy

    2012-02-15

    Aminosilicate sol-gel supported titanium dioxide-gold (EDAS/(TiO(2)-Au)(nps)) nanocomposite materials were synthesized by simple deposition-precipitation method and characterized. The photocatalytic oxidation and reduction activity of the EDAS/(TiO(2)-Au)(nps) film was evaluated using hexavalent chromium (Cr(VI)) and methylene blue (MB) dye under irradiation. The photocatalytic reduction of Cr(VI) to Cr(III) was studied in the presence of hole scavengers such as oxalic acid (OA) and methylene blue (MB). The photocatalytic degradation of MB was investigated in the presence and absence of Cr(VI). Presence of Au(nps) on the (TiO(2))(nps) surface and its dispersion in the silicate sol-gel film (EDAS/(TiO(2)-Au)(nps)) improved the photocatalytic reduction of Cr(VI) and oxidation of MB due to the effective interfacial electron transfer from the conduction band of the TiO(2) to Au(nps) by minimizing the charge recombination process when compared to the TiO(2) and (TiO(2)-Au)(nps) in the absence of EDAS. The EDAS/(TiO(2)-Au)(nps) nanocomposite materials provided beneficial role in the environmental remediation and purification process through synergistic photocatalytic activity by an advanced oxidation-reduction processes. PMID:22206972

  14. Chromium and Genomic Stability

    OpenAIRE

    Wise, Sandra S.; Wise, John Pierce

    2011-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as high...

  15. Removal of hexavalent chromium from aqueous solution by barium ion cross-linked alginate beads

    OpenAIRE

    Uzaşçı Sesil; Tezcan Filiz; Bedia Erim F.

    2014-01-01

    Barium ion cross-linked alginate beads have shown great affinity to toxic hexavalent chromium ions in aqueous solution, contrary to the traditional calcium alginate beads. The adsorption experiments were carried out by the batch contact method. The optimal pH for removal was found to be pH 4. The equilibrium was established in 4 h and the removal efficiency of chromium (VI) was found as 95%. The adsorption data fit well with Langmuir and Freundlich isotherms. The maximum chromium (VI) adsorpt...

  16. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).

    Science.gov (United States)

    Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger

    2014-09-15

    About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pHleather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB).

  17. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).

    Science.gov (United States)

    Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger

    2014-09-15

    About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pHleather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB). PMID:25222930

  18. Chromium stable isotope fractionation in modern biogeochemical cycling

    DEFF Research Database (Denmark)

    Paulukat, Cora Stefanie

    Chromium (Cr) is, due to its redox-sensitive properties, a powerful tracer for redox processes in environmental studies. Changes in its preferred oxidation state (III and VI) are accompanied by Crisotope fractionation. The Cr-isotope system is a promising tool to reconstruct the evolution of free...

  19. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  20. Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Almond, P. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stefanko, D. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-03-01

    (III) in solution) performed on depth discrete samples could not be correlated with the amount of chromium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium (i.e., effective Cr oxidation front). Exposure to oxygen (air or oxygen dissolved in water) results in the release of chromium through oxidation of Cr(III) to highly soluble chromate, Cr(VI). Residual reduction capacity in the oxidized region of the test samples indicates that the remaining reduction capacity is not effective in re-reducing Cr(VI) in the presence of oxygen. Consequently, this method for determining reduction capacity may not be a good indicator of the effective contaminant oxidation rate in a relatively porous solid (40 to 60 volume percent porosity). The chromium extracted in depth discrete samples ranged from a maximum of about 5.8 % at about 5 mm (118 day exposure) to about 4 % at about 10 mm (302 day exposure). The use of reduction capacity as an indicator of long-term performance requires further investigation. The carbonation front was also estimated to have advanced to at least 28 mm in 302 days based on visual observation of gas evolution during acid addition during the reduction capacity measurements. Depth discrete sampling of materials exposed to realistic conditions in combination with short term leaching of crushed samples has potential for advancing the understanding of factors influencing performance and will support conceptual model development.

  1. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Hedberg, Yolanda S., E-mail: yolanda@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, SE-10044 Stockholm (Sweden); Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177 Stockholm (Sweden); Lidén, Carola, E-mail: carola.liden@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177 Stockholm (Sweden); Odnevall Wallinder, Inger, E-mail: ingero@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, SE-10044 Stockholm (Sweden)

    2014-09-15

    Graphical abstract: - Highlights: • Released reducing/complexing leather-specific species can reduce released Cr(VI). • No co-released species enable the formation of Cr(VI) in solution. • The major Cr species released from leather in phosphate buffer was Cr(III) (>82%). • No Cr(VI) was released into artificial sweat. - Abstract: About 1–3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH < 6.5) and phosphate buffer (PB, pH 7.5–8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB)

  2. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI)

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Released reducing/complexing leather-specific species can reduce released Cr(VI). • No co-released species enable the formation of Cr(VI) in solution. • The major Cr species released from leather in phosphate buffer was Cr(III) (>82%). • No Cr(VI) was released into artificial sweat. - Abstract: About 1–3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH < 6.5) and phosphate buffer (PB, pH 7.5–8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB)

  3. Toxicity and adaptation of Dictyosphaerium chlorelloides to extreme chromium contamination.

    Science.gov (United States)

    Sánchez-Fortún, Sebastián; López-Rodas, Victoria; Navarro, Macarena; Marvá, Fernando; D'ors, Ana; Rouco, Mónica; Haigh-Florez, David; Costas, Eduardo

    2009-09-01

    Metals are often spilled by industries into inland water environments, with adverse consequences. Numerous papers have reported that heavy metals produce massive destruction of algae. Nevertheless, algal populations seem to become tolerant when they have had previous exposures to heavy metals. Because the mechanisms allowing heavy metal tolerance of algae are not yet known, the present study analyzed the effect of hexavalent chromium on growth and photosynthetic performance of Dictyosphaerium chlorelloides, stressing on the adaptation mechanisms to chromium contamination. Growth and photosynthetic performance of algal cells were inhibited by Cr(VI) at 10 mg/L, and the 72-h median inhibition concentration was established as 1.64 and 1.54 mg/L, respectively. However, after further incubation for a three month period in an environment with 25 mg/L of chromium, some rare, chromium-resistant cells occasionally were found. A Luria-Delbrück fluctuation analysis was performed to distinguish between resistant algae arising from rare, spontaneous mutations and resistant algae arising from physiological adaptation and other adaptive mechanisms. Resistant cells arose only by spontaneous mutations before the addition of chromium, with a rate of 1.77 x 10(-6) mutants per cell division. From a practical point of view, the use of both chromium-sensitive and chromium-resistant genotypes could make possible a specific algal biosensor for chromium. PMID:19323601

  4. Removal of hexavalent chromium from aqueous solution by barium ion cross-linked alginate beads

    Directory of Open Access Journals (Sweden)

    Uzaşçı Sesil

    2014-07-01

    Full Text Available Barium ion cross-linked alginate beads have shown great affinity to toxic hexavalent chromium ions in aqueous solution, contrary to the traditional calcium alginate beads. The adsorption experiments were carried out by the batch contact method. The optimal pH for removal was found to be pH 4. The equilibrium was established in 4 h and the removal efficiency of chromium (VI was found as 95%. The adsorption data fit well with Langmuir and Freundlich isotherms. The maximum chromium (VI adsorption capacity determined from Langmuir isotherm was 36.5 mg/g dry alginate beads. Our study suggests that barium alginate beads can be used as cost-effective and efficient adsorbents for the removal of chromium (VI from contaminated waters.

  5. Assessing uncertainty in published risk estimates using hexavalent chromium and lung cancer mortality as an example [Presentation 2015

    Science.gov (United States)

    Introduction: The National Research Council recommended quantitative evaluation of uncertainty in effect estimates for risk assessment. This analysis considers uncertainty across model forms and model parameterizations with hexavalent chromium [Cr(VI)] and lung cancer mortality a...

  6. Mucopolysaccharidosis VI

    Directory of Open Access Journals (Sweden)

    Harmatz Paul

    2010-04-01

    Full Text Available Abstract Mucopolysaccharidosis VI (MPS VI is a lysosomal storage disease with progressive multisystem involvement, associated with a deficiency of arylsulfatase B leading to the accumulation of dermatan sulfate. Birth prevalence is between 1 in 43,261 and 1 in 1,505,160 live births. The disorder shows a wide spectrum of symptoms from slowly to rapidly progressing forms. The characteristic skeletal dysplasia includes short stature, dysostosis multiplex and degenerative joint disease. Rapidly progressing forms may have onset from birth, elevated urinary glycosaminoglycans (generally >100 μg/mg creatinine, severe dysostosis multiplex, short stature, and death before the 2nd or 3rd decades. A more slowly progressing form has been described as having later onset, mildly elevated glycosaminoglycans (generally ARSB gene, located in chromosome 5 (5q13-5q14. Over 130 ARSB mutations have been reported, causing absent or reduced arylsulfatase B (N-acetylgalactosamine 4-sulfatase activity and interrupted dermatan sulfate and chondroitin sulfate degradation. Diagnosis generally requires evidence of clinical phenotype, arylsulfatase B enzyme activity ®, clinical management was limited to supportive care and hematopoietic stem cell transplantation. Galsulfase is now widely available and is a specific therapy providing improved endurance with an acceptable safety profile. Prognosis is variable depending on the age of onset, rate of disease progression, age at initiation of ERT and on the quality of the medical care provided.

  7. Characterization of Chromium Waste Form Based on Biocementation by Microbacterium sp. GM-1.

    Science.gov (United States)

    Lun, Limei; Li, Dongwei; Yin, Yajie; Li, Dou; Xu, Guojing; Zhao, Ziqiang; Li, Shan

    2016-09-01

    This paper demonstrated a biocementation technology for chromium slag by strain GM-1, a calcifying ureolytic bacterium identified as Microbacterium, based on microbially induced calcium carbonate. The characterization of Microbacterium sp. GM-1 was assessed to know the growth curve in different concentrations of Cr(VI). Microbacterium sp. GM-1 was tolerant to a concentration of 120 mg/L Cr(VI). Chromium waste forms were prepared using chromium, sand, soil and bacterial culture. There we had three quality ratios (8:2:1; 8:1:1; 8:2:0.5) of material (chromium, sand and soil, respectively). Bacterial and control chromium waste forms were analyzed by thermal gravimetric analyzer. All bacterial forms (8:2:1; 8:1:1; 8:2:0.5 J) showed sharp weight loss near the decomposition temperature of calcium carbonate between 600 and 700 °C. It indicated that the efficient bacterial strain GM-1 had induced calcium carbonate precipitate during bioremediation process. A five step Cr(VI) sequential extraction was performed to evaluate its distribution p