WorldWideScience

Sample records for chromium silicides

  1. Influence of IR-laser irradiation on α-SiC-chromium silicides ceramics

    International Nuclear Information System (INIS)

    Vlasova, M.; Marquez Aguilar, P.A.; Resendiz-Gonzalez, M.C.; Kakazey, M.; Bykov, A.; Gonzalez Morales, I.

    2005-01-01

    This project investigated the influence of IR-laser irradiation (λ = 1064 nm, P = 240 mW) on composite ceramics SiC-chromium silicides (CrSi 2 , CrSi, Cr 5 Si 3 ) by methods of X-ray diffraction, electron microscopy, atomic force microscopy, and X-ray microanalysis. Samples were irradiated in air. It was established that a surface temperature of 1990 K was required to melt chromium silicides, evaporate silicon from SiC, oxidize chromium silicides, and enrich superficial layer by carbon and chromium oxide

  2. Mechanoactivation of chromium silicide formation in the SiC-Cr-Si system

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2002-01-01

    Full Text Available The processes of simultaneous grinding of the components of a SiC-Cr-Si mixture and further temperature treatment in the temperature range 1073-1793 K were studied by X-ray phase analysis, IR spectroscopy, electron microscopy, and X-ray microanalysis. It was established that, during grinding of the mixture, chromium silicides form. A temperature treatment completes the process. Silicide formation proceeds within the framework of the diffusion of silicon into chromium. In the presence of SiO2 in the mixture, silicide formation occurs also as a result of the reduction of silica by silicon and silicon carbide. The sintering of synthesized composite SiC-chromium silicides powders at a high temperature under a high pressure (T = 2073 K, P = 5 GPa is accompanied by the destruction of cc-SiC particles, the cc/3 transition in silicon carbide and deformation distortions of the lattices of chromium silicides.

  3. Chromium base high performance materials: Where and how do they come from?

    Science.gov (United States)

    Choi, In-Kap

    1996-08-01

    The origin of chromium base performance materials (CBPM) is described. CBPM may include (1) trivalent chromium chemicals such as chromic acetate, chromic chloride, chromic bromide, chromic fluoride, chromic iodide, chromic phosphate, and chromic sulfate; (2) hexavalent chromium chemicals such as chromic acid, lithium chromate, sodium chromate, sodium dichromate, and potassium dichromate; (3) oxide forms of chromium such as black chrome, chromium dioxide, chromium oxide, and chromium hydroxide; and (4) other chromium compounds such as chromium aluminide, chromium boride, chromium carbide, chromium molybdate, chromium nitride, chromium silicide, chromium tungstate and lanthanum chromite. Extensive reviews of production processes, properties, and applications/end uses of CBPM are made.

  4. Refractory silicides for integrated circuits

    International Nuclear Information System (INIS)

    Murarka, S.P.

    1980-01-01

    Transition metal silicides have, in the past, attracted attention because of their usefulness as high temperature materials and in integrated circuits as Schottky barrier and ohmic contacts. More recently, with the increasing silicon integrated circuits (SIC) packing density, the line widths get narrower and the sheet resistance contribution to the RC delay increases. The possibility of using low resistivity silicides, which can be formed directly on the polysilicon, makes these silicides highly attractive. The usefulness of a silicide metallization scheme for integrated circuits depends, not only on the desired low resistivity, but also on the ease with which the silicide can be formed and patterned and on the stability of the silicides throughout device processing and during actual device usage. In this paper, various properties and the formation techniques of the silicides have been reviewed. Correlations between the various properties and the metal or silicide electronic or crystallographic structure have been made to predict the more useful silicides for SIC applications. Special reference to the silicide resistivity, stress, and oxidizability during the formation and subsequent processing has been given. Various formation and etching techniques are discussed

  5. Surface morphology of erbium silicide

    International Nuclear Information System (INIS)

    Lau, S.S.; Pai, C.S.; Wu, C.S.; Kuech, T.F.; Liu, B.X.

    1982-01-01

    The surface of rare-earth silicides (Er, Tb, etc.), formed by the reaction of thin-film metal layers with a silicon substrate, is typically dominated by deep penetrating, regularly shaped pits. These pits may have a detrimental effect on the electronic performance of low Schottky barrier height diodes utilizing such silicides on n-type Si. This study suggests that contamination at the metal-Si or silicide-Si interface is the primary cause of surface pitting. Surface pits may be reduced in density or eliminated entirely through either the use of Si substrate surfaces prepared under ultrahigh vacuum conditions prior to metal deposition and silicide formation or by means of ion irradiation techniques. Silicide layers formed by these techniques possess an almost planar morphology

  6. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, M.; He, Y.R.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  7. Irradiation behavior of miniature experimental uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk from, on the order of 7 x 10 20 cm -3 , far short of the approximately 20 x 10 20 cm -3 goal established for the RERTR program. The purpose of the irradiation experiments on silicide fuels on the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix

  8. Recent Advances in Nb-silicide in-situ composites

    International Nuclear Information System (INIS)

    Bewlay, B.P.; Jackson, M.R.; Subramanian, P.R.; Briant, C.L.

    2001-01-01

    In-situ composites based on Nb silicides have great potential for future high-temperature applications. These Nb-silicide composites combine a ductile Nb-based matrix with high-strength silicides. With the appropriate combination of alloying elements, such as Ti, Hf, Cr, AI, it is possible to achieve a promising balance of fracture toughness, high-temperature creep performance, and oxidation resistance. This paper will describe the effect of volume fraction of silicide on microstructure, high-temperature creep performance, and oxidation resistance. The ratio of Nb:(W+Ti) is critical in determining both creep rate and oxidation performance. If this ratio goes below ∼1.5, the creep rate increases substantially. In more complex silicide-based systems, other intermetallics, such as laves phases and a boron-rich T-2 phase, are added for oxidation resistance. To understand the role of each phase on the creep resistance and oxidation performance of these composites, we determined the creep and oxidation behavior of the individual phases and composites at temperatures up to 1200 o C. These data allow quantification of the load-bearing capability of the individual phases in the Nb-silicide based in-situ composites. (author)

  9. TiSi2 integrity within a doped silicide process step

    International Nuclear Information System (INIS)

    Crean, G.M.; Cole, P.D.; Stoemenos, J.

    1993-01-01

    Degradation of arsenic implanted titanium silicide (TiSi 2 ) thin films as a result of thermal processing for shallow junction formation is investigated. Significant arsenic diffusion from the silicide overlayer into the silicon substrate has been detected by Rutherford Backscattering Spectrometry at drive-in temperatures > 1,050 C. Cross-sectional transmission electron micrographs have shown the silicide film become increasingly non-uniform as the thermal budget increases, ultimately leading to discontinuities forming in the silicide film. This observed degradation of the titanium silicide film is also supported by sheet resistance measurements which show the film to degrade significantly above a threshold thermal budget

  10. Subsurface contributions in epitaxial rare-earth silicides

    Energy Technology Data Exchange (ETDEWEB)

    Luebben, Olaf; Shvets, Igor V. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College, Dublin (Ireland); Cerda, Jorge I. [Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, Madrid (Spain); Chaika, Alexander N. [Institute of Solid State Physics, RAS, Chernogolovka (Russian Federation)

    2015-07-01

    Metallic thin films of heavy rare-earth silicides epitaxially grown on Si(111) substrates have been widely studied in recent years because of their appealing properties: unusually low values of the Schottky barrier height, an abrupt interface, and a small lattice mismatch. Previous studies also showed that these silicides present very similar atomic and electronic structures. Here, we examine one of these silicides (Gd{sub 3}Si{sub 5}) using scanning tunneling microscopy (STM) image simulations that go beyond the Tersoff-Hamann approach. These simulations strongly indicate an unusual STM depth sensitivity for this system.

  11. Morphology of Si/tungsten-silicides/Si interlayers

    International Nuclear Information System (INIS)

    Theodore, N.; Secco d'Aragona, F.; Blackstone, S.

    1992-01-01

    Tungsten and tungsten-silicides are of interest for semiconductor technology because of their refractory nature, low electrical-resistivity and high electromigration-resistance. This paper presents the first formation of buried tungsten-silicide layers in silicon, by proximity adhesion. The interlayers, created by a combination of chemical vapor-deposition (CVD) and proximity-adhesion were studied using transmission electron-microscopy (TEM). The behavior of the layers in the presence and absence of an adjacent silicon-dioxide interlayer was also investigated. Buried silicide layers were successfully formed with or without the adjacent silicon-dioxide. The silicide formed continuous layers with single grains encompassing the width of the interlayer. Individual grains were globular, with cusps at grain boundaries. This caused interlayer-thicknesses to be non-uniform, with lower thickness values being present at the cusps. Occasional voids were observed at grain-boundary cusps. The voids were smaller and less frequent in the presence of an adjacent oxide-layer, due to flow of the oxide during proximity adhesion. Electron-diffraction revealed a predominance of tungsten-disilicide in the interlayers, with some free tungsten being present. Stresses in the silicide layers caused occasional glide dislocations to propagate into the silicon substrate beneath the interlayers. The dislocations propagate only ∼100 nm into the substrate and therefore should not be detrimental to use of the buried layers. Occasional precipitates were observed at the end of glide-loops. These possibly arise due to excess tungsten from the interlayer diffusion down the glide dislocation to finally precipitate out as tungsten-silicide

  12. Analyses on Silicide Coating for LOCA Resistant Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings.

  13. Analyses on Silicide Coating for LOCA Resistant Cladding

    International Nuclear Information System (INIS)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin

    2015-01-01

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings

  14. Production of Mo-99 using low-enriched uranium silicide

    International Nuclear Information System (INIS)

    Hutter, J.C.; Srinivasan, B.; Vicek, M.; Vandegrift, G.F.

    1994-01-01

    Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAl x alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U 3 Si 2 miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed

  15. Room temperature ferromagnetic gadolinium silicide nanoparticles

    Science.gov (United States)

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  16. Palladium silicide - a new contact for semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Totterdell, D.H.J.

    1981-11-01

    Silicide layers can be used as low resistance contacts in semiconductor devices. The formation of a metal rich palladium silicide Pd 2 Si is discussed. A palladium film 100A thick is deposited at 300 0 C and the resulting silicide layer used as an ohmic contact in an n + p silicon detector. This rugged contact has electrical characteristics comparable with existing evaporated gold contacts and enables the use of more reproducible bonding techniques. (author)

  17. A study of CoSix silicide formed by recoil implantation

    International Nuclear Information System (INIS)

    Kwok, H.L.

    1989-01-01

    This work investigated the formation of CoSi x silicides on n-Si by recoil implantation through a thin cobalt layer using an inert gas ion beam. The results suggest the formation of a very shallow (35 to 45 nm) silicide surface layer under the specific conditions of preparation. The surface layer resistivity was comparable to values reported for Co 2 Si and CoSi, although below the surface, the resistivity decreased. This appeared to suggest a change-over from cobalt-rich silicides near the surface to a more conducting silicide (CoSi 2 ) at the interface. (author)

  18. Analysis of reactivity accidents of the RSG-GAS core with silicide fuel

    International Nuclear Information System (INIS)

    Tukiran

    2002-01-01

    The fuels of RSG-GAS reactor is changed from uranium oxide to uranium silicide. For time being, the fuel of RSG-GAS core are mixed up between oxide and silicide fuels with 250 gr of loading and 2.96 g U/cm 3 of density, respectively. While, silicide fuel with 300 gr of loading is still under research. The advantages of silicide fuels are can be used in high density, so that, it can be stayed longer in the core at higher burn-up, therefore, the length of cycle is longer. The silicide fuel in RSG-GAS core is used in step-wise by using mixed up core. Firstly, it is used silicide fuel with 250 gr of loading and then, silicide fuel with 300 gr of loading (3.55 g U/cm 3 of density). In every step-wise of fuel loading must be analysed its safety margin. In this occasion, it is analysed the reactivity accident of RSG-GAS core with 300 gr of silicide fuel loading. The calculation was done by using POKDYN code which available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. From all cases which were have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 gr silicide fuel loading

  19. Neutronic design of the RSG-GAS silicide core

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Kuntoro, I.; Hastowo, H. [Center for Development of Research Reactor Technology National Nuclear Energy Agency BATAN, PUSPIPTEK Serpong Tangerang, 15310 (Indonesia)

    2002-07-01

    The objective of core conversion program of the RSG-GAS multipurpose reactor is to convert the fuel from oxide, U{sub 3}O{sub 8}-Al to silicide, U{sub 3}Si{sub 2}-Al. The aim of the program is to gain longer operation cycle by having, which is technically possible for silicide fuel, a higher density. Upon constraints of the existing reactor system and utilization, an optimal fuel density in amount of 3.55 g U/cc was found. This paper describes the neutronic parameter design of the silicide equilibrium core and the design of its transition cores as well. From reactivity control point of view, a modification of control rod system is also discussed. All calculations are carried out by means of diffusion codes, Batan-EQUIL-2D, Batan-2DIFF and -3DIFF. The silicide core shows that longer operation cycle of 32 full power days can be achieved without decreasing the safety criteria and utilization capabilities. (author)

  20. Room temperature ferromagnetic gadolinium silicide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  1. Irradiation behavior of experimental miniature uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk form, on the order of 7 x 10 20 cm -3 , far short of he approximately 20 x 10 20 cm -3 goal established for the RERTR Program. The purpose of the irradiation experiments on silicide fuels in the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix. The first group of experimental 'mini' fuel plates have recently reached the program's goal burnup and are in various stages of examination. Although the results to date indicate some limitations, it appears that within the range of parameters examined thus far the uranium silicide dispersion holds promise for satisfying most of the needs of the RERTR Program. The twelve experimental silicide dispersion fuel plates that were irradiated to approximately their goal exposure show the 30-vol % U 3 Si-Al plates to be in a stage of relatively rapid fission-gas-driven swelling at a fission density of 2 x 10 20 cm -3 . This fuel swelling will likely result in unacceptably large plate-thickness increases. The U 3 Si plates appear to be superior in this respect; however, they, too, are starting to move into the rapid fuel-swelling stage. Analysis of the currently available post irradiation data indicates that a 40-vol % dispersed fuel may offer an acceptable margin to the onset of unstable thickness changes at exposures of 2 x 10 21 fission/cm 3 . The interdiffusion between fuel and matrix

  2. Determination of accurate metal silicide layer thickness by RBS

    International Nuclear Information System (INIS)

    Kirchhoff, J.F.; Baumann, S.M.; Evans, C.; Ward, I.; Coveney, P.

    1995-01-01

    Rutherford Backscattering Spectrometry (RBS) is a proven useful analytical tool for determining compositional information of a wide variety of materials. One of the most widely utilized applications of RBS is the study of the composition of metal silicides (MSi x ), also referred to as polycides. A key quantity obtained from an analysis of a metal silicide is the ratio of silicon to metal (Si/M). Although compositional information is very reliable in these applications, determination of metal silicide layer thickness by RBS techniques can differ from true layer thicknesses by more than 40%. The cause of these differences lies in how the densities utilized in the RBS analysis are calculated. The standard RBS analysis software packages calculate layer densities by assuming each element's bulk densities weighted by the fractional atomic presence. This calculation causes large thickness discrepancies in metal silicide thicknesses because most films form into crystal structures with distinct densities. Assuming a constant layer density for a full spectrum of Si/M values for metal silicide samples improves layer thickness determination but ignores the underlying physics of the films. We will present results of RBS determination of the thickness various metal silicide films with a range of Si/M values using a physically accurate model for the calculation of layer densities. The thicknesses are compared to scanning electron microscopy (SEM) cross-section micrographs. We have also developed supporting software that incorporates these calculations into routine analyses. (orig.)

  3. Si-Ge Nano-Structured with Tungsten Silicide Inclusions

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Traditional silicon germanium high temperature thermoelectrics have potential for improvements in figure of merit via nano-structuring with a silicide phase. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples are prepared using powder metallurgy techniques; including mechanochemical alloying via ball milling and spark plasma sintering for densification. In addition to microstructural development, thermal stability of thermoelectric transport properties are reported, as well as couple and device level characterization.

  4. Synthesis and design of silicide intermetallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.

  5. Magnesium silicide production and silane synthesis on its basis

    International Nuclear Information System (INIS)

    Taurbaev, T.I.; Mukashev, F.A.; Manakov, S.M.; Francev, U.V.; Kalblanbekov, B.M.; Akhter, P.; Abbas, M.; Hussain, A.

    2003-01-01

    We had developed an alternative method of production of magnesium silicide with use of ferroalloys of silicon. Magnesium silicide is raw material for silane synthesis. The essence of the method consist of sintering FS -75 (ferrosilicium with 75 % of silicon and 25 % of iron, made by ferroalloy factories) with metal magnesium at temperature of 650 deg. C. The X-ray analysis has shown formation of magnesium silicide. That is further used for synthesis of silane. The output of silane is 60 % in respect of the contents of silicon. After removing the water vapors the mass-spectrometer analysis has estimated the purity of silane as 99.95 % with no detection of phosphine and diborane. (author)

  6. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si1-xCx

    International Nuclear Information System (INIS)

    Yoo, Jung-Ho; Chang, Hyun-Jin; Min, Byoung-Gi; Ko, Dae-Hong; Cho, Mann-Ho; Sohn, Hyunchul; Lee, Tae-Wan

    2008-01-01

    We investigated the silicide formation in Ni/epi-Si 1-x C x systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si 1-x C x /Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si 1-x C x systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si 1-x C x system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films

  7. Reprocessing of LEU silicide fuel at Dounreay

    International Nuclear Information System (INIS)

    Cartwright, P.

    1996-01-01

    UKAEA have recently reprocessed two LEU silicide fuel elements in their MTR fuel reprocessing plant at Dounreay. The reprocessing was undertaken to demonstrate UKAEA's commitment to the world-wide research reactor communities future needs. Reprocessing of LEU silicide fuel is seen as a waste treatment process, resulting in the production of a liquid feed suitable for conditioning in a stable form of disposal. The uranium product from the reprocessing can be used as a blending feed with the HEU to produce LEU for use in the MTR cycle. (author)

  8. Thermoelectric characteristics of Pt-silicide/silicon multi-layer structured p-type silicon

    International Nuclear Information System (INIS)

    Choi, Wonchul; Jun, Dongseok; Kim, Soojung; Shin, Mincheol; Jang, Moongyu

    2015-01-01

    Electric and thermoelectric properties of silicide/silicon multi-layer structured devices were investigated with the variation of silicide/silicon heterojunction numbers from 3 to 12 layers. For the fabrication of silicide/silicon multi-layered structure, platinum and silicon layers are repeatedly sputtered on the (100) silicon bulk substrate and rapid thermal annealing is carried out for the silicidation. The manufactured devices show ohmic current–voltage (I–V) characteristics. The Seebeck coefficient of bulk Si is evaluated as 195.8 ± 15.3 μV/K at 300 K, whereas the 12 layered silicide/silicon multi-layer structured device is evaluated as 201.8 ± 9.1 μV/K. As the temperature increases to 400 K, the Seebeck coefficient increases to 237.2 ± 4.7 μV/K and 277.0 ± 1.1 μV/K for bulk and 12 layered devices, respectively. The increase of Seebeck coefficient in multi-layered structure is mainly attributed to the electron filtering effect due to the Schottky barrier at Pt-silicide/silicon interface. At 400 K, the thermal conductivity is reduced by about half of magnitude compared to bulk in multi-layered device which shows the efficient suppression of phonon propagation by using Pt-silicide/silicon hetero-junctions. - Highlights: • Silicide/silicon multi-layer structured is proposed for thermoelectric devices. • Electric and thermoelectric properties with the number of layer are investigated. • An increase of Seebeck coefficient is mainly attributed the Schottky barrier. • Phonon propagation is suppressed with the existence of Schottky barrier. • Thermal conductivity is reduced due to the suppression of phonon propagation

  9. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Lavoie, Christian; Jordan-Sweet, Jean [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Alptekin, Emre; Zhu, Frank [IBM Semiconductor Research and Development Center, 2070 Route 52, Hopewell Junction, New York 12533 (United States); Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M. [TEL Epion Inc., 900 Middlesex Turnpike, Bldg. 6, Billerica, Massachusetts 01821 (United States)

    2016-04-21

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  10. NMOS contact resistance reduction with selenium implant into NiPt silicide

    Science.gov (United States)

    Rao, K. V.; Khaja, F. A.; Ni, C. N.; Muthukrishnan, S.; Darlark, A.; Lei, J.; Peidous, I.; Brand, A.; Henry, T.; Variam, N.; Erokhin, Y.

    2012-11-01

    A 25% reduction in NMOS contact resistance (Rc) was achieved by Selenium implantation into NiPt silicide film in VIISta Trident high-current single-wafer implanter. The Trident implanter is designed for shallow high-dose implants with high beam currents to maintain high throughput (for low CoO), with improved micro-uniformity and no energy contamination. The integration of Se implant was realized using a test chip dedicated to investigating silicide/junction related electrical properties and testable after silicidation. The silicide module processes were optimized, including the pre-clean (prior to RF PVD NiPt dep) and pre- and post-implant anneals. A 270°C soak anneal was used for RTP1, whereas a msec laser anneal was employed for RTP2 with sufficient process window (800-850°C), while maintaining excellent junction characteristics without Rs degradation.

  11. Technology CAD of silicided Schottky barrier MOSFET for elevated source-drain engineering

    International Nuclear Information System (INIS)

    Saha, A.R.; Chattopadhyay, S.; Bose, C.; Maiti, C.K.

    2005-01-01

    Technology CAD has been used to study the performance of a silicided Schottky barrier (SB) MOSFET with gate, source and drain contacts realized with nickel-silicide. Elevated source-drain structures have been used towards the S/D engineering of CMOS devices. A full process-to-device simulation has been employed to predict the performance of sub-micron SB n-MOSFETs for the first time. A model for the diffusion and alloy growth kinetics has been incorporated in SILVACO-ATLAS and ATHENA to explore the processing and design parameter space for the Ni-silicided MOSFETs. The temperature and concentration dependent diffusion model for NiSi have been developed and necessary material parameters for nickel-silicide and epitaxial-Si have been incorporated through the C-interpreter function. Two-dimensional (2D) process-to-device simulations have also been used to study the dc and ac (RF) performance of silicided Schottky barrier (SB) n-MOSFETs. The extracted sheet resistivity, as a function of annealing temperature of the silicided S/D contacts, is found to be lower than the conventional contacts currently in use. It is also shown that the Technology CAD has the full capability to predict the possible dc and ac performance enhancement of a MOSFET with elevated S/D structures. While the simulated dc performance shows a clear enhancement, the RF analyses show no performance degradation in the cut-off frequency/propagation delay and also improve the ac performance due to the incorporation of silicide contacts in the S/D region

  12. Technology CAD of silicided Schottky barrier MOSFET for elevated source-drain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A.R. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India)]. E-mail: ars.iitkgp@gmail.com; Chattopadhyay, S. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India); School of Electrical, Electronics and Computer Engineering, University of Newcastle, Newcastle upon Tyne (United Kingdom); Bose, C. [Department of Electronics and Telecommunication Engineering, Jadavpur University, Calcutta 700032 (India); Maiti, C.K. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India)

    2005-12-05

    Technology CAD has been used to study the performance of a silicided Schottky barrier (SB) MOSFET with gate, source and drain contacts realized with nickel-silicide. Elevated source-drain structures have been used towards the S/D engineering of CMOS devices. A full process-to-device simulation has been employed to predict the performance of sub-micron SB n-MOSFETs for the first time. A model for the diffusion and alloy growth kinetics has been incorporated in SILVACO-ATLAS and ATHENA to explore the processing and design parameter space for the Ni-silicided MOSFETs. The temperature and concentration dependent diffusion model for NiSi have been developed and necessary material parameters for nickel-silicide and epitaxial-Si have been incorporated through the C-interpreter function. Two-dimensional (2D) process-to-device simulations have also been used to study the dc and ac (RF) performance of silicided Schottky barrier (SB) n-MOSFETs. The extracted sheet resistivity, as a function of annealing temperature of the silicided S/D contacts, is found to be lower than the conventional contacts currently in use. It is also shown that the Technology CAD has the full capability to predict the possible dc and ac performance enhancement of a MOSFET with elevated S/D structures. While the simulated dc performance shows a clear enhancement, the RF analyses show no performance degradation in the cut-off frequency/propagation delay and also improve the ac performance due to the incorporation of silicide contacts in the S/D region.

  13. Structural and electronic properties of rare-earth silicide thin films at Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Dues, Christof; Schmidt, Wolf Gero; Sanna, Simone [Lehrstuhl fuer Theoretische Physik, Universitaet Paderborn (Germany)

    2016-07-01

    Rare-earth (RE) silicides thin films on silicon surfaces are currently of high interest. They grow nearly defect-free because of the small lattice mismatch, and exhibit very low Schottky-barriers on n-type silicon. They even give rise to the self-organized formation of RE silicide nanowires on the Si(001) and vicinal surfaces. Depending on the amount of deposited RE atoms, a plethora of reconstructions are observed for the RE silicide. While one monolayer leads to the formation of a 1 x 1-reconstruction, several monolayer thick silicides crystallize in a √(3) x √(3) R30 {sup circle} superstructure. Submonolayer RE deposition leads to different periodicities. In this work we investigate the formation of RE silicides thin films on Si(111) within the density functional theory. The energetically favored adsorption site for RE adatoms is determined calculating the potential energy surface. As prototypical RE, Dysprosium is used. Additional calculations are performed for silicides formed by different RE elements. We calculate structural properties, electronic band structures and compare measured and simulated STM images. We consider different terminations for the 5 x 2 reconstruction occurring in the submonolayer regime and investigate their stability by means of ab initio thermodynamics. The same method is employed to predict the stable silicide structure as a function of the deposited RE atoms.

  14. Silicide/Silicon Heterointerfaces, Reaction Kinetics and Ultra-short Channel Devices

    Science.gov (United States)

    Tang, Wei

    Nickel silicide is one of the electrical contact materials widely used on very large scale integration (VLSI) of Si devices in microelectronic industry. This is because the silicide/silicon interface can be formed in a highly controlled manner to ensure reproducibility of optimal structural and electrical properties of the metal-Si contacts. These advantages can be inherited to Si nanowire (NW) field-effect transistors (FET) device. Due to the technological importance of nickel silicides, fundamental materials science of nickel silicides formation (Ni-Si reaction), especially in nanoscale, has raised wide interest and stimulate new insights and understandings. In this dissertation, in-situ transmission electron microscopy (TEM) in combination with FET device characterization will be demonstrated as useful tools in nano-device fabrication as well as in gaining insights into the process of nickel silicide formation. The shortest transistor channel length (17 nm) fabricated on a vapor-liquid-solid (VLS) grown silicon nanowire (NW) has been demonstrated by controlled reaction with Ni leads on an in-situ transmission electron microscope (TEM) heating stage at a moderate temperature of 400 ºC. NiSi2 is the leading phase, and the silicide-silicon interface is an atomically sharp type-A interface. At such channel lengths, high maximum on-currents of 890 (microA/microm) and a maximum transconductance of 430 (microS/microm) were obtained, which pushes forward the performance of bottom-up Si NW Schottky barrier field-effect transistors (SB-FETs). Through accurate control over the silicidation reaction, we provide a systematic study of channel length dependent carrier transport in a large number of SB-FETs with channel lengths in the range of (17 nm -- 3.6 microm). Our device results corroborate with our transport simulations and reveal a characteristic type of short channel effects in SB-FETs, both in on- and off-state, which is different from that in conventional MOSFETs

  15. Neutronic Analysis and Radiological Safety of RSG-GAS Reactor on 300 Grams Uranium Silicide Core

    International Nuclear Information System (INIS)

    Pande Made Udiyani; Lily Suparlina; Rokhmadi

    2007-01-01

    As starting of usage silicide U 250 g fuel element in the core of RSG-GAS and will be continued with usage of silicide U 300 g fuel element, hence done beforehand neutronic analyse and radiological safety of RSG-GAS. Calculation done by ORIGEN2.1 code to calculate source term, and also by PC-COSYMA code to calculate radiological safety of radioactive dispersion from RSG-GAS. Calculation of radioactive dispersion done at condition of reactor is postulated be happened an accident of LOCA causing one fuel element to melt. Neutronic analysis indicate that silicide U 250 g full core shall to be operated beforehand during 625 MWD before converted to silicide U 300 g core. During operation of transition core with mixture of silicide U 250 g and 300 g, all parameter fulfill criterion of safety Designed Balance core of silicide U 300 g will be reached at the time of fifth full core. Result of calculation indicate that through mixture core of silicide U 250 and 300 g proposed can form silicide U 300 g balance core of reactor RSG-GAS safely. Calculation of radiology safety by deterministic for silicide U 300 g balance core, and accident postulation which is equal to core of silicide U 250 g yield output in the form of radiation activity (radionuclide concentration in the air and deposition on the ground), radiation dose (collective and individual), radiation effect (short- and long-range), which accepted by society in each perceived sector. Result of calculation indicated that dose accepted by society is not pass permitted boundary for public society if happened accident. (author)

  16. Silicide Schottky Contacts to Silicon: Screened Pinning at Defect Levels

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, T.J.

    1999-03-11

    Silicide Schottky contacts can be as large as 0.955 eV (E{sub v} + 0.165 eV) on n-type silicon and as large as 1.05 eV (E{sub c} {minus} 0.07 eV) on p-type silicon. Current models of Schottky barrier formation do not provide a satisfactory explanation of occurrence of this wide variation. A model for understanding Schottky contacts via screened pinning at defect levels is presented. In the present paper it is shown that most transition metal silicides are pinned approximately 0.48 eV above the valence band by interstitial Si clusters. Rare earth disilicides pin close to the divacancy acceptor level 0.41 eV below the conduction band edge while high work function silicides of Ir and Pt pin close to the divacancy donor level 0.21 eV above the valence band edge. Selection of a particular defect pinning level depends strongly on the relative positions of the silicide work function and the defect energy level on an absolute energy scale.

  17. Kinetics of nickel silicide growth in silicon nanowires: From linear to square root growth

    International Nuclear Information System (INIS)

    Yaish, Y. E.; Beregovsky, M.; Katsman, A.; Cohen, G. M.

    2011-01-01

    The common practice for nickel silicide formation in silicon nanowires (SiNWs) relies on axial growth of silicide along the wire that is initiated from nickel reservoirs at the source and drain contacts. In the present work the silicide intrusions were studied for various parameters including wire diameter (25-50 nm), annealing time (15-120 s), annealing temperature (300-440 deg. C), and the quality of the initial Ni/Si interface. The silicide formation was investigated by high-resolution scanning electron microscopy, high-resolution transmission electron microscopy (TEM), and atomic force microscopy. The main part of the intrusion formed at 420 deg. C consists of monosilicide NiSi, as was confirmed by energy dispersive spectroscopy STEM, selected area diffraction TEM, and electrical resistance measurements of fully silicided SiNWs. The kinetics of nickel silicide axial growth in the SiNWs was analyzed in the framework of a diffusion model through constrictions. The model calculates the time dependence of the intrusion length, L, and predicts crossover from linear to square root time dependency for different wire parameters, as confirmed by the experimental data.

  18. Evaluation of the oxide and silicide fuels reactivity in the RSG-GAS core

    International Nuclear Information System (INIS)

    S, Tukiran; M S, Tagor; S, Lily; Pinem, S.

    2000-01-01

    Fuel exchange of The RSG-GAS reactor core from uranium oxide to uranium silicide in the same loading, density, and enrichment, that is, 250 gr, 2.98 gr/cm 3 , and 19.75 % respectively, will be performed in-step wise. In every cycle of exchange with 5/l mode, it is needed to evaluate the parameter of reactor core operation. One of the important operation parameters is fuel reactivity that gives effect to the core reactivity. The experiment was performed at core no. 36, BOC, low power which exist 2 silicide fuels. The evaluation was done based on the RSG-GAS control rod calibration consisting of 40 fuels and 8 control rod.s. From 40 fuels in the core, there are 2 silicide fuels, RI-225/A-9 and RI-224/C-3. For inserting 2 silicide fuels, the reactivity effect to the core must be know. To know this effect , it was performed fuels reactivity experiment, which based on control rod calibration. But in this case the RSG-GAS has no other fresh oxide fuel so that configuration of the RSG-GAS core was rearranged by taking out the both silicide fuels and this configuration is used as reference core. Then silicide fuel RI-224 was inserted to position F-3 replacing the fresh oxide fuel RI-260 so the different reactivity of the fuels is obtained. The experiment result showed that the fuel reactivity change is in amount of 12.85 cent (0.098 % ) The experiment result was compared to the calculation result, using IAFUEL code which amount to 13.49 cent (0.103 %) The result showed that the reactivity change of oxide to silicide fuel is small so that the fuel exchange from uranium oxide to uranium silicide in the first step can be done without any significant change of the operation parameter

  19. Neutronic design of mixed oxide-silicide cores for the core conversion of rsg-gas reactor

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Tukiran; Pinem surian; Febrianto

    2001-01-01

    The core conversion of rsg-gas reactor from an all-oxide (U 3 O 8 -Al) core, through a series of mixed oxide-silicide core, to an all-silicide (U 3 Si 2 -Al) core for the same meat density of 2.96 g U/cc is in progress. The conversion is first step of the step-wise conversion and will be followed by the second step that is the core conversion from low meat density of silicide core, through a series of mixed lower-higher density of silicide core, to an all-higher meat density of 3.55 g/cc core. Therefore, the objectives of this work is to design the mixed cores on the neutronic performance to achieve safety a first full-silicide core for the reactor with the low uranium meat density of 2.96gU/cc. The neutronic design of the mixed cores was performed by means of Batan-EQUIL-2D and Batan-3DIFF computer codes for 2 and 3 dimension diffusion calculation, respectively. The result shows that all mixed oxide-silicide cores will be feasible to achieve safety a fist full-silicide core. The core performs the same neutronic core parameters as those of the equilibrium silicide core. Therefore, the reactor availability and utilization during the core conversion is not changed

  20. Prediction of barrier inhomogeneities and carrier transport in Ni-silicided Schottky diode

    International Nuclear Information System (INIS)

    Saha, A.R.; Dimitriu, C.B.; Horsfall, A.B.; Chattopadhyay, S.; Wright, N.G.; O'Neill, A.G.; Maiti, C.K.

    2006-01-01

    Based on Quantum Mechanical (QM) carrier transport and the effects of interface states, a theoretical model has been developed to predict the anomalous current-voltage (I-V) characteristics of a non-ideal Ni-silicided Schottky diode at low temperatures. Physical parameters such as barrier height, ideality factor, series resistance and effective Richardson constant of a silicided Schottky diode were extracted from forward I-V characteristics and are subsequently used for the simulation of both forward and reverse I-V characteristics using a QM transport model in which the effects of interface state and bias dependent barrier reduction are incorporated. The present analysis indicates that the effects of barrier inhomogeneity caused by incomplete silicide formation at the junction and the interface states may change the conventional current transport process, leading to anomalous forward and reverse I-V characteristics for the Ni-silicided Schottky diode

  1. Analysis Of Core Management For The Transition Cores Of RSG-GAS Reactor To Full-Silicide Core

    International Nuclear Information System (INIS)

    Malem Sembiring, Tagor; Suparlina, Lily; Tukiran

    2001-01-01

    The core conversion of RSG-GAS reactor from oxide to silicide core with meat density of 2.96 g U/cc is still doing. At the end of 2000, the reactor has been operated for 3 transition cores which is the mixed core of oxide-silicide. Based on previous work, the calculated core parameter for the cores were obtained and it is needed 10 transition cores to achieve a full-silicide core. The objective of this work is to acquire the effect of the increment of the number of silicide fuel on the core parameters such as excess reactivity and shutdown margin. The measurement of the core parameters was carried out using the method of compensation of couple control rods. The experiment shows that the excess reactivity trends lower with the increment of the number of silicide fuel in the core. However, the shutdown margin is not change with the increment of the number of silicide fuel. Therefore, the transition cores can be operated safety to a full-silicide core

  2. Far-infrared spectroscopy of thermally annealed tungsten silicide films

    International Nuclear Information System (INIS)

    Amiotti, M.; Borghesi, A.; Guizzetti, G.; Nava, F.; Santoro, G.

    1991-01-01

    The far-infrared transmittance spectrum of tungsten silicide has been observed for the first time. WSi 2 polycrystalline films were prepared by coevaporation and chemical-vapour deposition on silicon wafers, and subsequently thermally annealed at different temperatures. The observed structures are interpreted, on the basis of the symmetry properties of the crystal, such as infrared-active vibrational modes. Moreover, the marked lineshape dependence on annealing temperature enables this technique to analyse the formation of the solid silicide phases

  3. Texture in thin film silicides and germanides: A review

    International Nuclear Information System (INIS)

    De Schutter, B.; De Keyser, K.; Detavernier, C.; Lavoie, C.

    2016-01-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi_2, C54-TiSi_2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si_1_−_xGe_x in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  4. Texture in thin film silicides and germanides: A review

    Science.gov (United States)

    De Schutter, B.; De Keyser, K.; Lavoie, C.; Detavernier, C.

    2016-09-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi2, C54-TiSi2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si1-xGex in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  5. Texture in thin film silicides and germanides: A review

    Energy Technology Data Exchange (ETDEWEB)

    De Schutter, B., E-mail: bob.deschutter@ugent.be; De Keyser, K.; Detavernier, C. [Department of Solid State Sciences, Ghent University, Ghent (Belgium); Lavoie, C. [IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (United States)

    2016-09-15

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi{sub 2}, C54-TiSi{sub 2}, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si{sub 1−x}Ge{sub x} in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  6. Development of Silicide Coating on Molybdenum Alloy Cladding

    International Nuclear Information System (INIS)

    Lim, Woojin; Ryu, Ho Jin

    2015-01-01

    The molybdenum alloy is considered as one of the accident tolerant fuel (ATF) cladding materials due to its high temperature mechanical properties. However, molybdenum has a weak oxidation resistance at elevated temperatures. To modify the oxidation resistance of molybdenum cladding, silicide coating on the cladding is considered. Molybdenum silicide layers are oxidized to SiO 2 in an oxidation atmosphere. The SiO 2 protective layer isolates the substrate from the oxidizing atmosphere. Pack cementation deposition technique is widely adopted for silicide coating for molybdenum alloys due to its simple procedure, homogeneous coating quality and chemical compatibility. In this study, the pack cementation method was conducted to develop molybdenum silicide layers on molybdenum alloys. It was found that the Mo 3 Si layer was deposited on substrate instead of MoSi 2 because of short holding time. It means that through the extension of holding time, MoSi 2 layer can be formed on molybdenum substrate to enhance the oxidation resistance of molybdenum. The accident tolerant fuel (ATF) concept is to delay the process following an accident by reducing the oxidation rate at high temperatures and to delay swelling and rupture of fuel claddings. The current research for Atf can be categorized into three groups: First, modification of existing zirconium-based alloy cladding by improving the high temperature oxidation resistance and strength. Second, replacing Zirconium based alloys with alternative metallic materials such as refractory elements with high temperature oxidation resistance and strength. Third, designing alternative fuel structures using ceramic and composite systems

  7. Oxidation behavior of molybdenum silicides and their composites

    International Nuclear Information System (INIS)

    Natesan, K.; Deevi, S. C.

    2000-01-01

    A key materials issue associated with the future of high-temperature structural silicides is the resistance of these materials to oxidation at low temperatures. Oxidation tests were conducted on Mo-based silicides over a wide temperature range to evaluate the effects of alloy composition and temperature on the protective scaling characteristics and testing regime for the materials. The study included Mo 5 Si 3 alloys that contained several concentrations of B. In addition, oxidation characteristics of MoSi 2 -Si 3 N 4 composites that contained 20--80 vol.% Si 3 N 4 were evaluated at 500--1,400 C

  8. Microstructure and mechanical properties of metal/oxide and metal/silicide interfaces

    International Nuclear Information System (INIS)

    Shaw, L.; Miracle, D.; Abbaschian, R.

    1995-01-01

    Fracture energies of Al 2 O 3 /Nb interfaces and MoSi 2 /Nb interfaces with and without Al 2 O 3 coating were measured using sandwich-type chevron-notched specimens. The relations between the mechanical properties, microstructures, types of bonds at the interface and processing routes were explored. The fracture energy of the Al 2 O 3 /Nb interface was determined to be 9 J/m 2 and changed to 16 J/m 2 when Nb was pre-oxidized before the formation of the Al 2 O 3 /Nb interface. The fracture energy of the MoSi 2 /Nb interface could not be determined directly because of the formation of the interfacial compounds. However, the fracture energy at the MoSi 2 /Nb interfacial region was found to depend on the interfacial bond strength, roughness of interfaces and microstructure of interfacial compounds. The interfacial fracture energies of Al 2 O 3 with silicides, MoSi 2 , Nb 5 Si 3 , or (Nb, Mo)Si 2 were estimated to be about 16 J/m 2 , while the interfacial fracture energies between two silicides or between Nb and a silicide were larger than 34 J/m 2 . The measured fracture energies between two silicides or between Nb and a silicide were larger than 34 J/m 2 . The measured fracture energies of the various interfaces are discussed in terms of the interfacial microstructures and types of bonds at the interfaces

  9. Evaluation of In-Core Fuel Management for the Transition Cores of RSG-GAS Reactor to Full-Silicide Core

    International Nuclear Information System (INIS)

    S, Tukiran; MS, Tagor; P, Surian

    2003-01-01

    The core conversion of RSG-GAS reactor from oxide to silicide core with meat density of 2.96 gU/cc has been done. The core-of RSG-GAS reactor has been operated full core of silicide fuels which is started with the mixed core of oxide-silicide start from core 36. Based on previous work, the calculated core parameter for the cores were obtained and it is needed 9 transition cores (core 36 - 44) to achieve a full-silicide core (core 45). The objective of this work is to acquire the effect of the increment of the number of silicide fuel on the core parameters. Conversion core was achieved by transition cores mixed oxide-silicide fuels. Each transition core is calculated and measured core parameter such as, excess reactivity and shutdown margin. Calculation done by Batan-EQUIL-2D code and measurement of the core parameters was carried out using the method of compensation of couple control rods. The results of calculation and experiment shows that the excess reactivity trends lower with the increment of the number of silicide fuel in the core. However, the shutdown margin is not change with the increment of the number of silicide fuel. Therefore, the transition cores can be operated safely to a full-silicide core

  10. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si{sub 1-x}C{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Ho; Chang, Hyun-Jin [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Min, Byoung-Gi [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of); Ko, Dae-Hong [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)], E-mail: dhko@yonsei.ac.kr; Cho, Mann-Ho [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Sohn, Hyunchul [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Tae-Wan [Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of)

    2008-12-05

    We investigated the silicide formation in Ni/epi-Si{sub 1-x}C{sub x} systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si{sub 1-x}C{sub x}/Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si{sub 1-x}C{sub x} systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si{sub 1-x}C{sub x} system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films.

  11. Exploitation of a self-limiting process for reproducible formation of ultrathin Ni1-xPtx silicide films

    International Nuclear Information System (INIS)

    Zhang Zhen; Zhu Yu; Rossnagel, Steve; Murray, Conal; Jordan-Sweet, Jean; Yang, Bin; Gaudet, Simon; Desjardins, Patrick; Kellock, Andrew J.; Ozcan, Ahmet; Zhang Shili; Lavoie, Christian

    2010-01-01

    This letter reports on a process scheme to obtain highly reproducible Ni 1-x Pt x silicide films of 3-6 nm thickness formed on a Si(100) substrate. Such ultrathin silicide films are readily attained by sputter deposition of metal films, metal stripping in wet chemicals, and final silicidation by rapid thermal processing. This process sequence warrants an invariant amount of metal intermixed with Si in the substrate surface region independent of the initial metal thickness, thereby leading to a self-limiting formation of ultrathin silicide films. The crystallographic structure, thickness, uniformity, and morphological stability of the final silicide films depend sensitively on the initial Pt fraction.

  12. Uranium silicide activities at Babcock and Wilcox

    International Nuclear Information System (INIS)

    Noel, W.W.; Freim, J.B.

    1983-01-01

    Babcock and Wilcox, Naval Nuclear Fuel Division (NNFD) in conjunction with Argonne National Laboratory (ANL) is actively involved in the Reduced Enrichment Research Test Reactor (RERTR) Program to produce low enriched fuel elements for research reactors. B and W and ANL have undertaken a joint effort in which NNFD will fabricate two low enriched uranium (LEU), Oak Ridge Reactor (ORR) elements with uranium silicide fuel furnished by ANL. These elements are being fabricated for irradiation testing at Oak Ridge National Laboratory (ORNL). Concurrently with this program, NNFD is developing and implementing the uranium silicide and uranium aluminide fuel fabrication technology. NNFD is fabricating the uranium silicide ORR elements in a two-phase program, Development and Production. To summarize: 1. Full size fuel plates can be made with U 3 SiAl but the fabricator must prevent oxidation of the compact prior to hot roll bonding; 2. Providing the ANL U 3 Si x irradiation results are successful, NNFD plans to provide two ORR elements during February 1983; 3. NNFD is developing and implementing U 3 Si x and UAI x fuel fabrication technology to be operational in 1983; 4. NNFD can supply U 3 O 8 high enriched uranium (HEU) or low enriched uranium (LEU) research reactor elements; 5. NNFD is capable of providing high quality, cost competitive LEU or HEU research reactor elements to meet the needs of the customer

  13. Further data of silicide fuel for the LEU conversion of JMTR

    International Nuclear Information System (INIS)

    Saito, M.; Futamura, Y.; Nakata, H.; Ando, H.; Sakurai, F.; Ooka, N.; Sakakura, A.; Ugajin, M.; Shirai, E.

    1990-01-01

    Silicide fuel data for the safety assessment of the JMTR LEU fuel conversion are being measured. The data include fission product release, thermal properties, behaviour under accident conditions, and metallurgical characteristics. The methods used in the experiments are discussed. Results of fission products release at high temperature are described. The release of iodine from the silicide fuel is considerably lower than for U-Al alloy fuel

  14. Evaluation Of Oxide And Silicide Mixed Fuels Of The RSG-GAS Core

    International Nuclear Information System (INIS)

    Tukiran; Sembiring, Tagor Malem; Suparlina, Lily

    2000-01-01

    Fuel exchange of the RSG-GAS reactor core from uranium oxide to uranium silicide in the same loading, density, and enrichment, that is 250 gr, 2.98 gr/cm 3 , and 19.75%, respectively, will be performed in-step wise. In every cycle of exchange with 5/1 mode, it is needed to evaluate the parameter of reactor core operation. The parameters of the reactor operation observed are criticality mass of fuels, reactivity balance, and fuel reactivity that give effect to the reactor operation. The evaluation was done at beginning of cycle of the first and second transition core with compared between experiment and calculation results. The experiments were performed at transition core I and II, BOC, and low power. At transition core I, there are 2 silicide fuels (RI-224 and R1-225) in the core and then, added five silicide fuels (R1-226, R1-252, R1-263, and R1-264) to the core, so that there are seven silicide fuels in the transition core II. The evaluation was done based on the experiment of criticality, control rod calibration, fuel reactivity of the RSG-GAS transition core. For inserting 2 silicide fuels in the transition core I dan 7 fuels in the transition core II, the operation of RSG-GAS core fulfilled the safety margin and the parameter of reactor operation change is not occur drastically in experiment and calculation results. So that, the reactor was operated during 36 days at 15 MW, 540 MWD at the first transition core. The general result showed that the parameter of reactor operation change is small so that the fuel exchange from uranium oxide to uranium silicide in the next step can be done

  15. Improvement of Silicide Coating Method as Diffusion Barrier for U-Mo Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of the interaction layer. In this study, centrifugally atomized U-Mo-Ti alloy powders were coated with silicide layers. The coating process was improved when compared to the previous coating in terms of the ball milling and heat treatment conditions. Subsequently, silicide coated U-Mo-Ti powders and pure aluminum powders were mixed and made into a compact for the annealing test. The compacts were annealed at 550 .deg. C for 2hr, and characterized using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). 1. Uniform, homogeneous, thickness controllable silicide layers were successfully coated on the surface of U-7wt%Mo-1wt%Ti powders. 2. U{sub 3}Si, U{sub 3}Si{sub 2} silicide layers formed on the surface of U-7wt%Mo-1wt%Ti powders, and were identified by XRD and EDS analyses.

  16. Formation of silicides in a cavity applicator microwave system

    International Nuclear Information System (INIS)

    Thompson, D.C.; Kim, H.C.; Alford, T.L.; Mayer, J.W.

    2003-01-01

    Metal silicides of nickel and cobalt are formed in a cavity applicator microwave system with a magnetron power of 1200 W and a frequency of 2.45 GHz. X-ray diffraction, Rutherford backscattering spectrometry, and four-point-probe measurements are used to identify the silicide phase present and layer thicknesses. Additional processing confirmed that the products attained from heating by microwaves do not differ appreciably from those attained in heating by thermal processes. Materials properties are used to explain microwave power absorption and demonstrate how to tailor a robust process in which thin film reactions can be attained and specific products isolated

  17. Effects of Silicide Coating on the Interdiffusion between U-7Mo and Al

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Ji Hyun; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man; Jeong, Yong Jin; Kim, Ki Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to and excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide, or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at varying T (T = 900 and 1000 .deg. C) for 30 min, respectively. U-Mo alloy powder was blended with Si powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. For an annealing test, silicide-coated U-Mo alloy powders were made into a compact, and Al powders were used as a matrix. From EDS results, transformed uranium aluminide intermetallic compounds were mainly U(Al,Si)3. U(Al,Si)3 phase left the silicide coating layer behind, and formed inside of U-7Mo particles, as shown in Fig. 3(a) and (b). In the case of sample B, Al could not penetrate the silicide coating layer and the coating layers were remained constant, as shown in Fig. 3(c) and (d). From the results, we made a comparison between the compacts of sample A and B, and it was shown that Al can easily diffuse into unreacted Si and U{sub 3}Si{sub 5} mixed layer while U{sub 3}Si{sub 2} acted as a good diffusion barrier at 550 .deg. C though those layers had the same thickness.

  18. Effects of Silicide Coating on the Interdiffusion between U-7Mo and Al

    International Nuclear Information System (INIS)

    Nam, Ji Min; Kim, Ji Hyun; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man; Jeong, Yong Jin; Kim, Ki Nam

    2015-01-01

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to and excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide, or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at varying T (T = 900 and 1000 .deg. C) for 30 min, respectively. U-Mo alloy powder was blended with Si powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. For an annealing test, silicide-coated U-Mo alloy powders were made into a compact, and Al powders were used as a matrix. From EDS results, transformed uranium aluminide intermetallic compounds were mainly U(Al,Si)3. U(Al,Si)3 phase left the silicide coating layer behind, and formed inside of U-7Mo particles, as shown in Fig. 3(a) and (b). In the case of sample B, Al could not penetrate the silicide coating layer and the coating layers were remained constant, as shown in Fig. 3(c) and (d). From the results, we made a comparison between the compacts of sample A and B, and it was shown that Al can easily diffuse into unreacted Si and U 3 Si 5 mixed layer while U 3 Si 2 acted as a good diffusion barrier at 550 .deg. C though those layers had the same thickness

  19. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Energy Technology Data Exchange (ETDEWEB)

    Mondon, A., E-mail: andrew.mondon@ise.fraunhofer.de [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany); Wang, D. [Karlsruhe Nano Micro Facility (KNMF), H.-von-Helmholz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Zuschlag, A. [Universität Konstanz FB Physik, Jacob-Burckhardt-Str. 27, D-78464 Konstanz (Germany); Bartsch, J.; Glatthaar, M.; Glunz, S.W. [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany)

    2014-12-30

    Highlights: • Adhesion of metallization of fully plated nickel–copper contacts on silicon solar cells can be achieved by formation of nickel silicide at the cost of degraded cell performance. • Understanding of silicide growth mechanisms and controlled growth may lead to high performance together with excellent adhesion. • Silicide formation is well known from CMOS production from PVD-Ni on flat surfaces. Yet the deposition methods and therefore layer characteristics and the surface topography are different for plated metallization. • TEM analysis is performed for differently processed samples. • A nickel silicide growth model is created for plated Ni on textured silicon solar cells. - Abstract: In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel–silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide

  20. Analysis of impurity effect on Silicide fuels of the RSG-GAS core

    International Nuclear Information System (INIS)

    Tukiran-Surbakti

    2003-01-01

    Simulation of impurity effect on silicide fuel of the RSG-GAS core has been done. The aim of this research is to know impurity effect of the U-234 and U-236 isotopes in the silicide fuels on the core criticality. The silicide fuels of 250 g U loading and 19.75 of enrichment is used in this simulation. Cross section constant of fuels and non-structure material of core are generated by WIMSD/4 computer code, meanwhile impurity concentration was arranged from 0.01% to 2%. From the result of analysis can be concluded that the isotopes impurity in the fuels could make trouble in the core and the core can not be operated at critical after a half of its cycle length (350 MW D)

  1. The influence of alloying on the phase formation sequence of ultra-thin nickel silicide films and on the inheritance of texture

    Science.gov (United States)

    Geenen, F. A.; Solano, E.; Jordan-Sweet, J.; Lavoie, C.; Mocuta, C.; Detavernier, C.

    2018-05-01

    The controlled formation of silicide materials is an ongoing challenge to facilitate the electrical contact of Si-based transistors. Due to the ongoing miniaturisation of the transistor, the silicide is trending to ever-thinner thickness's. The corresponding increase in surface-to-volume ratio emphasises the importance of low-energetic interfaces. Intriguingly, the thickness reduction of nickel silicides results in an abrupt change in phase sequence. This paper investigates the sequence of the silicides phases and their preferential orientation with respect to the Si(001) substrate, for both "thin" (i.e., 9 nm) and "ultra-thin" (i.e., 3 nm) Ni films. Furthermore, as the addition of ternary elements is often considered in order to tailor the silicides' properties, additives of Al, Co, and Pt are also included in this study. Our results show that the first silicide formed is epitaxial θ-Ni2Si, regardless of initial thickness or alloyed composition. The transformations towards subsequent silicides are changed through the additive elements, which can be understood through solubility arguments and classical nucleation theory. The crystalline alignment of the formed silicides with the substrate significantly differs through alloying. The observed textures of sequential silicides could be linked through texture inheritance. Our study illustrates the nucleation of a new phase drive to reduce the interfacial energy at the silicide-substrate interface as well as at the interface with the silicide which is being consumed for these sub-10 nm thin films.

  2. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Science.gov (United States)

    Mondon, A.; Wang, D.; Zuschlag, A.; Bartsch, J.; Glatthaar, M.; Glunz, S. W.

    2014-12-01

    In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel-silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide a continuous nickel silicide of greater depth, polycrystalline modification and expected phase according to thermal budget is formed. Information about the nature of silicide growth on typical solar cell surfaces could be obtained from silicide phase and geometric observations, which were supported by FIB tomography. The theory of isotropic NiSi growth and orientation dependent NiSi2 growth was derived. By this, a very well performing low-cost metallization for silicon solar cells has been brought an important step closer to industrial introduction.

  3. A Study on Silicide Coatings as Diffusion barrier for U-7Mo Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Won, Ju Jin; Kim, Sung Hwan; Lee, Kyu Hong; Jeong, Yong Jin; Kim, Ki Nam; Park, Jong Man; Lee, Chong Tak [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Gamma phase U-Mo alloys are regarded as one of the promising candidates for advanced research reactor fuel when it comes to the irradiation performance. However, it has been reported that interaction layer formation between the UMo alloys and Al matrix degrades the irradiation performance of U-Mo dispersion fuel. The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Al matrix with Si. In addition, silicide or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of the interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at 900 .deg. C for 1hr. U-Mo alloy powder was mixed with MoSi{sub 2}, Si and ZrSi{sub 2} powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. Silicide coated U-Mo powders and characterized using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and X-ray diffractometer (XRD). The ZrSi{sub 2} coating layers has a thickness of about 1∼ 2μm. The surface of a silicide coated particle was very rough and silicide powder attached to the surface of the coating layer. 3. The XRD analysis of the coating layers showed that, they consisted of compounds such as U3Si{sub 2}, USi{sub 2}.

  4. The Accident Analysis Due to Reactivity Insertion of RSG GAS 3.55 g U/cc Silicide Core

    International Nuclear Information System (INIS)

    Endiah Puji-Hastuti; Surbakti, Tukiran

    2004-01-01

    The fuels of RSG-GAS reactor was changed from uranium oxide with 250 g U of loading or 2.96 g U/cc of fuel loading to uranium silicide with the same loading. The silicide fuels can be used in higher density, staying longer in the reactor core and hence having a longer cycle length. The silicide fuel in RSG-GAS core was made up in step-wise by using mixed up core Firstly, it was used silicide fuel with 250 g U of loading and then, silicide fuel with 300 g U of loading (3.55 g U/cc of fuel loading). In every step-wise of fuel loading, it must be analyzed its safety margin. In this occasion, the reactivity accident of RSG-GAS core with 300 g U of silicide fuel loading is analyzed. The calculation was done using EUREKA-2/RR code available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. The worst case accident is transient due to control rod with drawl failure at start up by means of lowest initial power (0.1 W), either in power range. From all cases which have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 g U silicide fuel loading. (author)

  5. Evaluation of anomalies during nickel and titanium silicide formation using the effective heat of formation mode

    CSIR Research Space (South Africa)

    Pretorius, R

    1993-11-01

    Full Text Available , as well as the observed sequence of growth of different silicide phases, are not in agree- ment with thermodynamic considerations [26]. In the case of the nickel silicides Ni,Si is nearly always found to be the first... to determine how the oxygen content in the silicon affects phase formation. We also show how the anomalous behaviour of titanium and nickel silicide formation can be explained thermodynamically by using the ?effective heat...

  6. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Yuryev, V. A., E-mail: vyuryev@kapella.gpi.ru; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P. [A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation); Senkov, V. M. [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Avenue, Moscow 119991 (Russian Federation); Nalivaiko, O. Y. [JSC “Integral” – “Integral” Holding Management Company, 121A, Kazintsa I. P. Street, Minsk 220108 (Belarus); Novikau, A. G.; Gaiduk, P. I. [Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus)

    2015-05-28

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.

  7. Molybdenum silicide based materials and their properties

    International Nuclear Information System (INIS)

    Yao, Z.; Stiglich, J.; Sudarshan, T.S.

    1999-01-01

    Molybdenum disilicide (MoSi 2 ) is a promising candidate material for high temperature structural applications. It is a high melting point (2030 C) material with excellent oxidation resistance and a moderate density (6.24 g/cm 3 ). However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Much effort has been invested in MoSi 2 composites as alternatives to pure molybdenum disilicide for oxidizing and aggressive environments. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electron-migration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi 2 -based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing. On this paper, synthesis, fabrication, and properties of the monolithic and composite molybdenum silicides are reviewed

  8. Post-pulse detail metallographic examinations of low-enriched uranium silicide plate-type miniature fuel

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1991-10-01

    Pulse irradiation at Nuclear Safety Research Reactor (NSRR) was performed using low-enriched (19.89 w% 235 U) unirradiated silicide plate-type miniature fuel which had a density of 4.8 gU/cm 3 . Experimental aims are to understand the dimensional stability and to clarify the failure threshold of the silicide plate-type miniature fuel under power transient conditions through post-pulse detail metallographic examinations. A silicide plate-type miniature fuel was loaded into an irradiation capsule and irradiated by a single pulse. Deposited energies given in the experiments were 62, 77, 116 and 154 cal/g·fuel, which lead to corresponding peak fuel plate temperatures, 201 ± 28degC, 187 ± 10degC, 418 ± 74degC and 871 ± 74degC, respectively. Below 400degC, reliability and dimensional stability of the silicide plate fuel was sustained, and the silicide plate fuel was intact. Up to 540degC, wall-through intergranular crackings occurred in the Al-3%Mg alloy cladding. With the increase of the temperature, the melting of the aluminum cladding followed by recrystallization, the denudation of fuel core and the plate-through intergranular cracking were observed. With the increase of the temperature beyond 400degC, the bowing of fuel plate became significant. Above the temperature of 640degC molten aluminum partially reacted with the fuel core, partially flowed downward under the influence of surface tension and gravity, and partially formed agglomerations. Judging from these experimental observations, the fuel-plate above 400degC tends to reduce its dimensional stability. Despite of the apparent silicide fuel-plate failure, neither generation of pressure pulse nor that of mechanical energy occurred at all. (J.P.N.)

  9. RA-3 core with uranium silicide fuel elements

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2000-01-01

    Following on with studies on uranium silicide fuel elements, this paper reports some comparisons between the use of standard ECN [U 3 O 8 ] fuel elements and type P-06 [from U 3 Si 2 ] fuel elements in the RA-3 core.The first results showed that the calculated overall mean burn up is in agreement with that reported for the facility, which gives more confidence to the successive ones. Comparing the mentioned cores, the silicide one presents several advantages such as: -) a mean burn up increase of 18 %; -) an extraction burn up increase of 20 %; -) 37.4 % increase in full power days, for mean burn up. All this is meritorious for this fuel. Moreover, grouped and homogenized libraries were prepared for CITVAP code that will be used for planning experiments and other bidimensional studies. Preliminary calculations were also performed. (author)

  10. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Lützenkirchen-Hecht, D. [Fachbereich C - Physik, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Hübner, R.; Grenzer, J.; Facsko, S. [Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany)

    2014-07-14

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.

  11. Nickel silicide thin films as masking and structural layers for silicon bulk micro-machining by potassium hydroxide wet etching

    International Nuclear Information System (INIS)

    Bhaskaran, M; Sriram, S; Sim, L W

    2008-01-01

    This paper studies the feasibility of using titanium and nickel silicide thin films as mask materials for silicon bulk micro-machining. Thin films of nickel silicide were found to be more resistant to wet etching in potassium hydroxide. The use of nickel silicide as a structural material, by fabricating micro-beams of varying dimensions, is demonstrated. The micro-structures were realized using these thin films with wet etching using potassium hydroxide solution on (1 0 0) and (1 1 0) silicon substrates. These results show that nickel silicide is a suitable alternative to silicon nitride for silicon bulk micro-machining

  12. Self-organized patterns along sidewalls of iron silicide nanowires on Si(110) and their origin

    Energy Technology Data Exchange (ETDEWEB)

    Das, Debolina; Mahato, J. C.; Bisi, Bhaskar; Dev, B. N., E-mail: msbnd@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032 (India); Satpati, B. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2014-11-10

    Iron silicide (cubic FeSi{sub 2}) nanowires have been grown on Si(110) by reactive deposition epitaxy and investigated by scanning tunneling microscopy and scanning/transmission electron microscopy. On an otherwise uniform nanowire, a semi-periodic pattern along the edges of FeSi{sub 2} nanowires has been discovered. The origin of such growth patterns has been traced to initial growth of silicide nanodots with a pyramidal Si base at the chevron-like atomic arrangement of a clean reconstructed Si(110) surface. The pyramidal base evolves into a comb-like structure along the edges of the nanowires. This causes the semi-periodic structure of the iron silicide nanowires along their edges.

  13. Core conversion study from silicide to molybdenum fuel in the Indonesian 30 MW multipurpose reactor G.A. Siwabessy (RSG-GAS)

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Kuntoro, I.

    2005-01-01

    This paper describes the core conversion from silicide to molybdenum core through a series of silicide (2.96 gU cm -3 ) - molybdenum (3.55 gUcm -3 ) mixed transition cores for the Indonesian 30 MW-Multipurpose G.A. Siwabessy (RSGGAS) reactor. The core calculations are carried out using the two-dimensional multigroup neutron diffusion method code of Batan-EQUIL-2D. The calculated results showed that the proposed silicide-molybdenum mixed transition cores, using the same refueling/reshuffling scheme, meet the safety criteria and it can be used in safely converting from an all-silicide core to an all-molybdenum core. (author)

  14. Multi-layered silicides coating for vanadium alloys for generation IV reactors

    International Nuclear Information System (INIS)

    Mathieu, S.; Chaia, N.; Vilasi, M.; Le Flem, M.

    2012-01-01

    The halide-activated pack-cementation technique was employed to fabricate a diffusion coating that is resistant both to isothermal and to cyclic oxidation in air at 650 degrees C on the surface of the V-4Cr-4Ti vanadium alloy that is a potential core component of future nuclear systems. A thermodynamic assessment determined the deposit conditions in terms of master alloy, activator, filler and temperature. The partial pressures of the main gaseous species (SiCl 4 , SiCl 2 and VCl 2 ) in the pack were calculated with the master alloy Si and the mixture VSi 2 + Si. The VSi 2 + Si master alloy was used to limit vanadium loss from the surface. The obtained coating consisted of multi-layered V x Si y silicides with an outer layer of VSi 2 . This silicide developed a protective layer of silica at 650 degrees C in air and was not susceptible to the pest phenomenon, unlike other refractory silicides (MoSi 2 , NbSi 2 ). We suggest that VSi 2 exhibits no risk of rapid degradation in the gas fast reactor (GFR) conditions. (authors)

  15. Fuel-cycle cost comparisons with oxide and silicide fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1982-01-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data are presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed

  16. The electrochemistry of chromium, chromium-boron and chromium-phosphorus alloys

    International Nuclear Information System (INIS)

    Moffat, T.P.; Ruf, R.R.; Latanision, R.M.

    1987-01-01

    It is fairly well established that chromium-metalloid interactions represent the key to understanding the remarkable corrosion behavior of TM-Cr-M glasses; (Fe, Ni, Co,...)-Cr-(P, Si, C, S). The character and kinetics of passive film growth on the glasses are being studied ni order to assess the role of the film former, chromium, and the metalloids in the passivation process. A series of thin film microcrystalline chromium, Cr-B and Cr-P binary alloys have been fabricated by physical vapor deposition techniques. Vacuum melted conventionally processed chromium has also been studied. Examination of these materials in lM H/sub 2/SO/sub 4/ and lM HCl by voltammetry, potentiostatic and impedance techniques yields the following conclusion: 1. Pure chromium with a grain size varying from < 400 A to 0.5 mm exhibits no well defined differences in electrochemical behavior in lM H/sub 2/SO/sub 4/. 2. The tremendous corrosion resistance of Cr-B alloys has been confirmed. 3. The beneficial effects observed for boron alloyed with chromium may be considered surprising in view of the neutral/negative influence of alloying boron with iron, i.e. Fe/sub 80/B/sub 20/. 4. The interaction of the electrochemistry of the metalloid constituent with that of the transition base element determines the corrosion behavior. 5. Preliminary work with Cr-P alloys indicates that certain compositions exhibit promising properties - certain films were found to be intact after two days of immersion in concentrated HCl. Further work is in progress

  17. The Leakage Current Improvement of a Ni-Silicided SiGe/Si Junction Using a Si Cap Layer and the PAI Technique

    International Nuclear Information System (INIS)

    Chang Jian-Guang; Wu Chun-Bo; Ji Xiao-Li; Ma Hao-Wen; Yan Feng; Shi Yi; Zhang Rong

    2012-01-01

    We investigate the leakage current of ultra-shallow Ni-silicided SiGe/Si junctions for 45 nm CMOS technology using a Si cap layer and the pre-amorphization implantation (PAI) process. It is found that with the conventional Ni silicide method, the leakage current of a p + (SiGe)—n(Si) junction is large and attributed to band-to-band tunneling and the generation-recombination process. The two leakage contributors can be suppressed quite effectively when a Si cap layer is added in the Ni silicide method. The leakage reduction is about one order of magnitude and could be associated with the suppression of the agglomeration of the Ni germano-silicide film. In addition, the PAI process after the application of a Si cap layer has little effect on improving the junction leakage but reduces the sheet resistance of the silicide film. As a result, the novel Ni silicide method using a Si cap combined with PAI is a promising choice for SiGe junctions in advanced technology. (cross-disciplinary physics and related areas of science and technology)

  18. Safeguarding subcriticality during loading and shuffling operations in the higher density of the RSG-GAS's silicide core

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Kuntoro, I.

    2003-01-01

    The core conversion program of the RSG-GAS reactor is to convert the all-oxide to all-silicide core. The silicide equilibrium core with fuel meat density of 3.55 gU cm -3 is an optimal core for RSG-GAS reactor and it can significantly increase the operation cycle length from 25 to 32 full power days. Nevertheless, the subcriticality of the shutdown core and the shutdown margin are lower than of the oxide core. Therefore, the deviation of subcriticality condition in the higher silicide core caused by the fuel loading and shuffling error should be reanalysed. The objective of this work is to analyse the sufficiency of the subcriticality condition of the shutdown core to face the worst condition caused by an error during loading and shuffling operations. The calculations were carried out using the 2-dimensional multigroup neutron diffusion code of Batan-FUEL. In the fuel handling error, the calculated results showed that the subcriticality condition of the shutdown higher density silicide equilibrium core of RSG-GAS can be maintained. Therefore, all fuel management steps are fixed in the present reactor operation manual can be applied in the higher silicide equilibrium core of RSG-GAS reactor. (author)

  19. Kinetics of low pressure chemical vapor deposition of tungsten silicide from dichlorocilane reduction of tungsten hexafluoride

    International Nuclear Information System (INIS)

    Srinivas, D.; Raupp, G.B.; Hillman, J.

    1990-01-01

    The authors report on experiments to determine the intrinsic surface reaction rate dependences and film properties' dependence on local reactant partial pressures and wafer temperature in low pressure chemical vapor deposition (LPCVD) of tungsten silicide from dichlorosilane reduction of tungsten hexafluoride. Films were deposited in a commercial-scale Spectrum CVD cold wall single wafer reactor under near differential, gradientless conditions. Over the range of process conditions investigated, deposition rate was found to be first order in dichlorosillane and negative second order in tungsten hexafluoride partial pressure. The apparent activation energy in the surface reaction limited regime was found to be 70-120 kcal/mol. The silicon to tungsten ratio of as deposited silicide films ranged from 1.1 to 2.4, and increased with increasing temperature and dichlorosillane partial pressure, and decreased with increasing tungsten hexafluoride pressure. These results suggest that the apparent silicide deposition rate and composition are controlled by the relative rates of at least two competing reactions which deposit stoichiometric tungsten silicides and/or silicon

  20. Role of paramagnetic chromium in chromium(VI)-induced damage in cultured mammalian cells.

    OpenAIRE

    Sugiyama, M

    1994-01-01

    Chromium(VI) compounds are known to be potent toxic and carcinogenic agents. Because chromium(VI) is easily taken up by cells and is subsequently reduced to chromium(III), the formation of paramagnetic chromium such as chromium(V) and chromium(III) is believed to play a role in the adverse biological effects of chromium(VI) compounds. The present report, uses electron spin resonance (ESR) spectroscopy; the importance of the role of paramagnetic chromium in chromium(VI)-induced damage in intac...

  1. Tungsten silicide contacts to polycrystalline silicon and silicon-germanium alloys

    International Nuclear Information System (INIS)

    Srinivasan, G.; Bain, M.F.; Bhattacharyya, S.; Baine, P.; Armstrong, B.M.; Gamble, H.S.; McNeill, D.W.

    2004-01-01

    Silicon-germanium alloy layers will be employed in the source-drain engineering of future MOS transistors. The use of this technology offers advantages in reducing series resistance and decreasing junction depth resulting in reduction in punch-through and SCE problems. The contact resistance of metal or metal silicides to the raised source-drain material is a serious issue at sub-micron dimensions and must be minimised. In this work, tungsten silicide produced by chemical vapour deposition has been investigated as a contact metallization scheme to both boron and phosphorus doped polycrystalline Si 1- x Ge x , with 0 ≤x ≤ 0.3. Cross bridge Kelvin resistor (CKBR) structures were fabricated incorporating CVD WSi 2 and polycrystalline SiGe. Tungsten silicide contacts to control polysilicon CKBR structures have been shown to be of high quality with specific contact resistance ρ c values 3 x 10 -7 ohm cm 2 and 6 x 10 -7 ohm cm 2 obtained to boron and phosphorus implanted samples respectively. The SiGe CKBR structures show that the inclusion of Ge yields a reduction in ρ c for both dopant types. The boron doped SiGe exhibits a reduction in ρ c from 3 x 10 -7 to 5 x 10 -8 ohm cm 2 as Ge fraction is increased from 0 to 0.3. The reduction in ρ c has been shown to be due to (i) the lowering of the tungsten silicide Schottky barrier height to p-type SiGe resulting from the energy band gap reduction, and (ii) increased activation of the implanted boron with increased Ge fraction. The phosphorus implanted samples show less sensitivity of ρ c to Ge fraction with a lowest value in this work of 3 x 10 -7 ohm cm 2 for a Ge fraction of 0.3. The reduction in specific contact resistance to the phosphorus implanted samples has been shown to be due to increased dopant activation alone

  2. Chromium allergy

    DEFF Research Database (Denmark)

    Hansen, M B; Johansen, J D; Menné, Torkil

    2003-01-01

    Most studies investigating chromium allergy have been performed with Cr(VI). However, real exposure to chromium from leather products includes both Cr(III) and Cr(VI). We have determined and compared the minimum elicitation threshold (MET) concentration for Cr(III) and Cr(VI) in Cr(VI)-sensitive ......Most studies investigating chromium allergy have been performed with Cr(VI). However, real exposure to chromium from leather products includes both Cr(III) and Cr(VI). We have determined and compared the minimum elicitation threshold (MET) concentration for Cr(III) and Cr(VI) in Cr......(III) was concluded to play an important role in chromium allergy, because Cr(III) and Cr(VI) were both capable of eliciting eczema at low concentrations. Rather than regarding chromium dermatitis as a result of Cr(VI) allergy alone, it may be more correct to consider it as a result of a combined Cr(III) and Cr......(VI) allergy....

  3. Formation of copper silicides by high dose metal vapor vacuum arc ion implantation

    International Nuclear Information System (INIS)

    Rong Chun; Zhang Jizhong; Li Wenzhi

    2003-01-01

    Si(1 1 1) was implanted by copper ions with different doses and copper distribution in silicon matrix was obtained. The as-implanted samples were annealed at 300 and 540 deg. C, respectively. Formation of copper silicides in as-implanted and annealed samples were studied. Thermodynamics and kinetics of the reaction were found to be different from reaction at copper-silicon interface that was applied in conventional studies of copper-silicon interaction. The defects in silicon induced by implantation and formation of copper silicides were recognized by Si(2 2 2) X-ray diffraction (XRD)

  4. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  5. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon

    International Nuclear Information System (INIS)

    Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby; Wright, Nick; O'Neill, Anthony; Horsfall, Alton; Goss, Jonathan; Cumpson, Peter

    2013-01-01

    Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such as the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.

  6. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing

    International Nuclear Information System (INIS)

    Cheroux, L.

    2001-01-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  7. Information for irradiation and post-irradiation of the silicide fuel element prototype P-07

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2003-01-01

    Included in the 'Silicides' Project, developed by the Nuclear Fuels Department of the National Atomic Energy Commission (CNEA), it is foreseen the qualification of this type of fuel for research reactors in order to be used in the Argentine RA-3 reactor and to confirm the CNEA as an international supplier. The paper presents basic information on several parameters corresponding to the new silicide prototype, called P-07, to be taken into account for its irradiation, postirradiation and qualification. (author)

  8. Chromium

    Science.gov (United States)

    ... 2 Whole wheat bread, 2 slices 2 Red wine, 5 ounces 1–13 Apple, unpeeled, 1 medium ... chromium or a placebo) might simply show the benefits of supplementation in a chromium-deficient population. Overall, ...

  9. Formation of (Nd,Y)-silicides by sequential channeled implantation of Y and Nd ions

    International Nuclear Information System (INIS)

    Jin, S.; Bender, H.; Wu, M.F.; Vantomme, A.; Langouche, G.

    2000-01-01

    A buried hexagonal Nd 0.32 Y 0.68 Si 1.7 layer is formed by a sequential implantation of Y and Nd ions into (1 1 1)-oriented silicon wafers. The orientation relationship between the epitaxial Nd 0.32 Y 0.68 Si 1.7 and the silicon is (0 0 0 1) Nd 0.32 Y 0.68 Si 1.7 //(1 1 1) Si with Nd 0.32 Y 0.68 Si 1.7 // Si . High temperature annealing (1000 deg. C) results in a gradual transition into an orthorhombic ternary (Nd,Y)-silicide. Between the orthorhombic (Nd,Y)-silicide and the Si a preferential orientation relationship exists: (1 1 0) orth //(1 1(bar) 0) Si with orth // Si . However, as not all orthorhombic silicide grains follow this epitaxial relationship, the minimum yield in the Rutherford backscattering spectrometry (RBS) spectrum increases compared to the results after a low temperature annealing

  10. Formation of (Nd,Y)-silicides by sequential channeled implantation of Y and Nd ions

    Science.gov (United States)

    Jin, S.; Bender, H.; Wu, M. F.; Vantomme, A.; Langouche, G.

    2000-03-01

    A buried hexagonal Nd0.32Y0.68Si1.7 layer is formed by a sequential implantation of Y and Nd ions into (1 1 1)-oriented silicon wafers. The orientation relationship between the epitaxial Nd0.32Y0.68Si1.7 and the silicon is (0 0 0 1)Nd0.32Y0.68Si1.7//(1 1 1)Si with Nd0.32Y0.68Si1.7//Si. High temperature annealing (1000°C) results in a gradual transition into an orthorhombic ternary (Nd,Y)-silicide. Between the orthorhombic (Nd,Y)-silicide and the Si a preferential orientation relationship exists: (1 1 0)orth//(1 1¯ 0)Si with orth//Si. However, as not all orthorhombic silicide grains follow this epitaxial relationship, the minimum yield in the Rutherford backscattering spectrometry (RBS) spectrum increases compared to the results after a low temperature annealing.

  11. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0% and nickel does not exceed 50.0%

  12. Fracture of niobium-base silicide coated alloy

    International Nuclear Information System (INIS)

    Davydova, A.D.; Zotov, Yu.P.; Ivashchenko, O.V.; Kushnareva, N.P.; Yarosh, I.P.

    1990-01-01

    Mechanical properties and character of fracture of Nb-W-Mo-Zr-C alloy composition with complex by composition and structure silicide coating under different states of stage-by-stage coating are studied. Structural features, character of fracture from ductile to quasibrittle transcrystalline one and, respectively, the composition plasticity level are defined by interrelation of fracture processes in coating, matrix plastic flow and possibility and way of stress relaxation on their boundary

  13. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  14. Effect of Utilization of Silicide Fuel with the Density 4.8 gU/cc on the Kinetic Parameters of RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Setiyanto; Sembiring, Tagor M.; Pinem, Surian

    2007-01-01

    Presently, the RSG-GAS reactor using silicide fuel element of 2.96 gU/cc. For increasing reactor operation time, its planning to change to higher density fuel. The kinetic calculation of silicide core with density 4.8 gU/cc has been carried out, since it has an influence on the reactor operation safety. The calculated kinetic parameters are the effective delayed neutron fraction, the delayed neutron decay constant, prompt neutron lifetime and feedback reactivity coefficient very important for reactor operation safety. the calculation is performed in 2-dimensional neutron diffusion-perturbation method using modified Batan-2DIFF code. The calculation showed that the effective delayed neutron fraction is 7. 03256x10 -03 , total delay neutron time constant is 7.85820x10 -02 s -1 and the prompt neutron lifetime is 55.4900 μs. The result of prompt neutron lifetime smaller 10 % compare with silicide fuel of 4.8 gU/cc. The calculated results showed that all of the feedback reactivity coefficient silicide core 4.8 gU/cc is negative. Totally, the feedback reactivity coefficient of silicide fuel of 4.8 gU/cc is 10% less than that of silicide fuel of 2.96 gU/cc. The results shown that kinetic parameters result decrease compared with the silicide core with density 2.96 gU/cc, but no significant influence in the RSG-GAS reactor operation. (author)

  15. Solvent extraction studies of RERTR silicide fuels

    International Nuclear Information System (INIS)

    Gouge, Anthony P.

    1983-01-01

    Uranium silicide fuels, which are candidate RERTR fuel compositions, may require special considerations in solvent extraction reprocessing. Since Savannah River Plant may be reprocessing RERTR fuels as early as 1985, studies have been conducted at Savannah River Laboratory to demonstrate the solvent extraction behavior of this fuel. Results of solvent extraction studies with both unirradiated and irradiated fuel are presented along with the preliminary RERTR solvent extraction reprocessing flow sheet for Savannah River Plant. (author)

  16. Calculated electronic structure of chromium surfaces and chromium monolayers on iron

    International Nuclear Information System (INIS)

    Victora, R.H.; Falicov, L.M.

    1985-01-01

    A self-consistent calculation of the magnetic and electronic properties of the chromium (100) and (110) surfaces and of a chromium monolayer on the (100) and (110) iron surfaces is presented. It is found that (i) the (100) chromium surface is ferromagnetic with a greatly enhanced spin polarization (3.00 electrons); (ii) a substantial enhancement of the spin imbalance exists several (>5) layers into the bulk; (iii) the (110) chromium surface is antiferromagnetic with a large (2.31) spin imbalance; (iv) the (100) chromium monolayer on ferromagnetic iron is ferromagnetic, with a huge spin imbalance (3.63), and aligned antiferromagnetically with respect to the bulk iron; (v) the (110) chromium monolayer on ferromagnetic iron is also ferromagnetic, with a spin imbalance of 2.25 and antiferromagnetically aligned to the iron. The spin imbalance of chromium on iron (100) is possibly the largest of any transition-metal system

  17. Phase transformations in Higher Manganese Silicides

    Energy Technology Data Exchange (ETDEWEB)

    Allam, A. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Boulet, P. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); Nunes, C.A. [Departamento de Engenharia de Materiais (DEMAR), Escola de Engenharia de Lorena (EEL), Universidade de Sao Paulo - USP, Caixa Postal 116, 12600-970 Lorena, Sao Paulo (Brazil); Sopousek, J.; Broz, P. [Masaryk University, Faculty of Science, Department of Chemistry, Kolarska 2, 611 37 Brno (Czech Republic); Masaryk University, Central European Institute of Technology, CEITEC, Kamenice 753/5, 625 00 Brno (Czech Republic); Record, M.-C., E-mail: m-c.record@univ-cezanne.fr [IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer The phase transitions of the Higher Manganese Silicides were investigated. Black-Right-Pointing-Pointer The samples were characterised by XRD, DTA and DSC. Black-Right-Pointing-Pointer Mn{sub 27}Si{sub 47} is the stable phase at room temperature and under atmospheric pressure. Black-Right-Pointing-Pointer At around 800 Degree-Sign C, Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. Black-Right-Pointing-Pointer The phase transition is of a second order. - Abstract: This work is an investigation of the phase transformations of the Higher Manganese Silicides in the temperature range [100-1200 Degree-Sign C]. Several complementary experimental techniques were used, namely in situ X-ray Diffraction (XRD), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). The evolution of both the lattice parameters and the thermal expansion coefficients was determined from in situ XRD measurements. The stability of the samples was investigated by thermal analysis (DTA) and Cp measurements (DSC). This study shows that Mn{sub 27}Si{sub 47} which is the stable phase at room temperature and under atmospheric pressure undergoes a phase transformation at around 800 Degree-Sign C. Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. This phase transformation seems to be of a second order one. Indeed it was not evidenced by DTA and by contrast it appears on the Cp curve.

  18. The electronic structure of 4d and 5d silicides

    NARCIS (Netherlands)

    Speier, W.; Kumar, L.; Sarma, D.D.; Groot, R.A. de; Fuggle, J.C.

    1989-01-01

    A systematic experimental and theoretical study of the electronic structure of stoichiometric silicides with Nb, Mo, Ta and W is presented. We have employed x-ray photoemission and bremsstrahlung isochromat spectroscopy as experimental techniques and interpreted the measured data by calculation of

  19. Babcock and Wilcox plate fabrication experience with uranium silicide spherical fuel

    International Nuclear Information System (INIS)

    Todd, Lawrence E.; Pace, Brett W.

    1996-01-01

    This report is written to present the fuel fabrication experience of Babcock and Wilcox using atomized spherical uranium silicide powder. The intent is to demonstrate the ability to fabricate fuel plates using spherical powder and to provide useful information proceeding into the next phase of work using this type of fuel. The limited quantity of resources- spherical powder and time, did not allow for much process optimizing in this work scope. However, the information contained within provides optimism for the future of spherical uranium silicide fuel plate fabrication at Babcock and Wilcox.The success of assembling fuel elements with spherical powder will enable Babcock and Wilcox to reduce overall costs to its customers while still maintaining our reputation for providing high quality research and test reactor products. (author)

  20. Silicon-germanium and platinum silicide nanostructures for silicon based photonics

    Science.gov (United States)

    Storozhevykh, M. S.; Dubkov, V. P.; Arapkina, L. V.; Chizh, K. V.; Mironov, S. A.; Chapnin, V. A.; Yuryev, V. A.

    2017-05-01

    This paper reports a study of two types of silicon based nanostructures prospective for applications in photonics. The first ones are Ge/Si(001) structures forming at room temperature and reconstructing after annealing at 600°C. Germanium, being deposited from a molecular beam at room temperature on the Si(001) surface, forms a thin granular film composed of Ge particles with sizes of a few nanometers. A characteristic feature of these films is that they demonstrate signs of the 2 x 1 structure in their RHEED patterns. After short-term annealing at 600°C under the closed system conditions, the granular films reconstruct to heterostructures consisting of a Ge wetting layer and oval clusters of Ge. A mixed type c(4x2) + p(2x2) reconstruction typical to the low-temperature MBE (Tgr Ge. The other type of the studied nanostructures is based on Pt silicides. This class of materials is one of the friendliest to silicon technology. But as silicide film thickness reaches a few nanometers, low resistivity becomes of primary importance. Pt3Si has the lowest sheet resistance among the Pt silicides. However, the development of a process of thin Pt3Si films formation is a challenging task. This paper describes formation of a thin Pt3Si/Pt2Si structures at room temperature on poly-Si films. Special attention is paid upon formation of poly-Si and amorphous Si films on Si3N4 substrates at low temperatures.

  1. Mechanochemical synthesis and spark plasma sintering of the cerium silicides

    Energy Technology Data Exchange (ETDEWEB)

    Alanko, Gordon A.; Jaques, Brian; Bateman, Allyssa [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Butt, Darryl P., E-mail: darrylbutt@boisestate.edu [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Boulevard, Idaho Falls, ID 83401 (United States)

    2014-12-15

    Highlights: • Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−x} and CeSi{sub 2} were mechanochemically synthesized. • Temperature and pressure were monitored to investigate reaction progress. • All syntheses proceeded through a MSR event followed by rapid solid-state diffusion. • Milling time before MSR correlates well with effective heat of formation. • Some synthesized material was densified by spark plasma sintering. - Abstract: The cerium silicides, Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−y}, and CeSi{sub 2−x}, have been prepared from the elements by mechanochemical processing in a planetary ball mill. Preparation of the cerium silicide Ce{sub 5}Si{sub 4} was unsuccessfully attempted and potential reasons for this are discussed. Temperature and pressure of the milling vial were monitored in situ to gain insight into the mechanochemical reaction kinetics, which include a mechanically-induced self-propagating reaction (MSR). Some prepared powders were consolidated by spark plasma sintering to high density. Starting materials, as-milled powders, and consolidated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results obtained help elucidate key questions in mechanochemical processing of intermetallics, showing first phase formation similar to thin films, MSR ignition times that are composition- and milling speed-dependent, and sensitivity of stable compound formation on the impact pressure. The results demonstrate mechanochemical synthesis as a viable technique for rare earth silicides.

  2. Towards the improvement of the oxidation resistance of Nb-silicides in situ composites: A solid state diffusion approach

    International Nuclear Information System (INIS)

    Mathieu, S.; Knittel, S.; François, M.; Portebois, L.; Mathieu, S.; Vilasi, M.

    2014-01-01

    Highlights: •Local equilibrium is attained during oxidation at phase boundaries (steady state conditions). •A solid state diffusion model explains the oxidation mechanism of Nb-silicides composites. •The Nb ss fraction is not the only parameters governing the oxidation rate of Nb-silicides. •Aluminium increases the thermodynamic activity of Si in the Nb-silicides composites. •The results indicate the need to develop a Nb–Ti–Hf–Al–Cr–Si thermodynamic database. -- Abstract: The present study focuses on the oxidation mechanism of Nb-silicide composites and on the effect of the composition on the oxidation rate at 1100 °C. A theoretical approach is proposed based on experimental results and used to optimise the oxidation resistance. The growth model based on multiphase diffusion was experimentally tested and confirmed by manufacturing seven composites with different compositions. It was also found that the effect of the composition has to be evaluated at 1100 °C within a short time duration (50 h), where the oxide scale and the internal oxidation zone both grow according to parabolic kinetics

  3. Roentgenoelectronic investigation into oxidation of iron-chromium and iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Akimov, A.G.; Rozenfel'd, I.L.; Kazanskij, L.P.; Machavariani, G.V.

    1978-01-01

    Kinetics of iron-chromium and iron-chromium-nickel alloy oxidation (of the Kh13 and Kh18N10T steels) in oxygen was investigated using X-ray electron spectroscopy. It was found that according to X-ray electron spectra chromium oxidation kinetics in the iron-chromium alloy differs significantly from oxidation kinetics of chromium pattern. Layer by layer X-ray electron analysis showed that chromium is subjected to a deeper oxidation as compared to iron, and accordingly, Cr 2 O 3 layer with pure iron impregnations is placed between the layer of mixed oxide (Fe 3 O 4 +Cr 2 O 3 ) and metal. A model of the iron-chromium alloy surface is suggested. The mixed oxide composition on the steel surface is presented as spinel Fesub(2+x)Crsub(1-x)Osub(y)

  4. Quantitative EPMA of Nano-Phase Iron-Silicides in Apollo 16 Lunar Regolith

    Science.gov (United States)

    Gopon, P.; Fournelle, J.; Valley, J. W.; Pinard, P. T.; Sobol, P.; Horn, W.; Spicuzza, M.; Llovet, X.; Richter, S.

    2013-12-01

    Until recently, quantitative EPMA of phases under a few microns in size has been extremely difficult. In order to achieve analytical volumes to analyze sub-micron features, accelerating voltages between 5 and 8 keV need to be used. At these voltages the normally used K X-ray transitions (of higher Z elements) are no longer excited, and we must rely of outer shell transitions (L and M). These outer shell transitions are difficult to use for quantitative EPMA because they are strongly affected by different bonding environments, the error associated with their mass attenuation coefficients (MAC), and their proximity to absorption edges. These problems are especially prevalent for the transition metals, because of the unfilled M5 electron shell where the Lα transition originates. Previous studies have tried to overcome these limitations by using standards that almost exactly matched their unknowns. This, however, is cumbersome and requires accurate knowledge of the composition of your sample beforehand, as well as an exorbitant number of well characterized standards. Using a 5 keV electron beam and utilizing non-standard X-ray transitions (Ll) for the transition metals, we are able to conduct accurate quantitative analyses of phases down to ~300nm. The Ll transition in the transition metals behaves more like a core-state transition, and unlike the Lα/β lines, is unaffected by bonding effects and does not lie near an absorption edge. This allows for quantitative analysis using standards do not have to exactly match the unknown. In our case pure metal standards were used for all elements except phosphorus. We present here data on iron-silicides in two Apollo 16 regolith grains. These plagioclase grains (A6-7 and A6-8) were collected between North and South Ray Craters, in the lunar highlands, and thus are associated with one or more large impact events. We report the presence of carbon, nickel, and phosphorus (in order of abundance) in these iron-silicide phases

  5. Immobilization of Uranium Silicide in Sintered Iron-Phosphate Glass

    International Nuclear Information System (INIS)

    Mateos, Patricia; Russo, Diego; Rodriguez, Diego; Heredia, A; Sanfilippo, M.; Sterba, Mario

    2003-01-01

    This work is a continuation of a previous one performed in vitrification of uranium silicide in borosilicate and iron-silicate glasses, by sintering.We present the results obtained with an iron-phosphate glass developed at our laboratory and we compare this results with those obtained with the above mentioned glasses. The main objective was to develop a method as simple as possible, so as to get a monolithic glass block with the appropriate properties to be disposed in a deep geological repository.The thermal transformation of the uranium silicide was characterized by DTA/TG analysis and X-ray diffraction.We determined the evolution of the crystalline phases and the change in weight.Calcined uranium silicide was mixed with natural U 3 O 8 , the amount of U 3 O 8 was calculated to simulate an isotopic dilution of 4%.This material was mixed with powdered iron-phosphate glass (in wt.%: 64,9 P 2 O 5 ; 22,7 Fe 2 O 3 ; 8,1 Al 2 O 3 ; 4,3 Na 2 O) in different proportions (in wt%): 7%, 10% y 15%.The powders were pressed and sintered at temperatures between 585 y 670 °C. Samples of the sintered pellet were prepared for the lixiviation tests (MCC-1P: monolithic samples; deionised water; 90° C; 7, 14 and 28 days).The samples showed a quite good durability (0,6 g.m -2 .day -1 ), similar to borosilicate glasses.The microstructure of the glass samples showed that the uranium particles are much better integrated to the glass matrix in the iron-phosphate glasses than in the borosilicate or iron-silicate glasses.We can conclude that the sintered product obtained could be a good alternative for the immobilization of nuclear wastes with high content of uranium, as the ones arising from the conditioning of research reactors spent fuels

  6. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes normally are used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium-nickel steels in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  7. The formation of magnetic silicide Fe3Si clusters during ion implantation

    Science.gov (United States)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  8. The formation of magnetic silicide Fe3Si clusters during ion implantation

    International Nuclear Information System (INIS)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-01-01

    A simple two-dimensional model of the formation of magnetic silicide Fe 3 Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field

  9. Chromium in leather footwear-risk assessment of chromium allergy and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Strandesen, Maria; Poulsen, Pia B

    2012-01-01

    Background. Chromium-tanned leather footwear, which releases >3 ppm hexavalent Cr(VI), may pose a risk of sensitizing and eliciting allergic dermatitis. Objectives. To determine the content and potential release of chromium in leather footwear and to discuss the prevention of chromium contact...... allergy and dermatitis. Methods. Sixty pairs of leather shoes, sandals and boots (20 children's, 20 men's, and 20 women's) were purchased in Copenhagen and examined with X-ray fluorescence spectroscopy. Chromium was extracted according to the International Standard, ISO 17075. The detection level for Cr......(VI) was 3 ppm. Results. Chromium was identified in 95% of leather footwear products, the median content being 1.7% (range 0-3.3%). No association with store category or footwear category was found. A tendency for there to be a higher chromium content in footwear with high prices was shown (p(trend) = 0...

  10. Phase analyses of silicide or nitride coated U–Mo and U–Mo–Ti particle dispersion fuel after out-of-pile annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Jeong [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Palancher, Hervé [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Ryu, Ho Jin, E-mail: hojinryu@kaist.ac.kr [Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong, Daejeon 305-701 (Korea, Republic of); Park, Jong Man; Nam, Ji Min [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Bonnin, Anne [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); ESRF, 6, rue J. Horowitz, F-38000 Grenoble Cedex (France); Honkimäki, Veijo [ESRF, 6, rue J. Horowitz, F-38000 Grenoble Cedex (France); Charollais, François [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Lemoine, Patrick [CEA, DEN, DISN, 91191 Gif sur Yvette (France)

    2014-03-15

    Highlights: • Silicide or nitride layers were coated on atomized U–Mo or U–Mo–Ti powder. • The constituent phases after annealing were identified through high-energy XRD. • U{sub 3}Si{sub 5} and U{sub 4}Mo(Mo{sub x}Si{sub 1−x})Si{sub 2} were identified in the silicide coating layers. • UN was identified for U–Mo particles and UN and U{sub 4}N{sub 7} formed on U–Mo–Ti particles. -- Abstract: The coating of silicide or nitride layers on U–7 wt%Mo or U–7 wt%Mo–1 wt%Ti particles has been proposed for the minimization of the interaction phase growth in U–Mo/Al dispersion fuel during irradiation. Out-of-pile annealing tests show reduced inter-diffusion by forming silicide or nitride protective layers on U–Mo and U–Mo–Ti particles. To characterize the constituent phases of the coated layers on U–Mo and U–Mo–Ti particles and the interaction phases of coated U–Mo and U–Mo–Ti particle dispersed Al matrix fuel, synchrotron X-ray diffraction experiments have been performed. It was identified that silicide coating layers consisted mainly of U{sub 3}Si{sub 5} and U{sub 4}Mo(Mo{sub x}Si{sub 1−x})Si{sub 2}, and nitride coating layers were composed of mainly UN and U{sub 4}N{sub 7}. The interaction phases obtained after annealing of coated U–Mo and U–Mo–Ti particle dispersion samples were identical to those found in U–Mo/Al–Si and U–Mo/Al systems. Nitride-coated particles showed less interaction formation than silicide-coated particles after annealing at 580 °C for 1 h owing to the higher susceptibility to breakage of the silicide coating layers during hot extrusion.

  11. Heterogeneous chromium catalysts

    NARCIS (Netherlands)

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based

  12. Determination of chromium combined with DNA, RNA and protein in chromium-rich brewer's yeast

    International Nuclear Information System (INIS)

    Ding Wenjun; Qian Qinfang; Hou Xiaolin; Feng Weiyue; Chai Zhifang

    2000-01-01

    The contents of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast were determined with the neutron activation analysis in order to study the combination of Cr with DNA, RNA and protein in chromium-rich brewer's yeast. The results showed that the extracting rats and concentrations of DNA, RNA and protein had no significant difference in two types of yeast, but the chromium contents of DNA, RNA and protein in the chromium-rich yeast were significantly higher than those in the normal. In addition, the content of chromium in DNA was much higher than that in RNA and protein, which indicated that the inorganic chromium compounds entered into the yeast cell, during the yeast cultivation in the culture medium containing chromium were converted into organic chromium compounds combined with DNA, RNA and protein

  13. Optical anisotropy of quasi-1D rare-earth silicide nanostructures on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Chandola, S., E-mail: sandhya.chandola@isas.de [Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Schwarzschildstraße 8, 12489 Berlin (Germany); Speiser, E.; Esser, N. [Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Schwarzschildstraße 8, 12489 Berlin (Germany); Appelfeller, S.; Franz, M.; Dähne, M. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)

    2017-03-31

    Highlights: • Reflectance anisotropy spectroscopy (RAS) is capable of distinguishing optically between the semiconducting wetting layer and the metallic nanowires of rare earth (Tb and Dy) silicide nanostructures grown on vicinal Si(001). • The spectra of the wetting layer show a distinctive line shape with a large peak appearing at 3.8 eV, which is assigned to the formation of 2 × 3 and 2 × 4-like subunits of the 2 × 7 reconstruction. The spectra of the metallic nanowires show peaks at the E{sub 1} and E{sub 2} transitions of bulk Si which is assigned to strong substrate strain induced by the nanowires. • The optical anisotropy of the Tb nanowires is larger than for the Dy nanowires, which is related to the preferential formation of more strained bundles as well as larger areas of clean Si surfaces in the case of Tb. • RAS is shown to be a powerful addition to surface science techniques for studying the formation of rare-earth silicide nanostructures. Its surface sensitivity and rapidity of response make it an ideal complement to the slower but higher resolution of scanning probes of STM and AFM. - Abstract: Rare earth metals are known to interact strongly with Si(001) surfaces to form different types of silicide nanostructures. Using STM to structurally characterize Dy and Tb silicide nanostructures on vicinal Si(001), it will be shown that reflectance anisotropy spectroscopy (RAS) can be used as an optical fingerprint technique to clearly distinguish between the formation of a semiconducting two-dimensional wetting layer and the metallic one-dimensional nanowires. Moreover, the distinctive spectral features can be related to structural units of the nanostructures. RAS spectra of Tb and Dy nanostructures are found to show similar features.

  14. Sorption of chromium(III) and chromium(VI) on lead sulfide

    International Nuclear Information System (INIS)

    Music, S.

    1985-01-01

    The sorption of chromium(III) and chromium(VI) on lead sulfide was investigated in dependence on pH, time of sorption, and on the concnetrations of sorbate and sorbent. The mechanisms of the sorption of Crsup(3+) and CrOsub(4)sup(2-) traces on lead sulfide are discussed; a difference between CrOsub(4)sup(2-) sorption on PbS and α-Fesub(2)Osub(3) was found. Sulfates and molybdates affect the removal of chromates from aqueous solutions. Lead sulfide carrier prepared in this work was also used for the preconcentration of chromium(III) and chromium(VI) from tap water. (author)

  15. Cross-Bridge Kelvin Resistor (CBKR) structures for silicide-semiconductor junctions characterization

    NARCIS (Netherlands)

    Stavitski, N.; van Dal, M.J.H.; Klootwijk, J.H.; Wolters, Robertus A.M.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2006-01-01

    Analyzing the contact geometry factors for the conventional CBKR structures, it appeared that the contact geometries conventionally used for the metal-to-silicide contact resistance measurements were not always satisfactory to reveal the specific contact resistance values. To investigate these

  16. Synthesis of molybdenum borides and molybdenum silicides in molten salts and their oxidation behavior in an air-water mixture

    NARCIS (Netherlands)

    Kuznetsov, S.A.; Kuznetsova, S.V.; Rebrov, E.V.; Mies, M.J.M.; Croon, de M.H.J.M.; Schouten, J.C.

    2005-01-01

    The formation of various coatings in molybdenum-boron and molybdenum-silicon systems was investigated. Boronizing and siliciding treatments were conducted in molten salts under inert gas atm. in the 850-1050 DegC temp. range for 7 h. The presence of boride (e.g. Mo2B, MoB, Mo2B5) and silicide

  17. Influence of impurities on silicide contact formation

    International Nuclear Information System (INIS)

    Kazdaev, Kh.R.; Meermanov, G.B.; Kazdaev, R.Kh.

    2002-01-01

    Research objectives of this work are to investigate the influence of light impurities implantation on peculiarities of the silicides formation in molybdenum monocrystal implanted by silicon, and in molybdenum films sputtered on silicon substrate at subsequent annealing. Implantation of the molybdenum samples was performed with silicon ions (90 keV, 5x10 17 cm -2 ). Phase identification was performed by X ray analysis with photographic method of registration. Analysis of the results has shown the formation of the molybdenum silicide Mo 3 Si at 900 deg. C. To find out the influence of impurities present in the atmosphere (C,N,O) on investigated processes we have applied combined implantation. At first, molybdenum was implanted with ions of the basic component (silicon) and then -- with impurities ions. Acceleration energies (40keV for C, 45 keV for N and 50 keV for O) were chosen to obtain the same distribution profiles for basic and impurities ions. Ion doses were 5x10 17 cm -2 for Si-ions and 5x10 16 cm -2 - for impurities. The most important results are reported here. The first, for all three kinds of impurities the decreased formation temperatures of the phase Mo 3 Si were observed; in the case of C and N it was ∼100 deg. and in the case of nitrogen - ∼200 deg. Further, simultaneously with the Mo 3 Si phase, the appearance of the rich-metal phase Mo 5 Si 3 was registered (not observed in the samples without additional implantation). In case of Mo/Si-structure, the implantation of the impurities (N,O) was performed to create the peak concentration (∼4at/%) located in the middle of the molybdenum film (∼ 150nm) deposited on silicon substrate. Investigation carried out on unimplanted samples showed the formation of the silicide molybdenum MoSi 2 , observed after annealing at temperatures 900/1000 deg. C, higher than values 500-600 deg. C reported in other works. It is discovered that electrical conductivity of Mo 5 Si 3 -films synthesized after impurities

  18. Development of low-chromium, chromium-tungsten steels for fusion

    International Nuclear Information System (INIS)

    Klueh, R.L.; Alexander, D.J.; Kenik, E.A.

    1995-01-01

    High-chromium (9-12% Cr) Cr-Mo and Cr-W ferritic steels are favored as candidates for fusion applications. In early work to develop reduced-activation steels, an Fe-2.25Cr-2W-0.25V-0.1C steel (designated 2.25Cr-2WV) had better strength than an Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) steel (compositions are in weight percent). However, the 2.25Cr-2WV had poor impact properties, as determined by the ductile-brittle transition temperature and upper-shelf energy of subsize Charpy impact specimens. Because low-chromium steels have some advantages over high-chromium steels, a program to develop low-chromium steels is in progress. Microstructural analysis indicated that the reason for the inferior impact toughness of the 2.25Cr-2WV was the granular bainite obtained when the steel was normalized. Properties can be improved by developing an acicular bainite microstructure by increasing the cooling rate after austenitization. Alternatively, acicular bainite can be promoted by increasing the hardenability. Hardenability was changed by adding small amounts of boron and additional chromium to the 2.25Cr-2WV composition. A combination of B, Cr, and Ta additions resulted in low-chromium reduced-activation steels with mechanical properties comparable to those of 9Cr-2WVTa. (orig.)

  19. Fuel cycle cost comparisons with oxide and silicide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J E; Freese, K E [RERTR Program, Argonne National Laboratory (United States)

    1983-09-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. The status of the development and demonstration of the oxide and silicide fuels are presented in several papers in these proceedings. Routine utilization of these fuels with the uranium densities considered here requires that they are successfully demonstrated and licensed. Thermal-hydraulic safety margins, shutdown margins, mixed cores, and transient analyses are not addressed here, but analyses of these safety issues are in progress for a limited number of the most promising design options. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data is presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed. All safety criteria for the reactor with these fuel element designs need to be satisfied as well. With LEU oxide fuel, 31 g U/cm{sup 3} 1 and 0.76 mm--thick fuel meat, elements with 18-22 plates 320-391 g {sup 235}U) result in the same or lower total costs than with the HEU element 23 plates, 280 g {sup 235}U). Higher LEU loadings (more plates per element) are needed for larger excess reactivity requirements. However, there is little cost advantage to using more than 20 of these plates per element. Increasing the fuel meat thickness from 0.76 mm to 1.0 mm with 3.1 g U/cm{sup 3} in the design with 20 plates per element could result in significant cost reductions if the

  20. Determination of chromium(III) and total chromium in marine waters

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, M J [WRc, Henley Road, Medmenham, Marlow SL7 2HD (United Kingdom); Ravenscroft, J E [WRc, Henley Road, Medmenham, Marlow SL7 2HD (United Kingdom)

    1996-03-01

    The development of an analytical technique is described which may be used to determine chromium, chromium(III) and chromium(VI) in estuarine and coastal waters. The method is based on selective micro-solvent extraction with subsequent GFAAS. The technique has been applied in a major North Sea estuary. The results obtained confirm that thermodynamic factors alone cannot be relied upon to describe the form of chromium in estuaries. Kinetic factors appear to have a strong influence over speciation and lead to the persistence of Cr(III) species in environments where Cr(VI) would be expected to be present. (orig.). With 5 figs., 2 tabs.

  1. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofmann, G.L.; Ryu, Woo-Seog

    1991-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and micro structural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide dispersion fuel. (orig.)

  2. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    Smith, W.H.; Purdy, G.M.

    1995-01-01

    This study was undertaken to determine if chromium(+6) could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium(+3) to chromium(+6) by nitric acid; and the reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium(+3) to chromium(+6) was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the (+6) oxidation state and would not exist in the (+6) state in the final process waste solutions

  3. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    Smith, W.H.; Purdy, G.

    1995-01-01

    This study was undertaken to determine if chromium +6 could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium +3 to chromium +6 by nitric. acid; and the reduction of chromium +6 back to chromium +3 by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium +3 to chromium +6 was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium +6 back to chromium +3 by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the +6 oxidation state and would not exist in the +6 state in the final process waste solutions

  4. The formation of magnetic silicide Fe{sub 3}Si clusters during ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, N. [Kazan National Research Technological University, K.Marx st. 68, Kazan 420015 (Russian Federation); Zhikharev, V., E-mail: valzhik@mail.ru [Kazan National Research Technological University, K.Marx st. 68, Kazan 420015 (Russian Federation); Gumarov, G. [Zavoiskii Physico-Technical Institute of Russian Academy of Sciences, 10/7 Sibirskii trakt st., Kazan 420029 (Russian Federation)

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe{sub 3}Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  5. Secondary neutral mass spectrometry depth profile analysis of silicides

    International Nuclear Information System (INIS)

    Beckmann, P.; Kopnarski, M.; Oechsner, H.

    1985-01-01

    The Direct Bombardment Mode (DBM) of Secondary Neutral Mass Spectrometry (SNMS) has been applied for depth profile analysis of two different multilayer systems containing metal silicides. Due to the extremely high depth resolution obtained with low energy SNMS structural details down to only a few atomic distances are detected. Stoichiometric information on internal oxides and implanted material is supplied by the high quantificability of SNMS. (Author)

  6. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  7. Influence of Al addition on phase transformation and thermal stability of nickel silicides on Si(0 0 1)

    International Nuclear Information System (INIS)

    Huang, Shih-Hsien; Twan, Sheng-Chen; Cheng, Shao-Liang; Lee, Tu; Hu, Jung-Chih; Chen, Lien-Tai; Lee, Sheng-Wei

    2014-01-01

    Highlights: ► The presence of Al slows down the Ni 2 Si–NiSi phase transformation but significantly promotes the NiSi 2−x Al x formation. ► The behavior of phase transformation strongly depends on the Al concentration of the initial Ni 1−x Al x alloys. ► The Ni 0.91 Al 0.09 /Si system exhibits remarkably improved thermal stability, even after high temperature annealing for 1000 s. ► The relationship between microstructures, electrical property, and thermal stability of Ni(Al) silicides is discussed. -- Abstract: The influence of Al addition on the phase transformation and thermal stability of Ni silicides on (0 0 1)Si has been systematically investigated. The presence of Al atoms is found to slow down the Ni 2 Si–NiSi phase transformation but significantly promote the NiSi 2−x Al x formation during annealing. The behavior of phase transformation strongly depends on the Al concentration of the initial Ni 1−x Al x alloys. Compared to the Ni 0.95 Pt 0.05 /Si and Ni 0.95 Al 0.05 /Si system, the Ni 0.91 Al 0.09 /Si sample exhibits remarkably enhanced thermal stability, even after high temperature annealing for 1000 s. The relationship between microstructures, electrical property, and thermal stability of Ni silicides is discussed to elucidate the role of Al during the Ni 1−x Al x alloy silicidation. This work demonstrated that thermally stable Ni 1−x Al x alloy silicides would be a promising candidate as source/drain (S/D) contacts in advanced complementary metal–oxide-semiconductor (CMOS) devices

  8. Hexavalent Chromium Minimization Strategy

    Science.gov (United States)

    2011-05-01

    Logistics 4 Initiative - DoD Hexavalent Chromium Minimization Non- Chrome Primer IIEXAVAJ ENT CHRO:M I~UMI CHROMIUM (VII Oil CrfVli.J CANCEfl HAnRD CD...Management Office of the Secretary of Defense Hexavalent Chromium Minimization Strategy Report Documentation Page Form ApprovedOMB No. 0704-0188...00-2011 4. TITLE AND SUBTITLE Hexavalent Chromium Minimization Strategy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  9. Making of fission 99Mo from LEU silicide(s): A radiochemists' view

    International Nuclear Information System (INIS)

    Kolar, Z.I.; Wolterbeek, H.Th.

    2005-01-01

    The present-day industrial scale production of 99 Mo is fission based and involves thermal-neutron irradiation in research reactors of highly enriched uranium (HEU, > 20 % 235 U) containing targets, followed by radiochemical processing of the irradiated targets resulting in the final product: a 99 Mo containing chemical compound of molybdenum. In 1978 a program (RERTR) was started to develop a substitute for HEU reactor fuel i.e. a low enriched uranium (LEU, 235 U) one. In the wake of that program studies were undertaken to convert HEU into LEU based 99 Mo production. Both new targets and radiochemical treatments leading to 99 Mo compounds were proposed. One of these targets is based on LEU silicide, U 3 Si 2 . Present paper aims at comparing LEU U 3 Si 2 and LEU U 3 Si with another LEU target i.e. target material and arriving at some preferences pertaining to 99 Mo production. (author)

  10. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofman, G.L.; Ryu, Woo-Seog.

    1989-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and microstructural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide disperson fuel. 5 refs., 10 figs

  11. Leaching of chromium from chromium contaminated soil: Speciation study and geochemical modeling

    Directory of Open Access Journals (Sweden)

    Anđelković Darko H.

    2012-01-01

    Full Text Available Distribution of chromium between soil and leachate was monitored. A natural process of percolating rainwater through the soil was simulated in the laboratory conditions and studied with column leaching extraction. Migration of chromium in the soil is conditioned by the level of chromium soil contamination, the soil organic matter content, and rainwater acidity. Chromium (III and chromium(VI were determined by spectrophotometric method with diphenilcarbazide in acidic media. Comparing the results of chromium speciation in leachate obtained by experimental model systems and geochemical modelling calculations using Visual MINTEQ model, a correlation was observed regarding the influence of the tested parameters. Leachate solutions showed that the concentration of Cr depended on the organic matter content. The influence of pH and soil organic matter content is in compliance after its definition through experimental and theoretical way. The computer model - Stockholm Humic Model used to evaluate the leaching results corresponded rather well with the measured values.

  12. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    Smith, W.H.; Purdy, G.

    1994-01-01

    According to the measurements made in this study, the only situation in which chromium (+6) could exist in a plutonium process solution is one in which a feed containing chromium is dissolved in a glass pot dissolver in high nitric acid concentration and at high temperature. But when the resulting feed is prepared for ion exchange, the chemical treatment reduces chromium to the +3 state. Any solution being processed through the evaporator will only contain chromium in the +3 state and any chromium salts remaining in the evaporator bottoms will be chromium +3 salts

  13. X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.; Solak, H.; Cerrina, F. [Univ. of Wisconsin-Madison, Stoughton, WI (United States)] [and others

    1997-04-01

    Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi{sub 2} exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 {mu}{Omega}-cm that is formed at a lower temperature (formation anneal) and the stable 12-15 {mu}{Omega}-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick {open_quotes}as is{close_quotes} industrial samples.

  14. X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures

    International Nuclear Information System (INIS)

    Singh, S.; Solak, H.; Cerrina, F.

    1997-01-01

    Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi 2 exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 μΩ-cm that is formed at a lower temperature (formation anneal) and the stable 12-15 μΩ-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick open-quotes as isclose quotes industrial samples

  15. Carcinogenicity and mutagenicity of chromium.

    Science.gov (United States)

    Léonard, A; Lauwerys, R R

    1980-11-01

    Occupational exposure represents the main source of human contamination by chromium. For non-occupationally exposed people the major environmental exposure to chromium occurs as a consequence of its presence in food. Chromium must be considered as an essential element. Its deficiency impairs glucose metabolism. Trivalent chromium salts are poorly absorbed through the gastro-intestinal and respiratory tracts because they do not cross membranes easily. Hexavalent chromium can be absorbed by the oral and pulmonary routes and probably also through the skin. After its absorption, hexavalent chromium is rapidly reduced to the trivalent form which is probably the only form to be found in biological material. Epidemiological studies have shown that some chromium salts (mainly the slightly soluble hexavalent salts) are carcinogens. Lung cancers have, indeed, often been reported among workers in chromate-producing industry and, to a lesser extent, in workers from the chrome-pigment industry. The first attempts to produce cancers in experimental animals by inhalation or parenteral introduction gave negative or equivocal results but, from 1960, positive results have been obtained with various chromium compounds. As for the carcinogenic activity, the mutagenicity of chromium has mainly been found with hexavalent salts. In the majority of assay systems used, trivalent chromium appears inactive. It can be considered as evident, however, that the ultimate mutagen which binds to the genetic material is the trivalent form produced intracellularly from hexavalent chromium, the apparent lack of activity of the trivalent form being due to its poor cellular uptake.

  16. Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil.

    Science.gov (United States)

    Meng, Fansheng; Xue, Hao; Wang, Yeyao; Zheng, Binghui; Wang, Juling

    2018-02-01

    Electrokinetic experiments were conducted on chromium-residue-contaminated soils collected from a chemical plant in China. Acidification-electrokinetic remediation technology was proposed in order to solve the problem of removing inefficient with ordinary electrokinetic. The results showed that electrokinetic remediation removal efficiency of chromium from chromium-contaminated soil was significantly enhanced with acidizing pretreatment. The total chromium [Cr(T)] and hexavalent chromium [Cr(VI)] removal rate of the group acidized by citric acid (0.9 mol/L) for 5 days was increased from 6.23% and 19.01% in the acid-free experiments to 26.97% and 77.66% in the acidification-treated experiments, respectively. In addition, part of chromium with the state of carbonate-combined will be converted into water-soluble state through acidification to improve the removal efficiency. Within the appropriate concentration range, the higher concentration of acid was, the more chromium was released. So the removal efficiency of chromium depended on the acid concentration. The citric acid is also a kind of complexing agent, which produced complexation with Cr that was released by the electrokinetic treatment and then enhanced the removal efficiency. The major speciation of chromium that was removed from soils by acidification-electrokinetics remediation was acid-soluble speciation, revivification speciation and oxidation speciation, which reduced biological availability of chromium.

  17. Chromium carcinogenicity: California strategies.

    Science.gov (United States)

    Alexeeff, G V; Satin, K; Painter, P; Zeise, L; Popejoy, C; Murchison, G

    1989-10-01

    Hexavalent chromium was identified by California as a toxic air contaminant (TAC) in January 1986. The California Department of Health Services (CDHS) concurred with the findings of the International Agency for Research on Cancer that there is sufficient evidence to demonstrate the carcinogenicity of chromium in both animals and humans. CDHS did not find any compelling evidence demonstrating the existence of a threshold with respect to chromium carcinogenesis. Experimental data was judged inadequate to assess potential human reproductive risks from ambient exposures. Other health effects were not expected to occur at ambient levels. The theoretically increased lifetime carcinogenic risk from a continuous lifetime exposure to hexavalent chromium fell within the range 12-146 cancer cases per nanogram hexavalent chromium per cubic meter of air per million people exposed, depending on the potency estimate used. The primary sources found to contribute significantly to the risk of exposure were chrome platers, chromic acid anodizing facilities and cooling towers utilizing hexavalent chromium as a corrosion inhibitor. Evaluation of genotoxicity data, animal studies and epidemiological studies indicates that further consideration should be given to the potential carcinogenicity of hexavalent chromium via the oral route.

  18. Determination of chromium combined with DNA, RNA and proteins in chromium-rich brewer's yeast by NAA

    International Nuclear Information System (INIS)

    Ding, W.J.; Qian, Q.F.; Hou, X.L.; Feng, W.Y.; Chai, Z.F.

    2000-01-01

    The content of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast was determined by neutron activation analysis (NAA). Our results show that the extracted relative amounts and concentrations of DNA, RNA and proteins have no significant difference for two types of yeast, but the chromium content in DNA, RNA and proteins fractions extracted from the chromium-rich yeast are substantially higher than those from the normal. In addition, the concentration of chromium in DNA is much higher than that in RNA and proteins. It is evident that the inorganic chromium compounds can enter the yeast cell during the yeast cultivation in the chromium-containing culture medium and are converted into organic chromium species, which are combined with DNA, RNA and proteins. (author)

  19. Rare earth silicide nanowires on silicon surfaces

    International Nuclear Information System (INIS)

    Wanke, Martina

    2008-01-01

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti Γ point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi 2 -monolayer and the Dy 3 Si 5 -multilayer on the Si(111) surface are investigated in comparison to the known ErSi 2 /Si(111) and Er 3 Si 5 /Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the vector k parallel space is elliptical at the anti M points, while the hole pocket at the anti Γ point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas of the sample surface, which are oriented

  20. Simultaneous determination of chromium(III) and chromium(VI) in aqueous solutions by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jøns, O; Nielsen, B

    1992-01-01

    A method for the simultaneous determination of chromium(iii) and chromium(vi) in a flow system based on chemiluminescence was developed. A Dionex cation-exchange guard column was used to separate chromium(iii) from chromium(vi), and chromium(vi) was reduced by potassium sulfite, whereupon both...

  1. Characteristics of chromium-allergic dermatitis patients prior to regulatory intervention for chromium in leather

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P; Zachariae, Claus

    2014-01-01

    BACKGROUND: Chromium-tanned leather articles currently constitute the most important cause of contact allergy to chromium in Denmark. A regulation on the content of hexavalent chromium in leather was adopted in November 2013 by the EU member states. OBJECTIVES: To characterize patients...... with chromium allergy and their disease, to serve as a baseline for future studies on the potential effect of the new regulation on chromium in leather. METHODS: A questionnaire case-control study was performed on 155 dermatitis patients with positive patch test reactions to potassium dichromate and a matched...... control group of 621 dermatitis patients. Comparisons were made by use of a χ(2) -test and the Mann-Whitney U-test. Logistic regression analyses were used to test for associations. RESULTS: Sixty-six per cent of chromium-allergic patients had a positive history of contact dermatitis caused by leather...

  2. Specification for corrosion-resisting chromium and chromium-nickel steel welding rods and bare electrodes - approved 1969

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    This specification covers corrosion-resisting chromium and chromium-nickel steel welding rods for use with the atomic hydrogen and gas-tungsten-arc welding processes and bare electrodes for use with the submerged arc and gas metal-arc welding processes. These welding rods and electrodes include those alloy steels designated as corrosion- or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4% and nickel does not exceed 50%

  3. Oxidation-resistant Ge-doped silicide coating on Cr-Cr2Nb alloys by pack cementation

    International Nuclear Information System (INIS)

    He Yirong

    1997-01-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on Cr-Cr 2 Nb alloys in a single processing step. The morphology and composition of the coating depended both on the pack composition and processing schedule and also on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi 2 and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. Under cyclic and isothermal oxidation conditions, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation and from pesting by the formation of a Ge-doped silica film. (orig.)

  4. RA-3 reactor core with uranium silicide fuel elements P-07 type

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2003-01-01

    Following the studies on the utilization of fuel elements (FE) containing uranium silicide, core of the RA-3 was analyzed with several calculation models. At first, the present situation, i.e. the core charged with normal FE (U 3 O 8 ), has been analyzed to validate the simulation methodology comparing with experimental results and to establish reference data to 5 and 10 MW able to be compared with future new situations. Also, CITVAP's nuclear data libraries to be used in irradiation experiment planning were completed. The results were satisfactory and were applied to the study of the core containing P-07 FE [U 3 Si 2 ], in face of a future core change. Comparing with the performance of the U 3 O 8 FE, the silicides ones show the following advantages: - average burnup: 45 % greater; -extraction burnup increase 12 %; and, -the residence time [in full power days] could be a 117 % greater. (author)

  5. X-ray-emission studies of chemical bonding in transition-metal silicides

    NARCIS (Netherlands)

    Weijs, P.J.W.; Leuken, H. van; Groot, R.A. de; Fuggle, J.C.; Reiter, S.; Wiech, G.; Buschow, K.H.J.

    1991-01-01

    We present Si L2,3 emission-band spectra of a series of 3d and 4d transition-metal (TM) silicides, together wtih Si K emission-band spectra of four 3d TM disilicides. The data are compared with augmented-spherical-wave density-of-states (DOS) calculations, and good agreement is found. The trends we

  6. High pressure studies on uranium and thorium silicide compounds: Experiment and theory

    DEFF Research Database (Denmark)

    Yagoubi, S.; Heathman, S.; Svane, A.

    2013-01-01

    The actinide silicides ThSi, USi and USi2 have been studied under high pressure using both theory and experiment. High pressure synchrotron X-ray diffraction experiments were performed on polycrystalline samples in diamond anvil cells at room temperature and for pressures up to 54, 52 and 26 GPa...

  7. Hexavalent Chromium Compounds

    Science.gov (United States)

    Learn about chromium, exposure to which can increase your risk of lung cancer and cancer of the paranasal sinuses and nasal cavity. Hexavalent chromium compounds have been used as corrosion inhibitors in a wide variety of products and processes.

  8. The fabrication and performance of Canadian silicide dispersion fuel for test reactors

    International Nuclear Information System (INIS)

    Sears, D.F.; Wood, J.C.; Berthiaume, L.C.; Herbert, L.N.; Schaefer, J.D.

    1985-01-01

    Fuel fabrication effort is now concentrated on the commissioning of large-scale process equipment, defining product specifications, developing a quality assurance plan, and setting up a mini-computer material accountancy system. In the irradiation testing program, full-size NRU assemblies containing 20% enriched silicide dispersion fuel have been Irradiated successfully to burnups in the range 65-80 atomic percent. Irradiations have also been conducted on mini-elements having 1.2 mm diameter holes In their mid-sections, some drilled before irradiation and others after irradiation to 22-83 atomic percent burnup. Uranium was lost to the coolant in direct proportion to the surface area of exposed core material. Pre-irradiation in the intact condition appeared to reduce in-reactor corrosion. Fuel cores developed for the NRU reactor are dimensionally very stable, swelling by only 6-8% at the very high burnup of 93 atomic percent. Two important factors contributing to this good performance are cylindrical clad restraint and coarse silicide particles. Thermal ramping tests were conducted on irradiated silicide aspersion fuels. Small segments of fuel cores released 85 Kr starting at about 520 deg. C and peaking at about 680 deg C. After a holding period of 1 hour at 720 deg. C a secondary 85 Kr peak occurred during cooling (at about 330 deg. C) probably due to thermal contraction cracking. Whole mini-elements irradiated to 93 atomic percent burnup were also ramped thermally, with encouraging results. After about 0.25 h at 530 deg. C the aluminum cladding developed very localized small blisters, some with penetrating pin-hole cracks preventing gross pillowing or ballooning. (author)

  9. The fabrication and performance of Canadian silicide dispersion fuel for test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sears, D F; Wood, J C; Berthiaume, L C; Herbert, L N; Schaefer, J D

    1985-07-01

    Fuel fabrication effort is now concentrated on the commissioning of large-scale process equipment, defining product specifications, developing a quality assurance plan, and setting up a mini-computer material accountancy system. In the irradiation testing program, full-size NRU assemblies containing 20% enriched silicide dispersion fuel have been Irradiated successfully to burnups in the range 65-80 atomic percent. Irradiations have also been conducted on mini-elements having 1.2 mm diameter holes In their mid-sections, some drilled before irradiation and others after irradiation to 22-83 atomic percent burnup. Uranium was lost to the coolant in direct proportion to the surface area of exposed core material. Pre-irradiation in the intact condition appeared to reduce in-reactor corrosion. Fuel cores developed for the NRU reactor are dimensionally very stable, swelling by only 6-8% at the very high burnup of 93 atomic percent. Two important factors contributing to this good performance are cylindrical clad restraint and coarse silicide particles. Thermal ramping tests were conducted on irradiated silicide aspersion fuels. Small segments of fuel cores released {sup 85}Kr starting at about 520 deg. C and peaking at about 680 deg C. After a holding period of 1 hour at 720 deg. C a secondary {sup 85}Kr peak occurred during cooling (at about 330 deg. C) probably due to thermal contraction cracking. Whole mini-elements irradiated to 93 atomic percent burnup were also ramped thermally, with encouraging results. After about 0.25 h at 530 deg. C the aluminum cladding developed very localized small blisters, some with penetrating pin-hole cracks preventing gross pillowing or ballooning. (author)

  10. Experimental patch testing with chromium-coated materials.

    Science.gov (United States)

    Bregnbak, David; Thyssen, Jacob P; Jellesen, Morten S; Zachariae, Claus; Johansen, Jeanne D

    2017-06-01

    Chromium coatings on metal alloys can be decorative, and prevent corrosion and metal ion release. We recently showed that handling of a chromium-containing disc resulted in chromium deposition on the skin. To examine patch test reactivity to chromium-coated discs. We included 15 patients: 10 chromium-allergic patients, and 5 patients without chromium allergy. All were patch tested with potassium dichromate, cobalt chloride, nickel sulfate, and nine different metallic discs. The chromium-allergic patients were also patch tested with serial dilutions of potassium dichromate. Positive/weaker reactions were observed to disc B (1 of 10), disc C (1 of 10), and disc D, disc E, and disc I (4 of 10 each). As no controls reacted to any of the discs, the weak reactions indicate allergic reactions. Positive patch test reactions to 1770 ppm chromium(VI) in the serial dilutions of potassium dichromate were observed in 7 of 10 patients. When the case group was narrowed down to include only the patients with a current positive patch test reaction to potassium dichromate, elicitation of dermatitis by both chromium(III) and chromium(VI) discs was observed in 4 of 7 of patients. Many of the patients reacted to both chromium(III) and chromium(VI) surfaces. Our results indicate that both chromium(VI) and chromium(III) pose a risk to chromium-allergic patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Mthunzi, P. [National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria (South Africa); Muller, T.F.G. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Julies, B. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Ramponi, R. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa)

    2014-12-01

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr{sub 2}O{sub 3} layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr{sub 2}O{sub 3} layer. The α-Cr{sub 2}O{sub 3} layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

  12. Experimental patch testing with chromium-coated materials

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P; Jellesen, Morten Stendahl

    2017-01-01

    Chromium coatings on metal alloys can be decorative, and prevent corrosion and metal ion release. We recently showed that handling of a chromium-containing disc resulted in chromium deposition on the skin. To examine patch test reactivity to chromium-coated discs. We included 15 patients: 10...... chromium-allergic patients, and 5 patients without chromium allergy. All were patch tested with potassium dichromate, cobalt chloride, nickel sulfate, and nine different metallic discs. The chromium-allergic patients were also patch tested with serial dilutions of potassium dichromate. Positive...

  13. Treatment of chromium contaminated soil using bioremediation

    Science.gov (United States)

    Purwanti, Ipung Fitri; Putri, Tesya Paramita; Kurniawan, Setyo Budi

    2017-11-01

    Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L

  14. Structure of Ni-rich Ni--Cr--B--Si coating alloys

    International Nuclear Information System (INIS)

    Knotek, O.; Lugscheider, E.; Reimann, H.

    1975-01-01

    The structures of quaternary, nickel-rich Ni--Cr--B--Si alloys were analyzed at a constant boron content of 10 at. percent and a temperature of 850 0 C. The composition range for silicide formation was determined. In these quaternary alloys, known binary nickel silicides, nickel and chromium borides, and the ternary silico-boride Ni 6 Si 2 B were confirmed. A new composition for the W 5 Si 3 -type phase in the Ni--B--Si system was proposed. (U.S.)

  15. Rare earth silicide nanowires on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Martina

    2008-11-10

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti {gamma} point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi{sub 2}-monolayer and the Dy{sub 3}Si{sub 5}-multilayer on the Si(111) surface are investigated in comparison to the known ErSi{sub 2}/Si(111) and Er{sub 3}Si{sub 5}/Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the (vector)k {sub parallel} space is elliptical at the anti M points, while the hole pocket at the anti {gamma} point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas

  16. Separation of valence forms of chromium(III) and chromium(VI) by coprecipitation with iron(III) hydroxide

    International Nuclear Information System (INIS)

    Nazirmadov, B.; Khamidov, B.O.; Egorova, L.A.

    1989-01-01

    The sorption of 9.62·10 -5 M of Cr (III) and Cr (VI) with iron hydroxide in 1 M potassium nitrate and potassium chloride was investigated in relation to the pH of the medium. Experimental data on the sorption of chromium(III) and chromium(VI) with iron(III) hydroxide made it possible to determine the region of practically complete concentration of Cr (III) and Cr (VI) (pH = 3-6.5). The results from spectrophotometric investigations, calculated data on the distribution of the hydroxocationic forms of chromium(III) and the anions of chromium(IV), and their sorption by iron-(III) hydroxide made it possible to characterize the sorbability of the cationic and anionic forms of chromium in various degrees of oxidation. On this basis a method was developed for the separation of chromium(III) and chromium(VI) by coprecipitation on iron(III) hydroxide and their separation from the iron(III) hydroxide support

  17. Reactivity And Neutron Flux At Silicide Fuel Element In The Core Of RSG-GAS

    International Nuclear Information System (INIS)

    Hamzah, Amir

    2000-01-01

    In order to 4.8 and 5.2 gr U/cm exp 3 loading of U 3 Si 2 --Al fuel plates characterization, he core reactivity change and neutron flux depression had been done. Control rod calibration method was used to reactivity change measurement and neutron flux distribution was measured using foil activation method. Measurement of insertion of A-type of testing fuel element with U-loading above cannot be done due to technical reason, so the measurement using full type silicide fuel element of 2.96 gr U/cm exp 3 loading. The reactivity change measurement result of insertion in A-9 and C-3 is + 2.67 cent. The flux depression at silicide fuel in A-9 is 1.69 times bigger than oxide and in C-3 is 0.68 times lower than oxide

  18. A long-term ultrahigh temperature application of layered silicide coated Nb alloy in air

    Science.gov (United States)

    Sun, Jia; Fu, Qian-Gang; Li, Tao; Wang, Chen; Huo, Cai-Xia; Zhou, Hong; Yang, Guan-Jun; Sun, Le

    2018-05-01

    Nb-based alloy possessed limited application service life at ultrahigh temperature (>1400 °C) in air even taking the effective protective coating strategy into consideration for last decades. In this work a long duration of above 128 h at 1500 °C in air was successfully achieved on Nb-based alloy thanked to multi-layered silicide coating. Through optimizing interfaces, the MoSi2/NbSi2 silicide coating with Al2O3-adsorbed-particles layer exhibited three-times higher of oxidation resistance capacity than the one without it. In MoSi2-Al2O3-NbSi2 multilayer coating, the Al2O3-adsorbed-particles layer playing as an element-diffusion barrier role, as well as the formed porous Nb5Si3 layer as a stress transition zone, contributed to the significant improvement.

  19. Reaction of Oxygen with Chromium and Chromium Carbide at Low O2 Pressures and High Temperatures

    International Nuclear Information System (INIS)

    Hur, Dong O.; Kang, Sung G.; Paik, Young N.

    1984-01-01

    The oxidation rate of chromium carbide has been measured continuously using thermogravimetric analysis at different oxygen pressures ranging from 1.33x10 -2 to 2.67x10 -1 Pa O 2 at 1000-1300 .deg. C. The oxidation of pure chromium has also been studied between 1000-1300 .deg. C under 6.67x10 -2 Pa O 2 and compared with that of chromium carbide. The oxidation of chromium carbide showed a linear behavior which was different from that of chromium. The oxidation rate of chromium carbide increased with increasing temperature and oxygen pressure was lower than of pure chromium. Above 1200 .deg. C, the volatile oxide was formed and evaporated causing a weight loss. The compositions and morphology of the oxide were studied with X-ray diffractometer and scanning electron microscope, respectively. The morphology of oxide changed with varying temperature and pressure. The oxide scale was consisted of mainly two different layers of Cr 2 O 3 and CrO, and the properties of oxide scale were correlated with oxidation behavior. The oxide film formed in the above test condition has been detached from the carbide surface. The crack and pore were thought to be from CO gas evolving at the interface of chromium carbide and its oxide and the major factor of the linear behavior of chromium carbide

  20. Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells

    International Nuclear Information System (INIS)

    Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios; Shervin, Shahab

    2017-01-01

    Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400–600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3–6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude–Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ∼0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor. (paper)

  1. Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells

    Science.gov (United States)

    Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Shervin, Shahab; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios

    2017-01-01

    Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400-600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3-6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude-Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ~0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor.

  2. Ultra low nanowear in novel chromium/amorphous chromium carbide nanocomposite films

    Science.gov (United States)

    Yate, Luis; Martínez-de-Olcoz, Leyre; Esteve, Joan; Lousa, Arturo

    2017-10-01

    In this work, we report the first observation of novel nanocomposite thin films consisting of nanocrystalline chromium embedded in an amorphous chromium carbide matrix (nc-Cr/a-CrC) with relatively high hardness (∼22,3 GPa) and ultra low nanowear. The films were deposited onto silicon substrates using a magnetic filtered cathodic arc deposition system at various negative bias voltages, from 50 to 450 V. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) suggested the co-existence of chromium and chromium carbide phases, while high resolution transmission electron microscopy (HRTEM) confirmed the presence of the nc-Cr/a-CrC structure. The friction coefficient measured with the ball-on disk technique and the nanowear results showed a strong correlation between the macro and nano-tribological properties of the samples. These novel nanocomposite films show promising properties as solid lubricant and wear resistant coatings with relatively high hardness, low friction coefficient and ultra low nanowear.

  3. Purification in the interaction between yttria mould and Nb-silicide-based alloy during directional solidification: A novel effect of yttrium

    International Nuclear Information System (INIS)

    Ma, Limin; Tang, Xiaoxia; Wang, Bin; Jia, Lina; Yuan, Sainan; Zhang, Hu

    2012-01-01

    Nb-silicide-based alloys were directionally solidified in yttria moulds. As a result of thermal dissociation of yttria, the alloys were slightly contaminated with oxygen, which caused a competitive oxidation between yttrium and hafnium. The addition of 0.15 at.% yttrium reduced the oxygen increment by 42%, because the buoyant inclusions concentrated around the top surface. The yttrium addition caused a significant purification of the interaction between the yttria mould and the Nb-silicide-based alloys during the directional solidification.

  4. Diminishing Chromium Use on Combined Chromium-Gambier Tanning Process Upon the Characteristics of Tanned Leather

    Directory of Open Access Journals (Sweden)

    A. Kasim

    2014-04-01

    Full Text Available The research was aimed to investigate the influence of minimizing chromium use on combined chromium-gambier process upon the characteristics of tanned leather. At the first stage of tanning process, chromium was used and in the second stage it was replaced by gambier. The raw material used was dried saline-preserved goat skin. The treatments applied on the tanning process were the different concentrations of chromium ranging from the highest level of 6% to the lowest level of 1% which was then re-tanned by using 8% concentration of gambier. The examination parameters included chemical and physical properties as well as visual investigation on the tanned leather in accordance with SNI-06-0463-1989-A. The result showed that the tanning process by using 2% chromium in the first step and 8% gambier in the second step was a treatment combination producing tanned leather that met the standard. The examination on tanned leather resulted from such treatment showed 56.33% rawhide, 17.45% of bound tannin, 31.22% of tanning level, tensile strength 386.30 kg/cm2, flexibility 31.91%, leather width 1.3 mm, density 0.75 g/cm3, the leather was quite elastic with light brownish color. In conclusion, minimizing the use of chromium in the combined tanning process of chromium and gambier can be implemented to the lowest of 2% chromium concentration and 8% gambier in the first and second step, respectively.

  5. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-04-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  6. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-06-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  7. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3

    International Nuclear Information System (INIS)

    Zhang, L.; Wu, J.

    1997-01-01

    Silicides are among those potential candidates for high temperature application because of their high melting temperature, low density and good oxidation resistance. Recent interest is focused on molybdenum silicides and titanium silicides. Extensive investigation has been carried out on MoSi 2 , yet comparatively less work was performed on titanium silicides such as Ti 5 Si 3 and Ti 3 and TiSi 2 which are of lower density than MoSi 2 . Fundamental understanding of the titanium silicides' properties for further evaluation their potential for practical application are thus needed. The thermal expansion coefficients and elastic moduli of intermetallic compounds are two properties important for evaluation as a first step. The thermal expansion determines the possible stress that might arise during cooling for these high melting point compounds, which is crucial to the preparation of defect free specimens; and the elastic moduli are usually reflections of the cohesion in crystal. In Frommeyer's work and some works afterwards, the coefficients of thermal expansion were measured on both polycrystalline and single crystal Ti 5 Si 3 . The elastic modulus of polycrystalline Ti 5 Si 3 was measured by Frommeyer and Rosenkranz. However, in the above works, the referred Ti 5 Si 3 was the binary one, no alloying effect has been reported on this matter. Moreover, the above parameters (coefficient of thermal expansion and elastic modulus) of Nb 5 Si 3 remain unreported so far. In this paper, the authors try to extend the knowledge of alloyed Ti 5 Si 3 compounds with Nb and Cr additions. Results on the coefficients of thermal expansion and elastic moduli of Ti 5 Si 3 compounds and Nb 5 Si 3 are presented and the discussion is focused on the alloying effect

  8. Core-hole effects in the x-ray-absorption spectra of transition-metal silicides

    NARCIS (Netherlands)

    WEIJS, PJW; CZYZYK, MT; VANACKER, JF; SPEIER, W; GOEDKOOP, JB; VANLEUKEN, H; HENDRIX, HJM; DEGROOT, RA; VANDERLAAN, G; BUSCHOW, KHJ; WIECH, G; FUGGLE, JC

    1990-01-01

    We report systematic differences between the shape of the Si K x-ray-absorption spectra of transition-metal silicides and broadened partial densities of Si p states. We use a variety of calculations to show that the origin of these discrepancies is the core-hole potential appropriate to the final

  9. A Study on Characterization of Light-Induced Electroless Plated Ni Seed Layer and Silicide Formation for Solar Cell Application

    Science.gov (United States)

    Takaloo, Ashkan Vakilipour; Joo, Seung Ki; Es, Firat; Turan, Rasit; Lee, Doo Won

    2018-03-01

    Light-induced electroless plating (LIEP) is an easy and inexpensive method that has been widely used for seed layer deposition of Nickel/Copper (Ni/Cu)-based metallization in the solar cell. In this study, material characterization aspects of the Ni seed layer and Ni silicide formation at different bath conditions and annealing temperatures on the n-side of a silicon diode structure have been examined to achieve the optimum cell contacts. The effects of morphology and chemical composition of Ni film on its electrical conductivity were evaluated and described by a quantum mechanical model. It has been found that correlation exists between the theoretical and experimental conductivity of Ni film. Residual stress and phase transformation of Ni silicide as a function of annealing temperature were evaluated using Raman and XRD techniques. Finally, transmission line measurement (TLM) technique was employed to determine the contact resistance of Ni/Si stack after thermal treatment and to understand its correlation with the chemical-structural properties. Results indicated that low electrical resistive mono-silicide (NiSi) phase as low as 5 mΩ.cm2 was obtained.

  10. Chromium-induced skin damage among Taiwanese cement workers.

    Science.gov (United States)

    Chou, Tzu-Chieh; Wang, Po-Chih; Wu, Jyun-De; Sheu, Shiann-Cherng

    2016-10-01

    Little research has been done on the relationships between chromium exposure, skin barrier function, and other hygienic habits in cement workers. Our purpose was to investigate chromium-induced skin barrier disruption due to cement exposure among cement workers. One hundred and eight cement workers were recruited in this study. Urinary chromium concentration was used to characterize exposure levels. The biological exposure index was used to separate high and low chromium exposure. Transepidermal water loss (TEWL) was used to assess the skin barrier function. TEWL was significantly increased in workers with high chromium exposure levels than those with low chromium exposure levels (p = 0.048). A positive correlation was also found between urinary chromium concentration and TEWL (R = 0.28, p = 0.004). After adjusting for smoking status and glove use, a significant correlation between urinary chromium concentrations and TEWL remained. Moreover, workers who smoked and had a high chromium exposure had significantly increased TEWL compared to nonsmokers with low chromium exposure (p = 0.01). Skin barrier function of cement workers may have been disrupted by chromium in cement, and smoking might significantly enhance such skin barrier perturbation with chromium exposure. Decreased chromium skin exposure and smoking cessation should be encouraged at work. © The Author(s) 2015.

  11. Controlling the formation and stability of ultra-thin nickel silicides - An alloying strategy for preventing agglomeration

    Science.gov (United States)

    Geenen, F. A.; van Stiphout, K.; Nanakoudis, A.; Bals, S.; Vantomme, A.; Jordan-Sweet, J.; Lavoie, C.; Detavernier, C.

    2018-02-01

    The electrical contact of the source and drain regions in state-of-the-art CMOS transistors is nowadays facilitated through NiSi, which is often alloyed with Pt in order to avoid morphological agglomeration of the silicide film. However, the solid-state reaction between as-deposited Ni and the Si substrate exhibits a peculiar change for as-deposited Ni films thinner than a critical thickness of tc = 5 nm. Whereas thicker films form polycrystalline NiSi upon annealing above 450 ° C , thinner films form epitaxial NiSi2 films that exhibit a high resistance toward agglomeration. For industrial applications, it is therefore of utmost importance to assess the critical thickness with high certainty and find novel methodologies to either increase or decrease its value, depending on the aimed silicide formation. This paper investigates Ni films between 0 and 15 nm initial thickness by use of "thickness gradients," which provide semi-continuous information on silicide formation and stability as a function of as-deposited layer thickness. The alloying of these Ni layers with 10% Al, Co, Ge, Pd, or Pt renders a significant change in the phase sequence as a function of thickness and dependent on the alloying element. The addition of these ternary impurities therefore changes the critical thickness tc. The results are discussed in the framework of classical nucleation theory.

  12. Study of optical and luminescence properties of silicon — semiconducting silicide — silicon multilayer nanostructures

    International Nuclear Information System (INIS)

    Galkin, N.G.; Galkin, K.N.; Dotsenko, S.A.; Goroshko, D.L.; Shevlyagin, A.V.; Chusovitin, E.A.; Chernev, I.M.

    2017-01-01

    By method of in situ differential spectroscopy it was established that at the formation of monolayer Fe, Cr, Ca, Mg silicide and Mg stannide islands on the atomically clean silicon surface an appearance of loss peaks characteristic for these materials in the energy range of 1.1-2.6 eV is observed. An optimization of growth processes permit to grow monolithic double nanoheterostructures (DNHS) with embedded Fe, Cr and Ca nanocrystals, and also polycrystalline DNHS with NC of Mg silicide and Mg stannide and Ca disilicide. By methods of optical spectroscopy and Raman spectroscopy it was shown that embedded NC form intensive peaks in the reflectance spectra at energies up to 2.5 eV and Raman peaks. In DNS with β-FeSi2 NC a photoluminescence and electroluminescence at room temperature were firstly observed.

  13. On texture formation of chromium electrodeposits

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Leisner, Peter; Horsewell, Andy

    1998-01-01

    The microstructure, texture and hardness of electrodeposited hard, direct current (DC) chromium and pulsed reversed chromium has been investigated. These investigations suggest that the growth and texture of hard chromium is controlled by inhibition processes and reactions. Further, it has been...

  14. Separation of valent forms of chromium (3) and chromium (6) by coprecipitation with iron (3) hydroxide

    International Nuclear Information System (INIS)

    Nazirmadov, B.; Khamidov, B.O.; Egorova, L.A.

    1988-01-01

    Soption 9.62x10 -5 mol/l of 51 Cr radioactive isotope in oxidation states 3 and 6 by iron(3) hydroxide in 1 mol/l of KNO 3 and KCl depending on pH medium is investigated. The region of practically total concentration of Cr(3) and Cr(6 + ) (pH=3-6.5) is determined. The results of spectrophotometric investigations, calculational data on distribution of hydroxocation forms of chromium (3) and of chromium (6) anions and sorption by iron (3) hydroxide permit to characterize sorption of chromium forms in different stages of oxidation. The methods of chromium (3) and chromium (6) separation by coprecipitation of iron (3) hydroxide and their precipitation from it is developed on the above foundation

  15. Reduction of hexavalent chromium collected on PVC filters.

    Science.gov (United States)

    Shin, Y C; Paik, N W

    2000-01-01

    Chromium exists at various valences, including elemental, trivalent, and hexavalent chromium, and undergoes reduction-oxidation reactions in the environment. Since hexavalent chromium is known as a human carcinogen, it is most important to evaluate the oxidation-reduction characteristics of the hexavalent chromium species. Although hexavalent chromium can be reduced to trivalent state, the detailed information on this in workplace environments is limited. The purpose of this study was to investigate hexavalent chromium reduction in time in various conditions. A pilot chrome plating operation was prepared and operated in a laboratory for this study. There was evidence that the hexavalent chromium was reduced by time after mist generation. The percentage ratio (with 95% confidence intervals in parentheses) of hexavalent chromium to total chromium was almost 100% (99.1 approximately 102.3) immediately after mist generation, and was reduced to 87.4% (84.8 approximately 89.9) at 1 hour and 81.0% (78.3 approximately 83.5) at 2 hours, respectively. Another test indicated that hexavalent chromium collected on PVC filters was also reduced by time after sampling. Hexavalent chromium was reduced to 90.8% (88.2 approximately 93.3) at 2 hours after sampling. It also was found that hexavalent chromium was reduced during storage in air. It is recommended that air samples of hexavalent chromium be protected against reduction during storage.

  16. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  17. Stabilization and solidification of chromium-contaminated soil

    International Nuclear Information System (INIS)

    Cherne, C.A.; Thomson, B.M.

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments

  18. Recovery of Proteins and Chromium Complexes from Chromium – Containing Leather Waste (CCLW

    Directory of Open Access Journals (Sweden)

    B. Gutti

    2010-08-01

    Full Text Available Chromium – Containing Leather Waste (CCLW constitutes an environmental pollution problem to leather industries disposing the waste by landfill. The waste mainly consists of collagen and chromium III complexes. This work is a design of reactors to recover gelatin, polypeptides and chromium from CCLW. The results of the experiment shows that 68% of protein, based on dry weight of leather scraps, could be recovered. Three reactors with a total volume of 18 m3 was designed to handle 10,431 kg of waste generated from the tanning industries.

  19. Substoichiometric extraction of chromium

    International Nuclear Information System (INIS)

    Shigematsu, T.; Kudo, K.

    1980-01-01

    Substoichiometric extraction of chromium with tetraphenylarsonium chloride (TPACl), tri-n-octylamine (TNOA), diethylammonium diethyldithiocarbamate (DDDC) and ammonium pyrrolidinedithiocarbamate (APDC) was examined in detail. Chromium can be extracted substoichiometrically in a pH range, which is 1.1-2.6 for the TPACl compound, 0.6-2.3 for the TNOA compound, 5.1-6.4 for the DDDC chelate and 3.9-4.9 for the APDC chelate. Chromium in high-purity calcium carbonate, Orchard Leaves (NBS SRM-1571) and Brewers Yeast (NBS SRM-1569) was determined by neutron activation analysis combined with substoichiometric extraction by DDDC and APDC. The values of 2.0+-0.02 ppm and 2.6+-0.2 ppm were obtained for Brewers Yeast and Orchard Leaves, respectively. These values were in good agreement with those reported by NBS. The reaction mechanism and the reaction ratio between hexavalent chromium and dithiocarbamate are also discussed. (author)

  20. Role of Ti 3 Al/silicides on tensile properties of Timetal 834 at ...

    Indian Academy of Sciences (India)

    Extremely fine coherent precipitates of ordered Ti3Al and relatively coarse incoherent precipitates of 2 silicide exist together in the near -titanium alloy, Timetal 834, in the dual phase matrix of primary and transformed . In order to assess the role of these precipitates, three heat treatments viz. WQ, WQ–A and WQ–OA, ...

  1. Prospect of Uranium Silicide fuel element with hypostoichiometric (Si ≤3.7%)

    International Nuclear Information System (INIS)

    Suripto, A.; Sardjono; Martoyo

    1996-01-01

    An attempt to obtain high uranium-loading in silicide dispersion fuel element using the fabrication technology applicable nowadays can reach Uranium-loading slightly above 5 gU/cm 3 . It is difficult to achieve a higher uranium-loading than that because of fabricability constraints. To overcome those difficulties, the use of uranium silicide U 3 Si based is considered. The excess of U is obtained by synthesising U 3 Si 2 in Si-hypostoichiometric stage, without applying heat treatment to the ingot as it can generate undesired U 3 Si. The U U will react with the matrix to form U al x compound, that its pressure is tolerable. This experiment is to consider possibilities of employing the U 3 Si 2 as nuclear fuel element which have been performed by synthesising U 3 Si 2 -U with the composition of 3.7 % weigh and 3 % weigh U. The ingot was obtained and converted into powder form which then was fabricated into experimental plate nuclear fuel element. The interaction between free U and Al-matrix during heat-treatment is the rolling phase of the fuel element was observed. The study of the next phase will be conducted later

  2. Neutronic study on conversion of SAFARI-1 to LEU silicide fuel

    International Nuclear Information System (INIS)

    Ball, G.; Pond, R.; Hanan, N.; Matos, J.

    1995-01-01

    This paper marks the initial study into the technical and economic feasibility of converting the SAFARI-1 reactor in South Africa to LEU silicide fuel. Several MTR assembly geometries and LEU uranium densities have been studied and compared with MEU and HEU fuels. Two factors of primary importance for conversion of SAFARI-1 to LEU fuel are the economy of the fuel cycle and the performance of the incore and excore irradiation positions

  3. Magnesium analysis. Spectrophotometric determination of chromium

    International Nuclear Information System (INIS)

    Anon.

    Chromium determination in magnesium used in uranium fabrication by magnesiothermics, applicable for chromium content between 2 to 10 ppm. Magnesium is dissolved in sulfuric acid, oxidized by potassium permanganate, the excess of permanganate is eliminated by sodium nitride. Spectrophotometry at 540 nm of the chromium (VI)-diphenylcarbazide complex [fr

  4. Techno-economic study on conversion of SAFARI-1 to LEU silicide fuel

    International Nuclear Information System (INIS)

    Ball, G.; Malherbe, F.J.

    2004-01-01

    This paper marks the conclusion of the techno-economic study into the conversion of SAFARI-1 reactor in South Africa to LEU silicide fuel. Several different fuel types were studied and their characteristics compared to the current HEU fuel. The technical feasibility of operating SAFARI-1 with the different fuels as well as the overall economic impact of the fuels is discussed and conclusions drawn.(author)

  5. Neutronic calculations of PARR-1 cores using LEU silicide fuel

    International Nuclear Information System (INIS)

    Arshad, M.; Bakhtyar, S.; Hayat, T.; Salahuddin, A.

    1991-08-01

    Detailed neutronic calculations have been carried out for different PARR-1 cores utilizing low enriched uranium (LEU) silicide fuel and operating at an upgraded power of 9 MW. The calculations include the search for critical loadings in open and stall ends of the pool, neutronic analysis of the first full equilibrium core and calculations cores. The burnup study of inventory have also been carried out. Further, the reactivity coefficients of the first full power operation core are evaluated for use in the accident analysis. 14 figs. (author)

  6. Chromium: a review of environmental and occupational toxicology.

    Science.gov (United States)

    Bencko, V

    1985-01-01

    The following topics are covered in this brief review on the environmental and occupational toxicology of chromium: occurrence, production and uses of chromium and chromium compounds; experimental toxicology; chromium toxicity for man; hygienic and ecologic aspects of chromium contamination of the environment. The review provides a conclusive evidence which suggests that chromium, especially its hexavalent form, is both toxic and carcinogenic, but its trivalent form is physiologically essential in the metabolism of insulin. It is also emphasized that among the major sources of environmental chromium today are the cement industry and the increasingly widespread use of chromium compounds added as an anticorrosion admixture to a variety of cooling systems, e.g. in large power plants, which may greatly contribute to the overall pollution of outdoor air at the sites.

  7. Chromium: a review of environmental and occupational toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Bencko, V

    1985-01-01

    The following topics are covered in this brief review on the environmental and occupational toxicology of chromium: occurrence, production and uses of chromium and chromium compounds; experimental toxicology; chromium toxicity for man; hygienic and ecologic aspects of chromium contamination of the environment. The review provides a conclusive evidence which suggests that chromium, especially its hexavalent form, is both toxic and carcinogenic, but its trivalent form is physiologically essential in the metabolism of insulin. It is also emphasized that among the major sources of environmental chromium today are the cement industry and the increasingly widespread use of chromium compounds added as an anticorrosion admixture to a variety of cooling systems, e.g. in large power plants, which may greatly contribute to the overall pollution of outdoor air at the sites. 108 references.

  8. Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of Israel: Raman spectroscopy and electron microscope studies

    Science.gov (United States)

    Dobrzhinetskaya, Larissa; Mukhin, Pavel; Wang, Qin; Wirth, Richard; O'Bannon, Earl; Zhao, Wenxia; Eppelbaum, Lev; Sokhonchuk, Tatiana

    2018-06-01

    Here, we present studies of natural SiC that occurs in situ in tuff related to the Miocene alkaline basalt formation deposited in northern part of Israel. Raman spectroscopy, SEM and FIB-assisted TEM studies revealed that SiC is primarily hexagonal polytypes 4H-SiC and 6H-SiC, and that the 4H-SiC polytype is the predominant phase. Both SiC polytypes contain crystalline inclusions of silicon (Sio) and inclusions of metal-silicide with varying compositions (e.g. Si58V25Ti12Cr3Fe2, Si41Fe24Ti20Ni7V5Zr3, and Si43Fe40Ni17). The silicides crystal structure parameters match Si2TiV5 (Pm-3m space group, cubic), FeSi2Ti (Pbam space group, orthorhombic), and FeSi2 (Cmca space group, orthorhombic) respectively. We hypothesize that SiC was formed in a local ultra-reduced environment at respectively shallow depths (60-100 km), through a reaction of SiO2 with highly reducing fluids (H2O-CH4-H2-C2H6) arisen from the mantle "hot spot" and passing through alkaline basalt magma reservoir. SiO2 interacting with the fluids may originate from the walls of the crustal rocks surrounding this magmatic reservoir. This process led to the formation of SiC and accompanied by the reducing of metal-oxides to native metals, alloys, and silicides. The latter were trapped by SiC during its growth. Hence, interplate "hot spot" alkali basalt volcanism can now be included as a geological environment where SiC, silicon, and silicides can be found.

  9. Postirradiation analysis of experimental uranium-silicide dispersion fuel plates

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.

    1985-01-01

    Low-enriched uranium silicide dispersion fuel plates were irradiated to maximum burnups of 96% of 235 U. Fuel plates containing 33 v/o U 3 Si and U 3 Si 2 behaved very well up to this burnup. Plates containing 33 v/o U 3 Si-Al pillowed between 90 and 96% burnup of the fissile atoms. More highly loaded U 3 Si-Al plates, up to 50 v/o were found to pillow at lower burnups. Plates containing 40 v/o U 3 Si showed an increase swelling rate around 85% burnup. 5 refs., 10 figs

  10. Impact of Nickel silicide Rear Metallization on Series Resistance of Crystalline Silicon Solar Cells

    KAUST Repository

    Bahabry, Rabab R; Hanna, Amir N; Kutbee, Arwa T; Gumus, Abdurrahman; Hussain, Muhammad Mustafa

    2018-01-01

    the electrical characteristics of nickel mono-silicide (NiSi)/Cu-Al ohmic contact on the rear side of c-Si solar cells. We observe a significant enhancement in the fill factor of around 6.5% for NiSi/Cu-Al rear contacts leading to increasing the efficiency by 1.2

  11. Synthesis of chromium containing pigments from chromium galvanic sludges

    International Nuclear Information System (INIS)

    Andreola, F.; Barbieri, L.; Bondioli, F.; Cannio, M.; Ferrari, A.M.; Lancellotti, I.

    2008-01-01

    In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr 0.04 Sn 0.97 SiO 5 and green Ca 3 Cr 2 (SiO 4 ) 3 were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr 2 O 3 . The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr 2 O 3

  12. Responses of endogenous proline in rice seedlings under chromium exposure

    Directory of Open Access Journals (Sweden)

    X.Z. Yu

    2016-12-01

    Full Text Available Hydroponic experiments were performed to exam the dynamic change of endogenous proline in rice seedlings exposed to potassium chromate chromium (VI or chromium nitrate chromium (III. Although accumulation of both chromium species in rice seedlings was obvious, more chromium was detected in plant tissues of rice seedlings exposed to chromium (III than those in chromium (VI, majority being in roots rather than shoots. Results also showed that the accumulation capacity of chromium by rice seedlings was positively correlated to chromium concentrations supplied in both chromium variants and the accumulation curve depicted an exponential trend in both chromium treatments over the entire period of exposure. Proline assays showed that both chromium variants induced the change of endogenous proline in shoots and roots of rice seedlings. Chromium (VI of 12.8 mg/L increased proline content significantly (p

  13. Chromium depletion from stainless steels during vacuum annealing

    International Nuclear Information System (INIS)

    Smith, A.F.; Hales, R.

    1977-01-01

    During selective chromium oxidation of stainless steels the changes in chromium concentration at the metal surface and in the metal have an important bearing on the overall oxidation performance. It has been proposed that an analogue of chromium behaviour during selective oxidation is obtained from volatilisation of chromium during high temperature vacuum annealing. In the present report the evaporation of chromium from 316 type of steel, vacuum annealed at 1,000 0 C, has been investigated by means of energy dispersive X-ray analysis and by neutron activation analysis. It was established that chromium loss from austenitic stainless steels is rate controlled by interdiffusion in the alloy. As predicted the chromium concentration at the metal surface decreased with increasing vacuum annealing time. The chromium depletion profile in the metal was in good agreement with the previously derived model apart from an anomalous region near the surface. Here the higher resolution of the neutron activation technique indicated a zone within approximately 2μm of the surface where the chromium concentration decreased more steeply than expected. (orig.) [de

  14. Waste Photovoltaic Panels for Ultrapure Silicon and Hydrogen through the Low-Temperature Magnesium Silicide.

    Czech Academy of Sciences Publication Activity Database

    Dytrych, Pavel; Bumba, Jakub; Kaštánek, František; Fajgar, Radek; Koštejn, Martin; Šolcová, Olga

    Roč. 56, č. 45 ( 2017 ), s. 12863-12869 ISSN 0888-5885 R&D Projects: GA ČR GA15-14228S Institutional support: RVO:67985858 Keywords : magnesium silicide * waste photovoltaic panels * ultrapure silicon Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.843, year: 2016

  15. Progress in doping of ruthenium silicide (Ru2Si3)

    International Nuclear Information System (INIS)

    Vining, C.B.; Allevato, C.E.

    1992-01-01

    This paper reports that ruthenium silicide (Ru 2 Si 3 ) is currently under development as a promising thermoelectric material suitable for space power applications. Key to realizing the potentially high figure of merit values of this material is the development of appropriate doping techniques. In this study, manganese and iridium have been identified as useful p- and n-type dopants, respectively. Resistivity values have been reduced by more than 3 orders of magnitude. Anomalous Hall effect results, however, complicate interpretation of some of the results and further effort is required to achieve optimum doping levels

  16. Reproductive toxicological aspects of chromium in males

    International Nuclear Information System (INIS)

    Ernst, E.

    1994-01-01

    To expand our present understanding of the effects of chromium on male fertility a number of studies were designed to achieve this through the use of chromium intoxicated experimental animals and through investigation of sexual hormones and sperm quality in welders. Also in view of the lack of an experimental model for effects of noxious substance on the epididymal spermatozoa the main objectives of the series of studies reviewed here were: A. To establish a model for evaluation of epididymal sperm count and motility in the rat. B. To investigate and compare the effects of tri- and hexavalent chromium on epididymal spermatozoa. Further to describe the effects of low-dose long-time exposure of rats to the most toxicological interesting chromium oxidative state - hexavalent chromium. C. By the use of autoradiography and γ-countinuing to expand the present knowledge on the distribution of chromium in the body with special reference to the male reproductive organs. D. To describe the effects of exposure to hexavalent chromium in welding fume on levels of sexual hormones and semen parameters in welders. (EG)

  17. Permeation of chromium salts through human skin in vitro

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Fullerton, A; Avnstorp, C

    1992-01-01

    Chromium permeation studies were performed on full thickness human skin in diffusion cells. All samples were analysed for the total chromium content by graphite furnace Zeeman-corrected atomic absorption spectrometry. Some samples were analysed by an ion chromatographic method permitting...... the simultaneous determination of Cr(VI) and Cr(III) as well. The amounts of chromium found in all skin layers were significantly higher when potassium dichromate was applied to the skin compared with chromium chloride or chromium nitrate. Chromium could only be detected in the recipient phase after application...... of the dichromate solution. Chromium skin levels increased with increasing concentrations of applied chromium salts up to 0.034 M Cr. The amount of chromium in recipient phase and skin layers increased with increasing pH when the applied solution contained potassium dichromate. This was ascribed to a decreased skin...

  18. Specification for corrosion-resisting chromium and chromium-nickel steel bare and composite metal cored and stranded arc welding electrodes and welding rods

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for corrosion or heat resisting chromium and chromium-nickel steel electrodes and welding rods. These electrodes and welding rods are normally used for arc welding and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  19. Stabilization of chromium: an alternative to make safe leathers.

    Science.gov (United States)

    Gong, Ying; Liu, Xiaoling; Huang, Li; Chen, Wuyong

    2010-07-15

    In this study, the original causes for hexavalent chromium presence in the leather were first evaluated by ageing of chromium(III) solutions and chrome tanned hide powder (50 degrees C, UV lightening at 340 nm, 0-36 h). The results showed that the trivalent chromium at instable coordination state was easy to convert into hexavalent chromium in high pH environment, and the probability of the oxidation increased in this order: multi-coordinate chromium, mono-coordinate chromium, and free chromium. For this reason, the process for stabilizing chromium in the leather was designed with the specific material, which was mostly consisted of the reducers and the chelating agents. After treated with the developed process, these leathers were aged (50 degrees C, UV irradiance as 0.68 W/m(2) at 340 nm, 0-72 h) to estimate chromium(VI) presence. Hexavalent chromium was not found in these treated leathers even if the leathers were aged for 72 h. Moreover, the physical and mechanical properties for the leathers varied little after treating. In a word, an inherent safe and effective process was proved to avoid the formation of hexavalent chromium in the leather. 2010 Elsevier B.V. All rights reserved.

  20. Nasal manifestations in chromium industry workers.

    Science.gov (United States)

    Aiyer, R G; Kumar, Gaurav

    2003-04-01

    People working in mines, plating factories, cement industries are mainly exposed to chrome substances, IIexavalent chromium has been implicated for its toxic effect on the nasal mucosa. Hereby we present a rare study of 28 patients who attended out patient department of Otorhinolaryngology at SSG Hospital, Baroda from a nearby chromium industry. This study aims to present various nasal manifestations of toxic effects of prolonged chromium exposure.

  1. Optical metrology of Ni and NiSi thin films used in the self-aligned silicidation process

    International Nuclear Information System (INIS)

    Kamineni, V. K.; Bersch, E. J.; Diebold, A. C.; Raymond, M.; Doris, B. B.

    2010-01-01

    The thickness-dependent optical properties of nickel metal and nickel monosilicide (NiSi) thin films, used for self-aligned silicidation process, were characterized using spectroscopic ellipsometry. The thickness-dependent complex dielectric function of nickel metal films is shown to be correlated with the change in Drude free electron relaxation time. The change in relaxation time can be traced to the change in grain boundary (GB) reflection coefficient and grain size. A resistivity based model was used as the complementary method to the thickness-dependent optical model to trace the change in GB reflection coefficient and grain size. After silicidation, the complex dielectric function of NiSi films exhibit non-Drude behavior due to superimposition of interband absorptions arising at lower frequencies. The Optical models of the complete film stack were refined using x-ray photoelectron spectroscopy, Rutherford backscattered spectroscopy, and x-ray reflectivity (XRR).

  2. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    Science.gov (United States)

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept. 2009 Elsevier B.V. All rights reserved.

  3. Effect of carbon and silicon on nitrogen solubility in liquid chromium and iron-chromium alloys

    International Nuclear Information System (INIS)

    Khyakkinen, V.I.; Bezobrazov, S.V.

    1986-01-01

    The study is aimed at specifying the role of carbon and silicon in high-chromium melts nitridation processes. It is shown that in high-chromium melts of the Cr-Fe-C system the nitrogen solubility is reduced with the growth of carbon content and in the chromium concentration range of 70-100% at 1873 K and P N 2 =0.1 MPa it is described by the lg[%N] Cr-Fe-C =lg[%N] cr-fe -0.098[%C] equation. While decreasing the temperature the nitrogen solubility in alloys is increased. Silicon essentially decreases the nitrogen solubility in liquid chromium. For the 0-10% silicon concentration range the relation between the equilibrium content of nitrogen and silicon at 1873 K and P N 2 =0.1 MPa is described by the straight line equation [%N] Cr-Si =6.1-0.338 [%Si

  4. Auxiliary Electrodes for Chromium Vapor Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey; Shahzad, Moaiz; Britt, Tommy

    2018-05-15

    Measurement of chromia-containing vapors in solid oxide fuel cell systems is useful for monitoring and addressing cell degradation caused by oxidation of the chomia scale formed on alloys for interconnects and balance-of-plant components. One approach to measuring chromium is to use a solid electrolyte with an auxiliary electrode that relates the partial pressure of the chromium containing species to the mobile species in the electrolyte. One example is YCrO3 which can equilibrate with the chromium containing vapor and yttrium in yttria stabilized zirconia to establish an oxygen activity. Another is Na2CrO4 which can equilibrate with the chromium-containing vapor to establish a sodium activity.

  5. Chromium allergy and dermatitis: prevalence and main findings

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten Stendahl

    2015-01-01

    The history of chromium as an allergen goes back more than a century, and includesan interventional success with national legislation that led to significant changes inthe epidemiology of chromium allergy in construction workers. The 2015 EU Leather Regulation once again put a focus on chromium...... allergy, emphasizing that the investigation of chromium allergy is still far from complete. Our review article on chromium focuses on the allergen’s chemical properties, its potential exposure sources, and the allergen’s interaction with the skin, and also provides an overview of the regulations...

  6. 21 CFR 73.2327 - Chromium oxide greens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium oxide greens. 73.2327 Section 73.2327... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2327 Chromium oxide greens. (a) Identity and specifications. The color additive chromium oxide greens shall conform in identify and specifications to the...

  7. 21 CFR 73.3111 - Chromium oxide greens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium oxide greens. 73.3111 Section 73.3111... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3111 Chromium oxide greens. (a) Identity and specifications. The color additive chromium oxide greens (chromic oxide) (CAS Reg. No. 1308-38-9...

  8. 21 CFR 73.2326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.2326 Section 73.2326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2326 Chromium hydroxide green. (a) Identity and specifications.The color additive chromium hydroxide green shall conform in identity and specifications to the...

  9. Kinetics of chromium (VI) reduction by ferrous iron

    International Nuclear Information System (INIS)

    Batchelor, B.; Schlautman, M.; Hwang, I.; Wang, R.

    1998-09-01

    Chromium is a primary inorganic contaminant of concern at the Pantex Plant. Chromium concentrations have been found to be two orders of magnitude higher than the drinking water standards, particularly in certain wells in the perched aquifer below Zone 12. In situ reduction of a mobile form of chromium, Cr(VI) to an immobile form, Cr(III), was examined as a viable option to active soil restoration. Successfully immobilizing chromium in the vadose zone as Cr(III) will reduce the amount of chromium that reaches the groundwater table. The results from the solution experiments indicated that chromium was rapidly and stoichiometrically reduced by Fe(II) in solution. Also, the slurry experiments showed that the aquifer solids removed Fe(II) from solution, but a portion of the iron removed remained available for reaction with Cr(VI), but at a slower rate. A model to predict different amounts of iron pseudo-components was developed, which allowed prediction of iron amounts required to reduce chromium under in situ conditions

  10. Chromium fate in constructed wetlands treating tannery wastewaters.

    Science.gov (United States)

    Dotro, Gabriela; Palazolo, Paul; Larsen, Daniel

    2009-06-01

    Nine experimental wetlands were built to determine chromium partitioning inside systems treating tannery wastewaters. Results showed 5-day biochemical oxygen demand and chromium removals of 95 to 99% and 90 to 99%, respectively. The majority of chromium was found in association with media (96 to 98%), followed by effluents (2.9 to 3.9%), and the least was found in plant parts (0.1%). Chemical speciation modeling of solutions and scanning electron microscope analysis suggest two potential chromium removal mechanisms--sorption/coprecipitation with iron hydroxides or oxyhydroxides and biomass sorption. The release of the majority of chromium in the iron- and organic-bound phases during sequential extractions supports the proposed dominant removal mechanisms. The use of a mixture of peat and gravel resulted in lower removal efficiencies and stronger partitioning in organic phases during sequential extractions. Chromium was efficiently removed by wetlands, retained through chemical and biological processes. Future research will focus on further exploring removal mechanisms and proposing management strategies for the chromium-containing wetland media.

  11. Chromium in potatoes

    International Nuclear Information System (INIS)

    Stoddard-Gilbert, K.; Blincoe, C.

    1989-01-01

    Chromium concentration in potatoes was determined, and tubes were labeled either intrinsically or extrinsically with radioactive chromate ( 51 Cr). A labeled chromium complex was isolated from preparations of raw, baked, or fried potatoes and chromatographed on gel permeation media. Potato pulp and peel contained 1.63 and 2.70 μg of Cr/g tissue, respectively. There was no correlation between the two, nor did they respond similarly to changes of variety or locations. No significant differences were apparent in relative migration of the isolated complexes except between raw and cooked extrinsically labeled preparations

  12. Fuel element burnup measurements for the equilibrium LEU silicide RSG GAS (MPR-30) core under a new fuel management strategy

    International Nuclear Information System (INIS)

    Pinem, Surian; Liem, Peng Hong; Sembiring, Tagor Malem; Surbakti, Tukiran

    2016-01-01

    Highlights: • Burnup measurement of fuel elements comprising the new equilibrium LEU silicide core of RSG GAS. • The burnup measurement method is based on a linear relationship between reactivity and burnup. • Burnup verification was conducted using an in-house, in-core fuel management code BATAN-FUEL. • A good agreement between the measured and calculated burnup was confirmed. • The new fuel management strategy was confirmed and validated. - Abstract: After the equilibrium LEU silicide core of RSG GAS was achieved, there was a strong need to validate the new fuel management strategy by measuring burnup of fuel elements comprising the core. Since the regulatory body had a great concern on the safety limit of the silicide fuel element burnup, amongst the 35 burnt fuel elements we selected 22 fuel elements with high burnup classes i.e. from 20 to 53% loss of U-235 (declared values) for the present measurements. The burnup measurement method was based on a linear relationship between reactivity and burnup where the measurements were conducted under subcritical conditions using two fission counters of the reactor startup channel. The measurement results were compared with the declared burnup evaluated by an in-house in-core fuel management code, BATAN-FUEL. A good agreement between the measured burnup values and the calculated ones was found within 8% uncertainties. Possible major sources of differences were identified, i.e. large statistical errors (i.e. low fission counters’ count rates), variation of initial U-235 loading per fuel element and accuracy of control rod indicators. The measured burnup of the 22 fuel elements provided the confirmation of the core burnup distribution planned for the equilibrium LEU silicide core under the new fuel management strategy.

  13. The chromium accumulation and its physiological effects in juvenile rockfish, Sebastes schlegelii, exposed to different levels of dietary chromium (Cr(6+)) concentrations.

    Science.gov (United States)

    Kim, Jun-Hwan; Kang, Ju-Chan

    2016-01-01

    Juvenile rockfish (mean length 13.7±1.7 cm, and mean weight 55.6±4.8 g) were exposed for 4 weeks with the different levels of dietary chromium (Cr(6+)) at 0, 30, 60, 120 and 240 mg/kg. The profile of chromium in the tissues of rockfish is dependent on the exposure periods and chromium concentration. After 4 weeks, the order of chromium accumulation in tissues was liver>kidney>spleen>intestine>gill>muscle. The dietary chromium exposure decreased the growth rate and hepatosomatic index of rockfish. The major hematological findings were significant decrease in the red blood cell (RBC) count, hematocrit (Ht) value, and hemoglobin (Hb) concentration exposed to ≥120 mg/kg chromium concentrations. The dietary chromium exposure (≥120 mg/kg) led to notable increase in glucose, cholesterol, glutamic oxalate transaminase (GOT), and glutamic pyruvate transaminase (GPT) in plasma, whereas there was no considerable change in calcium, magnesium, total protein, and alkaline phosphatase (ALP). The results indicated that the dietary chromium exposure to rockfish can induce significant chromium accumulation in the specific tissues, inhibition of growth, and hematological alterations. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Understanding and Improving High-Temperature Structural Properties of Metal-Silicide Intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Bruce S. Kang

    2005-10-10

    The objective of this project was to understand and improve high-temperature structural properties of metal-silicide intermetallic alloys. Through research collaboration between the research team at West Virginia University (WVU) and Dr. J.H. Schneibel at Oak Ridge National Laboratory (ORNL), molybdenum silicide alloys were developed at ORNL and evaluated at WVU through atomistic modeling analyses, thermo-mechanical tests, and metallurgical studies. In this study, molybdenum-based alloys were ductilized by dispersing MgAl2O4 or MgO spinel particles. The addition of spinel particles is hypothesized to getter impurities such as oxygen and nitrogen from the alloy matrix with the result of ductility improvement. The introduction of fine dispersions has also been postulated to improve ductility by acting as a dislocation source or reducing dislocation pile-ups at grain boundaries. The spinel particles, on the other hand, can also act as local notches or crack initiation sites, which is detrimental to the alloy mechanical properties. Optimization of material processing condition is important to develop the desirable molybdenum alloys with sufficient room-temperature ductility. Atomistic analyses were conducted to further understand the mechanism of ductility improvement of the molybdenum alloys and the results showed that trace amount of residual oxygen may be responsible for the brittle behavior of the as-cast Mo alloys. For the alloys studied, uniaxial tensile tests were conducted at different loading rates, and at room and elevated temperatures. Thermal cycling effect on the mechanical properties was also studied. Tensile tests for specimens subjected to either ten or twenty thermal cycles were conducted. For each test, a follow-up detailed fractography and microstructural analysis were carried out. The test results were correlated to the size, density, distribution of the spinel particles and processing time. Thermal expansion tests were carried out using thermo

  15. 21 CFR 73.1327 - Chromium oxide greens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium oxide greens. 73.1327 Section 73.1327... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1327 Chromium oxide greens. (a) Identity. (1) The color additive chromium oxide greens is principally chromic sesquioxide (Cr2O3). (2) Color additive...

  16. Development of molecular dynamics potential for uranium silicide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianguo; Zhang, Yongfeng; Hales, Jason D.

    2016-09-01

    Use of uranium–silicide (U-Si) in place of uranium dioxide (UO2) is one of the promising concepts being proposed to increase the accident tolerance of nuclear fuels. This is due to a higher thermal conductivity than UO2 that results in lower centerline temperatures. U-Si also has a higher fissile density, which may enable some new cladding concepts that would otherwise require increased enrichment limits to compensate for their neutronic penalty. However, many critical material properties for U-Si have not been determined experimentally. For example, silicide compounds (U3Si2 and U3Si) are known to become amorphous under irradiation. There was clear independent experimental evidence to support a crystalline to amorphous transformation in those compounds. However, it is still not well understood how the amorphous transformation will affect on fuel behavior. It is anticipated that modeling and simulation may deliver guidance on the importance of various properties and help prioritize experimental work. In order to develop knowledge-based models for use at the engineering scale with a minimum of empirical parameters and increase the predictive capabilities of the developed model, inputs from atomistic simulations are essential. First-principles based density functional theory (DFT) calculations will provide the most reliable information. However, it is probably not possible to obtain kinetic information such as amorphization under irradiation directly from DFT simulations due to size and time limitations. Thus, a more feasible way may be to employ molecular dynamics (MD) simulation. Unfortunately, so far no MD potential is available for U-Si to discover the underlying mechanisms. Here, we will present our recent progress in developing a U-Si potential from ab initio data. This work is supported by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program funded by the U.S. Department of Energy, Office of Nuclear Energy.

  17. Acute and chronic systemic chromium toxicity.

    Science.gov (United States)

    Gad, S C

    1989-10-01

    Although chromium and compounds containing it have been recognized as having potential severe adverse effects on health for more than 160 years, understanding of the systemic toxicology and true hazard of these compounds is still not complete. A review of the current state of knowledge is attempted in this paper, with appropriate attention given to the complications of multiple valence states and solubility. Selected chromium compounds, particularly hexavalent ones, are carcinogens, corrosives, delayed contact sensitizers, and have the kidney as their primary target organ. But chromium is also an essential element for humans. The body clearly possesses some effective detoxification mechanisms for some degree of exposure to hexavalent chrome compounds. The significant features of acute and chronic chromium toxicity are presented in view of these considerations.

  18. Establishment of a reference value for chromium in the blood for biological monitoring among occupational chromium workers.

    Science.gov (United States)

    Li, Ping; Li, Yang; Zhang, Ji; Yu, Shan-Fa; Wang, Zhi-Liang; Jia, Guang

    2016-10-01

    The concentration of chromium in the blood (CrB) has been confirmed as a biomarker for occupational chromium exposure, but its biological exposure indices (BEIs) are still unclear, so we collected data from the years 2006 and 2008 (Shandong Province, China) to analyze the relationship between the concentration of chromium in the air (CrA) of the workplaces and CrB to establish a reference value of CrB for biological monitoring of occupational workers. The levels of the indicators for nasal injury, kidney (β2 microglobulin (β2-MG)), and genetic damages (8-hydroxy-deoxyguanosine (8-OHdG) and micronucleus (MN)) were measured in all subjects of the year 2011 (Henan Province, China) to verify the protective effect in this reference value of CrB. Compared with the control groups, the concentrations of CrA and CrB in chromium exposed groups were significantly higher (P value of CrB was recommended to 20 μg/L. The levels of nasal injury, β2-MG, 8-OhdG, and MN were not significantly different between the low chromium exposed group (CrB ≤ 20 μg/L) and the control group, while the levels of β2-MG, 8-OHdG, and MN were statistically different in the high chromium exposed group than that in the control group. This research proved that only in occupational workers, CrB could be used as a biomarker to show chromium exposure in the environment. The recommended reference value of CrB was 20 μg/L. © The Author(s) 2015.

  19. 21 CFR 73.1326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide (Cr2O3·XH2O...

  20. On the interdiffusion in multilayered silicide coatings for the vanadium-based alloy V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chaia, N., E-mail: nabil.chaia@usp.br [Escola de Engenharia de Lorena, Universidade de São Paulo, Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Portebois, L., E-mail: leo.portebois@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France); Mathieu, S., E-mail: stephane.mathieu@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France); David, N., E-mail: nicolas.david@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France); Vilasi, M., E-mail: michel.vilasi@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France)

    2017-02-15

    To provide protection against corrosion at high temperatures, silicide diffusion coatings were developed for the V-4Cr-4Ti alloy, which can be used as the fuel cladding in next-generation sodium-cooled fast breeder reactors. The multilayered coatings were prepared by halide-activated pack cementation using MgF{sub 2} as the transport agent and pure silicon (high activity) as the master alloy. Coated pure vanadium and coated V-4Cr-4Ti alloy were studied and compared as substrates. In both cases, the growth of the silicide layers (V{sub 3}Si, V{sub 5}Si{sub 3}, V{sub 6}Si{sub 5} and VSi{sub 2}) was controlled exclusively by solid-state diffusion, and the growth kinetics followed a parabolic law. Wagner's analysis was adopted to calculate the integrated diffusion coefficients for all silicides. The estimated values of the integrated diffusion coefficients range from approximately 10{sup −9} to 10{sup −13} cm{sup 2} s{sup −1}. Then, a diffusion-based numerical approach was used to evaluate the growth and consumption of the layers when the coated substrates were exposed at critical temperatures. The estimated lifetimes of the upper VSi{sub 2} layer were 400 h and 280 h for pure vanadium and the V-4Cr-4Ti alloy, respectively. The result from the numeric simulation was in good agreement with the layer thicknesses measured after aging the coated samples at 1150 °C under vacuum. - Highlights: • The pack cementation technique is implemented to study interdiffusion in V/Si and V-4Cr-4Ti/Si couples. • Interdiffusion coefficients of vanadium silicides were experimentally determined within the range 1100–1250 °C. • For either V/Si or V-4Cr-4Ti/Si couples, the VSi{sub 2} layer has the highest growth rate. • The Cr and Ti alloying elements mainly modified the V{sub 5}Si{sub 3} and V{sub 6}Si{sub 5} growth rate. • Numerical simulation allows for a confident assessment of the VSi{sub 2} coating lifetime on V-4Cr-4Ti.

  1. Chromium Uptake Efficiency of Spinacea olaracea from ...

    African Journals Online (AJOL)

    The aim of the study was to evaluate the uptake of chromium by Spinacea olaracea and its accumulation in roots and shoots of plants grown in pots at various concentrations of chromium (30, 60, 90,120,150 mg/l). The results revealed that the levels of chromium accumulation in roots and shoots were higher at minimum ...

  2. Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.

    2011-12-01

    The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (<1 μm) in the fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.

  3. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Substoichiometric determination of chromium by neutron activation analysis

    International Nuclear Information System (INIS)

    Kudo, K.; Shigematsu, T.; Kobayashi, K.

    1977-01-01

    A method of radioactivation analysis has been developed for the determination of chromium. It is based on the substoichiometric extraction of chromium diethyldithiocarbamate into methyl-isobutyl-ketone from acetate buffer solution in the presence of EDTA and potassium cyanide. A solution of NaDDC was prepared by dissolving an appropriate amount of GR grade salt in bidistelled water. The concentration of NaDDC was determined by substoichiometric isotope dilution method using 64 Cu or sup(114m)In tracer of known specific activity. The extraction of chromium is not influenced by the presence of EDTA or potassium cyanide while the extraction of chromium is inhibited in tartrate or citrate solution. All metal ions examined are extracted by NaDDC together with chromium and become to interfere for the substoichiometric extraction of chromium. This can be avoided, however, by the addition of EDTA except for copper and silver. The method has been applied for the determination of chromium in high-purity calcium carbonate and NBS glasses as standard reference materials. (T.G.)

  5. Steady-state thermal hydraulic analysis and flow channel blockage accident analysis of JRR-3 silicide core

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-03-01

    JRR-3 is a light water moderated and cooled, beryllium and heavy water reflected pool type research reactor using low enriched uranium (LEU) plate-type fuels. Its thermal power is 20 MW. The core conversion program from uranium-aluminum (UAl x -Al) dispersion type fuel (aluminide fuel) to uranium-silicon-aluminum (U 3 Si 2 -Al) dispersion type fuel (silicide fuel) is currently conducted at the JRR-3. This report describes about the steady-state thermal hydraulic analysis results and the flow channel blockage accident analysis result. In JRR-3, there are two operation mode. One is high power operation mode up to 20 MW, under forced convection cooling using the primary and the secondary cooling systems. The other is low power operation mode up to 200 kW, under natural circulation cooling between the reactor core and the reactor pool without the primary and the secondary cooling systems. For the analysis of the flow channel blockage accident, COOLOD code was used. On the other hand, steady-state thermal hydraulic analysis for both of the high power operation mode under forced convection cooling and low power operation under natural convection cooling, COOLOD-N2 code was used. From steady-state thermal hydraulic analysis results of both forced and natural convection cooling, fuel temperature, minimum DNBR etc. meet the design criteria and JRR-3 LEU silicide core has enough safety margin under normal operation conditions. Furthermore, flow channel blockage accident analysis results show that one channel flow blockage accident meet the safety criteria for accident conditions which have been established for JRR-3 LEU silicide core. (author)

  6. Impact of Nickel silicide Rear Metallization on Series Resistance of Crystalline Silicon Solar Cells

    KAUST Repository

    Bahabry, Rabab R

    2018-01-11

    The Silicon-based solar cell is one of the most important enablers toward high efficiency and low-cost clean energy resource. Metallization of silicon-based solar cells typically utilizes screen printed silver-Aluminium (Ag-Al) which affects the optimal electrical performance. To date, metal silicide-based ohmic contacts are occasionally used as an alternative candidate only to the front contact grid lines in crystalline silicon (c-Si) based solar cells. In this paper, we investigate the electrical characteristics of nickel mono-silicide (NiSi)/Cu-Al ohmic contact on the rear side of c-Si solar cells. We observe a significant enhancement in the fill factor of around 6.5% for NiSi/Cu-Al rear contacts leading to increasing the efficiency by 1.2% compared to Ag-Al. This is attributed to the improvement of the parasitic resistance in which the series resistance decreased by 0.737 Ω.cm². Further, we complement experimental observation with a simulation of different contact resistance values, which manifests NiSi/Cu-Al rear contact as a promising low-cost metallization for c-Si solar cells with enhanced efficiency.

  7. High-Temperature Compatible Nickel Silicide Thermometer And Heater For Catalytic Chemical Microreactors

    DEFF Research Database (Denmark)

    Jensen, Søren; Quaade, U.J.; Hansen, Ole

    2005-01-01

    Integration of heaters and thermometers is important for agile and accurate control and measurement of the thermal reaction conditions in microfabricated chemical reactors (microreactors). This paper describes development and operation of nickel silicide heaters and temperature sensors...... for temperatures exceeding 700 °C. The heaters and thermometers are integrated with chemical microreactors for heterogeneous catalytic conversion of gasses, and thermally activated catalytic conversion of CO to CO2 in the reactors is demonstrated. The heaters and thermometers are shown to be compatible...

  8. Pilot plant production at Riso of LEU silicide fuel for the Danish reactor DR3

    International Nuclear Information System (INIS)

    Toft, P.; Borring, J.; Adolph, E.

    1988-01-01

    A pilot plant for fabricating LEU silicide fuel elements has been established at Riso National Laboratory. Three test elements for the Danish reactor DR3 have been fabricated, based on 19.88% enriched U 3 Si 2 powder that has been purchased elsewhere. The pilot plant has been set up and 3 test elements fabricated without any major difficulties

  9. Chromium supplementation improved post-stroke brain infarction and hyperglycemia.

    Science.gov (United States)

    Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung

    2016-04-01

    Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia.

  10. Cavitation erosion of chromium-manganese and chromium-cobalt coatings processed by laser beam

    International Nuclear Information System (INIS)

    Giren, B.G.; Szkodo, M.

    2002-01-01

    In this work the cavitation erosion of chromium-manganese and chromium-cobalt clads were tested, each of them for three cases: (1) without additional processing; (2) after laser heating of the solid state and (3) after laser remelting of the material. Armco iron, carbon steel 45 and chromium-nickel steel 0H18N9T were used as substrates. C.W. CO 2 laser with a beam power of 1000 W was used as a source of radiation. The investigated samples were subjected to cavitation impingement in a rotating disk facility. The results indicate that laser processing of the thick, electrode deposited coatings by laser beam leads in some cases to an increase of their cavitation resistance. Strong dependence of the coatings performance on the substrate, both for the laser processed or unprocessed parts of the materials was also discovered. (author)

  11. Phosphate solubilization and chromium (VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil.

    Science.gov (United States)

    Gupta, Pratishtha; Kumar, Vipin; Usmani, Zeba; Rani, Rupa; Chandra, Avantika

    2018-02-01

    In this study, an effort was made to identify an efficient phosphate solubilizing bacterial strain from chromium contaminated agricultural soils. Based on the formation of a solubilized halo around the colonies on Pikovskaya's agar amended with chromium (VI), 10 strains were initially screened out. Out of 10, strain CPSB4, which showed significantly high solubilization zone at different chromium concentrations, was selected for further study. The strain CPSB4 showed significant plant growth promotion traits with chromium (VI) stress under in-vitro conditions in broth. The plant growth promotion activities of the strain decreased regularly, but were not completely lost with the increase in concentration of chromium up to 200 mg L -1 . On subjected to FT-IR analysis, the presence of the functional group, indicating the organic acid aiding in phosphate solubilization was identified. At an optimal temperature of 30  ° C and pH 7.0, the strain showed around 93% chromium (VI) reduction under in-vitro conditions in broth study. In soil condition, the maximum chromium (VI) reduction obtained was 95% under in-vitro conditions. The strain CPSB4 was identified as Klebsiella sp. on the basis of morphological, biochemical and 16S rRNA gene sequencing. This study shows that the diverse role of the bacterial strain CPSB4 would be useful in the chromium contaminated soil as a good bioremediation and plant growth promoting agent as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Morphological and electrical properties of self-assembled iron silicide nanoparticles on Si(0 0 1) and Si(1 1 1) substrates

    International Nuclear Information System (INIS)

    Molnár, G.; Dózsa, L.; Erdélyi, R.; Vértesy, Z.; Osváth, Z.

    2015-01-01

    Highlights: • Epitaxial iron silicide nanostructures were grown on Si(1 1 1) and Si(0 0 1) substrates. • The size and shape of the particles are the function of the thickness and annealing. • The local current–voltage characteristics were measured by conductive AFM. • The different size and shape nanoparticles show similar I–V characteristics. • The tip current is dominated in few nm size sites, visible in the AFM phase image. - Abstract: Epitaxial iron silicide nanostructures are grown by solid phase epitaxy on Si(0 0 1) and Si(1 1 1), and by reactive deposition epitaxy on Si(0 0 1) substrates. The formation process is monitored by reflection high-energy electron diffraction. The morphology, size, and electrical properties of the nanoparticles are investigated by scanning electron microscopy, by electrically active scanning probe microscopy, and by confocal Raman spectroscopy. The results show that the shape, size, orientation, and density of the nanoobjects can be tuned by self-assembly, controlled by the lattice misfit between the substrates and iron silicides. The size distribution and shape of the grown nanoparticles depend on the substrate orientation, on the initial thickness of the evaporated iron, on the temperature and time of the annealing, and on the preparation method. The so-called Ostwald ripening phenomena, which state that the bigger objects develop at the expense of smaller ones, controls the density of the nanoparticles. Raman spectra show the bigger objects do not contain β-FeSi 2 phase. The different shape nanoparticles exhibit small, about 100 mV barrier compared to the surrounding silicon. The local leakage current of the samples measured by conductive AFM using a Pt coated Si tip is localized in a few nanometers size sites, and the sites which we assume are very small silicide nanoparticles or point defects.

  13. 75 FR 67100 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2010-11-01

    ... Chromium From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on superalloy degassed chromium from Japan. SUMMARY... order on superalloy degassed chromium from Japan would be likely to lead to continuation or recurrence...

  14. Electrochemistry of chromium(0)-aminocarbene complexes

    International Nuclear Information System (INIS)

    Hoskovcova, Irena; Rohacova, Jana; Meca, Ludek; Tobrman, Tomas; Dvorak, Dalimil; Ludvik, Jiri

    2005-01-01

    Two series of chromium(0)-(aryl)aminocarbene complexes substituted on the ligand phenyl ring were prepared and electrochemically investigated: pentacarbonyl((N,N-dimethylamino)(phenyl)carbene(chromium(0) (Ia-e) and chelated tetracarbonyl((η 2 -N-allyl-N-allylamino)(phenyl)carbene(chromium(0) (IIa, c-e). For comparison, a tungsten analogue of IIc (III) and a chromium chelate bearing a methyl substituent instead of the phenyl group IV were taken into the study. The intramolecular interactions of p-substituents on the ligand phenyl ring with the reduction and oxidation centres of the molecule of complex (followed electrochemically using LFER [P. Zuman, Substituent Effects in Organic Polarography, Plenum Press, New York, 1967]) enabled to localize the corresponding electron transfer. The influence of the type of coordination, the substituent on the ligand phenyl ring and the central metal atom on oxidation and reduction potentials is discussed

  15. Lipid peroxidation in workers exposed to hexavalent chromium.

    Science.gov (United States)

    Huang, Y L; Chen, C Y; Sheu, J Y; Chuang, I C; Pan, J H; Lin, T H

    1999-02-26

    The aim of this study was to investigate whether exposure to hexavalent chromium induces lipid peroxidation in human. This study involved 25 chrome-plating factory workers and a reference group of 28 control subjects. The whole-blood and urinary chromium concentrations were determined by graphite furnace atomic absorption spectrophotometry. Malondialdehyde (MDA), the product of lipid peroxidation, was determined by high-performance liquid chromatography, and the activities of protective enzymes were measured by ultraviolet-visible spectrophotometry. In the chrome-plating workers, the mean concentrations of chromium in blood and urine were 5.98 microg/L and 5.25 microg/g creatinine, respectively; the mean concentrations of MDA in blood and urine were 1.7 micromol/L and 2.24 micromol/g creatinine. The concentrations of both chromium and MDA in blood and urine were significantly higher in the chromium-exposed workers. The activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) were not markedly different between control and exposed workers. Data suggest that MDA may be used as a biomarker for occupational chromium exposure. Antioxidant enzymic activities are not a suitable marker for chromium exposure.

  16. The Chromium is an essential element in the human

    International Nuclear Information System (INIS)

    Alvarado Gamez, A.; Blanco Saenz, R.; Mora Morales, E.

    2002-01-01

    The Chromium is an essential element for human and animals, because it a preponderant function in the insulin metabolism as a glucose tolerance factor (GTF). The deficiency of chromium engenders a deterioration in the glucose metabolism due to bad efficiency of insulin. Because the importance of this element an exhaustive reference review was made and this presents some studies realized in laboratory animals and in human beings where it is prove with resuits the effect of chromium over the improvement of patients with non-insulin dependant diabetes. Three substances are presented as chromium active biological forms: a material rich in chromium known as glucose tolerance factor, chromium picolinate and a substance of low molecular weight LMWCr in its forms of apo and holo that contains chromium and it links the insulin receptor and improves its activity. Also this paper presents information about the condition of diabetes in Costa Rica. (Author) [es

  17. Influence of layout parameters on snapback characteristic for a gate-grounded NMOS device in 0.13-μm silicide CMOS technology

    International Nuclear Information System (INIS)

    Jiang Yuxi; Li Jiao; Ran Feng; Cao Jialin; Yang Dianxiong

    2009-01-01

    Gate-grounded NMOS (GGNMOS) devices with different device dimensions and layout floorplans have been designed and fabricated in 0.13-μm silicide CMOS technology. The snapback characteristics of these GGNMOS devices are measured using the transmission line pulsing (TLP) measurement technique. The relationships between snapback parameters and layout parameters are shown and analyzed. A TCAD device simulator is used to explain these relationships. From these results, the circuit designer can predict the behavior of the GGNMOS devices under high ESD current stress, and design area-efficient ESD protection circuits to sustain the required ESD level. Optimized layout rules for ESD protection in 0.13-μm silicide CMOS technology are also presented. (semiconductor devices)

  18. REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS ...

    African Journals Online (AJOL)

    a

    be used again to adsorb heavy metal ions. ... Among these heavy metals are chromium, copper and ... poisoning can result from high exposure to hexavalent chromium [2]. Most of the ..... At low pH, the sorbent is positively charged because of.

  19. Preparation and Characterization of Plasma-Sprayed Ultrafine Chromium Oxide Coatings

    International Nuclear Information System (INIS)

    Lin Feng; Jiang Xianliang; Yu Yueguang; Zeng Keli; Ren Xianjing; Li Zhenduo

    2007-01-01

    Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured. The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings

  20. Serum chromium levels in gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    P G Sundararaman

    2012-01-01

    Full Text Available Objective: To measure serum chromium level in women with gestational diabetes mellitus (GDM from Chennai, South India. Materials and Methods: Thirty women with gestational diabetes, 60 age matched controls. Inclusion criteria: Gestational age 22-28 weeks, age group 20-35 years. Exclusion Criteria: Gestational age beyond 28 weeks, malnutrition or presence of infection. Serum chromium was measured using inductive couple plasma emission spectrometer. Results: Serum chromium levels of women with GDM, 1.59+/-0.02 ng/ml (range: 0.16-4.0 ng/ml were lower than in controls (4.58+/-0.62 ng/ml; range 0.82-5.33 ng/ml (P < 0.001. However, there were no significant differences among cases and controls when subdivided by parity. Conclusions: Women with GDM from a South Indian city had lower levels of serum chromium compared to pregnant women without GDM. Studies may be done whether chromium supplementation is useful in this group of women.

  1. Quantitative determination of chromium in some vegetables in ...

    African Journals Online (AJOL)

    Chromium has been known to be a micronutrient for mammals for more than four decades. Deficiency in the body results to diabetes, infertility and cardiovascular diseases. However, progress in elucidating the role of chromium has proceeded slowly. Recent studies have shown a potential role of chromium in maintaining ...

  2. Characterization of tungsten silicides formed by rapid thermal annealing

    International Nuclear Information System (INIS)

    Siegal, M.; Santiago, J.J.; VanDerSpiegel, J.

    1986-01-01

    Tungsten silicide samples were formed by sputter depositing 80 nm W metal onto (100) oriented, 5 ohm-cm Si wafers. After deposition, the samples were fast radiatively processed in an RTA system using quartz-halogen tungsten lamps as radiation sources for time intervals ranging from 20 to 60s under high vacuum. Films processed at 22-25 W/cm 2 radiation with the film side of the samples oriented away from the lamps result in films which are metallic or cloudy in color, and have mixed composition as evidenced by x-ray diffraction (W, W 5 Si 3 and WSi 2 ). Films processed with the film side oriented toward the lamps show the occurrence of a phase transformation clearly nucleated at the film edge

  3. Activation of bentonite to remove the chromium from waste water produced by panning industry, and studying the chromium recovery efficiency

    International Nuclear Information System (INIS)

    Abbasi, S.; Wahba, H.; AL-Masri, M.S.

    2010-01-01

    The fast development of tanning industry led to an increase in environmental problems resulting from discharging its wastes to the surrounding environment. Thus solving this problem became one of the most important aims that the researchers work on. The chromium content of the industrial water wastes of the tanning industry considered as the main pollutant for the environment. The Aleppo Bentonite is used in early research to remove the chromium from the industrial waste water.The current research aims to find a method to activate the Aleppo Bentonite in order to increase the effective removal of chromium from the industrial waste water which is produced by tanning industry, as well as to specify the optimal conditions for chromium recovery.This study used the Aleppo Bentonite, whose origin is Tal Ajar-Aleppo to study the activation aspects using Sulfuric Acid, Hydrochloric Acid and Nitric Acid, in addition to study the recovery aspects using the same acids and hydrogen peroxide and to specify the optimal conditions for chromium recovery through applying some experiments based on three main factors: concentration, settling time and temperature.It was observed from the applied experiments that it is possible to recover chromium from Bentonite efficiently up to (80% - 90%) by treating the Bentonite with hydrogen peroxide(33% concentration) at room temperature, or by treating it with hydrogen peroxide(8.25% concentration) at 75 o C, while the settling time factor proved that full recovery of chromium is obtained during the first hour, and increasing the time factor does not affect the efficiency of chromium recovery. (author)

  4. Uptake and transport of chromium in plants

    International Nuclear Information System (INIS)

    Ramachandran, V.; D'souza, T.J.; Mistry, K.B.

    1980-01-01

    The uptake of chromium, an important soil and water pollutant, by five different plant species was examined in nutrient culture experiments using chromium-51 as a tracer. The concentration in aerial tissues of both trivalent and hexavalent forms of chromium was the greatest in peas followed by beans, tomato and the cereals over identical uptake periods. The uptake of 51 Cr 3+ was, in general, greater than 51 CrO 4 2- . Studies with bean plants indicated that shoot uptake of both forms of chromium decreased with increasing pH and salt concentration of the external solution. Concentrations of 10 -4 M and 10 -5 M DNP inhibited 51 Cr uptake by bean shoots. (author)

  5. Ductile-brittle transition of thoriated chromium.

    Science.gov (United States)

    Wilcox, B. A.; Veigel, N. D.; Clauer, A. H.

    1972-01-01

    Unalloyed chromium and chromium containing approximately 3 wt % ThO2 were prepared from powder produced by a chemical vapor deposition process. When rolled to sheet and tested in tension, it was found that the thoriated material had a lower ductile-to-brittle transition temperature (DBTT) than unalloyed chromium. This ductilizing was evident both in the as-rolled condition and after the materials had been annealed for 1 hour at 1200 C. The improved ductility in thoriated chromium may be associated with several possible mechanisms: (1) particles may disperse slip, such that critical stress or strain concentrations for crack nucleation are more difficult to achieve; (2) particles may act as dislocation sources, thus providing mobile dislocations in this normally source-poor material, in a manner similar to prestraining; and (3) particles in grain boundaries may help to transmit slip across the boundaries, thus relieving stress concentrations and inhibiting crack nucleation.

  6. Thermodynamic properties of chromium bearing slags and minerals. A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yanping; Holappa, L.

    1996-12-31

    In this report, the thermodynamic properties of chromium bearing slags and minerals were reviewed based on the available information in the literature. It includes the analysing methods for oxidation state of chromium in slags, oxidation state of chromium and activities of chromium oxides in slags and minerals. The phase diagrams of chromium oxide systems and chromium distributions between slag and metal phases are also covered ill this review. Concerning the analysing methods, it was found that most of the available approaches are limited to iron free slag systems and the sample preparation is very sensitive to the analysing results. In silicate slags under reducing atmosphere, divalent and trivalent chromium co-exist in the slags. It is agreed that the fraction of divalent chromium to total chromium increases with higher temperature, lower slag basicity and oxygen potential. For the slags under oxidising atmosphere, trivalent, pentavalent and hexavalent states were reported to be stable. The activities of CrO and CrO{sub 1.5} were concluded to have positive deviation from ideal solution. Slag basicity has a positive effect and temperature has a negative effect on the activities of chromium oxides. The phase diagrams of the Cr-O, binary, and ternary chromium containing oxide systems have been examined systematically. The analysis shows that the data on the quaternary and quinary systems are insufficient, and require further investigation. The most important features of the chromium containing silicate slags are the large miscibility gaps and the stability of the chromite spinel. (orig.) (76 refs.)

  7. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining a...

  8. Ferrate treatment for removing chromium from high-level radioactive tank waste.

    Science.gov (United States)

    Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J

    2001-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.

  9. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    Science.gov (United States)

    Kim, Yeon Soo; Park, J. M.; Lee, K. H.; Yoo, B. O.; Ryu, H. J.; Ye, B.

    2014-11-01

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  10. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Park, J.M.; Lee, K.H.; Yoo, B.O. [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ryu, H.J. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ye, B. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2014-11-15

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  11. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery Furnaces XII Appendix XII to Part 266... FACILITIES Pt. 266, App. XII Appendix XII to Part 266—Nickel or Chromium-Bearing Materials that may be...

  12. Silicide induced surface defects in FePt nanoparticle fcc-to-fct thermally activated phase transition

    International Nuclear Information System (INIS)

    Chen, Shu; Lee, Stephen L.; André, Pascal

    2016-01-01

    Magnetic nanoparticles (MnPs) are relevant to a wide range of applications including high density information storage and magnetic resonance imaging to name but a few. Among the materials available to prepare MnPs, FePt is attracting growing attention. However, to harvest the strongest magnetic properties of FePt MnPs, a thermal annealing is often required to convert face-centered cubic as synthesized nPs into its tetragonal phase. Rarely addressed are the potential side effects of such treatments on the magnetic properties. In this study, we focus on the impact of silica shells often used in strategies aiming at overcoming MnP coalescence during the thermal annealing. While we show that this shell does prevent sintering, and that fcc-to-fct conversion does occur, we also reveal the formation of silicide, which can prevent the stronger magnetic properties of fct-FePt MnPs from being fully realised. This report therefore sheds lights on poorly investigated and understood interfacial phenomena occurring during the thermal annealing of MnPs and, by doing so, also highlights the benefits of developing new strategies to avoid silicide formation.

  13. Mössbauer spectroscopy study of surfactant sputtering induced Fe silicide formation on a Si surface

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, C.; Zhang, K. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Hofsäss, H., E-mail: hans.hofsaess@phys.uni-goettingen.de [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Brüsewitz, C.; Vetter, U. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Bharuth-Ram, K. [Physics Department, Durban University of Technology, Durban 4001 (South Africa)

    2015-12-01

    Highlights: • We study the formation of self-organized nanoscale dot and ripple patterns on Si. • Patterns are created by keV noble gas ion irradiation and simultaneous {sup 57}Fe co-deposition. • Ion-induced phase separation and the formation of a-FeSi{sub 2} is identified as relevant process. - Abstract: The formation of Fe silicides in surface ripple patterns, generated by erosion of a Si surface with keV Ar and Xe ions and simultaneous co-deposition of Fe, was investigated with conversion electron Mössbauer spectroscopy, atomic force microscopy and Rutherford backscattering spectrometry. For the dot and ripple patterns studied, we find an average Fe concentration in the irradiated layer between 6 and 25 at.%. The Mössbauer spectra clearly show evidence of the formation of Fe disilicides with Fe content close to 33 at.%, but very little evidence of the formation of metallic Fe particles. The results support the process of ion-induced phase separation toward an amorphous Fe disilicide phase as pattern generation mechanism. The observed amorphous phase is in agreement with thermodynamic calculations of amorphous Fe silicides.

  14. Silicide induced surface defects in FePt nanoparticle fcc-to-fct thermally activated phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shu; Lee, Stephen L. [School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS (United Kingdom); André, Pascal, E-mail: pjpandre@riken.jp [School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS (United Kingdom); RIKEN, Wako 351-0198 (Japan); Department of Physics, CNRS-Ewha International Research Center (CERC), Ewha W. University, Seoul 120-750 (Korea, Republic of)

    2016-11-01

    Magnetic nanoparticles (MnPs) are relevant to a wide range of applications including high density information storage and magnetic resonance imaging to name but a few. Among the materials available to prepare MnPs, FePt is attracting growing attention. However, to harvest the strongest magnetic properties of FePt MnPs, a thermal annealing is often required to convert face-centered cubic as synthesized nPs into its tetragonal phase. Rarely addressed are the potential side effects of such treatments on the magnetic properties. In this study, we focus on the impact of silica shells often used in strategies aiming at overcoming MnP coalescence during the thermal annealing. While we show that this shell does prevent sintering, and that fcc-to-fct conversion does occur, we also reveal the formation of silicide, which can prevent the stronger magnetic properties of fct-FePt MnPs from being fully realised. This report therefore sheds lights on poorly investigated and understood interfacial phenomena occurring during the thermal annealing of MnPs and, by doing so, also highlights the benefits of developing new strategies to avoid silicide formation.

  15. Chemical Speciation of Chromium in Drilling Muds

    International Nuclear Information System (INIS)

    Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo

    2007-01-01

    Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility

  16. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B. [Brimrose Technology Corporation; Kutcher, Susan W. [Brimrose Technology Corporation; Rosemeier, Cory A. [Brimrose Technology Corporation; Mayers, David [Brimrose Technology Corporation; Singh, Jogender [Pennsylvania State University

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  17. Electron spectroscopy in the X-ray range for occupied and free levels and the application to transition metal silicides

    International Nuclear Information System (INIS)

    Speier, W.

    1988-03-01

    Intermetallic compounds of transition metals are investigated by means of XPS, Bremsstrahlung Isochromate Spectroscopy and XAS. Occupied and free levels are characterized and moreover a systematic overview over the electronic structure of the transition element silicides is given. (BHO)

  18. Combination of synchrotron radiation X-ray microprobe and nuclear microprobe for chromium and chromium oxidation states quantitative mapping in single cells

    International Nuclear Information System (INIS)

    Ortega, Richard; Deves, Guillaume; Fayard, Barbara; Salome, Murielle; Susini, Jean

    2003-01-01

    Hexavalent chromium compounds are established carcinogens but their mechanism of cell transformation has not been elucidated yet. In this study, chromium oxidation state distribution maps in cells exposed to soluble (Na 2 CrO 4 ), or insoluble (PbCrO 4 ), Cr(VI) compounds have been obtained by use of the ESRF ID-21 X-ray microscope. In addition, the quantitative maps of element distributions in cells have been determined using the nuclear microprobe of Bordeaux-Gradignan. Nuclear microprobe quantitative analysis revealed interesting features on chromium, and lead, cellular uptake. It is suggested that cells can enhance PbCrO 4 solubility, resulting in chromium, but not lead uptake. The differential carcinogenic potential of soluble and insoluble Cr(VI) compounds is discussed with regard to chromium intracellular quantitative distribution

  19. Increased chromium uptake in polymorphonuclear leukocytes from burned patients

    International Nuclear Information System (INIS)

    Davis, J.M.; Illner, H.; Dineen, P.

    1984-01-01

    Following thermal injury neutrophil function is severely impaired and thought to be hypometabolic; however, the host is considered to be hypermetabolic. To further investigate the metabolism and the function of neutrophils following thermal injury, neutrophil migration and chromium uptake were studied using radio-labelled neutrophils. Random and directed migration were found to be significantly reduced compared to control values. Neutrophil lysozyme content was also reduced in these burn cells while serum lysozyme from the same patients was significantly elevated over control values. These data suggest lysozyme is released by the neutrophil into the circulatory system. The influx of chromium in cells from burned patients was much greater than the influx in normal cells used in studies for chemotaxis. Influx of chromium over time and over varying concentrations of chromium was linear in cells from burned patients and normals. Cells from burned patients, however, took up more chromium than normals. Influx velocity of chromium was also determined and found to be greater in burn cells than normal cells. Since it has been shown that chromium influx is an energy-dependent reaction it is suggested that cellular energy stores are being depleted by the influx of chromium. Whether this is a response to an intracellular deficit or uncoupling of metabolic pathways is not known at this time

  20. The enriched chromium neutrino source for GALLEX

    International Nuclear Information System (INIS)

    Hartmann, F.X.; Hahn, R.L.

    1991-01-01

    The preparation and study of an intense source of neutrinos in the form of neutron irradiated materials which are enriched in Cr-50 for use in the GALLEX solar neutrino experiment are discussed. Chromyl fluoride gas is enriched in the Cr-50 isotope by gas centrifugation and subsequently converted to a very stable form of chromium oxide. The results of neutron activation analyses of such chromium samples indicate low levels of any long-lived activities, but show that short-lived activities, in particular Na-24, may be of concern. These results show that irradiating chromium oxide enriched in Cr-50 is preferable to irradiating either natural chromium or argon gas as a means of producing a neutrino source to calibrate the GALLEX detector. These results of the impurity level analysis of the enriched chromyl fluoride gas and its conversion to the oxide are also of interest to work in progress by other members of the Collaboration investigating an alternative conversion of the enriched gas to chromium metal. 35 refs., 12 figs., 5 tabs

  1. Microscopic analysis of the chromium content in the chromium-induced malignant and premalignant bronchial lesions of the rat

    International Nuclear Information System (INIS)

    Takahashi, Yuji; Kondo, Kazuya; Ishikawa, Sumiyo; Uchihara, Hiroshi; Fujino, Haruhiko; Sawada, Naruhiko; Miyoshi, Takanori; Sakiyama, Shoji; Izumi, Keisuke; Monden, Yasumasa

    2005-01-01

    Objective: Our previous studies demonstrated that the frequency of gene instability in lung cancer of chromate workers was very high, but the frequencies of the p53 and ras gene mutations were low. To clarify the carcinogenesis of chromate in the lung, we established a chromate-induced cancer model in the rat proximal airway and examined the relationship between chromium accumulations and the chromium-induced cancer and premalignant bronchial lesions of the rat. Methods: Fifteen male, bred, 12-week-old Jcl-Wister rats were used. A pellet of strontium chromate were inserted into the bronchus of the rats. The rats were sacrificed 9 months after the pellet was inserted. We pathologically examined the region of the bronchi to which the pellet was attached. We quantified the amount of chromium accumulation in the bronchial lesions using a microscopic X-ray fluorescence analyzer. Results: Of the 15 rats, 1 rat had a lesion of squamous cell carcinoma (SCC), 7 rats had carcinoma in situ (CIS) or dysplasia, 8 rats had squamous metaplasia, and 5 rats had goblet cell hyperplasia. The amounts of chromium accumulation in normal epithelium (n=24), goblet cell hyperplasia (n=14), squamous metaplasia (n=8), and dysplasia plus CIS plus SCC (n=9) were 500±1354, 713±1062, 941±1328, and 3511±4473 (mean±SD) counts/s/mA, respectively. The amount of chromium accumulation was significantly increased according to the progression of malignant change of the bronchial epithelium (Spearman's correlation coefficient by ranks, rs=0.454, P<0.01). Conclusions: The amount of chromium accumulation was significantly increased according to the progression of malignant change of the bronchial epithelium. Examining the genetic alterations of histologic changes in this model was helpful in elucidating the process of carcinogenesis of chromium in the lung

  2. Roasting and leaching behaviors of vanadium and chromium in calcification roasting-acid leaching of high-chromium vanadium slag

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Zhou, Mi; Gao, Hui-yang; Liu, Jia-yi; Xue, Xiang-xin

    2018-05-01

    Calcification roasting-acid leaching of high-chromium vanadium slag (HCVS) was conducted to elucidate the roasting and leaching behaviors of vanadium and chromium. The effects of the purity of CaO, molar ratio between CaO and V2O5 ( n(CaO)/ n(V2O5)), roasting temperature, holding time, and the heating rate used in the oxidation-calcification processes were investigated. The roasting process and mechanism were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetry-differential scanning calorimetry (TG-DSC). The results show that most of vanadium reacted with CaO to generate calcium vanadates and transferred into the leaching liquid, whereas almost all of the chromium remained in the leaching residue in the form of (Fe0.6Cr0.4)2O3. Variation trends of the vanadium and chromium leaching ratios were always opposite because of the competitive reactions of oxidation and calcification between vanadium and chromium with CaO. Moreover, CaO was more likely to combine with vanadium, as further confirmed by thermodynamic analysis. When the HCVS with CaO added in an n(CaO)/ n(V2O5) ratio of 0.5 was roasted in an air atmosphere at a heating rate of 10°C/min from room temperature to 950°C and maintained at this temperature for 60 min, the leaching ratios of vanadium and chromium reached 91.14% and 0.49%, respectively; thus, efficient extraction of vanadium from HCVS was achieved and the leaching residue could be used as a new raw material for the extraction of chromium. Furthermore, the oxidation and calcification reactions of the spinel phases occurred at 592 and 630°C for n(CaO)/ n(V2O5) ratios of 0.5 and 5, respectively.

  3. Microstructure and mechanical properties of molybdenum silicides with Al additions

    International Nuclear Information System (INIS)

    Rosales, I.; Bahena, D.; Colin, J.

    2007-01-01

    Several molybdenum silicides alloys with different aluminum additions were produced by the arc-cast method. Microstructure observed in the alloys presented a variation of the precipitated second phase respect to the aluminum content. Evaluation of the compressive behavior at high temperature of the alloys shows an important improvement in its ductility, approximately of 20%. Fracture toughness was increased proportionally with Al content. In addition at room temperature the alloys show a better mechanical behavior in comparison with the sample unalloyed. In general, Al additions result to be a good alternative to improve the resistance of these intermetallic alloys. The results are interpreted on the base of the analysis of second phase strengthening

  4. Evaluation of powder metallurgical processing routes for multi-component niobium silicide-based high-temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seemueller, Hans Christoph Maximilian

    2016-03-22

    Niobium silicide-based composites are potential candidates to replace nickel-base superalloys for turbine applications. The goal of this work was to evaluate the feasibility and differences in ensuing properties of various powder metallurgical processing techniques that are capable of manufacturing net-shape turbine components. Two routes for powder production, mechanical alloying and gas atomization were combined with compaction via hot isostatic pressing and powder injection molding.

  5. Comparison of Ultrasound-Assisted and Regular Leaching of Vanadium and Chromium from Roasted High Chromium Vanadium Slag

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Gao, Huiyang; Liu, Yajing; Zheng, Xiaole; Xue, Xiangxin

    2018-02-01

    Ultrasound-assisted leaching (UAL) was used for vanadium and chromium leaching from roasted material obtained by the calcification roasting of high-chromium-vanadium slag. UAL was compared with regular leaching. The effect of the leaching time and temperature, acid concentration, and liquid-solid ratio on the vanadium and chromium leaching behaviors was investigated. The UAL mechanism was determined from particle-size-distribution and microstructure analyses. UAL decreased the reaction time and leaching temperature significantly. Furthermore, 96.67% vanadium and less than 1% chromium were leached at 60°C for 60 min with 20% H2SO4 at a liquid-solid ratio of 8, which was higher than the maximum vanadium leaching rate of 90.89% obtained using regular leaching at 80°C for 120 min. Ultrasonic waves broke and dispersed the solid sample because of ultrasonic cavitation, which increased the contact area of the roasted sample and the leaching medium, the solid-liquid mass transfer, and the vanadium leaching rate.

  6. Capacitance-voltage characterization of fully silicided gated MOS capacitor

    International Nuclear Information System (INIS)

    Wang Baomin; Ru Guoping; Jiang Yulong; Qu Xinping; Li Bingzong; Liu Ran

    2009-01-01

    This paper investigates the capacitance-voltage (C-V) measurement on fully silicided (FUSI) gated metal-oxide-semiconductor (MOS) capacitors and the applicability of MOS capacitor models. When the oxide leakage current of an MOS capacitor is large, two-element parallel or series model cannot be used to obtain its real C-V characteristic. A three-element model simultaneously consisting of parallel conductance and series resistance or a four-element model with further consideration of a series inductance should be used. We employed the three-element and the four-element models with the help of two-frequency technique to measure the Ni FUSI gated MOS capacitors. The results indicate that the capacitance of the MOS capacitors extracted by the three-element model still shows some frequency dispersion, while that extracted by the four-element model is close to the real capacitance, showing little frequency dispersion. The obtained capacitance can be used to calculate the dielectric thickness with quantum effect correction by NCSU C-V program. We also investigated the influence of MOS capacitor's area on the measurement accuracy. The results indicate that the decrease of capacitor area can reduce the dissipation factor and improve the measurement accuracy. As a result, the frequency dispersion of the measured capacitance is significantly reduced, and real C-V characteristic can be obtained directly by the series model. In addition, this paper investigates the quasi-static C-V measurement and the photonic high-frequency C-V measurement on Ni FUSI metal gated MOS capacitor with a thin leaky oxide. The results indicate that the large tunneling current through the gate oxide significantly perturbs the accurate measurement of the displacement current, which is essential for the quasi-static C-V measurement. On the other hand, the photonic high-frequency C-V measurement can bypass the leakage problem, and get reliable low-frequency C-V characteristic, which can be used to

  7. Hot wire chemical vapor deposition: limits and opportunities of protecting the tungsten catalyzer from silicide with a cavity

    International Nuclear Information System (INIS)

    Frigeri, P.A.; Nos, O.; Bengoechea, S.; Frevert, C.; Asensi, J.M.; Bertomeu, J.

    2009-01-01

    Hot Wire Chemical Vapor Deposition (HW-CVD) is one of the most promising techniques for depositing the intrinsic microcrystalline silicon layer for the production of micro-morph solar cells. However, the silicide formation at the colder ends of the tungsten wire drastically reduces the lifetime of the catalyzer, thus limiting its industrial exploitation. A simple but interesting strategy to decrease the silicide formation is to hide the electrical contacts of the catalyzer in a long narrow cavity which reduces the probability of the silane molecules to reach the colder ends of the wire. In this paper, the working mechanism of the cavity is elucidated. Measurements of the thickness profile of the silicon deposited in the internal walls of the cavity have been compared with those predicted using a simple diffusion model based on the assumption of Knudsen flow. A lifetime study of the protected and unprotected wires has been carried out. The different mechanisms which determine the deterioration of the catalyzer have been identified and discussed.

  8. The heat capacity and entropy of the lithium silicides Li17Si4 and Li16.42Si4 in the temperature range from (2 to 873) K

    International Nuclear Information System (INIS)

    Thomas, Daniel; Zeilinger, Michael; Gruner, Daniel; Hüttl, Regina; Seidel, Jürgen; Wolter, Anja U.B.; Fässler, Thomas F.; Mertens, Florian

    2015-01-01

    Highlights: • High quality experimental heat capacities of the new lithium rich silicides Li 17 Si 4 and Li 16.42 Si 4 are reported. • Two different calorimeters have been used to cover the broad temperature range from (2 to 873) K. • Samples were prepared and characterized (XRD) by the original authors who firstly described these new silicide phases in 2013. • Supply of polynomial heat capacity functions for four temperature intervals. • Calculation of standard entropies and entropies of formation of the lithium silicides. - Abstract: This work presents the heat capacities and standard entropies of the recently described lithium rich silicide phases Li 17 Si 4 and Li 16.42 Si 4 as a function of temperature in the range from (2 to 873) K. The measurements were carried out using two different calorimeters. The heat capacities were determined in the range from T = (2 to 300) K by a relaxation technique using a Physical Properties Measurement System (PPMS) from Quantum Design, and in the range from T = (283 to 873) K by means of a Sensys DSC from Setaram applying the C p -by-step method. The experimental data are given with an accuracy of (1 to 2)% above T = 20 K and the error increases up to 7% below T = 20 K. The results of the measurements at low temperatures permit the calculation of additional thermodynamic parameters such as the standard entropy as well as the temperature coefficients of electronic and lattice contributions to the heat capacity. Additionally, differential scanning calorimetric (DSC) measurements were carried out to verify the phase transition temperatures of the studied lithium silicide phases. The results represent a significant contribution to the data basis for thermodynamic calculations (e.g. CALPHAD) and to the understanding of the phase equilibria in the (Li + Si) system, especially in the lithium rich region

  9. Carcinogenicity of chromium and chemoprevention: a brief update

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-08-01

    Full Text Available Yafei Wang,1,* Hong Su,1,* Yuanliang Gu,1 Xin Song,1 Jinshun Zhao1,2 1Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People’s Republic of China; 2Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA *These authors contributed equally to this work Abstract: Chromium has two main valence states: hexavalent chromium (Cr[VI] and trivalent chromium (Cr[III]. Cr(VI, a well-established human carcinogen, can enter cells by way of a sulfate/phosphate anion-transport system, and then be reduced to lower-valence intermediates consisting of pentavalent chromium (Cr[V], tetravalent chromium (Cr[IV] or Cr(III via cellular reductants. These intermediates may directly or indirectly result in DNA damage or DNA–protein cross-links. Although Cr(III complexes cannot pass easily through cell membranes, they have the ability to accumulate around cells to induce cell-surface morphological alteration and result in cell-membrane lipid injuries via disruption of cellular functions and integrity, and finally to cause DNA damage. In recent years, more research, including in vitro, in vivo, and epidemiological studies, has been conducted to evaluate the genotoxicity/carcinogenicity induced by Cr(VI and/or Cr(III compounds. At the same time, various therapeutic agents, especially antioxidants, have been explored through in vitro and in vivo studies for preventing chromium-induced genotoxicity/carcinogenesis. This review aims to provide a brief update on the carcinogenicity of Cr(VI and Cr(III and chemoprevention with different antioxidants. Keywords: hexavalent chromium, Cr(VI, trivalent chromium, Cr(III, genotoxicity, carcinogenicity, chemoprevention, antioxidant 

  10. Crossover and valence band Kβ X-rays of chromium oxides

    International Nuclear Information System (INIS)

    Fazinic, Stjepko; Mandic, Luka; Kavcic, Matjaz; Bozicevic, Iva

    2011-01-01

    Kβ X-ray spectra of chromium metal and selected chromium oxides were measured twice using medium resolution flat crystal spectrometer and high resolution spectrometer employing Johansson geometry after excitation with 2 MeV proton beams. The positions and intensities of crossover (Kβ'') and valence (Kβ 2,5 ) band X-rays relative to the primary Kβ X-ray components were extracted in a consistent way. The results were compared with the existing data obtained by proton and photon induced ionization mechanisms and theoretical predictions. The obtained results in peak relative positions and intensities were analyzed in order to study dependence on the chromium oxidation states and chromium-oxygen bond lengths in selected chromium oxides. Our results obtained by both spectrometers confirm that the linear trend observed for the valence peak relative energy shift as a function of chromium oxidation number does not depend on the experimental resolution. Experimental results for normalized intensities (i.e. relative intensities divided with the number of chromium-oxygen pairs) of crossover and valence band X-rays obtained by both spectrometers are in very good agreement, and follow exponential relationship with the average Cr-O bond lengths in corresponding chromium oxides. The observed trends in crossover and valence X-rays normalized intensities could be used to measure the average chromium-oxygen bond length in various chromium oxides, with the sum of both crossover and valence X-ray normalized intensities being the most sensitive measure.

  11. Study of the Thermodynamics of Chromium(III) and Chromium(VI) Binding to Fe3O4 and MnFe2O4 nanoparticles

    Science.gov (United States)

    Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J.G.

    2013-01-01

    Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4 ± 0.9 nm (Fe3O4) and 15.5 ± 0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative. PMID:23558081

  12. Native Chromium Resistant Staphylococci Species from a Fly Ash ...

    African Journals Online (AJOL)

    Sixty-six chromium-resistant Staphylococci species belonging to S. epidermidis, S. aureus, S. saprophyticus and S. arlettae were previously isolated from a chromium-polluted Fly ash (FA) dumping site in South Africa. However the genetic mechanisms responsible for chromium resistance were not known. Polymerase chain ...

  13. 40 CFR 424.70 - Applicability; description of the electrolytic chromium subcategory.

    Science.gov (United States)

    2010-07-01

    ... electrolytic chromium subcategory. 424.70 Section 424.70 Protection of Environment ENVIRONMENTAL PROTECTION... Electrolytic Chromium Subcategory § 424.70 Applicability; description of the electrolytic chromium subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of chromium...

  14. Determination of chromium in biological matrices by neutron activation

    International Nuclear Information System (INIS)

    McClendon, L.T.

    1978-01-01

    Chromium is recognized to be an essential trace element in several biological systems. It exists in many biological materials in a variety of chemical forms and very low concentration levels which cause problems for many analytical techniques. Both instrumental and destructive neutron activation analysis were used to determine the chromium concentration in Orchard Leaves, SRM 1571, Brewers Yeast, SRM 1569, and Bovine Liver, SRM 1577. Some of the problems inherent with determining chromium in certain biological matrices and the data obtained here at the National Bureau of Standards using this technique are discussed. The results obtained from dissolution of brewers yeast in a closed system as described in the DNAA procedure are in good agreement with the INAA results. The same phenomenon existed in the determination of chromium in bovine liver. The radiochemical procedure described for chromium (DNAA) provides the analyst with a simple, rapid and selective technique for chromium determination in a variety of matrices. (T.G.)

  15. Analysis Influence of Mixing Gd2O3 in the Silicide Fuel Element to Core Excess Reactivity of RSG-GAS

    International Nuclear Information System (INIS)

    Susilo, Jati

    2004-01-01

    Gadolinium (Gd 2 O 3 ) is a burnable poison material mixed in the pin fuel element of the LWR core used to decrease core excess reactivity. In this research, analysis influence of mixing Gd 2 O 3 in the silicide fuel element to excess reactivity of the RSG-GAS core had been done. Equivalent cell of the equilibrium core developed by L.E.Strawbridge from Westing House Co. burn-up calculation has been done using SRAC-PIJ computer code achieve infinite multiplication factor (k x ). Value of Gd 2 O 3 concentration in the fuel element (pcm) showed by mass ratio of Gd 2 O 3 (gram) to that U 3 Si 2 (gram) times 10 5 , that is 0 pcm ∼ 100 pcm. From the calculation results analysis showed that Gd 2 O 3 concentration added should be considered. because a large number of Gd 2 O 3 will result in not achieving criticality at the Beginning Of Cycle. The maximum concentration of Gd 2 O 3 for RSG-GAS equilibrium fueled silicide 2.96 grU/cc is 80 pcm or 52.02 mgram/fuel plate. Maximum reduction of core excess reactivity due to mixing of Gd 2 O 3 in the RSG-GAS silicide fuels was around 1.502 %Δk/k, and hence not achieving the standard nominal excess reactivity for RSG-GAS core using high density of U 3 Si 2 -Al fuel. (author)

  16. Estimations on uranium silicide fuel prototypes for their irradiation and postirradiation

    International Nuclear Information System (INIS)

    Sbaffoni, Maria M.

    2000-01-01

    The 'Silicide' project includes the qualification of this type of research reactor fuel to be used i.e. in the Argentine RA-3 and to confirm CNEA's role as an international supplier. The present paper shows complementary basic information for P-04 prototype post-irradiation, which is already under way, and some parameter values related to the new P-06 prototype to be taken into account for planning its irradiation and post-irradiation. The reliability of these values has been evaluated through comparison with experimental results. The reported results contribute, also, to a parallel study on the nuclear data libraries used in calculations for this type of reactor. (author)

  17. REMOVAL OF HEXAVALENT CHROMIUM FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    A. R. Asgari ، F. Vaezi ، S. Nasseri ، O. Dördelmann ، A. H. Mahvi ، E. Dehghani Fard

    2008-10-01

    Full Text Available Removal of chromium can be accomplished by various methods but none of them is cost-effective in meeting drinking water standards. For this study, granular ferric hydroxide was used as adsorbent for removal of hexavalent chromium. Besides, the effects of changing contact time, pH and concentrations of competitive anions were determined for different amounts of granular ferric hydroxide. It was found that granular ferric hydroxide has a high capacity for adsorption of hexavalent chromium from water at pH≤7 and in 90 min contact time. Maximum adsorption capacity was determined to be 0.788 mg Cr+6/g granular ferric hydroxide. Although relatively good adsorption of sulfate and chloride had been specified in this study, the interfering effects of these two anions had not been detected in concentrations of 200 and 400 mg/L. The absorbability of hexavalent chromium by granular ferric hydroxide could be expressed by Freundlich isotherm with R2>0.968. However, the disadvantage was that the iron concentration in water was increased by the granular ferric hydroxide. Nevertheless, granular ferric hydroxide is a promising adsorbent for chromium removal, even in the presence of other interfering compounds, because granular ferric hydroxide treatment can easily be accomplished and removal of excess iron is a simple practice for conventional water treatment plants. Thus, this method could be regarded as a safe and convenient solution to the problem of chromium-polluted water resources.

  18. Determination of chromium in treated crayfish, Procambarus clarkii, by electrothermal ASS: study of chromium accumulation in different tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, F.; Diaz, J.; Medina, J.; Del Ramo, J.; Pastor, A.

    1986-06-01

    In the present study, the authors investigated the accumulation of chromium in muscle, hepatopancreas, antennal glands, and gills of Procambarus clarkii (Girard) from Lake Albufera following Cr(VI)-exposure. Determinations of chromium were made by using Electrothermal Atomic Absorption Spectroscopy and the standard additions method.

  19. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    Science.gov (United States)

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  20. Surface effect on the electronic and the magnetic properties of rock-salt alkaline-earth metal silicides

    International Nuclear Information System (INIS)

    Bialek, Beata; Lee, Jaeil

    2011-01-01

    An all electron ab-initio method was employed to study the electronic and the magnetic properties of the (001) surface of alkaline-earth metal silicides, CaSi, SrSi, and BaSi, in the rock-salt structure. The three compounds retain their ferromagnetic metallic properties at the surface. Due to the surface effects, the magnetism of the topmost layer is changed as compared with the bulk. This is a short-range effect. In CaSi, the magnetism of the surface layer is noticeably reduced, as compared with the bulk: magnetic moments (MMs) on both Ca and Si atoms are reduced. In SrSi (001), the polarization of electrons in the surface atoms is similar to that in the bulk atoms, and the values of MMs on the component atoms in the topmost layer do not change as much as in CaSi. In BaSi (001), the magnetic properties of Si surface atoms are enhanced slightly, and the magnetism of Ba atoms is not affected considerably by the surface effect. The calculated densities of states confirm the short-range effect of the surface on the electronic properties of the metal silicides.

  1. High-temperature oxidation of silicide-aluminide layer on the TiAl6V4 alloy prepared by liquid-phase siliconizing

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František

    2016-01-01

    Roč. 50, č. 2 (2016), s. 257-261 ISSN 1580-2949 Institutional support: RVO:61389021 Keywords : TiAl6V4 * silicides * high-temperature oxidation * liquid-phase silicon izing Subject RIV: JG - Metallurgy Impact factor: 0.436, year: 2016

  2. Mode of occurrence of chromium in four US coals

    Science.gov (United States)

    Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Crowley, S.; Palmer, C.A.; Finkelman, R.B.

    2000-01-01

    The mode of occurrence of chromium in three US bituminous coals and one US subbituminous has been examined using both X-ray absorption fine structure (XAFS) spectroscopy and a selective leaching protocol supplemented by scanning electron microscopy (SEM) and electron microprobe measurements. A synthesis of results from both methods indicates that chromium occurs principally in two forms in the bituminous coals: the major occurrence of chromium is associated with the macerals and is not readily leached by any reagent, whereas a second, lesser occurrence, which is leachable in hydrofluoric acid (HF), is associated with the clay mineral, illite. The former occurrence is believed to be a small particle oxyhydroxide phase (CrO(OH)). One coal also contained a small fraction (<5%) of the chromium in the form of a chromian magnetite, and the leaching protocol indicated the possibility of a similar small fraction of chromium in sulfide form in all three coals. There was little agreement between the two techniques on the mode of occurrence of chromium in the subbituminous coal; however, only a limited number of subbituminous coals have been analyzed by either technique. The chromium in all four coals was trivalent as no evidence was found for the Cr6+ oxidation state in any coal.

  3. Chromium speciation in rainwater: temporal variability and atmospheric deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kieber, R.J.; Willey, J.D.; Zvalaren, S.D. [University of North Carolina at Wilmington, Wilmington, NC (United States). Dept. of Chemistry

    2002-12-15

    Chromium is released into the atmosphere by a variety of anthropogenic activities which include steel manufacturing, leather tanning, wood presentation and fossil fuel combustion. The concentrations of the various chromium species were determined in 89 rainwater samples collected in Wilmington, NC from October 1, 1999 to December 31, 2001. Volume weighted annual average concentrations of Cr{sub total}, particulate Cr, Cr(III)(aq), and Cr(VI)(aq) were 4.6, 2.2, 0.8 and 1.2 nM, respectively. There was distinct seasonal and diurnal variability in the concentrations of the various chromium species. Chromium emissions to the global atmosphere by both natural and anthropogenic sources are estimated to be 2.2 x 10{sup 9} mol/yr. Using rainwater concentration data along with other published rainwater Cr concentrations and an estimate for total global annual rain, the total global flux of chromium removed from the atmosphere via wet deposition is 2.1 x 10{sup 9} mol/yr. This represents complete removal of Cr and indicates that essentially all chromium released into the global atmosphere is removed via rain. About half this chromium is dissolved with roughly equal concentrations of toxic Cr(VI) and relatively harmless Cr(III) species. 48 refs., 4 figs., 3 tabs.

  4. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg. No...

  5. Sorption of chromium(VI) and chromium(III) on aluminium hydroxide

    International Nuclear Information System (INIS)

    Music, S.

    1986-01-01

    Factors that influence the sorption of Cr(VI) and Cr(III) on aluminium hydroxide were investigated. The sorption of chromates decreases as the pH of the suspension increases. The mechanism of CrOsub(4)sup(2-) sorption was interpreted in terms of reactions between chromates and -OH and/or Hsub(2)O groups at the hydroxide/liquid interface. It was shown that chromates are more tightly sorbed on aluminium hydroxide compared to other anions, e.g. chlorides. On the other hand, specifically absorbed anions, such as molybdates, compete strongly with chromates for the sorption sites. The sorption of chromium(III) increases with the pH of the suspension. Also, the sorption of chromium(III) is suppressed in the presence of citrate ions. The best conditions for the fixation of Cr(VI) and Cr(III) by aluminium hydroxide are presented. (author)

  6. Use of thermogravimetry and thermodynamic calculations for specifying chromium diffusion occurring in alloys containing chromium carbides during high temperature oxidation

    International Nuclear Information System (INIS)

    Berthod, Patrice; Conrath, Elodie

    2015-01-01

    The chromium diffusion is of great importance for the high temperature oxidation behaviour of the chromium-rich carbides-strengthened superalloys. These ones contain high chromium quantities for allowing them well resisting hot corrosion by constituting and maintaining a continuous external scale of chromia. Knowing how chromium can diffuse in such alloys is thus very useful for predicting the sustainability of their chromia-forming behaviour. Since Cr diffusion occurs through the external part of the alloy already affected by the previous steps of oxidation (decarburized subsurface) it is more judicious to specify this diffusion during the oxidation process itself. This was successfully carried out in this work in the case of a model chromia-forming nickel-based alloy containing chromium carbides, Ni(bal.)–25Cr–0.5C (in wt.%). This was done by specifying, using real-time thermogravimetry, the mass gain kinetic due to oxidation, and by combining it with the post-mortem determination of the Cr concentration profiles in subsurface. The values of D Cr thus obtained for 1000, 1050 and 1100 °C in the alloy subsurface are consistent with the values obtained in earlier works for similar alloy's chemical compositions. - Highlights: • A Ni25Cr0.50C alloy was oxidized at high temperature in a thermo-balance. • The mass gain files were analysed to specify the Cr 2 O 3 volatilization constant K v . • Concentration profiles were acquired to specify the chromium gradient. • The diffusion coefficient of chromium through the subsurface was deduced. • The obtained diffusion coefficient is consistent with values previously obtained.

  7. Attempt to produce silicide fuel elements in Indonesia

    International Nuclear Information System (INIS)

    Soentono, S.; Suripto, A.

    1991-01-01

    After the successful experiment to produce U 3 Si 2 powder and U 3 Si 2 -Al fuel plates using depleted U and Si of semiconductor quality, silicide fuel was synthesized using x -Al available at the Fuel Element Production Installation (FEPI) at Serpong, Indonesia. Two full-size U 3 Si 2 -Al fuel elements, having similar specifications to the ones of U 3 O 8 -Al for the RSG-GAS (formerly known as MPR-30), have been produced at the FEPI. All quality controls required have been imposed to the feeds, intermediate, as well as final products throughout the production processes of the two fuel elements. The current results show that these fuel elements are qualified from fabrication point of view, therefore it is expected that they will be permitted to be tested in the RSG-GAS, sometime by the end of 1989, for normal (∝50%) and above normal burn-up. (orig.)

  8. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  9. FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE

    International Nuclear Information System (INIS)

    Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia; Kim, J.; Rapko, Brian M.; Lumetta, Gregg J.

    2000-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10. Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste

  10. [Hexavalent chromium pollution and exposure level in electroplating workplace].

    Science.gov (United States)

    Zhang, Xu-hui; Zhang, Xuan; Yang, Zhang-ping; Jiang, Cai-xia; Ren, Xiao-bin; Wang, Qiang; Zhu, Yi-min

    2012-08-01

    To investigate the pollution of hexavalent chromium in the electroplating workplace and screen the biomarkers of chromium exposure. Field occupational health investigation was conducted in 25 electroplating workplaces. 157 electroplating workers and 93 healthy unexposed controls were recruited. The epidemiological information was collected with face to face interview. Chromium in erythrocytes was determined by graphite furnace atomic absorption spectrophotometer. The median of short-term exposure concentration of chromium in the air at electroplating workplace was 0.06 mg/m(3) (median) and ranging from 0.01 (detect limit) to 0.53 mg/m(3)). The median concentration of Cr (VI) in erythrocytes in electroplating workers was 4.41 (2.50 ∼ 5.29) µg/L, which was significantly higher than that in control subjects [1.54 (0.61 ∼ 2.98) µg/L, P electroplating workers and control subjects, except for the subjects of age less than 30 years old (P = 0.11). There was hexavalent chromium pollution in electroplating workplace. Occupational hazards prevention measures should be taken to control the chromium pollution hazards.

  11. Current enhancement in crystalline silicon photovoltaic by low-cost nickel silicide back contact

    KAUST Repository

    Bahabry, R. R.; Gumus, A.; Kutbee, A. T.; Wehbe, N.; Ahmed, S. M.; Ghoneim, M. T.; Lee, K. -T.; Rogers, J. A.; Hussain, M. M.

    2016-01-01

    We report short circuit current (Jsc) enhancement in crystalline silicon (C-Si) photovoltaic (PV) using low-cost Ohmic contact engineering by integration of Nickel mono-silicide (NiSi) for back contact metallization as an alternative to the status quo of using expensive screen printed silver (Ag). We show 2.6 mA/cm2 enhancement in the short circuit current (Jsc) and 1.2 % increment in the efficiency by improving the current collection due to the low specific contact resistance of the NiSi on the heavily Boron (B) doped Silicon (Si) interface.

  12. Current enhancement in crystalline silicon photovoltaic by low-cost nickel silicide back contact

    KAUST Repository

    Bahabry, R. R.

    2016-11-30

    We report short circuit current (Jsc) enhancement in crystalline silicon (C-Si) photovoltaic (PV) using low-cost Ohmic contact engineering by integration of Nickel mono-silicide (NiSi) for back contact metallization as an alternative to the status quo of using expensive screen printed silver (Ag). We show 2.6 mA/cm2 enhancement in the short circuit current (Jsc) and 1.2 % increment in the efficiency by improving the current collection due to the low specific contact resistance of the NiSi on the heavily Boron (B) doped Silicon (Si) interface.

  13. Temperature and thickness dependence of the grain boundary scattering in the Ni–Si silicide films formed on silicon substrate at 500 °C by RTA

    International Nuclear Information System (INIS)

    Utlu, G.; Artunç, N.; Selvi, S.

    2012-01-01

    Highlights: ► It is a systematic study of various thicknesses (18–290 nm) of Ni–Si silicide films. ► The temperature-dependent resistivity measurements of the films are studied. ► Resistivity variation of the films with temperature exhibits an unusual behavior. ► Parallel-resistor formula is reduced to Matthiessen's rule in this study. ► Reflection coefficients have been found in a wide temperature and thickness range. - Abstract: The temperature-dependent resistivity measurements of Ni–Si silicide films with 18–290 nm thicknesses are studied as a function of temperature and film thickness over the temperature range of 100–900 K. The most striking behavior is that the variation of the resistivity of the films with temperature exhibits an unusual behavior. The total resistivity of the Ni–Si silicide films in this work increases linearly with temperature up to a T m temperature, thereafter decreases rapidly and finally reaches zero. Our analyses have shown that in the temperature range of 100 to T m (K), parallel-resistor formula reduces to Matthiessen's rule and θ D Debye temperature becomes independent of the temperature for the given thickness range, whereas at high temperatures (above T m ) it increases slightly with thickness. θ D Debye temperature have been found to be about 400–430 K for the films. We have also shown that for temperature range of 100 to T m (K), linear variation of the resistivity of the silicide films with temperature has been caused from both grain-boundary scattering and electron–phonon scattering. That is why, resistivity data could have been analyzed in terms of the Mayadas–Schatzkes (M–S) model successfully. Theoretical and experimental values of reflection coefficients have been calculated by analyzing resistivity data using M–S model. According to our analysis, R increases with decreasing film thickness for a given temperature, while it is almost constant for the thickness range of 200–67 nm and 47

  14. The fate of chromium during tropical weathering

    DEFF Research Database (Denmark)

    Berger, Alfons; Frei, Robert

    2014-01-01

    We performed a mineral, geochemical and Cr–Sr–Pb isotope study on a laterite profile developed on ca. 540 Ma old tonalitic bedrock in Madagascar with special emphasis on the behavior of chromium during tropical weathering. The observed strong depletions of Ca, Si, and P, and enrichment of Fe and Al...... of a former, positively fractionated and mobile chromium pool has been experimentally constrained in circumneutral and basic leachates of powdered tonalite bedrock where δ53Cr of + 0.21 to + 0.48‰ was measured. Our results show that mobilization of chromium is effective under highly oxidative conditions...

  15. Studies of ion implanted thermally oxidised chromium

    International Nuclear Information System (INIS)

    Muhl, S.

    1977-01-01

    The thermal oxidation of 99.99% pure chromium containing precise amounts of foreign elements has been studied and compared to the oxidation of pure chromium. Thirty-three foreign elements including all of the naturally occurring rare earth metals were ion implanted into chromium samples prior to oxidation at 750 0 C in oxygen. The role of radiation induced damage, inherent in this doping technique, has been studied by chromium implantations at various energies and doses. The repair of the damage has been studied by vacuum annealing at temperatures up to 800 0 C prior to oxidation. Many of the implants caused an inhibition of oxidation, the greatest being a 93% reduction for 2 x 10 16 ions/cm 2 of praseodymium. The distribution of the implant was investigated by the use of 2 MeV alpha backscattering and ion microprobe analysis. Differences in the topography and structure of the chromic oxide on and off the implanted area were studied using scanning electron and optical microscopy. X-ray diffraction analysis was used to investigate if a rare earth-chromium compound of a perovskite-type structure had been formed. Lastly, the electrical conductivity of chromic oxide on and off the implanted region was examined at low voltages. (author)

  16. Determination of tracer quantities of chromium in uranium

    International Nuclear Information System (INIS)

    Huart, A.

    1959-01-01

    A method is described for the photometric determination of chromium in uranium by absorbency at 540 mμ of the Cr(VI) diphenylcarbazide combination. After attack by nitric acid, the solution is made perchloric, and the chromium oxidised at the boiling point by permanganate. Excess oxidant is removed by hydrochloric acid. Study of operating conditions resulted in a method with an accuracy of ± 0,5 ppm for 0,5 to 15 ppm chromium in the metal. (author) [fr

  17. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μl) microbial fuel cell

    KAUST Repository

    Mink, Justine E.

    2012-02-08

    Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m 2 of current density and 392 mW/m 3 of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society.

  18. [Occupational exposure to hexavalent chromium during aircraft painting].

    Science.gov (United States)

    Gherardi, M; Gatto, M P; Gordiani, A; Paci, E; Proietto, A

    2007-01-01

    Hygienists are interested in hexavalent chromium due to its genotoxic and carcinogenic effect on humans. The use of products containing hexavalent chromium is decreasing in many industrial fields because of the substitution with less-toxic compounds. In the aeronautical industry, however, the chromate are added to primer paint as a corrosion inhibitor of aircrafts surfaces: so hexavalent chromium compounds are available in many primers with a composition ranging from 10% to 13%. The application of these primers by using electrostatic guns potentially exposes painting and coating workers at high concentrations of aerosols containing Cr(VI). The aim of the present study is the evaluation of professional exposure to hexavalent chromium during aircraft painting, by adopting both environmental personal sampling and biological monitoring. To valuate workers exposure levels the personal measurements results have been compared with the exposure limit values (TLV-TWA) and the urinary chromium contents with the biological exposure indices (IBE). Moreover the strategy of coupling environmental sampling with biological monitoring seems to be a useful instrument to measure the validity of the individual protection devices.

  19. Chromium in Drinking Water: Association with Biomarkers of Exposure and Effect

    Science.gov (United States)

    Sazakli, Eleni; Villanueva, Cristina M.; Kogevinas, Manolis; Maltezis, Kyriakos; Mouzaki, Athanasia; Leotsinidis, Michalis

    2014-01-01

    An epidemiological cross-sectional study was conducted in Greece to investigate health outcomes associated with long-term exposure to chromium via drinking water. The study population consisted of 304 participants. Socio-demographics, lifestyle, drinking water intake, dietary habits, occupational and medical history data were recorded through a personal interview. Physical examination and a motor test were carried out on the individuals. Total chromium concentrations were measured in blood and hair of the study subjects. Hematological, biochemical and inflammatory parameters were determined in blood. Chromium in drinking water ranged from Chromium levels in blood (median 0.32 μg·L−1, range chromium exposure dose via drinking water, calculated from the results of the water analyses and the questionnaire data, showed associations with blood and hair chromium levels and certain hematological and biochemical parameters. Groups of subjects whose hematological or biochemical parameters were outside the normal range were not correlated with chromium exposure dose, except for groups of subjects with high triglycerides or low sodium. Motor impairment score was not associated with exposure to chromium. PMID:25268509

  20. Chromium fractionation and speciation in natural waters.

    Science.gov (United States)

    Pereira, Catarinie Diniz; Techy, João Gabriel; Ganzarolli, Edgard Moreira; Quináia, Sueli Pércio

    2012-05-01

    It is common for leather industries to dump chromium-contaminated effluent into rivers and other bodies of water. Thus, it is crucial to know the impacts caused by this practice to the environment. A study on chromium partitioning and speciation, with determination at trace levels, was carried out in a potentially contaminated creek. Chromium fractionation and speciation was performed using a flow-injection preconcentration system and detection by flame atomic absorption spectrometry. High levels of this element were found in the particulate material (449-9320 mg kg(-1)), which indicates its compatibility with this fraction. The concentration of Cr(iii) in the water samples collected ranged from 5.2-105.2 μg L(-1). Cr(vi) was always below of the DL (0.3 μg L(-1)). Chromium accumulation observed in the sediment (873-1691 mg kg(-1)) may confirm contamination due to the long term release of contaminated effluents in the creek.

  1. Chromium-induced membrane damage: protective role of ascorbic acid.

    Science.gov (United States)

    Dey, S K; Nayak, P; Roy, S

    2001-07-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80-100 g body weight). It has been observed that the intoxication with chromium (i.p.) at the dose of 0.8 mg/100 g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospholipid of both liver and kidney. The alkaline phosphatase, total ATPase and Na(+)-K(+)-ATPase activities were significantly decreased in both liver and kidney after chromium treatment, except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid (i.p. at the dose of 0.5 mg/100 g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  2. Workshop on effects of chromium coating on Nb3Sn superconductor strand: Proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    This report discusses the following topics: Chromium coating on superconductor strand -- an overview; technology of chromium plating; comparison of wires plated by different platers; search for chromium in copper; strand manufactures' presentations; chromium plating at the Lawrence Livermore National Laboratory; a first look at a chromium plating process development project tailored for T.P.X. and I.T.E.R. strand; and influence of chromium diffusion and related phenomena on the reference ratios of bare and chromium plated Nb 3 Sn strand

  3. Cytokine detection for the diagnosis of chromium allergy*

    Science.gov (United States)

    Martins, Luis Eduardo Agner Machado; dos Reis, Vitor Manoel Silva

    2013-01-01

    BACKGROUND Patch testing remains the gold standard method for the identification of the etiologic agent of allergic contact dermatitis. However, it is a subjective, time-consuming exam whose technique demands special care and which presents some contraindications, which hamper its use. In a recent study, we showed that the proliferation assay can suitably replace patch testing for the diagnosis of chromium allergy, which had been previously demonstrated only for nickel allergy. In this study, we try to refine the method by reducing the incubation period of cultures for lymphocyte proliferation assays in response to chromium. OBJECTIVE Develop an alternative or complementary diagnostic test for chromium allergic contact dermatitis. METHODS We compared the production of 9 cytokines (IFN-γ, IL-2, IL-4, IL-5, IL-10, IL-12, IL-13, IL-17 and RANTES) between 18 chromium-allergic patients and 19 controls. RESULTS Chromium increased the production of IFN-y, IL-5, IL-2 and IL-13 in allergic patients, but only IL-2 and especially IL-13 helped discriminate allergic patients from controls. The sensitivity, specificity and accuracy found with IL-13 were about 80%. CONCLUSIONS IL-13 and IL-2 detection may be used to diagnose chromium allergy in 2-day cultures. However, in general, the 6-day cultures seem to be superior for this purpose. PMID:24173176

  4. Hexavalent Chromium reduction by Trichoderma inhamatum

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Battera, L.; Cristiani-Urbina, E.

    2009-07-01

    Reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] is a useful and attractive process for remediation of ecosystems and industrial effluents contaminated with Cr(VI). Cr(VI) reduction to Cr(II) can be achieved by both chemical and biological methods; however, the biological reduction is more convenient than the chemical one since costs are lower, and sludge is generated in smaller amounts. (Author)

  5. The fabrication of metal silicide nanodot arrays using localized ion implantation

    International Nuclear Information System (INIS)

    Han, Jin; Kim, Tae-Gon; Min, Byung-Kwon; Lee, Sang Jo

    2010-01-01

    We propose a process for fabricating nanodot arrays with a pitch size of less than 25 nm. The process consists of localized ion implantation in a metal thin film on a Si wafer using a focused ion beam (FIB), followed by chemical etching. This process utilizes the etching resistivity changes of the ion beam irradiated region that result from metal silicide formation by ion implantation. To control the nanodot diameter, a threshold ion dose model is proposed using the Gaussian distribution of the ion beam intensities. The process is verified by fabricating nanodots with various diameters. The mechanism of etching resistivity is investigated via x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES).

  6. Influence of iron and beryllium additions on heat resistance of silicide coatings on TsMB-30 molybdenum alloy

    International Nuclear Information System (INIS)

    Zajtseva, A.L.; Fedorchuk, N.M.; Lazarev, Eh.M.; Korotkov, N.A.

    1985-01-01

    Alloying of titanium modified silicide coatings on TsMB-30 molybdenum alloy with iron or beryllium is stated to improve their protective properties. Coatings with low content of alloying elements have the best protective properties. Service life of coatings is determined by the formed oxide film and phase transformations taking place in the coating

  7. Thermodynamic Properties of Chromium Adsorption by Sediments ...

    African Journals Online (AJOL)

    MBI

    2013-06-19

    Jun 19, 2013 ... The adsorption of Chromium from aqueous solution using river Watari sediment as an adsorbent was modeled. The influence of initial ... number of metals, including chromium, copper, nickel and zinc. The ion ... through filter paper to determine the concentration ... liquid and solid phases were separated by.

  8. Reclamation and reuse of LEU silicide fuel from manufacturing scrap

    International Nuclear Information System (INIS)

    Gale, G.R.; Pace, B.W.; Evans, R.S.

    2004-01-01

    In order to provide an understanding of the organization which is the sole supplier of United States plate type research and test reactor fuel and LEU core conversions, a brief description of the structure and history is presented. Babcock and Wilcox (B and W) is a part of McDermott International, Inc. which is a large diversified corporation employing over 20,000 people primarily in engineering and construction for the off-shore oil and power generation industries throughout the world. B and W provides many energy related products requiring precision machining and high quality systems. This is accomplished by using state-of-the-art equipment, technology and highly skilled people. The RTRFE group within B and W has the ability to produce various complexly shaped fuel elements with a wide variety of fuels and enrichments. B and W RTRFE has fabricated over 200,000 plates since 1981 and gained the diversified experience necessary to satisfy many customer requirements. This accomplishment was possible with the support of McDermott International and all of its resources. B and W has always had a commitment to high quality and integrity. This is apparent by the success and longevity (125 years) of the company. A lower cost to convert cores to LEU provides direct support to RERTR and demonstrates Babcock and Wilcox's commitment to the program. As a supporter of RERTR reactor conversion from HEU to LEU, B and W has contributed a significant amount of R and D money to improve the silicide fuel process which ultimately lowers the LEU core costs. In the most recent R and D project, B and W is constructing a LEU silicide reclamation facility to re-use the unirradiated fuel scrap generated from the production process. Remanufacturing use of this fuel completes the fuel cycle and provides a contribution to LEU cores by reducing scrap inventory and handling costs, lowering initial purchase of fuel due to increasing the process yields, and lowering the replacement costs. This

  9. New Evidence against Chromium as an Essential Trace Element.

    Science.gov (United States)

    Vincent, John B

    2017-12-01

    Nearly 60 y ago, chromium, as the trivalent ion, was proposed to be an essential element, but the results of new studies indicate that chromium currently can only be considered pharmacologically active and not an essential element. Regardless, articles still continue to appear in the literature claiming chromium is an essential element. Chromium has been marketed as an agent to reduce body mass and develop muscle; however, such marketing claims are no longer allowed in the United States because these claims, similar to claims of essential status, are not supported by experiments. Trivalent chromium has also been proposed as a therapeutic agent to increase insulin sensitivity and affect lipid metabolism. Although effective in certain rodent models, beneficial effects in humans have not been unequivocally established. Molecular mechanisms have been proposed for the beneficial effects but have not been definitively shown to occur in animals. © 2017 American Society for Nutrition.

  10. Corrosion behaviour of porous chromium carbide/oxide based ceramics in supercritical water

    International Nuclear Information System (INIS)

    Dong, Z.; Xin, T.; Chen, W.; Zheng, W.; Guzonas, D.

    2011-01-01

    Porous chromium carbide with a high density of open pores was fabricated by a reactive sintering method. Chromium oxide ceramics were obtained by re-oxidizing the porous chromium carbides formed. Some samples were added with yttria at 5 wt. %, prior to reactive sintering to form porous structures. Corrosion tests in SCW were performed at temperatures ranging from 375 o C to 625 o C with a fixed pressure at around 25∼30 MPa. The results show that chromium carbide is stable in SCW environments at temperatures up to 425 o C, above which disintegration of carbides through oxidation occurs. Porous chromium oxide samples show better corrosion resistance than porous chromium carbide, but disintegrate in SCW at around 625 o C. Among all the samples tested, chromium oxide ceramics with added yttria exhibited much better corrosion resistance compared with the pure chromium carbide/oxides. No evidence of weight change or disintegration of porous chromium oxides with 5 wt % added yttria was observed after exposure at 625 o C in SCW for 600 hours. (author)

  11. Chromium Enrichment on P11 Ferritic Steel by Pack Cementation

    Directory of Open Access Journals (Sweden)

    Fauzi F. A.

    2016-01-01

    Full Text Available The future thermal power plant is expected to operate at higher temperature to improve its efficiency and to reduce greenhouse gas emission. This target requires better corrosion properties of ferritic steels, which commonly used as materials for superheater and reheater of boiler tubes. In this work, chromium enrichment on the surface of ferritic steel is studied. The deposited chromium is expected to become a reservoir for the formation of chromia protective layer. Chromium was deposited on the substrate of steel by pack cementation process for two hours at the temperature of 850ºC, 950ºC and 1050ºC, respectively. XRD analysis indicated that chromium was successfully deposited at all temperatures. Somehow, SEM cross sectional image showed that continuous layer of chromium was not continuously formed at 850oC. Therefore, this research clarify that chromium enrichment by pack cementation may be conducted at the temperature above 950°C.

  12. Electronic structure of chromium-doped lead telluride-based diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Skipetrov, E.P.; Pichugin, N.A.; Slyn'ko, E.I.; Slyn'ko, V.E.

    2011-01-01

    The crystal structure, composition, galvanomagnetic and oscillatory properties of the Pb 1-x-y Sn x Cr y Te (x = 0, 0.05-0.30, y ≤ 0.01) alloys have been investigated with varying matrix composition and chromium impurity concentration. It is shown that the chromium impurity atoms dissolve in the crystal lattice at least up to 1 mol.%. The following increase of the chromium concentration leads to the appearance of microscopic regions enriched with chromium and inclusions of Cr-Te compounds. A decrease of the hole concentration, a p-n-conversion of the conductivity type and a pinning of the Fermi level by the chromium resonant level are observed with increasing chromium content. Initial rates of changes in the free carrier concentration on doping are determined. The dependences of electron concentration and Fermi level on tin content are calculated by the two-band Kane dispersion relation. A diagram of electronic structure rearrangement for the chromium-doped alloys with varying the matrix composition is proposed.

  13. Status of the atomized uranium silicide fuel development at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  14. Interaction of copper metallization with rare-earth metals and silicides

    International Nuclear Information System (INIS)

    Molnar, G. L.; Peto, G.; Zsoldos, E.; Horvath, Z. E.

    2001-01-01

    Solid-phase reactions of copper films with underlying gadolinium, erbium, and erbium - silicide layers on Si(100) substrates were investigated. For the phase analysis, x-ray diffraction and cross-sectional transmission electron microscopy were used. In the case of Cu/Gd/Si(100), an orthorhombic GdSi 2 formed, and, at higher temperatures, copper aggregated into islands. Annealed Cu/Er/Si(100) samples resulted in a hexagonal Er 5 Si 3 phase. In the Cu/ErSi 2-x /Si system, the copper catalyzes the transformation of the highly oriented hexagonal ErSi 2-x phase into hexagonal Er 5 Si 3 . Diverse phase developments of the samples with Gd and Er are based on reactivity differences of the two rare-earth metals. [copyright] 2001 American Institute of Physics

  15. Chromium Salen Mediated Alkene Epoxidation

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Norrby, Per-Ola; Daly, Adrian M.

    2002-01-01

    The mechanism of alkene epoxidation by chromium(v) oxo salen complexes has been studied by DFT and experimental methods. The reaction is compared to the closely related Mn-catalyzed process in an attempt to understand the dramatic difference in selectivity between the two systems. Overall......-spin surface. The low-spin addition of metal oxo species to an alkene leads to an intermediate which forms epoxide either with a barrier on the low-spin surface or without a barrier after spin inversion. Supporting evidence for this intermediate was obtained by using vinylcyclopropane traps. The chromium...

  16. Stabilization of chromium salt in ordinary portland cement

    Indian Academy of Sciences (India)

    Ordinary Portland cement (OPC) samples containing the chromium salt have been investigated using differential microcalorimetry, conductometry and Fourier transform infrared spectroscopic analysis. The effect of chromium on OPC hydration was evaluated by continuous observing of early hydration.

  17. Characteristics of oxidation of low-alloyed chromium in nitrogen tetroxide

    International Nuclear Information System (INIS)

    Kamenev, A.Ya.; Goncharova, N.V.; Kopets, Z.V.; Tedushin, E.E.

    1985-01-01

    The effect of N 2 O 4 on corrosion properties of chromium-based alloys is studied. The method of structural materials analysis is described using as an example chromium-based alloys in the flow of chemically active N 2 O 4 at high temperatures. The method has been used to study corrosive behaviour of chromium at temperatures 923, 1073 and 1273 K. The time of exposure amounts up to 140 hours. The wave-like time dependence of mass velocity variation has been observed for all chromium samples under test. The time of the alloy exposure to N 2 O 4 medium and the nature of the alloying affect this dependence. The given metallograhic studies of chromium alloys show complex structure of the surface layer

  18. Mechanical-thermal synthesis of chromium carbides

    International Nuclear Information System (INIS)

    Cintho, Osvaldo Mitsuyuki; Favilla, Eliane Aparecida Peixoto; Capocchi, Jose Deodoro Trani

    2007-01-01

    The present investigation deals with the synthesis of chromium carbides (Cr 3 C 2 and Cr 7 C 3 ), starting from metallic chromium (obtained from the reduction of Cr 2 O 3 with Al) and carbon (graphite). The synthesis was carried out via high energy milling, followed by heat-treating of pellets made of different milled mixtures at 800 o C, for 2 h, under an atmosphere of argon. A SPEX CertPrep 8000 Mixer/Mill was used for milling under argon atmosphere. A tool steel vat and two 12.7 mm diameter chromium steel balls were used. The raw materials used and the products were characterized by differential thermal analysis, thermo gravimetric analysis, X-ray diffraction, electronic microscopy and X-ray fluorescence chemical analysis. The following variables were investigated: the quantity of carbon in the mixture, the milling time and the milling power. Mechanical activation of the reactant mixture depends upon the milling power ratio used for processing. The energy liberated by the reduction of the chromium oxide with aluminium exhibits a maximum for milling power ratio between 5:1 and 7.5:1. Self-propagating reaction occurred for all heat-treated samples whatever the carbon content of the sample and the milling power ratio used. Bearing carbon samples exhibited hollow shell structures after the reaction. The level of iron contamination of the milled samples was kept below 0.3% Fe. The self-propagated reaction caused high temperatures inside the samples as it may be seen by the occurrence of spherules, dendrites and whiskers. The carbon content determines the type of chromium carbide formed

  19. Contingency plans for chromium utilization. Publication NMAB-335

    International Nuclear Information System (INIS)

    1978-01-01

    The United States depends entirely on foreign sources for the critical material, chromium, making it very vulnerable to supply disruptions. This vulnerability results because chromium is essential for the fabrication of corrosion-resisting steels and high-temperature, oxidation-resisting alloys in applications that are vital to the nation's technological well-being; because no substitutes are known for these materials in those applications; and because the known, substantial deposits of chromite ore are only in a few geographical locations that could become inaccessible to the United States as a result of political actions. The effectiveness of programs such as stockpiling, conservation, and research and development for substitutes to reduce the impact of disruption of imports of chromite and ferrochromium are discussed. Alternatives for decreasing chromium consumption also are identified for chromium-containing materials in the areas of design, processing, and substitution

  20. Characterization of uranium silicide powder using XRD

    International Nuclear Information System (INIS)

    Garcia, Rafael H.L.; Saliba-Silva, Adonis M.; Carvalho, Elita F.U.; Lima, Nelson B.; Ichikawa, Rodrigo U.; Martinez, Luiz G.

    2013-01-01

    Uranium silicide (U 3 Si 2 ) is an intermetallic used as nuclear fuel in most modern MTR - Materials Test Reactor. Dispersed in aluminum, this fuel allows high uranium densities, up to 4.8 gU/cm 3 . At IPEN, the fabrication of fuel elements based on U 3 Si 2 for the IEA-R1 reactor is carried out in the Nuclear Fuel Center (CCN), by vacuum induction melting of uranium and silicon, followed by grinding. Before employed in a nuclear reactor, U 3 Si 2 must be submitted to a strict quality control, which includes granulometry, density, X-ray radiography for dispersion homogeneity, chemical and crystallographic characterization. Concerning phase composition for a qualified fuel, the fraction of U 3 Si 2 should be higher than 80wt.%. Aiming at the development of a routine methodology for quantification of phases via analysis of XRD data using the Rietved method, six samples from two production baths of CCN were submitted to X-ray diffraction. The data were analyzed using software GSAS and line profile analysis methods. The results suggest that fusion product have preferred orientation and grinding step is important for a better refinement. (author)

  1. Trace metal assay of uranium silicide fuel

    International Nuclear Information System (INIS)

    Kulkarni, M.J.; Argekar, A.A.; Thulasidas, S.K.; Dhawale, B.A.; Rajeswari, B.; Adya, V.C.; Purohit, P.J.; Neelam, G.; Bangia, T.R.; Page, A.G.; Sastry, M.D.; Iyer, R.H.

    1994-01-01

    A comprehensive trace metal assay of uranium silicide, a fuel for nuclear research reactors that employs low-enrichment uranium, is carried out by atomic spectrometry. Of the list of specification elements, 21 metallic elements are determined by a direct current (dc) arc carrier distillation technique; the rare earths yttrium and zirconium are chemically separated from the major matrix followed by a dc arc/inductively coupled argon plasma (ICP) excitation technique in atomic emission spectrometry (AES); silver is determined by electrothermal atomization-atomic absorption spectrometry (ETA-AAS) without prior chemical separation of the major matrix. Gamma radioactive tracers are used to check the recovery of rare earths during the chemical separation procedure. The detection limits for trace metallics vary in the 0.1- to 40-ppm range. The precision of the determinations as evaluated from the analysis of the synthetic sample with intermediate range analyte concentration is better than 25% relative standard deviation (RSD) for most of the elements employing dc arc-AES, while that for silver determination by ETS-AAS is 10% RSD. The precision of the determinations for four crucially important rare earths by ICP-AES is better than 3% RSD

  2. Effects of chromium on the immune system.

    Science.gov (United States)

    Shrivastava, Richa; Upreti, R K; Seth, P K; Chaturvedi, U C

    2002-09-06

    Chromium is a naturally occurring heavy metal found commonly in the environment in trivalent, Cr(III), and hexavalent, Cr(VI), forms. Cr(VI) compounds have been declared as a potent occupational carcinogen among workers in chrome plating, stainless steel, and pigment industries. The reduction of Cr(VI) to Cr(III) results in the formation of reactive intermediates that together with oxidative stress oxidative tissue damage and a cascade of cellular events including modulation of apoptosis regulatory gene p53, contribute to the cytotoxicity, genotoxicity and carcinogenicity of Cr(VI)-containing compounds. On the other hand, chromium is an essential nutrient required to promote the action of insulin in body tissues so that the body can use sugars, proteins and fats. Chromium is of significant importance in altering the immune response by immunostimulatory or immunosuppressive processes as shown by its effects on T and B lymphocytes, macrophages, cytokine production and the immune response that may induce hypersensitivity reactions. This review gives an overview of the effects of chromium on the immune system of the body. Copyright 2002 Federation of European Microbiological Societies

  3. Bioavailability of a potato chromium complex to the laboratory rat

    International Nuclear Information System (INIS)

    Gilbert, H.K.

    1985-01-01

    Research objectives were to study the effect of food source, preparation method and chemical form on bioavailability of chromium. Chromium concentration in potatoes was determined and tubers labeled either intrinsically or extrinsically with radioactive chromate. A labeled chromium complexes was isolated from preparations of raw, baked or fried potatoes and chromatographed on gel permeation media. Availability of the potato chromium complex to the rat was examined in three feeding studies. Animals were dosed with radioactive extrinsically or intrinsically labeled potato extract or with chromate. A labeled chromium complex was isolated from gastrointestinal contents of rats and chromatographed. Potato pulp and peel contained 1.63 and 2.70 μg Cr/g tissue respectively. True and apparent absorption from extrinsically labeled feedings were 33.4 +/- 4.7 and 29.8 +/- 11.2% respectively, and no differences existed between absorption from raw and cooked potatoes. Absorption from the extrinsic labeled potatoes differed significantly from absorption of inorganic chromatium. Apparent absorption of raw (11.1 +/- 7.9%) and cooked (-0.7 +/- 2.8%) intrinsically labeled feedings differed significantly. Absorption of inorganic chromium was 17.8% (true) and 11.5% (apparent). Examination of the chromium complex isolated from gastrointestinal tract contents showed enlargement of the complex in the stomach after consumption

  4. Assessment of the level of chromium species in the discharged ...

    African Journals Online (AJOL)

    The purpose of this study was to assess the level of chromium species in the discharged effluents of selected tanneries in the Amhara Region; Haik and Debre Berhan tanneries. The level of total chromium, and hexavalent chromium in the discharged effluent of the studied tanneries were determined using the ICP-OES, and ...

  5. Spectrophotometric determination of chromium in geological samples

    International Nuclear Information System (INIS)

    Rathore, D.P.S.; Tarafder, P.K.

    1992-01-01

    A method for the determination of chromium is presented, based on the oxidation of hydroxylamine hydrochloride to nitrous acid by chromium(VI) in acetic acid medium followed by diazotization of the nitrite produced with p-aminophenylmercaptoacetic acid and subsequent coupling of the diazonium salt with N-(1-naphthyl)ethylenediamine di-hydrochloride in acidic medium to form a stable blueish azo dye. The method is suitable for the determination of chromium(VI) from 0.04 to 1.2 mg l -1 in a 1.0-cm cuvette. The molar absorptivity and Sandell's sensitivity are 3.65x10 4 l mol -1 cm -1 and 0.0014μg cm -2 , respectively. (author). 17 refs.; 3 figs

  6. Chromium and aging

    Science.gov (United States)

    Aging is associated with increased blood glucose, insulin, blood lipids, and fat mass, and decreased lean body mass leading to increased incidences of diabetes and cardiovascular diseases. Improved chromium nutrition is associated with improvements in all of these variables. Insulin sensitivity de...

  7. Stabilization of carbon dioxide and chromium slag via carbonation.

    Science.gov (United States)

    Wu, Xingxing; Yu, Binbin; Xu, Wei; Fan, Zheng; Wu, Zucheng; Zhang, Huimin

    2017-08-01

    As the main greenhouse gas, CO 2 is considered as a threat in the context of global warming. Many available technologies to reduce CO 2 emission was about CO 2 separation from coal combustion and geological sequestration. However, how to deal with the cost-effective storage of CO 2 has become a new challenge. Moreover, chromium pollution, the treatment of which requires huge energy consumption, has attracted people's widespread attention. This study is aimed to develop the sequestration of CO 2 via chromium slag. A dynamic leaching experiment of chromium slag was designed to testify the ability of CO 2 adsorption onto chromium slag and to release Cr(VI) for stabilization. The results showed that the accumulative amounts of Cr(VI) were ca. 2.6 mg/g released from the chromium slag after 24 h of leaching. In addition, ca. 89 mg/g CO 2 was adsorbed by using pure CO 2 in the experiment at 12 h. Calcite is the only carbonate species in the post-carbonated slag analyzed by powder X-ray diffraction and thermal analysis. The approach provides the feasibility of the utilization of chromium slag and sequestration of the carbon dioxide at the same time at ordinary temperatures and pressures.

  8. Removal of Chromium and Lead from Industrial Wastewater Using

    Directory of Open Access Journals (Sweden)

    Mohamed Hilal

    2013-04-01

    Full Text Available In this research an attempt is made on the ability of aerobic treatment of synthetic solutions containing lead and chromium using effective microorganisms within the reactor. To achieve the desired objectives of the research, synthetic aqueous solutions of lead and chromium was used in the concentration of chromium and lead ions of 5, 10,50 and 100 mg / l .The work was done at constant pH equal to 4.5 and temperature of 30 ± 1 º C. Effective microorganisms solutions was added to the reactor at Vol.% of 1/50 ,1/100 ,1/500 and 1/1000, with retention time was 24 hours to measure the heavy metals concentration the atomic absorption device was used. The experimental results showed that each 1mg / l of lead and chromium ions need 24 mg of effective microorganisms to achieve removal of 92.0% and 82.60% for lead and chromium respectively. Increasing the concentration of effective microorganisms increases the surface of adsorption and thus increasing the removal efficiency. It is found that the microorganisms activity occur in the first five hours of processing and about 94% of adsorption capacity of biomass will take place. It is also found the selectivity of microorganisms to lead ions is higher than for chromium ions.

  9. Adsorption and desorption of hydrolyzed metal ions. 3. Scandium and chromium

    International Nuclear Information System (INIS)

    Gray, B.; Matijevic, E.; Clarkson Univ., Potsdam, NY

    1987-01-01

    Adsorption of scandium(III) and chromium(III) species on a PVC latex was measured using radioactive isotopes; the uptake increased with increasing pH. The data were interpreted by combining aspects of the models of James and Healy and also of Anderson and Bockris. The experimental and calculated results agree quite well for scandium, but not for chromium. The deviation in the latter case is believed to be due to polymerization of the hydrolyzed chromium cations and to the interaction of chromium with the anionic surface groups of the latex. Neither of these interactions occur with scandium. Hydrolyzed scandium species adsorbed on the latex were removed by acidifying the dispersion, while chromium complexes were not, substantiating the proposed difference in the chemical nature of chromium and scandium species at the solid/solution interface. 32 refs.; 8 figs.; 8 tabs

  10. The series production in a standardized fabrication line for silicide fuels and commercial aspects

    International Nuclear Information System (INIS)

    Wehner, E.L.; Hassel, H.W.

    1987-01-01

    NUKEM has been responsible for the development and fabrication of LEU fuel elements for MTR reactors under the frame of the German AF program since 1979. The AF program is part of the international RERTR efforts, which were initiated by the INFCE Group in 1978. This paper describes the actual status of development and the transition from the prototype to the series production in a standardized manufacturing line for silicide fuels at NUKEM. Technical provisions and a customer oriented standardized product range aim at an economized manufacturing. (Author)

  11. [Biological significance of chromium III for the human organism].

    Science.gov (United States)

    Piotrowska, Anna; Pilch, Wanda; Tota, Łukasz; Nowak, Gabriel

    2018-03-09

    Currently, chromium is probably the most controversial transition metal. In recent publications it is clearly stated that it is not an essential micronutrient and should be considered to have a pharmacological effect. Conflicting scientific reports along with a huge amount of dietary supplements, as well as dietary and sports nutrients available on the market have prompted the authors to investigate the available information on the range of possible application, efficacy and safety of products containing salts or chelates of chromium III. The authors reviewed articles in electronic databases for the years 1959-2016, and selected works describing the biochemical, physiological and toxic properties of chromium salts and chelates and the range of possible applications in medicine, dietetics and sport. A critical analysis of reports dealing with the effect of chromium on the carbohydrate and lipid metabolism, body composition, lean body mass and sports performance was carried out. The authors indicated papers analyzing the mechanism of action of chromium in the cognitive and affective disorders. Much attention has been paid to the safety use of chromium III supplements. There are still some unsolved issues. In the field of toxicology, a limited number of reports about environmental exposure to trivalent chromium in the workplace draws our attention. In the field of biochemical research, there is still a need to clarify the mechanism of psychiatric and endocrinological activity, especially in conjunction with the immune system. Med Pr 2018;69(2):211-223. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. 76 FR 8773 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1090 (Review)] Superalloy Degassed Chromium From Japan AGENCY: United States International Trade Commission. ACTION: Termination of five-year... revocation of the antidumping duty order on superalloy degassed chromium from Japan would be likely to lead...

  13. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    Science.gov (United States)

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  14. Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species

    International Nuclear Information System (INIS)

    Sivakumar, D.

    2016-01-01

    The isolated fungi species of different kinds from chromium contaminated soil sites located in Nagalkeni, Chennai were used for reducing chromium(VI) in a tannery industry wastewater of Nagalkeni, Chennai. The experiments were conducted to know biosorption potential of isolated fungi species for removing chromium(VI) in a tannery industry wastewater against the different p H, fungi biomass and chromium(VI) concentration (dilution ratio). The results of this study indicated that the order of maximum removal of chromium(VI) by an isolated fungi species at an optimum pH of 3, fungi biomass of 4g and an initial chromium(VI) concentration of 18.125 mg/L (dilution ratio 4) is A. niger > A. flavus > A. fumigatus > A. nidulans > A. heteromorphus > A. foetidus > A. viridinutans. This study found that the maximum removal of chromium(VI) was achieved by Aspergillus niger (96.3 %) than other fungi species at chromium(VI) concentration of 18.125 mg/L in a tannery industry wastewater. The chromium removal from tannery industry wastewater was validated by checking chromium removal in an aqueous solution and by checking the removal efficiency of other parameters in a tannery industry wastewater using same isolated A. niger. Biosorption model was proposed to simulate the experimental condition for removing chromium(VI) in a tannery industry wastewater by all isolated fungi species. The R2 and x2 values of the proposed model predicted that the proposed biosorption model is very much useful for predicting the trend of reduction potential of chromium(VI) in a tannery industry wastewater by all isolated fungi species. This study suggested that one could select the type of fungi species, ion concentration level, selection of treatment period, quantity of biomass to be used, and p H level of the medium, to achieve the highest reduction of any toxic metals from any contaminated water, wastewater and soil environment.

  15. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing; Comportement du silicium en milieu nitrique. Application au retraitement des combustibles siliciures d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cheroux, L

    2001-07-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  16. Milling uranium silicide powder for dispersion nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, E.; Silva, D.G.; Souza, J.A.B.; Durazzo, M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Riella, H.G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2009-07-01

    Full text: Uranium silicide (U3Si2) is presently considered the best fuel qualified so far in terms of uranium loading and performance. Stability of the U3Si2 fuel with uranium density of 4.8 g/cm3 was confirmed by burnup stability tests performed during the Reduced Enrichment for Research and Test Reactors (RERTR) program. This fuel was chosen to compose the first core of the new Brazilian Multipurpose Research Reactor (RMB), planned to be constructed in the next years. This new reactor will consume bigger quantities of U3Si2 powder, when compared with the small consumption of the IEA-R1 research reactor of IPEN-CNEN/SP, the unique MTR type research reactor operating in the country. At the present time, the milling operation of U3Si2 ingots is made manually. In order to increase the powder production capacity, the manual milling must be replaced by an automated procedure. This paper describes a new milling machine and procedure developed to produce U3Si2 powder with higher efficiency. (author)

  17. Adsorption of Chromium from Aqueous Solution Using Polyaniline

    Directory of Open Access Journals (Sweden)

    Majid Riahi Samani

    2011-10-01

    Full Text Available New group of polymers have been synthesized that are conductive of electricity so they are called conducting polymers. One of the most conducting polymers is "polyaniline". In the present study, polyaniline was synthesized by oxidizing aniline monomer under strongly acidic conditions using potassium iodate as an initiator of oxidative polymerization. Synthesized polyaniline as a powder used as an adsorbent to remove chromium from aqueous solution. Experiments were conducted in batch mode with variables such as amount of polyaniline, chromium solution pH and adsorbtion isotherms. Due to presence of Cr (III in solution after using polyaniline, removal mechanism is the combination of surface adsorption and reduction. It seems that polyaniline reduces the Cr(VI to Cr(III and adsorbs the Cr(III and a part of remaining  Cr(VI. It is well known that nitrogen atom in compounds of amine derivative makes co-ordinate bond with positive charge of metals due to the presence of electron in sp3 orbital of nitrogen. The majority of total chromium removal  occurred at 30minute for polyaniline  and the optimum  time for  hexavalent chromium  removal was about 5 min. Polyaniline has the maximum total cheomiume removal at pH, 3-9. The maximum hexavalent chromium removal occurred at acidic pH for polyanilines. The equilibrium adsorption data for polyaniline fitted both Freundlich’s and Langmuir’s isotherms. This research shows that polyaniline can be used as an adsorbent  for removal chromium from aqueous solution.

  18. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Schoonheydt, R.A.

    1996-01-01

    Focuses on the surface chemistry and spectroscopy of chromium in inorganic oxides. Characterization of the molecular structures of chromium; Mechanics of hydrogenation-dehydrogenation reactions; Mobility and reactivity on oxidic surfaces.

  19. Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent.

    Science.gov (United States)

    Srivastava, Shaili; Thakur, Indu Shekhar

    2012-01-01

    A bacterium isolated from soil and sediment ofa leather tanning mill's effluent was identified as Serratia sp. by the analysis of 16S rDNA. Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM) were used to assess morphological changes and confirm chromium biosorption in Serratia sp. both in a shake-flask culture containing chromium and in a tannery wastewater. The SEMEDX and the elemental analysis of the chromate-containing samples confirmed the binding of chromium with the bacterial biomass. The TEM exhibited chromium accumulation throughout the bacterial cell, with some granular deposits in the cell periphery and in the cytoplasm. X-ray diffraction analysis (XRD) was used to quantify the chromium and to determine the chemical nature of the metal-microbe interaction. The XRD data showed the crystalline character of the precipitates, which consisted of mainly calcium chromium oxide, chromium fluoride phosphate and related organo-Cr(III) complex crystals. The XRD data also revealed a strong involvement of cellular carboxyl and phosphate groups in chromium binding by the bacterial biomass. The results of the study indicated that a combined mechanism of ion-exchange, complexation, croprecipitation and immobilization was involved in the biosorption of chromium by bacterial cells in contaminated environments.

  20. Biosorption of chromium by mangrove-derived Aplanochytrium sp ...

    African Journals Online (AJOL)

    The microbial dried biomass of Thraustochytrids is used as bioadsorbent for the removal of the chromium in aqueous solution. In this investigation, three species of Thraustochydrids namely Aplanochytrium sp., Thraustochytrium sp. and Schizochytrium sp. were tested for the efficiency of chromium accumulation by culturing ...

  1. Effects of UV light and chromium ions on wood flavonoids

    International Nuclear Information System (INIS)

    Molnárné Hamvas, L.; Németh, K.; Stipta, J.

    2003-01-01

    The individual and simultaneous effect of UV light and chromium ions was investigated by spectrophotometric methods on inert surfaces impregnated with quercetin or robinetin. The UV-VIS spectra of the silica gel plates impregnated with these flavonoids were modified characteristically after irradiating ultraviolet light. Even a half an hour of irradiation has caused irreversible changes in the molecule structure. A certain chemical - presumably complexation - was concluded from the change of spectral bands assigned to flavonoids when impregnated with chromic ions. Hexavalent chromium caused more complex changes in the absorption spectra. The differences in the spectra could indicate either the oxidation and decomposition of flavonoids, or some kind of coordination process and the reduction of hexavalent chromium. The simultaneous application of UV light and chromium ions caused more pronounced effects. The complexation process between chromium(III) and flavonoid was completed

  2. Photocatalysis with chromium-doped TiO2: Bulk and surface doping

    KAUST Repository

    Ould-Chikh, Samy; Proux, Olivier; Afanasiev, Pavel V.; Khrouz, Lhoussain; Hedhili, Mohamed N.; Anjum, Dalaver H.; Harb, Moussab; Geantet, Christophe; Basset, Jean-Marie; Puzenat, Eric

    2014-01-01

    The photocatalytic properties of TiO2 modified by chromium are usually found to depend strongly on the preparation method. To clarify this problem, two series of chromium-doped titania with a chromium content of up to 1.56 wt % have been prepared

  3. Synthesis and characterization of chromium doped boehmite nanofibres

    International Nuclear Information System (INIS)

    Yang Jing; Frost, Ray L.; Yuan Yong

    2009-01-01

    Thermogravimetric and differential thermogravimetric analysis has been used to study synthesised chromium doped boehmite. The dehydroxylation temperature increases significantly from 0 to 5% doping, after which the dehydroxylation temperature shows a small steady increase up to the 20% doping level. The temperature of dehydroxylation increases with time of hydrothermal treatment. Chromium doped boehmite nanofibres were also characterised by X-ray diffraction and transmission electron microscopy. Hydrothermal treatment of doped boehmite with chromium resulted in the formation of nanofibres over a wide dopant range. Nanofibres up to 500 nm in length and between 4 and 6 nm in width were produced

  4. Chromium tolerance and reduction potential of Staphylococci ...

    African Journals Online (AJOL)

    In order to study the microbiology of chromium tolerance and reduction at a fly ash dumping site in South Africa, 15 core samples were investigated. It was shown that the 30 year old dumping site exhibited high concentrations of Cr (VI) ranging from 1.6 to 9.6 mg/g. From this contaminated fly ash dumping site, 67 chromium ...

  5. Study of Physical modifications induced by chromium doping of uranium dioxide

    International Nuclear Information System (INIS)

    Fraczkiewicz, M.

    2010-01-01

    Improvement of nuclear fuel performances requires reducing fission gas release. Doping uranium dioxide with chromium is the improvement axis considered in this work. Indeed, chromium fastens crystal growth in UO 2 , and thus enables a significant increase of the grain size. This work aims at the identification of defects produced by chromium addition in UO 2 , and their impact on properties of interest of the material. First, defects existing in doped fuel directly after sintering have been studied. X-ray Absorption Spectroscopy allowed the identification of the environment of solubilised chromium in UO 2 . Chromium atoms are roughly substituting for uranium atoms, but generate a complete reorganisation of neighbouring oxygen atoms, and distortion of uranium sublattice. Characterisation of transport properties (electrical conductivity and oxygen self-diffusion) have shown that because of charge balance, chromium plays a leading role on such properties. A model of point defects in UO 2 has been proposed, showing how complex the involved phenomena are. Observations by Transmission Electron Microscopy of ion-irradiated thin foils have shown that chromium makes the coalescence of irradiation defects easier. This behaviour can be explained by a stabilisation of defect clusters due to precipitation of chromium. Finally, study of thermal diffusion of helium in doped UO 2 , performed by Nuclear Reaction Analysis, has confirmed this interaction between chromium atoms and irradiation defects. Indeed, μ-NRA measures have shown no fast gas diffusion close to grain boundaries, in contrast with standard UO 2 behaviour, which is associated with defects recovery in grain boundaries. (author) [fr

  6. Electrochemical modification of chromium surfaces using 4-nitro- and4-fluorobenzenediazonium salts

    DEFF Research Database (Denmark)

    Hinge, Mogens; Cecatto, Marcel; Kingshott, Peter

    2009-01-01

    Chromium surfaces can be electrografted with organic surface films using 4-nitro- or 4-fluorobenzenediazonium salts, despite the fact that the surfaces are covered with a protective chromium oxide layer......Chromium surfaces can be electrografted with organic surface films using 4-nitro- or 4-fluorobenzenediazonium salts, despite the fact that the surfaces are covered with a protective chromium oxide layer...

  7. Thermogravimetric studies of high temperature reactions between potassium salts and chromium

    International Nuclear Information System (INIS)

    Lehmusto, J.; Lindberg, D.; Yrjas, P.; Skrifvars, B.-J.; Hupa, M.

    2012-01-01

    Highlights: ► K 2 CO 3 reacted with Cr 2 O 3 forming K 2 CrO 4 . ► Presence of chlorine did not alone explain the initiation of accelerated oxidation. ► More light was shed to the role of chromates in accelerated oxidation. ► Accelerated oxidation of chromia protected steels occurs in two consecutive stages. ► Both potassium and chloride are required, so that both stages of reaction occur. - Abstract: This study compares the high temperature reactions of potassium chloride (KCl) and potassium carbonate (K 2 CO 3 ), two salts found in fly ashes formed in biomass combustion, with both pure metallic chromium (Cr) and chromium oxide (Cr 2 O 3 ). The reactions were investigated with thermogravimetric measurements and the results discussed based on thermodynamic calculations. In simple terms: potassium chloride reacted with chromium forming potassium chromate (K 2 CrO 4 ) and chromium oxide. Potassium chloride did not react with chromium oxide. Potassium carbonate reacted with chromium oxide, but not with chromium. The presence of potassium is sufficient to initiate accelerated oxidation, but chloride is needed to sustain it.

  8. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers

    Directory of Open Access Journals (Sweden)

    Ren Xiao-Bin

    2011-04-01

    Full Text Available Abstract Background Occupational exposure to chromium compounds may result in adverse health effects. This study aims to investigate whether low-level hexavalent chromium (Cr(VI exposure can cause DNA damage in electroplating workers. Methods 157 electroplating workers and 93 control subjects with no history of occupational exposure to chromium were recruited in Hangzhou, China. Chromium levels in erythrocytes were determined by graphite furnace atomic absorption spectrophotometer. DNA damage in peripheral lymphocytes was evaluated with the alkaline comet assay by three parameters: Olive tail moment, tail length and percent of DNA in the comet tail (tail DNA%. Urinary 8-OHdG levels were measured by ELISA. Results Chromium concentration in erythrocytes was about two times higher in electroplating workers (median: 4.41 μg/L than that in control subjects (1.54 μg/L, P P P P Conclusion The findings in this study indicated that there was detectable chromium exposure in electroplating workers. Low-level occupational chromium exposure induced DNA damage.

  9. Ytterbium silicide (YbSi{sub 2}). A promising thermoelectric material with a high power factor at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tanusilp, Sora-at; Ohishi, Yuji; Muta, Hiroaki [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); Nishide, Akinori [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Hayakawa, Jun [Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Kurosaki, Ken [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); JST, PRESTO, Kawaguchi, Saitama (Japan)

    2018-02-15

    Metal silicide-based thermoelectric (TE) materials have attracted attention in the past two decades, because they are less toxic, with low production cost and high chemical stability. Here, we study the TE properties of ytterbium silicide YbSi{sub 2} with a specific layered structure and the mixed valence state of Yb{sup 2+} and Yb{sup 3+}. YbSi{sub 2} exhibits large Seebeck coefficient, S, accompanied by high electrical conductivity, σ, leading to high power factor, S{sup 2}σ, of 2.2 mW m{sup -1} K{sup -2} at room temperature, which is comparable to those of state-of-the-art TE materials such as Bi{sub 2}Te{sub 3} and PbTe. Moreover, YbSi{sub 2} exhibits high Grueneisen parameter of 1.57, which leads to relatively low lattice thermal conductivity, κ{sub lat}, of 3.0 W m{sup -1} K{sup -1} at room temperature. The present study reveals that YbSi{sub 2} can be a good candidate of TE materials working near room temperature. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. 40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is subject...

  11. Review of occupational epidemiology of chromium chemicals and respiratory cancer.

    Science.gov (United States)

    Hayes, R B

    1988-06-01

    Several epidemiologic studies have investigated the association between cancer risk and employment in chromium producing and using industries. Strong and consistent associations have been found between employment in the primary chemical producing industry and the risk for respiratory cancer. Workers employed in chromate pigment production and possibly spray painters of chromate pigment paints appear to be at excess risk of respiratory cancer. Chrome platers may also be at excess risk, although the evidence is limited. A few studies indicate that chromium alloy welding may also be an exposure source of concern. Some studies of ferrochromium alloy workers have shown an excess risk for respiratory cancer, although the risk may in part be due to concomitant exposures. The evidence indicates that the hexavalent form of chromium is the primary agent of chromium carcinogenesis. Solubility and other characteristics of chromium compounds may also play a role in determining risk.

  12. Problems in the determination of chromium in biological materials

    International Nuclear Information System (INIS)

    Behne, D.; Braetter, P.; Gessner, H.; Hube, G.; Mertz, W.; Roesick, U.

    1976-01-01

    The effects of sample preparation on the analysis of chromium in biological matter have been investigated using brewer's yeast as a test material. The apparent chromium content of the yeast as determined by flameless atomic absorption spectrometry was significantly higher after destruction of the organic matter with HNO 3 in a closed pressure vessel than after wet-ashing in open vessels and after direct introduction of the sample into the graphite furnace. The results obtained by neutron activation analysis without any sample preparation, which corresponded to the atomic absorption values after digestion in the pressure vessel, showed that considerable errors arise in the other methods of sample treatment. Chromium analysis of dried and ashed yeast suggest that losses of volatile chromium compounds may occur during heating. (orig.) [de

  13. Hexavalent Chromium IV-Free Primer Development

    Science.gov (United States)

    Alldredge, Michael J.; Buck, Amy L.

    2015-01-01

    Primer materials provide corrosion protection for metal parts as well as an increased adhesion between metallic substrates and thermal protection systems (TPSs). Current primers for use in cryogenic applications contain hexavalent chromium. This hexavalent chromium provides excellent corrosion protection even in a cryogenic environment, but it is a carcinogen that requires special equipment and waste control procedures to use. The hazardous nature of hexavalent chromium makes it an obsolescence risk in the future. This study included two phases of evaluation. Thirteen primers were initially identified as candidates and twelve of those primers were tested in phase 1. Four of the best performing candidates from phase 1 continued into phase 2 testing. Phase 1 testing consisted mostly of liquid constituent and physical property testing. Cryoflex and salt fog testing were included in phase 1 because of their importance to the overall success of a candidate material. Phase 2 consisted of physical, thermal, and mechanical properties for nominally processed and fabricated specimens.

  14. Integrated Criteria Document Chromium

    NARCIS (Netherlands)

    Slooff W; Cleven RFMJ; Janus JA; van der Poel P; van Beelen P; Boumans LJM; Canton JH; Eerens HC; Krajnc EI; de Leeuw FAAM; Matthijsen AJCM; van de Meent D; van der Meulen A; Mohn GR; Wijland GC; de Bruijn PJ; van Keulen A; Verburgh JJ; van der Woerd KF

    1990-01-01

    Betreft de engelse versie van rapport 758701001
    Bij dit rapport behoort een appendix onder hetzelfde nummer getiteld: "Integrated Criteria Document Chromium: Effects" Auteurs: Janus JA; Krajnc EI
    (appendix: see 710401002A)

  15. Determination of Chromium(III) Picolinate Using High Performance Liquid Chromatography-Ultraviolet Spectrophotometry

    International Nuclear Information System (INIS)

    Kim, Sung Il; Woo, Dong Jin; Kang, Dae Kyung; Lee, Myung Hee; Woo, Gun Jo; Cha, Ki Won

    2003-01-01

    Cr-(pic) 3 has been widely used as food additives, drugs, and feed additives. Accordingly, its determination method should be established. In the present paper, we have studied the determination method of chromium(III) picolinate accurately using ESI-MS on-lined with HPLC. Chromium(III) picolinate in feed products was determined successfully. Chromium(III) is very well known as an essential mineral. It is suggested as a cofactor in the maintenance of both normal lipid and carbohydrate metabolism by assisting the action of insulin on a cell membrane. According to the National Research Council, the daily recommended intake of chromium(III) is 50-200 μg. Several organic chromium(III) complexes have been reported to have significantly higher absorption and tissue incorporation activity than inorganic salts such as chromium(III) chloride

  16. Rate Theory Modeling and Simulations of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States); Mei, Zhigang [Argonne National Lab. (ANL), Argonne, IL (United States); Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-10

    Uranium silicide (U3Si2) fuel has higher thermal conductivity and higher uranium density, making it a promising candidate for the accident-tolerant fuel (ATF) used in light water reactors (LWRs). However, previous studies on the fuel performance of U3Si2, including both experimental and computational approaches, have been focusing on the irradiation conditions in research reactors, which usually involve low operation temperatures and high fuel burnups. Thus, it is important to examine the fuel performance of U3Si2 at typical LWR conditions so as to evaluate the feasibility of replacing conventional uranium dioxide fuel with this silicide fuel material. As in-reactor irradiation experiments involve significant time and financial cost, it is appropriate to utilize modeling tools to estimate the behavior of U3Si2 in LWRs based on all those available research reactor experimental references and state-of-the-art density functional theory (DFT) calculation capabilities at the early development stage. Hence, in this report, a comprehensive investigation of the fission gas swelling behavior of U3Si2 at LWR conditions is introduced. The modeling efforts mentioned in this report was based on the rate theory (RT) model of fission gas bubble evolution that has been successfully applied for a variety of fuel materials at devious reactor conditions. Both existing experimental data and DFT-calculated results were used for the optimization of the parameters adopted by the RT model. Meanwhile, the fuel-cladding interaction was captured by the coupling of the RT model with simplified mechanical correlations. Therefore, the swelling behavior of U3Si2 fuel and its consequent interaction with cladding in LWRs was predicted by the rate theory modeling, providing valuable information for the development of U3Si2 fuel as an accident

  17. A REVIEW OF BIOSORPTION OF CHROMIUM IONS BY MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Inga Zinicovscaia

    2012-12-01

    Full Text Available Due to its widespread industrial use, chromium has become a serious pollutant in diverse environmental settings. The main source of chromium pollution including the Republic o Moldova is industry. It is a great need to develop new eco-friendly methods of chromium removal. Biosorption of heavy metals is a most promising technology involved in the removal of toxic metals from industrial waste streams and natural waters. This article is an extended abstract of a communication presented at the Conference Ecological Chemistry 2012

  18. Chromium related degradation of solid oxide fuel cells; Chrom-bezogene Degradation von Festoxid-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Anita

    2011-05-04

    Solid Oxide Fuel Cells (SOFCs) offer a high potential for application as an auxiliary power unit (APU) for heavy goods vehicles as well as combined heat and power (CHP) systems. SOFCs are especially attractive due to their high efficiencies and the use of different fuel types. However, optimization in terms of long term stability and costs are still necessary. This work characterized the degradation of SOFCs with lanthanum strontium manganite (LSM) cathodes under chromium influence. Galvanostatic cell tests were carried out at 800 C with operation times from 250 - 3000 h and variation of the chromium source and current density. The current densities of j = 0 (A)/(cm{sup 2}), j = 0,3 (A)/(cm{sup 2}) and j = 0,5 (A)/(cm{sup 2}) were applied. The high temperature ferritic alloy Crofer22APU was used as a chromium source. Variation of the chromium source was realized by coating the Crofer22APU insert with the chromium retention layer Mn{sub 3}O{sub 4} and the cathode contact layer LCC10. Cell degradation was analyzed with regard to cell voltage, current density and area specific resistance (ASR). Microstructural alterations of the cathode as well as chromium content and distribution across the cell were investigated after completion of the cell tests. For cells with a chromium source present and operation with a nonzero current density, the course of cell degradation was divided into three phases: a run-in, weak linear degradation and strong linear degradation. A decrease of the chromium release rate by means of different coatings stretched the course of degradation along the timescale. Strong degradation, which is characterized by a significant increase in ASR as well as a decrease of current density at the operating point, was only observed when a chromium source in the setup was comb ined with operation of the cell with a non-zero current density. Operation of the cell with a chromium source but no current density caused a degradation of current density at the

  19. COST EFFECTIVE CONTROL OF HEXAVALENT CHROMIUM AIR EMISSIONS FROM FUNCTIONAL CHROMIUM ELECTROPLATING

    Science.gov (United States)

    This paper will summrize thie pollution prevention (p2) method to control stack emissions from hard chromium plating operations performed by the USEPA's National Risk Management Research Laboratory (NRMRL) over the last four years. During literature research and user surveys, it...

  20. Toxicity assessment and geochemical model of chromium leaching from AOD slag.

    Science.gov (United States)

    Liu, Bao; Li, Junguo; Zeng, Yanan; Wang, Ziming

    2016-02-01

    AOD (Argon Oxygen Decarburization) slag is a by-product of the stainless steel refining process. The leaching toxicity of chromium from AOD slag cannot be ignored in the recycling process of the AOD slag. To assess the leaching toxicity of the AOD slag, batch leaching tests have been performed. PHREEQC simulations combined with FactSage were carried out based on the detailed mineralogical analysis and petrophysical data. Moreover, Pourbaix diagram of the Cr-H2O system was protracted by HSC 5.0 software to explore the chromium speciation in leachates. It was found that AOD slag leachate is an alkaline and reductive solution. The Pourbaix diagram of the Cr-H2O system indicated that trivalent chromium, such as Cr(OH)4(-), is the major chromium species in the experimental Eh-pH region considered. However, toxic hexavalent chromium was released with maximum concentrations of 30 µg L(-1) and 18 µg L(-1) at L/S 10 and 100, respectively, during the earlier leaching stage. It concluded that the AOD slag possessed a certain leaching toxicity. After 10 d of leaching, trivalent chromium was the dominant species in the leachates, which corresponded to the results of PHREEQC simulation. Leaching toxicity of AOD slag is based on the chromium speciation and its transformation. Great attention should be focused on such factors as aging, crystal form of chromium-enriched minerals, and electrochemical characteristics of the leachates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Plasma Spraying and Characterization of Chromium Carbide-Nickel Chromium Coatings

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Prantnerová, M.

    2016-01-01

    Roč. 9, č. 4 (2016), s. 281-290, č. článku PCCC-2016-09-16-339. ISSN 2008-2134 Institutional support: RVO:61389021 Keywords : Plasma spraying * Chromium carbide * Slurry abrasion * Dry rubber wheel test * Friction * Microhardness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass http://www.pccc.icrc.ac.ir/?xid=0113010121000001804&id=976

  2. Structure and magnetic properties of chromium doped cobalt molybdenum nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Guskos, Niko; Żołnierkiewicz, Grzegorz; Typek, Janusz; Guskos, Aleksander [Institute of Physics, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Piastów 48, 70-311 Szczecin (Poland); Adamski, Paweł; Moszyński, Dariusz [Institute of Inorganic Chemical Technology and Environment Engineering, West Pomeranian University of Technology, Szczecin, Pułaskiego 10, 70-322 Szczecin (Poland)

    2016-09-15

    Four nanocomposites containing mixed phases of Co{sub 3}Mo{sub 3}N and Co{sub 2}Mo{sub 3}N doped with chromium have been prepared. A linear fit is found for relation between Co{sub 2}Mo{sub 3}N and chromium concentrations. The magnetization in ZFC and FC modes at different temperatures (2–300 K) and in applied magnetic fields (up to 70 kOe) have been investigated. It has been detected that many magnetic characteristics of the studied four nanocomposites correlate not with the chromium concentration but with nanocrystallite sizes. The obtained results were interpreted in terms of magnetic core-shell model of a nanoparticle involving paramagnetic core with two magnetic sublattices and a ferromagnetic shell related to chromium doping. - Highlights: • A new chromium doped mixed Co-Mn-N nanocomposites were synthesized. • Surface ferromagnetism was detected in a wide temperature range. • Core-shell model was applied to explain nanocomposites magnetism.

  3. CHROMIUM BIOACCUMULATION FROM COMPOSTS AND VERMICOMPOSTS BASED ON TANNERY SLUDGES

    Directory of Open Access Journals (Sweden)

    Krzysztof GONDEK

    2008-07-01

    Full Text Available Storage of waste substances is not indifferent to ecological equilibrium in the environment therefore should not be the ultimate way to limit waste arduousness. Therefore, the conducted investigations aimed to determine the effect of tannery composts and vermicomposts loaded with chromium on this element bioaccumulation in earthworm bodies and biomass of selected plants. Chromium in composts and vermicomposts based on tannery sludges occurred in small quantities and easily soluble compounds. Chromium concentrations in redworm biomass points to this metal accumulation in Eisenia fetida body tissues. This element content in redworm biomass was signifi cantly positively correlated with its content in composts. Chromium content in plants was diversifi ed and on treatments was generally smaller than on mineral treatment or farmyard manure. Chromium absorbed by plants was stored mainly in the root systems, and over the norm content of this element found in vermicomposts did not cause its excessive accumulation in plant biomass.

  4. CEMS Investigations of Fe-Silicide Phases Formed by the Method of Concentration Controlled Phase Selection

    Energy Technology Data Exchange (ETDEWEB)

    Moodley, M. K.; Bharuth-Ram, K. [University of Durban-Westville, Physics Department (South Africa); Waal, H. de; Pretorius, R. [University of Stellenbosch, Physics Department (South Africa)

    2002-03-15

    Conversion electron Moessbauer spectroscopy (CEMS) measurements have been made on Fe-silicide samples formed using the method of concentration controlled phase selection. To prepare the samples a 10 nm layer of Fe{sub 30}M{sub 70} (M=Cr, Ni) was evaporated onto Si(100) surfaces, followed by evaporation of a 60 nm Fe layer. Diffusion of the Fe into the Si substrate and the formation of different Fe-Si phases was achieved by subjecting the evaporated samples to a series of heating stages, which consisted of (a) a 10 min anneal at 800 deg. C plus etch of the residual surface layer, (b) a further 3 hr anneal at 800 deg. C, (c) a 60 mJ excimer laser anneal to an energy density of 0.8 J/cm{sup 2}, and (d) a final 3 hr anneal at 800 deg. C. CEMS measurements were used to track the Fe-silicide phases formed. The CEMS spectra consisted of doublets which, based on established hyperfine parameters, could be assigned to {alpha}- or {beta}-FeSi{sub 2} or cubic FeSi. The spectra showed that {beta}-FeSi{sub 2} had formed already at the first annealing stage. Excimer laser annealing resulted in the formation of a phase with hyperfine parameters consistent with those of {alpha}-FeSi{sub 2}. A further 3 hr anneal at 800 deg. C resulted in complete reversal to the semiconducting {beta}-FeSi{sub 2} phase.

  5. Bioremediation of chromium in tannery effluent by microbial consortia

    African Journals Online (AJOL)

    USER

    2010-05-24

    May 24, 2010 ... Chromium is the most toxic and common among the heavy metal pollutants of industrial effluents .... Chromium (Cleseari and Green, 1995) included the oxidation of .... like uranium in its cells might also match with its tendency.

  6. Structure and magnetic properties of chromium doped cobalt molybdenum nitrides

    Science.gov (United States)

    Guskos, Niko; Żołnierkiewicz, Grzegorz; Typek, Janusz; Guskos, Aleksander; Adamski, Paweł; Moszyński, Dariusz

    2016-09-01

    Four nanocomposites containing mixed phases of Co3Mo3N and Co2Mo3N doped with chromium have been prepared. A linear fit is found for relation between Co2Mo3N and chromium concentrations. The magnetization in ZFC and FC modes at different temperatures (2-300 K) and in applied magnetic fields (up to 70 kOe) have been investigated. It has been detected that many magnetic characteristics of the studied four nanocomposites correlate not with the chromium concentration but with nanocrystallite sizes. The obtained results were interpreted in terms of magnetic core-shell model of a nanoparticle involving paramagnetic core with two magnetic sublattices and a ferromagnetic shell related to chromium doping.

  7. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers.

    Science.gov (United States)

    Zhang, Xu-Hui; Zhang, Xuan; Wang, Xu-Chu; Jin, Li-Fen; Yang, Zhang-Ping; Jiang, Cai-Xia; Chen, Qing; Ren, Xiao-Bin; Cao, Jian-Zhong; Wang, Qiang; Zhu, Yi-Min

    2011-04-12

    Occupational exposure to chromium compounds may result in adverse health effects. This study aims to investigate whether low-level hexavalent chromium (Cr(VI)) exposure can cause DNA damage in electroplating workers. 157 electroplating workers and 93 control subjects with no history of occupational exposure to chromium were recruited in Hangzhou, China. Chromium levels in erythrocytes were determined by graphite furnace atomic absorption spectrophotometer. DNA damage in peripheral lymphocytes was evaluated with the alkaline comet assay by three parameters: Olive tail moment, tail length and percent of DNA in the comet tail (tail DNA%). Urinary 8-OHdG levels were measured by ELISA. Chromium concentration in erythrocytes was about two times higher in electroplating workers (median: 4.41 μg/L) than that in control subjects (1.54 μg/L, P electroplating workers. Low-level occupational chromium exposure induced DNA damage.

  8. Wet skins tanning with chromium in dense CO2 under pressure

    International Nuclear Information System (INIS)

    Saldinari, L.; Dutel, Ch.; Perre, Ch.

    2000-01-01

    An ancestral gesture steadily improved through the centuries, the transformation of skins into leather includes several stages of which the principal one is tanning. Today, 90 % of the world's leather products are tanned with chromium. However, this stage is an environmental liability, and reducing the volume and chromium content of the waste has become a major issue. A first study on skin degreasing by dense CO 2 helped sharply reduce the volume of the fatty effluents. To replace water by dense CO 2 as the tanning medium was the logical next step. The present study was carried out in cooperation with three tanneries in the Rhone-Alpes-Auvergne area of France and a manufacturer of tanning materials. The difficulty of the study was the chemically opposed character of the two media involved. CO 2 is a non-polar and lipophilic solvent while inorganic chromium is insoluble. The water present in the treated skin is a polar and ionic reaction medium and one of the reagents in tanning chemistry. The mixture of these two partially miscible compounds gives a pH 3 by carbonic acid formation. Tanning is based on the reactivity of collagen, the main component of the skin, with hydroxylated complexes of chromium. Collagen is a protein containing some chemical functions, amines (R-NH 2 ) and carboxylic (R-COOH) for example. These functions impart an amphoteric character to the compound. The WERNER theory of complex salts explains the formation of hydroxylated complexes of chromium and their fixing on the carboxylic functions of collagen by oxolation. pH is the key parameter in tanning. The success of the process demands chromium impregnation without fixing it at a pH lower than 5, and then to fix it by increasing the pH. This opened two alternatives for transferring chromium in the skin: solubilize chromium in CO 2 via soluble organometallic complexes; or put the chromium salt into suspension without solubilizing it. The best results were obtained with the second option, which

  9. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Science.gov (United States)

    2010-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...

  10. Chromium Waste Treatment from Leather Manufacture Using Electron Beam Radiation Technic

    International Nuclear Information System (INIS)

    Didiek Herhady, R.; Sukarsono, R.

    2007-01-01

    Leather manufacture chromium waste treatment using chemical methods have an essential disadvantage, because of the production of the secondary contamination of wastes and separated sediments used by reagents. Therefore, a new technique is needed to solve this problem. The aim of the research to learn the advantages of electron beam radiation for chromium waste treatment. Water radiolysis can be produced by the interaction between electron beam and water or liquid substances. This phenomenon produces many reducing agents and ions that could reduce chromium concentrations in the liquid waste. Ethyl alcohol as a scavenger was added in the waste samples, then the pH of varied from 1, 4, 8 to 12, then were irradiated. Irradiation were done by Electron Beam Machine with dose 15, 25, and 35 kGy. After irradiation, chromium concentration in the samples were analyzed by AAS and UV-vis spectrophotometer. The results had shown that chromium could be reduced by high dose electron beam. The optimum reduction of chromium was achieved at liquid waste pH 8 and irradiation dose 35 kGy. (author)

  11. Radiation stability of chromium low alloys

    International Nuclear Information System (INIS)

    Chakin, V.P.; Kazakov, V.A.

    1990-01-01

    Radiation effect on the behaviour of mechanical properties and structure of chromium low alloys such as VKh-2K, KhP-3, VKhM in the wide range of temperatures and neutron fluences is studied. Radiation stability of the alloys is shown to be limited by low-temperature radiation embrittlement (LTRE), caused by radiation hardening as a result of formation of radiation-induced defects such as dislocation loops and vacancy voids in the structure. The methods for prevention LTRE of chromium alloys are suggested. 8 refs.; 8 figs

  12. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Liao, Y.P.; Jons, O.

    1997-01-01

    A sensitive method for the simultaneous determination of chromium(III) and chromium(VI) was chromatography and chemiluminescence detection. Two Dionex ion-exchange guard columns in series, CG5 and AG7, were used to separate chromium(III) from chromium(VI). Chromium(VI) was reduced by potassium......, the stabilities of reductant and luminol solutions were studied. The linear range of the calibration curve for chromium(III) and chromium(VI) was 1-400 mu g l(-1). The detection limit was 0.12 mu g l(-1) for chromium(III) and 0.09 mu g l(-1) for chromium(VI), respectively. The precision at the 20 mu g l(-1) level...... was 1.4% for chromium(III) and 2.5% for chromium(VI), respectively. The accuracy of the chromium(III) determination was determined by analysis of the NIST standard reference material 1643c, Trace elements in water with the result 19.1 +/- 1.0 mu g Cr(III) l(-1) (certified value 19.0 +/- 0.6 mu g Cr...

  13. Environmental exposure to arsenic and chromium in an industrial area

    OpenAIRE

    Vimercati, Luigi; Gatti, Maria F; Gagliardi, Tommaso; Cuccaro, Francesco; De Maria, Luigi; Caputi, Antonio; Quarato, Marco; Baldassarre, Antonio

    2017-01-01

    Arsenic and chromium are widespread environmental contaminants that affect global health due to their toxicity and carcinogenicity. To date, few studies have investigated exposure to arsenic and chromium in a population residing in a high-risk environmental area. The aim of this study is to evaluate the exposure to arsenic and chromium in the general population with no occupational exposure to these metals, resident in the industrial area of Taranto, Southern Italy, through biological monitor...

  14. Fractionation of chromium(III) compounds in biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Knoechel, A.; Weseloh, G. [Institute of Inorganic and Applied Chemistry, University of Hamburg (Germany)

    1999-03-01

    Many details of the metabolism and biological significance of trivalent inorganic cations have remained obscure up to now, not least because of the lack of appropriate tools for species analysis of these cations in biological matrices. In order to demonstrate the capabilities of reversed-phase ion-pair chromatography, the distribution of chromium species in brewer`s yeast, previously incubated with radiolabelled {sup 51}Cr chloride was investigated. Contradictory to the findings of most other researchers in this area, two low-molecular weight, anionic chromium species were detected in cytosolic yeast extracts. In conclusion, reversed-phase ion-pair chromatography may reveal new details of intracellular metabolism of chromium(III) and, possibly, other trivalent cations. (orig.) With 1 fig., 16 refs.

  15. Investigation of the surface composition of electrodeposited black chromium by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Survilienė, S.; Češūnienė, A.; Jasulaitienė, V.; Jurevičiūtė, I.

    2015-01-01

    Highlights: • Black chromium electrodeposited from a Cr(III) bath is composed of oxide, hydroxide and metallic chromium. • Metallic phase is absent in black chromium electrodeposited from a Cr(III) + ZnO bath. • The near-surface layer is rich in hydroxides, whereas oxides of both metals predominate in the depth of the coatings. - Abstract: The paper reviews black chromium electrodeposited from a trivalent chromium bath containing ZnO as a second main component. The chemical compositions of the top layers of the black chromium coatings were studied by the X-ray photoelectron spectroscopy method. The surface of black chromium was found to be almost entirely covered with organic substances. To gain information on the state of each element in the deposit bulk, the layer-by-layer etching of the black chromium surface with argon gas was used. Analysis of XPS spectra has shown that the top layers of black chromium without zinc are composed of various Cr(III) components, organic substances and metallic Cr, whereas metallic Cr is almost absent in black chromium containing some amount of Zn(II) compounds. The ratios of metal/oxide phases were found to be 10/27 and 2/28 for black chromium without and with zinc, respectively. It has been determined that owing to the presence of ZnO in the Cr(III) bath, the percentage of metallic chromium is substantially reduced in black chromium which is quite important for good solar selective characteristics of the coating. The results confirm some of earlier observations and provide new information on the composition of the near-surface layers

  16. Method for electrodeposition of nickel--chromium alloys and coating of uranium

    International Nuclear Information System (INIS)

    Stromatt, R.W.; Lundquist, J.R.

    1975-01-01

    High-quality electrodeposits of nickel-chromium binary alloys in which the percentage of chromium is controlled can be obtained by the addition of a complexing agent such as ethylenediaminetetraacetic disodium salt to the plating solution. The nickel-chromium alloys were found to provide an excellent hydrogen barrier for the protection of uranium fuel elements. (U.S.)

  17. Submicron Features in Higher Manganese Silicide

    Directory of Open Access Journals (Sweden)

    Yatir Sadia

    2013-01-01

    Full Text Available The world energy crisis had increased the demand for alternative energy sources and as such is one of the topics at the forefront of research. One way for reducing energy consumption is by thermoelectricity. Thermoelectric effects enable direct conversion of thermal into electrical energy. Higher manganese silicide (HMS, MnSi1.75 is one of the promising materials for applications in the field of thermoelectricity. The abundance and low cost of the elements, combined with good thermoelectric properties and high mechanical and chemical stability at high temperatures, make it very attractive for thermoelectric applications. Recent studies have shown that Si-rich HMS has improved thermoelectric properties. The most interesting of which is the unusual reduction in thermal conductivity. In the current research, transmission (TEM and scanning (SEM electron microscopy as well as X-ray diffraction methods were applied for investigation of the govern mechanisms resulting in very low thermal conductivity values of an Si-rich HMS composition, following arc melting and hot-pressing procedures. In this paper, it is shown that there is a presence of sub-micron dislocations walls, stacking faults, and silicon and HMS precipitates inside each other apparent in the matrix, following a high temperature (0.9 Tm hot pressing for an hour. These are not just responsible for the low thermal conductivity values observed but also indicate the ability to create complicate nano-structures that will last during the production process and possibly during the application.

  18. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Science.gov (United States)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  19. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Energy Technology Data Exchange (ETDEWEB)

    Volland, Stefanie, E-mail: Stefanie.Volland@stud.sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria); Luetz, Cornelius, E-mail: cornelius.luetz@uibk.ac.at [Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck (Austria); Michalke, Bernhard, E-mail: bernhard.michalke@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, German Research Centre for Environmental Health, Institute of Ecological Chemistry, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany); Luetz-Meindl, Ursula, E-mail: ursula.luetz-meindl@sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria)

    2012-03-15

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 {mu}M Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  20. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    International Nuclear Information System (INIS)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  1. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [University of Wisconsin-Madison; Mariani, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Company; Lahoda, Ed [Westinghouse Electric Company

    2018-03-31

    Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi2 coating) during clad quenching experiments is discussed in detail. Oxidation of bulk ZrSi2 was found to be negligible compared to Zircaloy-4 (a common Zr-alloy cladding material) and mechanical integrity of ZrSi2 was superior to that of bulk Zr2Si at high temperatures in ambient air. Very interesting and unique multi-nanolayered composite of ZrO2 and SiO2 were observed. Physical model for the oxidation has been proposed wherein Zr–Si–O mixture undergoes a spinodal phase decomposition into ZrO2 and SiO2, which is manifested as a nanoscale assembly of alternating layer of the two oxides. Steam corrosion at high pressure (10.3 MPa) led to weight loss of ZrSi2 and produced oxide scale with depletion of silicon, possibly attributed to volatile silicon hydroxide, gaseous silicon monoxide, and a solubility of silicon dioxide in water. Only Zircon phase (ZrSiO4) formed during oxidation of ZrSi2 at 1400°C in air, and allowed for immobilization silicon species in oxide scale in the aqueous environments. Zirconium-silicide coatings (on zirconium-alloy substrates) investigated in this study were deposited primarily using magnetron sputter deposition method and slurry method, although powder spray deposition processes cold spray and thermal spray methods were also investigated. The optimized ZrSi2 sputtered coating exhibited a highly protective nature at elevated temperatures in ambient air by mitigating oxygen permeation to the underlying zirconium alloy substrate. The high oxidation resistance of the coating has been shown to be due to nanocrystalline SiO2 and ZrSiO4 phases in the amorphous

  2. Composites having an intermetallic containing matrix

    International Nuclear Information System (INIS)

    Nagle, D.C.; Brupbacher, J.M.; Christodoulou, L.

    1990-01-01

    This paper describes a composite material. It comprises: a dispersion of in-situ precipitated second phase particles selected from the group consisting of borides, carbides, nitrides, and sulfides, in an intermetallic containing matrix selected from the group consisting of the aluminides, silicides, and beryllides of nickel, copper, titanium, cobalt, iron, platinum, gold, silver, niobium, tantalum, zinc, molybdenum, hafnium, tin, tungsten, lithium, magnesium, thorium, chromium, vanadium, zirconium, and manganese

  3. Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils.

    Science.gov (United States)

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2010-11-01

    Pollution of the agricultural land by the toxic chromium is a global threat that has accelerated dramatically since the beginning of industrial revolution. Toxic chromium affects both the microbial diversity as well as reduces the growth of the plants. Understanding the effect of the chromium reducing and plant growth promoting rhizobacteria on chickpea crop will be useful. Chromium reducing and plant growth promoting Bacillus species PSB10 significantly improved growth, nodulation, chlorophyll, leghaemoglobin, seed yield and grain protein of chickpea crop grown in the presence of different concentrations of chromium compared to the plants grown in the absence of bio-inoculant. The strain also reduced the uptake of chromium in roots, shoots and grains of chickpea crop compared to plants grown in the absence of bio-inoculant. This study thus suggested that the Bacillus species PSB10 due to its intrinsic abilities of growth promotion and attenuation of the toxic effects of chromium could be exploited for remediation of chromium from chromium contaminated sites. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. 76 FR 71926 - Defense Federal Acquisition Regulation Supplement: Applicability of Hexavalent Chromium Policy to...

    Science.gov (United States)

    2011-11-21

    ... 0750-AH39 Defense Federal Acquisition Regulation Supplement: Applicability of Hexavalent Chromium... the use of materials containing hexavalent chromium. DATES: Comment Date: Comments on the proposed... human health and environmental risks related to the use of hexavalent chromium. Hexavalent chromium is a...

  5. Determination of total chromium in tanned leather samples used in car industry.

    Science.gov (United States)

    Zeiner, Michaela; Rezić, Iva; Ujević, Darko; Steffan, Ilse

    2011-03-01

    Despite the high competition of synthetic fibers leather is nowadays still widely used for many applications. In order to ensure a sufficient stability of the skin matrix against many factors, such as microbial degradation, heat and sweat, a tanning process is indispensable. Using chromium (III) for this purpose offers a multitude of advantages, thus this way of tanning is widely applied. During the use of chromium tanned leather as clothing material as well as for decoration/covering purposes, chromium is extracted from the leather and may then cause nocuous effects to human skin, e.g. allergic reactions. Thus the knowledge of the total chromium content of leather samples expected to come into prolonged touch with human skin is very important. In car industry leather is used as cover for seats, steering wheel and gearshift lever The chromium contents often chromium tanned leather samples used in car industry were determined. First all samples were dried at 65 degrees C overnight and then cut in small pieces using a ceramic knife, weighed and analyzed by inductively coupled plasma--optical emission spectrometry (ICP-OES) after acidic microwave assisted digestion. The total chromium amounts found were in the range from 19 mg/g up to 32 mg/g. The extraction yield of chromium from leather samples in sweat is approximately 2-7%. Thus especially during long journeys in summer chromium can be extracted in amounts which may cause nocuous effects for example on the palm of the hands or on the back.

  6. Safety analysis of RSG-GAS Silicide core using one line cooling system

    International Nuclear Information System (INIS)

    Endiah-Puji-Hastuti

    2003-01-01

    In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor has been determined and to continuing this program, steady state and transient analysis were done. The analysis was done by means of a core thermal hydraulic code, COOLOD-N, and PARET. The codes solves core thermal hydraulic equation at steady state conditions and transient, respectively. By using silicide core data and coast down flow rate as the input, thermal hydraulics parameters such as fuel cladding and fuel meat temperatures as well as safety margin against flow instability were calculated. Imposing the safety criteria to the results of steady state and transient analysis, maximum permissible power for this operation was obtained as much as 17.1 MW

  7. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    International Nuclear Information System (INIS)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M.

    1998-01-01

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L 2,3 - and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi 2 sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi 2 . Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed

  8. Information profiles on potential occupational hazards: Inorganic chromium compounds. Draft report (Second)

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    Information profiles are presented for the following inorganic chromium compounds: chromic(VI) acid, chromic(III) hydroxide, chromic(III) oxide, chromic(III) sulfate, chromic(III) sulfate (basic), chromium dioxide, potassium dichromate(VI), lead chromate, sodium-chromate(VI), sodium-dichromate(VI), and zinc-yellow-chromate(VI). Biological effects of hexavalent chromium in humans included skin ulceration, dermatitis, nasal membrane irritation and ulceration, nasal septal perforation, rhinitis, nosebleed, nephritis, liver damage, epigastric pain, pulmonary congestion and edema, and erosion and discoloration of teeth. Chromium(VI) compounds caused mutations in a variety of systems. Exposure to trivalent chromium in the work place has caused contact dermatitis and chrome ulcers. Epidemiological studies indicated respiratory carcinogenicity among workers occupationally exposed during chromate production.

  9. Reduction of chromium (VI by the indirect action of Thiobacillus thioparus

    Directory of Open Access Journals (Sweden)

    E. Donati

    2003-03-01

    Full Text Available The microbial reduction of chromium(VI to chromium(III has been one of the most widely studied forms of metal bioremediation. Recently, we have found that Thiobacillus ferrooxidans and Thiobacillus thiooxidans, growing on elemental sulphur, can indirectly promote chromium(VI reduction by producing reducing agents such as sulphite and thiosulphate, which abiotically reduce chromium(VI. Those species of Thiobacillus are acidophilic bacteria which grow optimally at pH values lower than 4. However, most of those reducing agents are stabilised at higher pH values. Thus, the present paper reports on the ability to reduce chromium(VI using another specie of Thiobacilli, Thiobacillus thioparus, which is able to grow at pH close to 7.0. T. thioparus cultures were carried out in a fermentation vessel containing medium and sulphur as the sole energy source and maintained at 30ºC and 400 rpm. The pH was adjusted to 6.0, 7.0 or 8.0 and maintained with the automatic addition of KOH. Our results show high chromium (VI reduction values (close to 100% at the end of bacterial growth at the three pH values. The results of these experiments are very promising for development of a microbiological process to be used in the detoxification of chromium(VI-polluted effluents.

  10. Chromium Enrichment on P11 Ferritic Steel by Pack Cementation

    OpenAIRE

    Fauzi F. A.; Kurniawan T.; Salwani M. S.; Bin Y. S.; Harun W. S. W.

    2016-01-01

    The future thermal power plant is expected to operate at higher temperature to improve its efficiency and to reduce greenhouse gas emission. This target requires better corrosion properties of ferritic steels, which commonly used as materials for superheater and reheater of boiler tubes. In this work, chromium enrichment on the surface of ferritic steel is studied. The deposited chromium is expected to become a reservoir for the formation of chromia protective layer. Chromium was deposited on...

  11. Analysis of molybdenum, chromium, vanadium and iron by polarographic techniques

    International Nuclear Information System (INIS)

    Al-Zand, T.K.

    1986-01-01

    The application of direct current Tast polarograph, differential pulse polarography and phase-selective alternative current Tast polarography to the problem of determining molybdenum, chromium, vanadium and iron in various supporting electrolytes is reported. The effect of the supporting electrolyte on the wave/peak potential and sensitivity of the metal ion have been examined. The polarographic methods were applied for simultaneous determination of chromium (3)/chromium (6), vanadium (4), vanadium (5) and iron (2)/iron (3) in different supporting electrolytes

  12. Bioremediation of chromium in tannery effluent by microbial consortia

    African Journals Online (AJOL)

    Chromium is the most toxic and common among the heavy metal pollutants of industrial effluents. In the present work the chromium remediation ability of Bacillus subtilis, Pseudomonas aeruginosa and Saccharomyces cerevisiae in consortia and in their immobilized forms was studied and their efficiencies were compared.

  13. The removal of chromium from wastewaters by activated bentonite

    International Nuclear Information System (INIS)

    Mellah, A.; Chegrouche, S.; Ait Ghezala, H.; Douar, L.

    1994-12-01

    The adsorption of chromium onto activated bentonite has been investigated. Adsorption isotherms were analysed to obtain the Langmuir and freundlich constants. The operating parameters (i.e pH, contact time, solid/liquid ratio, temperatureand initial chromium concentration) influenced the rate of adsorption have been studied

  14. Electrothermal Vaporization-QQQ-ICP-MS for Determination of Chromium in Mainstream Cigarette Smoke Particulate.

    Science.gov (United States)

    Fresquez, Mark R; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Valentin-Blasini, Liza; Watson, Clifford H; Pappas, R Steven

    2017-05-01

    Chromium is transported in mainstream tobacco smoke at very low concentrations. However, when chromium is deposited too deeply in the lungs for mucociliary clearance, or is in a particle that is too large to pass directly through tissues, it bioaccumulates in the lungs of smokers. It is important to determine the concentrations of chromium that are transported in mainstream smoke. Several reliable studies have resulted in reports of chromium concentrations in smoke particulate that were below limits of detection (LODs) for the instruments and methods employed. In this study, electrothermal vaporization-triple quad-inductively coupled plasma-mass spectrometry (ETV-QQQ-ICP-MS) was chosen for determination of chromium concentrations in mainstream smoke because of the high sensitivity of ETV combined with QQQ-ICP-MS. The smoke from five reference, quality control, and commercial cigarettes was analyzed using ETV-QQQ-ICP-MS with isotope dilution for quantitative determination of chromium. The method LOD was sufficiently low that chromium concentrations in mainstream smoke could indeed be determined. The chromium concentrations in the smoke particulate were between 0.60 and 1.03 ng/cigarette. The range of chromium concentrations was at or below previously reported LODs. Determination of the oxidation state of the chromium transported in mainstream smoke would also be important, in consideration of the fact that both chromium(III) and chromium(VI) oxidation states cause inhalation toxicity, but chromium(VI) is also a carcinogen. It was possible to separate the oxidation states using ETV-QQQ-ICP-MS. However, determination of individual species at the levels found in mainstream smoke particulate matter was not possible with the present method. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Nanomagnetic domains of chromium deposited on vertically-aligned carbon nanotubes

    International Nuclear Information System (INIS)

    Wright, Andrew C.; Faulkner, Michael K.; Harris, Robert C.; Goddard, Alex; Abbott, Andrew P.

    2012-01-01

    The drive to create ever smaller magnetic memory devices has led to the development of new nanomagnetic domains on surfaces. This paper reports the development of nano-chromium magnetic domains obtained using electrodeposition on vertically aligned carbon nanofibers arrays. Attempts to achieve this using conventional aqueous solutions were unsuccessful even after thin nickel underlayers were applied. The use of a novel electrolyte, a deep eutectic solvent, made from choline chloride: chromium (III) chloride enabled highly conformal overcoatings of chromium on individual bare carbon nanotubes to be obtained. Very high aspect ratio metal microstructures could be obtained by this novel technology. Magnetic imaging of the coated nanoarrays showed there to be clear magnetic character to the coating when the thin coatings were applied but this disappeared when the deposits were thicker and more contiguous. - Highlights: ► Nanoscale chromium deposited from non-aqueous electrolyte shows magnetic behavior. ► Vertically aligned carbon nanotubes conformally coated with chromium metal. ► Ionic liquid electrolyte superior to chromic acid for plating high aspect ratio structures.

  16. Nanomagnetic domains of chromium deposited on vertically-aligned carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Andrew C., E-mail: a.wright@glyndwr.ac.uk [Advanced Materials Research Laboratory, Materials Science Research Center, Glyndwr University, Wrexham LL11 2AW (United Kingdom); Faulkner, Michael K., E-mail: m.faulkner@manchester.ac.uk [Manchester Materials Science Centre, University of Manchester, Grosvenor Street, Manchester M13 9PL (United Kingdom); Harris, Robert C.; Goddard, Alex; Abbott, Andrew P., E-mail: apa1@le.ac.uk [Department of Chemistry, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2012-12-15

    The drive to create ever smaller magnetic memory devices has led to the development of new nanomagnetic domains on surfaces. This paper reports the development of nano-chromium magnetic domains obtained using electrodeposition on vertically aligned carbon nanofibers arrays. Attempts to achieve this using conventional aqueous solutions were unsuccessful even after thin nickel underlayers were applied. The use of a novel electrolyte, a deep eutectic solvent, made from choline chloride: chromium (III) chloride enabled highly conformal overcoatings of chromium on individual bare carbon nanotubes to be obtained. Very high aspect ratio metal microstructures could be obtained by this novel technology. Magnetic imaging of the coated nanoarrays showed there to be clear magnetic character to the coating when the thin coatings were applied but this disappeared when the deposits were thicker and more contiguous. - Highlights: Black-Right-Pointing-Pointer Nanoscale chromium deposited from non-aqueous electrolyte shows magnetic behavior. Black-Right-Pointing-Pointer Vertically aligned carbon nanotubes conformally coated with chromium metal. Black-Right-Pointing-Pointer Ionic liquid electrolyte superior to chromic acid for plating high aspect ratio structures.

  17. Review article. Adverse hematological effects of hexavalent chromium: an overview

    Directory of Open Access Journals (Sweden)

    Ray Rina Rani

    2016-06-01

    Full Text Available Workers of tanneries, welding industries, factories manufacturing chromate containing paints are exposed to hexavalent chromium that increas¬es the risk of developing serious adverse health effects. This review elucidates the mode of action of hexavalent chromium on blood and its adverse effects. Both leukocyte and erythrocyte counts of blood sharply decreased in Swiss mice after two weeks of intraperitoneal treatment with Cr (VI, with the erythrocytes transforming into echinocytes. The hexavalent chromium in the blood is readily reduced to trivalent form and the reductive capacity of erythrocytes is much greater than that of plasma. Excess Cr (VI, not reduced in plasma, may enter erythrocytes and lymphocytes and in rodents it induces microcytic anemia. The toxic effects of chromium (VI include mitochondrial injury and DNA damage of blood cells that leads to carcinogenicity. Excess Cr (VI increases cytosolic Ca2+ activity and ATP depletion thereby inducing eryptosis. Se, vitamin C, and quercetin are assumed to have some protective effect against hexavalent chromium induced hematological disorders.

  18. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.

    Science.gov (United States)

    Zeng, Jing; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Sun, Zhao-Yong; Kida, Kenji

    2016-10-01

    In this study, a sulfur-oxidizing community was enriched from activated sludge generated in tannery wastewater treatment plants. Bioleaching of tannery sludge containing 0.9-1.2% chromium was investigated to evaluate the effectiveness of the enriched community, the effect of chromium binding forms on bioleaching efficiency, and the dominant microbes contributing to chromium bioleaching. Sludge samples inoculated with the enriched community presented 79.9-96.8% of chromium leaching efficiencies, much higher than those without the enriched community. High bioleaching efficiencies of over 95% were achieved for chromium in reducible fraction, while 60.9-97.9% were observed for chromium in oxidizable and residual fractions. Acidithiobacillus thiooxidans, the predominant bacteria in the enriched community, played an important role in bioleaching, whereas some indigenous heterotrophic species in sludge might have had a supporting role. The results indicated that A. thiooxidans-dominant enriched microbial community had high chromium bioleaching efficiency, and chromium binding forms affected the bioleaching performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Design and performance of chromium mist generator

    Directory of Open Access Journals (Sweden)

    Tirgar Aram

    2006-01-01

    Full Text Available Chromium mist generator is an essential tool for conducting researches and making science-based recommendations to evaluate air pollution and its control systems. The purpose of this research was to design and construct a homogenous chromium mist generator and the study of some effective factors including sampling height and distances between samplers in side-by-side sampling on chromium mist sampling method. A mist generator was constructed, using a chromium electroplating bath in pilot scale. Concentration of CrO3 and sulfuric acid in plating solution was 125 g L-1 and 1.25 g L-1, respectively. In order to create permanent air sampling locations, a Plexiglas cylindrical chamber (75 cm height, 55 cm i.d was installed the bath overhead. Sixty holes were produced on the chamber in 3 rows (each 20. The distance between rows and holes was 15 and 7.5 cm, respectively. Homogeneity and effective factors were studied via side-by-side air sampling method. So, 48 clusters of samples were collected on polyvinyl chloride (PVC filters housed in sampling cassettes. Cassettes were located in 35, 50, and 65 cm above the solution surface with less than 7.5 and/or 7.5-15 cm distance between heads. All samples were analyzed according to the NIOSH method 7600. According to the ANOVA test, no significant differences were observed between different sampling locations in side-by-side sampling (P=0.82 and between sampling heights and different samplers distances (P=0.86 and 0.86, respectively. However, there were notable differences between means of coefficient of variations (CV in various heights and distances. It is concluded that the most chromium mist homogeneity could be obtained at height 50 cm from the bath solution surface and samplers distance of < 7.5 cm.

  20. X-Ray Fluorescence Determination of the Surface Density of Chromium Nanolayers

    Science.gov (United States)

    Mashin, N. I.; Chernjaeva, E. A.; Tumanova, A. N.; Ershov, A. A.

    2014-01-01

    An auxiliary system consisting of thin-film layers of chromium deposited on a polymer film substrate is used to construct calibration curves for the relative intensities of the K α lines of chromium on bulk substrates of different elements as functions of the chromium surface density in the reference samples. Correction coefficients are calculated to take into account the absorption of primary radiation from an x-ray tube and analytical lines of the constituent elements of the substrate. A method is developed for determining the surface density of thin films of chromium when test and calibration samples are deposited on substrates of different materials.

  1. Extended followup of a cohort of chromium production workers

    Science.gov (United States)

    Lees, Peter St. John; Wang, Jing; Grace O'Leary, Keri

    2015-01-01

    Background The current study evaluates the mortality of 2,354 workers first employed at a Baltimore chromate production plant between 1950 and 1974. Methods The National Death Index (NDI Plus) was used to determine vital status and cause of death. Cumulative chromium (VI) exposure and nasal and skin irritation were evaluated as risk factors for lung cancer mortality. Results There are 91,186 person‐years of observation and 217 lung cancer deaths. Cumulative chromium (VI) exposure, nasal irritation, nasal perforation, nasal ulceration, and other forms of irritation (e.g., skin irritation) were associated with lung cancer mortality. Conclusion Cumulative chromium (VI) exposure was a risk factor for lung cancer death. Cancer deaths, other than lung cancer, were not significantly elevated. Irritation may be a possible mechanism for chromium (VI)‐induced lung cancer. Am. J. Ind. Med. 58:905–913, 2015. © 2015 The Authors. American Journal of Industrial Medicine Published by Wiley Periodicals, Inc. PMID:26041683

  2. Composite Coatings of Chromium and Nanodiamond Particles on Steel

    Directory of Open Access Journals (Sweden)

    Gidikova N.

    2017-12-01

    Full Text Available Chrome plating is used to improve the properties of metal surfaces like hardness, corrosion resistance and wear resistance in machine building. To further improve these properties, an electrodeposited chromium coating on steel, modified with nanodiamond particles is proposed. The nanodiamond particles (average size 4 nm measured by TEM are produced by detonation synthesis (NDDS. The composite coating (Cr+NDDS has an increased thickness, about two times greater microhardness and finer micro-structure compared to that of unmodified chromium coating obtained under the same galvanization conditions. In the microstructure of specimen obtained from chrome electrolyte with concentration of NDDS 25 g/l or more, “minisections” with chromium shell were found. They were identified by metallographic microscope and X-ray analyser on etched section of chromium plated sample. The object of further research is the dependence of the presence of NDDS in the composite coating from the nanodiamond particles concentration in the chroming electrolyte.

  3. FP corrosion dependence on carbon and chromium content in Fe-Cr steel

    International Nuclear Information System (INIS)

    Sasaki, Koei; Tanigaki, Takanori; Fukumoto, Ken-ichi; Uno, Masayoshi

    2015-01-01

    In an attempt to investigate Cs or Cs-Te corrosion dependence on chromium or carbon content in Fe-Cr steel, cesium and Cs-Te corrosion test were performed to three specimens, Fe-9Cr-0C, Fe-9Cr-0.14C and Fe-13Cr-0.14C, for 100 hours at 973K in simulated high burn-up fuel pin environment. Cesium corrosion depth has no dependence on chromium or carbon content in Fe-Cr steel. Cs-Te corrosion was appeared in only Fe-13Cr-0.14C which has chromium carbides ranged along grain boundary. Appearance of the Cs-Te corrosion was determined by distribution or arrangement of chromium carbides which depends on chromium and carbon content. (author)

  4. Study of surface segregation of Si on palladium silicide using Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Abhaya, S; Amarendra, G; Gopalan, Padma; Reddy, G L N; Saroja, S

    2004-01-01

    The transformation of Pd/Si to Pd 2 Si/Si is studied using Auger electron spectroscopy over a wide temperature range of 370-1020 K. The Pd film gets totally converted to Pd 2 Si upon annealing at 520 K, and beyond 570 K, Si starts segregating on the surface of silicide. It is found that the presence of surface oxygen influences the segregation of Si. The time evolution study of Si segregation reveals that segregation kinetics is very fast and the segregated Si concentration increases as the temperature is increased. Scanning electron microscopy measurements show that Pd 2 Si is formed in the form of islands, which grow as the annealing temperature is increased

  5. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  6. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  7. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  8. Program description for the qualification of CNEA - Argentina as a supplier of LEU silicide fuel and post-irradiation examinations plan for the first prototype irradiated in Argentina

    International Nuclear Information System (INIS)

    Rugirello, Gabriel; Adelfang, Pablo; Denis, Alicia; Zawerucha, Andres; Marco, Agustin di; Guillaume, Eduardo; Sbaffoni, Monica; Lacoste, Pablo

    1998-01-01

    In this report we present a description of the ongoing and future stages of the program for the qualification of CNEA, Argentina, as a supplier of low enriched uranium silicide fuel elements for research reactor. Particularly we will focus on the characteristics of the future irradiation experiment on a new detachable prototype, the post-irradiation examinations (PIE) plan for the already irradiated prototype PO4 and an overview of the recently implemented PIE facilities and equipment. The program is divided in several steps, some of which have been already completed. It concludes: development of the uranium silicide fissile material, irradiation and PIE of several full-scale prototypes. Important investments have been already carried out in the facilities for the FE production and PIE. (author)

  9. Silicide formation by Ar/sup +/ ion bombardment of Pd/Si

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R Y; Whang, C N; Kim, H K; Smith, R J

    1988-08-01

    Palladium films, 45 nm thick, evaporated on to Si(111) were irradiated to various doses with 78 keV Ar/sup +/ ions to promote silicide formation. Rutherford backscattering spectroscopy (RBS) shows that intermixing has occurred across the Pd/Si interface at room temperature. The mixing behaviour is increased with dose which coincides well with the theoretical model of cascade mixing. The absence of deep RBS tails for palladium and the small area of this for silicon spectra indicate that short-range mixing occurs. From the calculated damage profiles computed with TRIM code, the dominant diffusion species is found to be silicon atoms in the Pd/Si system. It is also found that the initial compound formed by Ar/sup +/ irradiation is Pd/sub 2/Si which increases with dose. At a dose of 1 x 10/sup 16/ Ar/sup +/ cm/sup -2/, a 48 nm thickness of Pd/sub 2/Si was formed by ion-beam mixing at room temperature.

  10. The ability of silicide coating to delay the catastrophic oxidation of vanadium under severe conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chaia, N., E-mail: nabil.chaia@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour – UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Mathieu, S., E-mail: stephane.mathieu@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour – UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Rouillard, F., E-mail: fabien.rouillard@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Vilasi, M., E-mail: michel.vilasi@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour – UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex (France)

    2015-02-15

    Highlights: • Oxidation protection is due to the formation of a pure silica layer. • V–4Cr–4Ti with V{sub x}Si{sub y} silicide coating withstands 400 1-h cycles (1100 °C-T{sub amb}) in air. • Three-point flexure testing at 950 °C and 75 MPa does not induce coating breakdown. • No delamination between coating and substrate is observed in any test. - Abstract: V–4Cr–4Ti vanadium alloy is a potential cladding material for sodium-cooled fast-neutron reactors (SFRs). However, its affinity for oxygen and the subsequent embrittlement that oxygen induces causes a need for an oxygen diffusion barrier, which can be obtained by manufacturing a multi-layered silicide coating. The present work aims to evaluate the effects of thermal cycling (using a cyclic oxidation device) and tensile and compressive stresses (using the three-point flexure test) on the coated alloy system. Tests were performed in air up to 1100 °C, which is 200 °C higher than the accidental temperature for SFR applications. The results showed that the VSi{sub 2} coating was able to protect the vanadium substrate from oxidation for more than 400 1-h cycles between 1100 °C and room temperature. The severe bending applied to the coated alloy at 950 °C using a load of 75 MPa did not lead to specimen breakage. It can be suggested that the VSi{sub 2} coating has mechanical properties compatible with the V–4Cr–4Ti alloy for SFR applications.

  11. Effect of chromium toxicity on germination and early seedling growth ...

    African Journals Online (AJOL)

    USER

    2010-07-19

    Jul 19, 2010 ... germination and early seedling growth of melon (Cucumis melo L.). Chromium ... chromium on seed germination and seedling growth- biomass in early ..... such critical regulatory mechanisms are likely to operate in seeds at ...

  12. Technical report: technical development on the silicide plate-type fuel experiment at nuclear safety research reactor

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Soyama, Kazuhiko; Ichikawa, Hiroki

    1991-08-01

    According to a reduction of fuel enrichment from 45 w/o 235 U to 20 w/o, an aluminide plate-type fuel used currently in the domestic research and material testing reactors will be replaced by a silicide plate-type one. One of the major concern arisen from this alternation is to understand the fuel behavior under simulated reactivity initiated accident (RIA) conditions, this is strongly necessary from the safety and licensing point of view. The in-core RIA experiments are, therefore, carried out at Nuclear Safety Research Reactor (NSRR) in Japan Atomic Energy Research Institute (JAERI). The silicide plate-type fuel consisted of the ternary alloy of U-Al-Si as a meat with uranium density up to 4.8 g/cm 3 having thickness by 0.51 mm and the binary alloy of Al-3%Mg as a cladding by thickness of 0.38 mm. Comparison of the physical properties of this metallic plate fuel with the UO 2 -zircaloy fuel rod used conventionally in commercial light water reactors shows that the heat conductivity of the former is of the order of about 13 times greater than the latter, however the melting temperature is only one-half (1570degC). Prior to in-core RIA experiments, there were some difficulties lay in our technical path. This report summarized the technical achievements obtained through our four years work. (J.P.N.)

  13. Detergents and bleaches are sources of chromium contact dermatitis in Israel

    DEFF Research Database (Denmark)

    Ingber, A; Gammelgaard, Bente; David, M

    1998-01-01

    Total chromium levels were determined in 38 detergents and 12 bleaches on the market in Israel (45 locally produced, 5 imported). The samples were analyzed by Zeeman-corrected graphite furnace atomic absorption spectrophotometry. Chromium levels were higher than 5 ppm in 28 (56%) of the 50 products...... ppm, it is concluded that these consumer products may be the cause of the high incidence of chromium sensitivity in Israel....

  14. Serum chromium concentrations in type 2 diabetic patients attending ...

    African Journals Online (AJOL)

    A highly refined diet that contains too few micronutrients has been recognized as the dominant factor in the rising incidence of diabetes and other insulin related conditions. Among the missing micronutrients, chromium has the greatest impact on insulin response. The objective of this study was to determine serum chromium ...

  15. Ferromagnetic properties of manganese doped iron silicide

    Science.gov (United States)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  16. Effect of supplementing finishing pigs with different sources of chromium on performance and meat quality

    Directory of Open Access Journals (Sweden)

    Louise Manha Peres

    2014-07-01

    Full Text Available The objective was to evaluate the dietary supplementation of different sources of chromium (inorganic: chromium sulfate and chelated: chromium-methionine during the finishing period of pigs to obtain improvements in the animal performance, and carcass and meat quality. The statistical design was randomized blocks, where 44 barrows, with an initial weight 60.49±5.12 kg, were divided into four blocks (heavier, heavy, light and lighter according to initial weight. The experimental diets were isoenergetic and isonutrient, except for the chromium level. The treatments were divided as follows: control (without chromium, control + 200 ppb of inorganic chromium (chromium sulfate, and control + 200 ppb of chelated chromium (chromium-methionine. In the performance measures, the stall was considered the experimental unit and in the blood parameters, carcass and meat evaluations each animal constituted the experimental unit. Animals were slaughtered when they reached the final average weight of 107.23±5.23 kg. Blood samples were collected and tested for blood parameters (cholesterol, triglycerides and glucose as well as carcass quality (hot and cold weights, yield, loin-eye area, muscle depth and backfat thickness and meat quality (initial and final pH, drip loss, color, chemical composition and lipid oxidation parameters. Chromium-methionine supplementation provides a greater daily weight gain only compared with the animals that are not supplemented with chromium, because feed conversion is better as compared with the other treatments. After 24 hours of storage, the meat from pigs supplemented either with chromium-methionine or with chromium sulfate presents lower lipid oxidation than that from non-supplemented animals. However, after three days of storage, only chromim-methionine is effective in reducing lipid oxidation.

  17. Anthropogenic Chromium Emissions in China from 1990 to 2009

    Science.gov (United States)

    Cheng, Hongguang; Zhou, Tan; Li, Qian; Lu, Lu; Lin, Chunye

    2014-01-01

    An inventory of chromium emission into the atmosphere and water from anthropogenic activities in China was compiled for 1990 through to 2009. We estimate that the total emission of chromium to the atmosphere is about 1.92×105t. Coal and oil combustion were the two leading sources of chromium emission to the atmosphere in China, while the contribution of them showed opposite annual growth trend. In total, nearly 1.34×104t of chromium was discharged to water, mainly from six industrial categories in 20 years. Among them, the metal fabrication industry and the leather tanning sector were the dominant sources of chromium emissions, accounting for approximately 68.0% and 20.0% of the total emissions and representing increases of15.6% and 10.3% annually, respectively. The spatial trends of Cr emissions show significant variation based on emissions from 2005 to 2009. The emission to the atmosphere was heaviest in Hebei, Shandong, Guangdong, Zhejiang and Shanxi, whose annual emissions reached more than 1000t for the high level of coal and oil consumption. In terms of emission to water, the largest contributors were Guangdong, Jiangsu, Shandong and Zhejiang, where most of the leather production and metal manufacturing occur and these four regions accounted for nearly 47.4% of the total emission to water. PMID:24505309

  18. Experimental skin deposition of chromium on the hands following handling of samples of leather and metal

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P.; Jellesen, Morten Stendahl

    2016-01-01

    Background: Chromium is an important skin sensitizer. Exposure to it has been regulated in cement, and recently in leather. Studies on the deposition of chromium ions on the skin as a result of handling different chromium-containing materials are sparse, but could improve the risk assessment...... of contact sensitization and allergic contact dermatitis caused by chromium. Objectives: To determine whether the handling of chromium-containing samples of leather and metal results in the deposition of chromium onto the skin. Methods: Five healthy volunteers participated. For 30 min, they handled samples...... of leather and metal known to contain and release chromium. Skin deposition of chromium was assessed with the acid wipe sampling technique. Results: Acid wipe sampling of the participants' fingers showed chromium deposition on the skin in all participants who had been exposed to leather (range 0.01–0.20 µg...

  19. 77 FR 6627 - National Emission Standards for Hazardous Air Pollutant Emissions: Hard and Decorative Chromium...

    Science.gov (United States)

    2012-02-08

    ... aluminum to provide resistance to corrosion. The chromium anodizing process is used to coat aircraft parts... Electroplating and Chromium Anodizing Tanks; and Steel Pickling-HCl Process Facilities and Hydrochloric Acid... Decorative Chromium Electroplating and Chromium Anodizing Tanks; and Steel Pickling-HCl Process Facilities...

  20. Optimization of chromium biosorption in aqueous solution by marine ...

    African Journals Online (AJOL)

    Optimization of a chromium biosorption process was performed by varying three independent variables pH (0.5 to 3.5), initial chromium ion concentration (10 to 30 mg/L), and Yarrowia lipolytica dosage (2 to 4 g/L) using a Doehlert experimental design (DD) involving response surface methodology (RSM). For the maximum ...

  1. First-principles investigations of the physical properties of binary uranium silicide alloys

    International Nuclear Information System (INIS)

    Yang, Jin; Long, Jianping; Yang, Lijun; Li, Dongmei

    2013-01-01

    Graphical abstract: Total density of states for USi 2 . Display Omitted -- Abstract: The structural, elastic properties and the Debye temperature of binary Uranium Silicide (U-Si) alloys are investigated by using the first-principles plane-wave pseudopotential density function theory within the generalized gradient approximation (GGA). The ground states properties are found to agree with the available experimental data. The mechanical properties like shear modulus, Young’s modulus, Poisson’s ratio σ and ratio B/G are also calculated. Finally, The averaged sound velocity (v m ), the longitudinal sound velocity (v l ), transverse sound velocity (v t ) and the Debye temperature (θ D ) are obtained. However, the theoretical values are slightly different from few existed experiment data because the latter was obtained at room temperature while the former one at 0 K

  2. Chromium in Postmortem Material.

    Science.gov (United States)

    Dudek-Adamska, Danuta; Lech, Teresa; Konopka, Tomasz; Kościelniak, Paweł

    2018-04-17

    Recently, considerable attention has been paid to the negative effects caused by the presence and constant increase in concentration of heavy metals in the environment, as well as to the determination of their content in human biological samples. In this paper, the concentration of chromium in samples of blood and internal organs collected at autopsy from 21 female and 39 male non-occupationally exposed subjects is presented. Elemental analysis was carried out by an electrothermal atomic absorption spectrometer after microwave-assisted acid digestion. Reference ranges of chromium in the blood, brain, stomach, liver, kidneys, lungs, and heart (wet weight) in the population of Southern Poland were found to be 0.11-16.4 ng/mL, 4.7-136 ng/g, 6.1-76.4 ng/g, 11-506 ng/g, 2.9-298 ng/g, 13-798 ng/g, and 3.6-320 ng/g, respectively.

  3. Chromium(VI) release from leather and metals can be detected with a diphenylcarbazide spot test

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten Stendahl

    2015-01-01

    Along with chromium, nickel and cobalt are the clinically most important metal allergens. However, unlike for nickel and cobalt, there is no validated colorimetric spot test that detects chromium. Such a test could help both clinicians and their patients with chromium dermatitis to identify culprit...... exposures. To evaluate the use of diphenylcarbazide (DPC) as a spot test reagent for the identification of chromium(VI) release. A colorimetric chromium(VI) spot test based on DPC was prepared and used on different items from small market surveys. The DPC spot test was able to identify chromium(VI) release...

  4. Alloying effect of 3D transition elements on the ductility of chromium

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Fukumori, J.; Morinaga, M.; Furui, M.; Nambu, T.; Sakaki, T.

    1996-01-01

    Chromium and its alloys have good corrosion resistance in corrosive environments and good oxidation resistance at high temperatures. In addition, they exhibit an excellent combination of low density and high creep strength. However, there is still a large barrier to the practical use because of their poor ductility at room temperature. According to recent investigations, an environmental effect was found on the ductility of high purity polycrystalline chromium. In this study, in order to find a way to improve the ductility of chromium at room temperature, the alloying effect on the ductility of chromium was investigated experimentally in several test environments

  5. THE ESTROGENS / CHROMIUM INTERACTION IN THE NITRIC OXIDE GENERATION.

    Science.gov (United States)

    Sawicka, Ewa; Piwowar, Agnieszka; Musiala, Tomasz; Dlugosz, Anna

    2017-05-01

    The interaction of estrogens with environmental toxins in free radicals generation: reactive oxygen species (ROS) or reactive nitrogen species (RNS) which participates in cancerogenesis is not yet recognized. Chromium(VI) is widely present in environment. One of its toxicity pathway is free radicals generation. Estrogens have the ability to scavenge free radicals, but may also act as prooxidants. Both chromium(VI) and estrogens are classified by International Agency for Research on Cancer (IARC) as carcinogens, so synergistic effect seems very dangerous. The interaction of chromium and estrogens in ROS generation are partly described but there are no reports on estrogen/chromium interaction on nitric oxide (NO) generation. The aim of the study was to examine the interaction of chromium(VI) and 17-p-estradiol (E2) on NO level in human blood as well as the role of E2 metabolites: 4-hydroxyestradiol (4-OHE2) and 16a-hydroxyestrone (16α-OHE1) in these processes. The NO level was estimated with the diagnostic kit (Nitric Oxide Colorimetric Detection Kit from Arbor Assays) in human blood in vitm. The results showed that Cr(VI) in used concentration (0.5; 1.0 and 5.0 gg/mL) decreases significantly NO level in blood, acting antagonistically to E2 and 4-OHE2. Estrogens (E2, 4-OHE2 and 16α-OHEI) do not protect against inhibiting effect of Cr(VI) on nitric oxide generation in blood because after combined exposure the decreased production of NO in blood was noted. In conclusion, presented results provide the information about the character of estrogen/Cr(VI) interaction in NO level in human blood. It is important knowledge for cardio protected effect e.g., hormone replacement therapy in environmental or occupational exposure to Cr(VI), chromium supplementation, also important for cancer risk evaluation.

  6. Work Environment Factors and Their Influence on Urinary Chromium Levels in Informal Electroplating Workers

    Science.gov (United States)

    Setyaningsih, Yuliani; Husodo, Adi Heru; Astuti, Indwiani

    2018-02-01

    One of the informal sector which absorbs labor was electroplating business. This sector uses chromium as coating material because it was strong, corrosion resistant and strong. Nonetheless hexavalent chromium is highly toxic if inhaled, swallowed and contact with skin. Poor hygiene, the lack of work environment factors and sanitation conditions can increase the levels of chromium in the body. This aimed of this study was to analyze the association between work environment factors and levels of urinary chromium in informal electroplating worker. A Purposive study was conducted in Tegal Central Java. The research subjects were 66 male workers. Chi Square analysis was used to establish an association between work environment factors and level of urinary chromium. There is a relationship between heat stress and wind direction to the chromium levels in urine (p 0.05). This explains that work environment factors can increase chromium levels in the urine of informal electroplating workers.

  7. Work Environment Factors and Their Influence on Urinary Chromium Levels in Informal Electroplating Workers

    Directory of Open Access Journals (Sweden)

    Setyaningsih Yuliani

    2018-01-01

    Full Text Available One of the informal sector which absorbs labor was electroplating business. This sector uses chromium as coating material because it was strong, corrosion resistant and strong. Nonetheless hexavalent chromium is highly toxic if inhaled, swallowed and contact with skin. Poor hygiene, the lack of work environment factors and sanitation conditions can increase the levels of chromium in the body. This aimed of this study was to analyze the association between work environment factors and levels of urinary chromium in informal electroplating worker. A Purposive study was conducted in Tegal Central Java. The research subjects were 66 male workers. Chi Square analysis was used to establish an association between work environment factors and level of urinary chromium. There is a relationship between heat stress and wind direction to the chromium levels in urine (p 0.05. This explains that work environment factors can increase chromium levels in the urine of informal electroplating workers.

  8. Effect of chromium on plants

    Energy Technology Data Exchange (ETDEWEB)

    Fuissello, N.; Novo, P.

    1976-01-01

    Chromium as K/sub 2/Cr/sub 2/O/sub 7/ and Cr(NO/sub 3/)/sub 3/, was tested for its toxicity, in Petri dishes, on 10 species of crop plants at 1 - 10 - 100 ppm. The total number of germinated seeds is not affected by Chromium salts up to 100 ppm, but the toxicity, measured as diminution of growth, is evident for all the tested plants, at 100 ppm, both with Cr/sup +3/ and Cr/sup +6/. Cr/sup +6/ at 1 ppm shows a negative effect on growth only for Linum usitatissimum, that could be used in phyto-test for polluted waters. Cr/sup +6/ was revealed more toxic than Cr/sup +3/ for plants, as reported for animals. 14 references, 6 figures, 3 tables.

  9. Chromium-nanodiamond coatings obtained by magnetron sputtering and their tribological properties

    Science.gov (United States)

    Atamanov, M. V.; Khrushchov, M. M.; Marchenko, E. A.; Shevchenko, N. V.; Levin, I. S.; Petrzhik, M. I.; Miroshnichenko, V. I.; Relianu, M. D.

    2017-07-01

    Peculiarities of structure, chemical and phase composition, micromechanical and tribological properties of chromium-based coatings obtained by magnetron-sputtering of composite and/or compacted chromium-nanodiamond targets have been investigated.

  10. [Nose disease caused by occupational exposure to chromium in the electroplating industry: cytomorphological aspects].

    Science.gov (United States)

    Bolla, I; Gariboldi, L M; Gabrielli, M; Baldo, D; Romanelli, A; Tuberti, E; Magnani, F

    1990-01-01

    Twenty-six workers were studied (9 chrome-platers exposed to chromium dioxide and 17 workers exposed to metallic chromium dust) in order to investigate the macroscopic and cytological changes of the nasal mucosa due to exposure to water-soluble hexavalent chromium or to metallic chromium dust in the electroplating industry and the role of different valencies in the onset of nasal disease. Experimental and epidemiological data have shown that hexavalent chromium, which has strong oxidative power, induces more noticeable toxic effects on tissues and mucous membranes than other compounds. The correlation between the degree of local toxic effects and the chemical state of chromium was demonstrated in both the macro- and the microscopic investigations and in particular in the cytological examinations: cases of atypia were found only in workers exposed to hexavalent chromium. Evidence of atypia raises the question of whether hexavalent chromium may act as a carcinogenic agent on the rhinosinusal mucosa. For this reason, the introduction of cytological nasal examination in health surveillance programmes for this category of workers acquires considerable importance. Sample collection from the nasal mucosa by brushing is the method of choice since it is simple, non-invasive and gives good diagnostic results.

  11. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  12. Process for forming a chromium diffusion portion and articles made therefrom

    Science.gov (United States)

    Helmick, David Andrew; Cavanaugh, Dennis William; Feng, Ganjiang; Bucci, David Vincent

    2012-09-11

    In one embodiment, a method for forming an article with a diffusion portion comprises: forming a slurry comprising chromium and silicon, applying the slurry to the article, and heating the article to a sufficient temperature and for a sufficient period of time to diffuse chromium and silicon into the article and form a diffusion portion comprising silicon and a microstructure comprising .alpha.-chromium. In one embodiment, a gas turbine component comprises: a superalloy and a diffusion portion having a depth of less than or equal to 60 .mu.m measured from the superalloy surface into the gas turbine component. The diffusion portion has a diffusion surface having a microstructure comprising greater than or equal to 40% by volume .alpha.-chromium.

  13. Chromium: A Stress-Processing Framework for Interactive Rendering on Clusters

    International Nuclear Information System (INIS)

    Humphreys, G.; Houston, M.; Ng, Y.-R.; Frank, R.; Ahern, S.; Kirchner, P.D.; Klosowski, J.T.

    2002-01-01

    We describe Chromium, a system for manipulating streams of graphics API commands on clusters of workstations. Chromium's stream filters can be arranged to create sort-first and sort-last parallel graphics architectures that, in many cases, support the same applications while using only commodity graphics accelerators. In addition, these stream filters can be extended programmatically, allowing the user to customize the stream transformations performed by nodes in a cluster. Because our stream processing mechanism is completely general, any cluster-parallel rendering algorithm can be either implemented on top of or embedded in Chromium. In this paper, we give examples of real-world applications that use Chromium to achieve good scalability on clusters of workstations, and describe other potential uses of this stream processing technology. By completely abstracting the underlying graphics architecture, network topology, and API command processing semantics, we allow a variety of applications to run in different environments

  14. Characterization of the Organic Component of Low-Molecular-Weight Chromium-Binding Substance and Its Binding of Chromium123

    Science.gov (United States)

    Chen, Yuan; Watson, Heather M.; Gao, Junjie; Sinha, Sarmistha Halder; Cassady, Carolyn J.; Vincent, John B.

    2011-01-01

    Chromium was proposed to be an essential element over 50 y ago and was shown to have therapeutic potential in treating the symptoms of type 2 diabetes; however, its mechanism of action at a molecular level is unknown. One chromium-binding biomolecule, low-molecular weight chromium-binding substance (LMWCr or chromodulin), has been found to be biologically active in in vitro assays and proposed as a potential candidate for the in vivo biologically active form of chromium. Characterization of the organic component of LMWCr has proven difficult. Treating bovine LMWCr with trifluoroacetic acid followed by purification on a graphite powder micro-column generates a heptapeptide fragment of LMWCr. The peptide sequence of the fragment was analyzed by MS and tandem MS (MS/MS and MS/MS/MS) using collision-induced dissociation and post-source decay. Two candidate sequences, pEEEEGDD and pEEEGEDD (where pE is pyroglutamate), were identified from the MS/MS experiments; additional tandem MS suggests the sequence is pEEEEGDD. The N-terminal glutamate residues explain the inability to sequence LMWCr by the Edman method. Langmuir isotherms and Hill plots were used to analyze the binding constants of chromic ions to synthetic peptides similar in composition to apoLMWCr. The sequence pEEEEGDD was found to bind 4 chromic ions per peptide with nearly identical cooperativity and binding constants to those of apoLMWCr. This work should lead to further studies elucidating or eliminating a potential role for LMWCr in treating the symptoms of type 2 diabetes and other conditions resulting from improper carbohydrate and lipid metabolism. PMID:21593351

  15. Portable x-ray fluorescence for the analysis of chromium in nail and nail clippings

    International Nuclear Information System (INIS)

    Fleming, David E.B.; Ware, Chris S.

    2017-01-01

    Assessment of chromium content in human nail or nail clippings could serve as an effective biomarker of chromium status. The feasibility of a new portable x-ray fluorescence (XRF) approach to chromium measurement was investigated through analysis of nail and nail clipping phantoms. Five measurements of 180 s (real time) duration were first performed on six whole nail phantoms having chromium concentrations of 0, 2, 5, 10, 15, and 20 µg/g. Using nail clippers, these phantoms were then converted to nail clippings, and assembled into different mass groups of 20, 40, 60, 80, and 100 mg for additional measurements. The amplitude of the chromium Kα characteristic x-ray energy peak was examined as a function of phantom concentration for all measurement conditions to create a series of calibration lines. The minimum detection limit (MDL) for chromium was also calculated for each case. The chromium MDL determined from the whole nail intact phantoms was 0.88±0.03 µg/g. For the clipping phantoms, the MDL ranged from 1.2 to 3.3 µg/g, depending on the mass group analyzed. For the 40 mg clipping group, the MDL was 1.2±0.1 µg/g, and higher mass collections did not improve upon this result. This MDL is comparable to chromium concentration levels seen in various studies involving human nail clippings. Further improvements to the portable XRF technique would be required to detect chromium levels expected from the lower end of a typical population. - Highlights: • Portable x-ray fluorescence (XRF) was explored as a technique to assess levels of chromium in human nails or nail clippings. • Results were found to depend on the mass of clipping sample provided. • Minimum detection limits for chromium were similar to concentration levels found in previous studies of human nail clippings.

  16. False-positive result when a diphenylcarbazide spot test is used on trivalent chromium-passivated zinc surfaces

    DEFF Research Database (Denmark)

    Reveko, Valeriia; Lampert, Felix; Din, Rameez Ud

    2018-01-01

    chromium passivation on zinc; however, subsequent analysis by XPS could not confirm the presence of chromium in a hexavalent state. Conclusions Unintended oxidation of DPC induced by atmospheric corrosion is suggested as a possible reason for the false-positive reaction of the DPC test on a trivalent......A colorimetric 1,5-diphenylcarbazide (DPC)-based spot test can be used to identify hexavalent chromium on various metallic and leather surfaces. DPC testing on trivalent chromium-passivated zinc surfaces has unexpectedly given positive results in some cases, apparently indicating the presence...... of hexavalent chromium; however, the presence of hexavalent chromium has never been confirmed with more sensitive and accurate test methods. Objectives To examine the presence of hexavalent chromium on trivalent chromium-passivated zinc surfaces with a DPC-based spot test. Methods A colorimetric DPC spot test...

  17. Bimetallic low thermal-expansion panels of Co-base and silicide-coated Nb-base alloys for high-temperature structural applications

    International Nuclear Information System (INIS)

    Rhein, R.K.; Novak, M.D.; Levi, C.G.; Pollock, T.M.

    2011-01-01

    Research highlights: → Low net thermal expansion bimetallic structural lattice constructed. → Temperatures on the order of 1000 deg. C reached. → Improved silicide coating for niobium alloy developed. - Abstract: The fabrication and high temperature performance of low thermal expansion bimetallic lattices composed of Co-base and Nb-base alloys have been investigated. A 2D sheet lattice with a coefficient of thermal expansion (CTE) lower than the constituent materials of construction was designed for thermal cycling to 1000 deg. C with the use of elastic-plastic finite element analyses. The low CTE lattice consisted of a continuous network of the Nb-base alloy C-103 with inserts of high CTE Co-base alloy Haynes 188. A new coating approach wherein submicron alumina particles were incorporated into (Nb, Cr, Fe) silicide coatings was employed for oxidation protection of the Nb-base alloy. Thermal gravimetric analysis results indicate that the addition of submicron alumina particles reduced the oxidative mass gain by a factor of four during thermal cycling, increasing lifetime. Bimetallic cells with net expansion of 6 x 10 -6 /deg. C and 1 x 10 -6 /deg. C at 1000 deg. C were demonstrated and their measured thermal expansion characteristics were consistent with analytical models and finite element analysis predictions.

  18. Study on chromium speciation in rats by the isotope tracer technique

    International Nuclear Information System (INIS)

    Feng Weiyue; Qian Qinfang; Ding Wenjun; Chai Zhifang

    1999-01-01

    The chromium speciation in the liver cytosol fraction, serum and urine of both normal and diabetic rats are studied by the enriched stable isotope tracer technique combined with the get chromatography and the neutron activating analysis (NAA). The results are as follows: (1) When Cr(III) enters the animal body, it is most likely to be combined with serum proteins. The chromium-protein compound acts as a carrier to transport Cr to the whole body. In the liver cytosol fraction, Cr (III) is also mainly combined with the high molecular weight protein and retains as chromium-protein substance in the liver. (2) A low molecular weight chromium-containing compound is found in all the liver cell cytosol fraction, serum and urine of the two group rats. (3) The diabetic rats lose more amount of low molecular weight of chromium compound in urine than the normal rats do. This might be a main reason to explain why the diabetic rats retain lower Cr in their bodies than the normal group

  19. Mixing of Al into uranium silicides reactor fuels

    International Nuclear Information System (INIS)

    Ding, F.R.; Birtcher, R.C.; Kestel, B.J.; Baldo, P.M.

    1996-11-01

    SEM observations have shown that irradiation induced interaction of the aluminum cladding with uranium silicide reactor fuels strongly affects both fission gas and fuel swelling behaviors during fuel burn-up. The authors have used ion beam mixing, by 1.5 MeV Kr, to study this phenomena. RBS and the 27 Al(p, γ) 28 Si resonance nuclear reaction were used to measure radiation induced mixing of Al into U 3 Si and U 3 Si 2 after irradiation at 300 C. Initially U mixes into the Al layer and Al mixes into the U 3 Si. At a low dose, the Al layer is converted into UAl 4 type compound while near the interface the phase U(Al .93 Si .07 ) 3 grows. Under irradiation, Al diffuses out of the UAl 4 surface layer, and the lower density ternary, which is stable under irradiation, is the final product. Al mixing into U 3 Si 2 is slower than in U 3 Si, but after high dose irradiation the Al concentration extends much farther into the bulk. In both systems Al mixing and diffusion is controlled by phase formation and growth. The Al mixing rates into the two alloys are similar to that of Al into pure uranium where similar aluminide phases are formed

  20. The commensurate spin excitation in chromium: A polarised neutron investigation

    International Nuclear Information System (INIS)

    Pynn, R.; Stirling, W.G.

    1991-01-01

    A polarised neutron experiment with neutron energy analysis has been performed with a single-Q sample of chromium in a large magnetic field. The 4-meV ''commensurate'' mode is found to involve spin fluctuations parallel to the ordered chromium moments. 8 refs., 3 figs

  1. Characterization of black and white chromium electrodeposition films. Surface and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, M.; Palomar-Pardave, M. [Departamento de Materiales, UAM-Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, Mexico D.F. 02200 (Mexico); Barrera, E. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana - Iztapalapa, Av. Rafael Atlixco No. 186, Col. Vicentina, Mexico, D.F. 09340 (Mexico); Huerta, L.; Muhl, S. [Instituto de Investigaciones en Materiales, UNAM, Mexico, D.F. 04510 (Mexico)

    2003-11-01

    Thin films of black and white chromium have been prepared by electrodeposition on stainless steel substrates. The potentiodynamic and potentiostatic technique was used in order to prepare these materials. XRD, XPS, SEM and spectral reflectance in the UV-Visible-near IR and medium IR ranges, for both films coatings were characterized. From the SEM analysis, it was found while the black chromium has a lamellar morphology that leads to a strong dispersion level, the white one has a flat morphology. The chemical composition of these thin films was determined by XRD and XPS technique. The XRD results showed that in both cases chromium is the main bulk chemical compound in both films. However, from XPS analysis of these surfaces, it was possible to determine that the most external layers of the films are made of different kinds of chromium compounds. The black chromium film has better optical properties to transform solar energy into thermal energy, and these properties remain practically constant even when heat treated to a high temperature, 400 C. On the other hand the white chromium film is a better substrate for hydrogen evolution reactions than the black one.

  2. Chromium removal from tannery wastewater by using of flying ash

    International Nuclear Information System (INIS)

    Gil P, E.; Saldarriaga M, C.

    1998-01-01

    A simple and economic method to chromium removal from tannery wastewater by means of flying ash is presented. The chromium removal operation is a discontinuous process that involve the mass of flying ash, time of contact and temperature or ph as variables, their which are optimized through Box-Wilson type experimental design. The results were successful: From an initial fluid whit chromium concentration of 1850m ppm, final concentrations of 0.008 ppm and 0.5 ppm of Cr+3 and Cr+6 respectively were achieved. These post-treatment concentrations are into the approved range definite by Government's Laws to this waste type

  3. Photocatalysis with chromium-doped TiO2: Bulk and surface doping

    KAUST Repository

    Ould-Chikh, Samy

    2014-04-15

    The photocatalytic properties of TiO2 modified by chromium are usually found to depend strongly on the preparation method. To clarify this problem, two series of chromium-doped titania with a chromium content of up to 1.56 wt % have been prepared under hydrothermal conditions: the first series (Cr:TiO2) is intended to dope the bulk of TiO2, whereas the second series (Cr/TiO2) is intended to load the surface of TiO2 with Cr. The catalytic properties have been compared in the photocatalytic oxidation of formic acid. Characterization data provides evidence that in the Cr/TiO2 catalysts chromium is located on the surface of TiO2 as amorphous CrOOH clusters. In contrast, in the Cr:TiO 2 series, chromium is mostly dissolved in the titania lattice, although a minor part is still present on the surface. Photocatalytic tests show that both series of chromium-doped titania demonstrate visible-light-driven photo-oxidation activity. Surface-doped Cr/TiO2 solids appear to be more efficient photocatalysts than the bulk-doped Cr:TiO2 counterparts. It\\'s classified! The photocatalytic properties of TiO2 modified by chromium depend strongly on the preparation method. To clarify this problem, two types of modified titania are discussed: one with CrIII doped in the bulk and one with CrOOH clusters on the TiO2 surface (see picture). Both series show visible-light-driven photo-oxidation activity. However, surface modification appears to be a more efficient strategy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. PHOTOCATALYTIC REMOVAL OF TR I- AND HEXA-VALENT CHROMIUM IONS FROM CHROME-ELECTROPL ATING WASTEWATER

    Directory of Open Access Journals (Sweden)

    Puangrat Kajitvichyanukul

    2017-11-01

    Full Text Available A novel technique based on photocatalysis was applied to eliminate chromium ions, a toxic hazardous environmental pollutant. The photoreduction of each species of chromium (total, hexavalent, and trivalent chromiums from chrome-electroplating wastewater was investigated using a titanium dioxide suspension under irradiation by a low-pressure mercury lamp. The initial concentration of total chromium was 300 mg/l. The applied conditions were the direct photocatalytic reduction process at pH 3.65 and the indirect photocatalytic reduction with added hole scavengers at the same solution pH. Results from both processes were comparatively discussed. Result show that chromium was not efficiently removed by direct photoreduction. In contrast, with the adding of hole scavengers, which were formate ions, the photoreduction of chromium was very favorable. Both hexavalent and trivalent chromiums were efficiently removed. The photocatalytic mechanism is purposed in this study.

  5. Effects of chromium picolinate supplementation in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Niladê Rosinski Rocha

    2014-10-01

    Full Text Available The effects of chromium picolinate in Type 2 diabetic patients are investigated.  Seventeen Type 2 diabetic patients were randomly divided into two groups. The experimental group received fiber-rich hypocaloric diet and chromium picolinate whereas the control group received fiber-rich hypocaloric diet and placebo. The chromium picolinate was offered twice a day at the dose of 100 μg. Anthropometric data such as blood pressure, fasting glycemia and glycated hemoglobin (HbA1c were measured and these parameters were evaluated again after 90 days. No difference was reported in rates of body weight, waist, hip, body mass index, blood pressure and fasting glycemia (Control vs. Experimental groups after treatment. However, a decrease (p = 0.0405 of HbA1c occurred in the experimental group when the pre- and post-treatment rates were compared. HbA1c data showed that chromium picolinate improved the glycemic control in Type 2 diabetes.

  6. [Research on the application of in-situ biological stabilization solidification technology in chromium contaminated site management].

    Science.gov (United States)

    Zhang, Jian-rong; Li, Juan; Xu, Wei

    2013-09-01

    In-situ biological stabilization solidification (SS) technology is an effective ground water risk control method for chromium contaminated sites. Through on-site engineering test, this paper has preliminarily validated the remediation effect of in-situ SS method on a southern chromium contaminated site. The engineering test site has an area of approximately 600 m2, and is located at the upstream of the contaminated area. Due to the severe contamination of chromium, the total chromium concentration reached up to 11,850 mg x kg(-1), while the hexavalent chromium concentration reached up to 349 mg x kg(-1), and the most severely contaminated soil had a depth of -0.5 - -2 m. Variations in hexavalent chromium and total chromium concentration in groundwater were observed through the injection of reducing agents and microbial regulators into the injection wells in the test site, and through the monitoring analysis at different time and different depth under the action of the injection agents. Results of the engineering test showed that the on-site SS technology significantly changed the chromium speciation in soil and then reduced the migration of chromium, thus the groundwater risk was reduced. The injected agents had a good effect of hexavalent chromium remediation in groundwater within the effective range of the injection wells, and the SS rate of hexavalent chromium into trivalent chromium reached 94%-99.9%, the SS rate of total chromium fixation reached 83.9%-99.8%. The test results are of significant reference value for the remediation of contaminated sites with features of shallow groundwater depth and soil mainly consisting of silty clay and sandy clay.

  7. Role of functional groups on Aspergillus niger biomass in the detoxification of hexavalent chromium.

    Science.gov (United States)

    Narvekar, Sneha; Vaidya, Varsha K

    2009-10-01

    Chromium (VI) contamination is not uncommon, especially near industries involved in leather tanning, chrome painting, metal cleaning and processing, wood preservation and alloy preparation. The mutagenic and carcinogenic properties of Chromium (VI) necessitate effective remedial processes. Difficulties associated with chemical and physical techniques to remediate a Chromium (VI) contaminated site to EPA recommended level (50 ppm), in addition to higher costs involved, assert the need for bioremedial measures. Biosorption can be one such solution to clean up heavy metal contamination. The objective of this study was to examine the main aspects of a possible strategy for the removal of Chromium (VI), employing Aspergillus niger biomass. The roles played by amines, carboxylic acids, phosphates, in Chromium (VI) biosorption were studied. Amino and the carboxy groups on the fungal cell wall play an important role in sorption. However, the role of carboxy group was far less than amino group. Surface adsorption of Chromium (VI) was also seen by scanning electron microscopy (SEM) thus indicating involvement of ion-exchange and surface adsorption mechanism in removal of Chromium (VI) ions.

  8. On the rational alloying of structural chromium-nickel steels

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1982-01-01

    A study was made on the influence of chromium nickel, phosphorus on the critical brittleness temperature of Cr-Ni-Mo-V structural steels. It is shown that the critical brittleness temperature of these steels increases at chromium content more over than 2% and nickel content more than 2% in the result of carbide transformations during tempering. Increase of nickel content in Cr-Ni-Mo-V-steels strengthens the tendency to embrittlement during slow cooling, from tempering temperature owing to development of process of phosphorus grain-boundary segregation. Two mentioned mechanisms of embrittlement determine principles of rational steel alloying. The extreme dependence of the critical brittleness temperature on chromium and nickel content, which enables to choose the optimum composition of Cr-Ni-Mo-V-steels, was established

  9. The nature of temper brittleness of high-chromium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.; Mishin, V.M.; Kislyuk, I.V. [Central Scientific-Research Institute for Ferrous Metallurgy, Moscow (Russian Federation)

    1995-03-01

    The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separation into layers of high-chromium ferrite and decomposition of the interstitial solid solution.

  10. [In vitro percutaneous absorption of chromium powder and the effect of skin cleanser].

    Science.gov (United States)

    D'Agostin, F; Crosera, M; Adami, G; Malvestio, A; Rosani, R; Bovenzi, M; Maina, G; Filon, F Larese

    2007-01-01

    Occupational chromium dermatitis occurs frequently among cement and metal workers, workers dealing with leather tanning and employees in the ceramic industry. The present study, using an in-vitro system, evaluated percutaneous absorption of chromium powder and the effect of rapid skin decontamination with a common detergent. Experiments were performed using the Franz diffusion cell method with human skin. Physiological solution was used as receiving phase and a suspension of chromium powder in synthetic sweat was used as donor phase. The tests were performed without or with decontamination using the cleanser 30 minutes after the start of exposure. The amount of chromium permeated through the skin was analysed by Inductively Coupled Plasma Atomic Emission Spectroscopy and Electro Thermal Atomic Absorption Spectroscopy. Speciation analysis and measurements of chromium skin content were also performed. We calculated a permeation flux of 0.843 +/- 0.25 ng cm(-2) h(-1) and a lag time of 1.1 +/- 0.7 h. The cleaning procedure significantly increased chromium skin content, whereas skin passage was not increased. These results showed that chromium powder can pass through the skin and that skin decontamination did not decrease skin absorption. Therefore, it is necessary to prevent skin contamination when using toxic agents.

  11. Iron-nickel-chromium alloys

    International Nuclear Information System (INIS)

    Karenko, M.K.

    1981-01-01

    A specification is given for iron-nickel-chromium age-hardenable alloys suitable for use in fast breeder reactor ducts and cladding, which utilize the gamma-double prime strengthening phase and are characterized in having a delta or eta phase distributed at or near grain boundaries. A range of compositions is given. (author)

  12. Polymorphisms of Selected DNA Repair Genes and Lung Cancer in Chromium Exposure.

    Science.gov (United States)

    Halasova, E; Matakova, T; Skerenova, M; Krutakova, M; Slovakova, P; Dzian, A; Javorkova, S; Pec, M; Kypusova, K; Hamzik, J

    2016-01-01

    Chromium is a well-known mutagen and carcinogen involved in lung cancer development. DNA repair genes play an important role in the elimination of genetic changes caused by chromium exposure. In the present study, we investigated the polymorphisms of the following DNA repair genes: XRCC3, participating in the homologous recombination repair, and hMLH1 and hMSH2, functioning in the mismatch repair. We focused on the risk the polymorphisms present in the development of lung cancer regarding the exposure to chromium. We analyzed 106 individuals; 45 patients exposed to chromium with diagnosed lung cancer and 61 healthy controls. Genotypes were determined by a PCR-RFLP method. We unravelled a potential for increased risk of lung cancer development in the hMLH1 (rs1800734) AA genotype in the recessive model. In conclusion, gene polymorphisms in the DNA repair genes underscores the risk of lung cancer development in chromium exposed individuals.

  13. Genotoxic Effects Due to Exposure to Chromium and Nickel Among Electroplating Workers.

    Science.gov (United States)

    El Safty, Amal Mohamed Kamal; Samir, Aisha Mohamed; Mekkawy, Mona Kamal; Fouad, Marwa Mohamed

    Using chromium and nickel for electroplating is important in many industries. This process induces variable adverse health effects among exposed workers. The aim of this study is to detect the genotoxic effects of combined exposure to chromium and nickel among electroplating workers. This study was conducted on 41 male workers occupationally exposed to chromium and nickel in the electroplating section of a factory compared to 41 male nonexposed individuals, where full history and clinical examination were performed. Laboratory investigations included measurement of serum chromium, nickel, 8-hydroxydeoxyguanosine (8-OHdG), and micronuclei were measured in buccal cells. In exposed workers, serum chromium ranged from 0.09 to 7.20 µg/L, serum nickel ranged from 1.20 to 28.00 µg/L, serum 8-OHdG ranged from 1.09 to12.60 ng/mL, and these results were statistically significantly increased compared to nonexposed group ( P electroplating industry are at risk of significant cytogenetic damage.

  14. Predicting chromium (VI) adsorption rate in the treatment of liquid ...

    African Journals Online (AJOL)

    Administrator

    The adsorption rate of chromium (VI) on commercial activated carbon during the ... time and initial chromium (VI) ion concentration. .... model, the separation factor r, according to Calvo et al (2001) cited .... Lead (II) and nickel (II) adsorption kinetics .... heavy metal by Talaromyces helicus: a trained fungus for copper and.

  15. 75 FR 18041 - Defense Federal Acquisition Regulation Supplement; Minimizing Use of Hexavalent Chromium (DFARS...

    Science.gov (United States)

    2010-04-08

    ...-AG35 Defense Federal Acquisition Regulation Supplement; Minimizing Use of Hexavalent Chromium (DFARS... Regulation Supplement (DFARS) to address requirements for minimizing the use of hexavalent chromium in... of items containing hexavalent chromium under DoD contracts unless an exception applies. DATES...

  16. Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters.

    Science.gov (United States)

    Henryk, Kołoczek; Jarosław, Chwastowski; Witold, Żukowski

    2016-01-01

    Batch adsorption experiments were performed for the removal of chromium (III) and chromium (VI) ions from aqueous solutions using Canadian peat and coconut fiber. The Langmuir model was used to describe the adsorption isotherm. The maximum adsorption for peat reached 18.75 mg/g for Cr(III) and 8.02 mg/g for Cr(VI), whereas the value for fiber was slightly higher and reached 19.21 mg/g for Cr(III) and 9.54 mg/g for Cr(VI). Both chromium forms could be easily eluted from the materials. The adsorption of chromium forms to organic matter could be explained in terms of formation of donor-acceptor chemical covalent bound with hydroxyl groups as ligands and chromium as the central atom in the formed complex. The chromate-reducing activities were monitored with the use of electron paramagnetic resonance spectroscopy. The results showed that both adsorption and reduction occurred simultaneously and the maximum adsorption capacity of hexavalent chromium being equal to 95% for fiber and 92% for peat was obtained at pH 1.5. The reduction of Cr(VI) in wastewaters began immediately and disappeared after 20 h. Both materials contained yeast and fungi species which can be responsible for reduction of chromium compounds, due to their enzymatic activity (Chwastowski and Koloczek (Acta Biochim Pol 60: 829-834, 2013)). The reduction of Cr(VI) is a two-phase process, the first phase being rapid and based on chemical reaction and the second phase having biological features. After the recovery step, both types of organic materials can be used again for chromium adsorption without any loss in the metal uptake. Both of the materials could be used as biofilters in the wastewater treatment plants.

  17. DNA-protein crosslinks in peripheral lymphocytes of individuals exposed to hexavalent chromium compounds.

    Science.gov (United States)

    Zhitkovich, A; Lukanova, A; Popov, T; Taioli, E; Cohen, H; Costa, M; Toniolo, P

    1996-01-01

    Abstract DNA-protein crosslinks were measured in peripheral blood lymphocytes of chrome-platers and controls from Bulgaria in order to evaluate a genotoxic effect of human exposure to carcinogenic Cr(VI) compounds. Chrome-platers and most of the unexposed controls were from the industrial city of Jambol; some additional controls were recruited from the seaside town of Burgas. The chrome-platers had significantly elevated levels of chromium in pre- and post-shift urine, erythrocytes and lymphocytes compared with the control subjects. The largest differences between the two groups were found in erythrocyte chromium concentrations which are considered to be indicative of Cr(VI) exposure. Despite the significant differences in internal chromium doses, levels of DNA-protein crosslinks were not significantly different between the combined controls and exposed workers. Individual DNA-protein crosslinks, however, correlated strongly with chromium in erythrocytes at low and moderate doses but at high exposures, such as among the majority of chrome-platers, these DNA adducts were saturated at maximum levels. The saturation of DNA-protein crosslinks seems to occur at 7-8 μg I-(1) chromium in erythrocytes whereas a mean erythrocyte chromium among the chrome platers was as high as 22.8 μg l(-1). Occupationally unexposed subjects exhibited a significant variability with respect to the erythrocyte chromium concentration, however erythrocyte chromium levels correlated closely with DNA-protein crosslinks in lymphocytes. The controls from Jambol had higher chromium concentrations in erythrocytes and elevated levels of DNA-protein crosslinks compared with Burgas controls. Occupational exposure to formaldehyde among furniture factory workers did not change levels of DNA-protein crosslinks in peripheral lymphocytes. DNA-protein crosslink measurements showed a low intraindividual variability and their levels among both controls and exposed indivduals were not affected by smoking, age

  18. Corrosion behavior of porous chromium carbide in supercritical water

    International Nuclear Information System (INIS)

    Dong Ziqiang; Chen Weixing; Zheng Wenyue; Guzonas, Dave

    2012-01-01

    Highlights: ► Corrosion behavior of porous Cr 3 C 2 in various SCW conditions was investigated. ► Cr 3 C 2 is stable in SCW at temperature below 420–430 °C. ► Cracks and disintegration were observed at elevated testing temperatures. ► Degradation of Cr 3 C 2 is related to the intermediate product CrOOH. - Abstract: The corrosion behavior of highly porous chromium carbide (Cr 3 C 2 ) prepared by a reactive sintering process was characterized at temperatures ranging from 375 °C to 625 °C in a supercritical water environment with a pressure of 25–30 MPa. The test results show that porous chromium carbide is stable in SCW environments at temperatures under 425 °C, above which disintegration occurred. The porous carbide was also tested under hydrothermal conditions of pressures between 12 MPa and 50 MPa at constant temperatures of 400 °C and 415 °C, respectively. The pressure showed little effect on the stability of chromium carbide in the tests at those temperatures. The mechanism of disintegration of chromium carbide in SCW environments is discussed.

  19. Nickel silicide formation in silicon implanted nickel

    Science.gov (United States)

    Rao, Z.; Williams, J. S.; Pogany, A. P.; Sood, D. K.; Collins, G. A.

    1995-04-01

    Nickel silicide formation during the annealing of very high dose (≥4.5×1017 ions/cm2) Si implanted Ni has been investigated, using ion beam analytical techniques, electron microscopy, and x-ray diffraction analysis. An initial amorphous Si-Ni alloy, formed as a result of high dose ion implantation, first crystallized to Ni2Si upon annealing in the temperature region of 200-300 °C. This was followed by the formation of Ni5Si2 in the temperature region of 300-400 °C and then by Ni3Si at 400-600 °C. The Ni3Si layer was found to have an epitaxial relationship with the substrate Ni, which was determined as Ni3Si∥Ni and Ni3Si∥Ni for Ni(100) samples. The minimum channeling yield in the 2 MeV He Rutherford backscattering and channeling spectra of this epitaxial layer improved with higher annealing temperatures up to 600 °C, and reached a best value measured at about 8%. However, the epitaxial Ni3Si dissolved after long time annealing at 600 °C or annealing at higher temperatures to liberate soluble Si into the Ni substrate. The epitaxy is attributed to the excellent lattice match between the Ni3Si and the Ni. The annealing behavior follows the predictions of the Ni-Si phase diagram for this nickel-rich binary system.

  20. Reducing elution in anion exchange chromatography as a pretreatment of colorimetry of chromium(VI) and vanadium(V)

    International Nuclear Information System (INIS)

    Shigetomi, Yasumasa; Hatamoto, Takeji; Nagoshi, Kimie; Yamashige, Takashi.

    1976-01-01

    In order to increase the selectivity of the colorimetry of chromium and vanadium, the separation by means of anion exchange chromatography was tested. The column, phi 0.8x5.0 cm packing (50--100 mesh) Dowex 1x4 anion exchange resin was used for the separation of chromium. The solution containing chromium (VI), zinc(II), cadmium(II), iron(III) and reducing organic substances contained in industrial waste water was introduced into the column and then the substances other than chromium(VI) were removed by washing the column with distilled water. Finally chromium(VI) was reduced to chromium(III) by hydroxylamine in the eluent and eluted. The concentration of sulfuric acid and hydroxylamine in the eluent were 0.1 mol/l and 0.001 mol/l respectively. For analyzing chromium(III) in the mixture of chromium(VI) and chromium(III), after removal of chromium(VI) it should be oxidized to chromium(VI) anion with the oxidant, e.g., sodium peroxide or hydrogen peroxide, before introducing it into the column. In terms of the pretreatment by using the acetate form resin column, chromium (VI) and chromium(III) can be determined separately in the solution whose concentration ranges from 0.05 ppm to 0.5 ppm despite the presence of contaminants, which interfere with the colorimetric determination of chromium(VI) using diphenylcarbonohydrazide, in the original solution. The separation of vanadium(V) in the solution containing copper(II), cobalt(II) and etc. was made using the mixed solution of hydrochloric acid (2 mol/l) and hydroxylamine (0.2 mol/l) similarly to chromium(VI). In terms of the similar pretreatment vanadium could be determined precisely as far as 0.1 ppm by the colorimetry using 4-(2-pyridylazo) resorcinol despite the presence of copper(II), cobalt(II), nickel(II) and etc in the original solution. (auth.)

  1. Solution-phase synthesis of chromium-functionalized single-walled carbon nanotubes

    KAUST Repository

    Kalinina, Irina V.; Al-Hadeethi, Yas Fadel; Bekyarova, Elena; Zhao, Chao; Wang, Qingxiao; Zhang, Xixiang; Al-Zahrani, Ali; Al-Agel, Faisal Abdulaziz M; Al-Marzouki, Fahad M.; Haddon, Robert C.

    2015-01-01

    The solution phase reactions of single-walled carbon nanotubes (SWNTs) with Cr(CO)6 and benzene-Cr(CO)3 can lead to the formation of small chromium clusters. The cluster size can be varied from less than 1 nm to about 4 nm by increasing the reaction time. TEM images suggest that the clusters are deposited predominantly on the exterior walls of the nanotubes. TGA analysis was used to obtain the Cr content and carbon to chromium ratio in the Cr-complexed SWNTs. It is suggested that the carbon nanotube benzenoid structure templates the condensation of chromium atoms and facilitates the loss of carbon monoxide leading to well defined metal clusters.

  2. Solution-phase synthesis of chromium-functionalized single-walled carbon nanotubes

    KAUST Repository

    Kalinina, Irina V.

    2015-03-01

    The solution phase reactions of single-walled carbon nanotubes (SWNTs) with Cr(CO)6 and benzene-Cr(CO)3 can lead to the formation of small chromium clusters. The cluster size can be varied from less than 1 nm to about 4 nm by increasing the reaction time. TEM images suggest that the clusters are deposited predominantly on the exterior walls of the nanotubes. TGA analysis was used to obtain the Cr content and carbon to chromium ratio in the Cr-complexed SWNTs. It is suggested that the carbon nanotube benzenoid structure templates the condensation of chromium atoms and facilitates the loss of carbon monoxide leading to well defined metal clusters.

  3. Bioremediation of the Soils Contaminated with Cadmium and Chromium, by the Earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Elham Aseman- Bashiz1

    2014-07-01

    Full Text Available One of the most important environmental problems in the world is the soils contamination by heavy metals in the industrial areas, and especially the contamination of the agricultural lands. The use of earthworms to bioremediate the soils results in reducing the pollutants concentration through a bioaccumulation mechanism on the contaminants in the earthworm's body. Hence, the present study aimed to prove the biological effectiveness of Eisenia fetida earthworms in bioremediation the soils contaminated with chromium and cadmium. Concentration of chromium and cadmium pollution in soil was determined to be 0.04 mg/g and 0.08 mg/g respectively. 30 worms were added to 500 g soil samples. Chromium and cadmium concentration in soil and in the body of worms was measured at two time periods of 21 and 42 days. To measure the concentration of chromium and cadmium we used ICP spectrometry. Software in usage was SPSS version 17. There was a significant correlation between the reduction of chromium and cadmium metals in the soils and the accumulation of chromium and cadmium metals in the worm’s body. A significant decline of chromium levels of the soil was observed in the days 21 and 42 during the study compared to initial amount of 0.1 mg/g. on the other hand chromium concentration of the soil decreased from 0.14 mg/g to 0.1 mg/g after 42 days. Comparison of mortality in two different time periods showed that by passing the time and by increase in soil chromium and cadmium concentrations the death toll of worms rises. The increased mortality of worms in the soil at a concentration of 0.08 mg/g of chromium, say that using the worms for bioremediation is not recommended at such concentration of chromium but using the worms for the removal of cadmium at concentrations of 0.04 mg/g and 0.08 mg/g in the soil is recommended.

  4. Protective claddings for high strength chromium alloys

    Science.gov (United States)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  5. Disturbance response indicators of Impatiens walleriana exposed to benzene and chromium.

    Science.gov (United States)

    Campos, V; Lessa, S S; Ramos, R L; Shinzato, M C; Medeiros, T A M

    2017-08-03

    The purpose of this study was to evaluate the remediation potential and disturbance response indicators of Impatiens walleriana exposed to benzene and chromium. Numerous studies over the years have found abundant evidence of the carcinogenicity of benzene and chromium (VI) in humans. Benzene and chromium are two toxic industrial chemicals commonly found together at contaminated sites, and one of the most common management strategies employed in the recovery of sites contaminated by petroleum products and trace metals is in situ remediation. Given that increasing interest has focused on the use of plants as depollution agents, direct injection tests and benzene misting were performed on I. walleriana to evaluate the remediation potential of this species. I. walleriana accumulated hexavalent chromium, mainly in the root system (164.23 mg kg -1 ), to the detriment of the aerial part (39.72 mg kg -1 ), and presented visible damage only at the highest concentration (30 mg L -1 ). Unlike chromium (VI), chromium (III) was retained almost entirely by the soil, leaving it available for removal by phytotechnology. However, after the contamination stopped, I. walleriana responded positively to the detoxification process, recovering its stem stiffness and leaf color. I. walleriana showed visible changes such as leaf chlorosis during the ten days of benzene contamination. When benzene is absorbed by the roots, it is translocated to and accumulated in the plant's aerial part. This mechanism the plant uses ensures its tolerance to the organic compound, enabling the species to survive and reproduce after treatment with benzene. Although I. walleriana accumulates minor amounts of hexavalent chromium in the aerial part, this amount suffices to induce greater oxidative stress and to increase the amount of hydrogen peroxide when compared to that of benzene. It was therefore concluded that I. walleriana is a species that possesses desirable characteristics for phytotechnology.

  6. Stabilized chromium oxide film

    Science.gov (United States)

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  7. Preparation of Silica Modified with 2-Mercaptoimidazole and its SorptionProperties of Chromium(III

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2009-01-01

    Full Text Available Modified silica gel was prepared to remove the heavy metal of chromium(III from water sample. Silica gel was used as supporting material and the 2-mercaptoimidazole was immobilized onto surface silica so that the silica would have selective properties to adsorb the heavy metal chromium(III through the formation of coordination compound between the 2-mercaptoimidazole and chromium(III. The characterization of modified silica gel was carried out by analyzing the Fourier Transform Infrared Spectrum of this material in order to ensure the immobilization of 2-mercaptoimidazole onto the surface. The effect of pH solution, initial concentration of chromium(III, and interaction time were investigated in batch mode to find the adsorption properties of chromium(III onto modified silica. The condition optimum of these parameters was applied to determine the removal percentage of chromium(III in water sample using the modified silica gel

  8. Effect of nickel and chromium exposure on buccal cells of electroplaters.

    Science.gov (United States)

    Qayyum, Saba; Ara, Anjum; Usmani, Jawed Ahmad

    2012-02-01

    The electroplating industry commonly involves the use of nickel and chromium. An assessment of the genotoxic effects of these metals can be carried out by micronucleus (MN) test in buccal cells. Other nuclear anomalies (NA) observed in buccal cells viz., karyorrhexis, pyknosis and karyolysis are also the indicators of genotoxicity. The current study aims at determining the extent of genotoxic damage in relation to the duration of exposure to nickel and hexavalent chromium via micronuclei induction and other nuclear anomalies. The present investigation included 150 subjects of which 50 individuals with no history of nickel/chromium exposure (Group I) were taken as control, 50 electroplaters exposed to nickel and hexavalent chromium for duration of less than 10 years (Group II) and 50 electroplaters exposed for ≥10 years (Group III) were included. Slides of buccal cells were prepared and the frequency of MN (‰) and NA (‰) were calculated. ANOVA was applied to test significance. Results were considered significant at p exposure increased. Plasma nickel and chromium levels were also determined which showed a positive correlation with frequency MN and other nuclear abnormalities (p < 0.01).

  9. Irradiation of an uranium silicide prototype in RA-3 reactor

    International Nuclear Information System (INIS)

    Calabrese, R.; Estrik, G.; Notari, C.

    1996-01-01

    The factibility of irradiation of an uranium silicide (U 3 Si 2 ) prototype in the RA-3 reactor was studied. The standard RA-3 fuel element uses U 3 O 8 as fissible material. The enrichment of both standard and prototype is the same: 20% U 235 and also the frame geometry and number of plates is identical. The differences are in the plate dimensions and the fissile content which is higher in the prototype. The cooling conditions of the core allow the insertion of the prototype in any core position, even near the water trap, if the overall power is kept below 5Mw. Nevertheless, the recommendation was to begin irradiation near the periphery and later on move the prototype towards more central positions in order to increase the burnup rate. The prototype was effectively introduced in a peripheral position and the thermal fluxes were measured between plates with the foil activation technique. These were also evaluated with the fuel management codes and a reasonable agreement was found. (author). 5 refs., 3 figs., 3 tabs

  10. Chromium effect on the Young modulus and thermoelastic coefficient of elinvars

    International Nuclear Information System (INIS)

    Sazykina, A.V.; Khomenko, O.A.

    1976-01-01

    The effect was studied of thermal and thermal-mechanical treatment upon the elastic modules and its temperature coefficient in iron-nickel Elinvars with different chromium contents (from 0 to 6.7%). It has been shown that doping with chromium results in an increase in the modulus of elasticity of Elinvars after hardening. The elastic modulus of alloys containing no chromium increases after a cold plastic deformation (drawing), whereas that of chromous Elinvars decreases upon such a treatment. It has been established that the elastic modulus of hardened and cold drawn after hardening Elinvars increases upon ageing. An increase in chromium content in iron-nickel Elinvars reduces the effect of the temperature of ageing upon the thermoelastic coefficient during the usual heat treatment and the thermalmechanical treatment and lowers its sensitivity to the influence of an external magnetic field [ru

  11. Effect of yttria addition on the stability of porous chromium oxide ceramics in supercritical water

    International Nuclear Information System (INIS)

    Dong Ziqiang; Chen Weixing; Zheng Wenyue; Guzonas, Dave

    2013-01-01

    Porous chromium oxide (Cr 2 O 3 ) ceramics were prepared by oxidizing highly porous chromium carbides that were obtained by a reactive sintering method, and were evaluated at temperatures ranging from 375 °C to 625 °C in supercritical water (SCW) environments with a fixed pressure of 25–30 MPa. Reactive element yttrium was introduced to the porous oxide ceramic by adding various amounts of yttria of 5, 10 and 20 wt.%, respectively, prior to reactive sintering. The exposure in SCW shows that the porous chromium oxide is quite stable in SCW at 375 °C. However, the stability decreased with increasing temperature. It is well known that chromium oxide can be oxidized to soluble chromium (VI) species in SCW when oxygen is present. Adding yttria increases the stability of chromium oxide in SCW environments. However, adding yttria higher than 5 wt.% increased the weight loss of porous chromium oxide samples because of the direct dissociation of Y 2 O 3 in SCW.

  12. Residual effects of chromium gettering on the outgassing behavior of a stainless steel vacuum vessel

    International Nuclear Information System (INIS)

    Simpkins, J.E.; Blanchard, W.R.; Dylla, H.F.; LaMarche, P.H.

    1986-05-01

    Laboratory experiments that compared chromium and titanium gettering showed that with chromium, unlike titanium, there is no appreciable diffusion of hydrogen isotopes into the film. It was concluded from these experiments that chromium gettering on tokamaks is more desirable than titanium gettering, since chromium should provide higher hydrogen recycling, minimize tritium inventories, and avoid hydrogen embrittlement. Large-scale sublimation sources, consisting of hollow elongated chromium spheres with internal resistance heaters, were developed for use on tokamaks. These sources have been used to getter both the Impurity Study Experiment (ISX) and the Tokamak Fusion Test Reactor (TFTR). In both bases, significant effects on plasma performance were observed, including lower Z/sub eff/ and radiated power losses and an increase in the density limit. In TFTR these effects were observed for a period of weeks after a single chromium deposition. This paper reports the results of laboratory experiments made to examine the gettering characteristics of chromium films under conditions simulating those in TFTR

  13. Genesis and transport of hexavalent chromium in the system ophiolitic rocks - groundwater

    Science.gov (United States)

    Shchegolikhina, Anastasia; Guadagnini, Laura; Guadagnini, Alberto

    2015-04-01

    Our study aims at contributing to the quantification and characterization of chromium transport processes from host rocks and soil matrices to groundwater. We focus on dissolved hexavalent chromium detected in groundwaters of geological regions with ophiolitic rocks (ophiolites and serpentinites) inclusions due to its critical ecological impact. (Oze et al., 2004). Despite the large number of analyses on the occurrence of high concentrations of hazardous hexavalent chromium ions in natural waters, only few studies were performed with the objective of identifying and investigating the geochemical reactions which could occur in the natural system rock - groundwater - dissolved chromium (Fantoni et al., 2002, Stephen and James, 2004, Lelli et al., 2013). In this context, there is a need for integration of results obtained from diverse studies in various regions and settings to improve our knowledge repository. Our theoretical analyses are grounded and driven by practical scenarios detected in subsurface reservoirs exploited for civil and industrial use located in the Emilia-Romagna region (Italy). Available experimental datasets are complemented with data from other international regional-scale settings (Altay mountains region, Russia). Modeling of chromium transformation and migration particularly includes characterization of the multispecies geochemical system. A key aspect of our study is the analysis of the complex competitive sorption processes governing heavy metal evolution in groundwater. The results of the research allow assessing the critical qualitative features of the mechanisms of hexavalent chromium ion mobilization from host rocks and soils and the ensuing transformation and migration to groundwater under the influence of diverse environmental factors. The study is then complemented by the quantification of the main sources of uncertainty associated with prediction of heavy metal contamination levels in the groundwater system explored. Fantoni, D

  14. Black and green pigments based on chromium-cobalt spinels

    Energy Technology Data Exchange (ETDEWEB)

    Eliziario, Sayonara A., E-mail: sayonaraea@iq.unesp.br [Departamento de Fisico-Quimica, Instituto de Quimica, UNESP - Univ Estadual Paulista, Araraquara, SP (Brazil); Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Andrade, Jeferson M. de [Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Lima, Severino J.G. [Departamento de Engenharia Mecanica, CT, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Paskocimas, Carlos A. [Universidade Federal do Rio Grande do Norte, CT, Natal, RN (Brazil); Soledade, Luiz E.B. [Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Hammer, P.; Longo, E. [Departamento de Fisico-Quimica, Instituto de Quimica, UNESP - Univ Estadual Paulista, Araraquara, SP (Brazil); Souza, Antonio G.; Santos, Ieda M.G. [Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil)

    2011-09-15

    Highlights: {yields} Co(Co{sub 2-x}Cr{sub x})O{sub 4} powders with different chromium concentrations (x = 0, 0.25 and 1) were prepared by the polymeric precursor method. {yields} Co(CoCr)O{sub 4} and Co(Co{sub 1.75}Cr{sub 0.25})O{sub 4} displayed a dark color and CoCr{sub 2}O{sub 4} was green. {yields} The colors were related to the different oxidation states of Cr and Co. {yields} Cobalt enrichment result in an increasing presence of Co(III) and a decrease amount of Cr(VI). - Abstract: Chromium and cobalt oxides are widely used in the manufacture of industrial pigments. In this work, the Co(Co{sub 2-x}Cr{sub x})O{sub 4} powders with different chromium concentrations (x = 0, 0.25 and 1) were synthesized by the polymeric precursor method, heat treatment between 600 and 1000 deg. C. These powders were characterized by X-ray diffraction, infrared spectroscopy, colorimetry, UV-vis absorption and X-ray photoelectron spectroscopies. Even with the addition of chromium, the XRD patterns revealed that all powders crystallize in a single spinel cubic structure. The spinels with higher cobalt amount, Co(CoCr)O{sub 4} and Co(Co{sub 1.75}Cr{sub 0.25})O{sub 4}, displayed a dark color, without the Co{sup 3+} reduction observed in Co{sub 3}O{sub 4} between 900 and 950 deg. C. The spinel with higher chromium amount, CoCr{sub 2}O{sub 4}, was green. The colors were directly related to the occupation of tetrahedral and octahedral sites by the chromophores, as well as to the different oxidation states of chromium and cobalt. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels within the band gap. X-ray photoelectron spectroscopy confirmed an increasing presence of Co(III) and a decreasing amount of Cr(VI) with cobalt enrichment.

  15. Bioaccumulation of chromium and nickel in the tissues of Barb us ...

    African Journals Online (AJOL)

    1996-04-25

    Apr 25, 1996 ... S, marequensis suggested no serious chromium or nickel pollution in the study area. "To \\~hom . ... The toxicity of chromium and nickel to fish, as individual elements, is ..... its fitness for human consumption). One should also ...

  16. Comparison of chromium-51 and iron-59 for estimating erythrocyte survival in the cat

    International Nuclear Information System (INIS)

    Liddle, C.G.; Putnam, J.P.; Berman, E.; Fisher, H.; Ostby, J.

    1984-01-01

    Erythrocyte survival studies were conducted on eight normal, healthy, 1-year-old male specific-pathogen-free cats using both chromium-51 and iron-59 simultaneously. The chromium-51 procedure gave a half-life value of 11.1 +/- 0.9 days. This was considerably lower than would be expected on the basis of the experimentally determined iron-59 erythrocyte survival time of 51.2 +/- 14.9 days. The results of this study indicated that there was considerable loss of the chromium-51 label in the cat other than that from senescence alone. An analysis of the chromium-51 disappearance curve indicated that there were two exponential disappearance rates for the chromium-51 label and, in the absence of cell death, approximately 67% of the label was lost with a rate constant of 0.02 per day and 33% was lost with a rate constant of 0.1 per day. An equation is presented which models the loss of chromium-51 label which could be used to calculate erythrocyte survival from a chromium-51 disappearance curve. Blood volume measurements, hemograms, bone marrow differential results, and iron kinetic values also were determined and the results presented. While a reasonable approximation of the erythrocyte life span could be made by correcting the chromium-51 values for losses other than senescence, the iron-59 procedure would be the preferred method in cats

  17. Effect of compost and humic acid in mobility and concentration of cadmium and chromium in soil and plant

    Directory of Open Access Journals (Sweden)

    A. Chaab

    2016-12-01

    Full Text Available The effect of compost and humic acid in mobility and concentration of cadmium and chromium in contaminated soil were investigated. Experiment was carried out with three levels of soil cadmium and chromium and two organic matters (compost and humic acid. The study was performed in a randomized complete block design with 3 replicates. Results indicated that application of organic substances enhanced movement of cadmium and chromium in soil column. Humic acid is more effective than compost on the mobility of cadmium and chromium in soil. Mobility of cadmium and chromium in the lower depths of soil column were increased. Cadmium and chromium concentration in shoots and roots enhanced due to increasing those concentration in soil and application of organic substances. Increase in cadmium in shoots can be attributed to the high mobility of this element in maize plant. Maize root chromium concentration was greater than shoot chromium concentration. Humic acid was more effective than compost as cadmium and chromium concentration in root and shoot was concerned. Low mobility of chromium in plant and accumulation of chromium in roots can be reasons of decreasing of chromium concentration in shoot of plant and its bioaccumulation.

  18. Chromium(VI) release from leather and metals can be detected with a diphenylcarbazide spot test.

    Science.gov (United States)

    Bregnbak, David; Johansen, Jeanne D; Jellesen, Morten S; Zachariae, Claus; Thyssen, Jacob P

    2015-11-01

    Along with chromium, nickel and cobalt are the clinically most important metal allergens. However, unlike for nickel and cobalt, there is no validated colorimetric spot test that detects chromium. Such a test could help both clinicians and their patients with chromium dermatitis to identify culprit exposures. To evaluate the use of diphenylcarbazide (DPC) as a spot test reagent for the identification of chromium(VI) release. A colorimetric chromium(VI) spot test based on DPC was prepared and used on different items from small market surveys. The DPC spot test was able to identify chromium(VI) release at 0.5 ppm without interference from other pure metals, alloys, or leather. A market survey using the test showed no chromium(VI) release from work tools (0/100). However, chromium(VI) release from metal screws (7/60), one earring (1/50), leather shoes (4/100) and leather gloves (6/11) was observed. We found no false-positive test reactions. Confirmatory testing was performed with X-ray fluorescence (XRF) and spectrophotometrically on extraction fluids. The use of DPC as a colorimetric spot test reagent appears to be a good and valid test method for detecting the release of chromium(VI) ions from leather and metal articles. The spot test has the potential to become a valuable screening tool. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Predicting chromium (VI) adsorption rate in the treatment of liquid ...

    African Journals Online (AJOL)

    The adsorption rate of chromium (VI) on commercial activated carbon during the treatment of the flocculation effluent of liquid-phase oil-based drill-cuttings has been investigated in terms of contact time and initial chromium (VI) ion concentration. Homogenizing 1 g of the activated carbon with 100 ml of the flocculation ...

  20. Improved meta-analytic methods show no effect of chromium supplements on fasting glucose.

    Science.gov (United States)

    Bailey, Christopher H

    2014-01-01

    The trace mineral chromium has been extensively researched over the years in its role in glucose metabolism. Dietary supplement companies have attempted to make claims that chromium may be able to treat or prevent diabetes. Previous meta-analyses/systematic reviews have indicated that chromium supplementation results in a significant lowering of fasting glucose in diabetics but not in nondiabetics. A meta-analysis was conducted using an alternative measure of effect size, d(ppc2) in order to account for changes in the control group as well as the chromium group. The literature search included MEDLINE, the Cochrane Controlled Trials Register, and previously published article reviews, systematic reviews, and meta-analyses. Included studies were randomized, placebo-controlled trials in the English language with subjects that were nonpregnant adults, both with and without diabetes. Sixteen studies with 809 participants (440 diabetics and 369 nondiabetics) were included in the analysis. Screening for publication bias indicated symmetry of the data. Tests of heterogeneity indicated the use of a fixed-effect model (I² = 0 %). The analysis indicated that there was no significant effect of chromium supplementation in diabetics or nondiabetics, with a weighted average effect size of 0.02 (SE = 0.07), p = 0.787, CI 95 % = -0.12 to 0.16. Chromium supplementation appears to provide no benefits to populations where chromium deficiency is unlikely.

  1. Chromium Chemistry in the Subsurface

    Science.gov (United States)

    Chromium (VI) (Cr) is carcinogenic and a threat to human and ecological health. There are adequate and acceptable methods to characterize and assess Cr contaminated sites. Cr chemistry in the environment is well understood. There are documented methods to address Cr contaminat...

  2. Dietary Chromium Supplementation for Targeted Treatment of Diabetes Patients with Comorbid Depression and Binge Eating

    Science.gov (United States)

    Brownley, Kimberly A.; Boettiger, Charlotte A.; Young, Laura; Cefalu, William T.

    2015-01-01

    Dietary chromium supplementation for the treatment of diabetes remains controversial. The prevailing view that chromium supplementation for glucose regulation is unjustified has been based upon prior studies showing mixed, modest-sized effects in patients with type 2 diabetes (T2DM). Based on chromium's potential to improve insulin, dopamine, and serotonin function, we hypothesize that chromium has a greater glucoregulatory effect in individuals who have concurrent disturbances in dopamine and serotonin function – that is, complex patients with comorbid diabetes, depression, and binge eating. We propose, as suggested by the collective data to date, the need to go beyond the “one size fits all” approach to chromium supplementation and put forth a series of experiments designed to link physiological and neurobehavioral processes in the chromium response phenotype. PMID:25838140

  3. Influence of Chromium and Molybdenum on the Corrosion of Nickel Based Alloys

    International Nuclear Information System (INIS)

    Hayes, J R; Gray, J; Szmodis, A W; Orme, C A

    2005-01-01

    The addition of chromium and molybdenum to nickel creates alloys with exceptional corrosion resistance in a diverse range of environments. This study examines the complementary roles of Cr and Mo in Ni alloy passivation. Four nickel alloys with varying amounts of chromium and molybdenum were studied in 1 molar salt solutions over a broad pH range. The passive corrosion and breakdown behavior of the alloys suggests that chromium is the primary element influencing general corrosion resistance. The breakdown potential was nearly independent of molybdenum content, while the repassivation potential is strongly dependant on the molybdenum content. This indicates that chromium plays a strong role in maintaining the passivity of the alloy, while molybdenum acts to stabilize the passive film after a localized breakdown event

  4. Chromium, Nickel and Zinc Levels from Canned and Non-Canned ...

    African Journals Online (AJOL)

    Heavy metals (Chromium, Nickel and Zinc) were determined from both canned and non-canned beverages sold in Samaru, Zaria, Kaduna State, Nigeria. Concentration of Chromium was found to range from 0.528 - 1.509mg/L for canned and 0.176 - 1.358mg/L for non-canned beverages, Nickel concentration was found to ...

  5. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be safely...

  6. Contribution of photoelectron spectrometry and infrared spectrometry to the study of various oxidised forms of chromium

    International Nuclear Information System (INIS)

    Feve, L.

    1985-03-01

    Securate knowledge of internal surface of primary coolant circuits of PWR is required for an estimation of dissolution of used materials and for estimation of decontamination efficiency. The binding energies of various electron levels of chromium were determined by photoelectron spectrometry (ESCA), both for the metal and for certain compounds. Because of the intensities of the signals obtained the 2 p 3/2 level alone can be used for analytical purposes. Owing to a possible interference between this level due to hexavalent chromium and a satellite peak caused by trivalent chromium the method is not able to show up small amounts of chromium VI in chromium III. Simultaneous detection of the hexavalent and trivalent forms was achieved by infrared spectrometry. The problem of revealing traces of chromium VI in surface layers of trivalent chromium oxide has thus been solved [fr

  7. Kinetics and mechanism of oxidation of carbidized electrolytic chromium coatings

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Yar-Mukhamedov, Sh.Kh.

    1978-01-01

    Thermal stability carbidized electrolytic chromium coatings has been studied depending on the conditions of their formation; the specific features of the mechanism of oxidation at 1200 deg in an air atmosphere have been elucidated. It has been established that kinetics of high temperature oxidation of the coatings depends essentially on the conditions of their formation and on the composition of steel to which the coating is applied. It has been shown that two oxidation mechanisms are possible: by diffusion of the residual chromium through a carbide layer along the carbide grain boundaries outwards or, when there is no residual chromium, by chemical reaction of carbon combustion and oxidation of the liberated chromium. The comparison of oxidation kinetic curves of the samples of 38KhMYuA, 35KhGSA, and DI-22 steels with and without coating has shown that the coatings under study have a better protective effect on 38KhMYuA steel than on 35KhGSA, although without coating oxidability of the first steel is higher than that of the second

  8. Determination of the vacancy formation enthalpy in chromium by positron annihilation

    International Nuclear Information System (INIS)

    Loper, G.D.; Smedskjaer, L.C.; Chason, M.K.; Siegel, R.W.

    1985-01-01

    Doppler broadening of the positron annihilation lineshape in 99.99 at. % pure chromium was measured over the temperature range 296 to 2049 0 K. The chromium sample was encapsulated in sapphire owing to its high vapor pressure near melting. Saturation-like behavior of the lineshape was observed near the melting temperature (2130 0 K). A two-state trapping model fit to the data yielded a vacancy formation enthalpy of 2.0 +- 0.2 eV. This result is discussed in relation to extant empirical relations for vacancy migration and self-diffusion in metals and to data from previous self-diffusion and annealing experiments in chromium. It is concluded that the observed vacancy ensemble is unlikely to be responsible for the measured self-diffusion behavior. The implications of the present results in terms of our understanding of mechanisms for self-diffusion in chromium and other refractory bcc metals are discussed

  9. Evaluation Of Radioactivity Concentration In The Primary Cooling Water System Of The RSG-GAS During Operation With 30% Silicide Fuels

    International Nuclear Information System (INIS)

    Hartoyo, Unggul; Udiyani, P.M.; Setiawanto, Anto

    2001-01-01

    The evaluating radioactivity concentration in the primary cooling water of the RSG-GAS during operation with 30% silicide fuels has been performed. The method of the research is sampling of primary cooling water during operation of the reactor and calculation of its radioactivity concentration. Based on the data obtained from calculation, the identified nuclides in the water are, Mn-56, Sb-124, Sb-122 and Na-24, under the limit of safety value

  10. Simultaneously Recovering High-Purity Chromium and Removing Organic Pollutants from Tannery Effluent

    Directory of Open Access Journals (Sweden)

    Jie Zong

    2016-01-01

    Full Text Available Chromium pollution is a serious issue because of carcinogenic toxicities of the pollutants and low recovery rate of chromium because of the presence of organic, such as protein and fat. In this work, high recovery rate and high purity of the chromium ion were successfully prepared by the way of acid enzyme, flocculant, and Fenton oxidation. The experiments were characterized by TG, TOC, UV-VIS, and SEM. In the work, the tannery waste chrome liquor was used as experimental material. The results showed that the percentage of reduction of TOC in the tannery waste chrome liquor by method of Fenton oxidation, acid enzyme, and the flocculant was 71.15%, 65.26%, and 22.05%, respectively. Therefore, the organism content of chrome tanning waste liquid was greatly reduced through the pretreatment. And the application experiment showed that the properties and grain surface and fibers of the tanned leather with commercial chromium powder and chrome tanning agent prepared from the chromium waste liquid treated with Fenton are nearly the same.

  11. Sequestration of chromium by exopolysaccharides of Nostoc and Gloeocapsa from dilute aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mona [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India); Kaushik, Anubha [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India)], E-mail: aks_10@yahoo.com; Somvir,; Bala, Kiran; Kamra, Anjana [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India)

    2008-09-15

    This article reports the chromium removal potential of exopolysaccharides (EPS) of two indigenously isolated cyanobacterial strains, Gloeocapsa calcarea and Nostoc punctiforme. The biosorption was studied by varying pH from 2 to 6 and initial chromium concentration from 5 to 20 mg/L to find out the optimized conditions for maximum chromium removal by EPS. Two equilibrium models, Langmuir and Freundlich, were used to explain these results. The Freundlich model was found to be better applicable to the experimental data as compared to Langmuir as inferred from high value of coefficient of determination whereas the optimal conditions were found to be same for the two (pH 2 and initial chromium concentration 20 mg/L). EPS production by the two strains was also studied which was found to be higher for Gloeocapsa. On the basis of experimental results and model parameters, it can be inferred that the EPS extracted from Nostoc has comparatively high biosorption capacity and can be utilized for the removal of chromium from dilute aqueous solution. Adsorption of chromium on EPS was further confirmed by surface morphology observed in scanning electron micrographs.

  12. Sequestration of chromium by exopolysaccharides of Nostoc and Gloeocapsa from dilute aqueous solutions

    International Nuclear Information System (INIS)

    Sharma, Mona; Kaushik, Anubha; Somvir,; Bala, Kiran; Kamra, Anjana

    2008-01-01

    This article reports the chromium removal potential of exopolysaccharides (EPS) of two indigenously isolated cyanobacterial strains, Gloeocapsa calcarea and Nostoc punctiforme. The biosorption was studied by varying pH from 2 to 6 and initial chromium concentration from 5 to 20 mg/L to find out the optimized conditions for maximum chromium removal by EPS. Two equilibrium models, Langmuir and Freundlich, were used to explain these results. The Freundlich model was found to be better applicable to the experimental data as compared to Langmuir as inferred from high value of coefficient of determination whereas the optimal conditions were found to be same for the two (pH 2 and initial chromium concentration 20 mg/L). EPS production by the two strains was also studied which was found to be higher for Gloeocapsa. On the basis of experimental results and model parameters, it can be inferred that the EPS extracted from Nostoc has comparatively high biosorption capacity and can be utilized for the removal of chromium from dilute aqueous solution. Adsorption of chromium on EPS was further confirmed by surface morphology observed in scanning electron micrographs

  13. 29 CFR 1910.1026 - Chromium (VI).

    Science.gov (United States)

    2010-07-01

    ... allows employees to consume food or beverages at a worksite where chromium (VI) is present, the employer... effect on productivity. 2. Plating Bath Surface Tension Management and Fume Suppression • Lower surface...

  14. Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells

    Science.gov (United States)

    Zhang, Xiaoqiang; Yu, Guangsen; Zeng, Shumao; Parbey, Joseph; Xiao, Shuhao; Li, Baihai; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Chromium poisoning the La0.875Sr0.125MnO3 (LSM) cathode for solid oxide fuel cells is a critical issue that can strongly affect the stability. In this study, we evaluate the temperature distribution in a SOFC based on a 3D model and then combine conductivity test and material computation to reveal the effects of chromium in SUS430 stainless steels on LSM conductivities. The starch concentration in LSM pellets and the applied pressure on the contact with interconnect materials show close relationships with the chromium poisoning behavior. The density functional theory (DFT) computing results indicate that chromium atoms preferably adsorb on the MnO2-terminated and La (Sr)-O-terminated (001) surfaces. The resulting conclusions are expected to deeply understand mechanism of chromium deactivating conventional cathodes at some typical operational conditions, and offer crucial information to optimize the structure to avoid the poisoning effect.

  15. Supported chromium-molybdenum and tungsten sulfide catalysts

    International Nuclear Information System (INIS)

    Chianelli, R.R.; Jacobson, A.J.; Young, A.R.

    1988-01-01

    This patent describes the process for preparing a supported hydroprocessing catalyst. The process comprising compositing a quantity of a particulate, porous catalyst support material comprising one or more refactory oxides with one or more catalyst precursor salts and heating the composite at elevated temperature of at least about 200/sup 0/C up to about 600/sup 0/, in the presence of a sulfur-bearing compound in an amount whereby sulfur in the form of the sulfur-bearing compound in an amount whereby sulfur in the form of the sulfur bearing compound is present in excess of that contained in the catalyst precursor and under oxygen-free conditions for a time sufficient to form the catalyst. The catalyst precursor salt contains a tetrathiometallate anion of Mo, W or mixture therof and a cation comprising trivalent chromium or a mixture of trivalent chromium with one or more divalent promoter metals selected from the group consisting of Fe, Ni, Co, Mn, Cu and a mixture thereof wherein the trivalent chromium and divalent promoter metals are chelated by at least one neutral, nitrogen-containing polydentate ligand, L

  16. Type 2 Diabetic Rats on Diet Supplemented With Chromium Malate Show Improved Glycometabolism, Glycometabolism-Related Enzyme Levels and Lipid Metabolism

    Science.gov (United States)

    Feng, Weiwei; Zhao, Ting; Mao, Guanghua; Wang, Wei; Feng, Yun; Li, Fang; Zheng, Daheng; Wu, Huiyu; Jin, Dun; Yang, Liuqing; Wu, Xiangyang

    2015-01-01

    Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the effect of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism in type 2 diabetic rats. Our results showed that fasting blood glucose, serum insulin level, insulin resistance index and C-peptide level in the high dose group had a significant downward trend when compared with the model group, chromium picolinate group and chromium trichloride group. The hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, Glut4, phosphor-AMPKβ1 and Akt levels in the high dose group were significantly higher than those of the model, chromium picolinate and chromium trichloride groups. Chromium malate in a high dose group can significantly increase high density lipoprotein cholesterol level while decreasing the total cholesterol, low density lipoprotein cholesterol and triglyceride levels when compared with chromium picolinate and chromium trichloride. The serum chromium content in chromium malate and chromium picolinate group is significantly higher than that of the chromium trichloride group. The results indicated that the curative effects of chromium malate on glycometabolism, glycometabolism-related enzymes and lipid metabolism changes are better than those of chromium picolinate and chromium trichloride. Chromium malate contributes to glucose uptake and transport in order to improved glycometabolism and glycometabolism-related enzymes. PMID:25942313

  17. Hexavalent chromium induces chromosome instability in human urothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S. [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215 (United States); Liou, Louis [Department of Pathology, Boston University School of Medicine, 670 Albany St., Boston, MA 02118 (United States); Adam, Rosalyn M. [Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Wise, John Pierce Sr., E-mail: john.wise@louisville.edu [Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States)

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. - Highlights: • Hexavalent chromium is genotoxic to human urothelial cells. • Hexavalent chromium induces aneuploidy in human urothelial cells. • hTERT-immortalized human urothelial cells model the effects seen in primary urothelial cells. • Hexavalent chromium has a strong likelihood of being carcinogenic for bladder tissue.

  18. Adsorption of chromium(VI) on pomace-An olive oil industry waste: Batch and column studies

    International Nuclear Information System (INIS)

    Malkoc, Emine; Nuhoglu, Yasar; Dundar, Murat

    2006-01-01

    The waste pomace of olive oil factory (WPOOF) was tested for its ability to remove chromium(VI) from aqueous solution by batch and column experiments. Various thermodynamic parameters, such as ΔG o , ΔH o and ΔS o have been calculated. The thermodynamics of chromium(VI) ion onto WPOOF system indicates spontaneous and endothermic nature of the process. The ability of WPOOF to adsorb chromium(VI) in a fixed bed column was investigated, as well. The effect of operating parameters such as flow rate and inlet metal ion concentration on the sorption characteristics of WPOOF was investigated. The longest breakthrough time and maximum of Cr(VI) adsorption is obtained at pH 2.0. The total adsorbed quantities, equilibrium uptakes and total removal percents of chromium(VI) related to the effluent volumes were determined by evaluating the breakthrough curves obtained at different flow rates and different inlet chromium(VI) concentrations for adsorbent. The data confirmed that the total amount of sorbed chromium(VI) and equilibrium chromium(VI) uptake decreased with increasing flow rate and increased with increasing inlet chromium(VI) concentration. The Adams-Bohart model were used to analyze the experimental data and the model parameters were evaluated

  19. A study of strain in thin epitaxial films of yttrium silicide on Si(111)

    Science.gov (United States)

    Siegal, Michelle F.; Martínez-Miranda, L. J.; Santiago-Avilés, J. J.; Graham, W. R.; Siegal, M. P.

    1994-02-01

    We present the results of an x-ray diffraction analysis of epitaxial yttrium silicide films grown on Si(111), with thicknesses ranging from 14 to 100 Å. The macroscopic strain along the out-of-plane direction for films containing pits or pinholes follows the trend observed previously in films of thicknesses up to 510 Å. The out-of-plane lattice parameter decreases linearly with film thickness. We show preliminary evidence that pinhole-free films do not follow the above trend, and that strain in these films has the opposite sign than in films with pinholes. Finally, our results also indicate that the mode of growth, coupled to the interfacial thermal properties of the films, affects the observed value for the strain in the films.

  20. A study of strain in thin epitaxial films of yttrium silicide on Si(111)

    International Nuclear Information System (INIS)

    Siegal, M.F.; Martinez-Miranda, L.J.; Santiago-Aviles, J.J.; Graham, W.R.; Siegal, M.P.

    1994-01-01

    We present the results of an x-ray diffraction analysis of epitaxial yttrium silicide films grown on Si(111), with thicknesses ranging from 14 to 100 A. The macroscopic strain along the out-of-plane direction for films containing pits or pinholes follows the trend observed previously in films of thicknesses up to 510 A. The out-of-plane lattice parameter decreases linearly with film thickness. We show preliminary evidence that pinhole-free films do not follow the above trend, and that strain in these films has the opposite sign than in films with pinholes. Finally, our results also indicate that the mode of growth, coupled to the interfacial thermal properties of the films, affects the observed value for the strain in the films