WorldWideScience

Sample records for chromium silicides

  1. Mechanoactivation of chromium silicide formation in the SiC-Cr-Si system

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2002-01-01

    Full Text Available The processes of simultaneous grinding of the components of a SiC-Cr-Si mixture and further temperature treatment in the temperature range 1073-1793 K were studied by X-ray phase analysis, IR spectroscopy, electron microscopy, and X-ray microanalysis. It was established that, during grinding of the mixture, chromium silicides form. A temperature treatment completes the process. Silicide formation proceeds within the framework of the diffusion of silicon into chromium. In the presence of SiO2 in the mixture, silicide formation occurs also as a result of the reduction of silica by silicon and silicon carbide. The sintering of synthesized composite SiC-chromium silicides powders at a high temperature under a high pressure (T = 2073 K, P = 5 GPa is accompanied by the destruction of cc-SiC particles, the cc/3 transition in silicon carbide and deformation distortions of the lattices of chromium silicides.

  2. Mechanoactivation of chromium silicide formation in the SiC-Cr-Si system

    OpenAIRE

    Vlasova M.; Kakazey M.; Gonzales-Rodriguez J.G.; Dominguez G.; Ristić Momčilo M.; Scherbina O.; Tomila T.; Isaeva L.; Timofeeva I.I.; Bukov A.

    2002-01-01

    The processes of simultaneous grinding of the components of a SiC-Cr-Si mixture and further temperature treatment in the temperature range 1073-1793 K were studied by X-ray phase analysis, IR spectroscopy, electron microscopy, and X-ray microanalysis. It was established that, during grinding of the mixture, chromium silicides form. A temperature treatment completes the process. Silicide formation proceeds within the framework of the diffusion of silicon into chromium. In the presence of SiO2 ...

  3. Optical properties of beta-iron silicide, ruthenium silicide and osmium silicide: Semiconducting transition metal silicides

    Science.gov (United States)

    Birdwell, Anthony Glen

    2001-09-01

    Various optical techniques were used to study the semiconducting transition metal silicides of β- FeSi2, Ru2Si3, and OsSi2. The Raman spectra of ion beam synthesized (IBS) β-FeSi 2 were shown to provide evidence of a net tensile stress in these IBS materials. Possible origins of the observed stress were suggested and a simple model was proposed in order to calculate a value of the observed stress. A correlation between the tensile stress, the nature of the band gap, and the resulting light emitting properties of IBS β-FeSi2 was suggested. The photoreflectance (PR) spectra of IBS β- FeSi2 reveals a direct gap at 0.815 eV and were shown to agree with the band gap value obtained by photoluminescence (PL) once the adjustments for the temperature difference and trap related recombination effects were made. This provides very convincing evidence for intrinsic light emission from IBS β- FeSi2. Furthermore, a model was developed that helps to clarify the variety of inconsistent results obtained by optical absorption measurements. When the results of PL and PR were inserted into this model, a good agreement was obtained with our measured optical absorption results. We also obtained PR spectra of β-FeSi 2 thin films grown by molecular beam epitaxy. These spectra reveal the multiple direct transitions near the fundamental absorption edge of β-FeSi 2 that were predicted by theory. We suggest an order of these critical point transitions following the trends reported in the theoretical investigations. Doping these β-FeSi2 thin films with small amounts of chromium was shown to have a measurable effect on the interband optical spectra. We also report on the effects of alloying β- FeSi2 with cobalt. A decrease in the critical point transitions nearest the fundamental absorption edge was observed as the cobalt concentration increased. Finally, Raman spectroscopy was used to study the vibrational properties of β-FeSi2. The measured Raman spectra agreed very well with the

  4. Effect of P+ ions on the microstructure and the nature of the formed silicides in the Cr/Si system

    International Nuclear Information System (INIS)

    The effect of the phosphorus on the microstructure and on the nature of the formed silicide in the annealed Cr/Si system is studied. The chromium layer is deposited by electron gun evaporation on the undoped and P+ doped monocrystalline silicon. Cross-sectional transmission electron microscopy (XTEM) investigation of the samples, annealed at 475 deg. C for different times, shows that the presence of phosphorus leads to the formation of CrSi2 disilicide, free of defects, and Cr3Si silicide for lower and higher annealing times, respectively. In the case of undoped substrate the formed CrSi2 disilicide is stable and contains a high concentration of stacking faults when the chromium is partially consumed

  5. On Silicides in High Temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    C. Ramachandra

    1986-04-01

    Full Text Available High temperature titanium alloys like IMI 685 contain small amounts of silicon (~ 0.25 wt. per cent to improve creep resistance. Different types of silicides, namely Ti5Si3 (TiZr5Si3(S1 and (TiZr6 Si3 (S2, have been observed to precipitate in various silicon-bearing titanium alloys depending upon their composition and heat treatment. The precipitation of silicides, their orientation relationship with the matrix in different alloys, and the beneficial influence of thermo-mechanical treatment on the distribution of silicides have been pointed out. The effect of silicides on mechanical properties and fracture of the commercial alloy IMI 685 is also indicated.

  6. METHOD OF FORMING TANTALUM SILICIDE ON TANTALUM SURFACES

    Science.gov (United States)

    Bowman, M.G.; Krikorian, N.H.

    1961-10-01

    A method is described for forming a non-corrosive silicide coating on tantalum. The coating is made through the heating of trirhenium silicides in contact with the tantalum object to approximately 1400 deg C at which temperature trirhenium silicide decomposes into rhenium and gaseous silicons. The silicon vapor reacts with the tantalum surface to form a tantalum silicide layer approximately 10 microns thick. (AEC)

  7. New silicides for new niobium protective coatings

    International Nuclear Information System (INIS)

    Efforts to improve at high temperature the oxidation resistance of pure niobium or commercial niobium alloys have led to the development of a pack cementation process for the co-deposition of Si, Ti, Cr and Fe. Owing to the knowledge of the quaternary Nb(Ti)-T-Cr-Si phase diagrams (T=Fe or Co or Ni) and of the crystallographic features of phases present in the silicide coatings, new protective coatings have been applied on pure niobium and Cb752 alloy. The results of the crystallographic study of three new silicides isostructural with Nb3Fe3CrSi6, in which Nb is substituted by Ti and Fe by Co or Ni are reported. The oxidation performances of two new coatings mainly consisting of such a silicide are also outlined. (orig.)

  8. On Silicides in High Temperature Titanium Alloys

    OpenAIRE

    Ramachandra, C.; Vakil Singh; P. Rama Rao

    1986-01-01

    High temperature titanium alloys like IMI 685 contain small amounts of silicon (~ 0.25 wt. per cent) to improve creep resistance. Different types of silicides, namely Ti5Si3 (TiZr)5Si3(S1) and (TiZr)6 Si3 (S2), have been observed to precipitate in various silicon-bearing titanium alloys depending upon their composition and heat treatment. The precipitation of silicides, their orientation relationship with the matrix in different alloys, and the beneficial influence of thermo-mechanical treatm...

  9. Synthesis and design of silicide intermetallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.

  10. On the kinetics of platinum silicide formation

    NARCIS (Netherlands)

    Faber, Erik J.; Wolters, Rob A.M.; Schmitz, Jurriaan

    2011-01-01

    In this work, the kinetics of platinum silicide formation for thin Pt films (50 nm) on monocrystalline <100> silicon is investigated via in situ resistance measurements under isothermal (197–275 °C) conditions. For Pt2Si diffusion limited growth was observed. For PtSi formation, however, no linear r

  11. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    Science.gov (United States)

    Jiang, Jingjing; Wang, Han; Guo, Huaihong; Yang, Teng; Tang, Wen-Shu; Li, Da; Ma, Song; Geng, Dianyu; Liu, Wei; Zhang, Zhidong

    2012-05-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the `core/shell' interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon.

  12. Palladium silicide - a new contact for semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Silicide layers can be used as low resistance contacts in semiconductor devices. The formation of a metal rich palladium silicide Pd2Si is discussed. A palladium film 100A thick is deposited at 3000C and the resulting silicide layer used as an ohmic contact in an n + p silicon detector. This rugged contact has electrical characteristics comparable with existing evaporated gold contacts and enables the use of more reproducible bonding techniques. (author)

  13. Production of Mo-99 using low-enriched uranium silicide

    International Nuclear Information System (INIS)

    Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAlx alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U3Si2 miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed

  14. Solution synthesis of metal silicide nanoparticles.

    Science.gov (United States)

    McEnaney, Joshua M; Schaak, Raymond E

    2015-02-01

    Transition-metal silicides are part of an important family of intermetallic compounds, but the high-temperature reactions that are generally required to synthesize them preclude the formation of colloidal nanoparticles. Here, we show that palladium, copper, and nickel nanoparticles react with monophenylsilane in trioctylamine and squalane at 375 °C to form colloidal Pd(2)Si, Cu(3)Si, and Ni(2)Si nanoparticles, respectively. These metal silicide nanoparticles were screened as electrocatalysts for the hydrogen evolution reaction, and Pd(2)Si and Ni(2)Si were identified as active catalysts that require overpotentials of -192 and -243 mV, respectively, to produce cathodic current densities of -10 mA cm(-2).

  15. Fusion silicide coatings for tantalum alloys.

    Science.gov (United States)

    Warnock, R. V.; Stetson, A. R.

    1972-01-01

    Calculation of the performance of fusion silicide coatings under simulated atmospheric reentry conditions to a maximum temperature of 1810 K (2800 F). Both recently developed and commercially available coatings are included. Data are presented on oxidation rate with and without intentional defecting, the influence of the coatings on the ductile-brittle bend transition temperature, and the mechanical properties. Coatings appear capable of affording protection for at least 100 simulated cycles to 2600 F and 63 cycles to 2800 F.

  16. Silicides and germanides for nano-CMOS applications

    Energy Technology Data Exchange (ETDEWEB)

    Kittl, J.A. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium)], E-mail: kittlj@imec.be; Opsomer, K.; Torregiani, C.; Demeurisse, C.; Mertens, S.; Brunco, D.P.; Van Dal, M.J.H.; Lauwers, A. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2008-12-05

    An overview of silicides and germanides for nano-CMOS applications is presented. The historical evolution describing the migration from the use of Ti silicide to Co silicide to Ni silicide as contacting material is first discussed. These changes in silicide material were mainly motivated by the inability to form the target low resistivity silicide phase in small structures due to low nucleation density. This issue was found first for the low resistivity C54 TiSi{sub 2} at linewidths below 200 nm and later for the low resistivity CoSi{sub 2}, at linewidths below 40 nm. A detailed description of scalability and thermal stability issues for NiSi is then presented. No nucleation issues were found in small structures for NiSi, which grows by diffusion or interface limited kinetics with Ni as main moving species. However, silicidation can be excessive in small structures due to Ni diffusion from surrounding areas, resulting in thicker films than targeted in small devices. This can be controlled by using a silicidation process with two rapid thermal processing steps, the first one to control the amount of Ni reacted and the second one to convert the silicide to the target low resistivity monosilicide phase. One of the main issues for applications of NiSi is its low thermal stability: thin NiSi films agglomerate at relatively low temperatures. The process window and thermal stability of Ni and Pt-based films reacted with Si, Si:Ge and Si:C substrates is reviewed. Addition of Ge is shown to degrade thermal stability while addition of C or Pt improves it. Contact resistivity considerations and implementation of dual band-edge silicides are discussed, as well as promising results for the extension of Ni-based silicides to future nodes. Finally a brief overview of germanides is presented discussing NiGe and PdGe as main candidates.

  17. High temperature protective silicide coatings for titanium-niobium alloys

    International Nuclear Information System (INIS)

    The accomplished investigation of heat resistance of silicide coatings on titanium - (30-50)% niobium alloys has revealed that the coatings ensure reliable corrosion protection up to 1100 deg due to formation of heat resistant disilicides and a silicon dioxide layer on alloy surface. Silicide coatings possess particular ductility

  18. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.R.; Zheng, M.H.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  19. Thermal Stability of Magnesium Silicide/Nickel Contacts

    Science.gov (United States)

    de Boor, J.; Droste, D.; Schneider, C.; Janek, J.; Mueller, E.

    2016-10-01

    Magnesium silicide-based materials are a very promising class of thermoelectric materials with excellent potential for thermoelectric waste heat recovery. For the successful application of magnesium silicide-based thermoelectric generators, the development of long-term stable contacts with low contact resistance is as important as material optimization. We have therefore studied the suitability of Ni as a contact material for magnesium silicide. Co-sintering of magnesium silicide and Ni leads to the formation of a stable reaction layer with low electrical resistance. In this paper we show that the contacts retain their low electrical contact resistance after annealing at temperatures up to 823 K for up to 168 h. By employing scanning electron microscope analysis and time-of-flight (ToF)-secondary ion mass spectrometry, we can further show that elemental diffusion is occurring to a very limited extent. This indicates long-term stability under practical operation conditions for magnesium silicide/nickel contacts.

  20. The growth and applications of silicides for nanoscale devices.

    Science.gov (United States)

    Lin, Yung-Chen; Chen, Yu; Huang, Yu

    2012-03-01

    Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at the nanoscale have indicated possible deviations from the bulk and the thin film system. Here we present a review of fabrication, growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction.

  1. Infrared spectra of semiconducting silicides nanolayers

    Energy Technology Data Exchange (ETDEWEB)

    Baleva, M; Atanassov, A [Faculty of Physics, St. Kl. Ohridski University of Sofia, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Marinova, M [Solid State Physics Section, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)], E-mail: baleva@phys.uni-sofia.bg

    2008-05-01

    The infrared absorption is studied of samples consisting of a Si matrix with unburied nanolayers of the semiconducting silicides {beta}-FeSi{sub 2} and Mg{sub 2}Si. Features additional to those due to the transversal optical phonons of the compounds are observed. The features are interpreted in the framework of the appearance of surface and interface phonon polaritons, which absorb the light. Insofar as the frequencies of the longitudinal optical (LO) phonon-polariton modes are close to those of the LO phonon frequencies, the infrared transmittance of nanolayers can be regarded as a method for direct determination of these frequencies.

  2. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, M.; He, Y.R.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  3. Silicide precipitation strengthened TiAl

    Energy Technology Data Exchange (ETDEWEB)

    Noda, T. [Special Steel Research Laboratory, Daido Steel Co. Ltd., 2-30 Daido-cho, Minami-ku, Nagoya 457 (Japan); Okabe, M. [Special Steel Research Laboratory, Daido Steel Co. Ltd., 2-30 Daido-cho, Minami-ku, Nagoya 457 (Japan); Isobe, S. [Special Steel Research Laboratory, Daido Steel Co. Ltd., 2-30 Daido-cho, Minami-ku, Nagoya 457 (Japan); Sayashi, M. [Materials Research Laboratory, Nissan Research Center, Nissan Motor Co. Ltd., 1 Natushima-cho, Yokosuka 237 (Japan)

    1995-02-28

    Precipitation of a titanium silicide Ti{sub 5}Si{sub 3} was found to be beneficial to improvement of the creep resistance of a fully lamellar Ti-48Al-1.5Cr cast alloy without the sacrifice of tensile properties. The addition of 0.26-0.65 mol% Si generates fine precipitates less than 200 nm in size during aging at 900 C for 5 h. The precipitates are effective obstacles to dislocation motion and raise the stress exponents of power law creep significantly. The specific creep strength of Si-containing alloys is better than that of a conventional Ni-base cast superalloy Inconel 713C at 800 C for 10000 h. ((orig.))

  4. Rare earth silicide nanowires on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Martina

    2008-11-10

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti {gamma} point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi{sub 2}-monolayer and the Dy{sub 3}Si{sub 5}-multilayer on the Si(111) surface are investigated in comparison to the known ErSi{sub 2}/Si(111) and Er{sub 3}Si{sub 5}/Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the (vector)k {sub parallel} space is elliptical at the anti M points, while the hole pocket at the anti {gamma} point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas

  5. Silicide Nanowires for Low-Resistance CMOS Transistor Contacts.

    Science.gov (United States)

    Zollner, Stefan

    2007-03-01

    Transition metal (TM) silicide nanowires are used as contacts for modern CMOS transistors. (Our smallest wires are ˜20 nm thick and ˜50 nm wide.) While much research on thick TM silicides was conducted long ago, materials perform differently at the nanoscale. For example, the usual phase transformation sequences (e.g., Ni, Ni2Si, NiSi, NiSi2) for the reaction of thick metal films on Si no longer apply to nanostructures, because the surface and interface energies compete with the bulk energy of a given crystal structure. Therefore, a NiSi film will agglomerate into hemispherical droplets of NiSi by annealing before it reaches the lowest-energy (NiSi2) crystalline structure. These dynamics can be tuned by addition of impurities (such as Pt in Ni). The Si surface preparation is also a more important factor for nanowires than for silicidation of thick TM films. Ni nanowires formed on Si surfaces that were cleaned and amorphized by sputtering with Ar ions have a tendency to form NiSi2 pyramids (``spikes'') even at moderate temperatures (˜400^oC), while similar Ni films formed on atomically clean or hydrogen-terminated Si form uniform NiSi nanowires. Another issue affecting TM silicides is the barrier height between the silicide contact and the silicon transistor. For most TM silicides, the Fermi level of the silicide is aligned with the center of the Si band gap. Therefore, silicide contacts experience Schottky barrier heights of around 0.5 eV for both n-type and p-type Si. The resulting contact resistance becomes a significant term for the overall resistance of modern CMOS transistors. Lowering this contact resistance is an important goal in CMOS research. New materials are under investigation (for example PtSi, which has a barrier height of only 0.3 eV to p-type Si). This talk will describe recent results, with special emphasis on characterization techniques and electrical testing useful for the development of silicide nanowires for CMOS contacts. In collaboration

  6. Formation of Silicide Coating layer on U-Mo Powder

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Sunghwan; Lee, Kyu Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    High-density U-Mo alloys are regarded as promising candidates for advanced research reactor fuel as they have shown stable irradiation performance when compared to other uranium alloys and compounds. However, interaction layer formation between the U-Mo alloys and Al matrix degrades the irradiation performance of U-Mo Dispersion fuel. Therefore, the addition of Ti in U-Mo alloys, the addition of Si in a Al matrix, and silicide or nitride coating on the surface of U-Mo particles have been proposed to inhibit the interaction layer growth. In this study, U-Mo alloy powder was produced using a centrifugal atomization method. In addition, silicide coating layers were fabricated by several mixing process changes on the surface of the U-Mo particles. The coated powders were characterized by using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDAX). Decreased annealing duration did not affect the forming of silicide coating layers on the surface of U-7wt%Mo powders. The variation in the mixing ratio between U-7wt%Mo and Si powders had an effect on the quality of silicide coating on the U-7wt%Mo powders. The weight of Si powders should be smaller than that of U-7wt%Mo powders for better silicide coating when it comes to the mixing ratio.

  7. Submicron Features in Higher Manganese Silicide

    Directory of Open Access Journals (Sweden)

    Yatir Sadia

    2013-01-01

    Full Text Available The world energy crisis had increased the demand for alternative energy sources and as such is one of the topics at the forefront of research. One way for reducing energy consumption is by thermoelectricity. Thermoelectric effects enable direct conversion of thermal into electrical energy. Higher manganese silicide (HMS, MnSi1.75 is one of the promising materials for applications in the field of thermoelectricity. The abundance and low cost of the elements, combined with good thermoelectric properties and high mechanical and chemical stability at high temperatures, make it very attractive for thermoelectric applications. Recent studies have shown that Si-rich HMS has improved thermoelectric properties. The most interesting of which is the unusual reduction in thermal conductivity. In the current research, transmission (TEM and scanning (SEM electron microscopy as well as X-ray diffraction methods were applied for investigation of the govern mechanisms resulting in very low thermal conductivity values of an Si-rich HMS composition, following arc melting and hot-pressing procedures. In this paper, it is shown that there is a presence of sub-micron dislocations walls, stacking faults, and silicon and HMS precipitates inside each other apparent in the matrix, following a high temperature (0.9 Tm hot pressing for an hour. These are not just responsible for the low thermal conductivity values observed but also indicate the ability to create complicate nano-structures that will last during the production process and possibly during the application.

  8. Chromium in diet

    Science.gov (United States)

    The best source of chromium is brewer's yeast. However, many people do not use brewer's yeast because it causes bloating ( abdominal distention ) and nausea . Other good sources of chromium include ...

  9. Formation of cobalt silicide by ion beam mixing

    Science.gov (United States)

    Min, Ye; Burte, Edmund P.; Ryssel, Heiner

    1991-07-01

    The formation of cobalt silicides by arsenic ion implantation through a cobalt film which causes a mixing of the metal with the silicon substrate was investigated. Furthermore, cobalt suicides were formed by rapid thermal annealing (RTA). Sheet resistance and silicide phases of implanted Co/Si samples depend on the As dose. Ion beam mixing at doses higher than 5 × 10 15 cm -2 and RTA at temperatures T ⩾ 900° C result in almost equal values of Rs. RBS and XRD spectra of these samples illustrate the formation of a homogeneous CoSi 2 layer. Significant lateral growth of cobalt silicide beyond the edge of patterned SiO 2 was observed in samples which were only subjected to an RTA process ( T ⩾ 900 ° C), while this lateral suicide growth could be reduced efficiently by As implantation prior to RTA.

  10. Reaction layers structure of silicide coatings on niobium alloys

    International Nuclear Information System (INIS)

    This paper reports on fused silicide coatings that are used to protect niobium alloys against high temperature oxidation. Quantitative electron microprobe analysis was used to characterize the complex multilayer structure of Si-20w/oFE-20w/oCR fused silicide coating on four niobium containing alloys: niobium, Cb752, WC3009, and Nb-46.5 Ti. The outer coating layer structure on all four alloys was similar, consisting of either two or three phases. The three phase outer coating layer on the niobium, WC3009, and the Nb-Ti substrate alloys was determined to be made of two MSi phases and one MSi2 phase. This outer MSi2 phase contained base alloy elements. Coated samples were compared using cyclic oxidation testing. The fused silicide coating structure and protectiveness were determined to be a function of the base alloy composition

  11. Oxidation resistance of composite silicide coatings on niobium

    International Nuclear Information System (INIS)

    This paper reports the oxidation of NbSi2-MoSi2 composite silicide coatings produced by diffusive siliconizing of molybdenum films on a niobium surface. Molybdenum-coated niobium was siliconized and an x-ray microspectral analysis of the composite silicide coating showed the phase composition to be an ca 80-um-thick outer molybdenum disilicide film with a characteristic coarsely crystalline columnar structure, and inner ca 20-um film of niobium disilicide consisting of the tiny columnar crystals, and a substrate/coating interface comprising a thin, 2-3 um film of lower silicide, i.e., Nb5Si3. The average grain sizes, unit cell parameters, and x-ray determined densities of the Mo films obtained by various methods are shown

  12. Si-Ge Nano-Structured with Tungsten Silicide Inclusions

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Traditional silicon germanium high temperature thermoelectrics have potential for improvements in figure of merit via nano-structuring with a silicide phase. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples are prepared using powder metallurgy techniques; including mechanochemical alloying via ball milling and spark plasma sintering for densification. In addition to microstructural development, thermal stability of thermoelectric transport properties are reported, as well as couple and device level characterization.

  13. Chromium and Genomic Stability

    OpenAIRE

    Wise, Sandra S.; Wise, John Pierce

    2011-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as high...

  14. Mo SILICIDE SYNTHISIS BY DUAL ION BEAM DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    T.H. Zhang; Z.Z. Yi; X.Y. Wu; S.J. Zhang; Y.G. Wu; X. Zhang; H.X. Zhang; A.D. Liu; X.J. Zhang

    2002-01-01

    Mo silicides MosSi3 with high quality were prepared using ion beam deposition equip-ment with two Filter Metal Vacuum Arc Deposition (FMEVAD). When the numberof alternant deposition times was 198, total thickness of the coating is 40nm. Thecoatings with droplet free can be readily obtained, so the surface is smooth. TEMobservation shows that Mo and Si alternant deposition coating is conpact structure.The fine Mo silicide grains densely distributed in the coating. The coating adherenceon silicon is excellent.

  15. Transition Metal Silicide Nanowires Growth and Electrical Characterization

    Institute of Scientific and Technical Information of China (English)

    PENG Zu-Lin; LIANG S.; DENG Luo-Gen

    2009-01-01

    We report the characterization of self-assembled epitaxially grown transition metal,Fe,Co,Ni,silicide nanowires(TM-NW)growth and electrical transport properties.NWs grown by reactive deposition epitaxy on various silicon surfaces show a dimension of 10nm by 5nm,and several micrometers in length.NW orientations strongly depend on substrate crystal orientation,and follow the substrate symmetry.By using conductive-AFM(c-AFM),the electron transport properties of one single NW were measured,the resistivity of crystalline nickel silicide NW was estimated to be 2×10~(-2) Ω·cm.

  16. Deposition of aluminide and silicide based protective coatings on niobium

    International Nuclear Information System (INIS)

    We compare aluminide and alumino-silicide composite coatings on niobium using halide activated pack cementation (HAPC) technique for improving its oxidation resistance. The coated samples are characterized by SEM, EDS, EPMA and hardness measurements. We observe formation of NbAl3 in aluminide coating of Nb, though the alumino-silicide coating leads to formation primarily of NbSi2 in the inner layer and a ternary compound of Nb-Si-Al in the outer layer, as reported earlier (Majumdar et al. ). Formation of niobium silicide is preferred over niobium aluminide during alumino-silicide coating experiments, indicating Si is more strongly bonded to Nb than Al, although equivalent quantities of aluminium and silicon powders were used in the pack chemistry. We also employ first-principles density functional pseudopotential-based calculations to calculate the relative stability of these intermediate phases and the adhesion strength of the Al/Nb and Si/Nb interfaces. NbSi2 exhibits much stronger covalent character as compared to NbAl3. The ideal work of adhesion for the relaxed Al/Nb and Si/Nb interfaces are calculated to be 3226 mJ/m2 and 3545 mJ/m2, respectively, indicating stronger Nb-Si bonding across the interface.

  17. Deposition of aluminide and silicide based protective coatings on niobium

    Science.gov (United States)

    Majumdar, S.; Arya, A.; Sharma, I. G.; Suri, A. K.; Banerjee, S.

    2010-11-01

    We compare aluminide and alumino-silicide composite coatings on niobium using halide activated pack cementation (HAPC) technique for improving its oxidation resistance. The coated samples are characterized by SEM, EDS, EPMA and hardness measurements. We observe formation of NbAl3 in aluminide coating of Nb, though the alumino-silicide coating leads to formation primarily of NbSi2 in the inner layer and a ternary compound of Nb-Si-Al in the outer layer, as reported earlier (Majumdar et al. [11]). Formation of niobium silicide is preferred over niobium aluminide during alumino-silicide coating experiments, indicating Si is more strongly bonded to Nb than Al, although equivalent quantities of aluminium and silicon powders were used in the pack chemistry. We also employ first-principles density functional pseudopotential-based calculations to calculate the relative stability of these intermediate phases and the adhesion strength of the Al/Nb and Si/Nb interfaces. NbSi2 exhibits much stronger covalent character as compared to NbAl3. The ideal work of adhesion for the relaxed Al/Nb and Si/Nb interfaces are calculated to be 3226 mJ/m2 and 3545 mJ/m2, respectively, indicating stronger Nb-Si bonding across the interface.

  18. A swelling model of LEU silicide fuel for KMRR

    International Nuclear Information System (INIS)

    A lot of efforts have been made internationally to understand the irradiation behavior and the safety characteristics of uranium silicide fuel. One of the important irradiation performance characteristics of the silicide dispersion fuel element is the diametral increase resulting from fuel swelling. This paper represents an attempt to develop the physical model for the swelling, DFSWELL, by modelling the basic irradiation behavior observed from in-reactor experiments. The most important part of developing the swelling model is the identification of the controlling physical processes. The swelling of the silicide fuel is comprised of the volume change due to three major components; (i) the formation of an interfacial layer between the fuel particle and matrix, (ii) the accumulation of gas bubble nucleation, (iii) the accumulation of solid fission products. In this study, the swelling of the fuel element is quantitatively estimated by considering temperature, fission rate, solid fission product build-up and gas bubble behavior. The DFSWELL model which takes into account the above physical components predicts well the absolute magnitude of silicide fuel swelling in accordance with the power histories in comparison with the experimental data

  19. Study of nickel silicide formation by physical vapor deposition techniques

    Science.gov (United States)

    Pancharatnam, Shanti

    Metal silicides are used as contacts to the highly n-doped emitter in photovoltaic devices. Thin films of nickel silicide (NiSi) are of particular interest for Si-based solar cells, as they form at lower temperature and consume less silicon. However, interfacial oxide limits the reduction in sheet resistance. Hence, different diffusion barriers were investigated with regard to optimizing the conductivity and thermal stability. The formation of NiSi, and if it can be doped to have good contact with the n-side of a p-n junction were studied. Reduction of the interfacial oxide by the interfacial Ti layer to allow the formation of NiSi was observed. Silicon was treated in dilute hydrofluoric acid for removing the surface oxide layer. Ni and a Ti diffusion barrier were deposited on Si by physical vapor deposition (PVD) methods - electron beam evaporation and sputtering. The annealing temperature and time were varied to observe the stability of the deposited film. The films were then etched to observe the retention of the silicide. Characterization was done using scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and Rutherford back scattering (RBS). Sheet resistance was measured using the four-point probe technique. Annealing temperatures from 300°C showed films began to agglomerate indicating some diffusion between Ni and Si in the Ti layer, also supported by the compositional analysis in the Auger spectra. Films obtained by evaporation and sputtering were of high quality in terms of coverage over substrate area and uniformity. Thicknesses of Ni and Ti were optimized to 20 nm and 10 nm respectively. Resistivity was low at these thicknesses, and reduced by about half post annealing at 300°C for 8 hours. Thus a low resistivity contact was obtained at optimized thicknesses of the metal layers. It was also shown that some silicide formation occurs at temperatures starting from 300°C and can thus be used to make good silicide contacts.

  20. Texture in thin film silicides and germanides: A review

    Science.gov (United States)

    De Schutter, B.; De Keyser, K.; Lavoie, C.; Detavernier, C.

    2016-09-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi2, C54-TiSi2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si1-xGex in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  1. Ni based silicides for 45 nm CMOS and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Lauwers, Anne [IMEC, Kapeldreef 75, 3001 Leuven (Belgium)]. E-mail: lauwersa@imec.be; Kittl, Jorge A. [IMEC, Texas Instruments (Belgium); Van Dal, Mark J.H. [IMEC, Philips Research Leuven (Belgium); Chamirian, Oxana [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Pawlak, Malgorzata A. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Potter, Muriel de [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Lindsay, Richard [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Raymakers, Toon [Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven (Netherlands); Pages, Xavier [IMEC, ASM Belgium (Belgium); Mebarki, Bencherki [Applied Materials (Belgium); Mandrekar, Tushar [Applied Materials Inc., Santa Clara, CA (United States); Maex, Karen [IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2004-12-15

    Material issues that impact the applicability of Ni based silicides to CMOS flows were studied, including the excessive silicidation of narrow features, the growth kinetics of Ni{sub 2}Si and NiSi on single-crystalline and poly-crystalline silicon and the thermal degradation mechanisms. Ni{sub 2}Si was found to grow by diffusion controlled kinetics with an activation energy of about 1.55 eV on single-crystalline Si. As a result, the excessive silicidation in small features can be reduced in a 2-step Ni-silicide process by reducing the thermal budget of the first RTP step. The mechanisms of thermal degradation of NiSi were studied. Thin NiSi films were found to degrade morphologically while still in the monosilicide phase. Thick NiSi films degrade morphologically at low temperatures and by transformation to NiSi{sub 2} at high temperatures. The reaction of Ni with SiGe substrates and the effect of Ge on the thermal degradation of the Ni-germanosilicide were investigated. Activation energies for the thermal degradation of Ni(SiGe) on SiGe were found to be significantly smaller than the values found for the thermal degradation of NiSi on pure Si. The effect of alloying Ni with Pt or Ta was studied. NiSi films alloyed with Pt or Ta are found to be thermally more stable compared to pure NiSi. Alloying with Pt was found to improve the thermal stability of NiSi on narrow poly-Si gates. The kinetics of Ni{sub 2}Si and NiSi formation on poly silicon were determined as well as their dependence on dopants. The presence of B in high doses was found to slow down the silicide formation significantly. Dopant segregation to the NiSi/oxide interface was observed, which is believed to be responsible for the observed shifts in work function. The sheet resistance of fully Ni-silicided 100 nm poly Si/oxide stacks is found to be stable up to 800 deg. C.

  2. Development and Oxidation Resistance of B-doped Silicide Coatings on Nb-based Alloy

    International Nuclear Information System (INIS)

    Halide-activated pack cementation was utilized to deposit B-doped silicide coating. The pack powders were consisted of 3 Wt.%NH4Cl, 7 Wt.%Si, 90 Wt.%Al2O3+TiB2. B-doped silicide coating was consisted of two layers, an outer layer of NbSi2 and an inner layer of Nb5Si3. Isothermal oxidation resistance of B-doped silicide coating was tested at 1250 .deg. C in static air. B-doped silicide coating had excellent oxidation resistance, because continuous SiO2 scale which serves as obstacle of oxygen diffusion was formed after oxidation

  3. Infrared and Raman characterization of beta iron silicide

    Science.gov (United States)

    Lefki, K.; Muret, P.; Bustarret, E.; Boutarek, N.; Madar, R.; Chevrier, J.; Derrien, J.; Brunel, M.

    1991-12-01

    Samples of beta-iron silicide were prepared by three different methods : solid phase reaction on silicon (111), on a monocrystaline FeSi substrate, and from the melt. These samples have been characterized by x-ray diffraction and investigated by Infrared and Raman spectroscopies. The infrared and Raman lines are compared with theoretical predictions given by the factor group analysis of the silicide primitive cell, which yields the number and the symmetry of the different modes. We relate the red shift of the Infrared and Raman lines on samples with smaller lattice parameters to the presence of Iron vacancies in films deposited on silicon, in agreement with the sign of the thermoelectric power.

  4. Oxidation behavior of molybdenum silicides and their composites

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Deevi, S. C.

    2000-04-03

    A key materials issue associated with the future of high-temperature structural silicides is the resistance of these materials to oxidation at low temperatures. Oxidation tests were conducted on Mo-based silicides over a wide temperature range to evaluate the effects of alloy composition and temperature on the protective scaling characteristics and testing regime for the materials. The study included Mo{sub 5}Si{sub 3} alloys that contained several concentrations of B. In addition, oxidation characteristics of MoSi{sub 2}-Si{sub 3}N{sub 4} composites that contained 20--80 vol.% Si{sub 3}N{sub 4} were evaluated at 500--1,400 C.

  5. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.

    Science.gov (United States)

    Savelli, Guillaume; Stein, Sergio Silveira; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent; Dilhaire, Stefan; Pernot, Gilles

    2015-07-10

    Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties-specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity-making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields.

  6. Fracture of niobium-base silicide coated alloy

    International Nuclear Information System (INIS)

    Mechanical properties and character of fracture of Nb-W-Mo-Zr-C alloy composition with complex by composition and structure silicide coating under different states of stage-by-stage coating are studied. Structural features, character of fracture from ductile to quasibrittle transcrystalline one and, respectively, the composition plasticity level are defined by interrelation of fracture processes in coating, matrix plastic flow and possibility and way of stress relaxation on their boundary

  7. Substoichiometric extraction of chromium

    International Nuclear Information System (INIS)

    Substoichiometric extraction of chromium with tetraphenylarsonium chloride (TPACl), tri-n-octylamine (TNOA), diethylammonium diethyldithiocarbamate (DDDC) and ammonium pyrrolidinedithiocarbamate (APDC) was examined in detail. Chromium can be extracted substoichiometrically in a pH range, which is 1.1-2.6 for the TPACl compound, 0.6-2.3 for the TNOA compound, 5.1-6.4 for the DDDC chelate and 3.9-4.9 for the APDC chelate. Chromium in high-purity calcium carbonate, Orchard Leaves (NBS SRM-1571) and Brewers Yeast (NBS SRM-1569) was determined by neutron activation analysis combined with substoichiometric extraction by DDDC and APDC. The values of 2.0+-0.02 ppm and 2.6+-0.2 ppm were obtained for Brewers Yeast and Orchard Leaves, respectively. These values were in good agreement with those reported by NBS. The reaction mechanism and the reaction ratio between hexavalent chromium and dithiocarbamate are also discussed. (author)

  8. The carcinogenicity of chromium

    OpenAIRE

    Norseth, Tor

    1981-01-01

    The carcinogenicity of chromium compounds is reviewed with specific attention to the gaps in knowledge for risk estimation and research needs. The most important problems at present are whether trivalent chromium compounds cause cancer, and whether there is a difference in cancer causing effects between the soluble and the slightly soluble hexavalent compounds in the practical exposure situation. Dose estimates for risk estimation based on epidemiological investigations are also lacking. Pres...

  9. Mechanochemical synthesis and spark plasma sintering of the cerium silicides

    International Nuclear Information System (INIS)

    Highlights: • Ce5Si3, Ce3Si2, CeSi, CeSi2−x and CeSi2 were mechanochemically synthesized. • Temperature and pressure were monitored to investigate reaction progress. • All syntheses proceeded through a MSR event followed by rapid solid-state diffusion. • Milling time before MSR correlates well with effective heat of formation. • Some synthesized material was densified by spark plasma sintering. - Abstract: The cerium silicides, Ce5Si3, Ce3Si2, CeSi, CeSi2−y, and CeSi2−x, have been prepared from the elements by mechanochemical processing in a planetary ball mill. Preparation of the cerium silicide Ce5Si4 was unsuccessfully attempted and potential reasons for this are discussed. Temperature and pressure of the milling vial were monitored in situ to gain insight into the mechanochemical reaction kinetics, which include a mechanically-induced self-propagating reaction (MSR). Some prepared powders were consolidated by spark plasma sintering to high density. Starting materials, as-milled powders, and consolidated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results obtained help elucidate key questions in mechanochemical processing of intermetallics, showing first phase formation similar to thin films, MSR ignition times that are composition- and milling speed-dependent, and sensitivity of stable compound formation on the impact pressure. The results demonstrate mechanochemical synthesis as a viable technique for rare earth silicides

  10. Mechanochemical synthesis and spark plasma sintering of the cerium silicides

    Energy Technology Data Exchange (ETDEWEB)

    Alanko, Gordon A.; Jaques, Brian; Bateman, Allyssa [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Butt, Darryl P., E-mail: darrylbutt@boisestate.edu [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Boulevard, Idaho Falls, ID 83401 (United States)

    2014-12-15

    Highlights: • Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−x} and CeSi{sub 2} were mechanochemically synthesized. • Temperature and pressure were monitored to investigate reaction progress. • All syntheses proceeded through a MSR event followed by rapid solid-state diffusion. • Milling time before MSR correlates well with effective heat of formation. • Some synthesized material was densified by spark plasma sintering. - Abstract: The cerium silicides, Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−y}, and CeSi{sub 2−x}, have been prepared from the elements by mechanochemical processing in a planetary ball mill. Preparation of the cerium silicide Ce{sub 5}Si{sub 4} was unsuccessfully attempted and potential reasons for this are discussed. Temperature and pressure of the milling vial were monitored in situ to gain insight into the mechanochemical reaction kinetics, which include a mechanically-induced self-propagating reaction (MSR). Some prepared powders were consolidated by spark plasma sintering to high density. Starting materials, as-milled powders, and consolidated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results obtained help elucidate key questions in mechanochemical processing of intermetallics, showing first phase formation similar to thin films, MSR ignition times that are composition- and milling speed-dependent, and sensitivity of stable compound formation on the impact pressure. The results demonstrate mechanochemical synthesis as a viable technique for rare earth silicides.

  11. Immobilization of Uranium Silicide in Sintered Iron-Phosphate Glass

    International Nuclear Information System (INIS)

    This work is a continuation of a previous one performed in vitrification of uranium silicide in borosilicate and iron-silicate glasses, by sintering.We present the results obtained with an iron-phosphate glass developed at our laboratory and we compare this results with those obtained with the above mentioned glasses. The main objective was to develop a method as simple as possible, so as to get a monolithic glass block with the appropriate properties to be disposed in a deep geological repository.The thermal transformation of the uranium silicide was characterized by DTA/TG analysis and X-ray diffraction.We determined the evolution of the crystalline phases and the change in weight.Calcined uranium silicide was mixed with natural U3O8, the amount of U3O8 was calculated to simulate an isotopic dilution of 4%.This material was mixed with powdered iron-phosphate glass (in wt.%: 64,9 P2O5; 22,7 Fe2O3; 8,1 Al2O3; 4,3 Na2O) in different proportions (in wt%): 7%, 10% y 15%.The powders were pressed and sintered at temperatures between 585 y 670 °C. Samples of the sintered pellet were prepared for the lixiviation tests (MCC-1P: monolithic samples; deionised water; 90° C; 7, 14 and 28 days).The samples showed a quite good durability (0,6 g.m-2.day-1), similar to borosilicate glasses.The microstructure of the glass samples showed that the uranium particles are much better integrated to the glass matrix in the iron-phosphate glasses than in the borosilicate or iron-silicate glasses.We can conclude that the sintered product obtained could be a good alternative for the immobilization of nuclear wastes with high content of uranium, as the ones arising from the conditioning of research reactors spent fuels

  12. Postirradiation analysis of experimental uranium-silicide dispersion fuel plates

    International Nuclear Information System (INIS)

    Low-enriched uranium silicide dispersion fuel plates were irradiated to maximum burnups of 96% of 235U. Fuel plates containing 33 v/o U3Si and U3Si2 behaved very well up to this burnup. Plates containing 33 v/o U3Si-Al pillowed between 90 and 96% burnup of the fissile atoms. More highly loaded U3Si-Al plates, up to 50 v/o were found to pillow at lower burnups. Plates containing 40 v/o U3Si showed an increase swelling rate around 85% burnup. 5 refs., 10 figs

  13. Transient and End Silicide Phase Formation in Thin Film Ni/polycrystalline-Si Reactions for Fully Silicided Gate Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kittl,J.; Pawlak, M.; Torregiani, C.; Lauwers, A.; Demeurisse, C.; Vrancken, C.; Absil, P.; Biesemans, S.; Coia, C.; et. al

    2007-01-01

    The Ni/polycrystalline-Si thin film reaction was monitored by in situ x-ray diffraction during ramp annealings, obtaining a detailed view of the formation and evolution of silicide phases in stacks of interest for fully silicided gate applications. Samples consisted of Ni (30-170 nm)/polycrystalline-Si (100 nm)/SiO2 (10-30 nm) stacks deposited on (100) Si. The dominant end phase (after full silicidation) was found to be well controlled by the deposited Ni to polycrystalline-Si thickness ratio (tNi/tSi), with formation of NiSi2 ( {approx} 600 C), NiSi ( {approx} 400 C), Ni3Si2 ( {approx} 500 C), Ni2Si, Ni31Si12 ( {approx} 420 C), and Ni3Si ( {approx} 600 C) in stacks with tNi/tSi of 0.3, 0.6, 0.9, 1.2, 1.4, and 1.7, respectively. NiSi and Ni31Si12 were observed to precede formation of NiSi2 and Ni3Si, respectively, as expected for the phase sequence conventionally reported. Formation of Ni2Si was observed at early stages of the reaction. These studies revealed, in addition, the formation of transient phases that appeared and disappeared in narrow temperature ranges, competing with formation of the phases expected in the conventional phase sequence. These included the transient formation of NiSi and Ni31Si12 in stacks in which these phases are not expected to form (e.g., tNi/tSi of 1.7 and 0.9, respectively), at temperatures similar to those in which these phases normally grow.

  14. Obtaining decorative chromium plating from trivalent chromium solutions

    OpenAIRE

    Óscar Javier Suárez García

    2010-01-01

    The present work was aimed at a qualitative evaluation, in the laboratory, of different alternatives for assembling and operating a trivalent chromium bath for decorative chromium plating. Different chromium concentration solutions and different complexing agents were used. The initial result of this analysis was that chloride, formate and acetate solutions produced the best results. Solution preparation conditions were evaluated: temperature, chromium III complex formation time and also ...

  15. Nonuniformity effects in a hybrid platinum silicide imaging device

    Science.gov (United States)

    Dereniak, Eustace L.; Perry, David L.

    1992-05-01

    The objective of this project was twofold. The first objective was to characterize the Hughes Aircraft Company CRC-365 platinum silicide imaging device in a starting infrared sensor system. The CRC-365 is a hybrid 256 x 256 IR focal plane array that operates in the 3-5 micrometer thermal infrared band. A complete sensor and computer interface were built for these tests, using, plans provided by the Rome Laboratory at Hanscom AFB. Testing of the device revealed largely satisfactory performance, with notable exception in the areas of temporal response, temporal noise, and electrical crosstalk. The second objective of this research was to advance the understanding of how detector nonuniformity effects reduce the performance of sensors of this type. Notable accomplishments in this area included a complete linear analysis of corrected thermal imaging in platinum silicide sensors, a nonlinear analysis of the CRC-365's expected performance, analysis of its actual performance when operated with nonuniformity correction, and the development of a new figure of merit. It was demonstrated that the CRC-365 is capable of maintaining background-noise-limited performance over at least a 40 K target temperature range, when operated with two-point nonuniformity correction.

  16. Atomic size effects studied by transport in single silicide nanowires

    Science.gov (United States)

    Miccoli, I.; Edler, F.; Pfnür, H.; Appelfeller, S.; Dähne, M.; Holtgrewe, K.; Sanna, S.; Schmidt, W. G.; Tegenkamp, C.

    2016-03-01

    Ultrathin metallic silicide nanowires with extremely high aspect ratios can be easily grown, e.g., by deposition of rare earth elements on semiconducting surfaces. These wires play a pivotal role in fundamental research and open intriguing perspectives for CMOS applications. However, the electronic properties of these one-dimensional systems are extremely sensitive to atomic-sized defects, which easily alter the transport characteristics. In this study, we characterized comprehensively TbSi2 wires grown on Si(100) and correlated details of the atomic structure with their electrical resistivities. Scanning tunneling microscopy (STM) as well as all transport experiments were performed in situ using a four-tip STM system. The measurements are complemented by local spectroscopy and density functional theory revealing that the silicide wires are electronically decoupled from the Si template. On the basis of a quasiclassical transport model, the size effect found for the resistivity is quantitatively explained in terms of bulk and surface transport channels considering details of atomic-scale roughness. Regarding future applications the full wealth of these robust nanostructures will emerge only if wires with truly atomically sharp interfaces can be reliably grown.

  17. Work function characterization of solution-processed cobalt silicide

    Science.gov (United States)

    Shihab Ullah, Syed; Robinson, Matt; Hoey, Justin; Sky Driver, M.; Caruso, A. N.; Schulz, Douglas L.

    2012-06-01

    Cobalt silicide thin films were prepared by spin-coating liquid cyclohexasilane-based inks onto silicon substrates followed by a thermal treatment. The work function of the solution-processed Co-Si was determined by both capacitance-voltage (C-V) measurements of metal-oxide-semiconductor (MOS) structures as well as by ultraviolet photoemission spectroscopy (UPS). Variable frequency C-V of MOS structures with silicon oxide layers of variable thickness showed that solution-processed metal silicide films exhibit a work function of 4.36 eV with one Co-Si film on Si giving a UPS-derived work function of 4.80 eV. Similar work function measurements were collected for vapor-deposited MOS capacitors where Al thin films were prepared according to standard class 100 cleanroom handling techniques. In both instances, the work function values established by the electrical measurements were lower than those measured by UPS and this difference appears to be a consequence of parasitic series resistance.

  18. Monocrystalline molybdenum silicide based quantum dot superlattices grown by chemical vapor deposition

    Science.gov (United States)

    Savelli, Guillaume; Silveira Stein, Sergio; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent

    2016-09-01

    This paper presents the growth of doped monocrystalline molybdenum-silicide-based quantum dot superlattices (QDSL). This is the first time that such nanostructured materials integrating molybdenum silicide nanodots have been grown. QDSL are grown by reduced pressure chemical vapor deposition (RPCVD). We present here their crystallographic structures and chemical properties, as well as the influence of the nanostructuration on their thermal and electrical properties. Particularly, it will be shown some specific characteristics for these QDSL, such as a localization of nanodots between the layers, unlike other silicide based QDSL, an accumulation of doping atoms near the nanodots, and a strong decrease of the thermal conductivity obtained thanks to the nanostructuration.

  19. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    OpenAIRE

    Yuryev, V. A.; Chizh, K. V.; Chapnin, V.A.; Mironov, S.A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P.; Senkov, V. M.; Nalivaiko, O. Y.; Novikau, A. G.; Gaiduk, P. I.

    2015-01-01

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si$_3$N$_4$/SiO$_2$/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si...

  20. Formation and Oxidation Resistance of Silicide Coatings for Mo and Mo-Based Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The forming process of silicide coatings on pure Mo and Mo-base alloys, obtained by the gasphase deposition method, has been studied by examining the microstructure of coatings and the relationship between coating thickness and process parameters. It was shown that the growth of coatings was diffusion-controlled, the diffusion of silicon to be coated into Mo or Mo-base alloys was mainly responsible for the formation of silicide. The relationship between initial silicide thickness and oxidation resistance was also investigated, and the equation of service life of the coatings at high temperature in air is presented.

  1. Silicidation in Pd/Si thin film junction-Defect evolution and silicon surface segregation

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya, S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amarendra, G. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)], E-mail: amar@igcar.gov.in; Venugopal Rao, G.; Rajaraman, R.; Panigrahi, B.K.; Sastry, V.S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2007-09-25

    Depth resolved positron annihilation studies on Pd/Si thin film system have been carried out to investigate silicide phase formation and vacancy defect production induced by thermal annealing. The evolution of defect sensitive S-parameter clearly indicates the presence of divacancy defects across the interface, due to enhanced Si diffusion beyond 870 K consequent to silicide formation. Corroborative glancing incidence X-ray diffraction (GIXRD), Auger electron spectroscopy (AES) and Rutherford backscattering spectrometry (RBS) have elucidated the aspects related to silicide phase formation and Si surface segregation.

  2. The analytical biochemistry of chromium.

    OpenAIRE

    Katz, S A

    1991-01-01

    The essentiality and carcinogenicity of chromium depend on its chemical form. Oxidation state and solubility are particularly important in determining the biological effects of chromium compounds. For this reason, total chromium measurements are of little value in assessing its nutritional benefits or its toxicological hazards. Aqueous sodium carbonate-sodium hydroxide solutions have been successfully used for extracting hexavalent chromium from a variety of environmental and biological matri...

  3. Chromium in potatoes

    International Nuclear Information System (INIS)

    Chromium concentration in potatoes was determined, and tubes were labeled either intrinsically or extrinsically with radioactive chromate (51Cr). A labeled chromium complex was isolated from preparations of raw, baked, or fried potatoes and chromatographed on gel permeation media. Potato pulp and peel contained 1.63 and 2.70 μg of Cr/g tissue, respectively. There was no correlation between the two, nor did they respond similarly to changes of variety or locations. No significant differences were apparent in relative migration of the isolated complexes except between raw and cooked extrinsically labeled preparations

  4. Formation of interface silicides at room temperature in pulsed laser deposited Ti thin films on Si

    International Nuclear Information System (INIS)

    Interface characterization of pulsed laser deposited (PLD) Ti thin films on Si substrates using secondary ion mass spectrometry (SIMS), grazing incidence X-ray diffraction (GIXRD) and grazing incidence X-ray reflectivity (GIXRR) reveals the growth of titanium silicides (predominantly C54-TiSi2) layers at room temperature. These silicides nucleate and grow only at higher temperatures if deposited by other physical vapor deposition techniques. The films have been subjected to isothermal and isochronal annealing under vacuum with a view to enhancing interface reaction and interdiffusion. The silicide phase formation at room temperature is due to the energetic Ti species available in PLD plume. The silicides formed in PLD have exhibited high thermal stability

  5. Stress Evolution During Ni-Si Compound Formation for Fully Silicided (FUSI) Gates

    Energy Technology Data Exchange (ETDEWEB)

    Torregiani,C.; Van Bockstael, C.; Detavernier, C.; Lavoie, C.; Lauwers, A.; Maex, K.; Kittl, J.

    2007-01-01

    The stress (force) evolution during the formation of different Ni silicide phases was monitored by in situ curvature measurements, for the reaction of thin Ni films of various thicknesses with 100 nm polycrystalline-Si deposited on oxidized (1 0 0) Si substrates. The silicide phase formation was also monitored by in situ X-ray diffraction, allowing to match and interpret the stress evolution in terms of the formation of the different silicide phases. We found that stresses developed during the formation of the different silicides can be explained qualitatively in terms of the corresponding volume changes at the reacting interfaces. Furthermore, the matching between XRD and force curve reveals that the highest compressive stress is related to the formation of the Ni31Si12 phase, and that the stress formed is relaxed when the reaction is completed.

  6. Advanced Lightweight Silicide and Nitride Based Materials for Turbo-Engine Applications.

    OpenAIRE

    Drawin, S.; Justin, J.F.

    2011-01-01

    International audience Refractory metal silicides and nitride-based ceramics combine two properties that may lead to substantial reductions in aircraft fuel consumption : compared to the most advanced nickel-based superalloys presently used in aeronautical turbines, they can withstand higher temperatures and may have lower densities. Niobium silicide-based alloys and silicon nitride / molybdenum disilicide composites are currently being developed for turbine hot section components for both...

  7. SiGeHBTs on Bonded SOI Incorporating Buried Silicide Layers

    OpenAIRE

    Bain, M.; El Mubarek, H A; Bonar, J. M.; Wang, Y.; Buiu, O.; Gamble, H.; Armstrong, B M; Hemment, P L; Hall, S.; Ashburn, P.

    2005-01-01

    A technology is described for fabricating SiGe hetero-junction bipolar transistors (HBTs) on wafer-bonded silicon-on-insulator (SOI) substrates that incorporate buried tungsten silicide layers for collector resistance reduction or buried groundplanes for crosstalk suppression. The physical structure of the devices is characterized using cross section transmission electron microscopy, and the electrical properties of the buried tungsten silicide layer are characterized using sheet resistance m...

  8. SiGe HBTs on bonded SOI incorporating buried silicide layers

    OpenAIRE

    Bain, M.; El Mubarek, A. W.; Bonar, J. M.; Wang, Y.; Buiu, O.; Gamble, H.; Armstrong, B M; Hemment, P. L. F.; Hall, Steven; Ashburn, Peter

    2005-01-01

    A technology is described for fabricating SiGe heterojunction bipolar transistors (HBTs) on wafer-bonded silicon-on-insulator (SOI) substrates that incorporate buried tungsten silicide layers for collector resistance reduction or buried groundplanes for crosstalk suppression. The physical structure of the devices is characterized using cross section transmission electron microscopy, and the electrical properties of the buried tungsten silicide layer are characterized using sheet resistance me...

  9. Information for irradiation and post-irradiation of the silicide fuel element prototype P-07

    International Nuclear Information System (INIS)

    Included in the 'Silicides' Project, developed by the Nuclear Fuels Department of the National Atomic Energy Commission (CNEA), it is foreseen the qualification of this type of fuel for research reactors in order to be used in the Argentine RA-3 reactor and to confirm the CNEA as an international supplier. The paper presents basic information on several parameters corresponding to the new silicide prototype, called P-07, to be taken into account for its irradiation, postirradiation and qualification. (author)

  10. Status of the atomized uranium silicide fuel development at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  11. Europium Silicide – a Prospective Material for Contacts with Silicon

    Science.gov (United States)

    Averyanov, Dmitry V.; Tokmachev, Andrey M.; Karateeva, Christina G.; Karateev, Igor A.; Lobanovich, Eduard F.; Prutskov, Grigory V.; Parfenov, Oleg E.; Taldenkov, Alexander N.; Vasiliev, Alexander L.; Storchak, Vyacheslav G.

    2016-05-01

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics.

  12. Capping of rare earth silicide nanowires on Si(001)

    International Nuclear Information System (INIS)

    The capping of Tb and Dy silicide nanowires grown on Si(001) was studied using scanning tunneling microscopy and cross-sectional high-resolution transmission electron microscopy. Several nanometers thick amorphous Si films deposited at room temperature allow an even capping, while the nanowires maintain their original structural properties. Subsequent recrystallization by thermal annealing leads to more compact nanowire structures and to troughs in the Si layer above the nanowires, which may even reach down to the nanowires in the case of thin Si films, as well as to V-shaped stacking faults forming along (111) lattice planes. This behavior is related to strain due to the lattice mismatch between the Si overlayer and the nanowires

  13. Capping of rare earth silicide nanowires on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Appelfeller, Stephan; Franz, Martin; Kubicki, Milan; Dähne, Mario [Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin (Germany); Reiß, Paul; Niermann, Tore; Lehmann, Michael [Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin (Germany); Schubert, Markus Andreas [IHP–Leibniz-Institut für innovative Mikroelektronik, 15236 Frankfurt (Oder) (Germany)

    2016-01-04

    The capping of Tb and Dy silicide nanowires grown on Si(001) was studied using scanning tunneling microscopy and cross-sectional high-resolution transmission electron microscopy. Several nanometers thick amorphous Si films deposited at room temperature allow an even capping, while the nanowires maintain their original structural properties. Subsequent recrystallization by thermal annealing leads to more compact nanowire structures and to troughs in the Si layer above the nanowires, which may even reach down to the nanowires in the case of thin Si films, as well as to V-shaped stacking faults forming along (111) lattice planes. This behavior is related to strain due to the lattice mismatch between the Si overlayer and the nanowires.

  14. Postirradiation analysis of experimental uranium-silicide dispersion fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, G.L.; Neimark, L.A.

    1985-01-01

    Low-enriched uranium silicide dispersion fuel plates were irradiated to maximum burnups of 96% of /sup 235/U. Fuel plates containing 33 v/o U/sub 3/Si and U/sub 3/Si/sub 2/ behaved very well up to this burnup. Plates containing 33 v/o U/sub 3/Si-Al pillowed between 90 and 96% burnup of the fissile atoms. More highly loaded U/sub 3/Si-Al plates, up to 50 v/o were found to pillow at lower burnups. Plates containing 40 v/o U/sub 3/Si showed an increase swelling rate around 85% burnup. 5 refs., 10 figs.

  15. Attempt to produce silicide fuel elements in Indonesia

    International Nuclear Information System (INIS)

    After the successful experiment to produce U3Si2 powder and U3Si2-Al fuel plates using depleted U and Si of semiconductor quality, silicide fuel was synthesized using x-Al available at the Fuel Element Production Installation (FEPI) at Serpong, Indonesia. Two full-size U3Si2-Al fuel elements, having similar specifications to the ones of U3O8-Al for the RSG-GAS (formerly known as MPR-30), have been produced at the FEPI. All quality controls required have been imposed to the feeds, intermediate, as well as final products throughout the production processes of the two fuel elements. The current results show that these fuel elements are qualified from fabrication point of view, therefore it is expected that they will be permitted to be tested in the RSG-GAS, sometime by the end of 1989, for normal (∝50%) and above normal burn-up. (orig.)

  16. Mechanical, elastic and thermodynamic properties of crystalline lithium silicides

    CERN Document Server

    Schwalbe, Sebastian; Trepte, Kai; Biedermann, Franziska; Mertens, Florian; Kortus, Jens

    2016-01-01

    We investigate crystalline thermodynamic stable lithium silicides phases (LixSiy) with density functional theory (DFT) and a force-field method based on modified embedded atoms (MEAM) and compare our results with experimental data. This work presents a fast and accurate framework to calculate thermodynamic properties of crystal structures with large unit cells with MEAM based on molecular dynamics (MD). Mechanical properties like the bulk modulus and the elastic constants are evaluated in addition to thermodynamic properties including the phonon density of states, the vibrational free energy and the isochoric/isobaric specific heat capacity for Li, Li12Si7, Li7Si3, Li13Si4, Li15Si4, Li21Si5, Li17Si4, Li22Si5 and Si. For a selected phase (Li13Si4) we study the effect of a temperature dependent phonon density of states and its effect on the isobaric heat capacity.

  17. Synthesis and design of silicide intermetallic materials. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Vaidya, R.U.; Hollis, K.J.; Kung, H.H.

    1999-03-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the US processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive US processing industries. The program presently has a number of developing industrial connections, including a CRADA with Johns Manville Corporation targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. With Combustion Technology Inc., they are developing silicide-based periscope sight tubes for the direct observation of glass melts. With Accutru International Corporation, they are developing silicide-based protective sheaths for self-verifying temperature sensors which may be used in glass furnaces and other industrial applications. The progress made on the program in this period is summarized.

  18. Synthesis of Co-silicides and fabrication of microwavepower device using MEVVA source implantation

    Institute of Scientific and Technical Information of China (English)

    张通和; 吴瑜光; 钱卫东; 刘要东; 张旭

    2002-01-01

    Co synthesis silicides with good properties were prepared using MEVVA ion implantation with flux of 25-125 mA/cm2 to does of 5×1017/cm2. The structure of the silicides was investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM analysis shows that if the ion dose is greater than 2×1017/cm2, a continuous silicide layer will be formed. The sheet resistance of Co silicide decreases with an increase in ion flux and ion dose. The formation of silicides with CoSi and CoSi2 are identified by XRD analysis. After annealing, the sheet resistance decreases further. A continuous silicide layer with a width of 90-133 nm is formed. The optimal implantation condition is that the ion flux and dose are 50 mA/cm2 and 5×1017/cm2, respectively. The optimal annealing temperature and time are 900℃ and 10 s, respectively. The ohmic contact for power microwave transistors is fabricated using Co ion implantation technique for the first time. The emitter contact resistance and noise of the transistors decrease markedly; the microwave property has been improved obviously.

  19. Effects of temperature dependent pre-amorphization implantation on NiPt silicide formation and thermal stability on Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Ahmet S.; Wall, Donald [IBM Semiconductor Research and Development Center, 2070 Route 52, Hopewell Junction, New York 12533 (United States); Jordan-Sweet, Jean; Lavoie, Christian [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States)

    2013-04-29

    Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.

  20. Theory of Interface States at Silicon / Transition - - Silicide Interfaces.

    Science.gov (United States)

    Lim, Hunhwa

    The Si/NiSi(,2)(111) interface is of both fundamental and techno- logical interest: From the fundamental point of view, it is the best characterized of all semiconductor/metal interfaces, with two well-determined geometries (A and B) involving nearly perfect bonding. (This is because Si and NiSi(,2) have nearly the same lattice spacing.) Consequently, a theoretical treatment of this system makes sense--as it would not for messier systems--and one can have some confidence that the theoretical predictions are relevant to experimental observa- tions. From the technological point of view, Si/NiSi(,2) is representative of the class of semiconductor/metal interfaces that are currently of greatest interest in regard to electronic devices--Si/transition -metal-silicide interfaces. The calculations of this dissertation are for the intrinsic interface states of Si/NiSi(,2)-A geometry. These calculations also provide a foundation for later studies of defects at this interface, and for studies of other related systems, such as CoSi(,2). The calculations employ empirical tight-binding Hamiltonians for both Si and NiSi(,2) (with the parameters fitted to prior calculations of the bulk band structures, which appear to be in agreement with the available experimental data on bulk Si and NiSi(,2)). They also employ Green's function techniques--in particular, the subspace Hamiltonian technique. Our principal results are the following: (1) Interface state disper- sion curves are predicted along the symmetry lines (')(GAMMA)(')M, (')M(')K and (')K(')(GAMMA) of the surface Brillouin zone. (2) A prominent band of interface states is found which disperses downward from an energy within the Si band gap to an energy below the Si valence band edge E(,(upsilon)) as the planar wavevector (')k increases from (')(GAMMA) ((')k = 0) to (')M or (')K (symmetry points at boundary of the surface Brillouin zone). This band of inter- face states should be observable. It produces a peak in the surface

  1. High Quality Factor Platinum Silicide Microwave Kinetic Inductance Detectors

    CERN Document Server

    Szypryt, P; Ulbricht, G; Bumble, B; Meeker, S R; Bockstiegel, C; Walter, A B

    2016-01-01

    We report on the development of Microwave Kinetic Inductance Detectors (MKIDs) using platinum silicide as the sensor material. MKIDs are an emerging superconducting detector technology, capable of measuring the arrival times of single photons to better than two microseconds and their energies to around ten percent. Previously, MKIDs have been fabricated using either sub-stoichiometric titanium nitride or aluminum, but TiN suffers from spatial inhomogeneities in the superconducting critical temperature and Al has a low kinetic inductance fraction, causing low detector sensitivity. To address these issues, we have instead fabricated PtSi microresonators with superconducting critical temperatures of 944$\\pm$12~mK and high internal quality factors ($Q_i \\gtrsim 10^6$). These devices show typical quasiparticle lifetimes of $\\tau_{qp} \\approx 30$--$40~\\mu$s and spectral resolution, $R = \\lambda / \\Delta \\lambda$, of 8 at 406.6~nm. We compare PtSi MKIDs to those fabricated with TiN and detail the substantial advanta...

  2. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States); Harp, Jason [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-15

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions need to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions and therefore evaluate the qualification of U3Si2 as an AFT for LWRs. Considering the high cost, long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U3Si2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U3Si2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.

  3. Mixing of Al into uranium silicides reactor fuels

    International Nuclear Information System (INIS)

    SEM observations have shown that irradiation induced interaction of the aluminum cladding with uranium silicide reactor fuels strongly affects both fission gas and fuel swelling behaviors during fuel burn-up. The authors have used ion beam mixing, by 1.5 MeV Kr, to study this phenomena. RBS and the 27Al(p, γ) 28Si resonance nuclear reaction were used to measure radiation induced mixing of Al into U3Si and U3Si2 after irradiation at 300 C. Initially U mixes into the Al layer and Al mixes into the U3Si. At a low dose, the Al layer is converted into UAl4 type compound while near the interface the phase U(Al.93Si.07)3 grows. Under irradiation, Al diffuses out of the UAl4 surface layer, and the lower density ternary, which is stable under irradiation, is the final product. Al mixing into U3Si2 is slower than in U3Si, but after high dose irradiation the Al concentration extends much farther into the bulk. In both systems Al mixing and diffusion is controlled by phase formation and growth. The Al mixing rates into the two alloys are similar to that of Al into pure uranium where similar aluminide phases are formed

  4. Groundwater contaminant by hexavalent chromium

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, C. [Univ. of Texas, Austin, TX (United States)

    1995-11-01

    Oxidation of trivalent chromium to hexavalent chromium has been investigated as a function of total manganese in soils as well as various incubation conditions. Chromium and manganese contents were analyzed by atomic absorption (graphite furnace and flame emission respectively) following acid digestion. Total hexavalent chromium generation capacity was determined by addition of 0.001 M CrCL3, incubation, and analysis by s-diphenyl carbazide. Samples were then leached with CaSO{sub 4} and MgSO{sub 4} and incubated in various environments (oven, freeze-drier, field moist, ultrafreeze) to test for geogenic generation of Cr(IV). The degree of geogenic generation of hexavalent chromium was compared with total Mn and Cr content as well as hexavalent generational capacity.

  5. Silicidation in Ni/Si thin film system investigated by X-ray diffraction and Auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya, S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Amarendra, G. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: amar@igcar.gov.in; Kalavathi, S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Gopalan, Padma [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kamruddin, M. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Tyagi, A.K. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sastry, V.S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sundar, C.S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2007-02-15

    Silicide formation induced by thermal annealing in Ni/Si thin film system has been investigated using glancing incidence X-ray diffraction (GIXRD) and Auger electron spectroscopy (AES). Silicide formation takes place at 870 K with Ni{sub 2}Si, NiSi and NiSi{sub 2} phases co-existing with Ni. Complete conversion of intermediate silicide phases to the final NiSi{sub 2} phase takes place at 1170 K. Atomic force microscopy measurements have revealed the coalescence of pillar-like structures to ridge-like structures upon silicidation. A comparison of the experimental results in terms of the evolution of various silicide phases is presented.

  6. Anisotropic thermal expansion of Ni, Pd and Pt germanides and silicides

    Science.gov (United States)

    Geenen, F. A.; Knaepen, W.; Moens, F.; Brondeel, L.; Leenaers, A.; Van den Berghe, S.; Detavernier, C.

    2016-07-01

    Silicon or germanium-based transistors are nowadays used in direct contact with silicide or germanide crystalline alloys for semiconductor device applications. Since these compounds are formed at elevated temperatures, accurate knowledge of the thermal expansion of both substrate and the contact is important to address temperature depending effects such as thermal stress. Here we report the linear coefficients of thermal expansion of Ni-, Pd- and Pt-based mono-germanides, mono-silicides and di-metal-silicides as determined by powder-based x-ray diffraction between 300 and 1225 K. The investigated mono-metallic compounds, all sharing the MnP crystal structure, as well as Pd2Si and Pt2Si exhibit anisotropic expansion. By consequence, this anisotropic behaviour should be taken into account for evaluating the crystal unit’s cell at elevated temperatures.

  7. Role of Ti3Al/silicides on tensile properties of Timetal 834 at various temperatures

    Indian Academy of Sciences (India)

    K V Sai Srinadh; Nidhi Singh; V Singh

    2007-12-01

    Extremely fine coherent precipitates of ordered Ti3Al and relatively coarse incoherent precipitates of 2 silicide exist together in the near -titanium alloy, Timetal 834, in the dual phase matrix of primary and transformed . In order to assess the role of these precipitates, three heat treatments viz. WQ, WQ–A and WQ–OA, were given to have no precipitates, Ti3Al and silicide and only silicide precipitates in the respective conditions. Tensile properties in the above three heat treated conditions were determined at room temperature, 673 K and 873 K. It was observed that largely Ti3Al precipitates were responsible for increase in the yield strength and decrease in ductility in this alloy.

  8. Comparison of JRR-4 core neutronic performance between silicide fuel and TRIGA fuel

    International Nuclear Information System (INIS)

    Neutronic analyses on the JRR-4 core loaded with 20 wt% Low Enriched Uranium (LEU) fuels have been performed using SRAC code system. The LEU fuels studied in this work are ETR type silicide one and TRIGA one. For each type of them, parametrical analyses were done as the function of uranium loading in the fuel element to see changes of core excess reactivity, thermal neutron flux, fuel burnup and so on. From many cell and whole core calculations, following results have obtained. (a) A uranium density of 3.8 g/cm3 is a good value of the Silicide fuel for JRR-4. (b) In the case of TRIGA fuel, a uranium weight fraction of 40% to the total TRIGA fuel pin weight is one of adequate values. (c) The silicide core shows a good performance on the thermal neutron flux (d) and the TRIGA core can achieve a very high burnup. (author)

  9. Silicide Nanopowders as Low-Cost and High-Performance Thermoelectric Materials

    Science.gov (United States)

    Chen, Renkun

    2013-06-01

    Thermoelectric devices directly convert heat into electricity and are very attractive for waste heat recovery and solar energy utilization. If thermoelectric devices can be made sufficiently efficient and inexpensive, then they will become a transformative energy technology that can tap a significant portion (10-20%) of the vast amount of heat existing in nature as well as industrial processes. Nanopowders of Earth-abundant, silicide-based materials, such as Mg2Si and its alloys, provide a unique opportunity to realize this goal. This article will present an overview of recent advances in the synthesis and thermoelectric properties of silicide-based nanostructured materials.

  10. Effect of copper on phase formation process in boron-silicide layers on niobium and tantalum

    International Nuclear Information System (INIS)

    The influence of copper additions on regularities of growth, phase- and structure formation of borosilicide coatings produced by siliconizing preliminarily borated niobium and tantalum was studied. Rolled sheets of niobium and tantalum with impurity content less than 0.02 % (mass) were used for the coating application. Copper introduction into saturating medium affects growth rate, phase- and structure formation of silicide phases on niobium and tantalum. It also permits obtaining alternating boride and silicide layers, which is probably the only way of the composition fabrication, which can be of interest, when developing coatings with preset properties

  11. Progress in alkaline peroxide dissolution of low-enriched uranium metal and silicide targets

    International Nuclear Information System (INIS)

    This paper reports recent progress on two alkaline peroxide dissolution processes: the dissolution of low-enriched uranium metal and silicide (U3Si2) targets. These processes are being developed to substitute low-enriched for high-enriched uranium in targets used for production of fission-product 9'9Mo. Issues that are addressed include (1) dissolution kinetics of silicide targets, (2) 99Mo lost during aluminum dissolution, (3) modeling of hydrogen peroxide consumption, (4) optimization of the uranium foil dissolution process, and (5) selection of uranium foil barrier materials. Future work associated with these two processes is also briefly discussed. (author)

  12. Use of silicide fuel in the Ford Nuclear Reactor - to lengthen fuel element lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M.M.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Burn, R.R.; Lee, J.C. [Univ. of Michigan, Ann Arbor, MI (United States). Phoenix Memorial Lab.

    1995-12-31

    Based on economic considerations, it has been proposed to increase the lifetime of LEU fuel elements in the Ford Nuclear Reactor by raising the {sup 235}U plate loading from 9.3 grams in aluminide (UAl{sub x}) fuel to 12.5 grams in silicide (U{sub 3}Si{sub 2}) fuel. For a representative core configuration, preliminary neutronic depletion and steady state thermal hydraulic calculations have been performed to investigate core characteristics during the transition from an all-aluminide to an all-silicide core. This paper discusses motivations for this fuel element upgrade, results from the calculations, and conclusions.

  13. On texture formation of chromium electrodeposits

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Leisner, Peter; Horsewell, Andy

    1998-01-01

    The microstructure, texture and hardness of electrodeposited hard, direct current (DC) chromium and pulsed reversed chromium has been investigated. These investigations suggest that the growth and texture of hard chromium is controlled by inhibition processes and reactions. Further, it has been e...... established that codeposition of Cr2O3 nanoparticles is a general feature of DC chromium electrodeposition....

  14. Water splitting and electricity with semiconducting silicides in sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Demuth, Martin [Max-Planck-Institut fuer Bioanorganische Chemie, Muelheim an der Ruhr (Germany); H2 Solar GmbH, Loerrach (Germany); Kerpen, Klaus; Kuklya, Andriy; Wuestkamp, Marc-Andre [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    2010-07-01

    Generation of hydrogen and oxygen from water is described using mainly the semiconductor titanium disilicide as catalyst and halogen light which closely mimics solar radiation. The reactions are carried out under non-aerobic conditions, i.e., under nitrogen. High efficiencies are reached at 1.1-1.2 bar pressure. In the first phase of these reactions the catalytically active centers are built up. During this phase of reaction the kinetics of the water splitting process is growing in and leads to a linear dependence in the further course of the reactions which consists of >96% water splitting to yield hydrogen and oxygen in a 2:1 ratio. Hydrogen is partially and reversibly stored physically, depending on temperature. Oxygen behaves differently since it is stored entirely under the applied reaction conditions (50-80 C and light) and can be liberated from storage upon heating the slurries in the dark. This allows convenient separation of hydrogen and oxygen. The stability of titanium disilicide has been positively tested over several months. This material is abundant and inexpensive besides that it absorbs most of the solar radiation. Further, XRD and XPS studies show that titanium disilicide is 80% crystalline and the oxide formation is limited to a few molecular layers in depth. By using labeled water it was shown that labeled dioxygen appears in the gas phase of such reactions, this showing definitively that hydrogen evolution occuring here stems from photochemical splitting of water. Further, water splitting is part of a project which involves photoelectrochemistry and in which the silicides are used as light-receiving electrode and transition metal-coated anodes serve to split water. (orig.)

  15. Silicon Framework-Based Lithium Silicides at High Pressures.

    Science.gov (United States)

    Zhang, Shoutao; Wang, Yanchao; Yang, Guochun; Ma, Yanming

    2016-07-01

    The bandgap and optical properties of diamond silicon (Si) are not suitable for many advanced applications such as thin-film photovoltaic devices and light-emitting diodes. Thus, finding new Si allotropes with better bandgap and optical properties is desirable. Recently, a Si allotrope with a desirable bandgap of ∼1.3 eV was obtained by leaching Na from NaSi6 that was synthesized under high pressure [Nat. Mater. 2015, 14, 169], paving the way to finding new Si allotropes. Li is isoelectronic with Na, with a smaller atomic core and comparable electronegativity. It is unknown whether Li silicides share similar properties, but it is of considerable interest. Here, a swarm intelligence-based structural prediction is used in combination with first-principles calculations to investigate the chemical reactions between Si and Li at high pressures, where seven new compositions (LiSi4, LiSi3, LiSi2, Li2Si3, Li2Si, Li3Si, and Li4Si) become stable above 8.4 GPa. The Si-Si bonding patterns in these compounds evolve with increasing Li content sequentially from frameworks to layers, linear chains, and eventually isolated Si ions. Nearest-neighbor Si atoms, in Cmmm-structured LiSi4, form covalent open channels hosting one-dimensional Li atom chains, which have similar structural features to NaSi6. The analysis of integrated crystal orbital Hamilton populations reveals that the Si-Si interactions are mainly responsible for the structural stability. Moreover, this structure is dynamically stable even at ambient pressure. Our results are also important for understanding the structures and electronic properties of Li-Si binary compounds at high pressures. PMID:27302244

  16. Schottky barrier MOSFET structure with silicide source/drain on buried metal

    Institute of Scientific and Technical Information of China (English)

    Li Ding-Yu; Sun Lei; Zhang Sheng-Dong; Wang Yi; Liu Xiao-Yan; Han Ru-Qi

    2007-01-01

    In this paper, we propose a novel Schottky barrier MOSFET structure, in which the silicide source/drain is designed on the buried metal (SSDOM). The source/drain region consists of two layers of silicide materials. Two Schottky barriers are formed between the silicide layers and the silicon channel. In the device design, the top barrier is lower and the bottom is higher. The lower top contact barrier is to provide higher on-state current, and the higher bottom contact barrier to reduce the off-state current. To achieve this, ErSi is proposed for the top silicide and CoSi2 for the bottom in the n-channel case. The 50 nm n-channel SSDOM is thus simulated to analyse the performance of the SSDOM device. In the simulations, the top contact barrier is 0.2e V (for ErSi) and the bottom barrier is 0.6 eV (for CoSi2).Compared with the corresponding conventional Schottky barrier MOSFET structures (CSB), the high on-state current of the SSDOM is maintained, and the off-state current is efficiently reduced. Thus, the high drive ability (1.2 mA/μm at Vds = 1 V, Vgs = 2 V) and the high Ion/Imin ratio (106) are both achieved by applying the SSDOM structure.

  17. Core-hole effects in the x-ray-absorption spectra of transition-metal silicides

    NARCIS (Netherlands)

    WEIJS, PJW; CZYZYK, MT; VANACKER, JF; SPEIER, W; GOEDKOOP, JB; VANLEUKEN, H; HENDRIX, HJM; DEGROOT, RA; VANDERLAAN, G; BUSCHOW, KHJ; WIECH, G; FUGGLE, JC

    1990-01-01

    We report systematic differences between the shape of the Si K x-ray-absorption spectra of transition-metal silicides and broadened partial densities of Si p states. We use a variety of calculations to show that the origin of these discrepancies is the core-hole potential appropriate to the final st

  18. X-ray Emission and Absorption Studies of Silicides in Relation to their Electronic Structure

    NARCIS (Netherlands)

    Weijs, P.J.W.; Wiech, G.; Zahorowski, W.; Speier, W.; Goedkoop, J.B.; Czyzyk, Marek; Acker, J.F. van; Leuken, E. van; Groot, R.A. de; Laan, G. van der; Sarma, D.D.; Kumar, L.; Buschow, K.H.J.; Fuggle, J.C.

    1990-01-01

    The valence bands and conduction bands of about 30 transition metal silicides (of which we concentrate on 4 here) have been investigated by measurements of Si X-ray emission bandsspectra, X-ray absorption spectra near the Si K (1s) edge, photoemission spectra, and Bremsstrahlung Isochromat spectra.

  19. Carbon mediated reduction of silicon dioxide and growth of copper silicide particles in uniform width channels

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo; Bøggild, Peter; Booth, Tim

    2013-01-01

    We show that surface arc-discharge deposited carbon plays a critical intermediary role in the breakdown of thermally grown oxide diffusion barriers of 90 nm on a silicon wafer at 1035°C in an Ar/H2 atmosphere, resulting in the formation of epitaxial copper silicide particles in ≈ 10 μm wide...

  20. Synthesis and characterization of silicide coating on niobium alloy produced using molten salt method

    International Nuclear Information System (INIS)

    Nb based alloys are promising structural materials for high temperature reactors due to their strength at higher temperatures. However Nb based alloys undergoes substantial oxidation at high temperatures. In order to improve its oxidation resistance property at high temperatures (>400 °C) a protective layer must be provided to avoid direct contact of the component to atmospheric oxygen. In the present work, attempts have been made to obtain silicide coatings on Nb alloy using molten salt method. In this method, deposition of silicon is a multistep process. Metallic Si produced by the subsequent reactions in the molten salt diffuses and an oxidation resistant silicide coating forms on the surface of substrate. To study the variation in the thickness of coated layer on the Nb alloy, experiments were carried out at different temperature and time periods. These silicide coated samples were characterized using optical, SEM and XRD techniques. Based on these results mechanism of silicide coating on Nb alloys has been discussed in detail. (author)

  1. Mechanical properties of niobium alloy with molybdenum-hafnium-silicide coating

    International Nuclear Information System (INIS)

    The method of bending loading permits studying mechanical characteristics (σ σ0.2 and deflection f) in the composite of niobium alloy with silicide coating on molybdenum and hafnium base. Results of mechanical characteristics are compared with microstructural peculiarities of the failure development. Criteria which determine strength and plastic properties of the composite as dependent on the structural state are established

  2. A thermodynamic assessment for synthesizing transition metal silicides by the combustion synthesis process

    International Nuclear Information System (INIS)

    Transition metal silicides have important applications in various disciplines. These include uses as interconnects in chips, as coatings, as heating elements, etc. As their uses increased, various processing techniques were adopted to produce them. These vary from chemical/physical vapor deposition, rapid thermal processing, and sputtering for thin film processing; traditional vacuum casting and powder metallurgical routes are used to produce bulk samples. In this paper, the authors are interested in those transition metal silicides which have the potential for use in the bulk form, possibly in the aerospace or other demanding applications. The primary requirements are high refractoriness, low density, high strength and good oxidation resistance. It is the oxidation resistance that makes the silicides better candidates as compared to the other intermetallics. Meschter argued that most engineering materials retain substantial strength up to 80% of their melting points. Therefore, for an operating temperature of 1500C, the melting point of the typical candidate may be 1950C, while the limit in density can be defined by the density of Ni (8.75 gn/cc). As an alterative, combustion synthesis (CS) processing may prove to be a viable route for producing these transition metal silicides. In this process, and exothermic reaction is initiated in a compact containing stoichiometric mixture of elemental powders

  3. High pressure studies on uranium and thorium silicide compounds: Experiment and theory

    DEFF Research Database (Denmark)

    Yagoubi, S.; Heathman, S.; Svane, A.;

    2013-01-01

    , for ThSi, USi and USi2, respectively. At ambient conditions, the uranium silicides crystallize in tetragonal structures (space groups: I4/mmm for USi and I41/amd for USi2), while ThSi adopts an orthorhombic structure (space group: Pbnm) (including an anharmonic analysis of the silicon). These structures...

  4. Influence of Rapid Thermal Ramp Rate on Phase Transformation of Titanium Silicides

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Glenn; Hu, Yao, Zhi; Smith, Paul Martin; Tay, Sing Pin; Thakur, Randhir; Yang, Jiting

    1999-05-03

    ULSI technology requires low resistance, stable silicides formed on small geometry lines. Titanium disilicide (TiSiz), which is the most widely used silicide for ULSI applications, exists in two crystallographic phases: the high resistance, metastable C49 phase and the low resistance, stable C54 phase. The major issue with TiSiz is the increasing thermal budget required to transform the C49 phase into the low resistance C54 phase as linewiths decrease below 0.25 pm. Annealing above 900"C to obtain this transformation often results in thermal degradation, so it is desirable to reduce the transformation temperature. The transformation temperature has been shown to be a fi.mction of many factors including microstructure, grain size, and impurities. In this paper we report an investig+ion of rapid thermal silicidation of titanium films (250, 400, and 600 A) on single crystalline silicon at temperatures from 300 to 1000"C. The ramp rates for these experiments are 5, 30, 70, and 200oC/s. The transformation temperature decreases as the ramp rate increases and as the initial film thickness increases. Scanning electron microscopy (SEM) is used to analyze the resultant film microstructure. The ramp rate influence on Ti silicidation is also investigated on polycrystalline Si lines with widths ranging from 0.27 to 3.0 pm.

  5. Chromium reduction in Pseudomonas putida.

    OpenAIRE

    Ishibashi, Y.; Cervantes, C; Silver, S

    1990-01-01

    Reduction of hexavalent chromium (chromate) to less-toxic trivalent chromium was studied by using cell suspensions and cell-free supernatant fluids from Pseudomonas putida PRS2000. Chromate reductase activity was associated with soluble protein and not with the membrane fraction. The crude enzyme activity was heat labile and showed a Km of 40 microM CrO4(2-). Neither sulfate nor nitrate affected chromate reduction either in vitro or with intact cells.

  6. Thermal Stability Study from Room Temperature to 1273 K (1000 °C) in Magnesium Silicide

    Science.gov (United States)

    Stefanaki, Eleni-Chrysanthi; Hatzikraniotis, Euripides; Vourlias, George; Chrissafis, Konstantinos; Kitis, George; Paraskevopoulos, Konstantinos M.; Polymeris, George S.

    2016-10-01

    Doped magnesium silicide has been identified as a promising and environmentally friendly advanced thermoelectric material in the temperature range between 500 K and 800 K (227 °C and 527 °C). Besides the plethora of magnesium silicide thermoelectric advantages, it is well known for its high sensitivity to oxidation. Oxidation is one of the primary instability mechanisms of degradation of high-temperature Mg2Si thermoelectric devices, as in the presence of O2, Mg2Si decomposes to form MgO and Si. In this work, commercial magnesium silicide in bulk form was used for thermal stability study from room temperature to 1273 K (1000 °C). Various techniques such as DTA-TG, PXRD, and FTIR have been applied. Moreover, the application of thermoluminescence (TL) as an effective and alternative probe for the study of oxidation and decomposition has been exploited. The latter provides qualitative but very helpful hints toward oxidation studies. The low-detection threshold of thermoluminescence, in conjunction with the chemical composition of the oxidation byproducts, consisting of MgO, Mg2SiO4, and SiO2, constitute two powerful motivations for further investigating its viable use as proxy for instability/decomposition studies of magnesium silicide. The partial oxidation reaction has been adopted due to the experimental fact that magnesium silicide is monitored throughout the heating temperature range of the present study. Finally, the role of silicon dioxide to the decomposition procedure, being in amorphous state and gradually crystallizing, has been highlighted for the first time in the literature. Mg2Si oxidation takes place in two steps, including a mild oxidation process with temperature threshold of 573 K (300 °C) and an abrupt one after 773 K (500 °C). Implications on the optimum operational temperature range for practical thermoelectric (TE) applications have also been briefly discussed.

  7. Galvanic cells including cobalt-chromium alloys.

    Science.gov (United States)

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  8. Hydrogen permeation through chromium

    International Nuclear Information System (INIS)

    Steady state and non-steady state measurements of hydrogen permeation through metallic chromium are reported. The experiments have been conducted by use of hydrogen and deuterium within a pressure range of 10-8 - 1 bar and temperatures between 600 - 8000C. Numerical values for the physical quantities permeability, diffusion constant and solubility could be derived. At an upstream pressure above around 10-3 bar classical Sieverts-low was found (permeation rate proportional √p) with activation energies Qsub(perm) = 65 kJoule/mole, Qsub(Diff) = 4-8 kJoule/mole, Qsub(Sol) = 57-61 kJoule/mole for the respective processes involved. The isotopic effect between H and D of the permeabilities could be represented by a factor of 1,5 independence on temperature. All non steady-state measurements could be approximated reasonably well by classical diffusion kinetics. Below up-stream pressures of approx.= 10-7 bar the kinetics was no longer diffusion controlled, the dependence on up-stream pressure changed from √p -> p, the activation energy for permetation increased to 127 kJoule/mole and the isotopic factor resulted in about 2-3. (orig.)

  9. Exchange reactions of plutonium with silicides and estimation of the enthalpy of the formation of Pu5Si3

    International Nuclear Information System (INIS)

    An approximate ΔHof,298 value has been determined for Pu5Si3 through a study of exchange reactions of selected metal silicides with plutonium. The reactions were carried out by arc-melting. Results show that Pu5Si3 is intermediate in stability between V3Si and Mo3Si, and has a ΔHof,298 of -52±13 kJ/g-atom. Estimates of ΔHof,298 for the higher plutonium silicides are: Pu3Si2 -54, PuSi -60, Pu3Si5 -58, and PuSi2 -56 kJ/g-atom with uncertainties of ±18 kJ/g-atom. The plutonium silicides are found to be more stable than both the thorium and uranium silicides. (orig.)

  10. Impact of silicide layer on single photon avalanche diodes in a 130 nm CMOS process

    Science.gov (United States)

    Cheng, Zeng; Palubiak, Darek; Zheng, Xiaoqing; Deen, M. Jamal; Peng, Hao

    2016-09-01

    Single photon avalanche diode (SPAD) is an attractive solid-state optical detector that offers ultra-high photon sensitivity (down to the single photon level), high speed (sub-nanosecond dead time) and good timing performance (less than 100 ps). In this work, the impact of the silicide layer on SPAD’s characteristics, including the breakdown voltage, dark count rate (DCR), after-pulsing probability and photon detection efficiency (PDE) is investigated. For this purpose, two sets of SPAD structures in a standard 130 nm complementary metal oxide semiconductor (CMOS) process are designed, fabricated, measured and compared. A factor of 4.5 (minimum) in DCR reduction, and 5 in PDE improvements are observed when the silicide layer is removed from the SPAD structure. However, the after-pulsing probability of the SPAD without silicide layer is two times higher than its counterpart with silicide. The reasons for these changes will be discussed.

  11. Chromium(III) -- chromium(VI) interconversions in seawater

    NARCIS (Netherlands)

    Weijden, C.H. van der; Reith, M.

    1982-01-01

    The stable form of dissolved chromium in oxygenated seawater is Cr(VI). But Cr(III)-species are also present at an analytically significant level. It is shown that Cr(III) is oxidized only slowly by dissolved oxygen, and that manganese oxide is a strong catalyst for such oxidation. However, the low

  12. Photoluminescence from neodymium silicide thin films formed by MEVVA ion source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Neodymium silicides were synthesized by Nd ion implanted into Si substrates with the aid of a metal vaporvacuum arc (MEVVA) ion source. The blender of Nd5Si4 and NdSi2was formed in a neodymium-implanted silicon thinfilm during the as-implanted state, but there was only single neodymium silicide compound in the post-annealed state,and the phase changed from NdSi2 to Nd5Si4 with increasing annealing temperature. The blue-violetluminescence excited by ultra-violet was observed at the room temperature (RT), and the intensity of photoluminescence(PL) increased with increasing the neodymium ion fluence. Moreover,the photoluminescence was closely dependent onthe temperature of rapid thermal annealing (RTA). A mechanism ofphotoluminescence was discussed.

  13. Development of fused slurry silicide coatings for tantalum reentry heat shields

    Science.gov (United States)

    Warnock, R. V.; Stetson, A. R.

    1972-01-01

    A fused slurry silicide coating was developed to provide atmospheric reentry protection for the 90Ta-lOW alloy. Overlaying the silicide with a highly refractory glass greatly improved total lifetime and reliability of the coating system. Low pressure, slow cycle lifetimes in excess of 100 cycles were consistently recorded for 1700 K - 13 and 1300 N/sq m test conditions. A minimum of 25 cycles was obtained for 1810 K - 1300 N/sq m conditions. About 50 simulated reentry cycles (variable temperature, pressure, and stress) were endured by coated 1-inch miniature heat shield panels when exposed to a maximum of 1700 K and either internal or external pressure conditions.

  14. Development of a fused slurry silicide coating for the protection of tantalum alloys

    Science.gov (United States)

    Packer, C. M.; Perkins, R. A.

    1974-01-01

    Results are reported of a research program to develop a reliable high-performance, fused slurry silicide protective coating for a tantalum-10 tungsten alloy for use at 1427 to 1538 C at 0.1 to 10 torr air pressure under cyclic temperature conditions. A review of silicide coating performance under these conditions indicated that the primary wear-out mode is associated with widening of hairline fissures in the coating. Consideration has been given to modifying the oxidation products that form on the coating surface to provide a seal for these fissures and to minimize their widening. On the basis of an analysis of the phase relationships between silica and various other oxides, a coating having the slurry composition 2.5Mn-33Ti-64.5Si was developed that is effective in the pressure range from 1 to 10 torr.

  15. RA-3 reactor core with uranium silicide fuel elements P-07 type

    International Nuclear Information System (INIS)

    Following the studies on the utilization of fuel elements (FE) containing uranium silicide, core of the RA-3 was analyzed with several calculation models. At first, the present situation, i.e. the core charged with normal FE (U3O8), has been analyzed to validate the simulation methodology comparing with experimental results and to establish reference data to 5 and 10 MW able to be compared with future new situations. Also, CITVAP's nuclear data libraries to be used in irradiation experiment planning were completed. The results were satisfactory and were applied to the study of the core containing P-07 FE [U3Si2], in face of a future core change. Comparing with the performance of the U3O8FE, the silicides ones show the following advantages: - average burnup: 45 % greater; -extraction burnup increase 12 %; and, -the residence time [in full power days] could be a 117 % greater. (author)

  16. Mössbauer spectroscopy study of surfactant sputtering induced Fe silicide formation on a Si surface

    Science.gov (United States)

    Beckmann, C.; Zhang, K.; Hofsäss, H.; Brüsewitz, C.; Vetter, U.; Bharuth-Ram, K.

    2015-12-01

    The formation of Fe silicides in surface ripple patterns, generated by erosion of a Si surface with keV Ar and Xe ions and simultaneous co-deposition of Fe, was investigated with conversion electron Mössbauer spectroscopy, atomic force microscopy and Rutherford backscattering spectrometry. For the dot and ripple patterns studied, we find an average Fe concentration in the irradiated layer between 6 and 25 at.%. The Mössbauer spectra clearly show evidence of the formation of Fe disilicides with Fe content close to 33 at.%, but very little evidence of the formation of metallic Fe particles. The results support the process of ion-induced phase separation toward an amorphous Fe disilicide phase as pattern generation mechanism. The observed amorphous phase is in agreement with thermodynamic calculations of amorphous Fe silicides.

  17. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing

    International Nuclear Information System (INIS)

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  18. Silicide Coating Fabricated by HAPC/SAPS Combination to Protect Niobium Alloy from Oxidation.

    Science.gov (United States)

    Sun, Jia; Fu, Qian-Gang; Guo, Li-Ping; Wang, Lu

    2016-06-22

    A combined silicide coating, including inner NbSi2 layer and outer MoSi2 layer, was fabricated through a two-step method. The NbSi2 was deposited on niobium alloy by halide activated pack cementation (HAPC) in the first step. Then, supersonic atmospheric plasma spray (SAPS) was applied to obtain the outer MoSi2 layer, forming a combined silicide coating. Results show that the combined coating possessed a compact structure. The phase constitution of the combined coating prepared by HAPC and SAPS was NbSi2 and MoSi2, respectively. The adhesion strength of the combined coating increased nearly two times than that for single sprayed coating, attributing to the rougher surface of the HAPC-bond layer whose roughness increased about three times than that of the grit-blast substrate. After exposure at 1200 °C in air, the mass increasing rate for single HAPC-silicide coating was 3.5 mg/cm(2) because of the pest oxidation of niobium alloy, whereas the combined coating displayed better oxidation resistance with a mass gain of only 1.2 mg/cm(2). Even more, the combined coating could significantly improve the antioxidation ability of niobium based alloy at 1500 °C. The good oxidation resistance of the combined silicide coating was attributed to the integrity of the combined coating and the continuous SiO2 protective scale provided by the oxidation of MoSi2. PMID:27243944

  19. Calculation of xenon 135 poisoning reactivity of RSG-GAS silicide fuelled

    International Nuclear Information System (INIS)

    Calculation of xenon 135 poisoning reactivity of RSG-GAS silicide fuelled. One of the important reactivity effects during reactor operation is a xenon poisoning, the reactivity depends on the power and time operation of reactor. The calculation was performed for RSG-GAS oxide 2,96 gr U/cc, silicide 2,96 gr U/cc silicide 3,55 gr U/cc fuelled using Xen Sam code, that is the xen sam code reform. In Xen Sam code, the xenon concentration is obtained by solving the simultaneous differential equation by means of limit different method. The results showed that the calculation values are close to the experiments. The equilibrium xenon reactivity will be higher if there is the increasing in the uranium density, while there is no significant change in the peak of xenon and dead time of the reactor. It shown that there is no influence in xenon reactivity for the same power levels and operation time more than 50 hours. At the other hand, if the operation time lest than 50 hours, there will be influences in equilibrium xenon reactivity, peak xenon and dead time reactor. For different power levels with the same operation time will be a significant influence to the xenon reactivity

  20. Palladium silicide formation under the influence of nitrogen and oxygen impurities

    Science.gov (United States)

    Ho, K. T.; Lien, C.-D.; Nicolet, M.-A.

    1985-01-01

    The effect of impurities on the growth of the Pd2Si layer upon thermal annealing of a Pd film on 100 line-type and amorphous Si substrates is investigated. Nitrogen and oxygen impurities are introduced into either Pd or Si which are subsequently annealed to form Pd2Si. The complementary techniques of Rutherford backscattering spectrometry, and N-15(p, alpha)C-12 or O-18(p, alpha)N-15 nuclear reaction, are used to investigate the behavior of nitrogen or oxygen and the alterations each creates during silicide formation. Both nitrogen and oxygen retard the silicide growth rate if initially present in Si. When they are initially in Pd, there is no significant retardation; instead, an interesting snow-plowing effect of N or O by the reaction interface of Pd2Si is observed. By using N implanted into Si as a marker, Pd and Si appear to trade roles as the moving species when the silicide front reaches the nitrogen-rich region.

  1. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Yuryev, V. A., E-mail: vyuryev@kapella.gpi.ru; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P. [A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation); Senkov, V. M. [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Avenue, Moscow 119991 (Russian Federation); Nalivaiko, O. Y. [JSC “Integral” – “Integral” Holding Management Company, 121A, Kazintsa I. P. Street, Minsk 220108 (Belarus); Novikau, A. G.; Gaiduk, P. I. [Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus)

    2015-05-28

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.

  2. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Science.gov (United States)

    Yuryev, V. A.; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P.; Senkov, V. M.; Nalivaiko, O. Y.; Novikau, A. G.; Gaiduk, P. I.

    2015-05-01

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si3N4/SiO2/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about -2%/ °C in the temperature interval from 25 to 50 °C.

  3. Determination of chromium combined with DNA, RNA and protein in chromium-rich brewer's yeast

    International Nuclear Information System (INIS)

    The contents of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast were determined with the neutron activation analysis in order to study the combination of Cr with DNA, RNA and protein in chromium-rich brewer's yeast. The results showed that the extracting rats and concentrations of DNA, RNA and protein had no significant difference in two types of yeast, but the chromium contents of DNA, RNA and protein in the chromium-rich yeast were significantly higher than those in the normal. In addition, the content of chromium in DNA was much higher than that in RNA and protein, which indicated that the inorganic chromium compounds entered into the yeast cell, during the yeast cultivation in the culture medium containing chromium were converted into organic chromium compounds combined with DNA, RNA and protein

  4. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby; Wright, Nick; O' Neill, Anthony; Horsfall, Alton; Goss, Jonathan [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Cumpson, Peter [School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2013-03-21

    Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such as the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.

  5. A two-step annealing process for Ni silicide formation in an ultra-thin body RF SOI MOSFET

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chang-Geun [Nano-Bio Electric Devices Team, IT Convergence Technology Research Division, ETRI, 161 Gajeong-dong, Yuseong-gu, Daejeon 305-350 (Korea, Republic of)], E-mail: cgahn@etri.re.kr; Kim, Tae-Youb; Yang, Jong-Heon; Baek, In-Bok [Nano-Bio Electric Devices Team, IT Convergence Technology Research Division, ETRI, 161 Gajeong-dong, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Cho, Won-ju [Department of Electronic Materials Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Lee, Seongjae [Quantum Photonic Science Research Center and BK21 Program Division of Advanced Research and Education in Physics, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2008-02-15

    A two-step annealing process for Ni silicide formation in an ultra-thin body (UTB) RF SOI MOSFET is proposed to prevent a dramatic increase of the gate leakage current from the in-diffusion of Ni into the channel. The first step of the annealing process was performed at a low temperature for di-nickel silicide (Ni{sub 2}Si) formation, resulting in no in-diffusion of Ni into the channel. Next, the second step of the annealing process was performed at 500 deg. C for the formation of mono-nickel silicide (NiSi). Finally, the optimized Ni silicide SD with low resistance (5 {omega}/{open_square}) and a low leakage current was achieved on the UTB. Using the proposed two-step silicide process, UTB RF MOSFET with a gate length of 50 nm a 20-nm UTB was successfully fabricated and showed the good RF properties with a cut-off frequency of 138 GHz.

  6. Synthesis of chromium containing pigments from chromium galvanic sludges.

    Science.gov (United States)

    Andreola, F; Barbieri, L; Bondioli, F; Cannio, M; Ferrari, A M; Lancellotti, I

    2008-08-15

    In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr(0.04)Sn(0.97)SiO(5) and green Ca(3)Cr(2)(SiO(4))(3) were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr(2)O(3). The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr(2)O(3). PMID:18289775

  7. Synthesis of chromium containing pigments from chromium galvanic sludges

    Energy Technology Data Exchange (ETDEWEB)

    Andreola, F.; Barbieri, L. [Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Bondioli, F. [Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy)], E-mail: bondioli.federica@unimore.it; Cannio, M. [Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Ferrari, A.M. [Dipartimento di Scienza e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, Viale Amendola 2, 42100 Reggio Emilia (Italy); Lancellotti, I. [Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy)

    2008-08-15

    In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr{sub 0.04}Sn{sub 0.97}SiO{sub 5} and green Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3} were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr{sub 2}O{sub 3}. The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr{sub 2}O{sub 3}.

  8. Tissues and urinary chromium concentrations in rats fed high-chromium diets

    International Nuclear Information System (INIS)

    Complete text of publication follows. Chromium is an essential trace elements and enhances the function of insulin as a form of chromodulin. In the subjects with a certain type of diabetics, 200 to 1,000 μg/d of chromium is administered to reduced the symptoms of diabetics. However, although there are not any health-promotive effects of chromium-administration in healthy subjects, various types of chromium supplements are commercially available in many countries; the adverse effects caused by an excessive chromium intake are feared. In the present study, to clarify the tolerable upper limit of chromium, tissue and urinary chromium concentrations, liver function and iron status were examined in rats fed high-chromium diets. Thirty-six male 4-weeks Wistar rats were divided into six groups and fed casein-based diets containing 1, 10 or 100 μg/g of chromium as chromium chloride (CrCl3) or chromium picolinate (CrPic) for 4 weeks. After the feeding, chromium concentrations in liver, kidney, small intestine and tibia were determined by inductively coupled plasma-mass spectrometry. In addition, urine samples were collected on 3rd to 4th week and their chromium concentrations were also determined. Chromium concentrations in liver, kidney, small intestine and tibia were elevated with increase of dietary chromium concentration. Urinary chromium excretion was also elevated with the increase of dietary chromium and the rate of urinary chromium excretion was less than 2% to dietary chromium intake in all the experimental groups. In the administration of 100 μg/g of chromium, rats given CrCl3 showed significantly higher tibia chromium concentration and lower urinary chromium excretion than those given CrPic. There were not any differences in iron status among the experimental groups. Activities of serum aspartate aminotransferase and alanine aminotransferase in rats fed diet containing 100 μg/g of chromium as CrPic were significantly higher than those in rats fed other diets.

  9. Soils contaminated with hexavalent chromium

    OpenAIRE

    Fonseca, Bruna Catarina da Silva

    2011-01-01

    Tese de doutoramento em Engenharia Química e Biológica The interest in environmental soil science has been growing in the last years due to the continuous degradation of this major natural resource. With this in mind, and because chromium and lead are two of the most toxic heavy metals frequently detected as soil contaminants in the Portuguese territory, the study and development of few remediation techniques and the indissociable description of the sorption and migration of...

  10. Simultaneous determination of chromium(III) and chromium(VI) in aqueous solutions by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jøns, O; Nielsen, B

    1992-01-01

    A method for the simultaneous determination of chromium(iii) and chromium(vi) in a flow system based on chemiluminescence was developed. A Dionex cation-exchange guard column was used to separate chromium(iii) from chromium(vi), and chromium(vi) was reduced by potassium sulfite, whereupon both sp...

  11. Inoculation of chromium white cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-01-01

    Full Text Available It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  12. REMOVAL OF HEXAVALENT CHROMIUM FROM DRINKING WATER

    OpenAIRE

    A. R. Asgari ، F. Vaezi ، S. Nasseri ، O. Dördelmann ، A. H. Mahvi ، E. Dehghani Fard

    2008-01-01

    Removal of chromium can be accomplished by various methods but none of them is cost-effective in meeting drinking water standards. For this study, granular ferric hydroxide was used as adsorbent for removal of hexavalent chromium. Besides, the effects of changing contact time, pH and concentrations of competitive anions were determined for different amounts of granular ferric hydroxide. It was found that granular ferric hydroxide has a high capacity for adsorption of hexavalent chromium from ...

  13. The new ternary silicide Gd5CoSi2: Structural, magnetic and magnetocaloric properties

    International Nuclear Information System (INIS)

    Gd5CoSi2 was prepared by annealing at 1003 K. Its investigation by the X-ray powder diffraction shows that the ternary silicide crystallizes in a tetragonal structure deriving from the Cr5B3-type (I4/mcm space group; a=7.5799(4) and c=13.5091(12) A as unit cell parameters). The Rietveld refinement shows a mixed occupancy on the (8h) site between Si and Co atoms. Magnetization and specific heat measurements performed on Gd5CoSi2 reveal a ferromagnetic behaviour below TC=168 K. This magnetic ordering is associated to an interesting magnetocaloric effect; the adiabatic temperature change ΔTad is about 3.1 and 5.9 K, respectively, for a magnetic field change of 2 and 4.6 T. -- Graphical abstract: The adiabatic temperature change ΔTad was determined by combining the heat capacity measurements and the magnetization data. As expected, a peak near the Curie temperature of the Gd5CoSi2 ternary silicide is observed, with a maximum of ΔTad around 3.1 and 5.9 K for ΔH=2 and 4.6 T, respectively. Display Omitted Research Highlights: → We prepare and characterize for the first time the ternary silicide Gd5CoSi2. → Gd5CoSi2 crystallizes in the tetragonal structure deriving from the Cr5B3-type. → Gd5CoSi2 shows a ferromagnetic behaviour below 168 K associated with magnetocaloric properties.

  14. X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.; Solak, H.; Cerrina, F. [Univ. of Wisconsin-Madison, Stoughton, WI (United States)] [and others

    1997-04-01

    Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi{sub 2} exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 {mu}{Omega}-cm that is formed at a lower temperature (formation anneal) and the stable 12-15 {mu}{Omega}-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick {open_quotes}as is{close_quotes} industrial samples.

  15. Combustion synthesis of molybdenum silicides and borosilicides for ultrahigh-temperature structural applications

    Science.gov (United States)

    Alam, Mohammad Shafiul

    Molybdenum silicides and borosilicides are promising structural materials for gas-turbine power plants. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. For example, molybdenum disilicide (MoSi2) has excellent oxidation resistance and poor mechanical properties, while Mo-rich silicides such as Mo5Si3 (called T 1) have much better mechanical properties but poor oxidation resistance. One approach is based on the fabrication of MoSi2-T 1 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of T1. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, Mo 5SiB2 (called T2) phase is considered as an attractive material. In the thesis, MoSi2-T1 composites and materials based on T2 phase are obtained by mechanically activated SHS. Use of SHS compaction (quasi-isostatic pressing) significantly improves oxidation resistance of the obtained MoSi2-T1 composites. Combustion of Mo-Si-B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of molybdenum boride. These mixtures exhibit spin combustion, the characteristics of which are in good agreement with the spin combustion theory. Oxidation resistance of the obtained Mo-Si-B materials is independent on the concentration of Mo phase in the products so that the materials with a higher Mo content are preferable because of better mechanical properties. Also, T2 phase has been obtained by the chemical oven combustion synthesis technique.

  16. Effect of Annealing Temperature on the Formation of Silicides and the Surface Morphologies of PtSi Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of annealing temperature on the formation of the PtSi phase, distribution of silicides and the surface morphologies of silicides films is investigated by XPS, AFM. It is shown that the phase sequences of the films change from Pt-Pt2Si-PtSi-Si to Pt+Pt2Si+PtSi-PtSi-Si or Pt+Pt2Si+PtSi-PtSi-Si with an increase of annealing temperature and the reason for the formation of mixed layers is discussed.

  17. Electrochemical deposition of coating from carbide, boride and silicide of IV-VIA group metals in ion melts

    International Nuclear Information System (INIS)

    The prehistory of the development of methods of production of metal-like refractory coatings (titanium, tantalum, niobium, vanadium, zirconium carbides, borides and silicides) with the help of high-temperature electrochemical synthesis (HTES) in ionic melts is described. A review is made on studies into the process of HTES of refractory metal borides, carbides and silicides, manufacture conditions for the coatings and electrolyte compositions (oxide, oxide-fluoride, chloride, chloride-fluoride melts). Structure and properties of coatings produced by the method of HTES are under consideration

  18. Silicidation of Mo-alloyed ytterbium: Mo alloying effects on microstructure evolution and contact properties

    International Nuclear Information System (INIS)

    In this study, we investigated the effects of Mo addition to Yb as a contact material with Si for metal–oxide-semiconductor field-effect transistors (MOSFETs) to mitigate oxidation problems, a persistent problem for rare-earth metal-based contacts (such as Yb/Si and Er/Si). Our thorough materials characterization using transmission electron microscopy and X-ray diffraction unravels Mo segregation during silicidation and its effect against oxidation. I–V characteristics, measured from Schottky diodes produced from the samples, reflect such microstructure evolution and demonstrate a strong improvement in contact properties at high temperatures

  19. High-Temperature Compatible Nickel Silicide Thermometer And Heater For Catalytic Chemical Microreactors

    DEFF Research Database (Denmark)

    Jensen, Søren; Quaade, U.J.; Hansen, Ole

    2005-01-01

    Integration of heaters and thermometers is important for agile and accurate control and measurement of the thermal reaction conditions in microfabricated chemical reactors (microreactors). This paper describes development and operation of nickel silicide heaters and temperature sensors...... for temperatures exceeding 700 °C. The heaters and thermometers are integrated with chemical microreactors for heterogeneous catalytic conversion of gasses, and thermally activated catalytic conversion of CO to CO2 in the reactors is demonstrated. The heaters and thermometers are shown to be compatible...... with operation temperatures exceeding 700 °C....

  20. Magnetization reversal of ultrathin Fe film grown on Si(111) using iron silicide template

    Institute of Scientific and Technical Information of China (English)

    He Wei; Zhan Qing-Feng; Wang De-Yong; Chen Li-Jun; Sun Young; Cheng Zhao-Hua

    2007-01-01

    Ultrathin Fe films were epitaxially grown on Si(111) by using an ultrathin iron silicide film with p(2 × 2) surface reconstruction as a template. The surface structure and magnetic properties were investigated in situ by low energy electron diffraction (LEED), scanning tunnelling microscopy (STM), and surface magneto-optical effect (SMOKE). Polar SMOKE hysteresis loops demonstrate that the Fe ultrathin films with thickness t< 6 ML (monolayers) exhibit perpendicular magnetic anisotropy. The characters of M-H loops with the external magnetic field at difference angles and the angular dependence of coercivity suggest that the domain-wall pinning plays a dominant role in the magnetization reversal process.

  1. Transient behavior of silicide plate-type fuel during reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    The results of transient experiments using a low enriched uranium silicide mini-plate fuel (19 w/o 235U, 4.8gU/c.c.) for research reactors are described. Studies were addressed mainly to clarifying 1) fuel failure threshold and failure mechanism, and 2) dimensional stability of the fuel plate at the temperature ranged from 140degC to 970degC. The pulse irradiation of the mini-plate fuels was performed in the Nuclear Safety Research Reactor (NSRR) at the Japan Atomic Energy Research Institute (JAERI). (author)

  2. Oxidation resistant silicide coatings for Nbss/Nb5Si3 in-situ composites

    International Nuclear Information System (INIS)

    Oxidation protective silicide coatings for the new Nbss/Nb5Si3 in-situ composites were prepared by molten salt method. The experiment results indicated that the majority phase in the coating was NbSi2. More Nb5Si3 was formed at the interface between the substrate and NbSi2 layer during the oxidation. The oxidation resistance of the composites was improved by the coating, significantly. The improvement in the oxidation resistance of the composites maybe mainly attributed to the formation of large amount of SiO2 and Al2O3 on surface of coating. (orig.)

  3. Synthesis of metallic silicide fullerenes and the characteristics thereof by mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    CHEN YiChi; GUO Liang; ZHU LiQun

    2007-01-01

    Direct current arc discharge is used for the study on the synthesis of metallofullerenes (MFs) to discover whether there exist metallic silicide fullerenes and silicon fullerenes. The resultant components are isolated by the multistage high-performance liquid chromatography (HPLC) and analyzed with the Time-of-Flight (TOF) mass spectrometry. Results show that there exist fullerenes such as SiC69, YSi2C64, YSi2C78, Y3Si2C78 as well as Y2Si2C90 which are structurally similar to (Y2C2)@C82.

  4. Synthesis of metallic silicide fullerenes and the characteristics thereof by mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Direct current arc discharge is used for the study on the synthesis of metallo-fullerenes (MFs) to discover whether there exist metallic silicide fullerenes and silicon fullerenes. The resultant components are isolated by the multistage high-performance liquid chromatography (HPLC) and analyzed with the Time-of-Flight (TOF) mass spectrometry. Results show that there exist fullerenes such as SiC69, YSi2C64, YSi2C78, Y3Si2C78 as well as Y2Si2C90 which are structurally similar to (Y2C2)@C82.

  5. Tungsten silicide contacts to polycrystalline silicon and silicon-germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G. [Northern Ireland Semiconductor Research Centre, School of Electrical and Electronic Engineering, Queen' s University, Ashby Building, Stranmillis Road, Belfast BT9 5AH, Northern Ireland (United Kingdom)]. E-mail: g.srinivasan@ee.qub.ac.uk; Bain, M.F. [Northern Ireland Semiconductor Research Centre, School of Electrical and Electronic Engineering, Queen' s University, Ashby Building, Stranmillis Road, Belfast BT9 5AH, Northern Ireland (United Kingdom); Bhattacharyya, S. [Northern Ireland Semiconductor Research Centre, School of Electrical and Electronic Engineering, Queen' s University, Ashby Building, Stranmillis Road, Belfast BT9 5AH, Northern Ireland (United Kingdom); Baine, P. [Northern Ireland Semiconductor Research Centre, School of Electrical and Electronic Engineering, Queen' s University, Ashby Building, Stranmillis Road, Belfast BT9 5AH, Northern Ireland (United Kingdom); Armstrong, B.M. [Northern Ireland Semiconductor Research Centre, School of Electrical and Electronic Engineering, Queen' s University, Ashby Building, Stranmillis Road, Belfast BT9 5AH, Northern Ireland (United Kingdom); Gamble, H.S. [Northern Ireland Semiconductor Research Centre, School of Electrical and Electronic Engineering, Queen' s University, Ashby Building, Stranmillis Road, Belfast BT9 5AH, Northern Ireland (United Kingdom); McNeill, D.W. [Northern Ireland Semiconductor Research Centre, School of Electrical and Electronic Engineering, Queen' s University, Ashby Building, Stranmillis Road, Belfast BT9 5AH, Northern Ireland (United Kingdom)

    2004-12-15

    Silicon-germanium alloy layers will be employed in the source-drain engineering of future MOS transistors. The use of this technology offers advantages in reducing series resistance and decreasing junction depth resulting in reduction in punch-through and SCE problems. The contact resistance of metal or metal silicides to the raised source-drain material is a serious issue at sub-micron dimensions and must be minimised. In this work, tungsten silicide produced by chemical vapour deposition has been investigated as a contact metallization scheme to both boron and phosphorus doped polycrystalline Si{sub 1-} {sub x} Ge {sub x} , with 0 {<=}x {<=} 0.3. Cross bridge Kelvin resistor (CKBR) structures were fabricated incorporating CVD WSi{sub 2} and polycrystalline SiGe. Tungsten silicide contacts to control polysilicon CKBR structures have been shown to be of high quality with specific contact resistance {rho} {sub c} values 3 x 10{sup -7} ohm cm{sup 2} and 6 x 10{sup -7} ohm cm{sup 2} obtained to boron and phosphorus implanted samples respectively. The SiGe CKBR structures show that the inclusion of Ge yields a reduction in {rho} {sub c} for both dopant types. The boron doped SiGe exhibits a reduction in {rho} {sub c} from 3 x 10{sup -7} to 5 x 10{sup -8} ohm cm{sup 2} as Ge fraction is increased from 0 to 0.3. The reduction in {rho} {sub c} has been shown to be due to (i) the lowering of the tungsten silicide Schottky barrier height to p-type SiGe resulting from the energy band gap reduction, and (ii) increased activation of the implanted boron with increased Ge fraction. The phosphorus implanted samples show less sensitivity of {rho} {sub c} to Ge fraction with a lowest value in this work of 3 x 10{sup -7} ohm cm{sup 2} for a Ge fraction of 0.3. The reduction in specific contact resistance to the phosphorus implanted samples has been shown to be due to increased dopant activation alone.

  6. On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface

    Science.gov (United States)

    Fatima, Can Oguz, Ismail; ćakır, Deniz; Hossain, Sehtab; Mohottige, Rasika; Gulseren, Oguz; Oncel, Nuri

    2016-09-01

    Iridium (Ir) modified Silicon (Si) (001) surface is studied with Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Density Functional Theory (DFT). A model for Ir-silicide nanowires based on STM images and ab-initio calculations is proposed. According to our model, the Ir adatom is on the top of the substrate dimer row and directly binds to the dimer atoms. I-V curves measured at 77 K shows that the nanowires are metallic. DFT calculations confirm strong metallic nature of the nanowires.

  7. Permeation of chromium salts through human skin in vitro

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Fullerton, A; Avnstorp, C;

    1992-01-01

    of the dichromate solution. Chromium skin levels increased with increasing concentrations of applied chromium salts up to 0.034 M Cr. The amount of chromium in recipient phase and skin layers increased with increasing pH when the applied solution contained potassium dichromate. This was ascribed to a decreased skin...... barrier function of the skin. The amount of chromium found in all skin layers after application of chromium chloride decreased with increasing pH due to lower solubility of the salt. The % of chromium found in the recipient phase as chromium(VI) increased with increasing total chromium concentration...... indicating a limited reduction ability of the skin in vitro....

  8. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    This study was undertaken to determine if chromium(+6) could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium(+3) to chromium(+6) by nitric acid; and the reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium(+3) to chromium(+6) was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the (+6) oxidation state and would not exist in the (+6) state in the final process waste solutions

  9. Electrodeposition of chromium from trivalent chromium urea bath containing sulfate and chloride

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The reduction of Cr( Ⅲ) to Cr( Ⅱ ) on copper electrode in trivalent chromium urea bath containing chromium sulfate and chromium chloride as chromium source has been investigated by potentiodynamic sweep. The transfer coefficient α for reduction of Cr( Ⅲ ) to Cr( Ⅱ ) on copper electrode was calculated as 0.46. The reduction is a quasi-reversible process. J-t responses at different potential steps showed that the generation and adsorption characteristics of carboxylate bridged oligomer are relevant to cathode potential. The interface behavior between electrode and solution for Cr( Ⅲ ) complex is a critical factor influencing sustained electrode position of chromium. The hypotheses of the electro-inducing polymerization of Cr( Ⅲ ) was proposed. The potential scope in which sustained chromium deposits can be prepared is from- 1.3 V to- 1.7 V (vs SCE) in the urea bath. Bright chromium deposits with thickness of 30 μm can be prepared in the bath.

  10. Alkane dehydrogenation over supported chromium oxide catalysts

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    1999-01-01

    The dehydrogenation of alkanes over supported chromium oxide catalysts in the absence of oxygen is of high interest for the industrial production of propene and isobutene. In this review, a critical overview is given of the current knowledge nowadays available about chromium-based dehydrogenation ca

  11. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    Science.gov (United States)

    Harp, Jason M.; Lessing, Paul A.; Hoggan, Rita E.

    2015-11-01

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ± 0.06 g/cm3. Additional characterization of the pellets by scanning electron microscopy and X-ray diffraction has also been performed. Pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.

  12. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    International Nuclear Information System (INIS)

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon

  13. Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.

    2011-12-01

    The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.

  14. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B. [Brimrose Technology Corporation; Kutcher, Susan W. [Brimrose Technology Corporation; Rosemeier, Cory A. [Brimrose Technology Corporation; Mayers, David [Brimrose Technology Corporation; Singh, Jogender [Pennsylvania State University

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  15. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  16. Study of temperature dependent zirconium silicide phases in Zr/Si structure by differential scanning calorimetry

    International Nuclear Information System (INIS)

    The differential scanning calorimetry (DSC) technique is employed to study the formation of different silicide compounds of Zr thin-film deposited on a 100 μm-thick Si (1 0 0) substrate by dc sputtering. A detailed analysis shows that silicide layers start growing at  ∼246 °C that changes to stable ZrSi2 at 627 °C via some compounds with different stoichiometric ratios of Zr and Si. It is further observed that oxygen starts reacting with Zr at  ∼540 °C but a stoichiometric ZrO2 film is formed after complete consumption of Zr metal at 857 °C. A further rise in temperature changes a part of ZrSi2 to Zr-Silicate. The synchrotron radiation-based grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy studies also corroborate the above findings. Atomic force microscopy is also carried out on the samples. It is evident from the observations that an intermixing and nucleation of Zr and Si occur at lower temperature prior to the formation of the interfacial silicate layer. Zr-Silicate formation takes place only at a higher temperature. (paper)

  17. Mitigation of interfacial silicide reactions for electroplated CoPt films on Si substrates

    Science.gov (United States)

    Oniku, Ololade D.; Arnold, David P.

    2015-12-01

    We report in this paper the influence of film thickness on the material and magnetic properties of electroplated CoPt permanent magnets. Layers of CoPt magnets with film thicknesses ranging from 0.5 μm to 5 μm are deposited into photoresist molds (3.5 mm x 3.5 mm square and 5 μm x 50 μm arrays) on a (100)Si substrate coated with 10 nm/100 nm Ti/Cu adhesion/seed layer. Results show an unexpected reduction in magnetic properties for films below 2 μm thick. This effect is determined to be a consequence of metal-silicide reactions at the substrate interface during annealing leading to the formation of a non-magnetic layer at the interface. Subsequently, a TiN diffusion-barrier layer is added to inhibit the silicide reaction and thereby maintain strong magnetic properties (Hci ∼800 kA/m, Mr/Ms = 0.8) in micron- thick electroplated CoPt layers.

  18. Prospect of Uranium Silicide fuel element with hypostoichiometric (Si ≤3.7%)

    International Nuclear Information System (INIS)

    An attempt to obtain high uranium-loading in silicide dispersion fuel element using the fabrication technology applicable nowadays can reach Uranium-loading slightly above 5 gU/cm3. It is difficult to achieve a higher uranium-loading than that because of fabricability constraints. To overcome those difficulties, the use of uranium silicide U3Si based is considered. The excess of U is obtained by synthesising U3Si2 in Si-hypostoichiometric stage, without applying heat treatment to the ingot as it can generate undesired U3Si. The U U will react with the matrix to form U alx compound, that its pressure is tolerable. This experiment is to consider possibilities of employing the U3Si2 as nuclear fuel element which have been performed by synthesising U3Si2-U with the composition of 3.7 % weigh and 3 % weigh U. The ingot was obtained and converted into powder form which then was fabricated into experimental plate nuclear fuel element. The interaction between free U and Al-matrix during heat-treatment is the rolling phase of the fuel element was observed. The study of the next phase will be conducted later

  19. "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe.

    Science.gov (United States)

    Mingo, N; Hauser, D; Kobayashi, N P; Plissonnier, M; Shakouri, A

    2009-02-01

    We present a "nanoparticle-in-alloy" material approach with silicide and germanide fillers leading to a potential 5-fold increase in the thermoelectric figure of merit of SiGe alloys at room temperature and 2.5 times increase at 900 K. Strong reductions in computed thermal conductivity are obtained for 17 different types of silicide nanoparticles. We predict the existence of an optimal nanoparticle size that minimizes the nanocomposite's thermal conductivity. This thermal conductivity reduction is much stronger and strikingly less sensitive to nanoparticle size for an alloy matrix than for a single crystal one. At the same time, nanoparticles do not negatively affect the electronic conduction properties of the alloy. The proposed material can be monolithically integrated into Si technology, enabling an unprecedented potential for micro refrigeration on a chip. High figure-of-merit at high temperatures (ZT approximately 1.7 at 900 K) opens up new opportunities for thermoelectric power generation and waste heat recovery at large scale.

  20. Organometallic halide perovskite/barium di-silicide thin-film double-junction solar cells

    Science.gov (United States)

    Vismara, R.; Isabella, O.; Zeman, M.

    2016-04-01

    Barium di-silicide (BaSi2) is an abundant and inexpensive semiconductor with appealing opto-electrical properties. In this work we show that a 2-μm thick BaSi2-based thin-film solar cell can exhibit an implied photo-current density equal to 41.1 mA/cm2, which is higher than that of a state-of-the-art wafer-based c-Si hetero-junction solar cell. This performance makes BaSi2 an attractive absorber for high-performing thin-film and multi-junction solar cells. In particular, to assess the potential of barium di-silicide, we propose a thin-film double-junction solar cell based on organometallic halide perovskite (CH3NH3PbI3) as top absorber and BaSi2 as bottom absorber. The resulting modelled ultra-thin double-junction CH3NH3PbI3 / BaSi2 (< 2 μm) exhibits an implied total photo-current density equal to 38.65 mA/cm2 (19.84 mA/cm2 top cell, 18.81 mA/cm2 bottom cell) and conversion efficiencies up to 28%.

  1. Effect of annealing on magnetic properties and silicide formation at Co/Si interface

    Indian Academy of Sciences (India)

    Shivani Agarwal; V Ganesan; A K Tyagi; I P Jain

    2006-11-01

    The interaction of Co (30 nm) thin films on Si (100) substrate in UHV using solid state mixing technique has been studied. Cobalt was deposited on silicon substrate using electron beam evaporation at a vacuum of 4 × 10-8 Torr having a deposition rate of about 0.1 Å/s. Reactivity at Co/Si interface is important for the understanding of silicide formation in thin film system. In the present paper, cobalt silicide films were characterized by atomic force microscopy (AFM) and secondary ion mass spectroscopy (SIMS) in terms of the surface and interface morphologies and depth profile, respectively. The roughness of the samples was found to increase up to temperature, 300°C and then decreased with further rise in temperature, which was due to the formation of crystalline CoSi2 phase. The effect of mixing on magnetic properties such as coercivity, remanence etc at interface has been studied using magneto optic Kerr effect (MOKE) techniques at different temperatures. The value of coercivity of pristine sample and 300°C annealed sample was found to be 66 Oe and 40 Oe, respectively, while at high temperature i.e. 748°C, the hysteresis disappears which indicates the formation of CoSi2 compound.

  2. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  3. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+-n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  4. [Bioremediation of chromium (VI) contaminated site by reduction and microbial stabilization of chromium].

    Science.gov (United States)

    Zheng, Jia-Chuan; Zhang, Jian-Rong; Liu, Xi-Wen; Xu, Qian; Shi, Wei-Lin

    2014-10-01

    Chromium (VI) contaminated soil samples were collected from a chemical plant in Suzhou. Firstly, the reduced soil was prepared by adding reagent (Stone-sulfure reagent) into polluted soil to transfer most chromium (VI) into chromium (III), then a nutrient solution was introduced into the reduced soil, and the stabilized soil was obtained after 60 days culturing. The chromium (VI) content of the three kinds of soil was analyzed. The results showed that the chromium (VI) content in toxicity characteristic leaching liquid (TCLL) dropped by 96. 8% (from 8.26 mg · L(-1) to 0.26 mg · L(-1)), and the total chromium content dropped by 95.7% (from 14.66 mg · L(-1) to 0.63 mg · L(-1)) after bioremediation in 5% nutrient solution. Additionally, the durability of chromium stabilization was tested by potassium permanganate oxidation and sterilization of microbe-treated soil. After oxidation, the chromium (VI) content in TCLL of the reduced soil was increased from 8.26 mg · L(-1) to 14.68 mg · L(-1). However, the content after bioremediation was decreased to 2.68 mg · L(-1). The results of sterilization demonstrated that the death of microbe had no significant effect on the stabilization of chromium. Consequently, the research in this paper demonstrated the feasibility of bioremediation of chromium (VI) polluted soil through reduction followed by stabilization/soilidification, and provided a technique with low cost but high efficiency.

  5. Influence of Al addition on phase transformation and thermal stability of nickel silicides on Si(0 0 1)

    International Nuclear Information System (INIS)

    Highlights: ► The presence of Al slows down the Ni2Si–NiSi phase transformation but significantly promotes the NiSi2−xAlx formation. ► The behavior of phase transformation strongly depends on the Al concentration of the initial Ni1−xAlx alloys. ► The Ni0.91Al0.09/Si system exhibits remarkably improved thermal stability, even after high temperature annealing for 1000 s. ► The relationship between microstructures, electrical property, and thermal stability of Ni(Al) silicides is discussed. -- Abstract: The influence of Al addition on the phase transformation and thermal stability of Ni silicides on (0 0 1)Si has been systematically investigated. The presence of Al atoms is found to slow down the Ni2Si–NiSi phase transformation but significantly promote the NiSi2−xAlx formation during annealing. The behavior of phase transformation strongly depends on the Al concentration of the initial Ni1−xAlx alloys. Compared to the Ni0.95Pt0.05/Si and Ni0.95Al0.05/Si system, the Ni0.91Al0.09/Si sample exhibits remarkably enhanced thermal stability, even after high temperature annealing for 1000 s. The relationship between microstructures, electrical property, and thermal stability of Ni silicides is discussed to elucidate the role of Al during the Ni1−xAlx alloy silicidation. This work demonstrated that thermally stable Ni1−xAlx alloy silicides would be a promising candidate as source/drain (S/D) contacts in advanced complementary metal–oxide-semiconductor (CMOS) devices

  6. Low-chromium reduced-activation chromium-tungsten steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J.; Maziasz, P.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Bainitic microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of non-classical bainite were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was found to be considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2 1/4Cr-2W and 2 1/4Cr-2WV steel compositions to increase their hardenability, and the microstructures and mechanical properties were examined.

  7. Corrosion behaviors of a γ-toughened Cr13Ni5Si2/Cr3Ni5Si2 multi-phase ternary metal silicide alloy in NaCl solution

    International Nuclear Information System (INIS)

    Corrosion behaviors of a novel corrosion-resistant γ-toughened Cr13Ni5Si2/Cr3Ni5Si2 multi-phase ternary metal silicide alloy and properties of the passive film formed in NaCl solution were examined by anodic polarization, cyclic polarization and electrochemical impedance spectroscopy (EIS) experiments as well as X-ray photoelectron spectroscopy (XPS) and potentiostatic polarization measurements. Effects of immersion time and chloride ion concentration on corrosion behaviors of the alloy were also evaluated. Results indicated that the alloy exhibited excellent corrosion resistance in NaCl solution due to the spontaneous formation of a compact and protective passive film composed mainly of chromium (III) oxide as well as the high chemical stability and strong inter-atomic bonds inherent to Cr13Ni5Si2 and Cr3Ni5Si2 intermetallic phases. Moreover, corrosion resistance of the alloy was quite insensitive to the increase of chloride ion concentration and was improved noticeably with the increasing immersion time

  8. Bainitic chromium-tungsten steels with 3 pct chromium

    International Nuclear Information System (INIS)

    Previous work on 3Cr-1.5MoV (nominally Fe-3Cr-2.5Mo-0.25V-0.1C), 2.25Cr-2W (Fe-2.25Cr-2W-0.1C), and 2.25Cr-2WV (Fe-2.25Cr-2W-0.25V-0.1C) steels indicated that the impact toughness of these steels depended on the microstructure of the bainite formed during continuous cooling from the austenization temperature. Microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of nonclassical microstructures were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2.25Cr-2W and 2.25Cr-2WV steel compositions to increase their hardenability. Charpy testing indicated that the new 3Cr-W and 3Cr-WV steels had improved impact toughness, as demonstrated by lower ductile-brittle transition temperatures and higher upper-shelf energies. This improvement occurred with less tempering than was necessary to achieve similar toughness for the 2.25Cr steels and for high-chromium (9 to 12 pct Cr) Cr-W and Cr-Mo steels

  9. Chromium

    Science.gov (United States)

    ... 6+), a toxic form that results from industrial pollution. This fact sheet focuses exclusively on trivalent (3+) ... 1 medium 1 Banana, 1 medium 1 Green beans, ½ cup 1 What are recommended intakes of ...

  10. Reproductive toxicological aspects of chromium in males

    International Nuclear Information System (INIS)

    To expand our present understanding of the effects of chromium on male fertility a number of studies were designed to achieve this through the use of chromium intoxicated experimental animals and through investigation of sexual hormones and sperm quality in welders. Also in view of the lack of an experimental model for effects of noxious substance on the epididymal spermatozoa the main objectives of the series of studies reviewed here were: A. To establish a model for evaluation of epididymal sperm count and motility in the rat. B. To investigate and compare the effects of tri- and hexavalent chromium on epididymal spermatozoa. Further to describe the effects of low-dose long-time exposure of rats to the most toxicological interesting chromium oxidative state - hexavalent chromium. C. By the use of autoradiography and γ-countinuing to expand the present knowledge on the distribution of chromium in the body with special reference to the male reproductive organs. D. To describe the effects of exposure to hexavalent chromium in welding fume on levels of sexual hormones and semen parameters in welders. (EG)

  11. Synthesis of Chromium (Ⅲ) 5-aminosalicylate

    Institute of Scientific and Technical Information of China (English)

    LI Wei; HAO Er-jun; JIANG Yu-qin

    2004-01-01

    As we all known that diabetes is a chronic disease with major health consequences.Research has revealed that the occurrence of diabetes have great thing to do with the chromium deficient. Almost 40 years after the first report of glucose tolerance factor(GTF) [1], no conclusive evidence for an isolable ,biologically active form of chromium exited. Three materials have been proposed to be the biologically active form of chromium: "glucose tolerance factor", chromium Picolinate and low-molecular-weight chromium-binding substance (LWMCr) [2] . So there is potential for the design of new chromium drugs .5-Aminosalicylic acid (5-ASA) is identified as an active component in the therapy of inflammatory bowel disease (IBD) such as Crohn's disease and ulcerative colitis . The therapeutic action of 5-ASA is believed to be coupled to its ability to act as a free radical scavenger [3-4],acting locally on the inflamed colonic mucosa [5-7]. However, the clinical use of 5-ASA is limited, since orally administered 5-ASA is rapidly and completely absorbed from the upper gastrointestinal tract and therefore the local therapeutic effects of 5-ASA in the colon is hardly expected.In this paper, we report the synthesis of chromium(Ⅲ)5-aminosalicylate from 5-ASA and CrCl3. 6H2O.The synthesis route is as follow:The complex has been characterized by elemental analysis, IR spectra, X-ray powder diffractionand TG-DTA . They indicate that the structure is tris(5-ASA) Chromium . Experiments show that thecomplex has a good activity for supplement tiny dietary chromium, lowering blood glucose levels,lowering serum lipid levels and in creasing lean body mass .

  12. Understanding and Improving High-Temperature Structural Properties of Metal-Silicide Intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Bruce S. Kang

    2005-10-10

    The objective of this project was to understand and improve high-temperature structural properties of metal-silicide intermetallic alloys. Through research collaboration between the research team at West Virginia University (WVU) and Dr. J.H. Schneibel at Oak Ridge National Laboratory (ORNL), molybdenum silicide alloys were developed at ORNL and evaluated at WVU through atomistic modeling analyses, thermo-mechanical tests, and metallurgical studies. In this study, molybdenum-based alloys were ductilized by dispersing MgAl2O4 or MgO spinel particles. The addition of spinel particles is hypothesized to getter impurities such as oxygen and nitrogen from the alloy matrix with the result of ductility improvement. The introduction of fine dispersions has also been postulated to improve ductility by acting as a dislocation source or reducing dislocation pile-ups at grain boundaries. The spinel particles, on the other hand, can also act as local notches or crack initiation sites, which is detrimental to the alloy mechanical properties. Optimization of material processing condition is important to develop the desirable molybdenum alloys with sufficient room-temperature ductility. Atomistic analyses were conducted to further understand the mechanism of ductility improvement of the molybdenum alloys and the results showed that trace amount of residual oxygen may be responsible for the brittle behavior of the as-cast Mo alloys. For the alloys studied, uniaxial tensile tests were conducted at different loading rates, and at room and elevated temperatures. Thermal cycling effect on the mechanical properties was also studied. Tensile tests for specimens subjected to either ten or twenty thermal cycles were conducted. For each test, a follow-up detailed fractography and microstructural analysis were carried out. The test results were correlated to the size, density, distribution of the spinel particles and processing time. Thermal expansion tests were carried out using thermo

  13. Characteristics of chromium-allergic dermatitis patients prior to regulatory intervention for chromium in leather

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P; Zachariae, Claus;

    2014-01-01

    BACKGROUND: Chromium-tanned leather articles currently constitute the most important cause of contact allergy to chromium in Denmark. A regulation on the content of hexavalent chromium in leather was adopted in November 2013 by the EU member states. OBJECTIVES: To characterize patients...... with chromium allergy and their disease, to serve as a baseline for future studies on the potential effect of the new regulation on chromium in leather. METHODS: A questionnaire case-control study was performed on 155 dermatitis patients with positive patch test reactions to potassium dichromate and a matched...... control group of 621 dermatitis patients. Comparisons were made by use of a χ(2) -test and the Mann-Whitney U-test. Logistic regression analyses were used to test for associations. RESULTS: Sixty-six per cent of chromium-allergic patients had a positive history of contact dermatitis caused by leather...

  14. Chromium in leather footwear-risk assessment of chromium allergy and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Strandesen, Maria; Poulsen, Pia B;

    2012-01-01

    Background. Chromium-tanned leather footwear, which releases >3 ppm hexavalent Cr(VI), may pose a risk of sensitizing and eliciting allergic dermatitis. Objectives. To determine the content and potential release of chromium in leather footwear and to discuss the prevention of chromium contact...... allergy and dermatitis. Methods. Sixty pairs of leather shoes, sandals and boots (20 children's, 20 men's, and 20 women's) were purchased in Copenhagen and examined with X-ray fluorescence spectroscopy. Chromium was extracted according to the International Standard, ISO 17075. The detection level for Cr......(VI) was 3 ppm. Results. Chromium was identified in 95% of leather footwear products, the median content being 1.7% (range 0-3.3%). No association with store category or footwear category was found. A tendency for there to be a higher chromium content in footwear with high prices was shown (p(trend) = 0...

  15. Modified fused silicide coatings for tantalum (Ta-10W) reentry heat shields

    Science.gov (United States)

    Packer, C. M.; Perkins, R. A.

    1973-01-01

    Results are presented of a program of research to develop a reliable, high performance, fused slurry silicide coating for the Ta-10W alloy. The effort was directed toward developing new and improved formulations for use at 2600 to 2800 F (1700 to 1811 K) in an atmospheric reentry thermal protection system with a 100-mission capability. Based on a thorough characterization of isothermal and cyclic oxidation behavior, bend transition temperatures, room- and elevated-temperature tensile properties, and creep behavior, a 2.5 Mn-33Ti-64.5Si coating (designated MTS) provides excellent protection for the Ta-10W alloy in simulated reentry environments. An extensive analysis of the oxidation behavior and characteristics of the MTS coating in terms of fundamental mechanisms also is presented.

  16. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  17. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-08-11

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  18. The fabrication of metal silicide nanodot arrays using localized ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jin; Kim, Tae-Gon; Min, Byung-Kwon; Lee, Sang Jo, E-mail: bkmin@yonsei.ac.kr [School of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-12-03

    We propose a process for fabricating nanodot arrays with a pitch size of less than 25 nm. The process consists of localized ion implantation in a metal thin film on a Si wafer using a focused ion beam (FIB), followed by chemical etching. This process utilizes the etching resistivity changes of the ion beam irradiated region that result from metal silicide formation by ion implantation. To control the nanodot diameter, a threshold ion dose model is proposed using the Gaussian distribution of the ion beam intensities. The process is verified by fabricating nanodots with various diameters. The mechanism of etching resistivity is investigated via x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES).

  19. Chemical vapour deposition of tungsten and tungsten silicide layers for applications in novel silicon technology

    CERN Document Server

    Li, F X

    2002-01-01

    This work was a detailed investigation into the Chemical Vapour Deposition (CVD) of tungsten and tungsten silicide for potential applications in integrated circuit (IC) and other microelectronic devices. These materials may find novel applications in contact schemes for transistors in advanced ICs, buried high conductivity layers in novel Silicon-On-Insulator (SOI) technology and in power electronic devices. The CVD techniques developed may also be used for metal coating of recessed or enclosed features which may occur in novel electronic or electromechanical devices. CVD of tungsten was investigated using the silicon reduction reaction of WF sub 6. W layers with an optimum self-limiting thickness of 100 nm and resistivity 20 mu OMEGA centre dot cm were produced self-aligned to silicon. A hydrogen passivation technique was developed as part of the wafer pre-clean schedule and proved essential in achieving optimum layer thickness. Layers produced by this approach are ideal for intimate contact to shallow junct...

  20. Fabrication of uranium silicide dispersion fuel by atomization for research reactor

    International Nuclear Information System (INIS)

    Atomizing technology has been developed to eliminate the difficulties in comminution of the tough U3Si and to take advantage of the spherical shape and the rapid solidification. The comparison between the conventional dispersion fuel with comminuted powder and the newly developed fuel with atomized powder has been made. As a result, the processes, powdering uranium silicide and heat treatment to U3Si, become simplified. The extruding pressure of blended powder with atomized powder was lower than that of blended powder with comminuted powder. The elongation of the atomization processed fuel meat was much higher than that of comminution processed fuel meats. It appears that the loading density of U3Si in fuel meat can be increased by using atomized U3Si powder. The thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be much improved due to the spherical shape of atomized powder. (author)

  1. Discovery of Brownleeite: a New Manganese Silicide Mineral in an Interplanetary Dust Particle

    Science.gov (United States)

    Keller, Lindsay P.; Nakamura-Messenger, Keiko; Clemett, Simon J.; Messenger, Scott; Jones, John H.; Palma, Russell L.; Pepin, Robert O.; Klock, Wolfgang; Zolensky, Michael E.; Tatsuoka, Hirokazu

    2011-01-01

    The Earth accretes approximately 40,000 tons of cosmic dust annually, originating mainly from the disintegration of comets and collisions among asteroids. This cosmic dust, also known as interplanetary dust particles (IDPs), is a subject of intense interest since it is made of the original building blocks of our Solar System. Although the specific parent bodies of IDPs are unknown, the anhydrous chondritic-porous IDPs (CP-IDPs) subset has been potentially linked to a cometary source. The CP-IDPs are extremely primitive materials based on their unequilibrated mineralogy, C-rich chemistry, and anomalous isotopic signatures. In particular, some CP-IDPs escaped the thermal, aqueous and impact shock processing that has modified or destroyed the original mineralogy of meteorites. Thus, the CP-IDPs represent some of the most primitive solar system materials available for laboratory study. Most CP-IDPs are comprised of minerals that are common on Earth. However, in the course of an examination of one of the CP-IDPs, we encountered three sub-micrometer sized grains of manganese silicide (MnSi), a phase that has heretofore not been found in nature. In the seminar, we would like to focus on IDP studies and this manganese silicide phase that has been approved as the first new mineral identified from a comet by the International Mineralogical Association (IMA) in 2008. The mineral is named in honour of Donald E. Brownlee, an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth. Much of our current view and understanding of the early solar system would not exist without the pioneering work of professor Don Brownlee in the study of IDPs.

  2. Potentiometry: A Chromium (III) -- EDTA Complex

    Science.gov (United States)

    Hoppe, J. I.; Howell, P. J.

    1975-01-01

    Describes an experiment that involves the preparation of a chromium (III)-EDTA compound, a study of its infrared spectrum, and the potentiometric determination of two successive acid dissociation constants. (Author/GS)

  3. AEROSOL BEHAVIOR IN CHROMIUM WASTE INCINERATION

    Institute of Scientific and Technical Information of China (English)

    Suyuan Yu

    2003-01-01

    Cr2O3 is considered as the dominant incineration product during the combustion disposal of chromium waste. A hydrogen/air diffusion flame was employed to simulate the industrial process of incineration. Cr2O3 aerosols were generated inside the flame by the gas phase reaction of chromium and oxygen. Chromium came from the rapid decomposition of chromium hexacarbonyl (Cr(CO)6) at room temperature and was carried into the combustion chamber by hydrogen. Aerosol and clusters can then be easily formed in the flame by nucleation and coagulation. A two dimensional Discrete-Sectional Model (DSM) was adopted to calculate the Cr2O3 aerosol behavior. The experimental measurement method was Dynamic Light Scattering. The numerically predicted results agreed well with those of the experimental measurement. Both results show that the Cr2O3 aerosol size reached about 70 nanometers at the flame top.

  4. Localized Corrosion of Chromium Coated Steel

    NARCIS (Netherlands)

    Zhang, X.; Beentjes, P.; Mol, A.; Terryn, H.

    2006-01-01

    In this paper, we report on the studies of the local corrosion behaviour of chromium-coated ultra low carbon steel in NaCl solution using polarization, electrochemical impedance spectroscopy (EIS) and SVET.

  5. Synthesis and Characterization of Chromium Oxide Nanoparticles

    OpenAIRE

    Vivek Sheel Jaswal; Avnish Kumar Arora; Joginder Singh; Mayank Kinger; Vishnu Dev Gupta

    2014-01-01

    Chromium oxide nanoparticles (NPs)have been rapidly synthesized by precipitation method using ammomia as precipitating agent and are characterized by using X-ray Diffraction (XRD), Thermo Gravimetric Analysis (TGA), UV-Visible absorption (UV), Infrared Spectoscopy (IR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). XRD studies show that chromium oxide NP is formed as Cr2O3 and it has hexagonal structure. The shape and particle size of the synthesized Cr2O3 NP...

  6. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

  7. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

  8. Bioremediation of chromium solutions and chromium containing wastewaters.

    Science.gov (United States)

    Malaviya, Piyush; Singh, Asha

    2016-08-01

    Cr(VI) represents a serious threat to human health, living resources and ecological system as it is persistent, carcinogenic and toxic, whereas, Cr(III), another stable oxidation state of Cr, is less toxic and can be readily precipitated out of solution. The conventional methods of Cr(VI) removal from wastewaters comprise of chemical reduction followed by chemical precipitation. However, these methods utilize large amounts of chemicals and generate toxic sludge. This necessitates the need for devising an eco-technological strategy that would use the untapped potential of the biological world for remediation of Cr(VI) containing wastewaters. Among several viable approaches, biotransformation of Cr(VI) to relatively non-toxic Cr(III) by chromium resistant bacteria offers an economical- and environment-friendly option for its detoxification. Various studies on use of Cr(VI) tolerant viable bacterial isolates for treatment of Cr(VI) containing solutions and wastewater have been reported. Therefore, a detailed account of mechanisms and processes involved in bioreduction of Cr(VI) from solutions and wastewaters by bacterial isolates are the focus of this review article in addition to a discussion on toxicity of Cr(VI) on bacterial strains and various factors affecting Cr(VI) bioreduction. PMID:25358056

  9. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    Science.gov (United States)

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated.

  10. Diminishing Chromium Use on Combined Chromium-Gambier Tanning Process Upon the Characteristics of Tanned Leather

    Directory of Open Access Journals (Sweden)

    A. Kasim

    2014-04-01

    Full Text Available The research was aimed to investigate the influence of minimizing chromium use on combined chromium-gambier process upon the characteristics of tanned leather. At the first stage of tanning process, chromium was used and in the second stage it was replaced by gambier. The raw material used was dried saline-preserved goat skin. The treatments applied on the tanning process were the different concentrations of chromium ranging from the highest level of 6% to the lowest level of 1% which was then re-tanned by using 8% concentration of gambier. The examination parameters included chemical and physical properties as well as visual investigation on the tanned leather in accordance with SNI-06-0463-1989-A. The result showed that the tanning process by using 2% chromium in the first step and 8% gambier in the second step was a treatment combination producing tanned leather that met the standard. The examination on tanned leather resulted from such treatment showed 56.33% rawhide, 17.45% of bound tannin, 31.22% of tanning level, tensile strength 386.30 kg/cm2, flexibility 31.91%, leather width 1.3 mm, density 0.75 g/cm3, the leather was quite elastic with light brownish color. In conclusion, minimizing the use of chromium in the combined tanning process of chromium and gambier can be implemented to the lowest of 2% chromium concentration and 8% gambier in the first and second step, respectively.

  11. Oxidation-resistant Ge-doped silicide coating on Cr-Cr2Nb alloys by pack cementation

    International Nuclear Information System (INIS)

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on Cr-Cr2Nb alloys in a single processing step. The morphology and composition of the coating depended both on the pack composition and processing schedule and also on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi2 and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. Under cyclic and isothermal oxidation conditions, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation and from pesting by the formation of a Ge-doped silica film. (orig.)

  12. Lateral stress evolution in chromium sulfide cermets with varying excess chromium

    Science.gov (United States)

    Petel, O. E.; Appleby-Thomas, G. J.; Wood, D. C.; Capozzi, A.; Nabavi, A.; Goroshin, S.; Frost, D. L.; Hazell, P. J.

    2016-04-01

    The shock response of chromium sulfide-chromium, a cermet of potential interest as a matrix material for ballistic applications, has been investigated at two molar ratios. Using a combustion synthesis technique allowed for control of the molar ratio of the material, which was investigated under near-stoichiometric (cermet) and excess chromium (interpenetrating composite) conditions, representing chromium:sulfur molar ratios of 1.15:1 and 4:1, respectively. The compacts were investigated via the plate-impact technique, which allowed the material to be loaded under a one-dimensional state of strain. Embedded manganin stress gauges were employed to monitor the temporal evolution of longitudinal and lateral components of stress in both materials. Comparison of these two components has allowed assessment of the variation of material shear strength both with impact pressure/strain-rate and time for the two molar ratio conditions. The two materials exhibited identical material strength despite variations in their excess chromium contents.

  13. Production Cycle for Large Scale Fission Mo-99 Separation by the Processing of Irradiated LEU Uranium Silicide Fuel Element Targets

    OpenAIRE

    Abdel-Hadi Ali Sameh

    2013-01-01

    Uranium silicide fuels proved over decades their exceptional qualification for the operation of higher flux material testing reactors with LEU elements. The application of such fuels as target materials, particularly for the large scale fission Mo-99 producers, offers an efficient and economical solution for the related facilities. The realization of such aim demands the introduction of a suitable dissolution process for the applied U3Si2 compound. Excellent results are achieved by the oxidiz...

  14. Dimensional stability of low enriched uranium silicide plate-type fuel for research reactors at transient conditions

    International Nuclear Information System (INIS)

    This paper describes the result of transient experiments using low enriched uranium silicide plate-type fuel for research reactors. The pulse irradiation was carried out at Nuclear Safety Research Reactor (NSRR) in Japan Atomic Energy Research Institute. The results obtained were: (1) At fuel plate temperature of below 400degC, a good dimensional stability of the tested fuel was kept. No fuel failure occurred. (2) At a plate temperature of about 540degC, a local crack was initiated on the Al-3% Mg alloy cladding. Once the cladding temperature exceeded the melting point of 640degC, the fuel plate was degraded much by increased bowing and cracking of the denuded fuel meat occurred after relocation of molten Al cladding. Despite of these degradation, neither fragmentation of the fuel plate nor mechanical energy generation occurred up to the cladding temperature of 971degC. (3) At the temperatures of around 925degC, the reaction of silicide particles with molten Al in the matrix and that of cladding occurred, forming Al riched U (Al, Si) compounds and Si riched (U, Si) compounds at the outermost surface of the silicide particles. (author)

  15. Serum chromium levels in gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    P G Sundararaman

    2012-01-01

    Full Text Available Objective: To measure serum chromium level in women with gestational diabetes mellitus (GDM from Chennai, South India. Materials and Methods: Thirty women with gestational diabetes, 60 age matched controls. Inclusion criteria: Gestational age 22-28 weeks, age group 20-35 years. Exclusion Criteria: Gestational age beyond 28 weeks, malnutrition or presence of infection. Serum chromium was measured using inductive couple plasma emission spectrometer. Results: Serum chromium levels of women with GDM, 1.59+/-0.02 ng/ml (range: 0.16-4.0 ng/ml were lower than in controls (4.58+/-0.62 ng/ml; range 0.82-5.33 ng/ml (P < 0.001. However, there were no significant differences among cases and controls when subdivided by parity. Conclusions: Women with GDM from a South Indian city had lower levels of serum chromium compared to pregnant women without GDM. Studies may be done whether chromium supplementation is useful in this group of women.

  16. Flashlamp-pumped lasing of chromium-doped GSG garnet

    International Nuclear Information System (INIS)

    The implications for the practical use of chromium:GSGG in lamp-pumped tunable lasers are discussed in this paper. The authors report here some major improvements in the performance of the flashlamp-pumped chromium:GSGG laser

  17. Rate Theory Modeling and Simulations of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States); Mei, Zhigang [Argonne National Lab. (ANL), Argonne, IL (United States); Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-10

    Uranium silicide (U3Si2) fuel has higher thermal conductivity and higher uranium density, making it a promising candidate for the accident-tolerant fuel (ATF) used in light water reactors (LWRs). However, previous studies on the fuel performance of U3Si2, including both experimental and computational approaches, have been focusing on the irradiation conditions in research reactors, which usually involve low operation temperatures and high fuel burnups. Thus, it is important to examine the fuel performance of U3Si2 at typical LWR conditions so as to evaluate the feasibility of replacing conventional uranium dioxide fuel with this silicide fuel material. As in-reactor irradiation experiments involve significant time and financial cost, it is appropriate to utilize modeling tools to estimate the behavior of U3Si2 in LWRs based on all those available research reactor experimental references and state-of-the-art density functional theory (DFT) calculation capabilities at the early development stage. Hence, in this report, a comprehensive investigation of the fission gas swelling behavior of U3Si2 at LWR conditions is introduced. The modeling efforts mentioned in this report was based on the rate theory (RT) model of fission gas bubble evolution that has been successfully applied for a variety of fuel materials at devious reactor conditions. Both existing experimental data and DFT-calculated results were used for the optimization of the parameters adopted by the RT model. Meanwhile, the fuel-cladding interaction was captured by the coupling of the RT model with simplified mechanical correlations. Therefore, the swelling behavior of U3Si2 fuel and its consequent interaction with cladding in LWRs was predicted by the rate theory modeling, providing valuable information for the development of U3Si2 fuel as an accident

  18. Determination of chromium combined with DNA, RNA and proteins in chromium-rich brewer's yeast by NAA

    International Nuclear Information System (INIS)

    The content of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast was determined by neutron activation analysis (NAA). Our results show that the extracted relative amounts and concentrations of DNA, RNA and proteins have no significant difference for two types of yeast, but the chromium content in DNA, RNA and proteins fractions extracted from the chromium-rich yeast are substantially higher than those from the normal. In addition, the concentration of chromium in DNA is much higher than that in RNA and proteins. It is evident that the inorganic chromium compounds can enter the yeast cell during the yeast cultivation in the chromium-containing culture medium and are converted into organic chromium species, which are combined with DNA, RNA and proteins. (author)

  19. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions.

  20. Chromium allergy and dermatitis: prevalence and main findings

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten Stendahl;

    2015-01-01

    The history of chromium as an allergen goes back more than a century, and includesan interventional success with national legislation that led to significant changes inthe epidemiology of chromium allergy in construction workers. The 2015 EU Leather Regulation once again put a focus on chromium...

  1. Thermodynamic properties of chromium bearing slags and minerals. A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yanping; Holappa, L.

    1996-12-31

    In this report, the thermodynamic properties of chromium bearing slags and minerals were reviewed based on the available information in the literature. It includes the analysing methods for oxidation state of chromium in slags, oxidation state of chromium and activities of chromium oxides in slags and minerals. The phase diagrams of chromium oxide systems and chromium distributions between slag and metal phases are also covered ill this review. Concerning the analysing methods, it was found that most of the available approaches are limited to iron free slag systems and the sample preparation is very sensitive to the analysing results. In silicate slags under reducing atmosphere, divalent and trivalent chromium co-exist in the slags. It is agreed that the fraction of divalent chromium to total chromium increases with higher temperature, lower slag basicity and oxygen potential. For the slags under oxidising atmosphere, trivalent, pentavalent and hexavalent states were reported to be stable. The activities of CrO and CrO{sub 1.5} were concluded to have positive deviation from ideal solution. Slag basicity has a positive effect and temperature has a negative effect on the activities of chromium oxides. The phase diagrams of the Cr-O, binary, and ternary chromium containing oxide systems have been examined systematically. The analysis shows that the data on the quaternary and quinary systems are insufficient, and require further investigation. The most important features of the chromium containing silicate slags are the large miscibility gaps and the stability of the chromite spinel. (orig.) (76 refs.)

  2. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  3. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions. PMID:26361854

  4. Collisional properties of trapped cold chromium atoms

    CERN Document Server

    Pavlovich, Z; Côté, R; Sadeghpour, H R; Pavlovic, Zoran; Roos, Bjoern O.; Côté, Robin

    2004-01-01

    We report on calculations of the elastic cross section and thermalization rate for collision between two maximally spin-polarized chromium atoms in the cold and ultracold regimes, relevant to buffer-gas and magneto-optical cooling of chromium atoms. We calculate ab initio potential energy curves for Cr2 and the van der Waals coefficient C6, and construct interaction potentials between two colliding Cr atoms. We explore the effect of shape resonances on elastic cross section, and find that they dramatically affect the thermalization rate. Our calculated value for the s-wave scattering length is compared in magnitude with a recent measurement at ultracold temperatures.

  5. Studying chromium biosorption using arabica coffee leaves

    Directory of Open Access Journals (Sweden)

    Luis Carlos Florez García

    2010-05-01

    Full Text Available This work was aimed at providing an alternative for removing heavy metals such as chromium from waste water (effluent from the leather industry and galvanoplasty (coating with a thin layer of metal by electrochemical means, using coffee leaves as bio- mass. Using arabica coffee (Castle variety leaves led to 82% chromium removal efficiency for 1,000 mg/L synthetic dissolutions in 4 pH dissolution operating conditions, 0 rpm agitation, 0.149 mm diameter biomass particle size and 0.85 g/ml biomass / dissolution volume ratio.

  6. Strategies for chromium bioremediation of tannery effluent.

    Science.gov (United States)

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  7. Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

  8. Characterization of novel heterophasic powdered silicide-type material for high-temperature protection systems

    International Nuclear Information System (INIS)

    Novel multicomponent heterophasic powdered material of silicide-type is presented. The powdered material is intended for forming high-temperature protective multifunction coatings able to protect different hot-loaded structural elements of aerospace industry from refractory metals alloys under severe oxidizing conditions in high-enthalpy and super/hypersonic oxygen-containing gas flows. The powdered material base on complexly composition of Si-Ti-Mo system modified with B,Y,W. Technological conception of its obtaining and powder making process are examined. The powders were worked out in accordance with early performed functional structural model of special materials for coatings with the increased self-healing ability. The coatings can be deposited from the specially prepared abovementioned powders by plasma spraying processes or any one of other coating methods ensuring the conservation of morphological peculiarities of microstructure and phase composition of powdered material (detonation spraying technique, from slurry ...). Finally the results of some properties of novel heterophasic silicidetype powders and some properties of protective coating deposited on the niobium base alloys by means of plasma spraying technique are presented. (author)

  9. Burnup determination of silicide MTR fuel elements (20% 235U) in the LFR laboratory

    International Nuclear Information System (INIS)

    The LFR facility is a radiochemical laboratory designed and constructed with a hot-cells line, a glove-box and a fume hood, all of them suited to work radioactive materials. At the beginning of the LFR operation a series of dissolutions of MTR irradiated silicide fuel elements was performed, and determined its isotopic composition of 235U, 239Pu and 148Nd (the last one as burn up monitor), by the thermal ionization mass spectrometry (TIMS). These assays are linked to the IAEA RLA/4/018 Regional Project 'Management of Spent Fuel from Research Reactors'. It is concluded that this technique of burn up measurement is powerful and accurate when properly applied, and permit to validate the calculation codes when isotopic dilution is performed. It is worth noticed the LFR capacity to carry on different research and development programs in the nuclear fuel cycle field, such as the previously mentioned absolute burn up measurements, or the evaluation of radioactive waste immobilization processes and researches on burnable poisons. (author)

  10. The ability of silicide coating to delay the catastrophic oxidation of vanadium under severe conditions

    Science.gov (United States)

    Chaia, N.; Mathieu, S.; Rouillard, F.; Vilasi, M.

    2015-02-01

    V-4Cr-4Ti vanadium alloy is a potential cladding material for sodium-cooled fast-neutron reactors (SFRs). However, its affinity for oxygen and the subsequent embrittlement that oxygen induces causes a need for an oxygen diffusion barrier, which can be obtained by manufacturing a multi-layered silicide coating. The present work aims to evaluate the effects of thermal cycling (using a cyclic oxidation device) and tensile and compressive stresses (using the three-point flexure test) on the coated alloy system. Tests were performed in air up to 1100 °C, which is 200 °C higher than the accidental temperature for SFR applications. The results showed that the VSi2 coating was able to protect the vanadium substrate from oxidation for more than 400 1-h cycles between 1100 °C and room temperature. The severe bending applied to the coated alloy at 950 °C using a load of 75 MPa did not lead to specimen breakage. It can be suggested that the VSi2 coating has mechanical properties compatible with the V-4Cr-4Ti alloy for SFR applications.

  11. The whole-core LEU silicide fuel demonstration in the JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Aso, Tomokazu; Akashi, Kazutomo; Nagao, Yoshiharu [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1997-08-01

    The JMTR was fully converted to LEU silicide (U{sub 3}Si{sub 2}) fuel with cadmium wires as burnable absorber in January, 1994. The reduced enrichment program for the JMTR was initiated in 1979, and the conversion to MEU (enrichment ; 45%) aluminide fuel was carried out in 1986 as the first step of the program. The final goal of the program was terminated by the present LEU conversion. This paper describes the results of core physics measurement through the conversion phase from MEU fuel core to LEU fuel core. Measured excess reactivities of the LEU fuel cores are mostly in good agreement with predicted values. Reactivity effect and burnup of cadmium wires, therefore, were proved to be well predicted. Control rod worth in the LEU fuel core is mostly less than that in the MEU fuel core. Shutdown margin was verified to be within the safety limit. There is no significant difference in temperature coefficient of reactivity between the MEU and LEU fuel cores. These results verified that the JMTR was successfully and safely converted to LEU fuel. Extension of the operating cycle period was achieved and reduction of spend fuel elements is expected by using the fuel with high uranium density.

  12. Status of core conversion with LEU silicide fuel in JRR-4

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Teruo; Ohnishi, Nobuaki; Shirai, Eiji [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-08-01

    Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, 93% enriched uranium ETR-type fuel used and swimming pool type reactor with thermal output of 3.5MW. Since the first criticality was achieved on January 28, 1965, JRR-4 has been used for shielding experiments, radioisotope production, neutron activation analyses, training for reactor engineers and so on for about 30 years. Within the framework of the RERTR Program, the works for conversion to LEU fuel are now under way, and neutronic and thermal-hydraulic calculations emphasizing on safety and performance aspects are being carried out. The design and evaluation for the core conversion are based on the Guides for Safety Design and Evaluation of research and testing reactor facilities in Japan. These results show that the JRR-4 will be able to convert to use LEU fuel without any major design change of core and size of fuel element. LEU silicide fuel (19.75%) will be used and maximum neutron flux in irradiation hole would be slightly decreased from present neutron flux value of 7x10{sup 13}(n/cm{sup 2}/s). The conversion works are scheduled to complete in 1998, including with upgrade of the reactor building and utilization facilities.

  13. Experimental studies of thermal and chemical interactions between oxide and silicide nuclear fuels with water

    Energy Technology Data Exchange (ETDEWEB)

    farahani, A.A.; Corradini, M.L. [Univ. of Wisconsi, Madison, WI (United States)

    1995-09-01

    Given some transient power/cooling mismatch is a nuclear reactor and its inability to establish the necessary core cooling, energetic fuel-coolant interactions (FCI`s commonly called `vapor explosions`) could occur as a result of the core melting and coolant contact. Although a large number of studies have been done on energetic FCI`s, very few experiments have been performed with the actual fuel materials postulated to be produced in severe accidents. Because of the scarcity of well-characterized FCI data for uranium allows in noncommercial reactors (cermet and silicide fuels), we have conducted a series of experiments to provide a data base for the foregoing materials. An existing 1-D shock-tube facility was modified to handle depleted radioactive materials (U{sub 3}O{sub 8}-Al, and U{sub 3}Si{sub 2}-Al). Our objectives have been to determine the effects of the initial fuel composition and temperature and the driving pressure (triggering) on the explosion work output, dynamic pressures, transient temperatures, and the hydrogen production. Experimental results indicate limited energetics, mainly thermal interactions, for these fuel materials as compared to aluminum where more chemical reactions occur between the molten aluminum and water.

  14. Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings

    International Nuclear Information System (INIS)

    The isothermal and cyclic oxidation behavior of a new class of damage-tolerant niobium aluminide (Nb3Al-xTi-yCr) intermetallics is studied between 650 C and 850 C. Protective diffusion coatings were deposited by pack cementation to achieve the siliciding or aluminizing of substrates with or without intervening Mo or Ni layers, respectively. The compositions and microstructures of the resulting coatings and oxidized surfaces were characterized. The isothermal and cyclic oxidation kinetics indicate that uncoated Nb-40Ti-15Al-based intermetallics may be used up to ∼750 C. Alloying with Cr improves the isothermal oxidation resistance between 650 C and 850 C. The most significant improvement in oxidation resistance is achieved by the aluminization of electroplated Ni interlayers. The results suggest that the high-temperature limit of niobium aluminide-based alloys may be increased to 800 C to 850 C by aluminide-based diffusion coatings on ductile Ni interlayers. Indentation fracture experiments also indicate that the ductile nickel interlayers are resistant to crack propagation in multilayered aluminide-based coatings

  15. Crystal structure of the ternary silicide Gd2Re3Si5

    Directory of Open Access Journals (Sweden)

    Vitaliia Fedyna

    2014-12-01

    Full Text Available A single crystal of the title compound, the ternary silicide digadolinium trirhenium pentasilicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubooctahedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square antiprisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5 Å and isolated squares with an Re—Re distance of 2.9683 (6 Å.

  16. The Comparison Of Silicon Analysis For The Uranium Silicide Fuel Using Spectrophotometrical And Gravimetrical Methods

    International Nuclear Information System (INIS)

    The analysis of silicon content in the uranium silicide fuel spectro-photometrical and gravimetrical method have been performed. The nitrous oxide-acetylene was used in the atomic absorption spectrophotometry (AAS) on the wave length of 251.6 nm, and the mixture of ammonium hepta molybdate complexes and SnC12 as reductor were applied during analysis by UV-VIS spectrophotometry (UV-VIS) on the wave length of 757.5 mm. The reagent of HCLO4 and HNO3 were used for determining Si content by gravimetrical methods. The results of this comparison is as follows: the accuracy result is around 96.37 % + 0.24 % for the Si concentration up to 300 ppm (the AAS), is 138.60 % = 0.43 % for the Si concentration range between 0.1-1.5 ppm (UV-VIS), and is 51.13 % + 0.8 % for 1 gram of Si (gravimetry). The results also show that the lowest analytical error is obtained by AAS method

  17. Electrodeposition of black chromium thin films from trivalent chromium-ionic liquid solution

    OpenAIRE

    Eugénio, S.; Vilar, Rui; C. M. Rangel; Baskaran, I.

    2009-01-01

    In the present study, black chromium thin films were electrodeposited from a solution of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIm][BF4] ionic liquid containing trivalent chromium (Cr(III)). Homogeneous and well adherent coatings have been obtained on nickel, copper and stainless steel substrates. The nucleation and growth of the films were investigated by cyclic voltammetry and current-density/time transient techniques. SEM/EDS, XPS and XRD were used to study the morphology, chem...

  18. Reduction of Hexavalent Chromium by Viable Cells of Chromium Resistant Bacteria Isolated from Chromite Mining Environment

    OpenAIRE

    Satarupa Dey; Baishali Pandit; A. K. Paul

    2014-01-01

    Environmental contamination of hexavalent chromium [Cr(VI)] is of serious concern for its toxicity as well as mutagenic and carcinogenic effects. Bacterial chromate reduction is a cost-effective technology for detoxification as well as removal of Cr(VI) from polluted environment. Chromium resistant and reducing bacteria, belonging to Arthrobacter, Pseudomonas, and Corynebacterium isolated from chromite mine overburden and seepage samples of Orissa, India, were found to tolerate 12–18 mM Cr(VI...

  19. Reduction of Chromium-VI by Chromium Resistant Lactobacilli: A Prospective Bacterium for Bioremediation

    OpenAIRE

    Mishra, Ritesh; Sinha, Vartika; Kannan, Ambrose; Upreti, Raj K.

    2012-01-01

    Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr (VI) and Cr (III). Highly soluble hexavalent chromium is carcinogenic due to its oxidizing nature. It is well established that the intestinal bacteria including Lactobacilli have regulatory effect on intestinal homeostasis and a breakdown in the relationship between intestinal cells and bacteria results in the manifestation of gastrointestinal (GI) disorders. In this study Cr (VI) resistance was developed in La...

  20. The electronic structure of antiferromagnetic chromium

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1981-01-01

    The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...

  1. Flashlamp-pumped lasing of chromium: GSGG

    International Nuclear Information System (INIS)

    Lasing action in chromium-doped gadolinium scandium gallium garnet (Cr:GSGG) is well established for both CW/sup (1)/ and flashlamp/sup (2)/ pumping. This paper describes an investigation of flashlamp-pumped Cr:GSGG lasers and indicates some of the factors which limit performance

  2. Defect structure of electrodeposited chromium layers

    CERN Document Server

    Marek, T; Vertes, A; El-Sharif, M; McDougall, J; Chisolm, C U

    2000-01-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  3. 29 CFR 1910.1026 - Chromium (VI).

    Science.gov (United States)

    2010-07-01

    ... Enhancements In Lieu of LEV Retrofitting • Eductors. Many chemical baths are currently mixed via air agitation... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide...

  4. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    Science.gov (United States)

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively. PMID:26971177

  5. Chromium(III) and chromium(VI) surface treated galvanized steel for outdoor constructions: environmental aspects.

    Science.gov (United States)

    Lindström, David; Hedberg, Yolanda; Odnevall Wallinder, Inger

    2010-06-01

    The long-term degradation of chromium(III) (Zn-Cr(III)) and chromium(VI)-based (Zn-Cr(VI)) surface treatments on galvanized steel and their capacities to hinder the release of zinc induced by atmospheric corrosion at nonsheltered urban and marine exposure conditions for 2 years are investigated. Compared to bare zinc sheet, both surface treatments revealed high corrosion protection abilities and capacities to hinder the release of zinc, still evident after 2 years of exposure. The zinc barrier properties of the thinner Zn-Cr(VI) (10 nm) treatment were during the first 100 days of urban exposure slightly improved compared with Zn-Cr(III) (35 nm). However, their long-term protection capacities were inverse. Released concentrations of total chromium correspond to annual release rates less than 0.000032 (Zn-Cr(III)) and 0.00014 g Cr m(-2) yr(-1) (Zn-Cr(VI)) after 1 year of urban exposure. Aging by indoor storage of the surface treatments prior to outdoor exposure reduced the released Cr concentrations from the surface treatments. No Cr(VI) was released from the aged surfaces but from the freshly exposed Zn-Cr(VI). Marine exposure conditions resulted in a faster reduction of chromate to chromium(III)oxide compared with urban conditions, and a significantly lower amount of both chromium(III) and chromium(VI) released from Zn-Cr(VI) at the marine site compared with the urban site. PMID:20462267

  6. A Kinetic Model of Chromium in a Flame

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chromium has been identified as a carcinogenic metal.Incineration is the useful method for disposal of toxic chromium hazard waste and a chromium kinetic model in a flame is very important to study chromium oxidation.Chromium chemical kinetics over a range of temperatures of a hydrogen/air flame is proposed.Nine chromium compounds and fifty-eight reversible chemical reactions were considered The forward reaction rates are calculated based on the molecular collision approach for unknown ones and Arrhenius's Law for known ones.The backward reaction rates were calculated according to forward reaction rates, the equilibrium constants and chemical thermodynamics.It is verified by several equilibrium cases and is tested by a hydrogen/air diffusion flame.The results show that the kinetic model could be used in cases in which the chromium kinetics play an important role in a flame

  7. Orientation relationship between alpha-prime titanium and silicide S2 in alloy Ti-6Al-5Zr-0. 5Mo-0. 25Si

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandra, C.; Singh, V.

    1985-03-01

    Orientation relationships between the silicide S2 and the matrix of alpha-prime platelets are established for the titanium alloy 685 (Ti-6Al-5Zr-0.5Mo-0.25Si), a near-alpha alloy designed for the high-temperature components of jet engines. A stereogram showing the parallel planes of alpha-prime and S2 is presented for the alloy in the water-quenched and aged condition. A table is also presented which lists the parallel planes of the matrix and the silicide along with the misfit parameters. The results obtained are compared with the orientation relationships reported in the literature. 14 references.

  8. M(5)-silicon (M= titanium, niobium, molybdenum) based transition-metal silicides for high temperature applications

    Science.gov (United States)

    Tang, Zhihong

    2007-12-01

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600ºC. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti5Si3-based alloys was investigated. Oxidation behavior of Ti5Si3-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti5Si3 by nucleation and growth of nitride subscale. Ti5Si3.2 and Ti5Si3C0.5 alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi2 coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500ºC. Shifting coating composition to T1+T2+Mo3Si region showed the possibility to extend the coating lifetime above 1500ºC by more than ten times via formation of slow growing Mo3Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nbss (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L ↔ Nbss + NbB was determined to occur at 2104+/-5°C by DTA.

  9. Fuel loading and homogeneity analysis of HFIR design fuel plates loaded with uranium silicide fuel

    International Nuclear Information System (INIS)

    Twelve nuclear reactor fuel plates were analyzed for fuel loading and fuel loading homogeneity by measuring the attenuation of a collimated X-ray beam as it passed through the plates. The plates were identical to those used by the High Flux Isotope Reactor (HFIR) but were loaded with uranium silicide rather than with HFIR's uranium oxide fuel. Systematic deviations from nominal fuel loading were observed as higher loading near the center of the plates and underloading near the radial edges. These deviations were within those allowed by HFIR specifications. The report begins with a brief background on the thermal-hydraulic uncertainty analysis for the Advanced Neutron Source (ANS) Reactor that motivated a statistical description of fuel loading and homogeneity. The body of the report addresses the homogeneity measurement techniques employed, the numerical correction required to account for a difference in fuel types, and the statistical analysis of the resulting data. This statistical analysis pertains to local variation in fuel loading, as well as to ''hot segment'' analysis of narrow axial regions along the plate and ''hot streak'' analysis, the cumulative effect of hot segment loading variation. The data for all twelve plates were compiled and divided into 20 regions for analysis, with each region represented by a mean and a standard deviation to report percent deviation from nominal fuel loading. The central regions of the plates showed mean values of about +3% deviation, while the edge regions showed mean values of about -7% deviation. The data within these regions roughly approximated random samplings from normal distributions, although the chi-square (χ2) test for goodness of fit to normal distributions was not satisfied

  10. Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Mei, Zhi-Gang [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-08-29

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions need to be well-understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U3Si2 at LWR conditions. The fission gas behavior of U3Si2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranular bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U3Si2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U3Si2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U3Si2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.

  11. CHROMIUM INDUCED CYTOTOXICITY IN BLACKGRAM (VIGNA MUNGO L.

    Directory of Open Access Journals (Sweden)

    A. Chidambaram ، P. Sundaramoorthy ، A. Murugan ، K. Sankar Ganesh ، L. Baskaran

    2009-01-01

    Full Text Available Chromium is known to be highly toxic to biological systems. This study was designed to determine the mutagenic effects of different concentrations (0, 10, 25, 50, 100 and 200 mg/L of hexavalent chromium on root tip cells of blackgram (Vigna mungo L. Hepper. The blackgram seeds were equi-spacially arranged in sterilized petriplates lined with filter paper and they were treated with different concentrations of chromium solution. In germination studies, the morphological growth parameters such as germination percentage, root length, shoot length fresh weight and dry weight of blackgram seedlings were decreased with increasing dose of chromium concentrations. No germination of blackgram seeds was recorded at 300mg/l chromium concentration. Chromosome aberration assay was used to determine the mitotic indices and rate of chromosome aberration in blackgram root tip cells due to chromium treatment. The results showed that the mitotic indices were complicated due to different concentrations of chromium. However, the increase in chromium concentration has led to a gradual increase in the percentage of chromosomal aberration and mitotic index. The chromosome length, absolute chromosome length and average chromosome lengths were gradually found to decrease. There was no considerable change in 2n number of chromosome with the increase in chromium concentrations. It is concluded that the hexavalent chromium has significant mutagenic effect on the root tip cells of blackgram.

  12. Chromium supplementation improved post-stroke brain infarction and hyperglycemia.

    Science.gov (United States)

    Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung

    2016-04-01

    Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia. PMID:26477944

  13. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Liao, Y.P.; Jons, O.

    1997-01-01

    A sensitive method for the simultaneous determination of chromium(III) and chromium(VI) was chromatography and chemiluminescence detection. Two Dionex ion-exchange guard columns in series, CG5 and AG7, were used to separate chromium(III) from chromium(VI). Chromium(VI) was reduced by potassium su...

  14. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    Science.gov (United States)

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept.

  15. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    Science.gov (United States)

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept. PMID:20031309

  16. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    International Nuclear Information System (INIS)

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr2O3 layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr2O3 layer. The α-Cr2O3 layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%

  17. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Mthunzi, P. [National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria (South Africa); Muller, T.F.G. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Julies, B. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Ramponi, R. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa)

    2014-12-01

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr{sub 2}O{sub 3} layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr{sub 2}O{sub 3} layer. The α-Cr{sub 2}O{sub 3} layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

  18. Synthesis and Characterization of Chromium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vivek Sheel Jaswal

    2014-06-01

    Full Text Available Chromium oxide nanoparticles (NPshave been rapidly synthesized by precipitation method using ammomia as precipitating agent and are characterized by using X-ray Diffraction (XRD, Thermo Gravimetric Analysis (TGA, UV-Visible absorption (UV, Infrared Spectoscopy (IR, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM. XRD studies show that chromium oxide NP is formed as Cr2O3 and it has hexagonal structure. The shape and particle size of the synthesized Cr2O3 NPs is determined by SEM and TEM. The images showed that the size of NPs of Cr2O3 varied from 20 nm to 70 nm with average crystalline size 45 nm. UV-Visible absorption and IR spectoscopy confirm the formation of nanosized Cr2O3. TGA verifies that the Cr2O3 NPs are thermally stable upto 1000 °C.

  19. Hot wire chemical vapor deposition: limits and opportunities of protecting the tungsten catalyzer from silicide with a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Frigeri, P.A. [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona, Barcelona-08028 (Spain); Nos, O., E-mail: oriol_nos@ub.ed [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona, Barcelona-08028 (Spain); Ecotecnia (ALSTOM Group) (Spain); Bengoechea, S.; Frevert, C.; Asensi, J.M.; Bertomeu, J. [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona, Barcelona-08028 (Spain)

    2009-04-30

    Hot Wire Chemical Vapor Deposition (HW-CVD) is one of the most promising techniques for depositing the intrinsic microcrystalline silicon layer for the production of micro-morph solar cells. However, the silicide formation at the colder ends of the tungsten wire drastically reduces the lifetime of the catalyzer, thus limiting its industrial exploitation. A simple but interesting strategy to decrease the silicide formation is to hide the electrical contacts of the catalyzer in a long narrow cavity which reduces the probability of the silane molecules to reach the colder ends of the wire. In this paper, the working mechanism of the cavity is elucidated. Measurements of the thickness profile of the silicon deposited in the internal walls of the cavity have been compared with those predicted using a simple diffusion model based on the assumption of Knudsen flow. A lifetime study of the protected and unprotected wires has been carried out. The different mechanisms which determine the deterioration of the catalyzer have been identified and discussed.

  20. Effects of nitrogen annealing on surface structure, silicide formation and magnetic properties of ultrathin films of Co on Si(100)

    Indian Academy of Sciences (India)

    Ganesh K Rajan; Shivaraman Ramaswamy; C Gopalakrishnan; D John Thiruvadigal

    2012-02-01

    Effects of nitrogen annealing on structural and magnetic properties of Co/Si (100) up to 700°C has been studied in this paper. Ultrathin Co films having a constant thickness of 50 Å were grown on Si (100) substrates using electron-beam evaporation under very high vacuum conditions at room temperature. Subsequently, the samples were annealed at temperatures ranging from 100–700°C in a nitrogen environment at atmospheric pressure. Sample quality and surface morphology were examined using atomic force microscopy. Silicide formation and the resultant variation in crystallographic arrangement were studied using X-ray diffractometer. The magnetization measurements done using a vibrating sample magnetometer indicate a decrease in coercivity and retentivity values with increase in annealing temperature. Resistivity of the samples measured using a four-point probe set up shows a decrease in resistivity with increase in annealing temperature. Formation of various silicide phases at different annealing temperatures and the resultant variation in the magnetic susceptibility has been thoroughly studied and quantified in this work.

  1. Thermal Stability and Growth Behavior of Erbium Silicide Nanowires Self-Assembled on a Vicinal Si(001) Surface

    Institute of Scientific and Technical Information of China (English)

    DING Tao; SONG Jun-Qiang; LI Juan; CAI Qun

    2011-01-01

    Erbium silicide nanowires are self-assembled on vicinal Si(Ool) substrates after electron beam evaporation and post annealing at 63(fC In-situ scanning tunneling microscopy investigations manifest that the nanowires will successively shrink and transform into a nanoisland with annealing prolonged. Meanwhile, a structural transition from hexagonal AIB2 phase to tetragonal ThSi'2 phase is revealed with high-resolution transmission electron microscopy. It is also found that the nanowires gradually expand to embed into the substrates during the growth process, which has much influence on the shape instability of nanowires. Additionally, a multiple deposition-annealing treatment is given as a novel growth method to strengthen the controlled fabrication of nanowires.%@@ Erbium silicide nanowires are self-assembled on vicinal Si(001) substrates after electron beam evaporation and post annealing at 630℃ In-situ scanning tunneling microscopy investigations manifest that the nanowires will successively shrink and transform into a nanoisland with annealing prolonged.Meanwhile, a structural transition from hexagonal AlB phase to tetragonal ThSi phase is revealed with high-resolution transmission electron microscopy.It is also found that the nanowires gradually expand to embed into the substrates during the growth process, which has much influence on the shape instability of nanowires.Additionally, a multiple deposition- annealing treatment is given as a novel growth method to strengthen the controlled fabrication of nanowires.

  2. CHROMIUM(II) AMIDES - SYNTHESIS AND STRUCTURES

    NARCIS (Netherlands)

    EDEMA, JJH; GAMBAROTTA, S; MEETSMA, A; SPEK, AL; SMEETS, WJJ; CHIANG, MY

    1993-01-01

    A novel class of mono- and di-meric chromium(II) amides has been prepared and characterized. Reaction of [CrCl2(thf)2] (thf = tetrahydrofuran) with 2 equivalents of M(NR2) (R = C6H11, Pr(i), Ph, or phenothiazinyl; M = Li or Na) allowed the formation of the homoleptic amides [{Cr(mu-NR2)(NR2)}2] (R =

  3. Stainless chromium-nickel steels. Chapter I

    International Nuclear Information System (INIS)

    The chemical composition is tabulated of 90 chromium-nickel stainless steels and alloys given in volume %. The values are also given of the corrosion resistance of the steels and alloys. The tables show data on the surface condition or the methods of material working, types and chemical composition of the medium where corrosion resistance tests were carried out, temperature, pressure, time of tests, corrosion rates, corrosion types, and literature references. A total of 35 references is given. (J.B.)

  4. Dimensionally Controlled Lithiation of Chromium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fister, Tim T. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, Xianyi [Northwestern Univ., Evanston, IL (United States); Esbenshade, Jennifer [Univ. of Illinois, Urbana-Champaign, IL (United States); Chen, Xiao [Northwestern Univ., Evanston, IL (United States); Wu, Jinsong [Northwestern Univ., Evanston, IL (United States); Dravid, Vinayak [Northwestern Univ., Evanston, IL (United States); Bedzyk, Michael [Northwestern Univ., Evanston, IL (United States); Long, Brandon [Argonne National Lab. (ANL), Argonne, IL (United States); Gewirth, Andrew A. [Univ. of Illinois, Urbana-Champaign, IL (United States); Shi, Bing [Argonne National Lab. (ANL), Argonne, IL (United States); Schlepütz, Christian M. [Argonne National Lab. (ANL), Argonne, IL (United States); Fenter, Paul [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-12

    Oxide conversion reactions are an alternative approach for high capacity lithium ion batteries but are known to suffer from structural irreversibility associated with the phase separation and reconstitution of reduced metal species and Li2O. In particular, the morphology of the reduced metal species is thought to play a critical role in the electrochemical properties of a conversion material. Here we use a model electrode with alternating layers of chromium and chromium oxide to better understand and control these phase changes in real-time and at molecular length scales. Despite lacking crystallinity at the atomic scale, this superstructure is observed (with X-ray reflectivity, XR) to lithiate and delithiate in a purely one-dimensional manner, preserving the layered structure. The XR data show that the metal layers act as nucleation sites for the reduction of chromium in the conversion reaction. Irreversibility during delithiation is due to the formation of a ternary phase, LiCrO2, which can be further delithiated at higher potentials. The results reveal that the combination of confining lithiation to nanoscale sheets of Li2O and the availability of reaction sites in the metal layers in the layered structure is a strategy for improving the reversibility and mass transport properties that can be used in a wide range of conversion materials.

  5. Chromium--a material for fusion technology

    International Nuclear Information System (INIS)

    Due to their low neutron-induced radioactivity chromium based materials are considered to be candidates for structure materials in fusion technology. In this paper investigations are presented of unirradiated chromium with a purity of 99.96% (DUCROPUR) and a dispersion strengthened chromium alloy Cr5Fe1Y2O3 (DUCROLLOY). Both materials have been produced in a powder metallurgical route. Mechanical tests of smooth and pre-cracked specimens have been performed in a wide temperature range. Below 280 deg. C the fracture toughness values of DUCROPUR are very low (1/2), above the transition temperature they exceed 500 MPa m1/2. Large plastic deformations have been observed. DUCROLLOY does not indicate such a significant increase of fracture toughness in the tested temperature range. But above 400 deg. C large plastic deformations can be obtained in bending samples, too. The fatigue crack propagation behaviour of DUCROPUR at 300 deg. C is similar to that of a ductile metal

  6. Chromium Enrichment on P11 Ferritic Steel by Pack Cementation

    Directory of Open Access Journals (Sweden)

    Fauzi F. A.

    2016-01-01

    Full Text Available The future thermal power plant is expected to operate at higher temperature to improve its efficiency and to reduce greenhouse gas emission. This target requires better corrosion properties of ferritic steels, which commonly used as materials for superheater and reheater of boiler tubes. In this work, chromium enrichment on the surface of ferritic steel is studied. The deposited chromium is expected to become a reservoir for the formation of chromia protective layer. Chromium was deposited on the substrate of steel by pack cementation process for two hours at the temperature of 850ºC, 950ºC and 1050ºC, respectively. XRD analysis indicated that chromium was successfully deposited at all temperatures. Somehow, SEM cross sectional image showed that continuous layer of chromium was not continuously formed at 850oC. Therefore, this research clarify that chromium enrichment by pack cementation may be conducted at the temperature above 950°C.

  7. Effect of polyethylene glycol on electrochemically deposited trivalent chromium layers

    Institute of Scientific and Technical Information of China (English)

    Joo-Yul LEE; Man KIM; Sik-Chol KWON

    2009-01-01

    The structural characteristics of the trivalent chromium deposits and their interfacial behavior in the plating solution with and without polyethylene glycol molecules were observed by using various electrochemical methods such as cyclic voltammetry, open circuit potential transition, electrochemical impedance spectroscopy, scanning electron microscopy and X-ray photoelectron spectrometry. It is shown that the polyethylene glycol molecules make the reductive current density lower in the trivalent chromium plating system and promote a hydrogen evolution reaction through their adsorption on the electrode surface. And the trivalent chromium layer formed from the polyethylene glycol-containing solution has somewhat higher density of cracks on its surface and results in a lower film resistance, lower polarization resistance, and higher capacitance in a corrosive atmosphere. It is also revealed that the formation of chromium carbide layer is facilitated in the presence of polyethylene glycol, which means easier electrochemical codeposition of chromium and carbon, not single chromium deposition.

  8. Influence of layout parameters on snapback characteristic for a gate-grounded NMOS device in 0.13-μm silicide CMOS technology

    Institute of Scientific and Technical Information of China (English)

    Jiang Yuxi; Li Jiao; Ran Feng; Cao Jialin; Yang Dianxiong

    2009-01-01

    r of the GGNMOS devices under high ESD current stress, and design area-efficient ESD protection circuits to sustain the required ESD level.Optimized layout rules for ESD protection in 0.13-μm silicide CMOS technology are also presented.

  9. New technology for comprehensive utilization of aluminum-chromium residue from chromium salts production

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-bin; QI Tian-gui; JIANG Xin-min; ZHOU Qiu-sheng; LIU Gui-hua; PENG Zhi-hong; HAN Deng-lun; ZHANG Zhong-yuan; YANG Kun-shan

    2008-01-01

    Colloidal aluminum-chromium residue(ACR) was mass-produced in chromate production process, and the large energy consumption and high recovery cost existed in traditional methods of utilizing such ACR. To overcome those problems, a new comprehensive method was proposed to deal with the ACR, and was proven valid in industry. In the new process, the chromate was separated firstly from the colloidal ACR by ripening and washing with additives, by which more than 95% hexavalent chromium was recovered. The chromium-free aluminum residue(CFAR), after properly dispersed, was digested at 120-130 ℃ and more than 90% alumina can be recovered. And then the pregnant aluminate solution obtained from digestion was seeded to precipitate aluminum hydroxide. This new method can successfully recover both alumina and sodium chromate, and thus realize the comprehensive utilization of ACR from chromate industry.

  10. Analysis of molybdenum, chromium, vanadium and iron by polarographic techniques

    International Nuclear Information System (INIS)

    The application of direct current Tast polarograph, differential pulse polarography and phase-selective alternative current Tast polarography to the problem of determining molybdenum, chromium, vanadium and iron in various supporting electrolytes is reported. The effect of the supporting electrolyte on the wave/peak potential and sensitivity of the metal ion have been examined. The polarographic methods were applied for simultaneous determination of chromium (3)/chromium (6), vanadium (4), vanadium (5) and iron (2)/iron (3) in different supporting electrolytes

  11. A REVIEW OF BIOSORPTION OF CHROMIUM IONS BY MICROORGANISMS

    OpenAIRE

    Inga Zinicovscaia

    2012-01-01

    Due to its widespread industrial use, chromium has become a serious pollutant in diverse environmental settings. The main source of chromium pollution including the Republic o Moldova is industry. It is a great need to develop new eco-friendly methods of chromium removal. Biosorption of heavy metals is a most promising technology involved in the removal of toxic metals from industrial waste streams and natural waters. This article is an extended abstract of a communication presented at the...

  12. CHROMIUM INDUCED CYTOTOXICITY IN BLACKGRAM (VIGNA MUNGO L.)

    OpenAIRE

    A. Chidambaram ، P. Sundaramoorthy ، A. Murugan ، K. Sankar Ganesh ، L. Baskaran

    2009-01-01

    Chromium is known to be highly toxic to biological systems. This study was designed to determine the mutagenic effects of different concentrations (0, 10, 25, 50, 100 and 200 mg/L) of hexavalent chromium on root tip cells of blackgram (Vigna mungo L. Hepper). The blackgram seeds were equi-spacially arranged in sterilized petriplates lined with filter paper and they were treated with different concentrations of chromium solution. In germination studies, the morphological growth parameters such...

  13. Processes affecting the remediation of chromium-contaminated sites.

    OpenAIRE

    Palmer, C.D.; Wittbrodt, P R

    1991-01-01

    The remediation of chromium-contaminated sites requires knowledge of the processes that control the migration and transformation of chromium. Advection, dispersion, and diffusion are physical processes affecting the rate at which contaminants can migrate in the subsurface. Heterogeneity is an important factor that affects the contribution of each of these mechanisms to the migration of chromium-laden waters. Redox reactions, chemical speciation, adsorption/desorption phenomena, and precipitat...

  14. Production of a chromium Bose-Einstein condensate

    OpenAIRE

    Griesmaier, Axel; Stuhler, Jürgen; Pfau, Tilman

    2005-01-01

    The recent achievement of Bose-Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 {$\\mu$}B, in contrast to other Bose- Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have been predicted in ...

  15. Increase of chromium utilization in stainless steel melting

    International Nuclear Information System (INIS)

    The processes of deoxidizing when melting stainless 18-10 steels in electric are furnaces by the method of remelting with wastes are investigated. The dependences of amount of reduced chromium on silicon consumption are made more precise. It is shown that it is useful to apply aluminium for deoxidation of acid high-chromium slags. Based on the data on pilot melts the extent to which aluminium can be used as a reducing agent for chromium is estimated. 3 refs., 2 figs

  16. Synthesis and characterization of β-phase iron silicide nano-particles by chemical reduction

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sabyasachi [Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Gogurla, Narendar [Department of Physics, Indian Institute of Technology, Kharagpur 721302 (India); Banerji, Pallab [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India); Guha, Prasanta K. [Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Pramanik, Panchanan, E-mail: pramanik1946@gmail.com [Department of Basic Science, MCKV Institute of Engineering, Howrah, Liluah 711204 (India)

    2015-10-15

    Graphical abstract: - Highlights: • β-FeSi{sub 2} nano-particle was synthesized by reducing with Mg and by diluting with MgO. • XRD profile shows the iron di-silicide phase to be semiconducting β-FeSi{sub 2}. • HRTEM and FESEM images indicate the β-FeSi{sub 2}average particle size to be 60–70 nm. • Absorption, reflectance and PL spectroscopy show band gap to be direct 0.87 eV. • Nano-β-FeSi{sub 2}is p-type with hole density of 4.38 × 10{sup 18} cm{sup −3} and mobility 8.9 cm{sup 2}/V s. - Abstract: Nano-particles of β-FeSi{sub 2} have been synthesized by chemical reduction of a glassy phase of [Fe{sub 2}O{sub 3}, 4SiO{sub 2}] by Mg-metal where MgO is used as diluent to prevent the agglomeration of nano crystallites into micro-particles and also act as a negative catalyst for the formation of other phases. The sample is characterized by XRD, FESEM, HRTEM, EDX, ultra-violet-visible-infrared and PL spectroscopy and electronic properties have been investigated by Hall measurement. XRD profile shows that the synthesized powder consists of purely β-FeSi{sub 2} semiconducting phase. The average crystallite size of β-FeSi{sub 2} is determined to be around 65.4 nm from XRD peaks as well as from FESEM also. The optical absorption and PL spectroscopy shows that synthesized β-FeSi{sub 2} phase is a direct band gap semiconductor with a value of 0.87 eV. Hall measurements show that β-FeSi{sub 2} nano-particles is p-type with hole concentration of 4.38 × 10{sup 18} cm{sup −3} and average hole mobility of 8.9 cm{sup 2}/V s at 300 K.

  17. Narrow bandgap semiconducting silicides: Intrinsic infrared detectors on a silicon chip

    Science.gov (United States)

    Mahan, John E.

    1990-01-01

    Work done during the final report period is presented. The main technical objective was to achieve epitaxial growth on silicon of two semiconducting silicides, ReSi2 and CrSi2. ReSi2 thin films were grown on (001) silicon wafers by vacuum evaporation of rhenium onto hot substrates in ultrahigh vacuum. The preferred epitaxial relationship was found to be ReSi2(100)/Si(001) with ReSi2(010) parallel to Si(110). The lattice matching consists of a common unit mesh of 120 A(sup 2) area, and a mismatch of 1.8 percent. Transmission electron microscopy revealed the existence of rotation twins corresponding to two distinct but equivalent azimuthal orientations of the common unit mesh. MeV He(+) backscattering spectrometry revealed a minimum channeling yield of 2 percent for an approximately 1,500 A thick film grown at 650 C. Although the lateral dimension of the twins is on the order of 100 A, there is a very high degree of alignment between the ReSi2(100) and the Si(001) planes. Highly oriented films of CrSi2 were grown on (111) silicon substrates, with the matching crystallographic faces being CrSi2(001)/Si(111). The reflection high-energy electron diffraction (RHEED) patterns of the films consist of sharp streaks, symmetrically arranged. The predominant azimuthal orientation of the films was determined to be CrSi2(210) parallel to Si(110). This highly desirable heteroepitaxial relationship has been obtained previously by others; it may be described with a common unit mesh of 51 A(sup 2) and mismatch of 0.3 percent. RHEED also revealed the presence of limited film regions of a competing azimuthal orientation, CrSi2(110) parallel to Si(110). A channeling effect for MeV He(+) ions was not found for this material. Potential commercial applications of this research may be found in silicon-integrated infrared detector arrays. Optical characterizations showed that semiconducting ReSi2 is a strong absorber of infrared radiation, with the adsorption constant increasing above 2 x

  18. Chromium depletion from stainless steels during vacuum annealing

    International Nuclear Information System (INIS)

    The behaviour of chromium during selective evaporation by high temperature vacuum annealing has been investigated by means of energy dispersive X-ray analysis and by neutron activation analysis. It was established that the rate of chromium loss from austenitic stainless steels 316 and 321 is controlled by chromium inter-diffusion rather than tracer diffusion in the alloy. Two important parameters in selective removal of chromium from alloy steels are the variation in the chromium surface concentration with time and the depletion profile in the alloy. The present work gives support for the model in which loss of chromium is dependent on its diffusivity in the alloy and on an interface transfer coefficient. The results showed that the surface concentration of chromium decreased with increasing vacuum annealing time. The chromium depletion profile in the metal was in accord with the previous derived model, apart from an anomalous near surface region. Here the higher resolution of a neutron activation technique indicated a region within approximately 2 microns of the surface where the chromium concentration decreased more steeply than expected. (author)

  19. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  20. Defect transformation in GSGG crystals during chromium ion activation

    International Nuclear Information System (INIS)

    Absorption and induced absorption spectra, dose dependence of induced absorption, thermoluminescence of GSGG crystals, nominally pure and activated with chromium and neodymium ions in different concentrations, are investigated. It is shown that it is chromium ion presence in large concentration that decreases the induced coloration in GSGG crystals after γ-irradiation at 300 K. Optimum concentration of chromium ions for the minimum of induced coloration are found. The mechanism of decrease of induced coloration consisting in Fermi level displacement by chromium ion activation is established. Defect concentration and localization and recombination possibilities of electrons and holes in GSGG crystals are estimated by computer simulation

  1. Tribological Characteristics of Chromium-active Carbon Electroplated Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    GUKa-fi; HUAMeng; Yi-min

    2004-01-01

    A process of chromium electroplating using a standard bath with additives and active carbon particles was reported, and the tribological behaviors of the composite coatings using the pin-on-disk tester and the table wear tester were i nvestig(aed. Experimental results indicate that the electroplated chromium-active carbon composite coatings exhibited the low friction coefficient anti excellent anti-wear properties whets coffered with the normal chromium electroplated ones. The formation of active carbon particles within the chromium matrices can be explained by SEM analysis and the mechanis of wear resistance of the composite coatings were studied.

  2. Method of trivalent chromium concentration determination by atomic spectrometry

    Science.gov (United States)

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  3. Influence of Chelating Agents on Chromium Fate in Sediment

    Institute of Scientific and Technical Information of China (English)

    WANGXIAOCHANG; SUNJINHE; 等

    1996-01-01

    A laboratory investigation on reaction between chelating agents and chromium was conducted to evaluate the effect of chelating agents on the adsorption and desorption of chromium in sediment.The amount of adsorbed chromium(VI) in sediment decreased slightly by 5%-10% because of addition of chelating agents.Chelating agents inhibited the removal of Cr(Ⅲ)by sediment from solutions and the inhibiting effect was in the order:citric acid>tartaric acid>EDTA,Salicylic acid.No effect of chelating agents on desorption of chromium in sediment was observed.

  4. IRIS Toxicological Review of Hexavalent Chromium (2010 External Review Draft)

    Science.gov (United States)

    [UPDATE] New Schedule for IRIS Hexavalent Chromium Assessment In Feb 2012, EPA developed a new schedule for completing the IRIS hexavalent chromium assessment. Based on the recommendations of the external peer review panel, which met in May 2011 to review the dra...

  5. Chromium and Polyphenols From Cinnamon Improve Insulin Sensitivity

    Science.gov (United States)

    Naturally occurring compounds that have been shown to improve insulin sensitivity include chromium and polyphenols found in cinnamon. These compounds also have similar effects on insulin signaling and glucose control. The signs of chromium deficiency are similar to those for the metabolic syndrome ...

  6. Safety, absorption, and antioxidant effects of chromium histidine

    Science.gov (United States)

    Supplemental chromium has been shown to be involved in the alleviation of the metabolic syndrome, glucose intolerance, polycystic ovary syndrome, depression, excess body fat, and gestational, steroid-induced, and type 2 diabetes. Chromium amino acid complexes that contained histidine displayed cons...

  7. Toxicity and adaptation of Dictyosphaerium chlorelloides to extreme chromium contamination.

    Science.gov (United States)

    Sánchez-Fortún, Sebastián; López-Rodas, Victoria; Navarro, Macarena; Marvá, Fernando; D'ors, Ana; Rouco, Mónica; Haigh-Florez, David; Costas, Eduardo

    2009-09-01

    Metals are often spilled by industries into inland water environments, with adverse consequences. Numerous papers have reported that heavy metals produce massive destruction of algae. Nevertheless, algal populations seem to become tolerant when they have had previous exposures to heavy metals. Because the mechanisms allowing heavy metal tolerance of algae are not yet known, the present study analyzed the effect of hexavalent chromium on growth and photosynthetic performance of Dictyosphaerium chlorelloides, stressing on the adaptation mechanisms to chromium contamination. Growth and photosynthetic performance of algal cells were inhibited by Cr(VI) at 10 mg/L, and the 72-h median inhibition concentration was established as 1.64 and 1.54 mg/L, respectively. However, after further incubation for a three month period in an environment with 25 mg/L of chromium, some rare, chromium-resistant cells occasionally were found. A Luria-Delbrück fluctuation analysis was performed to distinguish between resistant algae arising from rare, spontaneous mutations and resistant algae arising from physiological adaptation and other adaptive mechanisms. Resistant cells arose only by spontaneous mutations before the addition of chromium, with a rate of 1.77 x 10(-6) mutants per cell division. From a practical point of view, the use of both chromium-sensitive and chromium-resistant genotypes could make possible a specific algal biosensor for chromium. PMID:19323601

  8. Residual Chromium in Leather by Instrumental Neutron Activation Analysis

    Directory of Open Access Journals (Sweden)

    S. Okoh

    2012-01-01

    Full Text Available Problem statement: Most tanning processes employ the use of chromium sulphate. For chromium tanned leather, finished products may contain high amount of residual chromium. This may pose some health hazards, since chromium is known to be toxic at elevated concentration. This justifies the need for the study. Approach: Various samples of leather were collected from a tannery, a leather crafts market, a leather dump site and from local tanners all in Kano, Nigeria in 2009. The samples were irradiated for 6 h in the inner site of the Nigerian Research Reactor (NIRR-1 at a flux of 5×1011 ncm-2 sec-1. Results: After evaluating the spectrum, the mean results for chromium in the samples were determined as 2.33±0.3, 2.23±0.3 and 2.93±0.4% for samples from the tannery, leather crafts market and leather dump sites respectively. Chromium concentration in samples collected from local tanners who use tannins from Acacia nilotica as tanning agent was below the detection limit of Instrumental Neutron Activation Analysis (INAA technique used in the study. Conclusion: Although, the concentrations of chromium in the analysed samples were not much higher than what were obtained in literature, they may be enough to sensitize the population that is allergic to chromium.

  9. Physical, Mechanical, and Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for Practical Thermoelectric Applications

    Science.gov (United States)

    Gelbstein, Yaniv; Tunbridge, Jonathan; Dixon, Richard; Reece, Mike J.; Ning, Huanpo; Gilchrist, Robert; Summers, Richard; Agote, Iñigo; Lagos, Miguel A.; Simpson, Kevin; Rouaud, Cedric; Feulner, Peter; Rivera, Sergio; Torrecillas, Ramon; Husband, Mark; Crossley, Julian; Robinson, Ivan

    2014-06-01

    Cost-effective highly efficient nanostructured n-type Mg2Si1- x Sn x and p-type higher manganese silicide (HMS) compositions were prepared for the development of practical waste heat generators for automotive and marine thermoelectric applications, in the frame of the European Commission (EC)-funded PowerDriver project. The physical, mechanical, and structural properties were fully characterized as part of a database-generation exercise required for the thermoelectric converter design. A combination of high maximal ZT values of ˜0.6 and ˜1.1 for the HMS and Mg2Si1- x Sn x compositions, respectively, and adequate mechanical properties was obtained.

  10. Theoretical investigation of superconductivity in ternary silicide NaAlSi with layered diamond-like structure

    Science.gov (United States)

    Tütüncü, H. M.; Karaca, Ertuǧrul; Srivastava, G. P.

    2016-04-01

    We have investigated the electronic structure, phonon modes and electron-phonon coupling to understand superconductivity in the ternary silicide NaAlSi with a layered diamond-like structure. Our electronic results, using the density functional theory within a generalized gradient approximation, indicate that the density of states at the Fermi level is mainly governed by Si p states. The largest contributions to the electron-phonon coupling parameter involve Si-related vibrations both in the x-y plane as well as along the z-axis in the x-z plane. Our results indicate that this material is an s-p electron superconductor with a medium level electron-phonon coupling parameter of 0.68. Using the Allen-Dynes modification of the McMillan formula we obtain the superconducting critical temperature of 6.98 K, in excellent agreement with experimentally determined value of 7 K.

  11. CHROMIUM BIOACCUMULATION FROM COMPOSTS AND VERMICOMPOSTS BASED ON TANNERY SLUDGES

    Directory of Open Access Journals (Sweden)

    Krzysztof GONDEK

    2008-07-01

    Full Text Available Storage of waste substances is not indifferent to ecological equilibrium in the environment therefore should not be the ultimate way to limit waste arduousness. Therefore, the conducted investigations aimed to determine the effect of tannery composts and vermicomposts loaded with chromium on this element bioaccumulation in earthworm bodies and biomass of selected plants. Chromium in composts and vermicomposts based on tannery sludges occurred in small quantities and easily soluble compounds. Chromium concentrations in redworm biomass points to this metal accumulation in Eisenia fetida body tissues. This element content in redworm biomass was signifi cantly positively correlated with its content in composts. Chromium content in plants was diversifi ed and on treatments was generally smaller than on mineral treatment or farmyard manure. Chromium absorbed by plants was stored mainly in the root systems, and over the norm content of this element found in vermicomposts did not cause its excessive accumulation in plant biomass.

  12. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Wang, Yuan-Shan; Pan, Zhi-Yan; Lang, Jian-Min; Xu, Jian-Miao; Zheng, Yu-Guo

    2007-08-17

    Chromium in tannery sludge will cause serious environmental problems and is toxic to organisms. The acidophilic sulfur-oxidizing Acidithiobacillus thiooxidans can leach heavy metals form urban and industrial wastes. This study examined the ability of an indigenous sulfur-oxidizing A. thiooxidans to leach chromium from tannery sludge. The results showed that the pH of sludge mixture inoculated with the indigenous A. thiooxidans decreased to around 2.0 after 4 days. After 6 days incubation in shaking flasks at 30 degrees C and 160 rpm, up to 99% of chromium was solubilized from tannery sludge. When treated in a 2-l bubble column bioreactor for 5 days at 30 degrees C and aeration of 0.5 vvm, 99.7% of chromium was leached from tannery sludge. The results demonstrated that chromium in tannery sludge can be efficiently leached by the indigenous A. thiooxidans.

  13. Biosorption potency of Aspergillus niger for removal of chromium (VI).

    Science.gov (United States)

    Srivastava, Shaili; Thakur, Indu Shekhar

    2006-09-01

    Aspergillus niger isolated from soil and effluent of leather tanning mills had higher activity to remove chromium. The potency of Aspergillus niger was evaluated in shake flask culture by absorption of chromium at pH 6 and temperature 30 degrees C. The results of the study indicated removal of more than 75% chromium by Aspergillus niger determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometry after 7 days. Study of microbial Cr(VI) reduction and identification of reduction intermediates has been hindered by the lack of analytical techniques that can identify the oxidation state with subcellular spatial resolution. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), which indicated an accumulation of chromium in the fungal mycelium. PMID:16874547

  14. Selenium protection from cadmium and chromium poisoning

    International Nuclear Information System (INIS)

    The interaction of selenium with cadmium and chromium was studied in 168 chicken-broilers (DWCxWR) divided into four equal groups. Eight-week old control animals received an intravenous dose of /sup 115m/Cd Chloride 370 KBq/Kg (Group I), or 51Cr Chloride 370 KBq/Kg (Group II). The kinetics of these isotopes were studied by scintillation spectrometry (NaI/TI) carried out for whole blood, plasma, plasma proteins, urine, feces and homogenates of all organs at various time intervals. Animals in Groups III and IV received eight subcutaneous doses of sodium selenate (5ug) at 8-week intervals prior to /sup 115m/Cd or 51Cr. The kinetics of these elements were studied as in the previous two groups. It was found that selenium affected those kinetics in two ways: (a) by increasing the excretion of Cd by 11 +/- 3% (P < 0.001) and that of Cr by 7 +/- 1% (P < 0.001); and (b) by favoring redistribution of those elements, with significant (P < 0.001) reductions in liver, endocrine glands and kidney and increases (P < 0.01) in bone. The study suggests that selenium protects the animals' vital organs from environmental pollutants, such as cadmium and chromium

  15. Standard Specification for Pressure Consolidated Powder Metallurgy Iron-Nickel-Chromium-Molybdenum (UNS N08367), Nickel-Chromium-Molybdenum-Columbium (Nb) (UNS N06625), Nickel-Chromium-Iron Alloys (UNS N06600 and N06690), and Nickel-Chromium-Iron-Columbium-Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings, Valves, and Parts

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Pressure Consolidated Powder Metallurgy Iron-Nickel-Chromium-Molybdenum (UNS N08367), Nickel-Chromium-Molybdenum-Columbium (Nb) (UNS N06625), Nickel-Chromium-Iron Alloys (UNS N06600 and N06690), and Nickel-Chromium-Iron-Columbium-Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings, Valves, and Parts

  16. 75 FR 65067 - National Emission Standards for Hazardous Air Pollutant Emissions: Hard and Decorative Chromium...

    Science.gov (United States)

    2010-10-21

    ... Decorative Chromium Electroplating and Chromium Anodizing Tanks; Group I Polymers and Resins; Marine Tank...: Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks; Group I Polymers and Resins... Tanks. Group I Polymers and Resins Production.. Scott Throwe, (202) 564-7013,...

  17. I-V-T studies on Ni-silicide/n-Si(100) contacts formed by Ti-Ni-Si solid state reaction

    Institute of Scientific and Technical Information of China (English)

    Zhu Shi-Yang; Ru Guo-Ping; Zhou Jia; Huang Yi-Ping

    2005-01-01

    The current-voltage (I-V) characteristics of Ni silicide/n-Si(100) contacts, which were formed from solid-state reaction of Ni-Si with a thin Ti capping layer at different annealing temperatures, were measured at temperatures ranging from 80K to room temperature. The low temperature I-V curves exhibit an excess current at the low bias region which is significantly larger than that predicted by the traditional thermionic emission (TE) model. A doubleSchottky barrier height (SBH) model simplified from Tung's pinch-off model is used to analyse the measured I-V curves,from which the extent of the SBH inhomogeneity can be extracted. Higher annealing temperature results in larger SBH inhomogeneity, implying the degradation of the silicide film uniformity. The thin Ti capping layer increases slightly both the NiSi phase transfer temperature and the thermal stability of the formed NiSi film.

  18. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μl) microbial fuel cell

    KAUST Repository

    Mink, Justine E.

    2012-02-08

    Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m 2 of current density and 392 mW/m 3 of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society.

  19. Chromium-induced membrane damage: protective role of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100gbody weight). It has been observed that the intoxication with chromium ( i. p. ) at the dose of 0.8 mg/100g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospbolipid of both liver and kidney. The alkaline pbosphatase, total ATPase and Na + -K + -ATPase activities were significantly decreased in both liver and kidney after chromium treatment,except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid ( i.p. at the dose of 0.5 mg,/100g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  20. Bioavailability of a potato chromium complex to the laboratory rat

    International Nuclear Information System (INIS)

    Research objectives were to study the effect of food source, preparation method and chemical form on bioavailability of chromium. Chromium concentration in potatoes was determined and tubers labeled either intrinsically or extrinsically with radioactive chromate. A labeled chromium complexes was isolated from preparations of raw, baked or fried potatoes and chromatographed on gel permeation media. Availability of the potato chromium complex to the rat was examined in three feeding studies. Animals were dosed with radioactive extrinsically or intrinsically labeled potato extract or with chromate. A labeled chromium complex was isolated from gastrointestinal contents of rats and chromatographed. Potato pulp and peel contained 1.63 and 2.70 μg Cr/g tissue respectively. True and apparent absorption from extrinsically labeled feedings were 33.4 +/- 4.7 and 29.8 +/- 11.2% respectively, and no differences existed between absorption from raw and cooked potatoes. Absorption from the extrinsic labeled potatoes differed significantly from absorption of inorganic chromatium. Apparent absorption of raw (11.1 +/- 7.9%) and cooked (-0.7 +/- 2.8%) intrinsically labeled feedings differed significantly. Absorption of inorganic chromium was 17.8% (true) and 11.5% (apparent). Examination of the chromium complex isolated from gastrointestinal tract contents showed enlargement of the complex in the stomach after consumption

  1. Stabilization of chromium salt in ordinary portland cement

    Indian Academy of Sciences (India)

    Damir Barbir; Pero Dabić; Petar Krolo

    2012-12-01

    Ordinary Portland cement (OPC) samples containing the chromium salt have been investigated using differential microcalorimetry, conductometry and Fourier transform infrared spectroscopic analysis. The effect of chromium on OPC hydration was evaluated by continuous observing of early hydration. The microcalorimetrical results show that with increasing the share of chromium salt, heat maximums assume lower values and the occurrence of the maximum registered in the earlier hydration times. Conductometrical measurements show that with increasing addition of chromium salt, curve did not show any specific shape, immediate drop in specific conductivity is noticed and the maximum is reached earlier. This coincides with microcalorimetrical results. It can be concluded that the addition of chromium does not affect the mechanism of the hydration process, but it does affect the kinetic parameters and dynamics of the cement hydration process. It was found that chromium salt addition to the cement–water system is acceptable up to 2 wt.%. According to standard EN 196-3 for OPC, the beginning of binding time should occur after 60 minutes. Increased amount of chromium over 2 wt.% significantly accelerate the beginning of binding time and for the system it is not acceptable.

  2. Chromium speciation in rainwater: temporal variability and atmospheric deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kieber, R.J.; Willey, J.D.; Zvalaren, S.D. [University of North Carolina at Wilmington, Wilmington, NC (United States). Dept. of Chemistry

    2002-12-15

    Chromium is released into the atmosphere by a variety of anthropogenic activities which include steel manufacturing, leather tanning, wood presentation and fossil fuel combustion. The concentrations of the various chromium species were determined in 89 rainwater samples collected in Wilmington, NC from October 1, 1999 to December 31, 2001. Volume weighted annual average concentrations of Cr{sub total}, particulate Cr, Cr(III)(aq), and Cr(VI)(aq) were 4.6, 2.2, 0.8 and 1.2 nM, respectively. There was distinct seasonal and diurnal variability in the concentrations of the various chromium species. Chromium emissions to the global atmosphere by both natural and anthropogenic sources are estimated to be 2.2 x 10{sup 9} mol/yr. Using rainwater concentration data along with other published rainwater Cr concentrations and an estimate for total global annual rain, the total global flux of chromium removed from the atmosphere via wet deposition is 2.1 x 10{sup 9} mol/yr. This represents complete removal of Cr and indicates that essentially all chromium released into the global atmosphere is removed via rain. About half this chromium is dissolved with roughly equal concentrations of toxic Cr(VI) and relatively harmless Cr(III) species. 48 refs., 4 figs., 3 tabs.

  3. Workshop on effects of chromium coating on Nb3Sn superconductor strand: Proceedings

    International Nuclear Information System (INIS)

    This report discusses the following topics: Chromium coating on superconductor strand -- an overview; technology of chromium plating; comparison of wires plated by different platers; search for chromium in copper; strand manufactures' presentations; chromium plating at the Lawrence Livermore National Laboratory; a first look at a chromium plating process development project tailored for T.P.X. and I.T.E.R. strand; and influence of chromium diffusion and related phenomena on the reference ratios of bare and chromium plated Nb3Sn strand

  4. Workshop on effects of chromium coating on Nb{sub 3}Sn superconductor strand: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-12

    This report discusses the following topics: Chromium coating on superconductor strand -- an overview; technology of chromium plating; comparison of wires plated by different platers; search for chromium in copper; strand manufactures` presentations; chromium plating at the Lawrence Livermore National Laboratory; a first look at a chromium plating process development project tailored for T.P.X. and I.T.E.R. strand; and influence of chromium diffusion and related phenomena on the reference ratios of bare and chromium plated Nb{sub 3}Sn strand.

  5. Fertilizers and Mixed Crop Cultivation of Chromium Tolerant and Sensitive Plants under Chromium Toxicity

    OpenAIRE

    B. Dheeba; Sampathkumar, P; Kannan, K.

    2015-01-01

    Zea mays (maize) and Vigna radiata (green gram) are found to be the chromium (Cr) tolerant and sensitive plants, respectively. In the present paper, we investigate the reduction of the toxicity of Cr in the sensitive plants by the mixed crop cultivation in the field using various amendments. Further, the potassium dichromate was used as the source of hexavalent Cr. The results indicated that Cr adversely affects both the growth and yield of plants. The soil properties vary with Cr and differe...

  6. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing; Comportement du silicium en milieu nitrique. Application au retraitement des combustibles siliciures d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cheroux, L

    2001-07-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  7. Microbial Diversity of Chromium-Contaminated Soils and Characterization of Six Chromium-Removing Bacteria

    Science.gov (United States)

    He, Zhiguo; Hu, Yuting; Yin, Zhen; Hu, Yuehua; Zhong, Hui

    2016-06-01

    Three soil samples obtained from different sites adjacent to a chromium slag heap in a steel alloy factory were taken to examine the effect of chromium contamination on soil bacterial diversity as determined by construction of 16S rDNA clone libraries and sequencing of selected clones based on restriction fragment length polymorphism (RFLP) analysis. Results revealed that Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Alphaproteobacteria occurred in all three soil samples, although the three samples differed in their total diversity. Sample 1 had the highest microbial diversity covering 12 different classes, while Sample 3 had the lowest microbial diversity. Strains of six different species were successfully isolated, one of which was identified as Zobellella denitrificans. To our knowledge, this is the first report of a strain belonging to the genus Zobellella able to resist and reduce chromium. Among all isolates studied, Bacillus odysseyi YH2 exhibited the highest Cr(VI)-reducing capability, with a total removal of 23.5 % of an initial Cr(VI) concentration of 350 mg L-1.

  8. A REVIEW OF BIOSORPTION OF CHROMIUM IONS BY MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Inga Zinicovscaia

    2012-12-01

    Full Text Available Due to its widespread industrial use, chromium has become a serious pollutant in diverse environmental settings. The main source of chromium pollution including the Republic o Moldova is industry. It is a great need to develop new eco-friendly methods of chromium removal. Biosorption of heavy metals is a most promising technology involved in the removal of toxic metals from industrial waste streams and natural waters. This article is an extended abstract of a communication presented at the Conference Ecological Chemistry 2012

  9. Morphological and electrical properties of self-assembled iron silicide nanoparticles on Si(0 0 1) and Si(1 1 1) substrates

    Science.gov (United States)

    Molnár, G.; Dózsa, L.; Erdélyi, R.; Vértesy, Z.; Osváth, Z.

    2015-12-01

    Epitaxial iron silicide nanostructures are grown by solid phase epitaxy on Si(0 0 1) and Si(1 1 1), and by reactive deposition epitaxy on Si(0 0 1) substrates. The formation process is monitored by reflection high-energy electron diffraction. The morphology, size, and electrical properties of the nanoparticles are investigated by scanning electron microscopy, by electrically active scanning probe microscopy, and by confocal Raman spectroscopy. The results show that the shape, size, orientation, and density of the nanoobjects can be tuned by self-assembly, controlled by the lattice misfit between the substrates and iron silicides. The size distribution and shape of the grown nanoparticles depend on the substrate orientation, on the initial thickness of the evaporated iron, on the temperature and time of the annealing, and on the preparation method. The so-called Ostwald ripening phenomena, which state that the bigger objects develop at the expense of smaller ones, controls the density of the nanoparticles. Raman spectra show the bigger objects do not contain β-FeSi2 phase. The different shape nanoparticles exhibit small, about 100 mV barrier compared to the surrounding silicon. The local leakage current of the samples measured by conductive AFM using a Pt coated Si tip is localized in a few nanometers size sites, and the sites which we assume are very small silicide nanoparticles or point defects.

  10. Interaction transfer of silicon atoms forming Co silicide for Co/√(3)×√(3)R30°-Ag/Si(111) and related magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Hsun-Tony; Fu, Tsu-Yi; Tsay, Jyh-Shen, E-mail: jstsay@phy.ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China)

    2015-05-07

    Combined scanning tunneling microscopy, Auger electron spectroscopy, and surface magneto-optic Kerr effect studies were employed to study the microscopic structures and magnetic properties for ultrathin Co/√(3)×√(3)R30°-Ag/Si(111). As the annealing temperature increases, the upward diffusion of Si atoms and formation of Co silicides occurs at temperature above 400 K. Below 600 K, the √(3)×√(3)R30°-Ag/Si(111) surface structure persists. We propose an interaction transferring mechanism of Si atoms across the √(3)×√(3)R30°-Ag layer. The upward transferred Si atoms react with Co atoms to form Co silicide. The step height across the edge of the island, a separation of 0.75 nm from the analysis of the 2 × 2 structure, and the calculations of the normalized Auger signal serve as strong evidences for the formation of CoSi{sub 2} at the interface. The interaction transferring mechanism for Si atoms enhances the possibility of interactions between Co and Si atoms. The smoothness of the surface is advantage for that the easy axis of magnetization for Co/√(3)×√(3)R30°-Ag/Si(111) is in the surface plane. This provides a possible way of growing flat magnetic layers on silicon substrate with controllable silicide formation and shows potential applications in spintronics devices.

  11. Thermal incorporation behavior during the reduction and stabilization of chromium wastes

    OpenAIRE

    Yang, Jun; 楊駿

    2015-01-01

    The possibility of employing periclase to stabilize chromium in chromium wastes into spinel-based ceramics through thermal method was investigated by heating mixture of simulated chromium waste and magnesium oxide. Different types of magnesium oxide precursors were introduced to incorporate chromium oxide into magnesiochromite (MgCr2O4) ranging from 550 ºC to 1350 ºC. Magnesium oxide precursors of both types can effectively incorporate chromium oxide but via different mechanisms. Three main f...

  12. Effects of Supplemental Dietary Chromium on Yield and Nutrient Digestibility of Laying Hens Under Low Temperature

    OpenAIRE

    ŞAHİN, Kazım; ERTAŞ, O. Nihat; GÜLER, Talat; ÇİFTÇİ, Mehmet

    2001-01-01

    This study was conducted to determine the effects of chromium picolinate (CrPi) added into diet containing 710.3 ppb chromium on yield and nutrient digestibility of laying hens at low temperature. Forty-six-week-old laying hens were randomly assigned to four groups of 30 hens per group. Treatment groups were fed different supplemental dietary chromium levels. Thus, hens were fed diets with no supplemental chromium (Control Group), 100 ppb of supplemental chromium (100 Group), 200 ppb of s...

  13. The fate of chromium during tropical weathering

    DEFF Research Database (Denmark)

    Berger, Alfons; Frei, Robert

    2014-01-01

    We performed a mineral, geochemical and Cr–Sr–Pb isotope study on a laterite profile developed on ca. 540 Ma old tonalitic bedrock in Madagascar with special emphasis on the behavior of chromium during tropical weathering. The observed strong depletions of Ca, Si, and P, and enrichment of Fe and Al...... of the soil profile relative to stage one altered saprolite. This gain in Cr is accompanied by decreasing δ53Cr values and can be explained by partial immobilization (possibly by adsorption/coprecipitation on/with Fe-oxy-hydroxides) of mobile Cr(III) during upward transport in the weathering profile....... The negatively fractionated δ53Cr values measured in the weathering profile relative to the unaltered tonalitic bedrock characterized by a high temperature magmatic inventory Cr isotope signature are consistent with loss of a positively fractionated Cr(VI) pool formed during weathering. The predicted existence...

  14. Evaluation of chromium in red blood cells as an indicator of exposure to hexavalent chromium: An in vitro study.

    Science.gov (United States)

    Devoy, Jérôme; Géhin, Antoine; Müller, Samuel; Melczer, Mathieu; Remy, Aurélie; Antoine, Guillaume; Sponne, Isabelle

    2016-07-25

    Chromium(VI) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and whole blood (i.e., including plasma) are indicative of recent exposure, chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure. Before recommending Cr in RBC as a biological indicator of Cr(VI) exposure, in-vitro studies must be undertaken to assess its reliability. The present study examines the relationship between the chromium added to a blood sample and that subsequently found in the RBC. After incubation of total blood with chromium, RBC were isolated, counted and their viability assessed. Direct analysis of chromium in RBC was conducted using Atomic Absorption Spectrometry. Hexavalent, but not trivalent Cr, was seen to accumulate in the RBC and we found a strong correlation between the Cr(VI) concentration added to a blood sample and the amount of Cr in RBC. This relationship appears to be independent of the chemical properties of the human blood samples (e.g., different blood donors or different reducing capacities). Even though in-vivo studies are still needed to integrate our understanding of Cr(VI) toxicokinetics, our findings reinforce the idea that a single determination of the chromium concentration in RBC would enable biomonitoring of critical cases of Cr(VI) exposure. PMID:27178267

  15. Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory

    Institute of Scientific and Technical Information of China (English)

    HUANG Shun-hong; PENG Bing; YANG Zhi-hui; CHAI Li-yuan; ZHOU Li-cheng

    2009-01-01

    The environmental risk of chromium pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by chromium. 45 soil samples obtained from different places of the slag heap in a steel alloy factory were analyzed for chromium contamination level and its effect on soil microorganisms and enzyme activities. The results show that the average concentrations of total Cr in the soil under the slag heap, adjacent to the slag heap and outside the factory exceed the threshold of Secondary Environmental Quality Standard for Soil in China by 354%, 540% and 184%, respectively, and are 15, 21 and 9 times higher than the local background value, respectively. Elevated chromium loadings result in changes in the activity of the soil microbe, as indicated by the negative correlations between soil microbial population and chromium contents. Dehydrogenase activity is greatly depressed by chromium in the soil. The results imply that dehydrogenase activity can be used as an indicator for the chromium pollution level in the area of the steel alloy factory.

  16. Effects of Chromium(VI) and Chromium(III) on Desulfovibrio vulgaris Cells

    Energy Technology Data Exchange (ETDEWEB)

    M.E. Clark; A. Klonowska; S.B. Thieman; B. Giles; J.D. Wall; and M.W. Fields

    2007-04-19

    Desulfovibrio vulgaris ATCC 29579 is a well studied sulfate reducer that has known capabilities of reducing heavy metals and radionuclides, like chromium and uranium. Cultures grown in a defined medium (i.e. LS4D) had a lag period of approximately 40 h when exposed to 50 μMof Cr(VI). Substrate analysis revealed that although chromium is reduced within the first 5 h, growth does not resume for another 35 h. During this time, small amounts of lactate are still utilized but the reduction of sulfate does not occur. Sulfate reduction occurs concurrently with the accumulation of acetate approximately 40 h after inoculation, when growth resumes. Similar amounts of hydrogen are produced during this time compared to hydrogen production by cells not exposed to Cr(VI); therefore an accumulation of hydrogen cannot account for the utilization of lactate. There is a significant decrease in the carbohydrate to protein ratio at approximately 25 h, and this result indicated that lactate is not converted to glycogen. Most probable number analysis indicated that cell viability decreased steadily after inoculation and reached approximately 6 x 104 cells/ml 20 h post-chromium exposure. Regeneration of reducing conditions during chromium exposure does not induce growth and in fact may make the growth conditions even more unfavorable. This result suggested that an increase in Eh was not solely responsible for the decline in viability. Cell pellets collected 10 h after chromium-exposure were unable to resume growth when suspended into fresh medium. Supernatants from these pellets were able to support cell growth upon re- inoculation. D. vulgaris cells treated with a non-dose dependent addition of ascorbate at the same time of Cr(VI) addition did not enter a lag period. Ascorbate added 3 h post-Cr(VI) exposure did not prevent the growth lag. These results indicated that Desulfovibrio utilized lactate to reduce Cr(VI) without the reduction of sulfate, that the decline in cell viability and

  17. Scientific Opinion on ChromoPrecise® cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS

    2012-11-01

    Full Text Available The Panel on Food Additives and Nutrient Sources added to Food (ANS provides a scientific opinion re-evaluating the safety of ChromoPrecise® cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source. ChromoPrecise® is a yeast preparation with an enriched trivalent chromium content, obtained by culture of Saccharomyces cerevisiae in the presence of chromium chloride. A daily intake of 100 µg chromium(III. There are limited data on the nature and identity of the organic chromium(III compounds contained in chromium-enriched yeast and on their toxicokinetic and toxicodynamic behaviour in the body. Overall, the Panel concluded that the bioavailability in man of chromium from chromium-enriched yeast is potentially up to approximately ten times higher than that of chromium from chromium chloride. A NOAEL of 2500 mg/kg bw/day ChromoPrecise® was identified in a 90-day feeding study in rats; no evidence of adverse effects of chromium yeasts were reported in other animal studies investigating the effects of dietary supplementation with chromium yeast. ChromoPrecise® chromium yeast was non-genotoxic in a range of in vitro genotoxicity studies. Although no information was available on the chronic toxicity, carcinogenicity or reproductive toxicity of ChromoPrecise® chromium yeast, the ANS Panel has previously concluded that trivalent chromium is not carcinogenic, and limited data on other chromium yeasts provide no evidence of an effect on reproductive endpoints. No adverse effects have been reported in clinical efficacy trials with chromium yeasts. The Panel concluded that the use of ChromoPrecise® chromium yeast in food supplements is not of concern, despite the lack of data on the nature and identity of the organic chromium(III compounds contained in the product, provided that the intake does not exceed 250 μg/day, as recommended by the WHO.

  18. Contingency plans for chromium utilization. Publication NMAB-335

    International Nuclear Information System (INIS)

    The United States depends entirely on foreign sources for the critical material, chromium, making it very vulnerable to supply disruptions. This vulnerability results because chromium is essential for the fabrication of corrosion-resisting steels and high-temperature, oxidation-resisting alloys in applications that are vital to the nation's technological well-being; because no substitutes are known for these materials in those applications; and because the known, substantial deposits of chromite ore are only in a few geographical locations that could become inaccessible to the United States as a result of political actions. The effectiveness of programs such as stockpiling, conservation, and research and development for substitutes to reduce the impact of disruption of imports of chromite and ferrochromium are discussed. Alternatives for decreasing chromium consumption also are identified for chromium-containing materials in the areas of design, processing, and substitution

  19. Fabrication of high rate chromium getter sources for fusion applications

    International Nuclear Information System (INIS)

    Design and fabrication techniques are described for the manufacture of large-capacity chromium getter sources, analogous to the commercially available titanium getter source known as Ti-Ball, manufactured by Varian Associates

  20. IRIS Toxicological Review of Hexavalent Chromium (Peer Review Plan)

    Science.gov (United States)

    EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of hexavalent chromium that will appear on the Integrated Risk Information System (IRIS) database.

  1. Chromium and Polyphenols from Cinnamon and Insulin Sensitivity

    Science.gov (United States)

    Factors that improve insulin sensitivity usually lead to improvements in risk factors associated with the metabolic syndrome, diabetes, and cardiovascular diseases. Naturally occurring bioactive compounds that have been shown to improve insulin sensitivity include chromium and polyphenols found in ...

  2. The diffusion of chromium in a duplex alloy steel

    International Nuclear Information System (INIS)

    Diffusion of chromium in a duplex stainless steel containing approximately 8% ferrite has been investigated in the temperature range 600 to 10000C using the standard serial sectioning technique. The resulting concentration profiles exhibited up to four distinct regions. The two main regions are attributed to volume diffusion in the austenite and ferrite phases, the other zones being due to short circuiting paths. Volume diffusion in the austenite phase is in good agreement with chromium diffusion in Type 316 steel. The chromium diffusion coefficient in the ferrite phase of approximate composition 25 wt % Cr, 5 wt % Ni is given by: Dsub(α) = (6.0(+11,-3)) x 10-6 exp - ((212+-5)/RT) m2s-1 the activation energy being expressed in kJ.mol-1. Little evidence was found for enhanced chromium diffusion along austenite/ferrite interface boundaries. (author)

  3. Biosorption of Chromium (VI) from Aqueous Solutions onto Fungal Biomass

    OpenAIRE

    Ismael Acosta R.; Xöchitl Rodríguez; Conrado Gutiérrez; Ma. de Guadalupe Moctezuma

    2004-01-01

    The biosorption of chromium (VI) on eighteen different natural biosorbents: Natural sediment, chitosan, chitin, Aspergillus flavus I-V, Aspergillus fumigatus I-ll, Helmintosporium sp, Cladosporium sp, Mucor rouxii mutant, M. rouxii IM-80, Mucor sp-I and 2, Candida albicans and Cryptococcus neoformans was studied in this work. It was found that the biomass of C. neoformans, natural sediment, Helmintosporium sp and chitosan was more efficient to remove chromium (VI) (determined spectrophotometr...

  4. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  5. Thermodynamic Equilibrium Diagrams of Sulphur-Chromium System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The chemical and electrochemical equilibria in the presence of gaseous phase were investigated. Many substances, which consisted of sulphur and chromium, were considered. Various thermodynamic equilibria were calculated in different pressures. Calculation results were shown as log p―1/T and E―T diagrams. These diagrams may be used to study the corrosion of chromium in sulphur-containing circumstances. The diagrams are also used to thermodynami-cally determine the existence area of various substances and so on.

  6. Stereology of carbide phase in modified hypereutectic chromium cast iron

    OpenAIRE

    J. Suchoń; A. Studnicki; M. Przybył

    2010-01-01

    In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C), ferroniobium (FeNb) and mixture of ferroniobium and rare-earth (RE). The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  7. SCIENCE AND TECHNOLOGY ACTIVITIES FOR CHROMIUM IN THE 100 AREAS

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2009-07-02

    {sm_bullet} Primary Objective: Protect the Columbia River - Focus is control and treatment of contamination at or near the shoreline, which is influenced by bank storage {sm_bullet} Secondary Objective: Reduce hexavalent chromium to <48 parts per billion (ppb) in aquifer (drinking water standard) - Large plumes with isolated areas of high chromium concentrations (> 40,000 ppb), - Unknown source location(s); probably originating in reactor operation areas

  8. Genetic Predisposition for Dermal Problems in Hexavalent Chromium Exposed Population

    OpenAIRE

    Priti Sharma; Vipin Bihari; Agarwal, Sudhir K.; Goel, Sudhir K.

    2012-01-01

    We studied the effect of genetic susceptibility on hexavalent chromium induced dermal adversities. The health status of population was examined from the areas of Kanpur (India) having the elevated hexavalent chromium levels in groundwater. Blood samples were collected for DNA isolation to conduct polymorphic determination of genes, namely: NQO1 (C609T), hOGG1 (C1245G), GSTT1, and GSTM1 (deletion). Symptomatic exposed subjects (n = 38) were compared with asymptomatic exposed subjects (n = 108)...

  9. Performance of chromium nitride based coatings under plastic processing conditions

    OpenAIRE

    Cunha, l.; Andritschky, M.; Pischow, K.; Wang, Z.(Institute of High Energy Physics, Beijing, China); Zarychta, A.; Miranda, A. S.; A.M. Cunha

    2000-01-01

    Chromium nitride based coatings were produced in the form of monolithic and multilayer coatings, by DC and RF reactive magnetron sputtering. These coatings were deposited onto stainless steel and tool steel substrates. Chromium nitride coatings have;proved to be wear and corrosion resistant. The combination of these characteristics was necessary to protect surfaces during plastic processing. In order to select the best coatings, some mechanical and tribological tests were performed. Har...

  10. DANGER OF HEXAVALENT CHROMIUM AND STRATEGY FOR THE REMEDITATION

    OpenAIRE

    Aniruddha Roy; Ayan Das; Nirmal Paul

    2013-01-01

    Some metals as micronutrients have a major role in the life and growth process of plants and animals. However, certain forms of some metals may also act as toxic material even in relatively small quantities. Chromium is such a metal, whose concentration above a certain limit may cause a serious problem to the health of living organisms. Chromium (Cr) may occur in several chemical forms in organic and inorganic systems. In biological systems only Cr (III) and Cr (VI) are signifi...

  11. Chromium reduction from slag on electromelting of stainless steel

    International Nuclear Information System (INIS)

    Specific features of chromium reduction from the slag on electromelting of stainless steel type Kh18N10T according to one- or two-slag procedure were studied. It was shown that one-slag melting technology allows double decrease of chromium losses in the form of incompletely reduced oxides. This occurs due to additional chemical reactions between metal and slag on their combined pouring into the ladle. 1 ref.; 3 figs

  12. Removal of Chromium and Lead from Industrial Wastewater Using

    Directory of Open Access Journals (Sweden)

    Mohamed Hilal

    2013-04-01

    Full Text Available In this research an attempt is made on the ability of aerobic treatment of synthetic solutions containing lead and chromium using effective microorganisms within the reactor. To achieve the desired objectives of the research, synthetic aqueous solutions of lead and chromium was used in the concentration of chromium and lead ions of 5, 10,50 and 100 mg / l .The work was done at constant pH equal to 4.5 and temperature of 30 ± 1 º C. Effective microorganisms solutions was added to the reactor at Vol.% of 1/50 ,1/100 ,1/500 and 1/1000, with retention time was 24 hours to measure the heavy metals concentration the atomic absorption device was used. The experimental results showed that each 1mg / l of lead and chromium ions need 24 mg of effective microorganisms to achieve removal of 92.0% and 82.60% for lead and chromium respectively. Increasing the concentration of effective microorganisms increases the surface of adsorption and thus increasing the removal efficiency. It is found that the microorganisms activity occur in the first five hours of processing and about 94% of adsorption capacity of biomass will take place. It is also found the selectivity of microorganisms to lead ions is higher than for chromium ions.

  13. Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants.

    Science.gov (United States)

    Lukina, A O; Boutin, C; Rowland, O; Carpenter, D J

    2016-11-01

    Elevated chromium levels in soil from mining can impact the environment, including plants. Mining of chromium is concentrated in South Africa, several Asian countries, and potentially in Northern Ontario, Canada, raising concerns since chromium toxicity to wild plants is poorly understood. In the first experiment, concentration-response tests were conducted to evaluate effects of chromium on terrestrial and wetland plants. Following established guidelines using artificial soil, seeds of 32 species were exposed to chromium (Cr(3+)) at concentrations simulating contamination (0-1000 mg kg(-1)). This study found that low levels of chromium (250 mg kg(-1)) adversely affected the germination of 22% of species (33% of all families), while higher levels (500 and 1000 mg kg(-1)) affected 69% and 94% of species, respectively, from 89% of the families. Secondly, effects on seedbanks were studied using soil collected in Northern Ontario and exposed to Cr(3+) at equivalent concentrations (0-1000 mg kg(-1)). Effects were less severe in the seedbank study with significant differences only observed at 1000 mg kg(-1). Seeds exposed to Cr(3+) during stratification were greatly affected. Seed size was a contributing factor as was possibly the seed coat barrier. This study represents an initial step in understanding Cr(3+) toxicity on wild plants and could form the basis for future risk assessments. PMID:27543852

  14. Lime enhanced chromium removal in advanced integrated wastewater pond system.

    Science.gov (United States)

    Tadesse, I; Isoaho, S A; Green, F B; Puhakka, J A

    2006-03-01

    The removal of trivalent chromium from a combined tannery effluent in horizontal settling tanks and subsequent Advanced Integrated Wastewater Pond System (AIWPS) reactors was investigated. The raw combined effluent from Modjo tannery had pH in the range of 11.2-12. At this pH, a trivalent chromium removal of 46-72% was obtained in the horizontal settling tanks after a one-day detention time. Trivalent chromium precipitated as chromium hydroxide, Cr(OH)3. 58-95% Cr(III) was removed in the advanced facultative pond (AFP) where the water column pH of 7.2-8.4 was close to pH 8, which is the optimum precipitation pH for trivalent chromium. Chromium removals in the secondary facultative pond (SFP) and maturation pond (MP) were 30-50% and 6-16%, respectively. With Cr(III) concentration of 0.2-0.8 mg/l in the final treated effluent, the AIWPS preceded by horizontal settling tanks produced effluent that could easily meet most of the current Cr(III) discharge limits to receive water bodies.

  15. Experimental skin deposition of chromium on the hands following handling of samples of leather and metal

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P.; Jellesen, Morten Stendahl;

    2016-01-01

    Background: Chromium is an important skin sensitizer. Exposure to it has been regulated in cement, and recently in leather. Studies on the deposition of chromium ions on the skin as a result of handling different chromium-containing materials are sparse, but could improve the risk assessment...... of contact sensitization and allergic contact dermatitis caused by chromium. Objectives: To determine whether the handling of chromium-containing samples of leather and metal results in the deposition of chromium onto the skin. Methods: Five healthy volunteers participated. For 30 min, they handled samples...... of leather and metal known to contain and release chromium. Skin deposition of chromium was assessed with the acid wipe sampling technique. Results: Acid wipe sampling of the participants' fingers showed chromium deposition on the skin in all participants who had been exposed to leather (range 0.01–0.20 µg...

  16. USE OF TWO DIGESTION METHODS IN THE EVALUATION OF CHROMIUM CONTENT IN CATTLE'S MEAT SUPPLEMENTED WITH CHROMIUM CHELATES

    OpenAIRE

    R. L. T. Andrade; P.S.A. Moreira; R. Arruda; F. J. Lourenço; C. Palhari, F. F. Faria, V. B. Arevalo; Faria, F. F.; V. B. Arevalo

    2015-01-01

    The present study aimed to analyze the chromium content in beef using two digestion methods. There were used samples from 24 18-month-old male cattle, and twelve of them were supplemented and twelve were not supplemented with chromium chelate. These samples were evaluated by atomic absorption spectroscopy, previously submitted to digestion method using nitric acid (65%) with hydrogen peroxide (35%) and to digestion method, using solution of nitric perchloric acid in the proportion 3:1. Immedi...

  17. Activation of bentonite to remove the chromium from waste water produced by panning industry, and studying the chromium recovery efficiency

    International Nuclear Information System (INIS)

    The fast development of tanning industry led to an increase in environmental problems resulting from discharging its wastes to the surrounding environment. Thus solving this problem became one of the most important aims that the researchers work on. The chromium content of the industrial water wastes of the tanning industry considered as the main pollutant for the environment. The Aleppo Bentonite is used in early research to remove the chromium from the industrial waste water.The current research aims to find a method to activate the Aleppo Bentonite in order to increase the effective removal of chromium from the industrial waste water which is produced by tanning industry, as well as to specify the optimal conditions for chromium recovery.This study used the Aleppo Bentonite, whose origin is Tal Ajar-Aleppo to study the activation aspects using Sulfuric Acid, Hydrochloric Acid and Nitric Acid, in addition to study the recovery aspects using the same acids and hydrogen peroxide and to specify the optimal conditions for chromium recovery through applying some experiments based on three main factors: concentration, settling time and temperature.It was observed from the applied experiments that it is possible to recover chromium from Bentonite efficiently up to (80% - 90%) by treating the Bentonite with hydrogen peroxide(33% concentration) at room temperature, or by treating it with hydrogen peroxide(8.25% concentration) at 75oC, while the settling time factor proved that full recovery of chromium is obtained during the first hour, and increasing the time factor does not affect the efficiency of chromium recovery. (author)

  18. Production Cycle for Large Scale Fission Mo-99 Separation by the Processing of Irradiated LEU Uranium Silicide Fuel Element Targets

    Directory of Open Access Journals (Sweden)

    Abdel-Hadi Ali Sameh

    2013-01-01

    Full Text Available Uranium silicide fuels proved over decades their exceptional qualification for the operation of higher flux material testing reactors with LEU elements. The application of such fuels as target materials, particularly for the large scale fission Mo-99 producers, offers an efficient and economical solution for the related facilities. The realization of such aim demands the introduction of a suitable dissolution process for the applied U3Si2 compound. Excellent results are achieved by the oxidizing dissolution of the fuel meat in hydrofluoric acid at room temperature. The resulting solution is directly behind added to an over stoichiometric amount of potassium hydroxide solution. Uranium and the bulk of fission products are precipitated together with the transuranium compounds. The filtrate contains the molybdenum and the soluble fission product species. It is further treated similar to the in-full scale proven process. The generated off gas stream is handled also as experienced before after passing through KOH washing solution. The generated alkaline fluoride containing waste solution is noncorrosive. Nevertheless fluoride can be selectively bonded as in soluble CaF2 by addition of a mixture of solid calcium hydroxide calcium carbonate to the sand cement mixture used for waste solidification. The generated elevated amounts of LEU remnants can be recycled and retargeted. The related technology permits the minimization of the generated fuel waste, saving environment, and improving processing economy.

  19. Crystal Structure and Thermoelectric Properties of Lightly Vanadium-Substituted Higher Manganese Silicides (Mn1-x V x )Si γ )

    Science.gov (United States)

    Miyazaki, Yuzuru; Hamada, Haruki; Hayashi, Kei; Yubuta, Kunio

    2016-09-01

    To further enhance the thermoelectric (TE) properties of higher manganese silicides (HMSs), dissipation of layered precipitates of MnSi phase as well as optimization of hole carrier concentration are critical. We have prepared a lightly vanadium-substituted solid solution of HMS, (Mn1-x V x )Si γ , by a melt growth method. A 2% substitution of manganese with vanadium is found to dissipate MnSi precipitates effectively, resulting in a substantial increase in the electrical conductivity from 280 S/cm to 706 S/cm at 800 K. The resulting TE power factor reaches 2.4 mW/K2-m at 800 K, more than twice that of the V-free sample. The total thermal conductivity did not change significantly with increasing x owing to a reduction of the lattice contribution. As a consequence, the dimensionless figure of merit zT of the melt-grown samples increased from 0.26 ± 0.01 for x = 0 to 0.59 ± 0.01 for x = 0.02 at around 800 K.

  20. Low energy spin excitations in chromium metal

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Lab., NM (United States); Azuah, R.T. [Hahn-Meitner-Inst., Berlin (Germany); Stirling, W.G. [Univ. of Liverpool (United Kingdom). Dept. of Physics; Kulda, J. [Inst. Laue Langevin, Grenoble (France)

    1997-12-31

    Neutron scattering experiments with full polarization analysis have been performed with a single crystal of chromium to study the low-energy spin fluctuations in the transverse spin density wave (TSDW) state. A number of remarkable results have been found. Inelastic scattering observed close to the TSDW satellite positions at (1 {+-} {delta},0,0) does not behave as expected for magnon scattering. In particular, the scattering corresponds to almost equally strong magnetization fluctuations both parallel and perpendicular to the ordered moments of the TSDW phase. As the Neel temperature is approached from below, scattering at the commensurate wavevector (1,0,0) increases in intensity as a result of critical scattering at silent satellites (1,0, {+-} {delta}) being included within the spectrometer resolution function. This effect, first observed by Sternlieb et al, does not account for all of the inelastic scattering around the (1,0,0) position, however, Rather, there are further collective excitations, apparently emanating from the TSDW satellites, which correspond to magnetic fluctuations parallel to the ordered TSDW moments. These branches have a group velocity that is close to that of (1,0,0) longitudinal acoustic (LA) phonons, but assigning their origin to magneto-elastic scattering raises other unanswered questions.

  1. Hexavalent Chromium Reduction and Its Distribution in the Cell and Medium by Chromium Resistant Fusarium solani

    Directory of Open Access Journals (Sweden)

    Mousumi Sen

    2013-01-01

    Full Text Available In the present work, batch biosorption of Cr(VI was studied using the fungal strain isolated from soil. The fungal strain was characterized as Fusarium solani. The total Cr distribution in the biomass (fungus and in the media obtained from the experiment conducted at 500 mg l -1 initial Cr(VI concentration and pH 5.0. The results indicated both intracellular and extracellular accumulation and enzymatic reduction of Cr(VI and this was supported by the Transmission Electron Microscopic (TEM observation at the same Cr(VI concentration and pH value. Chromium elution from Fusarium solani containing Cr was then tried out using a number of chromium eluting reagents and a maximum Cr could be eluted using 0.5N sodium hydroxide solution without destructing the biomass structure. The total Cr was recovered by pH adjustment from both biomass and media was found to be 44% of the initial Cr(VI concentration (500 mg l-1.

  2. Electron transfer. 75. Reduction of carboxylato-bound chromium(V) with vanadium(IV). Intervention of chromium(IV)

    International Nuclear Information System (INIS)

    The chelated (carboxylato)chromium(V) anion bis(2-hydroxy-2-ethylbutyrato)oxochromate(V) (I), [(Lig)2Cr(O)]-, reacts with oxovanadium(IV) to form a strongly absorbing species (lambda/sub max/ = 515 nm; epsilon = 1.7 x 103 M-1) in the presence of 2-hydroxy-2-ethylbutyric acid buffers (pH 2-4). EPR data support 1:1 stoichiometry with VO2+ in deficiency, indicating the formation of a chromium(IV) species by reduction. With excess VO2+ a chromium(III) product was obtained. Spectral and ion-exchange properties of this product correspond to those observed for the titanium(III) and iron(II) reductions of chromium(V) and are consistent with the formulation of the product as a bis(hydroxycarboxylate) chelate of (H2O)2Cr/sup III/. With excess vanadium(IV), the reaction exhibits triphasic kinetics. The remaining step of the reaction is the reduction of the chromium(IV) intermediate with VO2+. Rates for all steps increase with decreasing [H+] and level off at low [H+]. The limiting rate constants for the formation of the chromium(IV) intermediate by the (Lig)3Cr(O)2- and (Lig)2Cr(O)- pathways are 2.8 x 103 and 2.2 x 102 M-1s-1. The bimolecular limiting rate constant for the reduction of chromium(IV) is computed to be 7.7 x 102 M-1 s-1. 33 references, 7 tables

  3. Low-chromium reduced-activation ferritic steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J.; Kenik, E.A. [Oak Ridge National Laboratory, TN (United States)

    1996-04-01

    Development of reduced-activation ferritic steels has concentrated on high-chromium (8-10 wt% Cr) steels. However, there are advantages for a low-chromium steel, and initial ORNL studies on reduced-activation steels were on compositions with 2.25 to 12% Cr. Those studies showed an Fe-2.25Cr-2W-0.25V-0.1C (2 1/4Cr-2WV) steel to have the highest strenglth of the steels studied. Although this steel had the best strength, Charpy impact properties were inferior to those of an Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) and an Fe-2.25Cr-2W-0.1C (2 1/4Cr-2W) steel. Therefore, further development of the low-chromium Cr-W steels was required. These results indicate that it is possible to develop low-chromium reduced-activation ferritic steels that have tensile and impact properties as good or better than those of high-chromium (7-9% Cr) steels. Further improvement of properties should be possible by optimizing the composition.

  4. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594.

    Science.gov (United States)

    Sandana Mala, John Geraldine; Unni Nair, Balachandran; Puvanakrishnan, Rengarajulu

    2006-06-01

    Chromium toxicity is of prime concern due to chrome tanning processes in the leather sector. Chrome tanning results in the discharge of toxic levels of chromium causing pollution hazards. Chromium levels of Cr(III) and Cr(VI) were high above permissible limits in chrome samples after chrome tanning. The potential of Aspergillus niger MTCC 2594 to accumulate chromium as well as its biosorption capacity is investigated in this study. Bioaccumulation of Cr(III) and Cr(VI) in the spent chrome liquor has resulted in a 75-78% reduction of the initial Cr content in 24-36 h. A. niger biomass is found to be very effective in the biosorption of Cr(III) and Cr(VI) in spent chrome liquor. Maximum adsorption of 83% for biosorption of Cr(III) at 48 h and 79% of Cr(VI) at 36 h in spent chrome liquor is observed. The biosorption characteristics fit well with Langmuir and Freundlich isotherms and the adsorption parameters are evaluated. The biosorption of Cr also follows Lagergren kinetics. A. niger biomass is effectively used for the biosorption of chromium with 79-83% Cr removal in 36-48 h.

  5. Chromium propionate enhances adipogenic differentiation of bovine intramuscular adipocytes

    Directory of Open Access Journals (Sweden)

    Rebecca eTokach

    2015-09-01

    Full Text Available In vitro experiments were performed to determine the effects of increasing concentrations of chromium propionate on mRNA and protein abundance of different enzymes and receptors. Intramuscular and subcutaneous preadipocytes and bovine satellite cells were isolated from the longissimus muscle to determine the effect of treatment on glucose transporter type 4 (GLUT4 and peroxisome proliferator-activated receptor γ mRNA and GLUT4 protein abundance. Preadipocyte cultures were treated with differentiation media plus either sodium propionate or different concentrations of chromium propionate (CrPro for 96, 120, and 144 h before harvest. This study indicated adipogenesis of the bovine intramuscular adipocytes were more sensitive to the treatment of chromium propionate as compared to subcutaneous adipocytes. Enhancement of adenosine monophosphate-activated protein kinase and GLUT4 mRNA by CrPro treatment may enhance glucose uptake in intramuscular adipocytes. Chromium propionate decreased GLUT4 protein levels in muscle cell cultures suggesting those cells have increased efficiency of glucose uptake due to exposure to increased levels of CrPro. In contrast, each of the two adipogenic lines had opposing responses to the CrPro. It appeared that CrPro had the most stimulative effect of GLUT4 response in the intramuscular adipocytes as compared to subcutaneous adipocytes. These findings indicated opportunities to potentially augment marbling in beef cattle fed chromium propionate during the finishing phase.

  6. Anthropogenic chromium emissions in china from 1990 to 2009.

    Science.gov (United States)

    Cheng, Hongguang; Zhou, Tan; Li, Qian; Lu, Lu; Lin, Chunye

    2014-01-01

    An inventory of chromium emission into the atmosphere and water from anthropogenic activities in China was compiled for 1990 through to 2009. We estimate that the total emission of chromium to the atmosphere is about 1.92×10⁵ t. Coal and oil combustion were the two leading sources of chromium emission to the atmosphere in China, while the contribution of them showed opposite annual growth trend. In total, nearly 1.34×10⁴ t of chromium was discharged to water, mainly from six industrial categories in 20 years. Among them, the metal fabrication industry and the leather tanning sector were the dominant sources of chromium emissions, accounting for approximately 68.0% and 20.0% of the total emissions and representing increases of 15.6% and 10.3% annually, respectively. The spatial trends of Cr emissions show significant variation based on emissions from 2005 to 2009. The emission to the atmosphere was heaviest in Hebei, Shandong, Guangdong, Zhejiang and Shanxi, whose annual emissions reached more than 1000t for the high level of coal and oil consumption. In terms of emission to water, the largest contributors were Guangdong, Jiangsu, Shandong and Zhejiang, where most of the leather production and metal manufacturing occur and these four regions accounted for nearly 47.4% of the total emission to water. PMID:24505309

  7. Anthropogenic chromium emissions in china from 1990 to 2009.

    Directory of Open Access Journals (Sweden)

    Hongguang Cheng

    Full Text Available An inventory of chromium emission into the atmosphere and water from anthropogenic activities in China was compiled for 1990 through to 2009. We estimate that the total emission of chromium to the atmosphere is about 1.92×10⁵ t. Coal and oil combustion were the two leading sources of chromium emission to the atmosphere in China, while the contribution of them showed opposite annual growth trend. In total, nearly 1.34×10⁴ t of chromium was discharged to water, mainly from six industrial categories in 20 years. Among them, the metal fabrication industry and the leather tanning sector were the dominant sources of chromium emissions, accounting for approximately 68.0% and 20.0% of the total emissions and representing increases of 15.6% and 10.3% annually, respectively. The spatial trends of Cr emissions show significant variation based on emissions from 2005 to 2009. The emission to the atmosphere was heaviest in Hebei, Shandong, Guangdong, Zhejiang and Shanxi, whose annual emissions reached more than 1000t for the high level of coal and oil consumption. In terms of emission to water, the largest contributors were Guangdong, Jiangsu, Shandong and Zhejiang, where most of the leather production and metal manufacturing occur and these four regions accounted for nearly 47.4% of the total emission to water.

  8. Enhancement of chromium uptake in tanning using oxazolidine.

    Science.gov (United States)

    Sundarapandiyan, S; Brutto, Patrick E; Siddhartha, G; Ramesh, R; Ramanaiah, B; Saravanan, P; Mandal, A B

    2011-06-15

    Monocyclic and bicyclic oxazolidines were offered at three different junctures of chrome tanning process viz. prior to BCS offer, along with BCS and after basification. It was found that oxazolidine when offered after basification brought about better chromium uptake and reduction of chromium load in the wastewater. Offer of oxazolidine was also varied. Increase in offer of oxazolidine from 0.25% to 1% was found to enhance the chromium uptake and decrease the chromium load in wastewater. But the increase in uptake was not proportionate to the increase in oxazolidine offer more than 0.75%. Offer of 1% Zoldine ZA 78 (monocyclic oxazolidine) and Zoldine ZE (bicyclic oxazolidine) after basification brought about 63.4% and 73.1% enhancement in chrome content in leather compared to control where oxazolidine was not offered. The tone of the wetblue was found to be altered moderately. However this did not call for any process adjustments in wet-finishing. The oxazolidine treated leathers were found to be immensely fuller and tighter. It was found experimentally that offer of 1% of oxazolidine facilitated reduction in the offer of syntans administered for filling and grain tightening by around 46%. Oxazolidine could bring about significant reduction in cost of chemicals apart from resulting environmental benefits due to enhancement of chromium uptake during tanning. PMID:21536383

  9. Reduction of chromium oxide from slags

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Paredes, J.

    2005-12-01

    Full Text Available Experimental and theoretical work were performed to estimate the effect of slag basicity and amount of reducing agents on the reduction of chromium oxide from the slag which interacted with molten steel at 1,600 °C. The slag system contained CaO, MgO, SiO2, CaF2 and Cr2O3 together with Fe-alloys (Fe-Si and Fe-Si-Mg. The CaF2 and MgO contents in the slags were 10 mass % each; Cr2O3 was 25%. The amount of the ferroalloys ranged from 12.5 to 50 g per 100 g of slag. The (CaO+MgO/SiO2 ratio was held at 1 and 2. The Cr yield was determined using both Fe-alloys as reducing agents. Some estimations were made to determine the theoretical effect of temperature, slag basicity, (CaO+MgO/SiO2, and amount of reducing agents in the slag on the chromium recovery. The FACT (Facility for the Analysis of Chemical Thermodynamics computational package is used to determine the equilibrium between the slag and molten steel.

    En el presente trabajo se realiza un estudio teórico y experimental para determinar el efecto de la basicidad de la escoria y la cantidad de agentes reductores sobre la reducción de óxidos de cromo contenidos en la escoria, la cual está en contacto con acero líquido a 1.600 °C. La escoria se prepara con los reactivos CaO, MgO, SiO2, CaF2 y ferroaleaciones (Fe-Si y Fe-Si-Mg. Los contenidos de CaF2 y MgO en la escoria son de 10 %, cada uno, y el de Cr2O3 es 25 %. La cantidad de la ferroaleación varía de 12,5 a 50 g por cada 100 g de escoria. La relación (CaO+MgO/SiO2 tiene los valores de 1 y 2. Se determina la eficiencia de recuperación de cromo empleando los dos tipos de ferroaleaciones. Se realizaron cálculos para determinar el efecto teórico de la temperatura, la basicidad de la escoria, (CaO+MgO/SiO2, y la cantidad de agentes reductores sobre la reducci

  10. Electrochemical modification of chromium surfaces using 4-nitro- and4-fluorobenzenediazonium salts

    DEFF Research Database (Denmark)

    Hinge, Mogens; Cecatto, Marcel; Kingshott, Peter;

    2009-01-01

    Chromium surfaces can be electrografted with organic surface films using 4-nitro- or 4-fluorobenzenediazonium salts, despite the fact that the surfaces are covered with a protective chromium oxide layer...

  11. FORMATION AND DESTRUCTION OF HEXAVALENT CHROMIUM IN A LABORATORY SWIRL FLAME INCINERATOR

    Science.gov (United States)

    The partitioning of chromium (Cr) in combustion systems was investigated theoretically and experimentally. Theoretical predictions were based on chemical equilibrium and suggested that hexavalent chromium [Cr(VI)] was favored by the presence of chlorine (Cl) and diminished by the...

  12. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.

    Science.gov (United States)

    Zeng, Jing; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Sun, Zhao-Yong; Kida, Kenji

    2016-10-01

    In this study, a sulfur-oxidizing community was enriched from activated sludge generated in tannery wastewater treatment plants. Bioleaching of tannery sludge containing 0.9-1.2% chromium was investigated to evaluate the effectiveness of the enriched community, the effect of chromium binding forms on bioleaching efficiency, and the dominant microbes contributing to chromium bioleaching. Sludge samples inoculated with the enriched community presented 79.9-96.8% of chromium leaching efficiencies, much higher than those without the enriched community. High bioleaching efficiencies of over 95% were achieved for chromium in reducible fraction, while 60.9-97.9% were observed for chromium in oxidizable and residual fractions. Acidithiobacillus thiooxidans, the predominant bacteria in the enriched community, played an important role in bioleaching, whereas some indigenous heterotrophic species in sludge might have had a supporting role. The results indicated that A. thiooxidans-dominant enriched microbial community had high chromium bioleaching efficiency, and chromium binding forms affected the bioleaching performance.

  13. CHROMIUM ELECTROANALYSIS AT SCREEN PRINTED ELECTRODE MODIFIED BY THIN FILMS OF NICKEL

    Science.gov (United States)

    A rapid and potentially cost-effective electrochemical method is reported for analysis of chromium (VI) and Chromium(III) using a nickel modified screen printed carbon ink electrode. Electrochemical characteristics of nickel modified electrode as well voltammetric behavior f...

  14. Modification by H-termination in growth process of titanium silicide on Si(0 0 1)-2 x 1 observed with scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Formation processes of titanium silicide on hydrogen-terminated H/Si(0 0 1)-2 x 1 surface are studied at the atomic scale with a scanning tunneling microscopy (STM). Square-shaped nanoislands were observed on the Ti/H/Si(0 0 1) surface after annealed at 873-1073 K. These are the epitaxial nanoislands moderately grown due to the local orientation relationship between C49-TiSi2 and Si(0 0 1), because passivation by surface hydrogen on Si(0 0 1) suppresses active and complex bond formation of Ti-Si.

  15. The effect of silicide ceramic coatings on the high-temperature strength and plasticity of niobium alloys of the Nb-W-Mo-Zr system

    International Nuclear Information System (INIS)

    A study is made into short-term rupture strength and plasticity of 5VMTs alloy of Nb-W-Mo-Zr system and a 5VMTs-silicide ceramic coating composite material in vacuum, inert environment and in the air within a temperature range of 290-2070 K. The kinetics of defect generation and development both in the protective coating and the matrix is studied. The values of limiting plastic strains are determined at which the composite materials preserves its carrying capacity in high temperature aggressive and oxidizing gaseous media

  16. Scientific Opinion on chromium(III lactate tri-hydrate as a source of chromium added for nutritional purposes to foodstuff

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS

    2012-10-01

    Full Text Available

    The Panel on Food Additives and Nutrient Sources added to Food provides a scientific opinion on the safety and bioavailability of chromium(III lactate tri-hydrate as a source of chromium(III added for nutritional purposes to foodstuffs. The safety of chromium itself, in terms of the amounts that may be consumed, is outside the remit of this Panel. No new data have been provided as regards the safety and bioavailability of chromium from chromium(III lactate tri-hydrate. The Panel concurs with its earlier views stating that no evidence was provided supporting the bioavailability of chromium from chromium(III lactate tri-hydrate. Chromium(III lactate tri-hydrate is claimed to be freely soluble in water, however, chromium(III lactate tri-hydrate exists as a weak complex that may influence the bioavailability of chromium(III in the gastrointestinal tract. The Panel re-iterates that because of the complex chemistry of chromium(III lactate tri-hydrate in aqueous solutions and its limited solubility at pH >5, the bioavailability of chromium(III from chromium(III lactate tri-hydrate is low. Based on a conservative exposure estimate, the Panel calculated the combined intake of chromium(III from supplements and from foods fortified with chromium(III lactate tri-hydrate, for both adults and children, to be approximately 240 μg chromium(III/day, which is below the value of 250 µg/day established by the WHO for supplemental intake of chromium that should not be exceeded. The Panel noted that the use of chromium(III lactate tri-hydrate in the form of a premix with lactose, added to foods, would result in an exposure at the mean for adults of approximately 7-37 mg lactose/day (0.12-0.62 μg lactose/kg bw/day and to 36-192 μg lactate/day (0.60-3.20 μg/kg bw/day. Given that subjects with lactose maldigestion will tolerate up to 12 g of lactose with no or minor symptoms, these levels are not of safety concern.

  17. Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species

    OpenAIRE

    Sivakumar, D.

    2016-01-01

    The isolated fungi species of different kinds from chromium contaminated soil sites located in Nagalkeni, Chennai were used for reducing chromium(VI) in a tannery industry wastewater of Nagalkeni, Chennai.  The experiments were conducted to know biosorption potential of isolated fungi species for removing chromium(VI) in a tannery industry wastewater against the different pH, fungi biomass and chromium(VI) concentration (dilution ratio).  The results of this study indicated that the order of ...

  18. Investigation of hexavalent chromium removal from Synthetic wastewater by using Peaganum

    OpenAIRE

    Ali Akbar Taghizadeh; Maryam khodadadi; Taher Shahriary; Hadighe Dorri; mahla zaferanieh; rasoul khosravi

    2012-01-01

    Background and Aim: Discharge of industrial wastewater containing hexavalent chromium into the environment can have harmful effects to the types of organisms. So, chromium should remove before discharging to the environment with an effective method. The purpose of this study of is hexavalent chromium removed with Peganum harmala granular seeds(PGS).   Materials and Methods: In this experimental study, The removal of hexavalent chromium with using PGS, with changes in time, pH, adsorbent dose,...

  19. M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhihong Tang

    2007-12-01

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti{sub 5}Si{sub 3}-based alloys was investigated. Oxidation behavior of Ti{sub 5}Si{sub 3}-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti{sub 5}Si{sub 3} by nucleation and growth of nitride subscale. Ti{sub 5}Si{sub 3.2} and Ti{sub 5}Si{sub 3}C{sub 0.5} alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi{sub 2} coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo{sub 3}Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo{sub 3}Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nb{sub ss} (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} Nb{sub SS} + NbB was determined to occur at 2104 {+-} 5 C by DTA.

  20. Influence of chromium, oxygen, carbon and nitrogen on iron viscosity

    International Nuclear Information System (INIS)

    Kinetic viscosity of 70 beforehand melted iron samples with additions of chromium (up to 2%) and carbon (up to 1%) has been investigated. Different conditions of melting brought about differences in oxygen and nitrogen contents. Viscosity of most samples has been determined in the 1550-1650 deg C temperature range. It is stated that small additions to pure iron of each of the investigated elements (O, Cr, C, N) decrease its viscosity. Combined effect of these additions on viscosity is inadditive. Simultaneous introduction of oxygen and carbon may result in increase of melt viscosity. The same fact is observed at combined introduction of chromium and nitrogen. Simultaneous introduction of other impurities-chromium with oxygen or carbon, nitrogen with oxygen causes amplification of their individual effect. Reasons for the observed regularities result from changes in energies of interparticle interactions in the melt and therefore rebuilding of structure of its short-range order

  1. A study of the process of desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    W.B. Amorim

    2003-09-01

    Full Text Available In this work the process of desorption of hexavalent chromium, a toxic metal ion, from the marine algae Sargassum sp, following biosorption experiments 2³ factorial design was studied. A technique was applied to three eluents: HCl, H2SO4 and EDTA. Three factors of importance were evaluated: concentration of eluent, the ratio between mass of biosorbent and volume of eluent (S/L and process time. A statistical analysis of the experimental results showed that the three variables evaluated are significant for all three eluents. The models for chromium desorption were validated, as the results agreed well with the observed values. Through use of the response surface methodology, a factorial design based optimization technique; it was possible to identify the most suitable eluent and the interval of values for the process variables that resulted in the most significant desorption of chromium, which is relevant information for work aiming at process optimization.

  2. Structural and magnetic properties of chromium doped zinc ferrite

    International Nuclear Information System (INIS)

    Zinc chromium ferrites with chemical formula ZnCrxFe2−xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by Sol - Gel technique. The structural as well as magnetic properties of the synthesized samples have been studied and reported here. The structural characterizations of the samples were analyzed by using X – Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). The single phase spinel cubic structure of all the prepared samples was tested by XRD and FTIR. The particle size was observed to decrease from 18.636 nm to 6.125 nm by chromium doping and induced a tensile strain in all the zinc chromium mixed ferrites. The magnetic properties of few samples (x = 0.0, 0.4, 1.0) were investigated using Vibrating Sample Magnetometer (VSM)

  3. Chromium Resistant Bacteria: Impact on Plant Growth in Soil Microcosm

    Directory of Open Access Journals (Sweden)

    Sayel Hanane

    2014-07-01

    Full Text Available Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.

  4. Electron magnetic resonance investigation of chromium diffusion in yttria powders

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, R.S. de, E-mail: rsbiasi@ime.eb.b [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, Pr. General Tiburcio, 80, 22290-270 Rio de Janeiro, RJ (Brazil); Grillo, M.L.N., E-mail: mluciag@uerj.b [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil)

    2010-03-01

    The electron magnetic resonance (EMR) technique was used to investigate the diffusion of chromium in yttria (Y{sub 2}O{sub 3}) powders. The EMR absorption intensity was measured for several annealing times and three different temperatures of isothermal annealing: 1273, 1323 and 1373 K. The activation temperature for diffusion, calculated from the experimental data using a theoretical model based on the Fick equation, was found to be E{sub A}=342+-5 kJ mol{sup -1}. This value is larger than the activation energy for the diffusion of chromium in rutile (TiO{sub 2}), periclase (MgO) and cobalt monoxide (CoO) and smaller than the activation energy for the diffusion of chromium in chrysoberyl (BeAl{sub 2}O{sub 4}).

  5. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.

    Science.gov (United States)

    Zhang, Xue-Hong; Liu, Jie; Huang, Hai-Tao; Chen, Jun; Zhu, Yi-Nian; Wang, Dun-Qiu

    2007-04-01

    Leersia hexandra Swartz (Gramineae), which occurs in Southern China, has been found to be a new chromium hyperaccumulator by means of field survey and pot-culture experiment. The field survey showed that this species had an extraordinary accumulation capacity for chromium. The maximum Cr concentration in the dry leaf matter was 2978 mg kg(-1) on the side of a pond near an electroplating factory. The average concentration of chromium in the leaves was 18.86 times as that in the pond sediment, and 297.41 times as that in the pond water. Under conditions of the nutrient solution culture, it was found that L. hexandra had a high tolerance and accumulation capacity to Cr(III) and Cr(VI). Under 60 mg l(-1) Cr(III) and 10 mg l(-1) Cr(VI) treatment, there was no significant decrease of biomass in the leaves of L. hexandra (p>0.05). The highest bioaccumulation coefficients of the leaves for Cr(III) and Cr(VI) were 486.8 and 72.1, respectively. However, L. hexandra had a higher accumulation capacity for Cr(III) than for Cr(VI). At the Cr(III) concentration of 10 mg l(-1) in the culture solution, the concentration of chromium in leaves was 4868 mg kg(-1), while at the same Cr(VI) concentration, the concentration of chromium in leaves was only 597 mg kg(-1). These results confirmed that L. hexandra is a chromium hyperaccumulator which grows rapidly with a great tolerance to Cr and broad ecological amplitude. This species could provide a new plant resource that explores the mechanism of Cr hyperaccumulation, and has potential for usage in the phytoremediation of Cr-contaminated soil and water. PMID:17207838

  6. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg....

  7. 75 FR 60454 - Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the...

    Science.gov (United States)

    2010-09-30

    ... AGENCY Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the..., ``Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the Integrated Risk..., 2010. The listening session on the draft assessment for hexavalent chromium will be held on November...

  8. 76 FR 20349 - Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the...

    Science.gov (United States)

    2011-04-12

    ... AGENCY Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the..., ``Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the Integrated Risk... workshop on the draft assessment for Hexavalent Chromium will be held on May 12, 2011, beginning at 8:30...

  9. 77 FR 61431 - Hexavalent Chromium Standards; Extension of the Office of Management and Budget's (OMB) Approval...

    Science.gov (United States)

    2012-10-09

    ... Occupational Safety and Health Administration Hexavalent Chromium Standards; Extension of the Office of...) approval of the information collection requirements specified in the Hexavalent Chromium Standards for... requirements specified in the Hexavalent Chromium (Cr(VI)) Standards for General Industry (29 CFR...

  10. Speciation dependent radiotracer studies on chromium preconcentration using iron doped calcium alginate biopolymer

    International Nuclear Information System (INIS)

    The work aims to study the differential attitude of Ca-alginate (CA) and Fe-doped calcium alginate (Fe-CA) and towards Cr(III) and Cr (IV) so that, depending on the oxidation state of chromium effluent, environmentally sustainable methodologies can be prescribed for removal of chromium. Throughout the experiment 51Cr has been used as the precursor of stable chromium

  11. Evaluation of flexural bond strength of porcelain to used nickel-chromium alloy in various percentages

    Directory of Open Access Journals (Sweden)

    VNV Madhav

    2012-01-01

    Fresh nickel-chromium alloy shows the greatest porcelain adherence.There is no significant change in bond strength of ceramic to alloy with up to 75% of used nickel-chromium alloy.At least 25%- of new alloy should be added when recycled nickel-chromium alloy is being used for metal ceramic restorations.

  12. Fertilizers and Mixed Crop Cultivation of Chromium Tolerant and Sensitive Plants under Chromium Toxicity.

    Science.gov (United States)

    Dheeba, B; Sampathkumar, P; Kannan, K

    2015-01-01

    Zea mays (maize) and Vigna radiata (green gram) are found to be the chromium (Cr) tolerant and sensitive plants, respectively. In the present paper, we investigate the reduction of the toxicity of Cr in the sensitive plants by the mixed crop cultivation in the field using various amendments. Further, the potassium dichromate was used as the source of hexavalent Cr. The results indicated that Cr adversely affects both the growth and yield of plants. The soil properties vary with Cr and different fertilizer amendments and the yield of both plants were affected by Cr. We conclude that metal accumulation of seeds of green gram was higher than corn and the application of single fertilizer either farm yard manure (FYM) or nitrogen, phosphorous, and potassium (NPK) enhances the growth and yield of both the tolerant and sensitive plants in the mixed crop cultivations. PMID:25709647

  13. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys.

    Science.gov (United States)

    Chen, Bo; Xia, Gang; Cao, Xin-Ming; Wang, Jue; Xu, Bi-Yao; Huang, Pu; Chen, Yue; Jiang, Qing-Wu

    2013-03-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  14. Primary and secondary crystallization of modified hypoeutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2010-04-01

    Full Text Available The paper presents investigations of crystallization of modified hypoeutectic wear resistant chromium cast iron which contains carbon about 2% and chromium on three levels (12%, 18% and 25%. Three substances were applied to the modification ( boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and mischmetal (RE. The investigations of crystallization were conducted the DTA method in DTA-C and DTA-Is testers. The influence on the course of the process of primary and secondary crystallization was observed.

  15. Use of chitosan for chromium removal from exhausted tanning baths.

    Science.gov (United States)

    Cesaro, Raffaele; Fabbricino, Massimiliano; Lanzetta, Rosa; Mancino, Anna; Naviglio, Biagio; Parrilli, Michelangelo; Sartorio, Roberto; Tomaselli, Michele; Tortora, Gelsomina

    2008-01-01

    A novel approach, based on chitosan heavy-metal sequestrating ability, is proposed for chromium(III) removal from spent tanning liquor. Experimental results, obtained at lab-scale using real wastewater, are presented and discussed. Resulting efficiencies are extremely high, and strongly dependent on chitosan dose and pH value. Comparative analyses with other polysaccharides is also carried out showing that amine groups are more efficient than carboxyl and sulphate ones. Chromium recovery from sorption complexes and chitosan regeneration is finally proposed to optimize the whole process.

  16. Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy.

    Science.gov (United States)

    Ogata, K; Salager, E; Kerr, C J; Fraser, A E; Ducati, C; Morris, A J; Hofmann, S; Grey, C P

    2014-01-01

    Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being to understand the complex kinetics and thermodynamics that control the reactions and structural rearrangements. Elucidating this necessitates real-time in situ metrologies, which are highly challenging, if the whole electrode structure is studied at an atomistic level for multiple cycles under realistic cycling conditions. Here we report that Si nanowires grown on a conducting carbon-fibre support provide a robust model battery system that can be studied by (7)Li in situ NMR spectroscopy. The method allows the (de)alloying reactions of the amorphous silicides to be followed in the 2nd cycle and beyond. In combination with density-functional theory calculations, the results provide insight into the amorphous and amorphous-to-crystalline lithium-silicide transformations, particularly those at low voltages, which are highly relevant to practical cycling strategies.

  17. Self-organised silicide nanodot patterning by medium-energy ion beam sputtering of Si(100): local correlation between the morphology and metal content

    Science.gov (United States)

    Redondo-Cubero, A.; Galiana, B.; Lorenz, K.; Palomares, FJ; Bahena, D.; Ballesteros, C.; Hernandez-Calderón, I.; Vázquez, L.

    2016-11-01

    We have produced self-organised silicide nanodot patterns by medium-energy ion beam sputtering (IBS) of silicon targets with a simultaneous and isotropic molybdenum supply. Atomic force microscopy (AFM) studies show that these patterns are qualitatively similar to those produced thus far at low ion energies. We have determined the relevance of the ion species on the pattern ordering and properties. For the higher ordered patterns produced by Xe+ ions, the pattern wavelength depends linearly on the ion energy. The dot nanostructures are silicide-rich as assessed by x-ray photoelectron spectroscopy (XPS) and emerge in height due to their lower sputtering yield, as observed by electron microscopy. Remarkably, a long wavelength corrugation is observed on the surface which is correlated with both the Mo content and the dot pattern properties. Thus, as assessed by electron microscopy, the protrusions are Mo-rich with higher and more spaced dots on their surface whereas the valleys are Mo-poor with smaller dots that are closer to each other. These findings indicate that there is a correlation between the local metal content of the surface and the nanodot pattern properties both at the nanodot and the large corrugation scales. These results contribute to advancing the understanding of this interesting nanofabrication method and aid in developing a comprehensive theory of nanodot pattern formation and evolution.

  18. Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy.

    Science.gov (United States)

    Ogata, K; Salager, E; Kerr, C J; Fraser, A E; Ducati, C; Morris, A J; Hofmann, S; Grey, C P

    2014-01-01

    Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being to understand the complex kinetics and thermodynamics that control the reactions and structural rearrangements. Elucidating this necessitates real-time in situ metrologies, which are highly challenging, if the whole electrode structure is studied at an atomistic level for multiple cycles under realistic cycling conditions. Here we report that Si nanowires grown on a conducting carbon-fibre support provide a robust model battery system that can be studied by (7)Li in situ NMR spectroscopy. The method allows the (de)alloying reactions of the amorphous silicides to be followed in the 2nd cycle and beyond. In combination with density-functional theory calculations, the results provide insight into the amorphous and amorphous-to-crystalline lithium-silicide transformations, particularly those at low voltages, which are highly relevant to practical cycling strategies. PMID:24488002

  19. Self-organised silicide nanodot patterning by medium-energy ion beam sputtering of Si(100): local correlation between the morphology and metal content.

    Science.gov (United States)

    Redondo-Cubero, A; Galiana, B; Lorenz, K; Palomares, F J; Bahena, D; Ballesteros, C; Hernandez-Calderón, I; Vázquez, L

    2016-11-01

    We have produced self-organised silicide nanodot patterns by medium-energy ion beam sputtering (IBS) of silicon targets with a simultaneous and isotropic molybdenum supply. Atomic force microscopy (AFM) studies show that these patterns are qualitatively similar to those produced thus far at low ion energies. We have determined the relevance of the ion species on the pattern ordering and properties. For the higher ordered patterns produced by Xe(+) ions, the pattern wavelength depends linearly on the ion energy. The dot nanostructures are silicide-rich as assessed by x-ray photoelectron spectroscopy (XPS) and emerge in height due to their lower sputtering yield, as observed by electron microscopy. Remarkably, a long wavelength corrugation is observed on the surface which is correlated with both the Mo content and the dot pattern properties. Thus, as assessed by electron microscopy, the protrusions are Mo-rich with higher and more spaced dots on their surface whereas the valleys are Mo-poor with smaller dots that are closer to each other. These findings indicate that there is a correlation between the local metal content of the surface and the nanodot pattern properties both at the nanodot and the large corrugation scales. These results contribute to advancing the understanding of this interesting nanofabrication method and aid in developing a comprehensive theory of nanodot pattern formation and evolution.

  20. The oxidation and reduction of chromium of stainless steels in an eletric arc furnace

    Directory of Open Access Journals (Sweden)

    B. Arh

    2011-07-01

    Full Text Available The oxidation of chromium during the elaboration of stainless steels occurs with oxygen in solution blown inthe melt and with oxides in the slag. A higher content of silicon in the furnace charge decreases the extent of oxidation of chromium, however, the efficient reduction of chromium from the slag is of essential importance for a minimal loss of chromium. In this survey, the theory of the oxidation of chromium, its reduction from the slag and the conditions for the formation of foaming slag are discussed.

  1. Friction and wear behavior of chromium carbide coatings

    International Nuclear Information System (INIS)

    Chromium carbides, tungsten carbide, and chromium oxide have been tested and evaluated as coatings to protect high-temperature gas-cooled reactor (HTGR) steam generator and other HTGR components from adhesion, galling associated with sliding wear or from fretting. Tests were performed in commercially-pure helium and in helium doped with various gaseous impurities (H2, H2O, CH4, CO) to simulate the primary coolant of an HTGR. Several types of chromium carbide coatings including Cr3C2, Cr7C3, and Cr23C6, were tested for wear resistance and resistance to long-term spalling. Tungsten carbide and chromium oxide coatings were tested in sliding wear tests. Cr23C6-NiCr coatings showed the best performance (from 400 to 8160C) whether they were applied by detonation gun or plasma gun spraying methods. The presence of the Cr23C6-NiCr coatings did not affect the creep rupture properties of Alloy 800H substrates at temperatures up to 7600C. Low-cycle fatigue life of similar specimens at 5930C was reduced to 10 to 20% when tested in the 1 to 0.6% strain range

  2. Porosity of detonation coatings on the base of chromium carbide

    International Nuclear Information System (INIS)

    Porosity of detonation coatings on the base of chromium carbide is estimated by the hydrostatic weighing. The open porosity value dependence on the distance of spraying, depth of the charge, ratio and volume of the detonator barrie filing with gas components is established. Pore distribution in the cross section of a specimen tested for porosity is studied by the methods of metallographic analysis

  3. Intestinal absorption of chromium as affected by wheat bran

    Energy Technology Data Exchange (ETDEWEB)

    Keim, K.S.; Holloway, C.L.; Hegsted, M.

    1986-03-01

    This study was designed to investigate the influence of dietary fiber, as found in wheat bran, on the absorption of chromium. Twenty male Sprague-Dawley rats were divided into two groups of 10. The control was fed a semi-purified diet containing casein, methionine, cornstarch, sucrose, corn oil, mineral and vitamin mix, and choline bitartrate. The experimental group was fed the same diet but with soft red winter wheat bran added to a level of 35% of the diet at the expense of sucrose. To determine chromium absorption and uptake by selected tissues, rats were fasted for 24 hr, fed 5 g of the respective diet, 2 hr later intubated with 100..mu..Ci of Cr-51of sacrificed 24 hr later. The rats wee housed in metabolic cages after the Cr-51 intubation. The addition of wheat brand to the diet did not significantly affect chromium absorption as measured by percent dose of Cr-51 in the 24 hr urine. The percent dose in the control group was 0.68 +/- 0.20% (mean +/- SEM) and in the experimental group 0.63 +/- 0.24% (mean +/-SEM) (N.S.). The cr-51 uptake of liver, spleen, jejunum, and blood was not statistically different between groups. These results indicate that dietary fiber as found in wheat bran does not impair intestinal absorption of chromium.

  4. Microbial biotechnology for remediation of aquatic habitats polluted with chromium

    Directory of Open Access Journals (Sweden)

    Viorica Coşier

    2008-12-01

    Full Text Available Chromium may occur in nine different forms of oxidation ranging from ?II to +VI, with forms II, III and VI as the most commonly encountered. In Cluj county, chromium pollution dates well back in time and has caused important dysfunction to the mechanical-biological wastewater purification station of the city of Cluj (Coşier & Diţă 1996. The purpose of this study was to develop one microbial method able to reduce hexavalent chromium (mobile, permeable to cell membrane, carcinogenic and mutagenic (Ishikawa et al 1994 to the trivalent form (insoluble and an essential element for humans (Song et al 2006. Different sources of chromium-reducing bacteria and many sources of carbon and energy added to the Kvasnikov mineral basal medium (Komori et al 1990 with increasing amount of chromate (200- 1000 mg/l were tested. Two bacterial strains, able to reduce even 1000 mg chromate/l, were isolated in pure culture. For one of these bacterial strains, we determined the optimum conditions for the reduction of Cr (VI.

  5. 75 FR 67100 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2010-11-01

    ... superalloy degassed chromium from Japan (70 FR 76030). The Commission is conducting a review to determine..., subparts A, D, E, and F (19 CFR part 207), as most recently amended at 74 FR 2847 (January 16, 2009). \\1... rule 201.15(b)(19 CFR 201.15(b)), 73 FR 24609 (May 5, 2008). This advice was developed in...

  6. 76 FR 8773 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2011-02-15

    ... applicable deadline.'' (75 FR 80457). Accordingly, pursuant to section 751(c) of the Tariff Act of 1930 (19 U... COMMISSION Superalloy Degassed Chromium From Japan AGENCY: United States International Trade Commission... Japan would be likely to lead to continuation or recurrence of material injury. On December 22,...

  7. Intestinal absorption of chromium as affected by wheat bran

    International Nuclear Information System (INIS)

    This study was designed to investigate the influence of dietary fiber, as found in wheat bran, on the absorption of chromium. Twenty male Sprague-Dawley rats were divided into two groups of 10. The control was fed a semi-purified diet containing casein, methionine, cornstarch, sucrose, corn oil, mineral and vitamin mix, and choline bitartrate. The experimental group was fed the same diet but with soft red winter wheat bran added to a level of 35% of the diet at the expense of sucrose. To determine chromium absorption and uptake by selected tissues, rats were fasted for 24 hr, fed 5 g of the respective diet, 2 hr later intubated with 100μCi of Cr-51of sacrificed 24 hr later. The rats wee housed in metabolic cages after the Cr-51 intubation. The addition of wheat brand to the diet did not significantly affect chromium absorption as measured by percent dose of Cr-51 in the 24 hr urine. The percent dose in the control group was 0.68 +/- 0.20% (mean +/- SEM) and in the experimental group 0.63 +/- 0.24% (mean +/-SEM) (N.S.). The cr-51 uptake of liver, spleen, jejunum, and blood was not statistically different between groups. These results indicate that dietary fiber as found in wheat bran does not impair intestinal absorption of chromium

  8. Invariant coefficients of diffusion in iron-chromium-nickel system

    Energy Technology Data Exchange (ETDEWEB)

    Mokrov, A.P.; Akimov, V.K.; Golubev, V.G.

    1984-02-01

    The temperature and concentration dependences of the Dsub(c) coefficients in the ..gamma..-phase of iron-chromium-nickel system are determined. It is proposed to described mutual diffusion in multicomponent systems using invariant, i.e. independent of the choice of solvent, coefficients of diffusion. The assumption that their temperature dependence follows the Arrhenius law is confirmed by the experiment.

  9. Invariant coefficients of diffusion in iron-chromium-nickel system

    International Nuclear Information System (INIS)

    The temperature and concentration dependences of the Dsub(c) coefficients in the γ-phase of iron-chromium-nickel system are determined. It is proposed to described mutual diffusion in mul-- ticomponent systems using invariant, i. e. independent of the choice of solvent, coefficients of diffusion. The assumption that their temperature dependence follows the Arrhenius law is confirmed by the experiment

  10. Differents remediation methodos for lead, chromium and cadmium contaminated soils

    International Nuclear Information System (INIS)

    The usage of phosphates in the remediation of plots contaminated with heavy metals appears to be a good strategy to lessen the danger of these metals. This study analyses the effect of the mobilization of: Lead, chromium and cadmium by utilizing diverse forms of phosphates in contaminated soils of three different origins with ph modification and without it

  11. IRIS TOXICOLOGICAL REVIEW OF HEXAVALENT CHROMIUM (INTERAGENCY SCIENCE CONSULTATION DRAFT)

    Science.gov (United States)

    On Septemeber 30, 2010, the draft Toxicological Review of Hexavalent Chromium and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agenc...

  12. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during...

  13. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    2015-01-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track...

  14. Discovery of Chromium, Manganese, Nickel, and Copper Isotopes

    OpenAIRE

    Garofali, K.; Robinson, R; Thoennessen, M

    2010-01-01

    Twenty-seven chromium, twenty-five manganese, thirty-one nickel and twenty-six copper isotopes have so far been observed and the discovery of these isotopes is discussed. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  15. Chromium stable isotope fractionation in modern biogeochemical cycling

    DEFF Research Database (Denmark)

    Paulukat, Cora Stefanie

    Chromium (Cr) is, due to its redox-sensitive properties, a powerful tracer for redox processes in environmental studies. Changes in its preferred oxidation state (III and VI) are accompanied by Crisotope fractionation. The Cr-isotope system is a promising tool to reconstruct the evolution of free...

  16. FEATURES OF CHROMIUM DOPING OF WEAR-RESISTANT CAST IRON

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2013-01-01

    Full Text Available The aim of this work analysis of the influence of chromium on the process of carbide formation, changes in chemical composition of the metal substrate in the areas adjacent to the carbides and at the hardness of iron while economy nickel and manganesealloying.

  17. Production performance of quails given chromium organic in ration

    Directory of Open Access Journals (Sweden)

    Deden Sudrajat

    2014-12-01

    Full Text Available Egg production of quails depends on quality of ration. Nutrient manipulation by chromiun inclusion in ration is a possible way to improve production. It is known that chromium mineral in form of GTF in blood has a role not only in enhancement of glucose entering cells through improvement of insulin activity but also in metabolism of lipid and synthesis of protein and elimination of heat stress to improve egg production. This study aimed at assessing egg production of quails fed ration containing chromium-yeast. Sixty-four quails aged 40 days were used. A completely randomized design with 4 treatments and 4 replication was applied in this study. Treatment consisted of commercial ration + Cr 0 ppm (R1, commercial ration + Cr 0.5 ppm (R2, commercial ration + Cr 1 ppm (R3, and commercial ration+ Cr 1.5 ppm (R4. Measurements were taken on feed intake, egg weight, egg mass production, hen day, feed conversion rate, egg index, and egg shell thickness. Results showed that A ration containing organic chromium as much as 1,5 ppm did not affect feed intake, egg production, egg weight, and eggshell thickness, however lowered feed conversion rate by up to 32.25% from that of control. Supplementation of 0,5 ppm chromium in the ration lowered the value of eggs index in the fourth week.

  18. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  19. DANGER OF HEXAVALENT CHROMIUM AND STRATEGY FOR THE REMEDITATION

    Directory of Open Access Journals (Sweden)

    Aniruddha Roy

    2013-02-01

    Full Text Available Some metals as micronutrients have a major role in the life and growth process of plants and animals. However, certain forms of some metals may also act as toxic material even in relatively small quantities. Chromium is such a metal, whose concentration above a certain limit may cause a serious problem to the health of living organisms. Chromium (Cr may occur in several chemical forms in organic and inorganic systems. In biological systems only Cr (III and Cr (VI are significant. Among these two states, trivalent chromium (Cr-III is considered as an essential component, while hexavalent Chromium (Cr-VI in biological system has been detected as responsible for so many diseases, even some specific forms of cancer. This paper intends to present the adverse effect of Cr(VI on environment as well as on human beings and also try to find a way out to dissolve the problem by a newly developed efficient and cost effective technique.

  20. Effects of chromium picolinate supplementation in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Niladê Rosinski Rocha

    2014-10-01

    Full Text Available The effects of chromium picolinate in Type 2 diabetic patients are investigated.  Seventeen Type 2 diabetic patients were randomly divided into two groups. The experimental group received fiber-rich hypocaloric diet and chromium picolinate whereas the control group received fiber-rich hypocaloric diet and placebo. The chromium picolinate was offered twice a day at the dose of 100 μg. Anthropometric data such as blood pressure, fasting glycemia and glycated hemoglobin (HbA1c were measured and these parameters were evaluated again after 90 days. No difference was reported in rates of body weight, waist, hip, body mass index, blood pressure and fasting glycemia (Control vs. Experimental groups after treatment. However, a decrease (p = 0.0405 of HbA1c occurred in the experimental group when the pre- and post-treatment rates were compared. HbA1c data showed that chromium picolinate improved the glycemic control in Type 2 diabetes.

  1. Chromium(VI) transport and fate in unsaturated zone and aquifer: 3D Sandbox results.

    Science.gov (United States)

    Zhao, Xingmin; Sobecky, Patricia A; Zhao, Lanpo; Crawford, Patrice; Li, Mingtang

    2016-04-01

    The simulation of Cr(VI) behavior in an unsaturated zone and aquifer, using a 3D experimental set-up were performed to illustrate the distribution, transport and transformation of Cr(VI), and further to reveal the potential harm of Cr(VI) after entering the groundwater. The result indicated that chromium(VI) was transported in the vertical direction, meanwhile, was transported in the horizontal direction under the influence of groundwater flow. The direction and distance away from the pollution source zone had great effect on the chromium(VI) concentration. At the sampling sites near the pollution source zone, there was a sudden increase of chromium(VI) concentration. The concentration of chromium(III) concentration in some random effluent samples was not detected. Chromium had not only transported but also had fraction and specie transformation in the unsaturated zone and aquifer. The relative concentration of residue fraction chromium was decreased with time. The content of Fe-Mn oxide fraction chromium was increased with time. The relative content of exchangeable and carbonate-bound fraction chromium was lower and the content variations were not obvious. Chromium(VI) (91-98%) was first reduced to chromium(III) rapidly. The oxidation reaction occurred later and the relative content of chromium(VI) was increased again. The presence of manganese oxides under favorable soil conditions can promote the reoxidation of Cr(III) to Cr(VI).

  2. Structure and morphology studies of chromium film at elevated temperature in hypersonic environment

    Indian Academy of Sciences (India)

    G M Hegde; V Kulkarni; M Nagaboopathy; K P J Reddy

    2012-06-01

    This paper presents the after shock heated structural and morphological studies of chromium film coated on hypersonic test model as a passive drag reduction element. The structural changes and the composition of phases of chromium due to shock heating (2850 K) are characterized using X-ray diffraction studies. Surface morphology changes of chromium coating have been studied using scanning electron microscopy (SEM) before and after shock heating. Significant amount of chromium ablation and sublimation from the model surface is noticed from SEM micrographs. Traces of randomly oriented chromium oxides formed along the coated surface confirm surface reaction of chromium with oxygen present behind the shock. Large traces of amorphous chromium oxide phases are also observed.

  3. Determination of Chromium in Beef Heifers Nellore Supplemented with Chelate Chrome

    Directory of Open Access Journals (Sweden)

    P.S.A Moreira

    2013-11-01

    Full Text Available The objective of this work was to determine the amount of total chromium in beef heifers supplemented with chelated chromium in the rearing and finishing. We used 80 Nelore heifers at 12 months of age with mineral supplementation associated or not to chelate chromium, with average live weight of 220 kg. Were selected 36 heifer seach experimental group for analysis of meat samples. For the determination of chromium residue in the muscle tissue of the sample was1.5 g digested in a mixture of 5 ml 65% nitric acid and 1 ml of 30% hydrogen peroxide at 120° C for 12 hours block microdigestor. The total content of chromium was determined by spectrophotometry of atomic absorption flame. The experimental design was completely randomized and the results were analyzed by analysis of variance (ANOVA at 5% significance. It is concluded that the inclusion of chromium in the chelate heifers mineral supplementation increased the chromium content in the meat

  4. Contribution of photoelectron spectrometry and infrared spectrometry to the study of various oxidised forms of chromium

    International Nuclear Information System (INIS)

    Securate knowledge of internal surface of primary coolant circuits of PWR is required for an estimation of dissolution of used materials and for estimation of decontamination efficiency. The binding energies of various electron levels of chromium were determined by photoelectron spectrometry (ESCA), both for the metal and for certain compounds. Because of the intensities of the signals obtained the 2 p 3/2 level alone can be used for analytical purposes. Owing to a possible interference between this level due to hexavalent chromium and a satellite peak caused by trivalent chromium the method is not able to show up small amounts of chromium VI in chromium III. Simultaneous detection of the hexavalent and trivalent forms was achieved by infrared spectrometry. The problem of revealing traces of chromium VI in surface layers of trivalent chromium oxide has thus been solved

  5. Laboratory scale studies on removal of chromium from industrial wastes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr 3+) and hexavalent (Cr 6+) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr3+ is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases.In phase I, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase II showed that lower dose of sodium meta bisulfate was sufficient to obtain 100 % efficiency in reducing Cr6+ to Cr3+, and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents.Phase III studies indicated the best pH was 8.5 for precipitation of Cr 3+ to chromium hydroxide by using lime. An efficiency of 100 % was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase IV actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100 % efficiency at a settling time of 30 minutes and confirmed that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries.

  6. Arsenic and chromium topsoil levels and cancer mortality in Spain.

    Science.gov (United States)

    Núñez, Olivier; Fernández-Navarro, Pablo; Martín-Méndez, Iván; Bel-Lan, Alejandro; Locutura, Juan F; López-Abente, Gonzalo

    2016-09-01

    Spatio-temporal cancer mortality studies in Spain have revealed patterns for some tumours which display a distribution that is similar across the sexes and persists over time. Such characteristics would be common to tumours that shared risk factors, including the chemical soil composition. The objective of the present study is to assess the association between levels of chromium and arsenic in soil and the cancer mortality. This is an ecological cancer mortality study at municipal level, covering 861,440 cancer deaths in 7917 Spanish mainland towns from 1999 to 2008. Chromium and arsenic topsoil levels (partial extraction) were determined by ICP-MS at 13,317 sampling points. To estimate the effect of these concentrations on mortality, we fitted Besag, York and Mollié models, which included, as explanatory variables, each town's chromium and arsenic soil levels, estimated by kriging. In addition, we also fitted geostatistical-spatial models including sample locations and town centroids (non-aligned data), using the integrated nested Laplace approximation (INLA) and stochastic partial differential equations (SPDE). All results were adjusted for socio-demographic variables and proximity to industrial emissions. The results showed a statistical association in men and women alike, between arsenic soil levels and mortality due to cancers of the stomach, pancreas, lung and brain and non-Hodgkin's lymphomas (NHL). Among men, an association was observed with cancers of the prostate, buccal cavity and pharynx, oesophagus, colorectal and kidney. Chromium topsoil levels were associated with mortality among women alone, in cancers of the upper gastrointestinal tract, breast and NHL. Our results suggest that chronic exposure arising from low levels of arsenic and chromium in topsoil could be a potential risk factor for developing cancer.

  7. Sorption of chromium in soils of the Cerrado Goias, Brazil

    Directory of Open Access Journals (Sweden)

    Welershon José de Castro

    2010-08-01

    Full Text Available Land application of tannery sludge, which usually contain high levels of chromium, and considerable amounts of organic matter, macronutrients and micronutrients may contribute to the improvement of soil fertility and plant nutrition, and constitutes a form of disposal residue in the environment. The objective of this work was to determine the sorption isotherms of metal chromium (Cr+3 in a Ultisol, Oxisol Typic Acrustox, Quartzipsamment and Kandic Oxisol, identify soil classes that are prone to chromium mobility, and characterize the potential of agricultural soils of Goiás that are subject to groundwater contamination by the potentially toxic metal. For the establishment of sorption isotherms, solutions were prepared at 1:10 in volume. Air dried samples of 5.0 cm3 of each class of soil were placed in triplicates in beakers of 250.0 cm3. A solution containing 50.0 cm3 of the potentially toxic metal was added to solution. The solutions were prepared in CaCl2.(2H2O (0.01 mol.L-1 as electrolyte support and employing the basic chromium sulphate as a source of metal. Adjustments were made to the polynomial regression between the concentrations of potentially toxic levels of metal contaminants in the solution depending on the concentration of metal in the filtered solution after equilibrium. The Quartzipsamment showed lower retention compared to other classes of soils. Therefore it is more vulnerable to groundwater contamination if industrial wastes containing trivalent chromium are used as fertilizer.

  8. Electrical properties of amorphous and epitaxial Si-rich silicide films composed of W-atom-encapsulated Si clusters

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Naoya, E-mail: okada-naoya@aist.go.jp [Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Uchida, Noriyuki [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Kanayama, Toshihiko [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2015-03-07

    We investigated the electrical properties and derived the energy band structures of amorphous Si-rich W silicide (a-WSi{sub n}) films and approximately 1-nm-thick crystalline WSi{sub n} epitaxial films (e-WSi{sub n}) on Si (100) substrates with composition n = 8–10, both composed of Si{sub n} clusters each of which encapsulates a W atom (WSi{sub n} clusters). The effect of annealing in the temperature range of 300–500 °C was also investigated. The Hall measurements at room temperature revealed that a-WSi{sub n} is a nearly intrinsic semiconductor, whereas e-WSi{sub n} is an n-type semiconductor with electron mobility of ∼8 cm{sup 2}/V s and high sheet electron density of ∼7 × 10{sup 12 }cm{sup −2}. According to the temperature dependence of the electrical properties, a-WSi{sub n} has a mobility gap of ∼0.1 eV and mid gap states in the region of 10{sup 19 }cm{sup −3} eV{sup −1} in an optical gap of ∼0.6 eV with considerable band tail states; e-WSi{sub n} has a donor level of ∼0.1 eV with sheet density in the region of 10{sup 12 }cm{sup −2} in a band gap of ∼0.3 eV. These semiconducting band structures are primarily attributed to the open band-gap properties of the constituting WSi{sub n} cluster. In a-WSi{sub n}, the random network of the clusters generates the band tail states, and the formation of Si dangling bonds results in the generation of mid gap states; in e-WSi{sub n}, the original cluster structure is highly distorted to accommodate the Si lattice, resulting in the formation of intrinsic defects responsible for the donor level.

  9. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D., E-mail: dhb@ansto.gov.au; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld

  10. Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA

    Energy Technology Data Exchange (ETDEWEB)

    Izbicki, John A. [U.S. Geological Survey, 4165 Spruance Road, Suite O, San Diego, CA 92123 (United States)], E-mail: jaizbick@usgs.gov; Ball, James W. [U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado, CO 80303 (United States); Bullen, Thomas D. [U.S. Geological Survey, 345 Middlefield Road, Building 15, McKelvey Building, MS-420, Menlo Park, CA 94025 (United States); Sutley, Stephen J. [Denver Federal Center, P.O. Box 25046, MS-964, Denver, CO 80225-0046 (United States)

    2008-05-15

    Chromium(VI) concentrations in excess of the California Maximum Contaminant Level (MCL) of 50 {mu}g/L occur naturally in alkaline, oxic ground-water in alluvial aquifers in the western Mojave Desert, southern California. The highest concentrations were measured in aquifers eroded from mafic rock, but Cr(VI) as high as 27 {mu}g/L was measured in aquifers eroded from granitic rock. Chromium(VI) concentrations did not exceed 5 {mu}g/L at pH < 7.5 regardless of geology. {delta}{sup 53}Cr values in native ground-water ranged from 0.7 to 5.1 per mille and values were fractionated relative to the average {delta}{sup 53}Cr composition of 0 per mille in the earth's crust. Positive {delta}{sup 53}Cr values of 1.2 and 2.3 per mille were measured in ground-water recharge areas having low Cr concentrations, consistent with the addition of Cr(VI) that was fractionated on mineral surfaces prior to entering solution. {delta}{sup 53}Cr values, although variable, did not consistently increase or decrease with increasing Cr concentrations as ground-water flowed down gradient through more oxic portions of the aquifer. However, increasing {delta}{sup 53}Cr values were observed as dissolved O{sub 2} concentrations decreased, and Cr(VI) was reduced to Cr(III), and subsequently removed from solution. As a result, the highest {delta}{sup 53}Cr values were measured in water from deep wells, and wells in discharge areas near dry lakes at the downgradient end of long flow paths through alluvial aquifers. {delta}{sup 53}Cr values at an industrial site overlying mafic alluvium having high natural background Cr(VI) concentrations ranged from -0.1 to 3.2 per mille . Near zero {delta}{sup 53}Cr values at the site were the result of anthropogenic Cr. However, mixing with native ground-water and fractionation of Cr within the plume increased {delta}{sup 53}Cr values at the site. Although {delta}{sup 53}Cr was not necessarily diagnostic of anthropogenic Cr, it was possible to identify the extent

  11. Raman spectroscopy of supported chromium oxide catalysts : determination of chromium-oxygen bond distances and bond orders

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    An empirical correlation is described for relating Raman stretching frequencies of chromium—oxygen (Cr—O) bonds to their bond lengths in chromium oxide reference compounds. An exponential fit of crystallographically determined Cr—O bond lengths to Cr—O Raman symmetric stretching frequencies (800–130

  12. Reduction of hexavalent chromium by ferrous iron: A process of chromium isotope fractionation and its relevance to natural environments

    DEFF Research Database (Denmark)

    Døssing, Lasse Nørbye; Dideriksen, Knud; Stipp, Susan Louise Svane;

    2011-01-01

    Stable chromium (Cr) isotopes can be used as a tracer for changing redox conditions in modern marine systems and in the geological record. We have investigated isotope fractionation during reduction of Cr(VI)aq by Fe(II)aq. Reduction of Cr(VI)aq by Fe(II)aq in batch experiments leads to significant...

  13. Activated carbon adsorption for chromium treatment and recovery; Adsorbimento di cromo su carboni attivi a scopo di recupero e decontaminazione

    Energy Technology Data Exchange (ETDEWEB)

    Baroncelli, F.; Castelli, S.; De Francesco, M. [ENEA, Casaccia (Italy). Area Energia e Innovazione

    1994-05-01

    The capability of actived carbon systems to adsorb chromium from wastewater of galvanic industry is valued. Batch tests and column tests are carried out with good results. An activated carbon with acidic surface oxides can adsorb both chromate and chromium (III); chromate is reduced in situ and then adsorbed as chromium (III). Chromium can be desorbed from carbon by an acid or basic treatment obtaining respectively chromium (III) or chromate solutions. Carbon can be regenerated many times without evident signs of deterioration.

  14. The effect of dietary supplementation with different forms and levels of organic chromium on broilers meat quality

    OpenAIRE

    Keleman Svetlana P.; Kevrešan Slavko E.; Supić Boriša; Perić Lidija; Strugar Vladimir

    2006-01-01

    This paper deals with the effect of supplementation with the three different preparations of organic chromium complexes: the ethylenediaminetetraacetic acid complex with chromium; chromium (III)­lysine and chromium picolinate, on broilers meat quality. In every preparation supplementing broilers diet chromium was present at the three different levels: 0.2; 0.4 and 0.6 mg/kg. The meat quality was monitored with respect to the following parameters: the contents of fat, protein, minerals and wat...

  15. Effect of recasting on the thickness of metal-ceramic interface of nickel-chromium and cobalt-chromium alloys

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2008-01-01

    Full Text Available Introduction/Aim. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the thickness of their metal-ceramic interface in making fixed partial dentures. Metal-ceramic interface determines their functional integrity and prevents damages on ceramics during mastication. Investigation of metal-ceramic samples is supposed to show if base metal alloys for metalceramics are successfully recycled without any risk of reduction of metal-ceramic interface thickness. Methods. The research was performed as an experimental study. Per six metal-ceramic samples of nickel-chromium alloy (Wiron99 and cobalt-chromium alloy (Wirobond C were made each. Alloy residues were recycled through twelve casting generations with the addition of 50% of new alloy on the occasion of every recasting. Analysis Energy Dispersive X-ray (EDX (Oxford Instruments and Scanning Electon Microscop (SEM analysis (JEOL were used to determine thickness of metal-ceramic interface together with PC Software for quantification of visual information's (KVI POPOVAC. Results. Results of this research introduced significant differences between thickness of metal-ceramic interface in every examined recycle generation. Recasting had negative effect on thickness of metal-ceramic interface of the examined alloys. This research showed almost linear reduction of elastic modulus up to the 12th generation of recycling. Conclusion. Recasting of nickel-chromium and cobaltchromium alloys is not recommended because of reduced thickness of metal-ceramic interface of these alloys. Instead of recycling, the alloy residues should be returned to the manufacturers.

  16. Bioadsorption and bioaccumulation of chromium trivalent in Cr(III)-tolerant microalgae: a mechanisms for chromium resistance.

    Science.gov (United States)

    Pereira, M; Bartolomé, M C; Sánchez-Fortún, S

    2013-10-01

    Anthropogenic activity constantly releases heavy metals into the environment. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. While hexavalent chromium uptake in plant cells has been reported that an active process by carrying essential anions, the cation Cr(III) appears to be taken up inactively. Dictyosphaerium chlorelloides (Dc1M), an unicellular green alga is a well-studied cell biological model organism. The present study was carried out to investigate the toxic effect of chromium exposures on wild-type Cr(III)-sensitive (Dc1M(wt)) and Cr(III)-tolerant (Dc1M(Cr(III)R30)) strains of these green algae, and to determine the potential mechanism of chromium resistance. Using cell growth as endpoint to determine Cr(III)-sensitivity, the IC₅₀(₇₂) values obtained show significant differences of sensitivity between wild type and Cr(III)-tolerant cells. Scanning electron microscopy (SEM) showed significant morphological differences between both strains, such as decrease in cell size or reducing the coefficient of form; and transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization and cell wall thickening in the Cr(III)-tolerant strain with respect to the wild-type strain. Energy dispersive X-ray analysis (SEM/XEDS) revealed that Cr(III)-tolerant D. chlorelloides cells are able to accumulate considerable amounts of chromium distributed in cell wall (bioadsorption) as well as in cytoplasm, vacuoles, and chloroplast (bio-accumulation). Morphological changes of Cr(III)-tolerant D. chlorelloides cells and the presence of these electron-dense bodies in their cell structures can be understood as a Cr(III) detoxification mechanism. PMID:23810518

  17. Chromium(VI) but not chromium(III) species decrease mitoxantrone affinity to DNA.

    Science.gov (United States)

    Nowicka, Anna M; Stojek, Zbigniew; Hepel, Maria

    2013-01-31

    Binding of mitoxantrone (MXT) to double-stranded DNA has been investigated as a model drug-DNA binding system to evaluate the effects of various forms of chromium on the binding properties. We have found that Cr(III), which binds strongly to DNA, does not affect the MXT affinity to DNA. In contrast, Cr(VI), in the form of chromate ions CrO(4)(2-), decreases the MXT affinity to DNA despite electrostatic repulsions with phosphate-deoxyribose chains of DNA. The MXT-DNA binding constant was found to decrease from (1.96 ± 0.005) × 10(5) to (0.77 ± 0.018) × 10(5) M(-1) for Cr(VI) concentration changing from 0 to 30 μM. The influence of Cr(VI) on MXT-DNA binding has been attributed to the oxidation of guanine residue, thus interrupting the intercalation of MXT into the DNA double helix at the preferential CpG intercalation site. This supposition is corroborated by the observed increase in the MXT binding site size from 2 bp (base pairs) to 4-6 bp in the presence of Cr(VI). The measurements of the MXT-DNA binding constant and the MXT binding site size on a DNA molecule have been carried out using spectroscopic, voltammetric, and nanogravimetric techniques, providing useful information on the mechanism of the interactions.

  18. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys

    Institute of Scientific and Technical Information of China (English)

    Bo Chen; Gang Xia; Xin-Ming Cao; Jue Wang; Bi-Yao Xu; Pu Huang; Yue Chen; Qing-Wu Jiang

    2013-01-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of 〈 1 month of the restoration duration, among which higher Ni excretions were found in those with either a higher number of teeth replaced by dental alloys or a higher index of metal crown not covered with the porcelain. Urinary levels of Cr were significantly higher in the three patient groups of 〈1, 1 to 〈3 and 3 to 〈6 months, especially in those with a higher metal crown exposure index. Linear curve estimations showed better relationships between urinary Ni and Cr in patients within 6-month groups. Our data suggested significant increased excretions of urinary Ni and Cr after dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  19. A computational investigation of boron-doped chromium and chromium clusters by density functional theory

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The geometries,stabilities and electronic properties of Crn and CrnB(n=2-9) clusters have been systematically investigated by density functional theory.The results suggest that the lowest energy structures for CrnB clusters can be obtained by substituting one Cr atom in Crn+1 clusters with B atom.The geometries of CrnB clusters are similar to that of Crn+1 clusters except for local structural distortion.The second-order difference and fragmentation energy show Cr4,Cr6,Cr8,Cr3B,Cr5B and Cr8B cluster are the most stable among these studied clusters.The impurity B increases the stabilities of chromium cluster.When B is doped on the Crn clusters,cluster geometry does dominate positive role in enhancing their stability.The doped B atom does not change the coupling way of the Cr site in Crn clusters,but breaks the symmetry and the Cr atoms are no longer equivalent.The doped B atom increases the total magnetic moments of Crn in most cases.

  20. A metastable chromium carbide powder obtained by carburization of a metastable chromium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Loubiere, S. [Univ. Paul-Sabatier, Toulouse (France). Lab. de Chimie des Materiaux Inorganique; Laurent, C. [Univ. Paul-Sabatier, Toulouse (France). Lab. de Chimie des Materiaux Inorganique; Bonino, J.P. [Univ. Paul-Sabatier, Toulouse (France). Lab. de Chimie des Materiaux Inorganique; Rousset, A. [Univ. Paul-Sabatier, Toulouse (France). Lab. de Chimie des Materiaux Inorganique

    1996-10-15

    A metastable Cr{sub 3}C{sub 2-x} carbide powder is prepared by carburization of a metastable chromium oxide in H{sub 2}-CH{sub 4} atmosphere under the appropriate conditions (temperature, dwell time and CH{sub 4} content). A very high specific surface area (greater than 210 m{sup 2} g{sup -1}) of the starting oxide is necessary to avoid the formation of the sole stable Cr{sub 3}C{sub 2} phase. The transformation from the stable Cr{sub 3}C{sub 2} to the metastable Cr{sub 3}C{sub 2-x} is observed for the first time. The driving force could be an epitaxial effect between Cr{sub 3}C{sub 2-x} and the surrounding graphite layer. This is consistent with the observation that the formation of graphite layers by CH{sub 4} cracking is easier in the Cr{sub 3}C{sub 2-x}-containing powders. (orig.)

  1. A Study of the High Temperature on Chromium Carbide

    International Nuclear Information System (INIS)

    The oxidation rates of chromium carbide have been measured at 900 to 1300 .deg. C and oxygen pressures between 2x10-2 8 x 10-2 Pa using thermogravimetric analysis method. Oxidation behavior of chromium carbide appeared to change very sensitively with both temperature and oxygen pressure. In case with the oxygen pressure lower than 8 x 10-2 Pa, the weight gain in the specimen due to the formation of chromium oxide occurred linearly with time at the every temperature studied, but when the oxygen pressure was increased up to 8 x 10-2Pa, the weight gain behavior versus time showed entirely different tendency. That is, in the temperature range of 900 .deg. C to 1000 .deg. C weight gain occurred, however in the range of 1000 .deg. C to 1300 .deg. C weight lost was observed. The reason for the observed linear kinetics could be inferred as follows. As the oxidation of carbide proceeded carbon monoxide would build up at the interface of the chromium oxide and carbide. If the equilibrium pressure of carbon monoxide at the interface exceeds the gas pressure at the outer specimen surface, the oxide scale formed on it might be cracked exposing new carbide sites on which oxidation could occur successively. Through a thermodynamic consideration it was judged that the above deduction was reasonable. On the other hand, the weight lost mentioned above was explained that it could occur mainly due to the further oxidation of Cr2O3 to the volatile CrO3 at the corresponding experimental conditions. Weight loss phenomenon mentioned before which was observed in the oxidation of chromium carbide was also clearified by X-ray diffraction method and SEM. That is, at 900 .deg. C stable oxide of chromium, (Cr2O3) was identified easily on the specimen surface. However, at 1300 .deg. C, only a few amount of this stable oxide could be found on to specimen surface, indicating Cr2O3 had been evaporated to CrO3 gas

  2. Finished leather waste chromium acid extraction and anaerobic biodegradation of the products.

    Science.gov (United States)

    Ferreira, Maria J; Almeida, Manuel F; Pinho, Sílvia C; Santos, Isabel C

    2010-06-01

    Due to the amounts of chromium in the leachate resulting from leather leaching tests, chromium sulfate tanned leather wastes are very often considered hazardous wastes. To overcome this problem, one option could be recovering the chromium and, consequently, lowering its content in the leather scrap. With this objective, chromium leather scrap was leached with sulfuric acid solutions at low temperature also aiming at maximizing chromium removal with minimum attack of the leather matrix. The effects of leather scrap dimension, sulfuric acid and sodium sulfate concentration in the solutions, as well as extraction time and temperature on chromium recovery were studied, and, additionally, organic matrix degradation was evaluated. The best conditions found for chromium recovery were leather scrap conditioning using 25mL of concentrated H(2)SO(4)/L solution at 293 or 313K during 3 or 6days. Under such conditions, 30-60+/-5% of chromium was recovered and as low as 3-6+/-1% of the leather total organic carbon (TOC) was dissolved. Using such treatment, the leather scrap area and volume are reduced and the residue is a more brittle material showing enhanced anaerobic biodegradability. Although good recovery results were achieved, due to the fact that the amount of chromium in eluate exceeded the threshold value this waste was still hazardous. Thus, it needs to be methodically washed in order to remove all the chromium de-linked from collagen.

  3. Investigation of the surface composition of electrodeposited black chromium by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Survilienė, S., E-mail: sveta@ktl.mii.lt; Češūnienė, A.; Jasulaitienė, V.; Jurevičiūtė, I.

    2015-01-01

    Highlights: • Black chromium electrodeposited from a Cr(III) bath is composed of oxide, hydroxide and metallic chromium. • Metallic phase is absent in black chromium electrodeposited from a Cr(III) + ZnO bath. • The near-surface layer is rich in hydroxides, whereas oxides of both metals predominate in the depth of the coatings. - Abstract: The paper reviews black chromium electrodeposited from a trivalent chromium bath containing ZnO as a second main component. The chemical compositions of the top layers of the black chromium coatings were studied by the X-ray photoelectron spectroscopy method. The surface of black chromium was found to be almost entirely covered with organic substances. To gain information on the state of each element in the deposit bulk, the layer-by-layer etching of the black chromium surface with argon gas was used. Analysis of XPS spectra has shown that the top layers of black chromium without zinc are composed of various Cr(III) components, organic substances and metallic Cr, whereas metallic Cr is almost absent in black chromium containing some amount of Zn(II) compounds. The ratios of metal/oxide phases were found to be 10/27 and 2/28 for black chromium without and with zinc, respectively. It has been determined that owing to the presence of ZnO in the Cr(III) bath, the percentage of metallic chromium is substantially reduced in black chromium which is quite important for good solar selective characteristics of the coating. The results confirm some of earlier observations and provide new information on the composition of the near-surface layers.

  4. Investigation of the surface composition of electrodeposited black chromium by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Highlights: • Black chromium electrodeposited from a Cr(III) bath is composed of oxide, hydroxide and metallic chromium. • Metallic phase is absent in black chromium electrodeposited from a Cr(III) + ZnO bath. • The near-surface layer is rich in hydroxides, whereas oxides of both metals predominate in the depth of the coatings. - Abstract: The paper reviews black chromium electrodeposited from a trivalent chromium bath containing ZnO as a second main component. The chemical compositions of the top layers of the black chromium coatings were studied by the X-ray photoelectron spectroscopy method. The surface of black chromium was found to be almost entirely covered with organic substances. To gain information on the state of each element in the deposit bulk, the layer-by-layer etching of the black chromium surface with argon gas was used. Analysis of XPS spectra has shown that the top layers of black chromium without zinc are composed of various Cr(III) components, organic substances and metallic Cr, whereas metallic Cr is almost absent in black chromium containing some amount of Zn(II) compounds. The ratios of metal/oxide phases were found to be 10/27 and 2/28 for black chromium without and with zinc, respectively. It has been determined that owing to the presence of ZnO in the Cr(III) bath, the percentage of metallic chromium is substantially reduced in black chromium which is quite important for good solar selective characteristics of the coating. The results confirm some of earlier observations and provide new information on the composition of the near-surface layers

  5. Internal Friction In The PFN Ceramics With Chromium Dopand

    OpenAIRE

    Zachariasz R.; Bochenek D.; Bruś B.

    2015-01-01

    An aim of this work was to determine an influence of an admixture, the chromium (for x from 0.01 to 0.06), on the mechanical properties of the PFN ceramics. The ceramics with chemical composition Pb(Fe0.5−xCrxNb0.5)O3 was synthesized in two steps from simple oxides PbO, Fe2O3, Nb2O5, Cr2O3. The first stage was based on obtaining the FeNbO4 from the Fe2O3 and Nb2O5 simple oxides. At this stage an admixture in a form the Cr2O3 chromium oxide was added to the solution. In the second stage the Pb...

  6. Hexavalent chromium effects on carbon assimilation in Selenastrum capricornutum

    International Nuclear Information System (INIS)

    One of the difficulties in assessing toxic substances such as metals and complex organic compounds is the duration of the necessary tests. It would be beneficial to have available standardized tests of short duration that would allow a reduction in necessary manpower and overall cost as well as provide a method to evaluate chemicals that are readily degraded (i.e., within a few hours). One method available is the short-term photosynthesis response of algae to a given toxicant. Photosynthesis is not only a critical physiological response but is also one for which standard, accurate methods are available. The 14C method has been used to study the effects of chromium on algae. More recently, it was proposed that the 14C method be used to measure short-term photosynthetic response as a standard algal bioassay. The present study was designed to further evaluate, via photosynthetic response, the potential effects of hexavalent chromium on Selenastrum capricornutum

  7. A mathematical model for the iron/chromium redox battery

    Science.gov (United States)

    Fedkiw, P. S.; Watts, R. W.

    1984-01-01

    A mathematical model has been developed to describe the isothermal operation of a single anode-separator-cathode unit cell in a redox-flow battery and has been applied to the NASA iron/chromium system. The model, based on porous electrode theory, incorporates redox kinetics, mass transfer, and ohmic effects as well as the parasitic hydrogen reaction which occurs in the chromium electrode. A numerical parameter study was carried out to predict cell performance to aid in the rational design, scale-up, and operation of the flow battery. The calculations demonstrate: (1) an optimum electrode thickness and electrolyte flow rate exist; (2) the amount of hydrogen evolved and, hence, cycle faradaic efficiency, can be affected by cell geometry, flow rate, and charging procedure; (3) countercurrent flow results in enhanced cell performance over cocurrent flow; and (4) elevated temperature operation enhances cell performance.

  8. Study of the phase composition of silicide coatings, based on layered Nb-Mo structures, obtained by vacuum-arc deposition

    Science.gov (United States)

    Lozovan, A. A.; Betsofen, S. Ya; Lenkovets, A. S.

    2016-07-01

    A multilayer composite ∼1000 μm in thickness, formed by niobium and molybdenum layers (number of layers n = 230), is obtained by vacuum-arc deposition with subsequent siliconization of the surface layers at a temperature of 1200 °C. Layer-by-layer phase analysis is performed by X-ray diffraction and scanning electron microscopy. It is found that in the surface layers ∼130 μm in thickness, single-phase silicides (Nb x Mo1- x )Si2 are formed with the hexagonal C40 structure (Strukturbericht designations). Alternating layers of solid solutions based on niobium and molybdenum with a body-centered cubic (BCC) lattice are observed within the composite. The formation of solid solutions caused by heating of the coating leads to convergence of the values of the linear thermal expansion coefficient and Young's modulus at the interface between the layers.

  9. Thermite reduction of Ta{sub 2}O{sub 5}/SiO{sub 2} powder mixtures for combustion synthesis of Ta-based silicides

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, C.L., E-mail: clyeh@fcu.edu.tw [Department of Aerospace and Systems Engineering, Feng Chia University, 100 Wenhwa Rd., Seatwen, Taichung 40724, Taiwan (China); Huang, Y.S. [Department of Aerospace and Systems Engineering, Feng Chia University, 100 Wenhwa Rd., Seatwen, Taichung 40724, Taiwan (China)

    2011-05-26

    Highlights: > Solid state combustion involving thermite reduction of Ta{sub 2}O{sub 5} and SiO{sub 2} was firstly performed for the formation of tantalum silicides, including TaSi{sub 2}, Ta{sub 5}Si{sub 3}, Ta{sub 2}Si, and Ta{sub 3}Si. > Two thermite mixtures, Al-Ta{sub 2}O{sub 5} and Al-Ta{sub 2}O{sub 5}-SiO{sub 2}, were adopted and their influence on the combustion characteristics and phase constituents of the final products was studied. > A high degree of phase evolution forming Al{sub 2}O{sub 3}-added TaSi{sub 2} and Ta{sub 5}Si{sub 3} was achieved by adopting the thermite mixture of Al-Ta{sub 2}O{sub 5} in the Ta-Si combustion system. > Variations of the combustion temperature and flame-front velocity with sample stoichiometry were presented. - Abstract: Tantalum silicides (including TaSi{sub 2}, Ta{sub 5}Si{sub 3}, Ta{sub 2}Si, and Ta{sub 3}Si) were prepared by solid state combustion of the Ta-Si reaction system involving thermite reduction of Ta{sub 2}O{sub 5} and SiO{sub 2}. The thermite-based combustion is self-sustaining and contributes to the in situ formation of tantalum silicides along with Al{sub 2}O{sub 3}. The combustion front temperature and propagation velocity increased with the extent of thermite reactions for the systems adopting the thermite mixture of Al-Ta{sub 2}O{sub 5}, while both of them decreased for those using Al, Ta{sub 2}O{sub 5}, and SiO{sub 2} as the thermite reagents. Among four silicide compounds, a better degree of phase evolution was observed for TaSi{sub 2} and Ta{sub 5}Si{sub 3} when compared to that of Ta{sub 2}Si and Ta{sub 3}Si. The XRD analysis indicated the presence of a small amount of Ta{sub 5}Si{sub 3} in the TaSi{sub 2}-Al{sub 2}O{sub 3} composite. On the formation of Ta{sub 5}Si{sub 3} with Al{sub 2}O{sub 3}, the minor phase was Ta{sub 2}Si for the Al-Ta{sub 2}O{sub 5}-containing system. In addition to Ta{sub 2}Si, an intermediate phase TaSi{sub 2} was detected when the Al-Ta{sub 2}O{sub 5}-SiO{sub 2} mixture was

  10. BASIC program to compute uranium density and void volume fraction in laboratory-scale uranium silicide aluminum dispersion plate-type fuel

    International Nuclear Information System (INIS)

    BASIC program simple and easy to operate has been developed to compute uranium density and void volume fraction for laboratory-scale uranium silicide aluminum dispersion plate-type fuel, so called miniplate. An example of the result of calculation is given in order to demonstrate how the calculated void fraction correlates with the microstructural distribution of the void in a miniplate prepared in our laboratory. The program is also able to constitute data base on important parameters for miniplates from experimentally-determined values of density, weight of each constituent and dimensions of miniplates. Utility programs pertinent to the development of the BASIC program are also given which run in the popular MS-DOS environment. All the source lists are attached and brief description for each program is made. (author)

  11. Safety evaluation report related to the evaluation of low-enriched uranium silicide-aluminum dispersion fuel for use in non-power reactors

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Low-enriched uranium silicide-aluminum dispersion plate-type fuels have been extensively researched and developed under the international program, Reduced Enrichment in Research and Test Reactors. The international effort was led by Argonne National Laboratory (ANL) in the United States. This evaluation is based primarily on reports issued by ANL that discuss and summarize the developmental tests and experiments, including postirradiation examinations, of both miniature and full-sized plates of prototypical fuel compositions. This evaluation concludes that plate-type fuels suitable and acceptable for use in research and test reactors can be fabricated with U/sub 3/Si/sub 2/-Al dispersion compacts with uranium densities up to 4.8 g/cm/sup 3/. 4 refs., 1 fig.

  12. Low energy magnetic fluctuations in the TSDW phase of chromium

    Energy Technology Data Exchange (ETDEWEB)

    Azuah, R.T. [Hahn-Meitner Inst., Berlin (Germany); Kulda, J. [Inst. Laue Langevin, Grenoble (France); Pynn, R. [Los Alamos National Lab., NM (United States); Stirling, W.G. [Univ. of Liverpool (United Kingdom). Dept. of Physics

    1997-12-01

    A polarized neutron study of chromium carried out in a field of 6T applied to a single-domain single-Q crystal indicates that the inelastic intensity observed close to the transverse spin density wave (TSDW) satellite positions (1 {+-} {delta}, 0,0) does not behave as expected for spin-wave scattering. In particular, the signal corresponds to magnetization fluctuations of almost equal magnitude both parallel and perpendicular to the ordered moments in the TSDW phase.

  13. Study of Chromium Oxide Activities in EAF Slags

    Science.gov (United States)

    Yan, Baijun; Li, Fan; Wang, Hui; Sichen, Du

    2016-02-01

    The activity coefficients of chromium in Cu-Cr melts were determined by equilibrating liquid copper with solid Cr2O3 in CO-CO2 atmosphere. The temperature dependence of the activity coefficients of chromium in Cu-Cr melts could be expressed as lg γ_{Cr}(s)^{0} = { 3 2 5 9( ± 1 8 6} )/T - 0. 5 9( { ± 0. 1} ). Based on the above results, the activities of bivalent and trivalent chromium oxide in some slags at 1873 K (1600 °C) were measured. The slags were equilibrated with Cu-Cr melts under two oxygen partial pressures ( {p_{O}_{ 2} }} } = 6.9 × 10-4 and 1.8 × 10-6 Pa, respectively). The morphology of the quenched slags and the solubility of chromium oxide in the melts were investigated by EPMA, SEM, and XRD. Under both oxygen partial pressures, the slags were saturated by the solid solution MgAl2- x Cr x O4- δ . At the low oxygen partial pressure (1.8 × 10-6 Pa), the content of Cr in the liquid phase varied from 0.4 to 1.6 mass pct with the total Cr content in the slags increasing from 1.3 to 10.8 mass pct. At the high oxygen partial pressure (6.9 × 10-4 Pa), the content of Cr in the liquid phase decreased to the level of 0.2 to 0.6 mass pct. Both the activities of CrO and Cr2O3 in slag were found to increase approximately linearly with the increase of the total Cr content in slag. While the oxygen partial pressure had minor effect on the activity of Cr2O3 in the slag, it had significant effect on the activity of CrO.

  14. Fretting damage of high carbon chromium bearing steel

    OpenAIRE

    Kuno, Masato

    1988-01-01

    This thesis consists of four sections, the fretting wear properties of high carbon chromium bearing steel; the effect of debris during fretting wear; an introduction of a new fretting wear test apparatus used in this study; and the effects of fretting damage parameters on rolling bearings. The tests were operated under unlubricated conditions. Using a crossed cylinder contact arrangement, the tests were carried out with the normal load of 3N, slip amplitude of 50µm, and frequency of 30Hz ...

  15. Chromium propionate enhances adipogenic differentiation of bovine intramuscular adipocytes

    OpenAIRE

    Rebecca eTokach; Flavio eRibeiro; Ki Yong eChung; Whitney eRounds; Johnson, Bradley J.

    2015-01-01

    In vitro experiments were performed to determine the effects of increasing concentrations of chromium propionate on mRNA and protein abundance of different enzymes and receptors. Intramuscular and subcutaneous preadipocytes and bovine satellite cells were isolated from the longissimus muscle to determine the effect of treatment on glucose transporter type 4 (GLUT4) and peroxisome proliferator-activated receptor γ mRNA and GLUT4 protein abundance. Preadipocyte cultures were treated with diffe...

  16. Chromium Propionate Enhances Adipogenic Differentiation of Bovine Intramuscular Adipocytes

    OpenAIRE

    Tokach, Rebecca J.; Ribeiro, Flavio R. B.; Chung, Ki Yong; Rounds, Whitney; Johnson, Bradley J.

    2015-01-01

    In vitro experiments were performed to determine the effects of increasing concentrations of chromium propionate (CrPro) on mRNA and protein abundance of different enzymes and receptors. Intramuscular (IM) and subcutaneous (SC) preadipocytes and bovine satellite cells were isolated from the longissimus muscle to determine the effect of treatment on glucose transporter type 4 (GLUT4) and peroxisome proliferator-activated receptor γ mRNA and GLUT4 protein abundance. Preadipocyte cultures were t...

  17. Recovery of Chromium from Waste Taning Liquors by Magnesium Oxide

    Directory of Open Access Journals (Sweden)

    Mahmood M. Barbooti

    2010-10-01

    Full Text Available This is a case study of AL-Za’afaraniya tanning factory, 15 km to the south of Baghdad, to spot light on simple chemical treatment of the discharged water to solve the environmental problems associated with its chromium content management. The treatment was extended to the recovery and reuse of chromium. Chromium was precipitated by the addition of magnesium oxide which also aid as a neutralizer for the acidic effluent. The laboratory treatment was carried out to find the optimum conditions. The wastewater samples were taken from the outline area of the tannery. Box-Wilson method was adopted to find useful relationships between the operating variables (temperature, mixing period and magnesium oxide dose and the pH and chromium content of effluent. The experimental data were successfully fitted to second order polynomial mathematical models for the treatment. The most favorable operating conditions for the treatment were: temperature, 30 ºC; mixing period, 50 min and magnesium oxide concentration, 3000 mg/L. On using the optimum conditions a mathematical model simulating the operation for the treatment was obtained as follows:Cr = 6.0848 – 0.001839 X11 – 0.105334 X12 – 0.041038 X13pH = 10.29086 – 0.001223 X11 – 0.140043 X12 – 0.00953 X13Experimentally Cr concentration was decreased to about (0.5 mg/L in wastewater after raising the pH value to (7.35 by adding magnesium oxide.

  18. Soils contaminated with hexavalent chromium : sorption, migration and remediation

    OpenAIRE

    Fonseca, Bruna

    2011-01-01

    The interest in environmental soil science has been growing in the last years due to the continuous degradation of this major natural resource. In this work, a representative sample of a typical loamy sand soil was collected in Porto, Portugal, in a zone of intensive agriculture activity. This soil was used for a series of tests concerning the adsorption, transport and fate of hexavalent chromium. The adsorption equilibrium and sorption kinetics were evaluated through the fitting of several m...

  19. Bioleaching of hexavalent chromium from soils using acidithiobacillus thiooxidans

    OpenAIRE

    Fonseca, Bruna; Rodrigues, Joana; Queiroz, A.M.; Tavares, Teresa

    2010-01-01

    The continuous and growing degradation of the environment, due to several anthropogenic activities, is a main concern of the scientific community. Consequently, the development of low cost techniques to clean air, water and soils are under intense investigation. In this study, the focused problem is the soil contamination by hexavalent chromium, which is known for its several industrial applications - production of stainless steel, textile dyes, wood preservation and leather tanning - its hig...

  20. Biosorption of Hexavalent Chromium from Aqueous Medium with Opuntia Biomass

    OpenAIRE

    José A. Fernández-López; Angosto, José M.; María D. Avilés

    2014-01-01

    The biosorption of hexavalent chromium from aqueous solutions by Opuntia cladodes and ectodermis from cactus fruits was investigated. Both types of biomass are considered low-cost, natural, and ecofriendly biosorbents. Batch experiments were carried out to determine Cr(VI) biosorption capacity and the efficiency of the biosorption process under different pH, initial Cr(VI) concentration, and sorbent dosage. The biosorption of Cr(VI) by Opuntia biomass was highly pH dependent, favoring higher ...

  1. Innovative soil treatment process design for removal of trivalent chromium

    Energy Technology Data Exchange (ETDEWEB)

    Stallings, J.H. [Air Force, Wright-Patterson AFB, OH (United States). Aeronautical Systems Center; Durkin, M.E. [Hughes Missile Systems Co., Tucson, AZ (United States)

    1997-12-31

    A soil treatment process has been developed as part of a US Air Force environmental compliance project at Air Force Plant 44, Tucson, AZ for treating soil contaminated with heavy metals including trivalent chromium, cadmium, copper, and nickel. The process was designed to treat a total of 133,000 tons of soil in a 400 ton per day facility. Features of the soil treatment process include physical treatment and separation, and a chemical treatment process of the remaining fines using a hypochlorite leach allowing chromium to be solubilized at a high pH. After treating, fines are washed in three stage countercurrent thickeners and chromium hydroxide cake is recovered as a final produce from the leach solution. Treatability studies were conducted, laboratory and a pilot plant was built. Process design criteria and flow sheet, material balances, as well as preliminary equipment selection and sizing for the facility have been completed. Facility was designed for the removal of Cr at a concentration of an average of 1230 mg/kg from the soil and meeting a risk based clean-closure limit of 400 mg/kg of Cr. Capital costs for the 400 tpd plant were estimated at 9.6 million with an operating and maintenance cost of $54 per ton As process is most economic for large quantities of soil with relatively low concentrations of contaminants, it was not used in final closure when the estimated volume of contaminated soil removed dropped to 65,000 tons and concentration of chromium increased up to 4000 mg/kg. However, the process could have application in situations where economics and location warrant.

  2. Fabrication and characterisation of uranium, molybdenum, chromium, niobium and aluminium

    International Nuclear Information System (INIS)

    This paper describes fabrication of binary uranium alloys by melting and casting. The following alloys with nominal composition were obtained by melting in the vacuum furnace: uranium with niobium contents from 0.5%- 4.0% and uranium with molybdenum contents from 0.4% - 1.2%. Uranium alloys with chromium content from 0.4% - 1.2% and uranium alloy with 0.12% of aluminium were obtained by vacuum induction furnace (electric arc melting)

  3. Intragranular Chromium Nitride Precipitates in Duplex and Superduplex Stainless Steel

    OpenAIRE

    Iversen, Torunn Hjulstad

    2012-01-01

    Intragranular chromium nitrides is a phenomenon with detrimental effects on material properties in superduplex stainless steels which have not received much attention. Precipitation of nitrides occurs when the ferritic phase becomes supersaturated with nitrogen and there is insufficient time during cooling for diffusion of nitrogen into austenite. Heat treatment was carried out at between 1060◦C and 1160◦C to study the materials susceptibility to nitride precipitation with...

  4. Evidence of weak ferromagnetism in chromium(III) oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Vazquez, Carlos E-mail: qfmatcvv@usc.es; Banobre-Lopez, Manuel; Lopez-Quintela, M.A.; Hueso, L.E.; Rivas, J

    2004-05-01

    The low temperature (4chromium(III) oxide particles have been studied. A clear evidence of the presence of weak ferromagnetism is observed below 250 K. The magnetisation curves as a function of the applied field show coercive fields due to the canted antiferromagnetism of the particles. Around 55 K a maximum is observed in the zero-field-cooled curves; this maximum can be assumed as a blocking temperature, similarly to ultrafine ferromagnetic particles.

  5. Chronic Maternal Dietary Chromium Restriction Modulates Visceral Adiposity

    OpenAIRE

    Padmavathi, Inagadapa J.N.; Rao, K Rajender; Venu, Lagishetty; Ganeshan, Manisha; Kumar, K. Anand; Rao, Ch. Narasima; Harishankar, Nemani; Ismail, Ayesha; Raghunath, Manchala

    2009-01-01

    OBJECTIVE We demonstrated previously that chronic maternal micronutrient restriction altered the body composition in rat offspring and may predispose offspring to adult-onset diseases. Chromium (Cr) regulates glucose and fat metabolism. The objective of this study is to determine the long-term effects of maternal Cr restriction on adipose tissue development and function in a rat model. RESEARCH DESIGN AND METHODS Female weanling WNIN rats received, ad libitum, a control diet or the same with ...

  6. Chromium and manganese interactions in streptozocin-diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.L.; Jarrett, C.R.; Adeleye, B.O.; Stoecker, B.J. (Oklahoma State Univ., Stillwater (United States))

    1991-03-15

    Weanling male rats were fed casein-based diets low in chromium and manganese ({minus}Cr-MN) or supplemented with 1 ppm chromium as chromium chloride (+Cr) and/or 55 ppm manganese as manganous carbonate in a factorial design. After 7 weeks on the experimental diets, half of the rats in each group were injected on 2 consecutive days with 55 mg/kg streptozocin (STZ) in citrate buffer pH 4. Four weeks after injection, serum glucose in the diabetic group supplement with both Cr and Mn was not different from non-diabetic animals; however, diabetic animals in {minus}Cr groups or in the +Cr-Mn group had significantly elevated serum glucose. Serum insulin was reduced by STZ. A significant interaction between Mn and diabetes affected serum cortisol concentrations. More new tissue was formed on a polyvinyl sponge inserted under the skin in +Mn animals. In this study, the STZ animals were more sensitive than the control animals to dietary Cr and Mn concentrations.

  7. Magnesium, zinc, and chromium nutriture and physical activity.

    Science.gov (United States)

    Lukaski, H C

    2000-08-01

    Magnesium, zinc, and chromium are mineral elements required in modest amounts to maintain health and optimal physiologic function. For physically active persons, adequate amounts of these micronutrients are needed in the diet to ensure the capacity for increased energy expenditure and work performance. Most physically active individuals consume diets that provide amounts of magnesium and zinc sufficient to meet population standards. Women tend to consume less of these minerals than is recommended, in part because they eat less food than men. Inadequate intakes of magnesium and zinc have been reported for participants in activities requiring restriction of body weight. Dietary chromium is difficult to estimate because of a lack of appropriate reference databases. Acute, intense activity results in short-term increases in both urine and sweat losses of minerals that apparently diminish during recovery in the days after exercise. Supplemental magnesium and zinc apparently improve strength and muscle metabolism. However, evidence is lacking as to whether these observations relate to impaired nutritional status or a pharmacologic effect. Chromium supplementation of young men and women does not promote muscle accretion, fat loss, or gains in strength. Physically active individuals with concerns about meeting guidelines for nutrient intake should be counseled to select and consume foods with high nutrient densities rather than to rely on nutritional supplements. The indiscriminate use of mineral supplements can adversely affect physiologic function and impair health.

  8. Structure and growth of oxide on iron-chromium alloys

    International Nuclear Information System (INIS)

    Several oxides form during the initial stages of oxidation of iron-chromium alloys at 400 to 6000C in CO2-1%CO gas. The nature of the oxidation product depends upon crystallographic orientation and composition of the substrate, and can be explained by considering the maximum solubility of chromium in different oxide phases together with interfacial and strain energy factors. Kinetics of oxidation together with micrographic observations indicate that, as oxidation proceeds spinel oxide M3O4 nucleates at sites on the substrate surface associated with asperities. The spinel nuclei grow laterally and vertically until they coalesce and the scale subsequently thickens according to a parabolic rate law. The duplex structure of scales is interpreted in terms of an outward diffusion of cations together with simultaneous growth of an inner layer in the space created by this outward movement. Scale porosity provides a route for gas-phase transport of oxidant to support the growth of the inner layer. Regularly spaced lamellar voids which may form in the inner layer are believed to be associated with a cyclic vacancy condensation process. Enrichment of the inner layer in chromium is explained by analysis of the possible diffusion path networks in close-packed oxides. Some comments are made concerning possible practical applications of these data. (author)

  9. Study on anaerobic treatment of wastewater containing hexavalent chromium.

    Science.gov (United States)

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-06-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and COD(Cr) of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.

  10. Study on anaerobic treatment of wastewater containing hexavalent chromium*

    Science.gov (United States)

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-01-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms. PMID:15909347

  11. Study on anaerobic treatment of wastewater containing hexavalent chromium

    Institute of Scientific and Technical Information of China (English)

    XU Yan-bin; XIAO Hua-hua; SUN Shui-yu

    2005-01-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr ofwastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L,the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.

  12. Response of soil catalase activity to chromium contamination

    Institute of Scientific and Technical Information of China (English)

    Zofia St(e)pniewska; Agnieszka Woli(n)ska; Joanna Ziomek

    2009-01-01

    The impact of chromium (III) and (VI) forms on soil catalase activity is presented.The Orthic Podzol, Haplic Phaeozem and Mollic Gleysol from different depths were used in the experiment.The soil samples were amended with solution of Cr(III) using CrCl3, and with Cr(VI) using K2Cr2O7 in the concentration range from 0 to 20 mg/kg, whereas the samples without the addition of chromium served as control.Catalase activity was assayed by one of the commonly used spectrophotometric methods.As it is demonstrated in the experiment, both Cr(III) and Cr(VI) forms have ability to reduce soil catalase activity.A chromium dose of 20 mg/kg caused the inhibition of catalase activity and the corresponding contamination levels ranged from 75% to 92% for Cr(III) and 68% to 76% for Cr(VI), with relation to the control.Catalase activity reached maximum in the soil material from surface layers (0-25 cm), typically characterized by the highest content of organic matter creating favorable conditions for microorganisms.

  13. Fabrication of chitosan-magnetite nanocomposite strip for chromium removal

    Science.gov (United States)

    Sureshkumar, Vaishnavi; Kiruba Daniel, S. C. G.; Ruckmani, K.; Sivakumar, M.

    2016-02-01

    Environmental pollution caused by heavy metals is a serious threat. In the present work, removal of chromium was carried out using chitosan-magnetite nanocomposite strip. Magnetite nanoparticles (Fe3O4) were synthesized using chemical co-precipitation method at 80 °C. The nanoparticles were characterized using UV-visible spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction spectrometer, atomic force microscope, dynamic light scattering and vibrating sample magnetometer, which confirm the size, shape, crystalline nature and magnetic behaviour of nanoparticles. Atomic force microscope revealed that the particle size was 15-30 nm and spherical in shape. The magnetite nanoparticles were mixed with chitosan solution to form hybrid nanocomposite. Chitosan strip was casted with and without nanoparticle. The affinity of hybrid nanocomposite for chromium was studied using K2Cr2O7 (potassium dichromate) solution as the heavy metal solution containing Cr(VI) ions. Adsorption tests were carried out using chitosan strip and hybrid nanocomposite strip at different time intervals. Amount of chromium adsorbed by chitosan strip and chitosan-magnetite nanocomposite strip from aqueous solution was evaluated using UV-visible spectroscopy. The results confirm that the heavy metal removal efficiency of chitosan-magnetite nanocomposite strip is 92.33 %, which is higher when compared to chitosan strip, which is 29.39 %.

  14. Selective Chromium(VI) Ligands Identified Using Combinatorial Peptoid Libraries

    Science.gov (United States)

    Knight, Abigail S.; Zhou, Effie Y.; Pelton, Jeffrey G.; Francis, Matthew B.

    2013-01-01

    Hexavalent chromium (Cr(VI)) is a world-wide water contaminant that is currently without cost-effective and efficient remediation strategies. This is in part due to a lack of ligands that can bind it amid an excess of innocuous ions in aqueous solution. We present herein the design and application of a peptoid-based library of ligand candidates for toxic metal ions. A selective screening process was used to identify members of the library that can bind to Cr(VI) species at neutral pH and in the presence of a large excess of spectator ions. Eleven sequences were identified, and their affinities were compared using titrations monitored with UV-Vis spectroscopy. To identify the interactions involved in coordination and specificity, we evaluated the effects of sequence substitutions and backbone variation in the highest affinity structure. Additional characterization of the complex formed between this sequence and Cr(VI) was performed using NMR spectroscopy. To evaluate the ability of the developed sequences to remediate contaminated solutions, the structures were synthesized on a solid-phase resin and incubated with environmental water samples that contained simulated levels of chromium contamination. The synthetic structures demonstrated the ability to reduce the amount of toxic chromium to levels within the range of the EPA contamination guidelines. In addition to providing some of the first selective ligands for Cr(VI), these studies highlight the promise of peptoid sequences as easily-prepared components of environmental remediation materials. PMID:24195610

  15. Eolian transport of geogenic hexavalent chromium to ground water

    Science.gov (United States)

    Wood, W.W.; Clark, D.; Imes, J.L.; Councell, T.B.

    2010-01-01

    A conceptual model of eolian transport is proposed to address the widely distributed, high concentrations of hexavalent chromium (Cr+6) observed in ground water in the Emirate of Abu Dhabi, United Arab Emirates. Concentrations (30 to more than 1000 μg/L Cr+6) extend over thousands of square kilometers of ground water systems. It is hypothesized that the Cr is derived from weathering of chromium-rich pyroxenes and olivines present in ophiolite sequence of the adjacent Oman (Hajar) Mountains. Cr+3 in the minerals is oxidized to Cr+6 by reduction of manganese and is subsequently sorbed on iron and manganese oxide coatings of particles. When the surfaces of these particles are abraded in this arid environment, they release fine, micrometer-sized, coated particles that are easily transported over large distances by wind and subsequently deposited on the surface. During ground water recharge events, the readily soluble Cr+6 is mobilized by rain water and transported by advective flow into the underlying aquifer. Chromium analyses of ground water, rain, dust, and surface (soil) deposits are consistent with this model, as are electron probe analyses of clasts derived from the eroding Oman ophiolite sequence. Ground water recharge flux is proposed to exercise some control over Cr+6 concentration in the aquifer.

  16. Bioremediation of hexavalent chromium by a cyanobacterial mat

    Science.gov (United States)

    Shukla, Dhara; Vankar, Padma S.; Srivastava, Sarvesh Kumar

    2012-12-01

    The study comprises the use of cyanobacterial mat (collected from tannery effluent site) to remove hexavalent chromium. This mat was consortium of cyanobacteria/blue-green algae such as Chlorella sp., Phormidium sp. and Oscillatoria sp. The adsorption experiments were carried out in batches using chromium concentrations 2-10, 15-30 and 300 ppm at pH 5.5-6.2. The adsorption started within 15 min; however, 96 % reduction in metal concentration was observed within 210 min. The adsorption phenomenon was confirmed by Fourier transform-infrared spectroscopy and energy dispersive X-ray analysis. This biosorption fitted Freundlich adsorption isotherm very well. It was observed that the best adsorption was at 4 ppm, and at 25 ppm in the chosen concentration ranges. Scanning electron micrograph showed the physiology of mat, indicating sites for metal uptake. The main focus was collection of the cyanobacterial mat from local environments and its chromium removal potential at pH 5.5-6.2.

  17. Fabrication of Carbon Nanotube - Chromium Carbide Composite Through Laser Sintering

    Science.gov (United States)

    Liu, Ze; Gao, Yibo; Liang, Fei; Wu, Benxin; Gou, Jihua; Detrois, Martin; Tin, Sammy; Yin, Ming; Nash, Philip; Tang, Xiaoduan; Wang, Xinwei

    2016-03-01

    Ceramics often have high hardness and strength, and good wear and corrosion resistance, and hence have many important applications, which, however, are often limited by their poor fracture toughness. Carbon nanotubes (CNTs) may enhance ceramic fracture toughness, but hot pressing (which is one typical approach of fabricating CNT-ceramic composites) is difficult to apply for applications that require localized heat input, such as fabricating composites as surface coatings. Laser beam may realize localized material sintering with little thermal effect on the surrounding regions. However, for the typical ceramics for hard coating applications (as listed in Ref.[1]), previous work on laser sintering of CNT-ceramic composites with mechanical property characterizations has been very limited. In this paper, research work has been reported on the fabrication and characterization of CNT-ceramic composites through laser sintering of mixtures of CNTs and chromium carbide powders. Under the studied conditions, it has been found that laser-sintered composites have a much higher hardness than that for plasma-sprayed composites reported in the literature. It has also been found that the composites obtained by laser sintering of CNTs and chromium carbide powder mixtures have a fracture toughness that is ~23 % higher than the material obtained by laser sintering of chromium carbide powders without CNTs.

  18. The chromium site in doped glassy lithium tetraborate

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, T.D. [Department of Engineering Physics, Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433 (United States); Echeverria, E.; Beniwal, Sumit [Department of Physics and Astronomy, 855 North 16th Street, Theodore Jorgensen Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0299 (United States); Adamiv, V.T.; Burak, Ya. V.; Enders, Axel [Institute of Physical Optics, 23 Dragomanov Street, Lviv 79005 (Ukraine); Petrosky, J.C.; McClory, J.W. [Department of Engineering Physics, Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433 (United States); Dowben, P.A., E-mail: pdowben1@unl.edu [Department of Physics and Astronomy, 855 North 16th Street, Theodore Jorgensen Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0299 (United States)

    2014-10-15

    Using extended X-ray absorption fine structure (EXAFS) spectroscopy, we find that Cr substitutes primarily in the Li{sup +} site as a dopant in lithium tetraborate Li{sub 2}B{sub 4}O{sub 7} glasses, in this case 98.4Li{sub 2}B{sub 4}O{sub 7}–1.6Cr{sub 2}O{sub 3} or nominally Li{sub 1.98}Cr{sub 0.025}B{sub 4}O{sub 7}. This strong preference for a single site is nonetheless accompanied by site distortions and some site disorder, helping explain the optical properties of chromium doped Li{sub 2}B{sub 4}O{sub 7} glasses. The resulting O coordination shell has a contraction of the Cr–O bond lengths as compared to the Li–O bond lengths. There is also an increase in the O coordination number. - Graphical abstract: Lithium tetraborate: labeled are the B1 and B2 sites, where the latter correspond to BO{sub 3} and BO{sub 4} structures respectively. - Highlights: • Adoption of the Li + site for chromium dopants in lithium tetraborate identified. • Increased oxygen coordination for glass over the crystalline lithium tetraborate. • Distortions about the doping chromium characterized. • Local bond order is preserved in spite of the glassy nature.

  19. Preparation of Silica Modified with 2-Mercaptoimidazole and its SorptionProperties of Chromium(III

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2009-01-01

    Full Text Available Modified silica gel was prepared to remove the heavy metal of chromium(III from water sample. Silica gel was used as supporting material and the 2-mercaptoimidazole was immobilized onto surface silica so that the silica would have selective properties to adsorb the heavy metal chromium(III through the formation of coordination compound between the 2-mercaptoimidazole and chromium(III. The characterization of modified silica gel was carried out by analyzing the Fourier Transform Infrared Spectrum of this material in order to ensure the immobilization of 2-mercaptoimidazole onto the surface. The effect of pH solution, initial concentration of chromium(III, and interaction time were investigated in batch mode to find the adsorption properties of chromium(III onto modified silica. The condition optimum of these parameters was applied to determine the removal percentage of chromium(III in water sample using the modified silica gel

  20. Biological monitoring of occupational exposure to different chromium compounds at various valency states

    Energy Technology Data Exchange (ETDEWEB)

    Mutti, A.; Pedroni, C.; Arfini, G.; Franchini, I.; Minoia, C.; Micoli, G.; Baldi, C.

    1984-01-01

    Chromium concentrations in the air were measured in seven different workroom environments, where exposure to water soluble hexavalent or trivalent compounds was expected. Urinary excretion of chromium was measured before and after the same arbitrarily chosen working day. End-of-shift urinary chromium and its increase above pre-exposure levels were closely related to the concentration of water soluble chromium (VI) in the air. The values corresponding to 50 micrograms m-3 in the air, which is the current threshold limit value in most countries, were 29.8 and 12.2 micrograms g-1 of creatinine, respectively. Urinary chromium in workers exposed to water insoluble chromates or to water soluble chromic (III) sulphate was definitely higher than that observed in subjects not occupationally exposed to chromium compounds, but it cannot be recommended as short-term exposure test for evaluation of the job-related hazard.

  1. Determination of Chromium(III) Picolinate Using High Performance Liquid Chromatography-Ultraviolet Spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Il; Woo, Dong Jin; Kang, Dae Kyung [EASY BIO System, Inc, Chonan (Korea, Republic of); Lee, Myung Hee [Pollin, Inc, Seoul (Korea, Republic of); Woo, Gun Jo [Korea Food and Drug Administration, Seoul (Korea, Republic of); Cha, Ki Won [Inha University, Incheon (Korea, Republic of)

    2003-10-15

    Cr-(pic){sub 3} has been widely used as food additives, drugs, and feed additives. Accordingly, its determination method should be established. In the present paper, we have studied the determination method of chromium(III) picolinate accurately using ESI-MS on-lined with HPLC. Chromium(III) picolinate in feed products was determined successfully. Chromium(III) is very well known as an essential mineral. It is suggested as a cofactor in the maintenance of both normal lipid and carbohydrate metabolism by assisting the action of insulin on a cell membrane. According to the National Research Council, the daily recommended intake of chromium(III) is 50-200 μg. Several organic chromium(III) complexes have been reported to have significantly higher absorption and tissue incorporation activity than inorganic salts such as chromium(III) chloride.

  2. Chemical composition and structural transformations of amorphous chromium coatings electrodeposited from Cr(III) electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Safonova, Olga V. [Swiss-Norwegian Beamlines at European Synchrotron Radiation Facility, 38043 Grenoble Cedex (France); Vykhodtseva, Ludmila N. [Department of Electrochemistry, Faculty of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Polyakov, Nikolai A. [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991 Moscow (Russian Federation); Swarbrick, Janine C. [European Synchrotron Radiation Facility, 38043 Grenoble Cedex (France); Sikora, Marcin [European Synchrotron Radiation Facility, 38043 Grenoble Cedex (France); Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Av. Mickiewicza 30, 30-059 Krakow (Poland); Glatzel, Pieter [European Synchrotron Radiation Facility, 38043 Grenoble Cedex (France); Safonov, Viktor A., E-mail: safon@elch.chem.msu.r [Department of Electrochemistry, Faculty of Chemistry, Moscow State University, 119991 Moscow (Russian Federation)

    2010-12-15

    Amorphous chromium coatings were electrodeposited from Cr(III)-based solutions containing organic (HCOONa) or phosphorus-containing (NaH{sub 2}PO{sub 2}) additives. Their structure was studied by a combination of X-ray diffraction (XRD), valence-to-core X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS) at the Cr K-edge. Metalloid atoms (C or P) incorporated in electroplates structure are chemically bonded to chromium (i.e. are located in the first coordination shell). Upon annealing at elevated temperatures in vacuum, these amorphous coatings crystallize into a mixture of phases containing metallic chromium and chromium carbides or chromium phosphides. Quantitative analysis of valence-to-core XES data demonstrates that the average local structure of chromium in the amorphous coatings does not change significantly during crystallization.

  3. Silicides for VLSI applications

    CERN Document Server

    Murarka, Shyam P

    1983-01-01

    Most of the subject matter of this book has previously been available only in the form of research papers and review articles. I have not attempted to refer to all the published papers. The reader may find it advantageous to refer to the references listed.

  4. Chromium related degradation of solid oxide fuel cells; Chrom-bezogene Degradation von Festoxid-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Anita

    2011-05-04

    Solid Oxide Fuel Cells (SOFCs) offer a high potential for application as an auxiliary power unit (APU) for heavy goods vehicles as well as combined heat and power (CHP) systems. SOFCs are especially attractive due to their high efficiencies and the use of different fuel types. However, optimization in terms of long term stability and costs are still necessary. This work characterized the degradation of SOFCs with lanthanum strontium manganite (LSM) cathodes under chromium influence. Galvanostatic cell tests were carried out at 800 C with operation times from 250 - 3000 h and variation of the chromium source and current density. The current densities of j = 0 (A)/(cm{sup 2}), j = 0,3 (A)/(cm{sup 2}) and j = 0,5 (A)/(cm{sup 2}) were applied. The high temperature ferritic alloy Crofer22APU was used as a chromium source. Variation of the chromium source was realized by coating the Crofer22APU insert with the chromium retention layer Mn{sub 3}O{sub 4} and the cathode contact layer LCC10. Cell degradation was analyzed with regard to cell voltage, current density and area specific resistance (ASR). Microstructural alterations of the cathode as well as chromium content and distribution across the cell were investigated after completion of the cell tests. For cells with a chromium source present and operation with a nonzero current density, the course of cell degradation was divided into three phases: a run-in, weak linear degradation and strong linear degradation. A decrease of the chromium release rate by means of different coatings stretched the course of degradation along the timescale. Strong degradation, which is characterized by a significant increase in ASR as well as a decrease of current density at the operating point, was only observed when a chromium source in the setup was comb ined with operation of the cell with a non-zero current density. Operation of the cell with a chromium source but no current density caused a degradation of current density at the

  5. USE OF TWO DIGESTION METHODS IN THE EVALUATION OF CHROMIUM CONTENT IN CATTLE'S MEAT SUPPLEMENTED WITH CHROMIUM CHELATES

    Directory of Open Access Journals (Sweden)

    R. L. T. de Andrade

    2015-06-01

    Full Text Available The present study aimed to analyze the chromium content in beef using two digestion methods. There were used samples from 24 18-month-old male cattle, and twelve of them were supplemented and twelve were not supplemented with chromium chelate. These samples were evaluated by atomic absorption spectroscopy, previously submitted to digestion method using nitric acid (65% with hydrogen peroxide (35% and to digestion method, using solution of nitric perchloric acid in the proportion 3:1. Immediately after the slaughter, the carcasses were sent to sanitary maturation. After 24 hours, samples between 12th and 13th rib in the muscle Longissimus Thoracis were taken. For evaluation, it was used completely randomized design (Die and analysis of variance (ANOVA at 5% of significance level. The results didn't evidenced any significant difference (p>0,05 between the (cromo content, regardless the supplementation. The same happened with the digestion methods used.

  6. Characteristics of Aerosols Containing Chromium and Nickel From Some Thermal Spraying Operations

    OpenAIRE

    Bohgard, Mats; Welinder, Hans; Akselsson, Roland

    1983-01-01

    Characterization of aerosols, emitted from five methods of thermal spraying with materials containing chromium and nickel were carried out. The characterization procedure includes the determinations of the metal content, the particle size distribution, the oxidation state of chromium and a measure of the solubility of chromium. Three different kinds of samplers and the analytical methods PIXE (Particle Induced X-ray Emission analysis), ESCA (Electron Spectroscopy for Chemical Analysis), AAS (...

  7. Optimization and Modeling of Hexavalent Chromium Removal from Aqueous Solution Via Adsorption on Multiwalled Carbon Nanotubes

    OpenAIRE

    Mina Gholipour; Hassan Hashemipour Rafsanjani; Ataollah Soltani Goharrizi

    2011-01-01

    Hexavalent chromium and its derivatives are potential pollutant due to their mortal affects. Therefore, It is essential to remove these components from wastewaters before disposal. Adsorption can be effective and versatile method for removing of hexavalent chromium. In this article, removal of hexavalent chromium via adsorption on multiwalled carbon nanotubes was investigated as a function of adsorbent dosage, initial solution pH, initial Cr(VI) concentrations, contact time and temperature. T...

  8. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria

    OpenAIRE

    Munees Ahemad

    2015-01-01

    Chromium, specifically hexavalent chromium is one of the most toxic pollutants that are released into soils by various anthropogenic activities. It has numerous adverse effects not only on plant system but also on beneficial soil microorganisms which are the indicators of soil fertility and health. Recent emergence of phytoremediation as an environmental friendly and economical approach to decontaminate the chromium stressed soils has received wider attention. But major drawback of this proce...

  9. Removal of hexavalent chromium of contaminated soil by coupling electrokinetic remediation and permeable reactive biobarriers

    OpenAIRE

    Fonseca, Bruna; Pazos, M.; Tavares, M. T.; Sanromán, M. A.

    2012-01-01

    PURPOSE: In this study, a novel and ecological alternative have been developed to treat soils contaminated with hexavalent chromium coupling two well-known systems: electrokinetic remediation and permeable reactive biobarriers. The electric field promotes the electromigration of the hexavalent chromium oxyanions towards the anode. The biobarriers were placed before the anode electrode, in order to promote the reduction and retention of the chromium migrating in its direction. Thus, this t...

  10. Determination of Chromium Content in Human Skin by Means of Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Chromium eczema is a well-known phenomenon in dermatological practice. Different explanations may be given for it. According to one of these the specific texture of the skin of patients is assumed to allow more chromium to pass through the upper layers. As a result, the chromium accumulates faster in the dermis of patients so that a critical value is reached sooner. Another explanation might be that die sensitivity threshold for chromium in patients is lower than in normal persons and can more easily be exceeded. To distinguish between these possibilities and to obtain more information, an investigation was started in which the chromium content in the skin was compared for eczema patients and normal people. The sample weight (10 mg) and the chromium content (0.2 - 0.4 ppm) involved require a sensitive technique. Neutron activation analysis is well suited to this purpose. Under our operation conditions (irradiation time 10 days, neutron flux 1014n/cm2s) it is possible to determine quantities as low as 5 x 10-11 g of chromium. Preliminary experiments show relatively large variations in chromium content of comparable samples, even in skin samples taken from the back of a single person. It is further suggested by the results of these experiments that the chromium content in the skin of eczema patients is lower than in that of normal patients. The results of the analysis may be seriously affected by chromium contamination during sample preparation. Therefore chromium-free instruments must be used. To avoid chromium migration in the skin due to degeneration processes, samples must be taken from persons alive or shortly after their death. (author)

  11. Chromium Isotopes in Marine Carbonates - an Indicator for Climatic Change?

    Science.gov (United States)

    Frei, R.; Gaucher, C.

    2010-12-01

    Chromium (Cr) stable isotopes experience an increased interest as a tracer of Cr (VI) reduction in groundwater and thus showed their potential as a monitor of remediation of anthropogenic and natural contamination in water (Berna et al., 2009; Izbicki et al., 2008). Chromium stable isotopes in Fe-rich chemical sediments (BIFs and Fe-cherts) have recently also been used as a tracer for Earth's atmospheric oxygenation through time (Frei et al., 2009). We have applied the Cr isotope system to organic-rich carbonates from a late Ediacaran succession in Uruguay (Polanco Formation), from which we have previously analyzed BIFs with extremely fractionated (δ53Cr up to 5.0 ‰) Cr isotope signatures that are part of an underlying deep water clastic sediment (shale-dominated) sequence (Yerbal Formation) deposited in a glacio-marine environment (Gaucher et al.,2004). δ53Cr values of organic rich carbonates correlate with positive and negative carbon isotope excursions (δ13C PDB between -3 and +3 ‰) and with systematic changes in strontium isotope compositions, commonly interpreted as to reflect fluctuations in organic (photosynthetic algae) production related to fluctuations in atmospheric oxygen and weathering intensities, respectively. Slightly positively fractioned δ53Cr values (up to +0.25‰), paralleling positive (δ13C PDB and 87Sr/86Sr ratio excursions would thereby trace elevated atmospheric oxygen levels/pulses possibly related to glacier retreat/melting stages that caused bioproductivity to increase. While the causal link between these multiple isotopic tracers and the mechanisms of Cr stripping into carbonates has to be further investigated in detail, the first indications from this study point to a potentially promising use of stable Cr isotopes in organic-rich carbonates to monitor fluctuations of atmospheric oxygen, particularly over the Neoproterozoic and Phanerozoic ice age periods. E.C. Berna et al. (2010) Cr stable isotopes as indicators of Cr

  12. Progress in the chemistry of chromium(V) doping agents used in polarized target materials

    Energy Technology Data Exchange (ETDEWEB)

    Krumpolc, M. (Illinois Univ., Chicago, IL (USA)); Hill, D. (Argonne National Lab., IL (USA)); Struhrmann, H.B. (Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany, F.R.). Hamburger Synchrotronstrahlungslabor)

    1990-01-01

    We wish to report progress in two areas of the chromium (V)-based doping agents: Two commonly used chromium (V) complexes, I and II, have been synthesized in perdeuterated form (i.e., all hydrogens replaced by deuterium). They are sodium bis(2-ethyl-2-deuteroxy-butyrato)oxochromate(V)monodeuterate, IV, (acronym EDBA-Cr(V)), and sodium bis(2-deuteroxy-2-methylpropionato)oxochromate(V), III, (acronym DMPA-Cr(V)). A synthetic route leading to the preparation of stable, chromium(III)-free solutions of chromium(V) in diols (1,2-ethanediol/ethylene glycol/and 1,2-propanediol/propylene glycol/) has been outlined.

  13. Determination of total chromium in tanned leather samples used in car industry.

    Science.gov (United States)

    Zeiner, Michaela; Rezić, Iva; Ujević, Darko; Steffan, Ilse

    2011-03-01

    Despite the high competition of synthetic fibers leather is nowadays still widely used for many applications. In order to ensure a sufficient stability of the skin matrix against many factors, such as microbial degradation, heat and sweat, a tanning process is indispensable. Using chromium (III) for this purpose offers a multitude of advantages, thus this way of tanning is widely applied. During the use of chromium tanned leather as clothing material as well as for decoration/covering purposes, chromium is extracted from the leather and may then cause nocuous effects to human skin, e.g. allergic reactions. Thus the knowledge of the total chromium content of leather samples expected to come into prolonged touch with human skin is very important. In car industry leather is used as cover for seats, steering wheel and gearshift lever The chromium contents often chromium tanned leather samples used in car industry were determined. First all samples were dried at 65 degrees C overnight and then cut in small pieces using a ceramic knife, weighed and analyzed by inductively coupled plasma--optical emission spectrometry (ICP-OES) after acidic microwave assisted digestion. The total chromium amounts found were in the range from 19 mg/g up to 32 mg/g. The extraction yield of chromium from leather samples in sweat is approximately 2-7%. Thus especially during long journeys in summer chromium can be extracted in amounts which may cause nocuous effects for example on the palm of the hands or on the back.

  14. Hexavalent chromium and its effect on health: possible protective role of garlic (Allium sativum Linn).

    Science.gov (United States)

    Das, Kusal K; Dhundasi, Salim A; Das, Swastika N

    2011-01-01

    Hexavalent chromium or chromium (VI) is a powerful epithelial irritant and a confirmed human carcinogen. This heavy metal is toxic to many plants, aquatic animals, and bacteria. Chromium (VI) which consists of 10%-15% total chromium usage, is principally used for metal plating (H2Cr2O7), as dyes, paint pigments, and leather tanning, etc. Industrial production of chromium (II) and (III) compounds are also available but in small amounts as compared to chromium (VI). Chromium (VI) can act as an oxidant directly on the skin surface or it can be absorbed through the skin, especially if the skin surface is damaged. The prooxidative effects of chromium (VI) inhibit antioxidant enzymes and deplete intracellular glutathione in living systems and act as hematotoxic, immunotoxic, hepatotoxic, pulmonary toxic, and nephrotoxic agents. In this review, we particularly address the hexavalent chromium-induced generation of reactive oxygen species and increased lipid peroxidation in humans and animals, and the possible role of garlic (Allium sativum Linn) as a protective antioxidant. PMID:22865357

  15. Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent.

    Science.gov (United States)

    Srivastava, Shaili; Thakur, Indu Shekhar

    2012-01-01

    A bacterium isolated from soil and sediment ofa leather tanning mill's effluent was identified as Serratia sp. by the analysis of 16S rDNA. Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM) were used to assess morphological changes and confirm chromium biosorption in Serratia sp. both in a shake-flask culture containing chromium and in a tannery wastewater. The SEMEDX and the elemental analysis of the chromate-containing samples confirmed the binding of chromium with the bacterial biomass. The TEM exhibited chromium accumulation throughout the bacterial cell, with some granular deposits in the cell periphery and in the cytoplasm. X-ray diffraction analysis (XRD) was used to quantify the chromium and to determine the chemical nature of the metal-microbe interaction. The XRD data showed the crystalline character of the precipitates, which consisted of mainly calcium chromium oxide, chromium fluoride phosphate and related organo-Cr(III) complex crystals. The XRD data also revealed a strong involvement of cellular carboxyl and phosphate groups in chromium binding by the bacterial biomass. The results of the study indicated that a combined mechanism of ion-exchange, complexation, croprecipitation and immobilization was involved in the biosorption of chromium by bacterial cells in contaminated environments. PMID:22519094

  16. Chromium recovery from exhausted baths generated in plating processes and its reuse in the tanning industry.

    Science.gov (United States)

    Torras, Josep; Buj, Irene; Rovira, Miquel; de Pablo, Joan

    2012-03-30

    Chromium plating used for functional purposes provides an extremely hard, wear and corrosion resistant layer by means of electrolytic deposition. Typical layer thicknesses range between 2.5 and 500 μm. Chromium electroplating baths contain high concentrations of Cr(VI) with chromium trioxide (CrO(3)) as the chromium source. When because of technical or economic reasons a bath gets exhausted, a waste containing mainly chromium as dichromate as well as other heavy metals is generated. Chromium may then be purified for use in other industrial processes with different requirements. In this work, a sustainable system for using galvanic wastes as reagents in the leather tanning industry, thus reducing quantity of wastes to be treated, is presented. Metal cations present in the chromium exhausted bath were precipitated with NaOH. Then, the solution containing mainly soluble Cr(VI) was separated. By means of sodium sulphite in acidic conditions, Cr(VI) was reduced to Cr(III) as chromium (III) sulphate. From chromium (III) sulphate a basic Cr(III) sulphate may be obtained, which is one of most used compounds in the tanning industry. Cr(III) concentration in the final solution allows its reuse without concentration, but with a slight dilution. PMID:22326242

  17. Surface Reactions Limiting Chromium(VI) Generation from Naturally Derived Chromium(III) Minerals

    Science.gov (United States)

    Hausladen, D.; Fendorf, S. E.

    2015-12-01

    Chromium(III)-bearing minerals, commonly found in serpentinite and ultramaphic rocks, are ubiquitous in California soils and along convergent plate boundaries worldwide. Elevated concentrations of carcinogenic Cr(VI) have been measured in groundwater throughout the state, even in aquifers untouched by anthropogenic contamination. In most natural systems, manganese oxides are the only known, kinetically viable, oxidant of Cr(III). Numerous laboratory studies have demonstrated a finite capacity of Mn-oxides to generate Cr(VI) before surface alterations inhibit further Cr-oxidation. The extent to which these processes dictate the inhibition, and subsequent regeneration, of Mn-oxidation capacity within structured soils and sediments is not well understood. Here we use artificial soil aggregates made of Fe(III),Cr(III)-hydroxide-coated quartz sand and surrounded by aerated solute flow (pH 8, 30mM HEPES, 10mM HCO3-) to investigate C(VI) generation within ultramafic rock derived sediment and processes inhibiting manganese reactivity. We found that while Cr(VI)-production scaled with Cr-mineral solubility; Cr(VI) effluent concentrations from aggregates of both lower and higher solubility Cr(III)-minerals peaked very soon after reaction with birnessite (within 2 days and 4 days, respectively). Once Cr(VI) production plateaued (t=22 days) aggregate influent was acidified (pH 5, 30mM C2H3O2-). Despite increasing Cr(III) solubility at lower pH, aqueous Cr(VI) production further decreased. A secondary pulse of Cr(VI) generation was seen only after the surrounding solute returned to initial conditions (pH 8). As with the initial pulse, Cr(VI) concentration scaled with mineral solubility. Collectively, our results demonstrate the extent that natural fluctuations in groundwater composition, both as a result of irrigation or precipitation events, have the potential to both regenerate and inhibit Mn-oxide surfaces. These synthetic soil aggregates provide insight into how fluctuating

  18. AISI304不锈钢表面硅化物渗层的制备与抗氧化性能%Preparation of silicide layer on AISI 304 stainless steel and oxidation resistance

    Institute of Scientific and Technical Information of China (English)

    安亮; 贾建刚; 马勤; 李鹏

    2011-01-01

    采用ω(NaCl)∶ω(KCl)∶ω(NaF)=2∶2∶1(摩尔比,下同)的中性熔融盐作为载体,ω(Na2SiF6)∶ω(Si)=8∶2粉末做为渗硅剂,800℃下渗硅10 h可实现在AISI 304不锈钢表面形成厚度约500μm的富含Cr、Ni合金元素的Fe3Si型硅化物渗层。采用X射线衍射仪(XRD)分析了渗硅层的物相组成,用附带能量色散谱仪(EDS)附件的扫描电子显微镜(SEM)研究了渗层截面的形貌和成分。结果表明,渗层以Fe3Si相为主,Cr在渗层中含量低于其在304不锈钢基体中含量,而Fe和Ni在%Fe3Si type silicide layer containing Cr and Ni alloying elements with a thickness of about 500 μm on AISI 304 stainless steel were formed in molten salts at 800 ℃ for 10 h using molten mixture of ω(Na2SiF6)∶ωSi=8∶2 as siliconizing agent and the molten halogenide of alkali metals of ω(NaCl)∶ω(KCl)∶ω(NaF)=2∶2∶1 as siliconizing agent carrier.The phase of the silicide layer was analyzed by X-ray diffraction.The micro structure and composition of the silicide layer were studied by scanning electron microscope(SEM) with energy dispersive X-ray spectrometer(EDS)attachment.The results show that the silicide layer mainly consists of Fe3Si.The content of Cr in silicide layer is lower than in AISI 304 steel matrix,while the same contents of Fe and Ni in the layer and in the matrix are observed.The oxidation kinetic curves of the Fe3Si type silicide layer at both 800 ℃ and 900 ℃ obey a parabolic rule.The high temperature oxidation properties of the silicide layer are a little better than that of the AISI 304 steel matrix at 800 ℃.A catastrophic failure of AISI 304 steel occurs at 900 ℃,while the high temperature oxidation properties of the silicide layer at 900 ℃ are better than that at 800 ℃.The composite oxide film containing SiO2 and Cr3O4 resuled from the uphill diffusion of Cr and Si at 900 ℃ accounts for the excellent high temperature

  19. High temperature oxidation of iron-chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Lars

    2003-06-15

    The high temperature oxidation of the ferritic alloy Fe78Cr22 has been investigated in the present work. The effect of small alloying additions of cerium and/or silicon was also investigated. The alloys were oxidized at 973, 1173 and 1373 K in either air or a hydrogen/argon mixture. The various reaction atmospheres contained between 0.02 and 50% water vapour. The oxide scales formed on the various alloys at 973 K consisted of thin chromia layers. The oxide scales grown on the alloys at 1173 K also consisted of a chromia layer. The microstructure of the chromia scales was found to depend on the reaction atmosphere. The chromia scales grown in hydrogen/argon atmospheres formed oxide whiskers and oxide ridges at the surface of the scales, while the chromia scales grown in air formed larger oxide grains near the surface. This difference in oxide microstructure was due to the vaporization of chromium species from the chromia scales grown in air. Two different growth mechanisms are proposed for the growth of oxide whiskers. The growth rate of the chromia scales was independent of the oxygen activity. This is explained by a growth mechanism of the chromia scales, where the growth is governed by the diffusion of interstitial chromium. The addition of silicon to the iron-chromium alloy resulted in the formation of silica particles beneath the chromia scale. The presence of silicon in the alloy was found to decrease the growth rate of the chromia scale. This is explained by a blocking mechanism, where the silica particles beneath the chromia scale partly block the outwards diffusion of chromium from the alloy to the chromia scale. The addition of cerium to the iron-chromium alloy improved the adhesion of the chromia scale to the alloy and decreased the growth rate of chromia. It was observed that the minimum concentration of cerium in the alloy should be 0.3 at.% in order to observe an effect of the cerium addition. The effect of cerium is explained by the &apos

  20. Thermal stabilization of chromium(VI) in kaolin.

    Science.gov (United States)

    Wei, Yu-Ling; Chiu, Shu-Yuan; Tsai, Hsien-Neng; Yang, Yaw-Wen; Lee, Jyh-Fu

    2002-11-01

    Reduction of Cr(VI) by heating may be a useful detoxification mechanism for thermal immobilization. Using X-ray absorption spectroscopy, the change of speciation of chromium in 105 degrees C dried 3.7% Cr(VI)-sorbed kaolin further heated at 500, 900, or 1100 degrees C was studied. The 105 degrees C dried 3.7% Cr(VI)-sorbed kaolin sample was prepared by mixing 1.5 L of 0.257 M CrO3 solution (pH 0.71) with 0.5 kg of kaolin powder for 48 h, and then the slurry was heated (dried) at 105 degrees C until a constant weight was reached. The toxicity characteristic leaching procedure method was used to determine the percentage of leached chromium from all heated samples. In all 500-900 degrees C heated Cr(VI)-sorbed kaolin samples, Cr2O3 transformed from the hydrated Cr(VI) by a 4-h heat application was identified by the X-ray absorption near edge structure and extended X-ray absorption fine structure (EXAFS) spectroscopy as the key species that is leaching-resistant due to its low solubility. For the 1100 degrees C heated Cr(VI)-sorbed kaolin sample, the Fourier transform of its EXAFS spectrum indicates that the intensity of the peaks at 2.45 (Cr-Cr shell of Cr2O3) and 5.00 A (Cr-Cr and Cr-O shells of Cr2O3) without phase shift correction is either relatively smaller or disappearing, compared with that of the 500-900 degrees C heated Cr(VI)-sorbed kaolin samples. It is suggested that chromium octahedra were bridged to silica tetrahedra and incorporated in minerals formed at 1100 degrees C, such as mullite or sillimanite, since these phases were detected by XRD. Cr of this form is not easily leached. PMID:12433175

  1. Chromium Isotopes Record Fluctuations in Precambrian Biospheric Oxygenation

    Science.gov (United States)

    Frei, R.; Gaucher, C.; Poulton, S. W.; Canfield, D. E.

    2009-12-01

    There is a direct relationship between life, oxygen, and the surface chemistry of the Earth. Geochemical data suggest that oxygenation of the Earth's atmosphere occurred in two broad steps, near the beginning and the end of the Proterozoic Eon (2500 to 542 million years ago), but the details of this history are unclear. The geochemical behaviour of chromium (Cr) is highly sensitive to the redox state of the surface environment as oxidative weathering processes produce the oxidised hexavalent [Cr(VI)] form. Oxidation of reduced trivaltent [Cr(III)] chromium on land is accompanied by an isotopic fractionation, leading to enrichment of the mobile hexavalent form in the heavier isotope. The fractionated Cr isotope signature is then tranfered by riverine transport to the sea. Here, we use Cr stable isotopes from banded iron formations (BIFs) to track the presence of Cr(VI) in Precambrian oceans, providing a time-resolved picture of the oxygenation history of Earth’s atmosphere-hydrosphere system. Fractionated Cr isotopes indicate the accumulation of Cr(VI) in ocean surface waters ~2.8 to 2.6 billion years (Gyr) ago and a likely transient elevation in atmospheric and surface ocean oxygen prior to the first great rise of oxygen 2.45-2.2 Gyr ago (the Great Oxidation Event; GOE). In contrast, Cr isotopes in ~1.88 Gyr old BIFs are not fractionated, indicating a major decline in atmospheric oxygen and demonstrating that the GOE did not lead to a unidirectional stepwise increase in atmospheric oxygen. In the late Neoproterozoic, ~800 to 542 million years (Myr) ago, we observe strong positive fractionations in Cr isotopes (δ53Cr up to +4.9 ‰) providing independent support for increased surface oxygenation at this time. This may have stimulated rapid evolution of macroscopic multicellular life. Our chromium isotope data thus provide new insights into the oxygenation history of the Earth, and highlight its use as a powerful redox tracer in aquatic systems.

  2. Skin permeation and cutaneous hypersensitivity as a basis for making risk assessments of chromium as a soil contaminant.

    OpenAIRE

    Bagdon, R E; Hazen, R E

    1991-01-01

    A literature review of experimental and human exposure studies of skin permeation and cutaneous hypersensitivity reactions evoked by chromium was carried out to provide a basis for making a risk assessment of chromium as a soil contaminant. In vitro and in vivo studies demonstrated that 1 to 4% of the applied dose of hexavalent and trivalent chromium to guinea pig skin penetrated skin within 5 to 24 hr after application. Ultrastructural investigations showed that hexavalent chromium localized...

  3. BIOSORPTION OF CHROMIUM (VI) FROM INDUSTRIAL EFFLUENT BY WILD ANDMUTANT TYPE STRAIN OF SACCHAROMYCES CEREVISIAE AND ITS IMMOBILIZED FORM

    OpenAIRE

    K Selvam, K Arungandhi, B Vishnupriya, T Shanmuga priya and M Yamuna

    2013-01-01

    Biosorption of chromium was studied by wild type Saccharomyces cerevisiae strain, mutant strain, immobilized-wild type and mutant strain. Chromium absorption pattern was observed in all experimental conditions. Hexavalent chromium (VI) was analyzed by diphenyl carbazide method, by oxidizing the trivalent chromium (III). The percentage efficiency of wild type S. cerevisiae and its mutant strain, immobilized-wild type and mutant strain were 94.8%, 98.7%, 97.4% and 100% respectively. S. cerevisi...

  4. Isocyanide and Phosphine Oxide Coordination in Binuclear Chromium Pacman Complexes.

    Science.gov (United States)

    Stevens, Charlotte J; Nichol, Gary S; Arnold, Polly L; Love, Jason B

    2013-12-01

    The new binuclear chromium Pacman complex [Cr2(L)] of the Schiff base pyrrole macrocycle H4L has been synthesized and structurally characterized. Addition of isocyanide, C≡NR (R = xylyl, (t)Bu), or triphenylphosphine oxide donors to [Cr2(L)] gives contrasting chemistry with the formation of the new coordination compounds [Cr2(μ-CNR)(L)], in which the isocyanides bridge the two Cr(II) centers, and [Cr2(OPPh3)2(L)], a Cr(II) phosphine oxide adduct with the ligands exogenous to the cleft.

  5. Chromium Renderserver: Scalable and Open Source Remote RenderingInfrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Brian; Ahern, Sean; Bethel, E. Wes; Brugger, Eric; Cook,Rich; Daniel, Jamison; Lewis, Ken; Owen, Jens; Southard, Dale

    2007-12-01

    Chromium Renderserver (CRRS) is software infrastructure thatprovides the ability for one or more users to run and view image outputfrom unmodified, interactive OpenGL and X11 applications on a remote,parallel computational platform equipped with graphics hardwareaccelerators via industry-standard Layer 7 network protocolsand clientviewers. The new contributions of this work include a solution to theproblem of synchronizing X11 and OpenGL command streams, remote deliveryof parallel hardware-accelerated rendering, and a performance analysis ofseveral different optimizations that are generally applicable to avariety of rendering architectures. CRRSis fully operational, Open Sourcesoftware.

  6. Study on anaerobic treatment of wastewater containing hexavalent chromium*

    OpenAIRE

    Xu, Yan-Bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-01-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment ...

  7. Alkaline stress corrosion of iron-nickel-chromium austenitic alloys

    International Nuclear Information System (INIS)

    This research thesis reports the study of the behaviour in stress corrosion of austenitic iron-nickel-chromium alloys by means of tensile tests at imposed strain rate, in a soda solution at 50 pc in water and 350 degrees C. The author shows that the mechanical-chemical model allows the experimental curves to be found again, provided the adjustment of characteristic parameters, on the one hand, of corrosion kinetics, and on the other hand, of deformation kinetics. A classification of the studied alloys is proposed

  8. MODELING THE RATE-CONTROLLED SORPTION OF HEXAVALENT CHROMIUM.

    Science.gov (United States)

    Grove, D.B.; Stollenwerk, K.G.

    1985-01-01

    Sorption of chromium VI on the iron-oxide- and hydroxide-coated surface of alluvial material was numerically simulated with rate-controlled reactions. Reaction kinetics and diffusional processes, in the form of film, pore, and particle diffusion, were simulated and compared with experimental results. The use of empirically calculated rate coefficients for diffusion through the reacting surface was found to simulate experimental data; pore or particle diffusion is believed to be a possible rate-controlling mechanism. The use of rate equations to predict conservative transport and rate- and local-equilibrium-controlled reactions was shown to be feasible.

  9. Chromium Doped ZnS Nanostructures: Structural and Optical Characteristics

    Science.gov (United States)

    Gogoi, D. P.; Das, U.; Ahmed, G. A.; Mohanta, D.; Choudhury, A.; Stanciu, G. A.

    2009-06-01

    Chromium doped ZnS nanoparticles arranged in the form of fractals were fabricated by using inexpensive physico-chemical route. The Cr:ZnS samples were characterized by diffraction and spectroscopic techniques. Unexpected growth of fractals with several micrometer dimensions and of core size 1 μm (tip to tip) was confirmed through TEM micrographs. At higher magnification, we found that individual fractals consist of spherical nanoparticles of average size leading to such organized structures describing fractal pattern is encountered in this work.

  10. Evaluating Foraminifera as an Archive for Seawater Chromium Isotopic Composition

    Science.gov (United States)

    Wang, X.; Planavsky, N.; Hull, P. M.; Tripati, A.; Reinhard, C.; Zou, H.; Elder, L. E.; Henehan, M. J.

    2015-12-01

    In recent years there has been growing interest in using chromium isotopes (δ53Cr) as a proxy to investigate the redox evolution of Earth's ocean-atmosphere system throughout geological history. Potential archives for seawater δ53Cr that have been identified to date include iron formations and organic-rich siliciclastic sediments. However, these types of sediments are not common and they are discontinuous over geologic time. As a result, alternative types of archives are needed. Here we evaluate the utility of foraminifera tests as a recorder of seawater δ53Cr. Core-tops used were from different ocean basins. Mono-specific samples of Globigerinoides sacculifer, Orbulina universa, Pulleniatina obliquiloculata, Globoratalia crassula-crassaformis, Globoratalia truncatulinoides, and Globigerinella siphonifera were isolated to investigate inter-species isotope fractionation. Chromium concentrations were measured by isotope dilution method to be 0.1-0.3 μg/g. The δ53Cr values of these species range from 0.2‰ to 2.4‰, with an analytical uncertainty of 0.3‰ (95% confidence). Despite the high analytical uncertainty due to the extremely low levels of Cr present, there is still large detectable variation in foraminiferal δ53Cr values, which overlap presently available seawater values (Bonnand et al., 2013; Scheiderich et al., 2015). Possible explanations for such variations in foraminiferal δ53Cr values include heterogeneity of seawater δ53Cr in the modern oceans, and/or photobiochemical redox cycling of Cr in the surface oceans. Therefore, care should be taken when using foraminifera to reconstruct past seawater δ53Cr values. ReferencesBonnand, P., James, R., Parkinson, I., Connelly, D., Fairchild, I., 2013. The chromium isotopic composition of seawater and marine carbonates. Earth and Planetary Science Letters, 382: 10-20. Scheiderich, K., Amini, M., Holmden, C., Francois, R., 2015. Global variability of chromium isotopes in seawater demonstrated by Pacific

  11. Environmental optimization of chromium recovery from tannery sludge using a life cycle assessment approach.

    Science.gov (United States)

    Kiliç, Eylem; Puig, Rita; Baquero, Grau; Font, Joaquim; Colak, Selime; Gürler, Deniz

    2011-08-15

    Life cycle assessment (LCA) was used to evaluate the environmental impact of an oxidative chromium recovery method from tannery sludge, in comparison with the usual landfilling process. Three improvement options (water reduction, byproduct use and anaerobic sludge digestion) were considered. The results showed that the proposed chromium recovery process would be better environmentally than conventional landfilling in all the evaluated impact categories if the amount of chromium recovered was 43 kg per ton of sludge. This amount could be recovered if the chromium concentration was about 20 times higher than that considered in this study. Alternatively, a lower chromium concentration would produce a better result if the recovery method was optimized and implemented at industrial rather than laboratory scale, and if more accurate data were provided on environmental credits for avoiding the chromium production process. Thus, the recovery method is environmentally beneficial when tannery sludge contains a chromium concentration of about 100,000 ppm. According to the literature, such concentrations are not unusual. The results could serve as the basis for further environmental improvements in chromium recovery and tannery sludge management and should be used in decision-making processes, especially for end-of-pipe treatments.

  12. Evaluation of chromium concentration in cattle feces using different acid digestion and spectrophotometric quantification techniques

    Directory of Open Access Journals (Sweden)

    N.K.P. Souza

    2013-10-01

    Full Text Available The objective of this work was to evaluate combinations between acid digestion techniques and spectrophotometric quantification to measure chromium concentration in cattle feces. Digestion techniques were evaluated based on the use of nitric and perchloric acids, sulfuric and perchloric acids, and phosphoric acid. The chromium quantification in the solutions was performed by colorimetry and by atomic absorption spectrophotometry (AAS. When AAS was used, the addition of calcium chloride to the solutions as a releasing agent was also evaluated. Several standard samples containing known chromium contents were produced (0, 2, 4, 6, 8 and 10g of chromium per kg of feces using cattle feces obtained from three different animals to evaluate the accuracy of the different combinations of techniques. The accuracy was evaluated by adjusting a simple linear regression model of the estimated values on the actual values of chromium content in the standard samples. Regardless of the digestion technique, the chromium content estimates in the standard samples obtained by colorimetry were not accurate (P0.05. The use of the digestion technique in phosphoric acid provided incomplete recovery of the fecal chromium (P0.05 fecal chromium contents.

  13. Chromium trace determination in inorganic, organic and aqueous samples with isotope dilution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, A.; Heumann, K.G.

    1988-06-01

    It is shown that chromium traces in different inorganic, organic and aqueous samples can be determined over a wide concentration range with isotope dilution mass spectrometry. Electrolytic or chromatographic isolation steps are added to a system of sample preparation units for oligo-element determinations to analyse chromium besides other heavy metals. The isotope ratio /sup 52/Cr//sup 53/Cr is measured in a thermal quadrupole mass spectrometer using a single-filament ion source with additions of silica gel and boric acid. In water samples, which contain humic substances, chromium concentrations of a few ng/g and less can be determined with relative standard deviations of about 1% and better. A differentiation is possible into the total chromium content and into chromium species which carry out isotope exchange reactions and those which are inert for an isotope exchange reaction. The chromium concentrations of four standard reference materials (two plants BCR 60 and 61, one tissue BCR 278, one sewage sludge BCR 144), which are not certified for chromium, are determined to be 29.4 ..mu..g/g, 534 ..mu..g/g, 0.78 ..mu..g/g, and 466.1 ..mu..g/g, respectively. In three different sediments total chromium concentrations between 100 ..mu..g/g and 180 ..mu..g/g are analysed with relative standard deviations of 0.6%-1.2%.

  14. Determination of hexavalent chromium in cosmetic products by ion chromatography and postcolumn derivatization.

    Science.gov (United States)

    Kang, Eun Kyung; Lee, Somi; Park, Jin-Hee; Joo, Kyung-Mi; Jeong, Hye-Jin; Chang, Ih Seop

    2006-05-01

    Chromium hydroxide green [Cr(2)O(OH)(4)] and chromium oxide green (Cr(2)O(3)) are colouring agents for use in cosmetic products. These colourants may contain chromium (VI), which cause skin allergies through percutaneous adsorption on the skin. Eye shadow is a representative cosmetic product in which significant colourants are used. We analysed the chromium (VI) in the eye shadows by ion chromatography and post column derivatization. We optimize conditions of chromium (VI) analysis in eye shadows. During the pretreatment procedure, there are no exchange of chromium (III) to chromium (VI). This method has a limit of quantification for chromium (VI) of 1.0 microg l(-1), recovery rate of 100 +/- 3% and analysis time less than 10 min. This result is 300 times more sensitive than the high-performance liquid chromatography method. We applied the optimized method to analyse 22 eye shadows and 6 colouring agents. 2 out of 22 of the products contained more than 5 mg l(-1). In our previous work, 5 mg l(-1) of Cr represented a threshold level. There was much more Cr(VI) in the colouring agents. The Cr(VI) in one of the colouring agents was 97.6 mg l(-1). PMID:16689807

  15. Suppression of interference in the AAS determination of chromium by use of ammonium bifluoride.

    Science.gov (United States)

    Purushottam, A; Naidu, P P; Lal, S S

    1973-07-01

    Addition of 1% of ammonium bifluoride successfully suppresses interference by diverse ions in the atomic-absorption determination of chromium(VI). If the sample solutions also contain chromium(III) addition of 1% of ammonium bifluoride and 0.2% of sodium sulphate is recommended for the suppression.

  16. Leaching behavior of chromium in chrome shaving generated in tanning process and its stabilization.

    Science.gov (United States)

    Erdem, Mehmet; Ozverdi, Arzu

    2008-08-15

    In this study, leaching properties and pollution potential of chromium in chrome shaving (CS), which is a solid residue of leather industry, containing 2.27% Cr were investigated and thermal stabilization procedure was applied to the CS for chromium immobilization. For this purpose, firstly, effects of the liquid/solid ratio, contact time, pH and sequential extraction on the leaching behavior of chromium in the CS were studied. It was determined that the CS-caused chromium pollution is a hazardous material for environment. Thermal stabilization procedure was applied to the CS in the temperature range of 250-500 degrees C for the chromium immobilization. Effective stabilization of chromium in the CS was achieved by heating of CS at 350 degrees C under CO(2) atmosphere. Leaching experiments were also carried out with the samples obtained from the stabilization process and the results compared with that of the CS. Also, TCLP test method was applied to the samples to determine pollution potentials and discharge situations of the CS and its stabilization products. While the chromium concentrations in the test solutions of all samples stabilized thermally at above 350 degrees C were below the USEPA regulatory limit of 5 mg/l, the concentration of chromium leached out from the CS was 30-fold bigger than the USEPA regulatory limit.

  17. The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor.

    Science.gov (United States)

    Kalčíková, Gabriela; Zupančič, Marija; Jemec, Anita; Gotvajn, Andreja Žgajnar

    2016-03-01

    Studies assessing chromium phytoextration from natural waters rarely consider potential implications of chromium speciation in the presence of ubiquitous humic substances. Therefore, the present study investigated the influence of environmentally relevant concentration of humic acid (TOC = 10 mg L(-1)) on chromium speciation (Cr = 0.15 mg L(-1)) and consequently on phytoextraction by aquatic macrophyte duckweed Lemna minor. In absence of humic acid, only hexavalent chromium was present in water samples and easily taken up by L. minor. Chromium uptake resulted in a significant reduction of growth rate by 22% and decrease of chlorophyll a and chlorophyll b contents by 48% and 43%, respectively. On the other hand, presence of humic acid significantly reduced chromium bioavailability (57% Cr uptake decrease) and consequently it did not cause any measurable effect to duckweed. Such effect was related to abiotic reduction of hexavalent chromium species to trivalent. Hence, findings of our study suggest that presence of humic acid and chromium speciation cannot be neglected during phytoextraction studies. PMID:26766370

  18. 76 FR 71926 - Defense Federal Acquisition Regulation Supplement: Applicability of Hexavalent Chromium Policy to...

    Science.gov (United States)

    2011-11-21

    ... Acquisition Regulation Supplement: Applicability of Hexavalent Chromium Policy to Commercial Items (DFARS Case... hexavalent chromium. DATES: Comment Date: Comments on the proposed rule should be submitted in writing to the.... SUPPLEMENTARY INFORMATION: I. Background DoD published a final rule at in the Federal Register at 76 FR 25569...

  19. 77 FR 39141 - Defense Federal Acquisition Regulation Supplement: Applicability of Hexavalent Chromium Policy to...

    Science.gov (United States)

    2012-06-29

    ... Acquisition Regulation Supplement: Applicability of Hexavalent Chromium Policy to Commercial Items (DFARS Case... material containing hexavalent chromium. DATES: Effective Date: June 29, 2012. FOR FURTHER INFORMATION... published a final rule (DFARS Case 2009-D004) in the Federal Register at 76 FR 25569 on May 5, 2011,...

  20. 75 FR 69064 - Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the...

    Science.gov (United States)

    2010-11-10

    ... AGENCY Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the... period on September 30, 2010 (75 FR 60454) for the external review draft human health assessment titled, ``Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the Integrated...

  1. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  2. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel.

    Science.gov (United States)

    Kumar, P Albino; Ray, Manabendra; Chakraborty, Saswati

    2007-05-01

    A resinous polymer, aniline formaldehyde condensate (AFC) coated on silica gel was used as an adsorbent in batch system for removal of hexavalent chromium from aqueous solution by considering the effects of various parameters like reaction pH, dose of AFC coated silica gel, initial Cr(VI) concentration and aniline to formaldehyde ratio in AFC synthesis. The optimum pH for total chromium [Cr(VI) and Cr(III)] adsorption was observed as 3. Total chromium adsorption was second order and equilibrium was achieved within 90-120 min. Aniline to formaldehyde ratio of 1.6:1 during AFC synthesis was ideal for chromium removal. Total chromium adsorption followed Freundlich's isotherm with adsorption capacity of 65 mg/g at initial Cr(VI) 200mg/L. Total chromium removal was explained as combinations of electrostatic attraction of acid chromate ion by protonated AFC, reduction of Cr(VI) to Cr(III) and bond formation of Cr(III) with nitrogen atom of AFC. Almost 40-84% of adsorbed chromium was recovered during desorption by NaOH, EDTA and mineral acids. AFC coated silica gel can be effectively used for treatment of chromium containing wastewaters as an alternative.

  3. Isolation and characterization of chromium-resistant bacteria from tannery effluents

    Energy Technology Data Exchange (ETDEWEB)

    Basu, M.; Bhattacharya, S.; Paul, A.K. [Univ. of Calcutta (India)

    1997-04-01

    Chromium (Cr), a transition metal, is one of the major sources of environmental pollution. It is discharged into the environment through the disposal of wastes from industries like leather tanning, metallurgical and metal finishing, textiles and ceramics, pigment and wood preservatives, photographic sensitizer manufacturing, etc. In the environment chromium occurs mainly in trivalent and hexavalent forms. The hexavalent chromium (Cr{sup 6+}) compounds are comparatively much more toxic than those of trivalent chromium (Cr{sup 3+}). The reason for such toxicity appears to be due to its rapid permeability through biological membranes and subsequent interaction with intracellular proteins and nucleic acids. The tanning industry, which commonly utilizes {open_quotes}chrome liquor{close_quotes} in the tanning process, discharges the effluents into the environment containing chrome salts in excess of the maximum permissible limits. Sludge deposition from such effluents, therefore, provides a natural environment for enrichment of chromium-resistant bacteria. Chromium-resistant microorganisms from such chromium-contaminated sediments have been isolated by several investigators. The present study was an attempt to evaluate the status of chromium-resistant bacteria in the tannery effluent sediments of Calcutta-based tanning industries. 14 refs., 2 figs., 6 tabs.

  4. MICROSTRUCTURE AND CORROSION RESISTANCE OF CHROMIUM NITRIDES OBTAINED BY VACUUM GAS NITRIDING OF ELECTROLYTIC CHROMIUM DEPOSITED ON AISI H13 STEEL

    Directory of Open Access Journals (Sweden)

    H. Cifuentes

    2013-06-01

    Full Text Available In this scientific research paper, the microstructure and corrosion resistance of chromium nitrides obtained from a duplex treatment consisting of an electroplated hard chromium coating applied on a steel AISI H13 follow by a thermochemical treatment in vacuum using NH3 as precursor gas of nitrogen, is evaluated. This type of duplex treatments combine the benefits of each individual treatment in order to obtain, with this synergic effect, compounds type CrxN more economic than those obtained by other kind of treatments e.g. physical vapor deposition (PVD. The results obtained by X-Ray Diffraction (XRD indicate the surface and subsurface transformation of the electrolytic hard chromium coating by formation of CrN and Cr2N phases. Likewise, potentiodynamic polarization tests indicate an increase in corrosion resistance of such kind of compounds in comparison with the obtained results with electroplated hard chromium.

  5. Chromium removal by zeolite-rich materials obtained from an exhausted FCC catalyst: Influence of chromium incorporation on the sorbent structure.

    Science.gov (United States)

    Gonzalez, Maximiliano R; Pereyra, Andrea M; Torres Sánchez, Rosa M; Basaldella, Elena I

    2013-10-15

    A spent FCC catalyst was converted into a zeolitic mixture, and the product obtained was afterward used as trapping material for Cr(III) species frequently found in aqueous solutions. Eventual changes in the sorbent structure produced by Cr incorporation were studied by different characterization techniques such as point of zero charge determinations (PZC), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and infrared absorption (FTIR). The XRD and FTIR analyses indicated that chromium incorporation produces an amorphization of the material, and PZC measurements show no surface adsorption of charged chromium species. SEM and EDX analyses clearly show that after chromium sorption, the initial microspheroidal catalyst morphology was maintained, and the presence of chromium species was mainly detected in the outer microsphere surface, where the zeolite crystals were hydrothermally grown.

  6. Effect of compost and humic acid in mobility and concentration of cadmium and chromium in soil and plant

    Directory of Open Access Journals (Sweden)

    A. Chaab

    2016-12-01

    Full Text Available The effect of compost and humic acid in mobility and concentration of cadmium and chromium in contaminated soil were investigated. Experiment was carried out with three levels of soil cadmium and chromium and two organic matters (compost and humic acid. The study was performed in a randomized complete block design with 3 replicates. Results indicated that application of organic substances enhanced movement of cadmium and chromium in soil column. Humic acid is more effective than compost on the mobility of cadmium and chromium in soil. Mobility of cadmium and chromium in the lower depths of soil column were increased. Cadmium and chromium concentration in shoots and roots enhanced due to increasing those concentration in soil and application of organic substances. Increase in cadmium in shoots can be attributed to the high mobility of this element in maize plant. Maize root chromium concentration was greater than shoot chromium concentration. Humic acid was more effective than compost as cadmium and chromium concentration in root and shoot was concerned. Low mobility of chromium in plant and accumulation of chromium in roots can be reasons of decreasing of chromium concentration in shoot of plant and its bioaccumulation.

  7. Stability of chromium (III) sulfate in atmospheres containing oxygen and sulfur

    Science.gov (United States)

    Jacob, K. T.; Rao, B. D.; Nelson, H. G.

    1978-01-01

    The stability of chromium sulfate in the temperature range from 880 K to 1040 K was determined by employing a dynamic gas-solid equilibration technique. The solid chromium sulfate was equilibrated in a gas stream of controlled SO3 potential. Thermogravimetric and differential thermal analyses were used to follow the decomposition of chromium sulfate. X-ray diffraction analysis indicated that the decomposition product was crystalline Cr2O3 and that the mutual solubility between Cr2(SO4)3 and Cr2O3 was negligible. Over the temperature range investigated, the decomposition pressure were significantly high so that chromium sulfate is not expected to form on commercial alloys containing chromium when exposed to gaseous environments containing oxygen and sulfur (such as those encountered in coal gasification).

  8. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    Energy Technology Data Exchange (ETDEWEB)

    NN Krot; VP Shilov; AM Fedoseev; NA Budantseva; MV Nikonov; AB Yusov; AYu Garnov; IA Charushnikova; VP Perminov; LN Astafurova; TS Lapitskaya; VI Makarenkov

    1999-07-02

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium(III)solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH){sub 4}{sup {minus}} through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported.

  9. Unconventional drop in the electrical resistance of chromium metal thin films at low temperature

    Science.gov (United States)

    Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Kubota, T.; Takanashi, K.

    2016-09-01

    We studied the electrical resistance of single-crystal and polycrystalline chromium films. The ρ (T) curve of single-crystal films decrease with decreasing temperature and show humps at around 300 K consistent with the bulk chromium being an itinerant antiferromagnet. In the polycrystalline films, on the other hand, the ρ (T) curves deviate from those of the bulk chromium. Moreover, we observed sudden decrease in the resistance around 1.5 K. Although previous studies suggested that chromium films become superconductive (Schmidt et al. (1972) [12]), it is difficult to conclude whether a superconducting transition occurs because the electrical resistivity is not zero in all films. No anomaly was detected by resistance measurements around room temperature, and the sudden decrease in the resistance at low temperature may be attributed to the suppression of antiferromagnetic interaction by thinning down the chromium element.

  10. Bioremediation of the soils contaminated with cadmium and chromium, by the earthworm Eisenia fetida.

    Directory of Open Access Journals (Sweden)

    E Aseman

    2016-01-01

    Results: There was a significant correlation between the reduction of chromium and cadmium metals in the soils and the accumulation of chromium and cadmium metals in the worm’s body. A significant decline of chromium levels of the soil was observed in the days 21 and 42 during the study compared to the initial amount of 0.1 mg/g. On the other hand, chromium concentration of the soil decreased from 0.14 to 0.1 mg/g after 42 days. Conclusion: said the research indicated that increased mortality of worms in the soil at a concentration of 0.08 mg/g of chromium, using the worms for bioremediation is not recommended. Although, this method is effective to remove cadmium from the soils having cadmium with concentrations of 0.04 and 0.08 mg/g but it needs further investigation.

  11. CHROMIUM EXTRACTION BY MICROEMULSIONS IN TWO- AND THREE-PHASE SYSTEMS

    Directory of Open Access Journals (Sweden)

    K. R. O. Melo

    2015-12-01

    Full Text Available Abstract Microemulsion systems were used to remove chromium from an aqueous solution obtained from acid digestion of tannery sludge. The systems were composed by: coconut oil soap as surfactant, 1-butanol as cosurfactant, kerosene as the oil phase, and chromium solution as the aqueous phase. Two- and three-phase microemulsion extraction methods were investigated in the experiments. Viscosity, effective diameter of the droplets, and extraction and re-extraction efficiencies were evaluated for each system. Two- and three-phase systems showed small variations in droplet diameter, which can be attributed to the formation of micellar structures. Chromium recovery efficiencies for the studied systems were over 96%. The re-extraction step showed that the stripping solution used can release more than 96% of the chromium from the microemulsion phase. Experimental results confirm that chromium can be recovered efficiently using microemulsion systems.

  12. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  13. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  14. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  15. Synthesis, characterization and catalytic activity of chromium substituted cobalt ferrospinels

    International Nuclear Information System (INIS)

    Chromium substituted cobalt ferrospinels were prepared by soft citrate gel method. The synthesized material was characterized by various physico-chemical methods. All the samples showed a single-phase cubic structure. Lattice constant varies from 8.389 to 8.323 A. Transmission electron microscopic study indicated the nanostructure of the catalysts while homogenous grain distribution was presented by scanning electron microscopic studies. The catalytic activity of the samples was investigated towards acetylation of phenols. The presence of active centers on the surface of the material was confirmed through pyridine adsorption studies. The surface acidity of the catalyst is responsible for better catalytic performance. The material was found to serve as a promising catalyst for acylation and benzoylation of phenols under solvent free condition. These catalysts are ∼100% selective towards o-acylation of phenols, a promising reaction for perfumery intermediates. The catalysts were seen to be reusable without any further treatment. Catalytic activities of cobalt, chromium and iron oxides were also investigated for comparison. The cobalt ferrospinel was found to have better catalytic activity as compared to the Cr-substituted ferrospinels and the pure oxides. Cobalt ferrite catalyst offers high yields in a short reaction time under solvent-free conditions.

  16. Synthesis, characterization and catalytic activity of chromium substituted cobalt ferrospinels

    Energy Technology Data Exchange (ETDEWEB)

    Hankare, P.P., E-mail: p_hankarep@rediffmail.com [Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416 004 (India); Sankpal, U.B., E-mail: sankpalumesh@gmail.com [Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416 004 (India); Patil, R.P. [Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416 004 (India); Lokhande, P.D. [Department of Chemistry, University of Pune, Pune, Maharashtra, 411 007 (India); Sasikala, R. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-02-15

    Chromium substituted cobalt ferrospinels were prepared by soft citrate gel method. The synthesized material was characterized by various physico-chemical methods. All the samples showed a single-phase cubic structure. Lattice constant varies from 8.389 to 8.323 A. Transmission electron microscopic study indicated the nanostructure of the catalysts while homogenous grain distribution was presented by scanning electron microscopic studies. The catalytic activity of the samples was investigated towards acetylation of phenols. The presence of active centers on the surface of the material was confirmed through pyridine adsorption studies. The surface acidity of the catalyst is responsible for better catalytic performance. The material was found to serve as a promising catalyst for acylation and benzoylation of phenols under solvent free condition. These catalysts are {approx}100% selective towards o-acylation of phenols, a promising reaction for perfumery intermediates. The catalysts were seen to be reusable without any further treatment. Catalytic activities of cobalt, chromium and iron oxides were also investigated for comparison. The cobalt ferrospinel was found to have better catalytic activity as compared to the Cr-substituted ferrospinels and the pure oxides. Cobalt ferrite catalyst offers high yields in a short reaction time under solvent-free conditions.

  17. Biosorption of aqueous chromium(VI) by Tamarindus indica seeds.

    Science.gov (United States)

    Agarwal, G S; Bhuptawat, Hitendra Kumar; Chaudhari, Sanjeev

    2006-05-01

    The effectiveness of low cost agro-based materials namely, Tamarindus indica seed (TS), crushed coconut shell (CS), almond shell (AS), ground nut shell (GS) and walnut shell (WS) were evaluated for Cr(VI) removal. Batch test indicated that hexavalent chromium sorption capacity (q(e)) followed the sequence q(e)(TS) > q(e)(WS) > q(e)(AS) > q(e)(GS) > q(e)(CS). Due to high sorptive capacity, tamarind seed was selected for detailed sorption studies. Sorption kinetic data followed first order reversible kinetic fit model for all the sorbents. The equilibrium conditions were achieved within 150 min under the mixing conditions employed. Sorption equilibria exhibited better fit to Freundlich isotherms (R>0.92) than Langmuir isotherm (R approximately = 0.87). Hexavalent chromium sorption by TS decreased with increase in pH, and slightly reduced with increase in ionic strength. Cr(VI) removal by TS seems to be mainly by chemisorption. Desorption of Cr(VI) from Cr(VI) laden TS was quite less by distilled water and HCl. Whereas with NaOH, maximum desorption achieved was about 15.3%. When TS was used in downflow column mode, Cr(VI) removal was quite good but head loss increased as the run progressed and was stopped after 200 h.

  18. Study of effect of chromium on titanium dioxide phase transformation

    Indian Academy of Sciences (India)

    A Bellifa; L Pirault-Roy; C Kappenstein; A Choukchou-Braham

    2014-05-01

    MTi samples with different atomic chromium percentages were synthesized by sol–gel method and calcined at 400 °C under air. The effects of Cr and temperature on titanium dioxide phase transition were studied. In situ measurement showed the presence of anatase phase for all samples at temperature < 500 °C. Without Cr content, the anatase–rutile transition takes place at 600 °C and the rutile fraction increases with increase of temperature. In the presence of Cr content, rutile phase appeared at 700 °C. Cr2O3 phase was shown only in the case of CrTi20 content at 800 °C which indicates that the segregation remains modest. We have also studied the anatase–rutile transition kinetics by using in situ X-ray measurements. It was found that the anatase phase stability increases as the chromium content increases. Results confirm that the transformation of anatase–rutile is of first order.

  19. [Physiological responses of tubificidae to heavy metal chromium stress].

    Science.gov (United States)

    Lou, Ju-Qing; Yang, Dong-Ye; Cao, Yong-Qing; Sun, Pei-De; Zheng, Ping

    2014-11-01

    Tubificidae is now used in the wastewater treatment systems to successfully minimize the sludge production, which has been proved an effective, economical and sustainable technology. But the excess sludge inevitably contains a variety of heavy metals, especially the sludge from industrial wastewater treatment plant. In order to apply tubificidae to these systems, Chromium was selected as pollutant object and the physiological responses of tubificidae to Chromium were studied in this paper. Acute toxicity was analyzed and Median lethal concentrations (LC50) were determined over 96 h periods for Cr. Results indicated that 24 h LC50 and 96 h LC50 were 7.94 mg x L(-1) and 0.49 mg x L(-1), respectively. The duration f tubificidae in Cr solution decreased with increasing Cr concentration. Under the Cr stress, a highest respiration rate was obtained when the concentration of Cr(VI), temperature, pH and DO was 2.50 mg x L(-1), 26 degrees C, 6.0 and 6.0 mg x L(-1), respectively. The order of these factors was the concerntration of Cr(VI), temperature, DO and pH. The respiration experiments demonstrated that low concentration (< 2.50 mg x L(-1)) of Cr could promote the respiration rate of tubificidaes. On the other hand, when the concentration of Cr was 8.00 mg x L(-1), it could remarkably inhibit the respiratory rates of tubificidae. PMID:25639096

  20. Mechanical strength of laser-welded cobalt-chromium alloy.

    Science.gov (United States)

    Baba, N; Watanabe, I; Liu, J; Atsuta, M

    2004-05-15

    The purpose of this study was to investigate the effect of the output energy of laser welding and welding methods on the joint strength of cobalt-chromium (Co-Cr) alloy. Two types of cast Co-Cr plates were prepared, and transverse sections were made at the center of the plate. The cut surfaces were butted against one another, and the joints welded with a laser-welding machine at several levels of output energy with the use of two methods. The fracture force required to break specimens was determined by means of tensile testing. For the 0.5-mm-thick specimens, the force required to break the 0.5-mm laser-welded specimens at currents of 270 and 300 A was not statistically different (p > 0.05) from the results for the nonwelded control specimens. The force required to break the 1.0-mm specimens double-welded at a current of 270 A was the highest value among the 1.0-mm laser-welded specimens. The results suggested that laser welding under the appropriate conditions improved the joint strength of cobalt- chromium alloy. PMID:15116400