WorldWideScience

Sample records for chromium carbides

  1. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  2. Fabrication of Carbon Nanotube - Chromium Carbide Composite Through Laser Sintering

    Science.gov (United States)

    Liu, Ze; Gao, Yibo; Liang, Fei; Wu, Benxin; Gou, Jihua; Detrois, Martin; Tin, Sammy; Yin, Ming; Nash, Philip; Tang, Xiaoduan; Wang, Xinwei

    2016-03-01

    Ceramics often have high hardness and strength, and good wear and corrosion resistance, and hence have many important applications, which, however, are often limited by their poor fracture toughness. Carbon nanotubes (CNTs) may enhance ceramic fracture toughness, but hot pressing (which is one typical approach of fabricating CNT-ceramic composites) is difficult to apply for applications that require localized heat input, such as fabricating composites as surface coatings. Laser beam may realize localized material sintering with little thermal effect on the surrounding regions. However, for the typical ceramics for hard coating applications (as listed in Ref.[1]), previous work on laser sintering of CNT-ceramic composites with mechanical property characterizations has been very limited. In this paper, research work has been reported on the fabrication and characterization of CNT-ceramic composites through laser sintering of mixtures of CNTs and chromium carbide powders. Under the studied conditions, it has been found that laser-sintered composites have a much higher hardness than that for plasma-sprayed composites reported in the literature. It has also been found that the composites obtained by laser sintering of CNTs and chromium carbide powder mixtures have a fracture toughness that is ~23 % higher than the material obtained by laser sintering of chromium carbide powders without CNTs.

  3. Effect of boron carbide on primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-04-01

    Full Text Available In the paper results of the influence of boron carbide (B4C as inoculant of abrasion-resisting chromium cast iron (about 2,8% carbon and 18% chromium on primary crystallization researches are presented. Boron carbide dispersion was introduced at the bottom of pouring ladle before tap of liquid cast iron. In this investigations were used three different quantities of inoculant in amounts 0,1%; 0,2% and 0,3% with relation to bath weight. It has been demonstrated that such small additions of boron carbide change primary crystallization parameters, particularly temperature characteristic of process, their time and kinetics.

  4. Reduction of chromium oxides with calcium carbide during thestainless steelmaking process

    Directory of Open Access Journals (Sweden)

    B. Arh

    2015-04-01

    Full Text Available An efficient reduction of chromium from slag requires an appropriate reduction agent for the given steelmaking technology. The usual slag reduction praxis consists of carbon injections and additions of ferrosilicon and aluminum.Reduction of chromium containing slags with calcium carbide is an appealing alternative. Calcium carbide is a strong reduction agent that unlike ferrosilicon and aluminum also provides the possibility of foaming slag formation.Experimental work regarding chromium slag reduction with calcium carbide towards usual slag reduction praxis is described in this work. The results show that higher reduction rates in the stage of refining period of the melt and higher level of overall chromium reduction from slag can be reached with the blowing of CaC2.

  5. Solution growth of silicon carbide using unary chromium solvent

    Science.gov (United States)

    Miyasaka, Ryo; Kawanishi, Sakiko; Narumi, Taka; Sasaki, Hideaki; Yoshikawa, Takeshi; Maeda, Masafumi

    2017-02-01

    Solution growth of silicon carbide (SiC) using unary chromium (Cr) solvent was studied because the system enables a high solubility difference and a low degree of supersaturation, which would lead to rapid growth with a stabilized growth interface. The liquidus composition at SiC saturation in a quasi-binary Cr-SiC system was studied at 1823-2173 K. The measured carbon (C) contents are in good agreement with the thermodynamic evaluation using the sub-regular solution model. In addition, growth experiments using a unary Cr solvent were performed by the bottom-seeded travelling solvent method. The obtained growth rates at 1803-1923 K with a temperature difference of 15-70 K were proportional to the solubility difference between the seed and source temperatures, indicating that the growth was controlled by the mass transfer of C in the solution. The maximum growth rate of 720 μm/h at 1803 K was much higher than the growth rate by Si-rich solvents, suggesting that the Cr-rich solvent is suitable for the rapid growth at a low temperature.

  6. Study on fragmentation and dissolution behavior of carbide in a hot-rolled hypereutectic high chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fei; Jiang, Yehua, E-mail: jiangyehua@kmust.edu.cn; Xiao, Han; Tan, Jun

    2015-01-05

    Highlights: • The method to prepare Carbon steel/High chromium iron is totally new. • High chromium iron can achieve small plastic deformation during hot rolling process. • Carbides in high chromium irons are crushed, refined obviously and becoming isolated, which is benefit to improve the impact toughness. • The carbide fragmentation and dissolution behavior of the hot-rolled HCCI were analyzed. - Abstract: A sandwich-structured composite containing a hypereutectic high chromium cast iron (HCCI) and low carbon steel (LCS) claddings was newly fabricated by centrifugal casting, then the blank was hot-rolled into composite plate. The carbide fragmentation and dissolution behavior of the hot-rolled HCCI were analyzed. During hot rolling, significant refinement of carbides was discovered in hot-rolled HCCI specimens. The carbides were broken and partly dissolved into the austenite matrix. The results show that carbides are firstly dissolved under the action of stress. There are grooves appeared at the boundaries of the carbides. The grooves reduce the cross section of the carbide. When the cross section of the carbide reaches to the required minimum critical cross section, the carbide breaks through the tensile force. After break, carbides continue to dissolve since more interfaces between the matrix and carbides are generated. The secondary carbides precipitated due to the dissolution are index as fcc and stacking faults parallel to the {1 1 1} are observed.

  7. A metastable chromium carbide powder obtained by carburization of a metastable chromium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Loubiere, S. [Univ. Paul-Sabatier, Toulouse (France). Lab. de Chimie des Materiaux Inorganique; Laurent, C. [Univ. Paul-Sabatier, Toulouse (France). Lab. de Chimie des Materiaux Inorganique; Bonino, J.P. [Univ. Paul-Sabatier, Toulouse (France). Lab. de Chimie des Materiaux Inorganique; Rousset, A. [Univ. Paul-Sabatier, Toulouse (France). Lab. de Chimie des Materiaux Inorganique

    1996-10-15

    A metastable Cr{sub 3}C{sub 2-x} carbide powder is prepared by carburization of a metastable chromium oxide in H{sub 2}-CH{sub 4} atmosphere under the appropriate conditions (temperature, dwell time and CH{sub 4} content). A very high specific surface area (greater than 210 m{sup 2} g{sup -1}) of the starting oxide is necessary to avoid the formation of the sole stable Cr{sub 3}C{sub 2} phase. The transformation from the stable Cr{sub 3}C{sub 2} to the metastable Cr{sub 3}C{sub 2-x} is observed for the first time. The driving force could be an epitaxial effect between Cr{sub 3}C{sub 2-x} and the surrounding graphite layer. This is consistent with the observation that the formation of graphite layers by CH{sub 4} cracking is easier in the Cr{sub 3}C{sub 2-x}-containing powders. (orig.)

  8. Abrasive Performance of Chromium Carbide Reinforced Ni3Al Matrix Composite Cladding

    Institute of Scientific and Technical Information of China (English)

    LI Shang-ping; LUO He-li; FENG Di; CAO Xu; ZHANG Xi-e

    2009-01-01

    The Microstructure and room temperature abrasive wear resistance of chromium carbide reinforced NiM3Al matrix composite cladding at different depth on nickel base alloy were investigated. The results showed that there is a great difference in microstructure and wear resistance of the Ni3 Al matrix composite at different depth. Three kinds of tests, designed for different load and abrasive size, were used to understand the wear behaviour of this material. Under all three wear conditions, the abrasion resistance of the composite cladding at the depth of 6 mm, namely NC-M2, was much higher than that of the composite cladding at the depth of 2 mm, namely NC-M1. In addition, the wear-resistant advantage of NC-M2 was more obvious when the size of the abrasive was small. The relative wear resistance of NC-M2 increased from 1.63 times to 2.05 times when the size of the abrasive decreased from 180 μm to 50μm. The mierostructure of the composite cladding showed that the size of chromium carbide particles, which was mainly influenced by cooling rate of melting pool, was a function of distance from the interface between the coating and substrate varied gradually. The chromium carbide particles near the interface were finer than that far from inter-face, which was the main reason for the different wear resistance of the composite cladding at different depth.

  9. Chromium and copper influence on the nodular cast iron with carbides microstructure

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2010-10-01

    Full Text Available In this paper chromium to 1,00% and copper to 1,50% influence at constant molybdenum content of about 1,50% on the nodular cast ironwith carbides microstructure has been presented. It was found, that as a result of synergic addition of above-mentioned elements there isthe possibility obtaining an ausferrite in nodular cast iron with carbides castings. Conditions have been given, when in nodular cast iron with carbides at cooling at first in the form, then air-cooling austenite transformation to upper bainite, its mixture with lower bainite, martensite or ausferrite takes place. Transformations proceed during cooling and the crystallization of cast iron have been determined and the casting hardness has been presented.

  10. Stability of Chromium Carbide/Chromium Oxide Based Porous Ceramics in Supercritical Water

    Science.gov (United States)

    Dong, Ziqiang

    This research was aimed at developing porous ceramics as well as ceramic-metal composites that can be potentially used in Gen-IV supercritical water reactors (SCWR). The research mainly includes two parts: 1) fabricating and engineering the porous ceramics and porous ceramic-metal composite; 2) Evaluating the stability of the porous ceramics in SCW environments. Reactive sintering in carbonaceous environments was used to fabricate porous Cr3C2/Cr2O3-based ceramic. A new process consisting of freeze casting and reactive sintering has also been successfully developed to fabricate highly porous Cr3C 2 ceramics with multiple interconnected pores. Various amounts of cobalt powders were mixed with ceramic oxides in order to modify the porous structure and property of the porous carbide obtained by reactive sintering. The hardness of the M(Cr,Co)7C3-Co composite has been evaluated and rationalized based on the solid solution of cobalt in the ceramic phase, the composite effect of soft Co metal and the porous structure of the ceramic materials. Efforts have also been made in fabricating and evaluating interpenetrating Cr3C2-Cu composites formed by infiltrating liquid copper into porous Cr3C2. The corrosion evaluation mainly focused on assessing the stability of porous Cr3C2 and Cr2O3 under various SCW conditions. The corrosion tests showed that the porous Cr3C 2 is stable in SCW at temperatures below 425°C. However, cracking and disintegrating of the porous Cr3C2 occurred when the SCW temperature increased above 425°C. Mechanisms of the corrosion attack were also investigated. The porous Cr2O3 obtained by oxidizing the porous Cr3C2 was exposed to various SCW environments. It was found that the stability of Cr 2O 3 was dependent on its morphology and the SCW testing conditions. Increasing SCW temperature increased the dissociation rate of the Cr2O 3. Adding proper amount of Y2O3 can increase the stability of the porous Cr2O3 in SCW. It was also concluded that decreasing

  11. Preparation and supercapacitive behaviors of the ordered mesoporous/microporous chromium carbide-derived carbons

    Science.gov (United States)

    Wu, Chun; Gao, Jiao; Zhao, Qinglan; Zhang, Youwei; Bai, Yansong; Wang, Xingyan; Wang, Xianyou

    2014-12-01

    A series of ordered mesoporous/microporous carbon materials derived from chromium carbide-derived carbons (CDCs) are prepared by nanocasting the chromic acetate and furfuryl alcohol precursor into SBA-15 and subsequent chlorination. The structure and morphology of the CDCs are characterized by N2 adsorption/desorption isotherm, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that all of the synthesized CDCs present large specific surface area and pore volume. Especially, the CDCs-2 prepared at the mass ratio of 1/1 (chromic acetate/furfuryl alcohol) exhibits the chain-like morphology with high surface area (1236 m2 g-1), large pore volume (0.76 cm3 g-1), and the good mesopore size centered at 3.43 nm. The electrochemical properties of all the CDCs are studied by cyclic voltammetry, constant current charge/discharge, electrochemical impedance spectroscopy and cycle life measurements in 6 M KOH electrolyte. The results display that the sample CDCs-2 exhibits a high capacitance of 242.7 F g-1 at the current density of 1 A g-1 and good cycling stability with coulombic efficiency of 100% over 10000 cycles.

  12. Cathodic stripping voltammetric determination of chromium in coastal waters on cubic Nano-titanium carbide loaded gold nanoparticles modified electrode

    Directory of Open Access Journals (Sweden)

    Haitao eHan

    2015-09-01

    Full Text Available The novel cubical nano-titanium carbide loaded gold nanoparticles modified electrode for selective and sensitive detection of trace chromium (Cr in coastal water was established based on a simple approach. Nano-titanium carbide is used as the typical cubical nanomaterial with wonderful catalytic activity towards the reduction of Cr(VI. Gold nanoparticles with excellent physical and chemical properties can facilitate electron transfer and enhance the catalytic activity of the modified electrode. Taking advantage of the synergistic effects of nano-titanium carbide and gold nanoparticles, the excellent cathodic signal responses for the stripping determination of Cr(VI can be obtained. The detection limit of this method is calculated as 2.08 μg L-1 with the linear calibration curve ranged from 5.2 to 1040 μg L-1. This analytical method can be used to detect Cr(VI effectively without using any complexing agent. The fabricated electrode was successfully applied for the detection of chromium in coastal waters collected from the estuary giving Cr concentrations between 12.48 and 22.88 μg L-1 with the recovery between 96% and 105%.

  13. Influence of a powder feed rate on the properties of the plasma sprayed chromium carbide- 25% nickel chromium coating

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2014-04-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 The plasma spray process is a leading technology of powder depositing in the production of coatings widely used in the aerospace industry for the protection of new parts and for the repair of worn ones. Cermet 75Cr3C2 - 25Ni(Cr coatings based on Cr3C2 carbides are widely used to protect parts as they retain high values of hardness, strength and resistance to wear up to a temperature of 850°C. This paper discusses the influence of the parameters of the plasma spray deposition of 75Cr3C2 - 25Ni(Cr powder on the structure and mechanical properties of the coating. The powder is deposited using plasma spraying at atmospheric pressure (APS. The plasma gas is He, which is an inert gas and does not react with the powder; it produces dense plasma with lower heat content and less incorporated ambient air in the plasma jet thus reducing temperature decomposition and decarburization of Cr3C2 carbide.. In this study, three groups of coatings were deposited with three different powder feed rates of: 30, 45 and 60 g/min. The  coating with the best properties was deposited on the inlet flange parts of the turbo - jet engine TV2-117A to reduce the influence of vibrations and wear. The structures and the mechanical properties of 75Cr3C2 - 25Ni(Cr coatings are analyzed in accordance with the Pratt & Whitney standard. Studies have shown that powder feed rates have an important influence on the mechanical properties and structures of 75Cr3C2 - 25Ni(Cr coatings. 

  14. Role of a silicate phase in the reduction of iron and chromium and their oxidation with carbide formation during the manufacture of carbon ferrochrome

    Science.gov (United States)

    Roshchin, V. E.; Roshchin, A. V.; Akhmetov, K. T.; Salikhov, S. P.

    2016-11-01

    The reactions of reduction of chromium and iron from chromospinelide and the reactions of carbide formation from the reduced metals are separated in space in experiments performed on ore grains with an artificially applied silicate shell. It is found that the silicate layer that isolates spinelide fro direct contact with carbon takes part in the reactions of both reduction and carbide formation. Free carbon extracts oxygen anions from the layer at the contact surface with the formation of CO, and the forming anion vacancies transfer "excess" electrons to the iron and chromium cations in the spinelide lattice and reduce them. Free and carbide-fixed carbon extracts iron and chromium cations from the silicate layer, and carbides form on the surface. The cation vacancies and electron holes (high-charge cations) that form in the silicate phase under these conditions are involved in the oxidation of the metal reduced in spinelide and cause its dissolution in the silicate phase and the precipitation of lower carbides on the surface of the silicate phase. The structure that is characterized of carbon ferrochrome forms on the surface of the silicate phase. Carbide formation is slower than reduction because of higher energy consumed for the formation of high-charge cations and the transfer of cations from the spinelide volume to the outer surface of the silicate phase. In the absence of a silicate layer, a carbide shell blocks the contact of carbon with oxides, which leads to the stop of reduction and, then, carbide formation. In the presence of a silicate (slag) shell around a spinelide grain, the following two concentration galvanic cells operate in parallel: an oxygen (reduction) cell and a metal (oxidation) cell. The parallel operation of the two galvanic cells with a common electrolyte (silicate phase) results in a decrease in the electric potentials between spinelide inside the silicate phase and carbon and carbides on its surface, and each of the processes is

  15. Chromium

    Science.gov (United States)

    ... Intern Med 1991;115:917-24. Abraham AS, Brooks BA, Eylath U. The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin-dependent diabetes. Metabolism 1992;41:768-71. Hermann J, Arquitt A. ...

  16. The Study of Heat Treatment Effects on Chromium Carbide Precipitation of 35Cr-45Ni-Nb Alloy for Repairing Furnace Tubes

    Directory of Open Access Journals (Sweden)

    Nakarin Srisuwan

    2016-01-01

    Full Text Available This paper presents a specific kind of failure in ethylene pyrolysis furnace tubes. It considers the case in which the tubes made of 35Cr-45Ni-Nb high temperature alloy failed to carburization, causing creep damage. The investigation found that used tubes became difficult to weld repair due to internal carburized layers of the tube. The microstructure and geochemical component of crystallized carbide at grain boundary of tube specimens were characterized by X-ray diffractometer (XRD, scanning electron microscopy (SEM with back-scattered electrons mode (BSE, and energy dispersive X-ray spectroscopy (EDS. Micro-hardness tests was performed to determine the hardness of the matrix and the compounds of new and used tube material. The testing result indicated that used tubes exhibited a higher hardness and higher degree of carburization compared to those of new tubes. The microstructure of used tubes also revealed coarse chromium carbide precipitation and a continuous carbide lattice at austenite grain boundaries. However, thermal heat treatment applied for developing tube weld repair could result in dissolving or breaking up chromium carbide with a decrease in hardness value. This procedure is recommended to improve the weldability of the 35Cr-45Ni-Nb used tubes alloy.

  17. Microstructure and Wear Resistance of Chromium Carbide Coating IN SITU Synthesized by VEB

    Science.gov (United States)

    Lu, Binfeng; Li, Liping; Lu, Fenggui; Tang, Xinhua

    2014-08-01

    In this paper, (Cr, Fe)7C3(M7C3)/γ-Fe composite layer has been in situ fabricated on a low carbon steel surface by vacuum electron beam irradiation (VEB). Three kinds of powder mixtures were placed on a low carbon steel substrate, which was then irradiated with electron beam in vacuum condition. The microstructure and wear resistance of the composite layers has been studied by means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), microhardness tester and tribological tester. The chemical composition of all specimens were carefully analyzed using energy-dispersive X-ray spectroscopy (EDAX) technique. Depending on three different powder mixtures, hypereutectic and hypoeutectic microstructures were obtained on surface composite layers. No pores and cracks were found on the coatings. The amount of carbides formed in the surface composite layer was mainly determined by carbon concentration. The microstructure close to the fusion line was largely primary austenite dendrite. The hardness and wear resistance of the surface composite layer has been greatly improved due to the extensive distribution of carbides.

  18. Effect of alloying elements on the composition of carbide phases and mechanical properties of the matrix of high-carbon chromium-vanadium steel

    Science.gov (United States)

    Titov, V. I.; Tarasenko, L. V.; Utkina, A. N.

    2017-01-01

    Based on the results of phase physicochemical analysis of high-carbon chromium-vanadium steel, the predominant type of carbide that provides high wear resistance has been established, and its amount and amount of carbon in martensite have been determined. Data on the composition and the amount of carbide phase and on the chemical composition of the martensite of high-carbon steel have been obtained, which allows determination of the alloying-element concentration limits. The mechanical testing of heats of a chosen chemical composition has been carried out after quenching and low-temperature tempering. The tests have demonstrated benefits of new steel in wear resistance and bending strength with the fatigue strength being retained, compared to steels subjected to cementation. The mechanism of secondary strengthening of the steel upon high-temperature tempering has been revealed. High-temperature tempering can be applied to articles that are required to possess both high wear resistance and heat resistance.

  19. Microstructure and abrasive wear properties of M(Cr,Fe7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW process

    Directory of Open Access Journals (Sweden)

    Soner BUYTOZ

    2010-01-01

    Full Text Available In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD, field-emission scanning electron microscopy (FE-SEM, X-ray energy-dispersive spectroscopy (EDS. Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were carried out on a pin-on-disc apparatus as function of contact load. Wear rates of the all coating layers were decreased as a function of the loading. The improvement of abrasive wear resistance of the coating layer could be attributed to the high hardness of the hypereutectic M7C3 carbides in the microstruc-ture. As a result, the microstructure of surface layers, hardness and abrasive wear behaviours showed different characteristics due to the gas tungsten arc welding parameters.

  20. Effects of Multi-Alloying on Carbide of Eutectic High Chromium Cast Iron Containing 31%Cr%多元合金化对共晶31Cr高铬铸铁碳化物的影响

    Institute of Scientific and Technical Information of China (English)

    马幼平; 宋绍峰; 李秀兰; 党晓明

    2011-01-01

    The eutectic high chromium cast iron containing 31%Cr was deal with multi-alloying,the microstructure,composition,carbide size and morphology were investigated through metallurgical microscope,scanning electron microscope(SEM),AXIOS(PW4400) X fluorescence and Leica image analyzer.The results show that,the size is refined and the morphology was improved of carbide through multi-alloying,the morphology factor K of carbide increases and then decreases,while the grain factor D of carbide is contrary to the morphology factor K.The optimum composition is selected,which the morphology factor K is 0.83 and the grain factor D is 0.66 micron of the carbide.Recombination action between nucleation and growth mechanisms of eutectic composition phase improves the size of carbide.The reasons of carbide morphology evolved are the interaction among which the activity of carbon atoms and the interfacial tension of carbide are changed,and produce divorced eutectic.%采用多元合金化处理共晶31Cr高铬铸铁,借助金相显微镜、扫描电镜、AXIOS(PW4400)型X荧光及Leica图像分析仪对金相组织、成分、碳化物尺寸及形貌进行分析。结果表明,经多元合金化后,碳化物尺寸细化、形貌改善,碳化物形状因子K先增大后减小,粒度因子D先减小后增大;确定了最佳成分,其碳化物的形状因子K=0.83,粒度因子D=0.66μm;共晶组成相形核及长大机制转变的复合作用改善了碳化物尺寸;溶液中碳原子活度、碳化物界面张力的改变和产生离异共晶的共同作用导致了碳化物形貌的演变。

  1. Inoculation of chromium white cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-01-01

    Full Text Available It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  2. 镍基合金碳化铬复合涂层材料的界面分析%Interfacial Analysis of Ni-based Alloy—Chromium Carbide Composite Coating

    Institute of Scientific and Technical Information of China (English)

    黄新波; 林化春

    2001-01-01

    This paper generates a concentration function combinin g A.Ficks second law of diffusion by means of polynomial curve,and develops an efficient solver to calculate the diffusion coefficient of every component prec isely.It states that interfacial diffusion which causes metallurgical bondage ha ppens between the Alloy Chromium Carbide Composite coating and the steel substrate.%利用多项式曲线拟合浓度函数,结合菲克扩散第二定律, 编制FORTRAN程序,快速准确地计算出各组元的扩散系数。证实真空熔烧所得镍基合金—— 碳化铬复合涂层与钢基体之间发生界面扩散,形成牢固的冶金结合。

  3. Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Jensen, Jens Oluf; Bjerrum, Niels J.

    2014-01-01

    Alternative catalysts based on carbides of Group 5 (niobium and tantalum) and 6 (chromium, molybdenum and tungsten) metals were prepared as films on the metallic substrates. The electrochemical activities of these carbide electrodes towards the hydrogen evolution reaction (HER) in concentrated......, attributable to the different electronic structures. Tungsten carbide among the studied electrode samples exhibited the highest HER activity. Upon anodic potential scans in the presence of oxygen, chromium, tantalum and tungsten carbides displayed passivation due to the formation of stable surface layers...

  4. Prospective, multi-center evaluation of a silicon carbide coated cobalt chromium bare metal stent for percutaneous coronary interventions: Two-year results of the ENERGY Registry

    Energy Technology Data Exchange (ETDEWEB)

    Erbel, Raimund, E-mail: erbel@uk-essen.de [Department of Cardiology, University of Duisburg-Essen, Essen (Germany); Eggebrecht, Holger [Cardioangiological Center Bethanien (CCB), Frankfurt (Germany); Roguin, Ariel [Department of Cardiology, Rambam Medical Center, Haifa (Israel); Schroeder, Erwin [Division of Cardiovascular Medicine, Cliniques Universitaires de Mont-Godinne, Yvoir (Belgium); Philipp, Sebastian [Department Internal Medicine/Cardiology, Elbe Klinikum Stade, Stade (Germany); Heitzer, Thomas [Department of Cardiology, Heart Center Dortmund, Dortmund (Germany); Schwacke, Harald [Department of Internal Medicine, Diakonissen-Stiftungs- Krankenhaus Speyer (Germany); Ayzenberg, Oded [The Heart Institute, Kaplan Medical Center, Rehovot (Israel); Serra, Antonio [Servicio de Cardiología, Hospital de la Santa Creu i Sant Pau, Barcelona, España (Spain); Delarche, Nicolas [Cardiology unit, Pau General Hospital, Pau (France); Luchner, Andreas [Department of Internal Medicine/Cardiology, Universitätsklinikum Regensburg (Germany); Slagboom, Ton [Department of Cardiology, Onze Lieve Vrouwe Gasthuis, Amsterdam (Netherlands)

    2014-11-15

    Background: Novel bare metal stents with improved stent design may become a viable alternative to drug-eluting stents in certain patient groups, particularly, when long-term dual antiplatelet therapy should be avoided. Purpose: The ENERGY registry aimed to assess the safety and benefits of a cobalt–chromium thin strut bare metal stent with a passive coating in a large series of patients under real-world conditions. Methods and materials: This prospective registry recruited 1016 patients with 1074 lesions in 48 centers from April to November 2010. The primary endpoint was the rate of major adverse cardiac events (MACEs), a composite of cardiac death, myocardial infarction and clinically driven target lesion revascularization. Results: More than half of the lesions (61.0%) were type A/B1 lesions, mean lesion length was 14.5 ± 6.5 mm and mean reference vessel diameter 3.2 ± 0.5 mm. MACE rates at 6, 12 and 24 months were 4.9%, 8.1% and 9.4%, target lesion revascularization rates 2.8%, 4.9% and 5.4% and definite stent thrombosis rates 0.5%, 0.6% and 0.6%. Subgroups showed significant differences in baseline and procedural characteristics which did not translate into significantly different clinical outcomes. Specifically, MACE rates at 24 months were 13.5% in diabetics, 8.6% in small stents and 9.6% in acute coronary syndrome patients. Conclusion: The population of ENERGY reflects real-world conditions with bare metal stents being mainly used in simple lesions. In this setting, percutaneous coronary intervention using a cobalt–chromium thin strut bare metal stent with a passive coating showed very good results up to 24 months. (ClinicalTrials.gov:NCT01056120) Summary for annotated table of contents: The ENERGY international registry evaluated the safety and benefits of a cobalt–chromium thin strut bare metal stent with passive coating in 1016 patients under real-world conditions until 2 years. Results were encouraging with a low composite rate of cardiac death

  5. Nanosized Borides and Carbides for Electroplating. Metal-Matrix Coatings: Specifications, Performance Evaluation

    Science.gov (United States)

    Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Il'yashchenko, D. P.; Kartsev, D. S.

    2016-04-01

    This paper summarizes experience of application of nano-sized carbides and borides of titanium and chromium, silicon carbide as components of electro-depositable coating compositions based on nickel, zinc, and chromium. Basic physical and mechanical properties of the coatings are determined. Technological and economic evaluation is completed; practicability of high-cost nano-diamonds substitution for nano-sized borides and carbides is justified.

  6. Nanosized Borides and Carbides for Electroplating. Metal-Matrix Coatings: Specifications, Performance Evaluation

    OpenAIRE

    Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Ilyashchenko, Dmitry Pavlovich; Karthev, Dmitry Sergeevich

    2016-01-01

    This paper summarizes experience of application of nano-sized carbides and borides of titanium and chromium, silicon carbide as components of electro-depositable coating compositions based on nickel, zinc, and chromium. Basic physical and mechanical properties of the coatings are determined. Technological and economic evaluation is completed; practicability of high-cost nano-diamonds substitution for nano-sized borides and carbides is justified.

  7. PYROLYTIC CARBIDE DEVELOPMENT PROGRAM

    Science.gov (United States)

    and injector design changes were made to improve the quality of the carbide produced. Niobium carbide and tantalum carbide coated nozzles are described...Additional data for pyrolytic niobium carbide and hafnium carbide is also presented. (Author)

  8. FEATURES OF CHROMIUM DOPING OF WEAR-RESISTANT CAST IRON

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2013-01-01

    Full Text Available The aim of this work analysis of the influence of chromium on the process of carbide formation, changes in chemical composition of the metal substrate in the areas adjacent to the carbides and at the hardness of iron while economy nickel and manganesealloying.

  9. Precipitation behavior of carbides in high-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Shi, Chang-min [University of Science and Technology, Beijing (China). State Key Laboratory of Advanced Metallurgy; Li, Ji-hui [Yang Jiang Shi Ba Zi Group Co., Ltd, Guangdong (China)

    2017-01-15

    A fundamental study on the precipitation behavior of carbides was carried out. Thermo-calc software, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, X-ray diffractometry and high-temperature confocal laser scanning microscopy were used to study the precipitation and transformation behaviors of carbides. Carbide precipitation was of a specific order. Primary carbides (M7C3) tended to be generated from liquid steel when the solid fraction reached 84 mol.%. Secondary carbides (M7C3) precipitated from austenite and can hardly transformed into M23C6 carbides with decreasing temperature in air. Primary carbides hardly changed once they were generated, whereas secondary carbides were sensitive to heat treatment and thermal deformation. Carbide precipitation had a certain effect on steel-matrix phase transitions. The segregation ability of carbon in liquid steel was 4.6 times greater that of chromium. A new method for controlling primary carbides is proposed.

  10. Microstructure and Property of High Carbonic-Chromium Cast Steel with Different Hot Deformation Ratio

    Institute of Scientific and Technical Information of China (English)

    XU Tao; WANG Jiu-liang; ZHANG Run-jun; CHAO Guo-hua; LIU Jian-hua

    2004-01-01

    The microstructure and properties of high carbonic-chromium cast steel subjected to different hot deformation ratios were studied. The experimental results show that the microstructure and properties of high carbonic-chromium cast steel are obviously improved after hot deformation, and the best mechanical properties of the cast steel can be obtained under hot deformation ratio of 40 %-50 %, which leads to the morphology change of eutectic carbide and the precipitation of granular carbides.

  11. Effect of polyethylene glycol on electrochemically deposited trivalent chromium layers

    Institute of Scientific and Technical Information of China (English)

    Joo-Yul LEE; Man KIM; Sik-Chol KWON

    2009-01-01

    The structural characteristics of the trivalent chromium deposits and their interfacial behavior in the plating solution with and without polyethylene glycol molecules were observed by using various electrochemical methods such as cyclic voltammetry, open circuit potential transition, electrochemical impedance spectroscopy, scanning electron microscopy and X-ray photoelectron spectrometry. It is shown that the polyethylene glycol molecules make the reductive current density lower in the trivalent chromium plating system and promote a hydrogen evolution reaction through their adsorption on the electrode surface. And the trivalent chromium layer formed from the polyethylene glycol-containing solution has somewhat higher density of cracks on its surface and results in a lower film resistance, lower polarization resistance, and higher capacitance in a corrosive atmosphere. It is also revealed that the formation of chromium carbide layer is facilitated in the presence of polyethylene glycol, which means easier electrochemical codeposition of chromium and carbon, not single chromium deposition.

  12. Plasma metallurgical production of nanocrystalline borides and carbides

    Science.gov (United States)

    Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.

    2016-09-01

    he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.

  13. Heat-Resistance of the Powder Cobalt Alloys Reinforced by Niobium or Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2016-01-01

    Full Text Available The characteristics of heat-resistance of powder cobalt alloys at 1100 °C were investigated. These alloys were developed for the protection of workers banding shelves GTE blades from wear. The alloys were prepared by hot pressing powders of cobalt, chromium, aluminum, iron and niobium or titanium carbides. The values of heat resistance alloys containing carbides between 30 and 70% (vol. depend on the type made of carbide alloys: alloys with titanium carbide superior in heat-resistant alloy of niobium carbide. The most significant factor affecting on the heat-resistant alloys, is porosity: with its increase the parameters decline regardless of the type and content of carbide. The optimum composition of powder heat resisting alloys of titanium carbide with a melting point above 1300 °C were determined for use in the aircraft engine.

  14. Precipitation of the Carbides $M_{23}C_{6}$ under the Irradiation by High Energy Heavy Ions

    CERN Document Server

    Hofmann, A; Semina, V K; Kochanski, T

    2000-01-01

    Carbide M_{23}C_{6} precipitation process in chromium-nickel steels 12H18N9ô and 00H17N14í2 irradiated with high energy heavy Ar^{+6} ions at 625^{o}ó has been studied. It was found that ion irradiation accelerates carbide M_{23}C_{6} precipitation in comparison to thermal annealing. It was shown that composition of carbides formed by irradiation in 00H17N14í2 steel formed under irradiation differs from composition of carbides precipitated during thermal ageing.

  15. Titanium Carbide-Graphite Composites

    Science.gov (United States)

    1991-11-08

    titanium carbide , titanium carbide with free graphite, titanium carbide /vanadium carbide alloy with free graphite, and titanium carbide with...from melts. The test pins were drawn across hot pressed titanium carbide wear plates with 5 newtons of normal force. The lowest friction coefficient at...22 C was 0.12 obtained with pure titanium carbide . The lowest friction coefficient at 900 C was 0.19 obtained with titanium carbide with boron and

  16. Low-chromium reduced-activation chromium-tungsten steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J.; Maziasz, P.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Bainitic microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of non-classical bainite were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was found to be considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2 1/4Cr-2W and 2 1/4Cr-2WV steel compositions to increase their hardenability, and the microstructures and mechanical properties were examined.

  17. Chromium in diet

    Science.gov (United States)

    The best source of chromium is brewer's yeast. However, many people do not use brewer's yeast because it causes bloating ( abdominal distention ) and nausea . Other good sources of chromium include ...

  18. Heterogeneous chromium catalysts

    NARCIS (Netherlands)

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based silica-c

  19. Primary and secondary crystallization of modified hypoeutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2010-04-01

    Full Text Available The paper presents investigations of crystallization of modified hypoeutectic wear resistant chromium cast iron which contains carbon about 2% and chromium on three levels (12%, 18% and 25%. Three substances were applied to the modification ( boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and mischmetal (RE. The investigations of crystallization were conducted the DTA method in DTA-C and DTA-Is testers. The influence on the course of the process of primary and secondary crystallization was observed.

  20. Mechanoactivation of chromium silicide formation in the SiC-Cr-Si system

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2002-01-01

    Full Text Available The processes of simultaneous grinding of the components of a SiC-Cr-Si mixture and further temperature treatment in the temperature range 1073-1793 K were studied by X-ray phase analysis, IR spectroscopy, electron microscopy, and X-ray microanalysis. It was established that, during grinding of the mixture, chromium silicides form. A temperature treatment completes the process. Silicide formation proceeds within the framework of the diffusion of silicon into chromium. In the presence of SiO2 in the mixture, silicide formation occurs also as a result of the reduction of silica by silicon and silicon carbide. The sintering of synthesized composite SiC-chromium silicides powders at a high temperature under a high pressure (T = 2073 K, P = 5 GPa is accompanied by the destruction of cc-SiC particles, the cc/3 transition in silicon carbide and deformation distortions of the lattices of chromium silicides.

  1. Influence of Rare Earth on Property of Low Chromium Semi-Steel

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-hua; XIE Dan-yang; LI Chang-sheng; SHAO Li; ZHANG Rui-jun

    2003-01-01

    The influence of rare earth (RE) content on mechanical properties and abrasion resistance of low chromium semi-steel was studied by means of metallographic examination, scanning electron microscopic examination and mechanical property test. The experiment results show that RE can improve the comprehensive properties, especially in combination with proper heat treatment. The optimum properties of low chromium semi-steel modified by RE of 0.25 % could be obtained by normalization at 950 ℃ for 3 h. The main reason is the change in morphology and distribution of eutectic carbide and the precipitation of granular carbides.

  2. The effect of selective oxidation of chromium on the creep strength of alloy 617

    OpenAIRE

    Ennis, P.; Quadakkers, W.; H. Schuster

    1993-01-01

    In order to investigate the effect on creep strength of the selective oxidation of chromium which causes the formation of a carbide-fi-ee subsurface zone, specimens of Ni22Cr12Co9Mo1Al (Alloy 617) were subjected to heat treatments to simulate a long-term service exposure of a thin-walled heat exchanger tube operating at high temperatures. In creep tests carried out at 900°C, specimens with extensive chromium-depleted and carbide-free subsurface zones exhibited higher creep strength than speci...

  3. SILICON CARBIDE FOR SEMICONDUCTORS

    Science.gov (United States)

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  4. Silicon Carbide Shapes.

    Science.gov (United States)

    Free-standing silicon carbide shapes are produced by passing a properly diluted stream of a reactant gas, for example methyltrichlorosilane, into a...reaction chamber housing a thin walled, hollow graphite body heated to 1300-1500C. After the graphite body is sufficiently coated with silicon carbide , the...graphite body is fired, converting the graphite to gaseous CO2 and CO and leaving a silicon carbide shaped article remaining.

  5. Wear resistant steels and casting alloys containing niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, W.; Siebert, S.; Huth, S. [Lehrstuhl Werkstofftechnik, Ruhr-Univ. Bochum (Germany)

    2007-12-15

    Niobium, like titanium and vanadium, forms superhard MC carbides that remain relatively pure in technical alloys on account of their low solubility for other metallic alloying elements. However, because they have a greater hardness than the precipitated chromium carbides commonly used in wear-resistant alloys, they are suitable as alternative hard phases. This contribution deals with new wear-resistant steels and casting alloys containing niobium carbide. These include a secondary hardening hardfacing alloy, a composite casting alloy for wear applications at elevated temperatures, a white cast iron as well as two variants of a corrosion-resistant cold-work tool steel produced by melt metallurgy and by powder metallurgy. A heat-resistant casting alloy is also discussed. Based on equilibrium calculations the microstructures developing during production of the alloys are analysed, and the results are discussed with respect to important properties such as abrasive wear and corrosion resistance. (orig.)

  6. Carbide Dissolution during Intercritical Austenitization in Bearing Steel

    Institute of Scientific and Technical Information of China (English)

    LI Hui; MI Zhenli; ZHANG Xiaolei; TANG Di; WANG Yide

    2014-01-01

    In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to calculate the elements diffusion kinetic and the evolution law of volume fraction of carbide. DIL805A dilatometer was used to simulate the intercritical heat treatment. The microstructure was observed by scanning electron microscopy(SEM), and the micro-hardness was tested. The experimental results indicate that the dissolution of carbide is composed of two stages:initial austenite growth governed by carbon diffusion which sharply moves up the micro-hardness of quenched martensite, and subsequent growth controlled by diffusion of Cr elements in M3C. The volume fraction of M3C decreases with the increasing holding time, and the metallographic analysis shows a great agreement with values calculated by software.

  7. SILICON CARBIDE DATA SHEETS

    Science.gov (United States)

    These data sheets present a compilation of a wide range of electrical, optical and energy values for alpha and beta- silicon carbide in bulk and film...spectrum. Energy data include energy bands, energy gap and energy levels for variously-doped silicon carbide , as well as effective mass tables, work

  8. Effects of Rare Earth and Alkaline Earth on Spheroidizing of Eutectic Carbides in Low Tungsten White Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Fu Hanguang; Zou Dening

    2004-01-01

    Tungsten Alloy White Cast Iron(TAWCI) has great brittleness and narrow application scope. The influences of Rare earth element(Ce) and alkaline earth elements ( K, Na) on the microstructures and performances of TAWCI were researched, and the idea estimating spheroidizing effect of carbides using Circular Degree (C. D) were put forward. The result shows that eutectics carbide tums into sphericity from network after modification, and carbide is refined and uniformly distributed and the C. D of eutectic carbide increases. The mechanism of carbide spheroidizing was analyzed. The impact toughness and wear resistance of TAWCI obviously improve with the rise of C. D of carbides.The service life of modified TAWCI roll is 35 % higher than that of high chromium cast iron roll, and its production cost is reduced by 25 %.

  9. Thermal Transport in Refractory Carbides.

    Science.gov (United States)

    Thermal energy transport mechanisms in titanium carbide and zirconium carbide have been studied. Several compositions of vanadium carbide alloyed...with titanium carbide were used. The electronic component of the thermal conductivity exceeded the values computed using the classical value for L in

  10. Influences of copper on solidification structure and hardening behavior of high chromium cast irons

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; XIONG Ji; FAN Hong-yuan; SHEN Bao-luo; GAO Sheng-ji

    2008-01-01

    The influences of copper on microstructure and the hardening behavior of high chromium cast irons subjected to sub-critical treatment were investigated.The results show that the mierostructure of the as-cast high chromium cast irons consists of retained austenite,martensite and M7 C3 type eutectic carbide.When copper is added into high chromium cast irons,austenite and carbide contents are increased.The increased addition of copper content from 0%to 1.84%leads to the increase of austenite and carbide from 15.9%and 20.0% to 61.0%and 35.5%,respectively.In the process of sub-critical treatment,the retained austenite in the matrix can be precipitated into secondary carbides and then transforms into martensite in cooling process,which causes the secondary hardening of the alloy under sub-critical treatment.High chromium cast irons containing copper in sub-critical treatment appear the second hardening curve peak due to the precipitation of copper from supersaturated matrix.

  11. Effect of the additions of carbide-forming elements on the microstructure and mechanical properties of steel shot

    Science.gov (United States)

    Shchennikova, T. L.; Zalazinskii, G. G.; Leont'ev, L. I.; Rybalko, O. F.

    2009-02-01

    The effect of the additions of carbide-forming elements (vanadium, titanium, chromium, molybdenum) on the microstructure and mechanical properties of the steel shot produced by the atomization of an iron-carbon melt (0.8% C) by water at a low pressure (0.2 MPa) is studied. The introduction of alloying elements is shown to affect the sizes of the structural constituents that form during the solidification of shot particles and, hence, the mechanical properties (hardness, wear resistance) of the shot. The additions can decrease the grain size in the shot by a factor of 2.5-3. The formation of the MC ( M is a carbide-forming element), VC, TiC, or M 2C (e.g., Mo2C) carbide increases the hardness of the shot material. Chromium and molybdenum form solid solutions with iron and complex (Fe, M)3C carbides.

  12. The role of niobium carbide in radiation induced segregation behaviour of type 347 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ahmedabadi, Parag, E-mail: adit@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kain, Vivekanand [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Gupta, Manu [PEC University of Technology, Chandigarh (India); Samajdar, I. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Sharma, S.C.; Bhagwat, P.; Chowdhury, R. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2011-08-01

    Highlights: > Characterization of radiation-induced segregation done by EPR and AFM examination. > Variation of DL-EPR values with depth showed trend similar to that of variation of dpa with depth, calculated by SRIM. > Niobium carbides had reduced defect flux toward grain boundaries leading to reduced chromium depletion levels. > Adsorption of point defects at carbide-matrix interface leading to chromium depletion at large carbide clusters. - Abstract: The effect of niobium carbide precipitates on radiation induced segregation (RIS) behaviour in type 347 stainless steel was investigated. The material in the as-received condition was irradiated using double-loop 4.8 MeV protons at 300 deg. C for 0.43 dpa (displacement per atom). The RIS in the proton irradiated specimen was characterized using double-loop electrochemical potentiokinetic reactivation (DL-EPR) test followed by atomic force microscopic examination. The nature of variation of DL-EPR values with the depth matched with the variation of the calculated irradiation damage (dpa) with the depth. The attack on grain boundaries during EPR tests was negligible indicating absence of chromium depletion zones. The interface between niobium carbide and the matrix acts as a sink for point defects generated during irradiation and this had reduced point defect flux toward grain boundaries. The attack was noticed at a few large cluster of niobium carbide after the DL-EPR test at the depth of maximum attack for the irradiated specimen. Pit-like features were not observed within the matrix indicating the absence of chromium depletion regions within the matrix.

  13. Analysis of the structure of castings made from chromium white cast iron resistant to abrasive wear

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-10-01

    Full Text Available It has been proved that an addition of boron carbide and disintegrated steel scrap introduced as an inoculant to the chromium white cast iron changes the structure of castings. The said operation increases the number of crystallization nuclei for dendrites of the primary austenite. In this case, the iron particles act as substrates for the nucleation of primary austenite due to a similar crystallographic lattice. The more numerous are the dendrites of primary austenite and the structure more refined and the mechanical properties higher. Castings after B4C inoculation revealed a different structure of fine grained fracture. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  14. Molecular dynamics investigation of the interaction of dislocations with carbides in BCC Fe

    Science.gov (United States)

    Granberg, F.; Terentyev, D.; Nordlund, K.

    2015-06-01

    Different types of carbides are present in many steels used as structural materials. To safely use steel in demanding environments, like nuclear power plants, it is important to know how defects will affect the mechanical properties of the material. In this study, the effect of carbide precipitates on the edge dislocation movement is investigated. Three different types of carbides were investigated by means of molecular dynamics, with a Tersoff-like bond order interatomic potential by Henriksson et al. The obstacles were 4 nm in diameter and were of Fe3C- (cementite-), Fe23C6- and Cr23C6-type. The critical unpinning stress was calculated for each type at different temperatures, to get the temperature-dependent obstacle strength. The results showed a decreasing critical stress with increasing temperature, consistent with previous studies. The critical unpinning stress was seen to be dependent on the type of carbide, but the differences were small. A difference was also observed between the obstacles with the same structure, but with different composition. This study shows the relation between the existing Cr23C6 carbide and the experimentally non-existing Fe23C6 carbide, which needs to be used as a model system for investigations with interatomic potentials not able to describe the interaction of Cr in the Fe-C-system. We found the difference to be a between 7% and 10% higher critical unpinning stress for the chromium carbide, than for the iron carbide of the same type.

  15. Structure and properties of chromium-containing coatings produced by electron-beam facing in the atmosphere

    Science.gov (United States)

    Poletika, I. M.; Golkovskii, M. G.; Krylova, T. A.; Perovskaya, M. V.

    2009-03-01

    The chemical and phase compositions and the structure of layers formed by electron-beam facing of low-carbon steel with mixtures of powdered chromium and chromium carbide in air are studied. The microhardness of the layers is determined over their thickness. The faced steels are tested for bending strength, corrosion resistance, and resistance to abrasive wear. A possible mechanism of formation of the properties of the coating, i.e., the hardness, the wear resistance, and the crack resistance, is considered.

  16. Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition

    Science.gov (United States)

    Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.

    2016-02-01

    In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.

  17. Titanium Carbide: Nanotechnology, Properties, Application

    OpenAIRE

    Galevsky, G. V.; Rudneva, V. V.; Garbuzova, A. K.; Valuev, Denis Viktorovich

    2015-01-01

    The paper develops scientific and technological bases for fabrication of titanium carbide which is a nanocomponent of composite materials. The authors determine optimum technology specifications and the main titanium carbide properties: fineness of titaniferous raw materials, carbide-forming agent quantity, set temperature of plasma flow, tempering temperature, titanium carbide yield, productivity, specific surface, size and shape of particles. The paper includes equations to describe how the...

  18. Microstructure and wear resistance of high chromium cast iron containing niobium

    Directory of Open Access Journals (Sweden)

    Zhang Zhiguo

    2014-05-01

    Full Text Available In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  19. Controlling the microstructure of binary carbide films with elemental substitutions

    Science.gov (United States)

    Feller, K.; Haider, M.; Hodges, A.; Spreng, R.; Posbergh, E.; Woodward, H.; Lofland, S. E.; Hettinger, J. D.; Heon, M.; Gogotsi, Y.

    2011-03-01

    We report on experiments to control the microstructure of textured binary carbide thin films deposited by reactive magnetron sputter deposition. Controlling the microstructure in these materials is important as the microstructure of these films provides a template for the resulting carbide-derived carbon (CDC) film and impacts their performance. Specifically, a combinatorial approach is used to add chromium to TiC films creating a compositional gradient as a function of position. We present a measurement of surface roughness as a function of material composition. The resulting materials, (Ti 1-x Cr x) C films, are significantly smoother than their pure TiC counterparts and the resulting CDC's have correlated defects which will improve the performance of the CDC in supercapacitor applications. This work was supported by Rowan University and NSF under contract DMR-0503711.

  20. Titanium Carbide: Nanotechnology, Properties, Application

    Science.gov (United States)

    Galevsky, G. V.; Rudneva, V. V.; Garbuzova, A. K.; Valuev, D. V.

    2015-09-01

    The paper develops scientific and technological bases for fabrication of titanium carbide which is a nanocomponent of composite materials. The authors determine optimum technology specifications and the main titanium carbide properties: fineness of titaniferous raw materials, carbide-forming agent quantity, set temperature of plasma flow, tempering temperature, titanium carbide yield, productivity, specific surface, size and shape of particles. The paper includes equations to describe how the major specifications of the fabrication technique influence the content of titanium carbide and free carbon in the end product.

  1. Silicon carbide reinforced silicon carbide composite

    Science.gov (United States)

    Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    2001-01-01

    This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  2. Characterization of Silicon Carbide.

    Science.gov (United States)

    The various electrical and structural measurement techniques for silicon carbide are described. The electrical measurements include conductivity, resistivity, carrier concentration, mobility, doping energy levels, and lifetime. The structural measurements include polytype determination and crystalline perfection. Both bulk and epitaxial films are included.

  3. Composition Comprising Silicon Carbide

    Science.gov (United States)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2012-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  4. Alternatives for hard chromium plating: Nanostructured coatings for severe-service valves

    Energy Technology Data Exchange (ETDEWEB)

    Vernhes, L. [Department of Engineering Physics, Ecole Polytechnique, C.P. 6079, Succ. Centre Ville, Montreal, Quebec, Canada H3C 3A7 (Canada); Velan Inc., 7007 Côte de Liesse, Montreal, Quebec, Canada H4T 1X8 (Canada); Azzi, M. [Department of Mechanical Engineering, Notre Dame University-Louize (Lebanon); Klemberg-Sapieha, J.E., E-mail: jsapieha@polymtl.ca [Department of Engineering Physics, Ecole Polytechnique, C.P. 6079, Succ. Centre Ville, Montreal, Quebec, Canada H3C 3A7 (Canada)

    2013-07-15

    In this paper, a variety of chromium-free protective coatings were evaluated as alternatives for hard chromium (HC) electroplating for valve applications, such as nanostructured cobalt-phosphor (NCP) deposited by electroplating and tungsten/tungsten carbide (W/WC) prepared by chemical vapor deposition. A series of laboratory tests including hardness, micro scratch, pin-on-disk and electrochemical polarization measurements were performed in order to compare the performance of the different coatings. In addition, mechanical resistance and fatigue resistance were evaluated using prototype valves with coated ball under severe tribo-corrosion conditions. It was shown that W/WC coating exhibits superior resistance to wear and corrosion due to high hardness and high resistance to pitting, respectively while NCP exhibits better wear resistance than HC with alumina ball and low corrosion potential which allow to use it as protective (sacrificial) coating. Both nanostructured coatings exhibited attractive tribo-mechanical and functional characteristics compared to hard chromium. - Highlights: • Tungsten/tungsten carbide (W/WC) and cobalt-phosphor (NCP) coatings are compared with hard chromium (HC). • NCP and W/WC offer better tribological properties (wear rate and friction coefficient) than HC. • W/WC has demonstrated a robust corrosion behavior with a breakdown potential greater than 1 V. • NCP and W/WC are potential candidates to replace hard chromium as protective coating.

  5. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  6. Influence of tungsten and titanium on the structure of chromium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-01-01

    Full Text Available The paper analyses the as-cast state structure of chromium cast iron designed for operation under harsh impact-abrasive conditions. In the process of chromium iron castings manufacture, very strong influence on the structure of this material have the parameters of the technological process. Among others, adding to the Fe-Cr-C alloy the alloying elements like tungsten and titanium leads to the formation of additional carbides in the structure of this cast iron, which may favourably affect the casting properties, including the resistance to abrasive wear.

  7. Abrasive Wear Behavior of High Chromium Cast Iron and Hadfield Steel-- A Comparison

    Institute of Scientific and Technical Information of China (English)

    Mehdi Mazar Atabaki; Sajjad Jafari; Hassan Abdollah-pour

    2012-01-01

    Wear properties of two different crushers used for grinding raw materials of cement industry are compared using pin-on-disk wear test.The wear test was carried out with different loads on a pin.Abrasive wear behavior of two alloys was evaluated by comparing mass loss,wear resistance,microhardness and friction coefficient.The microstructure of the specimens was detected using optical microscope.The results showed that abrasive wear of high chromium cast iron is lower than that of Hadfield steel.Due to the presence of M7C3 carbides on the high chromium cast iron matrix,impact crushers exhibited higher friction coefficient

  8. Chemical Analysis Methods for Silicon Carbide

    Institute of Scientific and Technical Information of China (English)

    Shen Keyin

    2006-01-01

    @@ 1 General and Scope This Standard specifies the determination method of silicon dioxide, free silicon, free carbon, total carbon, silicon carbide, ferric sesquioxide in silicon carbide abrasive material.

  9. Influence of selected modifiers on crystallization curve of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2009-07-01

    Full Text Available In article was introduced the results of investigations of modified chromium cast iron crystallization process. It the cast iron about composition of basic elements C = 2,8 % and Cr = 18% was modified with five substances (boron carbide, ferrosilicon, ferrocalciumsilicon, ferroniobium and ferroniobium with ferrovanadium. Influence on course of primary and secondary crystallization process was observed. The investigations of crystallization was conducted DTA method in tester DTA - C.

  10. Nano-Disperse Borides and Carbides: Plasma Technology Production, Specific Properties, Economic Evaluation

    Science.gov (United States)

    Galevskii, G. V.; Rudneva, V. V.; Galevskii, S. G.; Tomas, K. I.; Zubkov, M. S.

    2016-04-01

    The experience of production and study on properties of nano-disperse chromium and titanium borides and carbides, and silicon carbide has been generalized. The structure and special service aspects of utilized plasma-metallurgical complex equipped with a three-jet direct-flow reactor with a capacity of 150 kW have been outlined. Processing, heat engineering and service life characteristics of the reactor are specified. The synthesis parameters of borides and carbides, as well as their basic characteristics in nano-disperse condition and their production flow diagram are outlined. Engineering and economic performance of synthesizing borides in laboratory and industrial conditions is assessed, and the respective segment of the international market as well. The work is performed at State Siberian Industrial University as a project part of the State Order of Ministry of Science and Education of the Russian Federation No. 11.1531/2014/K.

  11. Effect of Ti-V-Nb-Mo addition on microstructure of high chromium cast iron

    Directory of Open Access Journals (Sweden)

    Ma Youping

    2012-05-01

    Full Text Available The effects of trace additions of multi-alloying elements (Ti, Nb, V, Mo on carbides precipitation and as-cast microstructure of eutectic high chromium cast iron containing 2.85wt.%C and 31.0wt.%Cr were investigated from thermodynamic and kinetic considerations. The thermodynamic calculations show that Ti and Nb exist in the multi-alloying system in the forms of TiC and NbC. The formation of VC during the solidification is not feasible from the thermodynamic consideration. XRD analysis shows that the V exists in alloy compounds (VCr2C2, VCrFe8. The first precipitated high melting point particles (TiC, NbC can act as the heterogeneous substrate of M7C3 carbides, which results in significant refinement of the M7C3 carbides. After the addition of alloying elements, C atom diffusion is hindered due to the strong affinities of the strong carbide forming elements for carbon, which decreases the growth rate of carbides. The combined roles of the increase of nucleation rate and the decrease of carbides growth rate lead to the finer microstructure.

  12. Comparative investigation on HVOF sprayed carbide-based coatings

    Science.gov (United States)

    Xie, Mingxiang; Zhang, Shihong; Li, Mingxi

    2013-05-01

    In this work, WC-17Co, WC-10Co-4Cr, WC-12Co and Cr3C2-25NiCr coatings were deposited on stainless steel using WOKAStar-640 HVOF spraying system. Three WC-based coatings were studied and compared with a chromium carbide-based coating. The microstructure, porosity, micro-hardness, indentation fracture toughness and adhesion strength of the coatings were investigated. The wear test was done by using silica grits as abrasive medium using a load of 20 N. The result shows that HVOF sprayed carbide-based coating possesses low porosity, high micro-hardness and high adhesion strength. Three WC-based coatings have higher micro-hardness and indentation fracture toughness compared to the Cr3C2-25NiCr coating. HVOF sprayed carbide coating has good wear resistance under 500 °C. The decarburization of WC-based coating has great effect on coating wear resistance. In addition, WC-17Co coating has best wear resistance.

  13. Silicon carbide sewing thread

    Science.gov (United States)

    Sawko, Paul M. (Inventor)

    1995-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems provide lightweight thermal insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  14. Chromium redistribution in thermally aged and irradiated ferritic-martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Camus, E.; Wanderka, N.; Welzel, S.; Wollenberger, H. [Hahn-Meitner-Institut Berlin GmbH (Germany); Materna-Morris, E. [Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany)

    1998-07-15

    Ferritic-martensitic steels containing 8-12 at.% chromium are considered as structural materials for spallation sources and fusion reactors. Materials will be subjected to intense damage rates, e.g. 50-100 dpa per year at full power. Therefore, the behavior under irradiation of these steels must be investigated. Our earlier dual-beam irradiation results on the DIN 1.4914 steel showed a decomposition into chromium-enriched and chromium-depleted regions. The mean concentration of the chromium-depleted regions was found to be 5.19{+-}0.32 at.% after irradiation at 500 C to a fluence of 50 dpa, as measured by atom probe field-ion microscopy. The chromium distribution in the matrix of the DIN 1.4914 steel after thermal ageing at temperatures between 400 and 600 C has been investigated for times up to 17000 h. The carbides were characterized by means of transmission electron microscopy and extraction replicas. The concentrations of the constituents of the matrix were measured by means of atom probe. The mean chromium concentrations in the matrix are found to be 8.66{+-}0.32, 4.5{+-}0.3, and 7.2{+-}0.4 at.%, after ageing at 400, 500, and 600 C, respectively. The matrix contains virtually no carbon. The results are discussed in terms of phase decomposition and species segregation. (orig.) 15 refs.

  15. Hard Chromium Electroplating and Improvement the Properties by the Thermo Chemical Treatments (Solid Carburizing of Low Carbon Steel

    Directory of Open Access Journals (Sweden)

    Ahmed Salloum Abbas

    2009-01-01

    Full Text Available In this research the hard chromium electroplating process, which is one of the common methods of overlay coating was used, by using chromium acid as source of chromium and sulphuric acid as catalyst since the ratio between chromic acid and sulphuric acid is (100 : 1 consequently. Plating process was made by applying current of density (40 Amp / dm2 and the range of solution temperature was (50 – 55oC with different time periods (1-5 hr. A low carbon steel type (Ck15 was used as substrate for hard chromium electroplating. Solid carburization was carried out for hard chromium plating specimen at temperature (925oC with time duration (2 hr to be followed with quenching and tempering. The phase analysis was conducted by using X– ray diffraction. The examination results show that the chromium carbides in plating layer were (Cr23C6, Cr7C3. The microhardness of hard chromium plating specimen was measured, and the results show that the high hardness was about (907HV. After solid carburization the hardness values increase and the results show that the higher hardness for chromium plating layer on low carbon steel surface was (1276 HV. Wear apparatus type (Pin on Disc was used to study dry sliding wear properties of low carbon steel (As received and hard chromium plating specimens and solid carburized. The effect of applied normal load on wear rate was studied with weighting method using five normal loads (5, 10, 15, 20, 25 N at constant sliding speed (2.198 m / sec. The results reveal that the wear rate increases with the increasing of applied normal load. A good improvement in wear resistance was noticed for hard chromium plating specimens as compared with substrate specimen. It was also seen that, the improvement in wear resistance was (94% as compared with substrate metal when carburizing treatment is carried out on hard chromium plating specimens.

  16. Synthesis and characterization of transition metal carbides and their catalytic applications

    Science.gov (United States)

    Wan, Cheng

    Transition metal (both monometallic and bimetallic) carbides have been synthesized by an amine-metal oxide composite (AMOC) method. The composite reduces the diffusion distances among each element and allows the formation of carbides to take place as low as 610°C, which is significantly lower than traditional carbide synthesis methods (above 1500°C). Additionally, amines act not only as carbon sources and reducing agents, but also morphological templates which helps to make uniform transition metal carbide (TMC) nanocrystals with various shapes. Beyond morphology control, AMOC method can also help to synthesize multiple phases of monometallic carbides, which includes four phases of molybdenum carbides (alpha-MoC1-x, beta-Mo2C, eta-MoC, and gamma-MoC), two phases of tungsten carbides (W2C and WC), and three phases of chromium carbides (Cr3C2-x, Cr7C3, and Cr3C2). Molybdenum carbide has been proposed as a possible alternative to platinum for catalyzing the hydrogen evolution reaction (HER). Previous studies were limited to only one phase, which is beta-Mo2C with an Fe 2N structure. Here, four molybdenum carbide materials including gamma-MoC with a WC type structure which was stabilized for the first time as a phase pure nanomaterial. Moreover, a wide range of magnetic iron-doped molybdenum carbide (Mo2-xFexC) nanomaterials were also synthesized, which exhibits a better HER activity to non-doped beta-Mo2C. A group of (CrxFe1-x)7C3 (0.2< x<1) solid solutions have also been synthesized for the first time as nanomaterials via AMOC method, which demonstrate excellent catalytic activities for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Other carbides/nitrides made from AMOCs include WN1-x, Fe3C, Fe3-xN, Fe3Mo3C, N 2Mo3C, Ni3Mo3C, Ni6Mo 6C, and Mo0.5W0.5C.

  17. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  18. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  19. Yarlongite:A New Metallic Carbide Mineral

    Institute of Scientific and Technical Information of China (English)

    SHI Nicheng; BAI Wenji; LI Guowu; XIONG Ming; FANG Qingsong; YANG Jingsui; MA Zhesheng; RONG He

    2009-01-01

    Yarlongite occurs in ophiolitic chromitite at the Luobusha mine(29°5'N 92°,5'E,about 200 km ESE of Lhasa),Qusum County,Shannan Prefecture,Tibet Autonomous Region,People'S Republic of China.Associated minerals are:diamond,moissanite,wiistite,iridium("osmiridium"), osmium("iridosmine"),periclase,chromite,native irun,native nickel,native chromium,forsterite. Cr-rich diopside,intermetallic compounds Ni-Fe-Cr,Ni-Cr,Cr-C,etc.Yariongite and its associated minerals were handpicked from a large heavy mineral sample of chromitite.The metallic carbides associated with yarlongite are cohenite,tongbaite,khamrabaevite and qusongite(IMA2007.034). Yarlongite occurs as irregular grains,with a size between 0.02 and 0.06 mm,steel-grey colour,H Mohs:5 1/2-6.Tenacity:brittle.Cleavage:{0 0 1}perfect.Fracture:conchoidal.Chemical formula: (Cr4Fe4Ni)∑9C4,or(Cr,Fe,Ni)∑9C4,Crystal system:Hexagonal,Space Group:P63/mc,a=18.839(2)A,C =4.4960(9)A,V=745.7(2)A3,Z=6,Density(calc.)=7.19 g/cm3(with simplified formula).Yarlongite has been approved as a new mineral by the CNMNC(IMA2007-035).Holotype material is deposited at the Geological Museum of China(No.M11650).

  20. Technology of Iron Carbide Synthesis

    Institute of Scientific and Technical Information of China (English)

    M.Bahgat

    2006-01-01

    Iron carbides are very promising metallurgical products and can be used for steelmaking process, where it plays as an alternative raw material with significant economic advantages. Also it has many other applications,e.g. catalysts, magnets, sensors. The present review investigates the different properties and uses of the iron carbides. The commercial production and the different varieties for the iron carbides synthesis (gaseous carburization, mechanochemical synthesis, laser pyrolysis, plasma pyrolysis, chemical vapor deposition and ion implantation) were reviewed. Also the effect of different factors on the carburization process like gas composition, raw material, temperature, reaction time, catalyst presence and sulfur addition was indicated.

  1. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  2. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  3. Effects of RE, V, Ti and B composite modification on the microstructure and properties of high chromium cast iron containing 3 % molybdenum

    Institute of Scientific and Technical Information of China (English)

    GUO Erjun; WANG Lihua; WANG Liping; HUANG Yongchang

    2009-01-01

    The effects of RE, V, Ti and B on the microstructure and properties of high chromium cast iron containing 3% molybdenum under as-cast and heat treatment conditions were investigated with the method of comparing experiments. The results show that with the increase of RE content, the primary austenite of high chromium east iron is obviously refined. The morphology of carbide is changed from netlike and lath to small multiangular isolated blocks or massive blocks, the isolated degree of carbide is improved obviously, and the size is significantly re-fined. The addition of V and B into high chromium cast iron can refine the microstructure, reduce coarse columnar crystals and make the carbide smaller and uniform. Through composite modification with RE, V, Ti and B, the hardness, wear resistance and impact toughness of high chromium cast iron are increased conspicuously. After heat treatment, the hardness of high chromium iron is increased significantly, but the toughness and wear resistance do not show great improvement.

  4. Groundwater contaminant by hexavalent chromium

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, C. [Univ. of Texas, Austin, TX (United States)

    1995-11-01

    Oxidation of trivalent chromium to hexavalent chromium has been investigated as a function of total manganese in soils as well as various incubation conditions. Chromium and manganese contents were analyzed by atomic absorption (graphite furnace and flame emission respectively) following acid digestion. Total hexavalent chromium generation capacity was determined by addition of 0.001 M CrCL3, incubation, and analysis by s-diphenyl carbazide. Samples were then leached with CaSO{sub 4} and MgSO{sub 4} and incubated in various environments (oven, freeze-drier, field moist, ultrafreeze) to test for geogenic generation of Cr(IV). The degree of geogenic generation of hexavalent chromium was compared with total Mn and Cr content as well as hexavalent generational capacity.

  5. Ballistic Evaluation of rolled Homogeneous Steel Armor with Tungsten Carbide and Titanium Carbide Facing.

    Science.gov (United States)

    1960-12-01

    LABORATORIES BALLISTIC EVALUATION OF ROLLED HMtOGE14EOUS STEEL ASWKR f VITH TUNGSTEN CARBIDE AND TITANIUM CARBIDE FACING (U) TECHNICAL REPORT NO. WAL...carbide steel and titanium carbide steel composite armor when attacked by cal. .40 H19B WC cores, cal. .0 AP W2 projectiles, ZOIN fragment simulating...determine the effectiveness of tungsten car- bide (WC) and titanium carbide (TIC) facing on steel armor for the defeat of steel and tungsten carbide

  6. Effect of Carbide Distribution on Corrosion Behavior of the Deep Cryogenically Treated 1.2080 Steel

    Science.gov (United States)

    Amini, Kamran; Akhbarizadeh, Amin; Javadpour, Sirus

    2016-02-01

    Deep cryogenic heat treatment is a supplementary process performed on steels specifically tool steels before tempering to improve the wear resistance and hardness of these materials. The carbide distribution changes via the electric current flow or the application of a magnetic field during the deep cryogenic heat treatment. Hence, the electric current and the magnetic field were applied to the samples to investigate the corrosion behavior of the deep cryogenically treated samples by electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The results showed that increasing the carbide percentage and achieving a more homogenous carbide distribution during the deep cryogenic heat treatment will remarkably decrease the corrosion resistance due to a decrease in the solutionized chromium atoms in the structure as well as the increase in the martensite-carbide grain boundaries (the galvanic cell areas). Moreover, it was clarified that the electric current flow and magnetic fields reduce the carbide percentage, which leads to an increase in the corrosion resistance of these samples in comparison with the deep cryogenically treated samples.

  7. On texture formation of chromium electrodeposits

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Leisner, Peter; Horsewell, Andy

    1998-01-01

    The microstructure, texture and hardness of electrodeposited hard, direct current (DC) chromium and pulsed reversed chromium has been investigated. These investigations suggest that the growth and texture of hard chromium is controlled by inhibition processes and reactions. Further, it has been...... established that codeposition of Cr2O3 nanoparticles is a general feature of DC chromium electrodeposition....

  8. Studies of silicon carbide and silicon carbide nitride thin films

    Science.gov (United States)

    Alizadeh, Zhila

    Silicon carbide semiconductor technology is continuing to advance rapidly. The excellent physical and electronic properties of silicon carbide recently take itself to be the main focused power device material for high temperature, high power, and high frequency electronic devices because of its large band gap, high thermal conductivity, and high electron saturation drift velocity. SiC is more stable than Si because of its high melting point and mechanical strength. Also the understanding of the structure and properties of semiconducting thin film alloys is one of the fundamental steps toward their successful application in technologies requiring materials with tunable energy gaps, such as solar cells, flat panel displays, optical memories and anti-reflecting coatings. Silicon carbide and silicon nitrides are promising materials for novel semiconductor applications because of their band gaps. In addition, they are "hard" materials in the sense of having high elastic constants and large cohesive energies and are generally resistant to harsh environment, including radiation. In this research, thin films of silicon carbide and silicon carbide nitride were deposited in a r.f magnetron sputtering system using a SiC target. A detailed analysis of the surface chemistry of the deposited films was performed using x-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy whereas structure and morphology was studied atomic force microscopy (AFM), and nonoindentation.

  9. The role of niobium carbide in radiation induced segregation behaviour of type 347 austenitic stainless steel

    Science.gov (United States)

    Ahmedabadi, Parag; Kain, Vivekanand; Gupta, Manu; Samajdar, I.; Sharma, S. C.; Bhagwat, P.; Chowdhury, R.

    2011-08-01

    The effect of niobium carbide precipitates on radiation induced segregation (RIS) behaviour in type 347 stainless steel was investigated. The material in the as-received condition was irradiated using double-loop 4.8 MeV protons at 300 °C for 0.43 dpa (displacement per atom). The RIS in the proton irradiated specimen was characterized using double-loop electrochemical potentiokinetic reactivation (DL-EPR) test followed by atomic force microscopic examination. The nature of variation of DL-EPR values with the depth matched with the variation of the calculated irradiation damage (dpa) with the depth. The attack on grain boundaries during EPR tests was negligible indicating absence of chromium depletion zones. The interface between niobium carbide and the matrix acts as a sink for point defects generated during irradiation and this had reduced point defect flux toward grain boundaries. The attack was noticed at a few large cluster of niobium carbide after the DL-EPR test at the depth of maximum attack for the irradiated specimen. Pit-like features were not observed within the matrix indicating the absence of chromium depletion regions within the matrix.

  10. Laser melting of uranium carbides

    Science.gov (United States)

    Utton, C. A.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Noel, H.; Guéneau, C.; Manara, D.

    2009-03-01

    In the context of the material research aimed at supporting the development of nuclear plants of the fourth Generation, renewed interest has recently arisen in carbide fuels. A profound understanding of the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents. In this context, the main goal of the present paper is to demonstrate the feasibility of laser induced melting experiments on stoichiometric uranium carbides; UC, UC1.5 and UC2. Measurements were performed, at temperatures around 3000 K, under a few bars of inert gas in order to minimise vaporisation and oxidation effects, which may occur at these temperatures. Moreover, a recently developed investigation method has been employed, based on in situ analysis of the sample surface reflectivity evolution during melting. Current results, 2781 K for the melting point of UC, 2665 K for the solidus and 2681 K for the liquidus of U2C3, 2754 K for the solidus and 2770 K for the liquidus of UC2, are in fair agreement with early publications where the melting behaviour of uranium carbides was investigated by traditional furnace melting methods. Further information has been obtained in the current research about the non-congruent (solidus-liquidus) melting of certain carbides, which suggest that a solidus-liquidus scheme is followed by higher ratio carbides, possibly even for UC2.

  11. Effects of Si on the Microstructures and Mechanical Properties of High-Chromium Cast Iron

    Science.gov (United States)

    Lai, J. P.; Pan, Q. L.; Peng, H. J.; Cui, H. R.; Xiao, C. A.

    2016-11-01

    Effect of Si on the microstructures and mechanical properties of high-chromium cast iron was investigated. The eutectic carbides are refined greatly and a transformation of matrix from austenitic matrix to pearlite is observed with increase in Si content from 0.5 to 1.5 wt.%. The refinement of eutectic microstructure is attributed to the decrease in the eutectic temperature, while the transformation from austenite matrix to pearlite is associated with the increase in solubility of carbon in the matrix. In the pearlite matrix, two types of pearlite are observed: one with lamellar pearlite, distributing at the periphery, and the second one with granular pearlite at the center. The density of secondary carbides precipitated from the matrix increases greatly with addition of Si from 0.5 to 1.5 wt.%, which is associated with more carbon and chromium elements confined in the matrix in the alloy containing 1.5 wt.%. More rod-like particles are observed in the alloy containing 0.5 wt.% Si, while the morphology of secondary carbides of alloy containing 1.5 wt.% is granular. The mechanical properties are improved with a 7% increase in tensile strength from 586 to 626 MPa and impact toughness from 5.8 to 7.3 J cm-2.

  12. Identification Trial of Crystallization Parameters of Modified Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2007-07-01

    Full Text Available In the paper results of researches of abrasion-resisting chromium cast iron inoculated with boron carbide B4C primary crystallization are presented. The main aim of work was make an attempt to identification of crystallization parameters that changed in reason of inoculation. Essential primary crystallization parameters, with the help of which, will be possible to evaluate the inoculation capacity were searched. It was found that in the result of inoculant actions characteristic temperatures were changed and time of primary crystallization was decreased. For tests the new broadened Derivative Thermal Analysis method, in which three samples with different solidification module were applied, was used. Thanks to this inoculation capacity in casts with significant diversified self-cooling ranges was possible to observe.

  13. CHROMIUM STATUS IN DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Keshavarz

    1996-06-01

    Full Text Available Fasting serum chromium, total cholesterol HDL-cholesterol, LDL-cholesterol, triacytglycerot and blood sugar were determined in fifty two diabetic patients with no other organic diseases anil compared with those obtained from a control group including fourty two healthy volunteers matched for age, sex ami body mass irutex (BMI. Fasting serum chromium and HDL-cholesterol were significantly lower in patients than in controls (p<0.0001 and p<0.001 respectively, but the mean triacytglycerot concentration was significantly higher in patients than in controls (p<002. Mean total cholesterol and LDL-cholesterol values were not significantly different in the two groups. Mean intake of energy, proteins, fats and chromium, estimated by the 24 hr dietary recall method were not significantly different in the two groups. We demonstrated that despite an adequate intake of chromium, the fasting serum chromium was lower in diabetic patients than in control subjects. Chromium deficiency in diabetic patients may act as a contributing factor in aggravating the disease's complications.

  14. Galvanic cells including cobalt-chromium alloys.

    Science.gov (United States)

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  15. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  16. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides.

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-14

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  17. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-01

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  18. Chromium at High Pressure

    Science.gov (United States)

    Jaramillo, Rafael

    2012-02-01

    Chromium has long served as the archetype of spin density wave magnetism. Recently, Jaramillo and collaborators have shown that Cr also serves as an archetype of magnetic quantum criticality. Using a combination of x-ray diffraction and electrical transport measurements at high pressures and cryogenic temperatures in a diamond anvil cell, they have demonstrated that the N'eel transition (TN) can be continuously suppressed to zero, with no sign of a concurrent structural transition. The order parameter undergoes a broad regime of exponential suppression, consistent with the weak coupling paradigm, before deviating from a BCS-like ground state within a narrow but accessible quantum critical regime. The quantum criticality is characterized by mean field scaling of TN and non mean field scaling of the transport coefficients, which points to a fluctuation-induced reconstruction of the critical Fermi surface. A comparison between pressure and chemical doping as means to suppress TN sheds light on different routes to the quantum critical point and the relevance of Fermi surface nesting and disorder at this quantum phase transition. The work by Jaramillo et al. is broadly relevant to the study of magnetic quantum criticality in a physically pure and theoretically tractable system that balances elements of weak and strong coupling. [4pt] [1] R. Jaramillo, Y. Feng, J. Wang & T. F. Rosenbaum. Signatures of quantum criticality in pure Cr at high pressure. Proc. Natl. Acad. Sci. USA 107, 13631 (2010). [0pt] [2] R. Jaramillo, Y. Feng, J. C. Lang, Z. Islam, G. Srajer, P. B. Littlewood, D. B. McWhan & T. F. Rosenbaum. Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transition. Nature 459, 405 (2009).

  19. Chromium Salen Mediated Alkene Epoxidation

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Norrby, Per-Ola; Daly, Adrian M.;

    2002-01-01

    The mechanism of alkene epoxidation by chromium(v) oxo salen complexes has been studied by DFT and experimental methods. The reaction is compared to the closely related Mn-catalyzed process in an attempt to understand the dramatic difference in selectivity between the two systems. Overall......, the studies show that the reactions have many similarities, but also a few critical differences. In agreement with experiment, the chromium system requires a change from low- to high-spin in the catalytic cycle, whereas the manganese system can proceed either with spin inversion or entirely on the high......-spin surface. The low-spin addition of metal oxo species to an alkene leads to an intermediate which forms epoxide either with a barrier on the low-spin surface or without a barrier after spin inversion. Supporting evidence for this intermediate was obtained by using vinylcyclopropane traps. The chromium...

  20. Carbon, chromium and molybdenum contents; Teores de carbono, cromo e molibdenio

    Energy Technology Data Exchange (ETDEWEB)

    Sinatora, A; Goldenstein, H.; Mei, P.R.; Albertin, E.; Fuoco, R.; Mariotto, C.L

    1992-12-31

    This work describes solidification experiments on white cast iron, with 15 and 20% of chromium, 2.3, 3.0 and 3.6 % of carbon and 0.0, 1.5 and 2.5 % of molybdenum in test de samples with 30 mm diameter. Measurements were performed on the austenite and eutectic formation arrests, the number of the eutectic carbide particles relative to the total and the eutectic volumes, and the volume fraction of the primary austenite 9 figs., 3 tabs.

  1. Kinetics and Mechanisms of Creep in Sintered Alpha Silicon Carbide and Niobium Carbide.

    Science.gov (United States)

    1985-09-18

    CARBIDE AND NIOBIUM CARBIDE Supported by 30 F (DMR-812-0804) and ARO (MIPR’s 43-48, 127-83, 141-84) U August, 1985 NCSU .LET tow A CL School of Engineering...SILICON CARBIDE AND NIOBIUM CARBIDE Supported by NSF (DMR-812-0804) and ARO (MIPR’s 43-48, 127-83, 141-84) August, 1985 L. U. 1’ ’’ b b MASTER COPY - FOR...and Mechanisms of Creep in Sintered May 1, 1982-June 15, 1985 Alpha Silicon Carbide and Niobium Carbide 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(*) 11

  2. Environmental biochemistry of chromium.

    Science.gov (United States)

    Losi, M E; Amrhein, C; Frankenberger, W T

    1994-01-01

    Chromium is a d-block transitional element with many industrial uses. It occurs naturally in various crustal materials and is discharged to the environment as industrial waste. Although it can occur in a number of oxidation states, only 3+ and 6+ are found in environmental systems. The environmental behavior of Cr is largely a function of its oxidation state. Hexavalent Cr compounds (mainly chromates and dichromates) are considered toxic to a variety of terrestrial and aquatic organisms and are mobile in soil/water systems, much more so than trivalent Cr compounds. This is largely because of differing chemical properties: Hexavalent Cr compounds are strong oxidizers and highly soluble, while trivalent Cr compounds tend to form relatively inert precipitates at near-neutral pH. The trivalent state is generally considered to be the stable form in equilibrium with most soil/water systems. A diagram of the Cr cycle in soils and water is given in Fig. 6 (Bartlett 1991). This illustration provides a summary of environmentally relevant reactions. Beginning with hexavalent Cr that is released into the environment as industrial waste, there are a number of possible fates, including pollution of soil and surface water and leaching into groundwater, where it may remain stable and, in turn, can be taken up by plants or animals, and adsorption/precipitation, involving soil colloids and/or organic matter. Herein lies much of the environmental concern associated with the hexavalent form. A portion of the Cr(VI) will be reduced to the trivalent form by inorganic electron donors, such as Fe2+ and S2-, or by bioprocesses involving organic matter. Following this conversion, Cr3+ can be expected to precipitate as oxides and hydroxides or to form complexes with numerous ligands. This fraction includes a vast majority of global Cr reserves. Soluble Cr3+ complexes, such as those formed with citrate, can undergo oxidation when they come in contact with manganese dioxide, thus reforming

  3. Thermo-Mechanical Characterization of Silicon Carbide-Silicon Carbide Composites at Elevated Temperatures Using a Unique Combustion Facility

    Science.gov (United States)

    2009-09-10

    F THERMO-MECHANICAL CHARACTERIZATION OF SILICON CARBIDE - SILICON CARBIDE COMPOSITES AT ELEVATED...MECHANICAL CTERIZATION OF SILICON CARBIDE -SILIC BIDE COMPOSITES AT LEVATED TEMPER S USING A UNIQUE COMBUSTION FACILITY DISSERTATI N Ted T. Kim...THERMO-MECHANICAL CHARACTERIZATION OF SILICON CARBIDE - SILICON CARBIDE COMPOSITES AT ELEVATED TEMPERATURES USING A UNIQUE COMBUSTION FACILITY

  4. [Calcium carbide of different crystal formation synthesized by calcium carbide residue].

    Science.gov (United States)

    Lu, Zhong-yuan; Kang, Ming; Jiang, Cai-rong; Tu, Ming-jing

    2006-04-01

    To recycle calcium carbide residue effectively, calcium carbide of different crystal form, including global aragonite, calcite and acicular calcium carbide was synthesized. Both the influence of pretreatment in the purity of calcium carbide, and the influence of temperatures of carbonization reaction, release velocity of carbon dioxide in the apparition of calcium carbide of different crystal form were studied with DTA-TG and SEM. The result shows that calcium carbide residue can take place chemistry reaction with ammonia chlorinate straight. Under the condition that pH was above 7, the purity of calcium carbide was above 97%, and the whiteness was above 98. Once provided the different temperatures of carbonization reaction and the proper release velocity of carbon dioxide, global aragonite, calcite and acicular calcium carbide were obtained.

  5. The use of trivalent chromium bath to obtain a solar selective black chromium coating

    Science.gov (United States)

    Survilienė, S.; Češūnienė, A.; Juškėnas, R.; Selskienė, A.; Bučinskienė, D.; Kalinauskas, P.; Juškevičius, K.; Jurevičiūtė, I.

    2014-06-01

    Black chromium coatings were electrodeposited from a trivalent chromium bath using a ZnO additive as a second main component. Black chromium was electrodeposited on steel and copper plates and substrates plated with bright nickel prior to black chromium electrodeposition. The black chromium coatings were characterized by XRD and SEM. The XRD data suggest that the phase structure of black chromium may be defined as a zinc solid solution in chromium or a chromium solid solution in zinc depending on the chromium/zinc ratio in the deposit. The role of substrate finish was evaluated through the corrosion resistance and reflectance of black chromium. According to corrosion tests the samples plated with bright nickel prior to black chromium deposition have shown the highest corrosion resistance. The electrodeposited black chromium possesses good optical properties for the absorption of solar energy. The absorption coefficient of black chromium was found to be over 0.99 for the samples obtained without the Ni undercoat and below 0.99 for those obtained with the use of Ni undercoat. However, the use of nickel undercoat before black chromium plating is recommended because it remarkably improves the corrosion resistance of samples.

  6. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  7. Investigation of Infiltrated and Sintered Titanium Carbide

    Science.gov (United States)

    1952-04-01

    taneive investigations in this field during the ’time preceding this contract, and concentrated their effort® On titanium carbide as the’ refractospy...component • The Basic work of this investigation consisted of? X, KpälfiCÄVtloh and refinement of cOmätrcial grades of titanium carbide hj...facilitate a comparison between the different methods» an investigation was then carried out with composite bodies* consisting of titanium carbide asd

  8. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  9. Shock-wave strength properties of boron carbide and silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E.

    1994-02-01

    Time-resolved velocity interferometry measurements have been made on boron carbide and silicon carbide ceramics to assess dynamic equation-of-state and strength properties of these materials. Hugoniot pecursor characteristics, and post-yield shock and release wave properties, indicated markedly different dynamic strength and flow behavior for the two carbides.

  10. Methods for producing silicon carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2016-03-01

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  11. Silicon carbide fibers and articles including same

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E; Griffith, George W

    2015-01-27

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  12. Tribology of carbide derived carbon films synthesized on tungsten carbide

    Science.gov (United States)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  13. Effects of TIG Surface Melting and Chromium Surface Alloying on Microstructure,Hardness and Wear Resistance of ADI

    Institute of Scientific and Technical Information of China (English)

    A Amirsadeghi; M Heydarzadeh Sohi; S F Kashani Bozorg

    2008-01-01

    Microhardness and wear resistance of different mierostruetures formed by TIG (tungsten inert gas) surface melting and chromium surface alloying (using ferrochromium) of ADI (austempered ductile iron) were studied.Surface melting resulted in the formation of a ledeburitic structure in the melted zone,and this structure has a hardness up to 896 HV as compared to 360 HV in that of ADI.Moreover,chromium surface alloying resulted in the formation of different structures including:(1) a hypereuteetic structure consisting of primary (Fe,Cr)7C3 carbides and a eutectie matrix of transformed austenite (into martensite and retained austenite),as also (Fe,Cr)7C3 carbides,with a hardness of 1 078 HV;(2) a hypoeutectic structure consisting of the same eutectic along with transformed primary austenite,with a hardness of 755 HV;and (3) a ledeburitic structure with an acieular morphology and a hardness of 896 HV.The results also indicated that surface melting reduced the wear rate of the ADI by approximately 37%.Also,chromium surface alloying yielded a superior wear behavior and reduced the wear rate of the treated specimens by about 38% and 70%,depending on the structures formed.

  14. Simultaneous determination of chromium(III) and chromium(VI) in aqueous solutions by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jøns, O; Nielsen, B

    1992-01-01

    A method for the simultaneous determination of chromium(iii) and chromium(vi) in a flow system based on chemiluminescence was developed. A Dionex cation-exchange guard column was used to separate chromium(iii) from chromium(vi), and chromium(vi) was reduced by potassium sulfite, whereupon both...

  15. Sonoassisted microbial reduction of chromium.

    Science.gov (United States)

    Kathiravan, Mathur Nadarajan; Karthick, Ramalingam; Muthu, Naggapan; Muthukumar, Karuppan; Velan, Manickam

    2010-04-01

    This study presents sonoassisted microbial reduction of hexavalent chromium (Cr(VI)) using Bacillus sp. isolated from tannery effluent contaminated site. The experiments were carried out with free cells in the presence and absence of ultrasound. The optimum pH and temperature for the reduction of Cr(VI) by Bacillus sp. were found to be 7.0 and 37 degrees C, respectively. The Cr(VI) reduction was significantly influenced by the electron donors and among the various electron donors studied, glucose offered maximum reduction. The ultrasound-irradiated reduction of Cr(VI) with Bacillus sp. showed efficient Cr(VI) reduction. The percent reduction was found to increase with an increase in biomass concentration and decrease with an increase in initial concentration. The changes in the functional groups of Bacillus sp., before and after chromium reduction were observed with FTIR spectra. Microbial growth was described with Monod and Andrews model and best fit was observed with Andrews model.

  16. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  17. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  18. Titanium Carbide Bipolar Plate for Electrochemical Devices

    Energy Technology Data Exchange (ETDEWEB)

    LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.; Kosek, John A.

    1998-05-08

    Titanium carbide comprises a corrosion resistant, electrically conductive, non-porous bipolar plate for use in an electrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.

  19. Hydroxide catalysis bonding of silicon carbide

    NARCIS (Netherlands)

    Veggel, A.A. van; Ende, D.A. van den; Bogenstahl, J.; Rowan, S.; Cunningham, W.; Gubbels, G.H.M.; Nijmeijer, H.

    2008-01-01

    For bonding silicon carbide optics, which require extreme stability, hydroxide catalysis bonding is considered [Rowan, S., Hough, J. and Elliffe, E., Silicon carbide bonding. UK Patent 040 7953.9, 2004. Please contact Mr. D. Whiteford for further information: D.Whiteford@admin.gla.ac.uk]. This techn

  20. Substitution- and strain-induced magnetic phase transition in iron carbide

    Science.gov (United States)

    Odkhuu, Dorj; Tsogbadrakh, N.; Dulmaa, A.; Otgonzul, N.; Naranchimeg, D.

    2016-10-01

    Cementite-type carbides are of interest for magnetocaloric applications owing to their temperature- or pressure-induced magnetic phase transition. Here, using first-principles calculations, we investigate the magnetism and the magnetic phase transition in iron carbide (Fe3C) with the substitution of Cr atoms at Fe sites with the strain effect. The presence of Cr atoms is found to give rise to a second-order magnetic phase transition from a ferromagnetic phase for Fe3C to a nonmagnetic phase in chromium carbide (Cr3C).While the ternary Fe2CrC and Cr2FeC compounds prefer the ferrimagnetic ground state, the magnitudes of both the Fe and Cr spin moments, which are antiparallel in orientation, decrease as x increases in Fe3-xCrxC ( x = 0, 1, 2, and 3). Furthermore, the fixed spin-moment calculations indicate that the magnetization of Fe3-xCrxC compounds can be delicately altered via the strain effect and that the magnetic-nonmagnetic phase transition occurs at an early stage of Cr substitution, x = 2.

  1. Process for making silicon carbide reinforced silicon carbide composite

    Science.gov (United States)

    Lau, Sai-Kwing (Inventor); Calandra, Salavatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    1998-01-01

    A process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  2. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRAFINE WC/Co CEMENTED CARBIDES WITH CUBIC BORON NITRIDE AND Cr₃C₂ ADDITIONS

    Directory of Open Access Journals (Sweden)

    Genrong Zhang

    2016-03-01

    Full Text Available This study investigates the microstructure and mechanical properties of ultrafine tungsten carbide and cobalt (WC/Co cemented carbides with cubic boron nitride (CBN and chromium carbide (Cr₃C₂ fabricated by a hot pressing sintering process. This study uses samples with 8 wt% Co content and 7.5 vol% CBN content, and with different Cr₃C₂ content ranging from 0 to 0.30 wt%. Based on the experimental results, Cr₃C₂ content has a significant influence on inhibiting abnormal grain growth and decreasing grain size in cemented carbides. Near-full densification is possible when CBN-WC/Co with 0.25 wt% Cr₃C₂ is sintered at 1350°C and 20 MPa; the resulting material possesses optimal mechanical properties and density, with an acceptable Vickers hardness of 19.20 GPa, fracture toughness of 8.47 MPa.m1/2 and flexural strength of 564 MPa.u̇ Å k⃗

  3. Precipitating Mechanism of Carbide in Cold-Welding Surfacing Metals

    Institute of Scientific and Technical Information of China (English)

    Yuanbin ZHANG; Dengyi REN

    2004-01-01

    Carbides in a series of cold-welding weld metals were studied by means of SEM, TEM and EPMA, and the forming mechanism of carbide was proposed according to their distribution and morphology. Due to their different carbide-forming tendency, Nb and Ti could combine with C to form particulate carbide in liquid weld metal and depleted the carbon content in matrix, while V induced the carbide precipitated along grain boundary. But too much Nb or Ti alone resulted in coarse carbide and poor strengthened matrix. When suitable amount of Nb, Ti and V coexisted in weld metal, both uniformly distributed particulate carbide and well strengthened matrix could be achieved. It was proposed that the carbide nucleated on the oxide which dispersed in liquid weld metal, and then grew into multi-layer complex carbide particles by epitaxial growth. At different sites, carbide particles may present as different morphologies.

  4. Hydrothermal synthesis of xonotlite from carbide slag

    Institute of Scientific and Technical Information of China (English)

    Jianxin Cao; Fei Liu; Qian Lin; Yu Zhang

    2008-01-01

    Carbide slag was used as the calcareous materials for the first time to prepare xonotlite via dynamic hydrothermal synthesis.The effects of influential factors including different calcination temperatures,pretreatment methods of the carbide slag and process param-eters of hydrothermal synthesis on the microstructure and morphology of xonotlite were explored using XRD and SEM techniques.The results indicate that the carbide slag after proper calcination could be used to prepare pure xonotlite;and different calcination tern-peratures have little effect on the crystallinity of synthesized xonotlitc,but have great impact on the morphology of secondary particles.The different pretreatment methods of the carbide slag pose great impact on the crystallinity and morphology of secondary particles of xonotlite.Xonotlite was also synthesized from pure CaO under the salne experimental conditions as that prepared from calcined carbide slag for comparison.Little amount of impurities in carbide slag has no effect on the mechanism of hydrothermal synthesizing xonotlite from carbide slag.

  5. Electrodeposition of chromium from trivalent chromium urea bath containing sulfate and chloride

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The reduction of Cr( Ⅲ) to Cr( Ⅱ ) on copper electrode in trivalent chromium urea bath containing chromium sulfate and chromium chloride as chromium source has been investigated by potentiodynamic sweep. The transfer coefficient α for reduction of Cr( Ⅲ ) to Cr( Ⅱ ) on copper electrode was calculated as 0.46. The reduction is a quasi-reversible process. J-t responses at different potential steps showed that the generation and adsorption characteristics of carboxylate bridged oligomer are relevant to cathode potential. The interface behavior between electrode and solution for Cr( Ⅲ ) complex is a critical factor influencing sustained electrode position of chromium. The hypotheses of the electro-inducing polymerization of Cr( Ⅲ ) was proposed. The potential scope in which sustained chromium deposits can be prepared is from- 1.3 V to- 1.7 V (vs SCE) in the urea bath. Bright chromium deposits with thickness of 30 μm can be prepared in the bath.

  6. Formation of nanoscale titanium carbides in ferrite: an atomic study

    Science.gov (United States)

    Lv, Yanan; Hodgson, Peter; Kong, Lingxue; Gao, Weimin

    2016-03-01

    The formation and evolution of nanoscale titanium carbide in ferrite during the early isothermal annealing process were investigated via molecular dynamics simulation. The atomic interactions of titanium and carbon atoms during the initial formation process explained the atoms aggregation and carbides formation. It was found that the aggregation and dissociation of titanium carbide occurred simultaneously, and the composition of carbide clusters varied in a wide range. A mechanism for the formation of titanium carbide clusters in ferrite was disclosed.

  7. Effect of Rare Earth Element on Formation and Propagation of Thermal Fatigue Crack in Low-Chromium Semi-Steel

    Institute of Scientific and Technical Information of China (English)

    XU Tao; LI Feng; CHEN Hua; YU Cui-yan

    2005-01-01

    The formation and growth of thermal fatigue crack in low-chromium semi-steel were investigated by means of optical microscope and scanning electron microscope, and the function of RE in low-chromium semi-steel was analyzed. The results show that the thermal fatigue cracks are mainly generated at eutectic carbides, and the cracks not only grow and spread but also join each other. RE can improve the eutectic carbide′s morphology, inhibit the generation and propagation of thermal fatigue cracks, and therefore promote the activation energy for the crack′s propagation, which is especially more noticeable in case of the RE modification in combination with heat treatment. The mathematical model of the crack propagation is put forward.

  8. Effect of chromium on the corrosion resistance of aluminide coatings on nickel and nickel-based substrates

    Energy Technology Data Exchange (ETDEWEB)

    Godlewski, K.; Godlewska, E.

    1987-04-01

    The aluminide and Cr-Al diffusion coatings on nickel and the nickel-based alloy EI 867 obtained by a two-step pack cementation technique were subjected to various corrosion tests consisting of oxidation under thermal cycling conditions as well as isothermal oxidation in the presence of fused Na/sub 2/SO/sub 4/. The presence of chromium in the surface layer of aluminide coatings had a beneficial effect on their resistance to oxidation in that the oxide layer formed was less prone to spallation. This type of coating microstructure also appeared to be advantageous with respect to hot corrosion since pitting, which is typical of the degradation of aluminide coatings, was not observed. It is postulated that the chromium-enriched zone acts as a barrier to the oxidation of refractory metals (molybdenum, tungsten and vanadium) present in somewhat deeper coating layers in the form of carbide or intermetallic phases, thus preventing the onset of catastrophic corrosion.

  9. 29 CFR 1915.1026 - Chromium (VI).

    Science.gov (United States)

    2010-07-01

    ... system dysfunction; any history of asthma, dermatitis, skin ulceration, or nasal septum perforation; and... is present or is likely to be present from skin or eye contact with chromium (VI), the employer shall... cleaned in a manner that minimizes skin or eye contact with chromium (VI) and effectively prevents...

  10. 29 CFR 1926.1126 - Chromium (VI).

    Science.gov (United States)

    2010-07-01

    ... system dysfunction; any history of asthma, dermatitis, skin ulceration, or nasal septum perforation; and... is present or is likely to be present from skin or eye contact with chromium (VI), the employer shall... cleaned in a manner that minimizes skin or eye contact with chromium (VI) and effectively prevents...

  11. 29 CFR 1910.1026 - Chromium (VI).

    Science.gov (United States)

    2010-07-01

    ... activity involving chromium cannot release dusts, fumes, or mists of chromium (VI) in concentrations at or... currents that prevent the LEVs from performing efficiently. The use of fans has a similar effect. Industry... and positioning of cross drafts, fans, doors, windows, partitions and process equipment that...

  12. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    OpenAIRE

    Matus K.; Pawlyta M.; Matula G.; Gołombek K.

    2016-01-01

    The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary ...

  13. Effects of carbon and molybdenum on the microstructures of high chromium white cast irons; Efeito do carbono e do molibdenio na microestrutura dos ferros fundidos brancos de alto cromo

    Energy Technology Data Exchange (ETDEWEB)

    Sinatora, Amilton; Ambrosio Filho, Francisco; Goldenstein, Helio; Fuoco, Ricardo; Albertin, Eduardo; Mei, Paulo Roberto

    1992-12-31

    The effects of 3 levels of carbon and 1.5% Mo addition on the solidification structures of a 15% chromium white cast iron were studied. The volume fraction of primary austenite and of eutectic carbides, as well as the number of carbide particles per unit length and the mean secondary dendrite arm spacing were measured. By means of thermal analysis, thermal arrest corresponding to the formation of the primary austenite and of the eutectic were determined. The increase in the carbon content and the addition of Mo led to lowering of the thermal arrests and to coarsening of the particles. (author) 15 refs., 6 figs., 5 tabs.

  14. Carbothermal synthesis of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A.; Wei, G.C.; Kennedy, C.R.; Harris, L.A.

    1985-05-01

    Silicon carbide powders were synthesized from various silica and carbon sources by a carbothermal reduction process at temperatures between 1500 and 1600/sup 0/C. The silica sources were fumed silica, methyltrimethoxysilane, and microcrystalline quartz. The carbon sources were petroleum pitch, phenolic resin, sucrose, and carbon black. Submicron SiC powders were synthesized. Their morphologies included equiaxed loosely-bound agglomerates, equiaxed hard-shell agglomerates, and whiskers. Morphology changed with the furnace atmosphere (argon, nitrogen, or nitrogen-4% hydrogen). The best sintering was observed in SiC derived from the fumed-silica-pitch and fumed-silica-sucrose precursors. The poorest sintering was observed in SiC derived from microcrystalline quartz and carbon black. 11 refs., 16 figs., 10 tabs.

  15. Thermal Expansion of Hafnium Carbide

    Science.gov (United States)

    Grisaffe, Salvatore J.

    1960-01-01

    Since hafnium carbide (HfC) has a melting point of 7029 deg. F, it may have many high-temperature applications. A literature search uncovered very little information about the properties of HfC, and so a program was initiated at the Lewis Research Center to determine some of the physical properties of this material. This note presents the results of the thermal expansion investigation. The thermal-expansion measurements were made with a Gaertner dilatation interferometer calibrated to an accuracy of +/- 1 deg. F. This device indicates expansion by the movement of fringes produced by the cancellation and reinforcement of fixed wave-length light rays which are reflected from the surfaces of two parallel quartz glass disks. The test specimens which separate these disks are three small cones, each approximately 0.20 in. high.

  16. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  17. Calcium carbide poisoning via food in childhood.

    Science.gov (United States)

    Per, Hüseyin; Kurtoğlu, Selim; Yağmur, Fatih; Gümüş, Hakan; Kumandaş, Sefer; Poyrazoğlu, M Hakan

    2007-02-01

    The fast ripening of fruits means they may contain various harmful properties. A commonly used agent in the ripening process is calcium carbide, a material most commonly used for welding purposes. Calcium carbide treatment of food is extremely hazardous because it contains traces of arsenic and phosphorous. Once dissolved in water, the carbide produces acetylene gas. Acetylene gas may affect the neurological system by inducing prolonged hypoxia. The findings are headache, dizziness, mood disturbances, sleepiness, mental confusion, memory loss, cerebral edema and seizures. We report the case of a previously healthy 5 year-old girl with no chronic disease history who was transferred to our Emergency Department with an 8-h history of coma and delirium. A careful history from her father revealed that the patient ate unripe dates treated with calcium carbide.

  18. [Bioremediation of chromium (VI) contaminated site by reduction and microbial stabilization of chromium].

    Science.gov (United States)

    Zheng, Jia-Chuan; Zhang, Jian-Rong; Liu, Xi-Wen; Xu, Qian; Shi, Wei-Lin

    2014-10-01

    Chromium (VI) contaminated soil samples were collected from a chemical plant in Suzhou. Firstly, the reduced soil was prepared by adding reagent (Stone-sulfure reagent) into polluted soil to transfer most chromium (VI) into chromium (III), then a nutrient solution was introduced into the reduced soil, and the stabilized soil was obtained after 60 days culturing. The chromium (VI) content of the three kinds of soil was analyzed. The results showed that the chromium (VI) content in toxicity characteristic leaching liquid (TCLL) dropped by 96. 8% (from 8.26 mg · L(-1) to 0.26 mg · L(-1)), and the total chromium content dropped by 95.7% (from 14.66 mg · L(-1) to 0.63 mg · L(-1)) after bioremediation in 5% nutrient solution. Additionally, the durability of chromium stabilization was tested by potassium permanganate oxidation and sterilization of microbe-treated soil. After oxidation, the chromium (VI) content in TCLL of the reduced soil was increased from 8.26 mg · L(-1) to 14.68 mg · L(-1). However, the content after bioremediation was decreased to 2.68 mg · L(-1). The results of sterilization demonstrated that the death of microbe had no significant effect on the stabilization of chromium. Consequently, the research in this paper demonstrated the feasibility of bioremediation of chromium (VI) polluted soil through reduction followed by stabilization/soilidification, and provided a technique with low cost but high efficiency.

  19. Selective etching of silicon carbide films

    Science.gov (United States)

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  20. Combustion synthesis of novel boron carbide

    Science.gov (United States)

    Harini, R. Saai; Manikandan, E.; Anthonysamy, S.; Chandramouli, V.; Eswaramoorthy, D.

    2013-02-01

    The solid-state boron carbide is one of the hardest materials known, ranking third behind diamond and cubic boron nitride. Boron carbide (BxCx) enriched in the 10B isotope is used as a control rod material in the nuclear industry due to its high neutron absorption cross section and other favorable physico-chemical properties. Conventional methods of preparation of boron carbide are energy intensive processes accompanied by huge loss of boron. Attempts were made at IGCAR Kalpakkam to develop energy efficient and cost effective methods to prepare boron carbide. The products of the gel combustion and microwave synthesis experiments were characterized for phase purity by XRD. The carbide formation was ascertained using finger-print spectroscopy of FTIR. Samples of pyrolized/microwave heated powder were characterized for surface morphology using SEM. The present work shows the recent advances in understanding of structural and chemical variations in boron carbide and their influence on morphology, optical and vibrational property results discussed in details.

  1. Synthesis of Chromium (Ⅲ) 5-aminosalicylate

    Institute of Scientific and Technical Information of China (English)

    LI Wei; HAO Er-jun; JIANG Yu-qin

    2004-01-01

    As we all known that diabetes is a chronic disease with major health consequences.Research has revealed that the occurrence of diabetes have great thing to do with the chromium deficient. Almost 40 years after the first report of glucose tolerance factor(GTF) [1], no conclusive evidence for an isolable ,biologically active form of chromium exited. Three materials have been proposed to be the biologically active form of chromium: "glucose tolerance factor", chromium Picolinate and low-molecular-weight chromium-binding substance (LWMCr) [2] . So there is potential for the design of new chromium drugs .5-Aminosalicylic acid (5-ASA) is identified as an active component in the therapy of inflammatory bowel disease (IBD) such as Crohn's disease and ulcerative colitis . The therapeutic action of 5-ASA is believed to be coupled to its ability to act as a free radical scavenger [3-4],acting locally on the inflamed colonic mucosa [5-7]. However, the clinical use of 5-ASA is limited, since orally administered 5-ASA is rapidly and completely absorbed from the upper gastrointestinal tract and therefore the local therapeutic effects of 5-ASA in the colon is hardly expected.In this paper, we report the synthesis of chromium(Ⅲ)5-aminosalicylate from 5-ASA and CrCl3. 6H2O.The synthesis route is as follow:The complex has been characterized by elemental analysis, IR spectra, X-ray powder diffractionand TG-DTA . They indicate that the structure is tris(5-ASA) Chromium . Experiments show that thecomplex has a good activity for supplement tiny dietary chromium, lowering blood glucose levels,lowering serum lipid levels and in creasing lean body mass .

  2. Characteristics of chromium-allergic dermatitis patients prior to regulatory intervention for chromium in leather

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P; Zachariae, Claus;

    2014-01-01

    BACKGROUND: Chromium-tanned leather articles currently constitute the most important cause of contact allergy to chromium in Denmark. A regulation on the content of hexavalent chromium in leather was adopted in November 2013 by the EU member states. OBJECTIVES: To characterize patients...... with chromium allergy and their disease, to serve as a baseline for future studies on the potential effect of the new regulation on chromium in leather. METHODS: A questionnaire case-control study was performed on 155 dermatitis patients with positive patch test reactions to potassium dichromate and a matched...... control group of 621 dermatitis patients. Comparisons were made by use of a χ(2) -test and the Mann-Whitney U-test. Logistic regression analyses were used to test for associations. RESULTS: Sixty-six per cent of chromium-allergic patients had a positive history of contact dermatitis caused by leather...

  3. Chromium in leather footwear-risk assessment of chromium allergy and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Strandesen, Maria; Poulsen, Pia B;

    2012-01-01

    Background. Chromium-tanned leather footwear, which releases >3 ppm hexavalent Cr(VI), may pose a risk of sensitizing and eliciting allergic dermatitis. Objectives. To determine the content and potential release of chromium in leather footwear and to discuss the prevention of chromium contact...... allergy and dermatitis. Methods. Sixty pairs of leather shoes, sandals and boots (20 children's, 20 men's, and 20 women's) were purchased in Copenhagen and examined with X-ray fluorescence spectroscopy. Chromium was extracted according to the International Standard, ISO 17075. The detection level for Cr......(VI) was 3 ppm. Results. Chromium was identified in 95% of leather footwear products, the median content being 1.7% (range 0-3.3%). No association with store category or footwear category was found. A tendency for there to be a higher chromium content in footwear with high prices was shown (p(trend) = 0...

  4. Leaching of chromium from chromium contaminated soil: Speciation study and geochemical modeling

    Directory of Open Access Journals (Sweden)

    Anđelković Darko H.

    2012-01-01

    Full Text Available Distribution of chromium between soil and leachate was monitored. A natural process of percolating rainwater through the soil was simulated in the laboratory conditions and studied with column leaching extraction. Migration of chromium in the soil is conditioned by the level of chromium soil contamination, the soil organic matter content, and rainwater acidity. Chromium (III and chromium(VI were determined by spectrophotometric method with diphenilcarbazide in acidic media. Comparing the results of chromium speciation in leachate obtained by experimental model systems and geochemical modelling calculations using Visual MINTEQ model, a correlation was observed regarding the influence of the tested parameters. Leachate solutions showed that the concentration of Cr depended on the organic matter content. The influence of pH and soil organic matter content is in compliance after its definition through experimental and theoretical way. The computer model - Stockholm Humic Model used to evaluate the leaching results corresponded rather well with the measured values.

  5. Metamagnetism of η-carbide-type transition-metal carbides and nitrides

    Science.gov (United States)

    Waki, T.; Terazawa, S.; Umemoto, Y.; Tabata, Y.; Sato, K.; Kondo, A.; Kindo, K.; Nakamura, H.

    2011-09-01

    η-carbide-type transition-metal compounds include the frustrated stella quadran-gula lattice. Due to characteristics of the lattice, we expect subtle transitions between frustrated and non-frustrated states. Here, we report metamagnetic transitions newly found in η-carbide-type compounds Fe3W3C, Fe6W6C and Co6W6C.

  6. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    composition of contemporaneous seawater. Marine carbonates are ubiquitous throughout Earth’s rock record rendering them a particularly interesting archive for constraining past changes in ocean chemistry. This thesis includes an investigation of the fractionation behavior of Cr isotopesduring coprecipitation......Chromium (Cr) is a redox sensitive element potentially capable of tracing fine-scale fluctuations of the oxygenation of Earth’s early surface environments and seawater. The Cr isotope composition of carbonates could perhaps be used as paleo-redox proxy to elucidate changes in the geological past...... related to the rise of oxygen and the evolution of the biosphere. However, before the Cr isotopesystem can be applied to faithfully delineate paleo-environmental changes, careful assessment of the signal robustness and a thorough understanding of the Cr cycle in Earth system processes is necessary...

  7. Chromium (VI) adsorption on boehmite

    Energy Technology Data Exchange (ETDEWEB)

    Granados-Correa, F. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)], E-mail: fgc@nuclear.inin.mx; Jimenez-Becerril, J. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)

    2009-03-15

    Boehmite was synthesized and characterized in order to study the adsorption behavior and the removal of Cr(VI) ions from aqueous solutions as a function of contact time, initial pH solution, amount of adsorbent and initial metal ion concentration, using batch technique. Adsorption data of Cr(VI) on the boehmite were analyzed according to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption models. Thermodynamic parameters for the adsorption system were determinated at 293, 303, 313 and 323 K temperatures. The kinetic values and thermodynamic parameters from the adsorption process show that the Cr(VI) ions adsorption on boehmite is an endothermic and spontaneous process. These results show that the boehmite could be considered as a potential adsorbent for chromium ions in aqueous solutions.

  8. Mechanical properties of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2007-01-01

    Full Text Available Background/Aim. Metal-ceramic bond strength and alloys' elastic modulus clearly determine the potential of alloy application, because the ceramic integrity during mastication depends on these two characteristics. The aim of this study was to evaluate metal-ceramic bond strength and elastic modulus of cobalt-chromium alloys in making porcelainfused- to-metal restorations, regarding the application of the most frequent nickel-chromium alloy. Methods. The research was performed as an experimental study. Six metalceramic samples were made from nickel-chromium alloy (Wiron 99 and cobalt-chromium alloy (Wirobond C, according to the manufactures manuals and instructions from ISO 9693: 1996. Three-point bending test was performed up to the ceramic fracture. The fracture load was measured on an universal testing machine (Zwick, type 1464, with cross-head speed of 0,05mm/min. Results. The results of this study confirmed the significant differences between the metal-ceramic bond strength (p < 0.01 and elastic modulus (p < 0.001 of nickel-chromium and cobalt-chromium alloys, where cobalt-chromium alloys showed higher values for both tested parameters. Conclusion. Cobalt-chromium metal-ceramic alloys can successfully replace nickel-chromium alloys, especially for fabrication of long-span metal-ceramic bridges due to the great flexural strength.

  9. AEROSOL BEHAVIOR IN CHROMIUM WASTE INCINERATION

    Institute of Scientific and Technical Information of China (English)

    Suyuan Yu

    2003-01-01

    Cr2O3 is considered as the dominant incineration product during the combustion disposal of chromium waste. A hydrogen/air diffusion flame was employed to simulate the industrial process of incineration. Cr2O3 aerosols were generated inside the flame by the gas phase reaction of chromium and oxygen. Chromium came from the rapid decomposition of chromium hexacarbonyl (Cr(CO)6) at room temperature and was carried into the combustion chamber by hydrogen. Aerosol and clusters can then be easily formed in the flame by nucleation and coagulation. A two dimensional Discrete-Sectional Model (DSM) was adopted to calculate the Cr2O3 aerosol behavior. The experimental measurement method was Dynamic Light Scattering. The numerically predicted results agreed well with those of the experimental measurement. Both results show that the Cr2O3 aerosol size reached about 70 nanometers at the flame top.

  10. Localized Corrosion of Chromium Coated Steel

    NARCIS (Netherlands)

    Zhang, X.; Beentjes, P.; Mol, A.; Terryn, H.

    2006-01-01

    In this paper, we report on the studies of the local corrosion behaviour of chromium-coated ultra low carbon steel in NaCl solution using polarization, electrochemical impedance spectroscopy (EIS) and SVET.

  11. CHROMIUM CONCENTRATION IN TEHRAN ELECTROPLATING PLANTS

    Directory of Open Access Journals (Sweden)

    M. Ghiasseddin

    1988-12-01

    Full Text Available Hazards of soluable hexa and trivalent chromium have been documented by many investigators. But there was no information regarding safety of about 5000 workers at exposure risk to chromium in 600 primitive electroplating work shops of Tehran. During this study more than 70% of work shops were inactive due to some of their own problems. Out of active plants those that were relatively more cooperative 43 manual and 3 semi automatic were investigated for chromium concentration both by personal and environmental Sampling. The Samples were analyzed by AAS and cholormetry. In 30% of personal and 40% of environmental samples both total and Cr+6 were higher than ACGIH’S TLV. In one of semiautomatic plant Cr=6 was as high as 0.71 mg/m.3.Regarding injuries, following observations were made: Nasal wound 85%, skin irritation 73% , Dermatitis 35% and some other chromium related injuries including 2 cases of Septum perforations.

  12. Potentiometry: A Chromium (III) -- EDTA Complex

    Science.gov (United States)

    Hoppe, J. I.; Howell, P. J.

    1975-01-01

    Describes an experiment that involves the preparation of a chromium (III)-EDTA compound, a study of its infrared spectrum, and the potentiometric determination of two successive acid dissociation constants. (Author/GS)

  13. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

  14. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

  15. A study on Z-phase nucleation in martensitic chromium steels

    Energy Technology Data Exchange (ETDEWEB)

    Golpayegani, Ardeshir [Department of Applied Physics, Chalmers University of Technology (Sweden)], E-mail: ardeshir.golpayegani@sandvik.com; Andren, Hans-Olof [Department of Applied Physics, Chalmers University of Technology (Sweden); Danielsen, Hilmar; Hald, John [Department of Manufacturing Engineering and Management, Technical University of Denmark (Denmark)

    2008-08-20

    9-12% chromium martensitic steels are liable to the precipitation of Z-phase, Cr(V,Nb)N, after long time exposure at 550-650 deg. C. This complex nitride consumes vanadium nitrides and causes the creep strength of the material to fall drastically after several thousand hours of exposure. In this work, initial stages of precipitation of Z-phase have been studied and characterized using energy-filtered transmission electron microscopy (EFTEM). Vanadium nitrides were found to provide the most suitable nucleation site for Z-phase, since the misfit between the (0 0 1) planes of VN and Z-phase is very small. Furthermore, such a nucleation site would provide vanadium and nitrogen for the growth of Z-phase. The presence of niobium carbide has also been observed close to Z-phase nucleation sites, indicating niobium to be important for the nucleation and growth of Z-phase.

  16. Use of electron microscopy on microstructure characterization of high chromium cast irons

    Institute of Scientific and Technical Information of China (English)

    J.T.H. Pearce; T. Chairuangsri; A. Wiengmoon; N. Poolthong; H. Nomura

    2007-01-01

    The physical metallurgy underlying the development of cast microstructures in abrasion resistant high chromium cast irons, and their structural modification by thermal treatments is relatively complex. Structural characterisation via electron microscopy therefore has a key role to play in furthering our understanding of the phase transformations that control the microstructures and hence the service performances of these irons as wear parts.This paper shows how both scanning and especially transmission electron microscopy can provide valuable information on the nature of eutectic and secondary carbides and on the matrix structures in these irons. Particular attention is given to current characterisation research on conventionally cast 30%Cr irons that are used for applications involving corrosive wear e.g. slurry pumps and on a semi-solid cast 27%Cr iron that has a potential for applications in industry.

  17. Mirror Surface Grinding of Steel Bonded Carbides

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The steel bonded carbide, a composite material, is very difficult to be machined to a fine finish mirror surface. In this paper, an electrolytic in-process dressing (ELID) grinding with metallic bond super-hard abrasive wheel was developed for grinding steel bonded carbide GT35. Factors affecting ELID grinding performance were analyzed by an atomic force microscope (AFM). Based on the analysis of AFM topography of the fine ground mirror surface of the steel bonded carbide, a schematic diagram of the mechanism of micro-removal of the ground surface was described. The AFM topography also shows that the hard brittle carbide particles, on the surface of steel bonded carbide, were machined out by ductile cutting. Since the grinding cracks in the ground surface are due to temperature gradient, temperature distribution in the grinding area was analyzed by finite element method (FEM). Experimental results indicate that a good mirror surface with Ra<0.02pm can be obtained by the developed ELID grinding system.

  18. Permeation of chromium salts through human skin in vitro

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Fullerton, A; Avnstorp, C

    1992-01-01

    Chromium permeation studies were performed on full thickness human skin in diffusion cells. All samples were analysed for the total chromium content by graphite furnace Zeeman-corrected atomic absorption spectrometry. Some samples were analysed by an ion chromatographic method permitting...... the simultaneous determination of Cr(VI) and Cr(III) as well. The amounts of chromium found in all skin layers were significantly higher when potassium dichromate was applied to the skin compared with chromium chloride or chromium nitrate. Chromium could only be detected in the recipient phase after application...... of the dichromate solution. Chromium skin levels increased with increasing concentrations of applied chromium salts up to 0.034 M Cr. The amount of chromium in recipient phase and skin layers increased with increasing pH when the applied solution contained potassium dichromate. This was ascribed to a decreased skin...

  19. Chemical Modification Methods of Nanoparticles of Silicon Carbide Surface

    OpenAIRE

    Anton S. Yegorov; Vitaly S. Ivanov; Alexey V. Antipov; Alyona I. Wozniak; Kseniia V. Tcarkova.

    2015-01-01

    silicon carbide exhibits exceptional properties: high durability, high thermal conductivity, good heat resistance, low thermal expansion factor and chemical inactivity. Reinforcement with silicon carbide nanoparticles increases polymer’s tensile strength and thermal stability.Chemical methods of modification of the silicon carbide surface by means of variety of reagents from ordinary molecules to macromolecular polymers are reviewed in the review.The structure of silicon carbide surface layer...

  20. M5C2 carbide precipitates in a high-Cr martensitic steel

    Science.gov (United States)

    Shen, Yinzhong; Ji, Bo; Zhou, Xiaoling

    2014-05-01

    The precipitate phases in an advanced 11% Cr martensitic steel, expected to be used at 650 °C, have been investigated to understand the effect of precipitates on the creep-rupture strength of the steel. M23C6 and MX precipitates were dominant phases in this steel. Needle-like precipitates with a typical length of 180 nm and width of 20 nm; and metallic-element compositions of 53-74Fe, 16-26Cr, 3-18Ta, 2-8W, and 2-4Co (at%); were observed mainly within the martensite laths of the normalized-and-tempered steel. The needle-like precipitates have been identified as monoclinic carbide M5C2, which is not known to have been reported previously in high chromium steels, or in heat-resistant steels those have been normalized-and-tempered. This indicates that the formation of M5C2 carbides can occur in heat-resistant steels produced under appropriate tempering conditions, and that this does not require long-term isothermal aging or creep testing, in all cases.

  1. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    Science.gov (United States)

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated.

  2. Silicon Carbide Solar Cells Investigated

    Science.gov (United States)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  3. Fabrication of thorium bearing carbide fuels

    Science.gov (United States)

    Gutierrez, Rueben L.; Herbst, Richard J.; Johnson, Karl W. R.

    1981-01-01

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.

  4. Titanium carbide nanocrystals in circumstellar environments.

    Science.gov (United States)

    von Helden, G; Tielens, A G; van Heijnsbergen, D; Duncan, M A; Hony, S; Waters, L B; Meijer, G

    2000-04-14

    Meteorites contain micrometer-sized graphite grains with embedded titanium carbide grains. Although isotopic analysis identifies asymptotic giant branch stars as the birth sites of these grains, there is no direct observational identification of these grains in astronomical sources. We report that infrared wavelength spectra of gas-phase titanium carbide nanocrystals derived in the laboratory show a prominent feature at a wavelength of 20.1 micrometers, which compares well to a similar feature in observed spectra of postasymptotic giant branch stars. It is concluded that titanium carbide forms during a short (approximately 100 years) phase of catastrophic mass loss (>0.001 solar masses per year) in dying, low-mass stars.

  5. Ionisation Potentials of Metal Carbide Clusters

    Science.gov (United States)

    Dryza, Viktoras; Addicoat, M.; Gascooke, Jason; Buntine, Mark; Metha, Gregory

    2006-03-01

    Photo-Ionisation Efficiency (PIE) experiments have been performed on gas phase niobium and tantalum carbide clusters to determine their ionisation potentials (IPs). For TanCm (n = 3-4, m = 0-4) clusters an oscillatory behaviour is observed such that clusters with an odd number of carbon atoms have higher IPs and clusters with an even number of carbons have lower IPs. Excellent agreement is found with relative IPs calculated using density functional theory for the lowest energy structures, which are consistent with the development of a 2x2x2 face-centred nanocrystal. For the niobium carbide clusters we observe the species Nb4C5 and Nb4C6. Initial calculations suggest that these clusters contain carbon-carbon bonding. Interestingly, the stoichiometry for Nb4C6 is half that of a metcar, M8C12. Preliminary data will also be shown on bimetallic-carbide clusters.

  6. Carbides composite surface layers produced by (PTA)

    Energy Technology Data Exchange (ETDEWEB)

    Tajoure, Meloud, E-mail: Tajoore2000@yahoo.com [MechanicalEng.,HIHM,Gharian (Libya); Tajouri, Ali, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com [Materials and Metallurgical Eng., UOT, Tripoli (Libya); Akreem, Mosbah, E-mail: makreem@yahoo.com [Industrial Research Centre,Tripoli (Libya)

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  7. Mechanical Properties of Crystalline Silicon Carbide Nanowires.

    Science.gov (United States)

    Zhang, Huan; Ding, Weiqiang; Aidun, Daryush K

    2015-02-01

    In this paper, the mechanical properties of crystalline silicon carbide nanowires, synthesized with a catalyst-free chemical vapor deposition method, were characterized with nanoscale tensile testing and mechanical resonance testing methods inside a scanning electron microscope. Tensile testing of individual silicon carbide nanowire was performed to determine the tensile properties of the material including the tensile strength, failure strain and Young's modulus. The silicon carbide nanowires were also excited to mechanical resonance in the scanning electron microscope vacuum chamber using mechanical excitation and electrical excitation methods, and the corresponding resonance frequencies were used to determine the Young's modulus of the material according to the simple beam theory. The Young's modulus values from tensile tests were in good agreement with the ones obtained from the mechanical resonance tests.

  8. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  9. The Key Technique of Manufacture of Dense Chromium Sesquioxide Refractories

    Institute of Scientific and Technical Information of China (English)

    LIMaoqiang; ZHANGShuying; 等

    1998-01-01

    Dense chromium sesquioxide refractories have widely been used in the kilns for making alkai-free and anti-alkali glass fibers due to their excellent re-sistance to molten glasses.Densifications of chromium sesquioxide during sintering can be blocked by evaporation of chromium trioxide derived from oxidation at high temperature,In this paper the mech-anism of sintering chromium oxide and the process-ing technique for making dense chromium sesquiox-ide refractories are discussed .A process in laboratory scale for making dense chromium sesquioxide bricks is demonstrated.

  10. Ablation of carbide materials with femtosecond pulses

    Science.gov (United States)

    Dumitru, Gabriel; Romano, Valerio; Weber, Heinz P.; Sentis, Marc; Marine, Wladimir

    2003-01-01

    The response of cemented tungsten carbide and of titanium carbonitride was investigated with respect to damage and ablation properties, under interaction with ultrashort laser pulses. These carbide materials present high microhardness and are of significant interest for tribological applications. The experiments were carried out in air with a commercial Ti:sapphire laser at energy densities on the target up to 6.5 J/cm 2. The irradiated target surfaces were analyzed with optical, SEM and AFM techniques and the damage and ablation threshold values were determined using the measured spot diameters and the calculated incident energy density distributions.

  11. Ultrarapid microwave synthesis of superconducting refractory carbides

    Energy Technology Data Exchange (ETDEWEB)

    Vallance, Simon R. [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); School of Chemistry, University Nottingham (United Kingdom); Round, David M. [School of Chemistry, University Nottingham (United Kingdom); Ritter, Clemens [Institut Laue-Langevin, Grenoble (France); Cussen, Edmund J. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow (United Kingdom); Kingman, Sam [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); Gregory, Duncan H. [WestCHEM, Department of Chemistry, University of Glasgow (United Kingdom)

    2009-11-26

    Nb{sub 1-x}Ta{sub x}C Carbides can be synthesized by high power MW methods in less than 30 s. In situ and ex situ techniques probing changes in temperature and dielectric properties with time demonstrate that the reactions self-terminate as the loss tangent of the materials decreases. The resulting carbides are carbon deficient and superconducting; T{sub c} correlates linearly to unit cell volume, reaching a maximum at NbC. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  12. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  13. Synthesis of a new complex Chromium (Ⅲ) 2-mercaptonicotinate

    Institute of Scientific and Technical Information of China (English)

    LI Wei; HAO Er-jun; JIANG Yu-qin

    2004-01-01

    Chromium is an essential trace element for mammals[1-3].Diabetes is a chronic disease with major health consequence. Studies show that the occurrence of diabetes have great thing to do with the chromium deficient. Almost 40 years after the first report of glucose tolerance factor(GTF)[4]no conclusive evidence for an isolable ,biologically active form of chromium exited. Three materials have been proposed to be the biologically active form of chromium: "glucose tolerance factor", chromium Picolinate and low-molecular-weight chromium-binding substance (LWMCr)[5]So there is potential for the design of new chromium drugs[6].Chromium compounds have been used in medicine for centuries and there is potential for the design of new chromium drugs.2-Mercaptonicotinic acid(MN) displays the interesting biological activity. Chromium( Ⅲ )2-mercaptonicotinate is a common and effective biologically active form of Chromium. The test of biological activity indicated that may be useful in treating of diabetes. In this paper, we reported the The synthesis route is as follow:The structure of the complex has been characterized by IR, elemental analysis, MS,atomic absorption spectroscopy, X-ray powder diffraction and TG-DTA analysis.They indicate that the structure of Chromium 2-mercaptonicotinate.HPLC is used for determination of the purity. Studies show that the complex has a good biological activity for supplement tiny dietary chromium,lowering blood glucose levels, lowering serum lipid levels and increasing lean body mass.

  14. Microstructure and properties of Ti–Nb–V–Mo-alloyed high chromium cast iron

    Indian Academy of Sciences (India)

    Youping Ma; Xiulan Li; Yugao Liu; Shuyi Zhou; Xiaoming Dang

    2013-10-01

    The correlations of microstructure, hardness and fracture toughness of high chromium cast iron with the addition of alloys (titanium, vanadium, niobium and molybdenum) were investigated. The results indicated that the as-cast microstructure changed from hypereutectic, eutectic to hypoeutectic with the increase of alloy contents. Mo dissolved in austenite and increased the hardness by solid solution strengthening. TiC and NbC mainly existed in austenite and impeded the austenite dendrite development. V existed in multicomponent systems in forms of V alloy compounds (VCrFe8 and VCr2C2).With the increase of alloy additions, carbides size changed gradually from refinement to coarseness, hardness and impact toughness were increased and then decreased. Compared with the fracture toughness (6 J/cm2) and hardness (50.8HRC) without any alloy addition, the toughness and hardness at 0.60 V–0.60Ti–0.60Nb–0.35Mo (wt%) additions were improved and achieved to 11 J/cm2 and 58.9HRC, respectively. The synergistic roles of Ti, Nb, V and Mo influenced the solidification behaviour of alloy. The refinement of microstructure and improvement of carbides morphologies, size and distribution improved the impact toughness.

  15. Production of carbide-free thin ductile iron castings

    Institute of Scientific and Technical Information of China (English)

    M. Ashraf Sheikh

    2008-01-01

    The fast cooling rate of thin ductile iron castings requires special consideration to produce carbide-free castings. Extraor-dinary care was taken to select the charge to produce castings of 100-mm long round bars with 16-ram diameter. The castings show the presence of carbides in the bars. Seven melts were made with different temperatures and with different compositions to get rid of carbides. After chemical analyses, it was found that the extra purity of the charge with less than 0.008wt% sulfur in the castings was the cause of carbides. To remove the carbides fi'om the castings, sulfur should be added to the charge.

  16. Ultra-rapid processing of refractory carbides; 20 s synthesis of molybdenum carbide, Mo2C.

    Science.gov (United States)

    Vallance, Simon R; Kingman, Sam; Gregory, Duncan H

    2007-02-21

    The microwave synthesis of molybdenum carbide, Mo(2)C, from carbon and either molybdenum metal or the trioxide has been achieved on unprecedented timescales; Ex- and in-situ characterisation reveals key information as to how the reaction proceeds.

  17. Serum chromium levels in gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    P G Sundararaman

    2012-01-01

    Full Text Available Objective: To measure serum chromium level in women with gestational diabetes mellitus (GDM from Chennai, South India. Materials and Methods: Thirty women with gestational diabetes, 60 age matched controls. Inclusion criteria: Gestational age 22-28 weeks, age group 20-35 years. Exclusion Criteria: Gestational age beyond 28 weeks, malnutrition or presence of infection. Serum chromium was measured using inductive couple plasma emission spectrometer. Results: Serum chromium levels of women with GDM, 1.59+/-0.02 ng/ml (range: 0.16-4.0 ng/ml were lower than in controls (4.58+/-0.62 ng/ml; range 0.82-5.33 ng/ml (P < 0.001. However, there were no significant differences among cases and controls when subdivided by parity. Conclusions: Women with GDM from a South Indian city had lower levels of serum chromium compared to pregnant women without GDM. Studies may be done whether chromium supplementation is useful in this group of women.

  18. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Schoonheydt, R.A.

    1996-01-01

    Focuses on the surface chemistry and spectroscopy of chromium in inorganic oxides. Characterization of the molecular structures of chromium; Mechanics of hydrogenation-dehydrogenation reactions; Mobility and reactivity on oxidic surfaces.

  19. Effects of Carbide on Hardness and Impact Toughness of CADI%碳化物对CADI硬度和冲击韧度的影响

    Institute of Scientific and Technical Information of China (English)

    张其飞; 刘兰俊; 祖方遒; 刘建升; 周鹏

    2012-01-01

    对于含碳化物等温淬火球墨铸铁(CADI),加入以铬为主的碳化物形成元素,并采用奥氏体化工艺来控制组织中碳化物的量.结果显示,随着试样中的铬的加入量从0.553%增加到0.997%,基体中碳化物量增多,经920℃保温100 min奥氏体化、然后在280.℃进行等温淬火处理90 min,后其硬度从42.7 HRC提高到50.5 HRC,但冲击韧度从61.4 J/cm2下降到37.8 J/cm2.%With regard to carbide austempered ductile iron(C ADI), some carbide forming elements primarily chromium were added to, and took the austenitic process to control the amount of carbide in the matrix of CADI. With the amount of chromium in the samples increased, the amount of carbide increased in the matrix, the results showed that the as-cast samples were austenited at 920 ℃ for l00min and then austempered at 280℃ for 90 min, the hardness rose from 39.2 HRC to 47.5 HRC, but the impact toughness declined from 68.4 J/cm2 to 44.8 J/cm2.

  20. High-temperature carbidization of carboniferous rocks

    Science.gov (United States)

    Goldin, B. A.; Grass, V. E.; Nadutkin, A. V.; Nazarova, L. Yu.

    2009-08-01

    Processes of thermal metamorphism of carboniferous rocks have been studied experimentally. The conditions of high-temperature interaction of shungite carbon with components of the contained rocks, leading to formation of carbide compounds, have been determined. The results of this investigation contribute to the works on searching for new raw material for prospective material production.

  1. Titanium carbide nanocrystals in circumstellar environments

    NARCIS (Netherlands)

    von Helden, G; Tielens, ACGM; van Heijnsbergen, D; Duncan, MA; Hony, S; Waters, LBFM; Meijer, G.

    2000-01-01

    Meteorites contain micrometer-sized graphite grains with embedded titanium carbide grains. Although isotopic analysis identifies asymptotic giant branch stars as the birth sites of these grains, there is no direct observational identification of these grains in astronomical sources. We report that i

  2. CLAD CARBIDE NUCLEAR FUEL, THERMIONIC POWER, MODULES.

    Science.gov (United States)

    The general objective is to evaluate a clad carbide emitter, thermionic power module which simulates nuclear reactor installation, design, and...performance. The module is an assembly of two series-connected converters with a single common cesium reservoir. The program goal is 500 hours

  3. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  4. Casimir force measurements from silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-01-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold-coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was mea

  5. Bioactivation of biomorphous silicon carbide bone implants.

    Science.gov (United States)

    Will, Julia; Hoppe, Alexander; Müller, Frank A; Raya, Carmen T; Fernández, Julián M; Greil, Peter

    2010-12-01

    Wood-derived silicon carbide (SiC) offers a specific biomorphous microstructure similar to the cellular pore microstructure of bone. Compared with bioactive ceramics such as calcium phosphate, however, silicon carbide is considered not to induce spontaneous interface bonding to living bone. Bioactivation by chemical treatment of biomorphous silicon carbide was investigated in order to accelerate osseointegration and improve bone bonding ability. Biomorphous SiC was processed from sipo (Entrandrophragma utile) wood by heating in an inert atmosphere and infiltrating the resulting carbon replica with liquid silicon melt at 1450°C. After removing excess silicon by leaching in HF/HNO₃ the biomorphous preform consisted of β-SiC with a small amount (approximately 6wt.%) of unreacted carbon. The preform was again leached in HCl/HNO₃ and finally exposed to CaCl₂ solution. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared analyses proved that oxidation of the residual carbon at the surface induced formation of carboxyl [COO⁻] groups, which triggered adsorption of Ca(2+), as confirmed by XPS and inductively coupled plasma optical emission spectroscopy measurements. A local increase in Ca(2+) concentration stimulated in vitro precipitation of Ca₅(PO₄)₃OH (HAP) on the silicon carbide preform surface during exposure to simulated body fluid, which indicates a significantly increased bone bonding activity compared with SiC.

  6. Method of preparing a porous silicon carbide

    NARCIS (Netherlands)

    Moene, R.; Tazelaar, F.W.; Makkee, M.; Moulijn, J.A.

    1994-01-01

    Abstract of NL 9300816 (A) Described is a method of preparing a porous silicon carbide suitable for use as a catalyst or as a catalyst support. Porous carbon is provided with a catalyst which is suitable for catalysing gasification of carbon with hydrogen, and with a catalyst suitable for cataly

  7. Silicon Carbide Technologies for Lightweighted Aerospace Mirrors

    Science.gov (United States)

    2008-09-01

    silicon carbide (SiC) based materials. It is anticipated that SiC can be utilized for most applications from cryogenic to high temperatures. This talk will focus on describing the SOA for these (near term) SiC technology solutions for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time

  8. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  9. Casimir forces from conductive silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-01-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of fr

  10. Residual Chromium in Leather by Instrumental Neutron Activation Analysis

    OpenAIRE

    S. Okoh; I. O. Okunade; D. J. Adeyemo; Ahmed, Y A; A. A. Audu; E. Amali

    2012-01-01

    Problem statement: Most tanning processes employ the use of chromium sulphate. For chromium tanned leather, finished products may contain high amount of residual chromium. This may pose some health hazards, since chromium is known to be toxic at elevated concentration. This justifies the need for the study. Approach: Various samples of leather were collected from a tannery, a leather crafts market, a leather dump site and from local tanners all in Kano, Nigeria in 2009. The samples were irrad...

  11. Influence of rare earth nanoparticles and inoculants on performance and microstructure of high chromium cast iron

    Institute of Scientific and Technical Information of China (English)

    HOU Yuncheng; WANG You; PAN Zhaoyi; YU Lili

    2012-01-01

    The high chromium cast irons (HCCIs) with rare earth (RE) nanoparticles or inoculants were fabricated in the casting process.The phase compositions and microstructure were analyzed by X-ray diffraction (XRD) and optical microscopy (OM),respectively.The hardness and impact toughness were tested by Rockwel-hardmeter and impacting test enginery.And then,the morphology of fracture was researched by scanning electron microscopy (SEM).The results demonstrated that the phase compositions of HCCIs with addition of RE nanoparticles or inoculants which were M7C3 carbides + α -Fe did not change obviously.However,the prime M7C3 carbides morphology had great changes with the increase of RE nanoparticles,which changed from long lath to granular or island shape.When the content of RE nanoparticles was 0.4 wt.%,the microstructure of high chromium cast iron was refined greatly.The microstructure of carbides was coarser when the addition of RE nanoparticles was higher than 0.4 wt.%.The hardness and impact toughness of HCCIs were improved by addition of RE nanoparticles or inoculants.The impact toughness of HCCIs was increased 36.4% with RE nanoparticles of 0.4 wt.%,but the hardness changed slightly.In addition,the adding of RE nanoparticles or inoculants could reduce the degree of the brittle fracture.Fracture never seemed regular,instead,containing lots of laminates and dimples with the increase of the RE nanoparticles.The results also indicated that the optimal addition amonnt of the RE nanoparticles was 0.4%,under this composition,the microstructure and mechanical property achieved the best cooperation.In addition,through the study of erosion wear rate,when adding 0.4% RE nanoparticles into the HCCIs,the erosion wear rate got the minimum 0.32×10-3 g/mm2,which could increase 51.5% compared with that without any RE nanoparticles.

  12. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions.

  13. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  14. Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

  15. Studying chromium biosorption using arabica coffee leaves

    Directory of Open Access Journals (Sweden)

    Luis Carlos Florez García

    2010-05-01

    Full Text Available This work was aimed at providing an alternative for removing heavy metals such as chromium from waste water (effluent from the leather industry and galvanoplasty (coating with a thin layer of metal by electrochemical means, using coffee leaves as bio- mass. Using arabica coffee (Castle variety leaves led to 82% chromium removal efficiency for 1,000 mg/L synthetic dissolutions in 4 pH dissolution operating conditions, 0 rpm agitation, 0.149 mm diameter biomass particle size and 0.85 g/ml biomass / dissolution volume ratio.

  16. New mixed aluminium–chromium diarsenate

    Directory of Open Access Journals (Sweden)

    Mohamad Alem Bouhassine

    2017-03-01

    Full Text Available Potassium chromium aluminium diarsenate, KCr1/4Al3/4As2O7, was prepared by solid-state reaction. The structure consists of (Cr1/4/Al3/4O6 octahedra and As2O7 diarsenate groups sharing corners to build up a three-dimensional anionic framework. The potassium cations are located in wide channels running along the c-axis direction. The crystal structure is isostructural with the triclinic AIMIIIX2O7 (AI = alkali metal; MIII = Al, Cr, Fe; X = As, P compounds. However, the MIII octahedrally coordinated site is 25% partially occupied by chromium and 75% by aluminium.

  17. Strategies for chromium bioremediation of tannery effluent.

    Science.gov (United States)

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  18. Co-precipitation of copper and niobium carbide in a low carbon steel

    Science.gov (United States)

    Gagliano, Michael Scott

    Co-precipitation of niobium carbide and body-centered cubic (BCC) copper in ferrite was investigated as a high strength, low carbon, chromium-free alternative to conventional high performance structural steels that rely on a tempered martensitic microstructure. Theoretical nucleation and growth rate models for BCC copper and niobium carbide were constructed using calculated thermodynamic driving forces in conjunction with classical theories for the homogeneous nucleation and subsequent growth of coherent, spherical precipitates. The maximum calculated nucleation and growth rates for niobium carbide were found to be 1.0 x 106 nuclei/cm3s at 666°C and 1.0 nm/s at 836°C, respectively, for an austenitizing temperature of 1170°C. For BCC copper in ferrite, the maximum calculated nucleation and growth rates were determined to be 8.0 x 1015 nuclei/cm 3s at 612°C and 0.038 nm/s at 682°C, respectively, for all austenitizing temperatures. Three-dimensional atom probe (3DAP) microscopy revealed the presence of nano-scale BCC copper clusters in approximately the same number density predicted by the theoretical nucleation model. Using an experimentally determined "effective" activation energy for copper in iron, the normalized theoretical nucleation rate curve compared very well with the normalized hardness response after 5 minutes of aging and effectively described the experimental short-time aging behavior of a low carbon, niobium bearing steel. The size and morphological evolution as well as the growth and coarsening behavior of copper precipitates were investigated through conventional TEM during isothermal direct aging at 550°C for a niobium and niobium-free steel. Although niobium carbide precipitation was not characterized, niobium additions provided increased hardness upon direct aging and showed a much higher resistance to overaging, than a niobium-free steel, for long isothermal aging times. In both steels for aging times up to five hours, both 9R type and BCC

  19. Processing development of 4 tantalum carbide-hafnium carbide and related carbides and borides for extreme environments

    Science.gov (United States)

    Gaballa, Osama Gaballa Bahig

    Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering

  20. Chromium allergy and dermatitis: prevalence and main findings

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten Stendahl;

    2015-01-01

    The history of chromium as an allergen goes back more than a century, and includesan interventional success with national legislation that led to significant changes inthe epidemiology of chromium allergy in construction workers. The 2015 EU Leather Regulation once again put a focus on chromium...... allergy, emphasizing that the investigation of chromium allergy is still far from complete. Our review article on chromium focuses on the allergen’s chemical properties, its potential exposure sources, and the allergen’s interaction with the skin, and also provides an overview of the regulations...

  1. Pharmacokinetic Modeling of Trivalent and Hexavalent Chromium Based on Ingestion and Inhalation of Soluble Chromium Compounds.

    Science.gov (United States)

    1991-12-01

    be largely Cr(III) although some Cr(VI) exposure probably also occurs. Stainless-steel welders are exposed to nickel as well as to chromium compounds...welders are equivocal with respect to involvement of chromium, particularly since nickel in some chemical forms is an established lung carcinogen (Stern...microglobulin (Lindberg and Vesterberg, 1983), retinol-binding protein (Franchini and Mutti , 1988), B-glucuronidase ( Mutti et al., 1979), and kidney brush border

  2. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    Science.gov (United States)

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively.

  3. The electronic structure of antiferromagnetic chromium

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1981-01-01

    The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...

  4. A Kinetic Model of Chromium in a Flame

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chromium has been identified as a carcinogenic metal.Incineration is the useful method for disposal of toxic chromium hazard waste and a chromium kinetic model in a flame is very important to study chromium oxidation.Chromium chemical kinetics over a range of temperatures of a hydrogen/air flame is proposed.Nine chromium compounds and fifty-eight reversible chemical reactions were considered The forward reaction rates are calculated based on the molecular collision approach for unknown ones and Arrhenius's Law for known ones.The backward reaction rates were calculated according to forward reaction rates, the equilibrium constants and chemical thermodynamics.It is verified by several equilibrium cases and is tested by a hydrogen/air diffusion flame.The results show that the kinetic model could be used in cases in which the chromium kinetics play an important role in a flame

  5. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.

  6. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  7. Recent trends in silicon carbide device research

    Directory of Open Access Journals (Sweden)

    Munish Vashishath

    2008-08-01

    Full Text Available Silicon carbide (SiC has revolutionised semiconductor power device performance. It is a wide band gap semiconductor with an energy gap wider than 2eV and possesses extremely high power, high voltage switching characteristics and high thermal, chemical and mechanical stability. The SiC wafers are available in 6H, 4H, 2H and 3C polytypes. Because of its wide band gap, the leakage current of SiC is many orders of magnitude lower than that of silicon. Also, forward resistance of SiC power devices is approximately 200 times lower than that of conventional silicon devices. The breakdown voltage of SiC is 8-10 times higher than that of silicon. In this paper, silicon carbide Schottky barrier diodes, power MOSFETs, UMOSFET, lateral power MOSFET, SIT (static induction transistor, and nonvolatile memories are discussed along with their characteristics and applications.

  8. Ultrasonic ranking of toughness of tungsten carbide

    Science.gov (United States)

    Vary, A.; Hull, D. R.

    1983-01-01

    The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.

  9. Nonlinear optical imaging of defects in cubic silicon carbide epilayers.

    Science.gov (United States)

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Matei, Alecs; Stanciu, George A

    2014-06-11

    Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizing structural defects such as stacking faults, dislocations and double positioning boundaries in cubic silicon carbide layers. X-ray diffraction and optical second harmonic rotational anisotropy were used to confirm the growth of the cubic polytype, atomic force microscopy was used to support the identification of silicon carbide defects based on their distinct shape, while second harmonic generation microscopy revealed the detailed structure of the defects. Our results show that this fast and noninvasive investigation method can identify defects which appear during the crystal growth and can be used to certify areas within the silicon carbide epilayer that have optimal quality.

  10. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  11. Diamond-silicon carbide composite and method

    Science.gov (United States)

    Zhao, Yusheng

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  12. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  13. Field Emission of Thermally Grown Carbon Nanostructures on Silicon Carbide

    Science.gov (United States)

    2012-03-22

    thermal decomposition of silicon carbide does not utilize a catalyst, therefore relatively defect free. One drawback to this method, however is that the CNT...In this thesis, silicon carbide samples are patterned to create elevated emission sites in an attempt to minimize the field emission screening effect...Patterning is accomplished by using standard photolithography methods to implement a masking nickel layer on the silicon carbide . Pillars are created

  14. Delivering carbide ligands to sulfide-rich clusters.

    Science.gov (United States)

    Reinholdt, Anders; Herbst, Konrad; Bendix, Jesper

    2016-02-01

    The propensity of the terminal ruthenium carbide Ru(C)Cl2(PCy3)2 (RuC) to form carbide bridges to electron-rich transition metals enables synthetic routes to metal clusters with coexisting carbide and sulfide ligands. Electrochemical experiments show the Ru≡C ligand to exert a relatively large electron-withdrawing effect compared with PPh3, effectively shifting redox potentials.

  15. Sintering of nano crystalline silicon carbide by doping with boron carbide

    Indian Academy of Sciences (India)

    M S Datta; A K Bandyopadhyay; B Chaudhuri

    2002-06-01

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by scanning electron microscopy and transmission electron microscopy. This study shows that the mechanism is a solid-state sintering process. Polytype transformation from 6H to 4H was observed.

  16. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    Science.gov (United States)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  17. Silicon Carbide Corrugated Mirrors for Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  18. Chemical state of fission products in irradiated uranium carbide fuel

    Science.gov (United States)

    Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko

    1987-12-01

    The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.

  19. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  20. HEAT-RESISTANT MATERIAL WITH SILICON CARBIDE AS A BASE,

    Science.gov (United States)

    A new high-temperature material, termed SG-60, is a silicon carbide -graphite composite in which the graphite is the thermostability carrier since it...is more heat-conducting and softer (heat conductivity of graphite is 0.57 cal/g-cm-sec compared with 0.02 cal/g-cm-sec for silicon carbide ) while... silicon carbide is the carrier of high-temperature strength and hardness. The high covalent bonding strength of the atoms of silicon carbide (283 kcal

  1. Chemical Modification Methods of Nanoparticles of Silicon Carbide Surface

    Directory of Open Access Journals (Sweden)

    Anton S. Yegorov

    2015-09-01

    Full Text Available silicon carbide exhibits exceptional properties: high durability, high thermal conductivity, good heat resistance, low thermal expansion factor and chemical inactivity. Reinforcement with silicon carbide nanoparticles increases polymer’s tensile strength and thermal stability.Chemical methods of modification of the silicon carbide surface by means of variety of reagents from ordinary molecules to macromolecular polymers are reviewed in the review.The structure of silicon carbide surface layer and the nature of modificator bonding with the surface of SiC particles are reviewed. General examples of surface modification methodologies and composite materials with the addition of modified SiC are given.

  2. Characterization of silicon-silicon carbide ceramic derived from carbon-carbon silicon carbide composites

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vijay K. [Indian Institute of Technology, Varanasi (India). Dept. of Mechanical Engineering; Krenkel, Walter [Univ. of Bayreuth (Germany). Dept. of Ceramic Materials Engineering

    2013-04-15

    The main objective of the present work is to process porous silicon - silicon carbide (Si - SiC) ceramic by the oxidation of carboncarbon silicon carbide (C/C - SiC) composites. Phase studies are performed on the oxidized porous composite to examine the changes due to the high temperature oxidation. Further, various characterization techniques are performed on Si- SiC ceramics in order to study the material's microstructure. The effects of various parameters such as fiber alignment (twill weave and short/chopped fiber) and phenolic resin type (resol and novolak) are characterized.

  3. Epitaxial and bulk growth of cubic silicon carbide on off-oriented 4H-silicon carbide substrates

    OpenAIRE

    Norén, Olof

    2015-01-01

    The growth of bulk cubic silicon carbide has for a long time seemed to be something for the future. However, in this thesis the initial steps towards bulk cubic silicon carbide have been taken. The achievement of producing bulk cubic silicon carbide will have a great impact in various fields of science and industry such as for example the fields of semiconductor technology within electronic- and optoelectronic devices and bio-medical applications. The process that has been used to grow the bu...

  4. 77 FR 6627 - National Emission Standards for Hazardous Air Pollutant Emissions: Hard and Decorative Chromium...

    Science.gov (United States)

    2012-02-08

    ... aluminum to provide resistance to corrosion. The chromium anodizing process is used to coat aircraft parts... Hazardous Air Pollutant Emissions: Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks... Pollutant Emissions: Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks; and...

  5. CHROMIUM INDUCED CYTOTOXICITY IN BLACKGRAM (VIGNA MUNGO L.

    Directory of Open Access Journals (Sweden)

    A. Chidambaram ، P. Sundaramoorthy ، A. Murugan ، K. Sankar Ganesh ، L. Baskaran

    2009-01-01

    Full Text Available Chromium is known to be highly toxic to biological systems. This study was designed to determine the mutagenic effects of different concentrations (0, 10, 25, 50, 100 and 200 mg/L of hexavalent chromium on root tip cells of blackgram (Vigna mungo L. Hepper. The blackgram seeds were equi-spacially arranged in sterilized petriplates lined with filter paper and they were treated with different concentrations of chromium solution. In germination studies, the morphological growth parameters such as germination percentage, root length, shoot length fresh weight and dry weight of blackgram seedlings were decreased with increasing dose of chromium concentrations. No germination of blackgram seeds was recorded at 300mg/l chromium concentration. Chromosome aberration assay was used to determine the mitotic indices and rate of chromosome aberration in blackgram root tip cells due to chromium treatment. The results showed that the mitotic indices were complicated due to different concentrations of chromium. However, the increase in chromium concentration has led to a gradual increase in the percentage of chromosomal aberration and mitotic index. The chromosome length, absolute chromosome length and average chromosome lengths were gradually found to decrease. There was no considerable change in 2n number of chromosome with the increase in chromium concentrations. It is concluded that the hexavalent chromium has significant mutagenic effect on the root tip cells of blackgram.

  6. Effect of Hot Deformation on Formation and Growth of Thermal Fatigue Crack in Chromium Wear Resistant Cast Iron

    Institute of Scientific and Technical Information of China (English)

    CHANG Li-min; LIU Jian-hua

    2006-01-01

    The formation and growth of thermal fatigue crack in chromium wear resistant cast iron was investigated, and the effect of hot deformation on the crack was analyzed by means of optical microscope and scanning electron microscope and high frequency induction thermal fatigue tester. The results show that eutectic carbide is the main location and passage for initiation and extension of thermal fatigue cracks, hot deformation can improve the eutectic carbide′s morphology and distribution, inhibit the generation and propagation of thermal fatigue cracks. In the experiment, the propagation rate of thermal fatigue crack reduces with the quantity of hot deformation increasing, which was analyzed in the point view of the activation energy of crack propagation.

  7. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Mthunzi, P. [National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria (South Africa); Muller, T.F.G. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Julies, B. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Ramponi, R. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa)

    2014-12-01

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr{sub 2}O{sub 3} layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr{sub 2}O{sub 3} layer. The α-Cr{sub 2}O{sub 3} layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

  8. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    Science.gov (United States)

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept.

  9. Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys

    Directory of Open Access Journals (Sweden)

    Hans Jürgen Grabke

    2004-03-01

    Full Text Available The high temperature corrosion of steels and Ni-base alloys in oxidizing and chloridizing environments is of practical interest in relation to problems in waste incineration plants and power plants using Cl containing fuels. The behaviour of the most important alloying elements Fe, Cr, Ni, Mo, Mn, Si, Al upon corrosion in an oxidizing and chloridizing atmosphere was elucidated: the reactions and kinetics can be largely understood on the base of thermodynamic data, i.e. free energy of chloride formation, vapor pressure of the chlorides and oxygen pressure pO2 needed for the conversion chlorides -> oxides. The mechanism is described by 'active oxidation', comprising inward penetration of chlorine into the scale, formation of chlorides at the oxide/metal interface, evaporation of the chlorides and conversion of the evaporating chlorides into oxides, which occurs in more or less distance from the surface (depending on pO2. This process leads to loose, fragile, multilayered oxides which are unprotective (therefore: active oxidation. Fe and Cr are rapidly transferred into such scale, Ni and Mo are relatively resistant. In many cases, the grain boundaries of the materials are strongly attacked, this is due to a susceptibility of chromium carbides to chloridation. In contrast the carbides Mo2C, TiC and NbC are less attacked than the matrix. Alloys on the basis Fe-Cr-Si proved to be rather resistant, and the alloying elements Ni and Mo clearly retard the attack in an oxidizing and chloridizing environment.

  10. Interactions of chromium with microorganisms and plants.

    Science.gov (United States)

    Cervantes, C; Campos-García, J; Devars, S; Gutiérrez-Corona, F; Loza-Tavera, H; Torres-Guzmán, J C; Moreno-Sánchez, R

    2001-05-01

    Chromium is a highly toxic non-essential metal for microorganisms and plants. Due to its widespread industrial use, chromium (Cr) has become a serious pollutant in diverse environmental settings. The hexavalent form of the metal, Cr(VI), is considered a more toxic species than the relatively innocuous and less mobile Cr(III) form. The presence of Cr in the environment has selected microbial and plant variants able to tolerate high levels of Cr compounds. The diverse Cr-resistance mechanisms displayed by microorganisms, and probably by plants, include biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux. Some of these systems have been proposed as potential biotechnological tools for the bioremediation of Cr pollution. In this review we summarize the interactions of bacteria, algae, fungi and plants with Cr and its compounds.

  11. Influence of alloying on phase precipitation of high chromium cast iron%合金化对高铬铸铁相析出的影响

    Institute of Scientific and Technical Information of China (English)

    李秀兰; 周新军; 谢文玲; 马幼平

    2015-01-01

    The chromium alloy was prepared from 2.8wt%carbon and 31.0wt%chromium by the additions of trace multi-alloying elements ( Ti, Nb, V, Mo) .The existence forms of Ti , Nb, V in multicomponent system were studied by calculation from the alloy thermodynamic consideration .The effect of additions of alloy elements on carbides precipitation behavior of high chromium cast iron was investigated .The results show that Ti and Nb exist in the multi-alloying system in forms of TiC and NbC during solidification .V element exists mainly in alloy compounds ( VCr2 C2 ,VCrFe8 ) .The first precipitated high melted point particles ( TiC, NbC) during cooling can act as the heterogeneous nuclei of M7C3 carbides, As a result, the increase of nucleation rate results in refined M 7C3 carbides morphology.However,the addition of excess alloy elements weakens the roles of M 7 C3 carbides refinement .%添加多元微量合金元素V、Ti、Nb和Mo到2.8C-31Cr合金中制备多元铬系合金,从合金热力学析出角度,通过计算分析Ti、V、Nb在多元体系中的存在方式,探讨添加的合金元素对高铬铸铁凝固组织中碳化物析出的影响。结果表明,Ti和Nb在高铬铸铁凝固过程中主要形成TiC和NbC,V主要存在于合金化合物VCr2 C2和VCrFe8中。先析出的TiC和NbC能充当碳化物异质形核基底,增加形核率使组织细化。但添加过量的合金元素却削弱了对碳化物的细化作用。

  12. Speciation and recovery of chromium from chromite ore processing residues.

    Science.gov (United States)

    Sreeram, K J; Ramasami, T

    2001-10-01

    The processing of chromite ore is associated with the generation of large quantities of solid wastes containing chromium, which have been disposed of as landfill for many years. The mobilization and operational speciation of chromium contained in soils contaminated with metal salts are important in terms of the environment. Several methods have been employed for the extraction and recovery of solid wastes. Chromium contained in contaminated soils and solid wastes can be categorized as exchangeable, oxidizable, carbonate-bound, reducible and residual. The results from this study indicate a need for efficient leaching methodologies in chromite ore processing plants to decrease the non-detrital fractions of chromium in the residue. Aggressive methodologies are required to recover chromium from the detrital fractions. The potential benefits of employing sodium peroxide for the complete recovery of chromium from chromite residue have been demonstrated, and the need to ensure the safety of the process has been emphasized.

  13. Chromium Toxicity: Reductive Enzymes in Humans.

    Science.gov (United States)

    2007-11-02

    internal organs (e.g. lungs, liver, kidneys) [24,27,64], pulmonary fibrosis and chronic bronchitis [2], skin ulcers and allergic dermatitis [2], and...cross the skin [2] and are readily transported across cell membranes [18] via an anion carrier [6]. Cr compounds are also mutagenic [67], and the bulk of...reduced nicotinamide adenine dinucleotide phosphate-cytochrome P450 oxidoreductase- dependent chromium(VI) reduction. Analyst 120:935-938. 42. Miura, A

  14. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    Directory of Open Access Journals (Sweden)

    Matus K.

    2016-06-01

    Full Text Available The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary hardness effect observed for this material to a higher tempering temperature range. Determined influence of the atmosphere in the sintering process on precipitations formed during tempering of carbide-steel cermets. So far examination of carbidesteel cermet produced by powder injection moulding was carried out mainly in the scanning electron microscope. A proper description of nanosized particles is both important and difficult as achievements of nanoscience and nanotechnology confirm the significant influence of nanocrystalline particles on material properties even if its mass fraction is undetectable by standard methods. The following research studies have been carried out using transmission electron microscopy, mainly selected area electron diffraction and energy dispersive spectroscopy. The obtained results and computer simulations comparison were made.

  15. Direct Electrochemical Preparation of Cobalt, Tungsten, and Tungsten Carbide from Cemented Carbide Scrap

    Science.gov (United States)

    Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen

    2016-10-01

    A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V (vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.

  16. Direct Electrochemical Preparation of Cobalt, Tungsten, and Tungsten Carbide from Cemented Carbide Scrap

    Science.gov (United States)

    Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen

    2017-02-01

    A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.

  17. Dimensionally Controlled Lithiation of Chromium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fister, Tim T. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, Xianyi [Northwestern Univ., Evanston, IL (United States); Esbenshade, Jennifer [Univ. of Illinois, Urbana-Champaign, IL (United States); Chen, Xiao [Northwestern Univ., Evanston, IL (United States); Wu, Jinsong [Northwestern Univ., Evanston, IL (United States); Dravid, Vinayak [Northwestern Univ., Evanston, IL (United States); Bedzyk, Michael [Northwestern Univ., Evanston, IL (United States); Long, Brandon [Argonne National Lab. (ANL), Argonne, IL (United States); Gewirth, Andrew A. [Univ. of Illinois, Urbana-Champaign, IL (United States); Shi, Bing [Argonne National Lab. (ANL), Argonne, IL (United States); Schlepütz, Christian M. [Argonne National Lab. (ANL), Argonne, IL (United States); Fenter, Paul [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-12

    Oxide conversion reactions are an alternative approach for high capacity lithium ion batteries but are known to suffer from structural irreversibility associated with the phase separation and reconstitution of reduced metal species and Li2O. In particular, the morphology of the reduced metal species is thought to play a critical role in the electrochemical properties of a conversion material. Here we use a model electrode with alternating layers of chromium and chromium oxide to better understand and control these phase changes in real-time and at molecular length scales. Despite lacking crystallinity at the atomic scale, this superstructure is observed (with X-ray reflectivity, XR) to lithiate and delithiate in a purely one-dimensional manner, preserving the layered structure. The XR data show that the metal layers act as nucleation sites for the reduction of chromium in the conversion reaction. Irreversibility during delithiation is due to the formation of a ternary phase, LiCrO2, which can be further delithiated at higher potentials. The results reveal that the combination of confining lithiation to nanoscale sheets of Li2O and the availability of reaction sites in the metal layers in the layered structure is a strategy for improving the reversibility and mass transport properties that can be used in a wide range of conversion materials.

  18. Processes affecting the remediation of chromium-contaminated sites.

    OpenAIRE

    Palmer, C.D.; Wittbrodt, P R

    1991-01-01

    The remediation of chromium-contaminated sites requires knowledge of the processes that control the migration and transformation of chromium. Advection, dispersion, and diffusion are physical processes affecting the rate at which contaminants can migrate in the subsurface. Heterogeneity is an important factor that affects the contribution of each of these mechanisms to the migration of chromium-laden waters. Redox reactions, chemical speciation, adsorption/desorption phenomena, and precipitat...

  19. Titanium Carbide-Nickel Cermets: Processing and Joing

    Science.gov (United States)

    1952-03-01

    Titanium carbide -nickel cermets can be sintered to have transverse rupture strengths over 250,000 pounds per square inch. To do so, four principal...enough to allow thorough degassing. Joining titanium - carbide cermets to high-temperature alloys has been accomplished by vacuum diffusion, and gives

  20. TITANIUM CARBIDE CONTENT EFFECT ON EROSION IN CERMET ROCKET NOZZLES

    Science.gov (United States)

    class investigated consisted of an AISI Type 316 stainless steel matrix incorporating a hard phase of titanium carbide ranging in content from 20% to...55% by volume. The results of the study indicated that under the test conditions, increases in the titanium carbide constituents did increase the

  1. Development and characterization of solid solution tri-carbides

    Science.gov (United States)

    Knight, Travis; Anghaie, Samim

    2001-02-01

    Solid-solution, binary uranium/refractory metal carbide fuels have been shown to be capable of performing at high temperatures for nuclear thermal propulsion applications. More recently, tri-carbide fuels such as (U, Zr, Nb)C1+x with less than 10% metal mole fraction uranium have been studied for their application in ultra-high temperature, high performance space nuclear power systems. These tri-carbide fuels require high processing temperatures greater than 2600 K owing to their high melting points in excess of 3600 K. This paper presents the results of recent studies involving hypostoichiometric, single-phase tri-carbide fuels. Processing techniques of cold uniaxial pressing and sintering were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid solution mixed carbide nuclear fuels for testing. Scanning electron microscopy and xray diffraction were used to analyze samples. Liquid phase sintering with UC1+x at temperatures near 2700 K was shown to be instrumental in achieving good densification in hyper- and near-stoichiometric mixed carbides. Hypostoichiometric carbides require even higher processing temperatures greater than 2800 K in order to achieve liquid phase sintering with a UC liquid phase and good densification of the final solid solution, tri-carbide fuel. .

  2. Stress in tungsten carbide-diamond like carbon multilayer coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.

    2007-01-01

    Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature. Peri

  3. Interface Defeat of Long Rods Impacting Oblique Silicon Carbide

    Science.gov (United States)

    2011-02-01

    Test data for gold rods impacting unconfined silicon carbide targets are reported. This work focuses on the dwell phenomenon exhibited by silicon ... carbide for targets at obliquity. Experiments are presented for obliquities of 30 deg, 45 deg and 60 deg, with and without cover plates. Results are compared to normal impact.

  4. Silicon Carbide Tiles for Sidewall Lining in Aluminium Electrolysis Cells

    Institute of Scientific and Technical Information of China (English)

    RUANBo; ZHAOJunguo; 等

    1999-01-01

    The paper introduces the nitride bonded silicon carbide used for sidewall lining in aluminium eletrolysis cells ,including technical process,main properties and application results.Comparison tests on various physical properties of silicon carbide products made by LIRR and other producers worldwide have also been conducted in an independent laboratory.

  5. Preparation and Electrocatalytic Activity of Tungsten Carbide Nanorod Arrays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High density tungsten carbide nanorod arrays have been prepared by magnetron sputtering (MS) using the aluminum lattice membrane (ALM) as template. Electrocatalytic properties of nitromethane electroreduction on the tungsten carbide nanorod arrays electrode were investigated by electrochemical method, and their electrocatalytic activity is approached to that of the Pt foil electrode.

  6. Rapid cost-effective silicon carbide optical component manufacturing technique

    Science.gov (United States)

    Casstevens, John M.; Plummer, Ronald; Jarocki, Jim

    1999-10-01

    Silicon carbide may well be the best known material for the manufacture of high performance optical components. A combination of extremely high specific stiffness (r/E), high thermal conductivity and outstanding dimensional stability make silicon carbide superior overall to beryllium and low- expansion glass ceramics. A major impediment to wide use of silicon carbide in optical systems has been the costs of preliminary pressing, casting, shaping and final finishing of silicon carbide. Diamond grinding of silicon carbide is a slow and expensive process even on machines specially designed for the task. The process described here begins by machining the component from a special type of graphite. This graphite is easily machined with multi-axis CNC machine tools to any level of complexity and lightweighting required. The graphite is then converted completely to silicon carbide with very small and very predictable dimensional change. After conversion to silicon carbide the optical surface is coated with very fine grain silicon carbide which is easily polished to extreme smoothness using conventional optical polishing techniques. The fabrication process and a 6 inch diameter development mirror is described.

  7. New technology for comprehensive utilization of aluminum-chromium residue from chromium salts production

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-bin; QI Tian-gui; JIANG Xin-min; ZHOU Qiu-sheng; LIU Gui-hua; PENG Zhi-hong; HAN Deng-lun; ZHANG Zhong-yuan; YANG Kun-shan

    2008-01-01

    Colloidal aluminum-chromium residue(ACR) was mass-produced in chromate production process, and the large energy consumption and high recovery cost existed in traditional methods of utilizing such ACR. To overcome those problems, a new comprehensive method was proposed to deal with the ACR, and was proven valid in industry. In the new process, the chromate was separated firstly from the colloidal ACR by ripening and washing with additives, by which more than 95% hexavalent chromium was recovered. The chromium-free aluminum residue(CFAR), after properly dispersed, was digested at 120-130 ℃ and more than 90% alumina can be recovered. And then the pregnant aluminate solution obtained from digestion was seeded to precipitate aluminum hydroxide. This new method can successfully recover both alumina and sodium chromate, and thus realize the comprehensive utilization of ACR from chromate industry.

  8. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  9. Tribological Characteristics of Chromium-active Carbon Electroplated Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    GUKa-fi; HUAMeng; Yi-min

    2004-01-01

    A process of chromium electroplating using a standard bath with additives and active carbon particles was reported, and the tribological behaviors of the composite coatings using the pin-on-disk tester and the table wear tester were i nvestig(aed. Experimental results indicate that the electroplated chromium-active carbon composite coatings exhibited the low friction coefficient anti excellent anti-wear properties whets coffered with the normal chromium electroplated ones. The formation of active carbon particles within the chromium matrices can be explained by SEM analysis and the mechanis of wear resistance of the composite coatings were studied.

  10. REINFORCEMENT OF NICKEL CHROMIUM ALLOYS WITH SAPPHIRE WHISKERS.

    Science.gov (United States)

    SAPPHIRE, COMPOSITE MATERIALS, CERAMIC FIBERS , CERAMIC FIBERS , TITANIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, HYDRIDES, ADDITIVES, CHROMIUM ALLOYS, FIBER METALLURGY, IRON COMPOUNDS, ENCAPSULATION, DENSITY, SURFACE TENSION.

  11. Chromium recycling of tannery waste through microbial fermentation.

    Science.gov (United States)

    Katsifas, E A; Giannoutsou, E; Lambraki, M; Barla, M; Karagouni, A D

    2004-02-01

    An Aspergillus carbonarius isolate, selected from an established microbial culture collection, was used to study the biodegradation of chromium shavings in solid-state fermentation experiments. Approximately 97% liquefaction of the tannery waste was achieved and the liquid obtained from long-term experiments was used to recover chromium. The resulting alkaline chromium sulfate solution was useful in tanning procedures. A proteinaceous liquid was also obtained which has potential applications as a fertilizer or animal feed additive and has several other industrial uses. The A. carbonarius strain proved to be a very useful tool in tannery waste-treatment processes and chromium recovery in the tanning industries.

  12. Influence of Chelating Agents on Chromium Fate in Sediment

    Institute of Scientific and Technical Information of China (English)

    WANGXIAOCHANG; SUNJINHE; 等

    1996-01-01

    A laboratory investigation on reaction between chelating agents and chromium was conducted to evaluate the effect of chelating agents on the adsorption and desorption of chromium in sediment.The amount of adsorbed chromium(VI) in sediment decreased slightly by 5%-10% because of addition of chelating agents.Chelating agents inhibited the removal of Cr(Ⅲ)by sediment from solutions and the inhibiting effect was in the order:citric acid>tartaric acid>EDTA,Salicylic acid.No effect of chelating agents on desorption of chromium in sediment was observed.

  13. Niobium carbide precipitation in microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, C.; Hulka, K. [Niobium Products Co. GmbH, Duesseldorf (Germany); Bleck, W. [Inst. for Ferrous Metallurgy, RWTH Aachen Univ., Aachen (Germany)

    2004-11-01

    The precipitation of niobium carbo-nitrides in the austenite phase, interphase and ferrite phase of microalloyed steel was assessed by a critical literature review and a round table discussion. This work analyses the contribution of niobium carbide precipitates formed in ferrite in the precipitation hardening of commercially hot rolled strip. Thermodynamics and kinetics of niobium carbo-nitride precipitation as well as the effect of deformation and temperature on the precipitation kinetics are discussed in various examples to determine the amount of niobium in solid solution that will be available for precipitation hardening after thermomechanical rolling in the austenite phase and successive phase transformation. (orig.)

  14. Titanium carbide coatings for aerospace ball bearings

    Science.gov (United States)

    Boving, Hans J.; Haenni, Werner; Hintermann, HANS-E.

    1988-01-01

    In conventional ball bearings, steel to steel contacts between the balls and the raceways are at the origin of microwelds which lead to material transfer, surface roughening, lubricant breakdown, and finally to a loss in the bearing performances. To minimize the microwelding tendencies of the contacting partners it is necessary to modify their surface materials; the solid to solid collisions themselves are difficult to avoid. The use of titanium carbide coated steel balls can bring spectacular improvements in the performances and lifetimes of both oil-grease lubricated and oil-grease free bearings in a series of severe applications.

  15. Novel Polymer Nanocomposite With Silicon Carbide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alyona I. Wozniak

    2015-09-01

    Full Text Available Polyimides are ranked among the most heat-resistant polymers and are widely used in high temperature plastics, adhesives, dielectrics, photoresistors, nonlinear optical materials, membrane materials for gasseparation, and Langmuir–Blodgett (LB films, among others. While there is a variety of high temperature stable polyimides, there is a growing demand for utilizing these materials at higher temperatures in oxidizing and aggressive environments. Therefore, we sought to use oxidation-resistant materials to enhance properties of the polyimide composition maintaining polyimide weights and processing advantages. In this paper we introduced results of utilizing inorganic nanostructured silicon carbide particles to produce an inorganic particle filled polyimide materials.

  16. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    S Mandal; A Seal; S K Dalui; A K Dey; S Ghatak; A K Mukhopadhyay

    2001-04-01

    The present work deals with the sintering of SiC with a low melting additive by microwave technique. The mechanical characteristics of the products were compared with that of conventionally sintered products. The failure stress of the microwave sintered products, in biaxial flexure, was superior to that of the products made by conventional sintering route in ambient condition. In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  17. Synthesis and photoluminescence property of boron carbide nanowires

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B2O3/C powder precursors under an argon flow at 1100~C. The boron carbide nanowires are 5-10 μm in length and 80-100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm.

  18. Electrocatalysis using transition metal carbide and oxide nanocrystals

    Science.gov (United States)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  19. Modification of σ-Donor Properties of Terminal Carbide Ligands Investigated Through Carbide-Iodine Adduct Formation.

    Science.gov (United States)

    Reinholdt, Anders; Vosch, Tom; Bendix, Jesper

    2016-09-26

    The terminal carbide ligands in [(Cy3 P)2 X2 Ru≡C] complexes (X=halide or pseudohalide) coordinate molecular iodine, affording charge-transfer complexes rather than oxidation products. Crystallographic and vibrational spectroscopic data show the perturbations of iodine to vary with the auxiliary ligand sphere on ruthenium, demonstrating the σ-donor properties of carbide complexes to be tunable.

  20. Sol–gel processing of carbidic glasses

    Indian Academy of Sciences (India)

    L M Manocha; E Yasuda; Y Tanabe; S Manocha; D Vashistha

    2000-02-01

    Carbon incorporation into the silicate network results in the formation of rigid carbidic glasses with improved physical, mechanical and thermal properties. This generated great interest in the development of these heteroatom structured materials through different processing routes. In the present studies, sol–gel processing has been used to prepare silicon based glasses, especially oxycarbides through organic–inorganic hybrid gels by hydrolysis–condensation reactions in silicon alkoxides, 1,4-butanediol and furfuryl alcohol with an aim to introduce Si–C linkages in the precursors at sol level. The incorporation of these linkages has been studied using IR and NMR spectroscopy. These bonds, so introduced, are maintained throughout the processing, especially during pyrolysis to high temperatures. In FFA–TEOS system, copolymerization with optimized mol ratio of the two results in resinous mass. This precursor on pyrolysis to 1000°C results in Si–O–C type amorphous solid black mass. XRD studies on the materials heated to 1400°C exhibit presence of crystalline Si–C and cristobalites in amorphous Si–O–C mass. In organic–inorganic gel system, the pyrolysed mass exhibits phase stability up to much higher temperatures. The carbidic materials so produced have been found to exhibit good resistance against oxidation at 1000°C.

  1. Dynamic compaction of tungsten carbide powder.

    Energy Technology Data Exchange (ETDEWEB)

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  2. Ultrasmall Carbide Nanospheres - Formation and Electronic Properties

    Science.gov (United States)

    Reinke, Petra; Monazami, Ehsan; McClimon, John

    2015-03-01

    Metallic nanoparticles are highly coveted but are subject to rapid Ostwald ripening even at moderate temperatures limiting study of their properties. Ultrasmall transition metal carbide ``nanospheres'' are synthesized by a solid-state reaction between fullerene as carbon scaffold, and a W surface. This produces nanospheres with a narrow size distribution below 2.5 nm diameter. The nanosphere shape is defined by the scaffold and densely packed arrays can be achieved. The metal-fullerene reaction is temperature driven and progresses through an intermediate semiconducting phase until the fully metallic nanospheres are created at about 350 C. The reaction sequence is observed with STM, and STS maps yield the local density of states. The reaction presumably progresses by stepwise introduction of W-atoms in the carbon scaffold. The results of high resolution STM/STS in combination with DFT calculations are used to unravel the reaction mechanism. We will discuss the transfer of this specific reaction mechanism to other transition metal carbides. The nanospheres are an excellent testbed for the physics and chemistry of highly curved surfaces.

  3. Effect of ageing temperature after tensile pre deformation on shape memory effect and precipitation process of Cr{sub 23}C{sub 6} carbide in a FeMnSiCrNiC alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.Z. [College of Manufacturing Science and Engineering, Sichuan University, 24, South Section 1, Yihuan Road, Chengdu 610065, Sichuan (China); College of Material Science and Engineering, Xihua University, Chengdu 610039 (China); Li, N., E-mail: yangshizhou@163.com [College of Manufacturing Science and Engineering, Sichuan University, 24, South Section 1, Yihuan Road, Chengdu 610065, Sichuan (China); Wen, Y.H.; Peng, H.B. [College of Manufacturing Science and Engineering, Sichuan University, 24, South Section 1, Yihuan Road, Chengdu 610065, Sichuan (China)

    2011-11-25

    Highlights: {yields} Precipitation process of Cr{sub 23}C{sub 6} particles depends on diffusion capacity of Cr atom. {yields} Directional segregation of carbon atom can act as aligned Cr{sub 23}C{sub 6} in improving SME. {yields} Ageing temperature and ageing time greatly affect precipitation process of Cr{sub 23}C{sub 6}. {yields} NbC carbides in a FeMnSiCrNiNbC alloy are prone to dispersively precipitate. - Abstract: Researches showed that the shape memory effect (SME) of FeMnSiCrNiC alloys can be remarkably improved through aligned Cr{sub 23}C{sub 6} particles or carbon atom segregation inside grains. To further study on influencing factors in improving SME and aligned precipitation process of Cr{sub 23}C{sub 6} carbide in a FeMnSiCrNiC alloy, effect of ageing temperature after tensile pre deformation on shape memory effect and precipitation process of Cr{sub 23}C{sub 6} carbide in a FeMnSiCrNiC alloy was studied. The results showed that aligned precipitation of Cr{sub 23}C{sub 6} carbide in a FeMnSiCrNiC alloy mainly depends on diffusion capacity and directional segregation of carbon and chromium atoms, namely on ageing temperature, ageing time and the amount of tensile pre deformation.

  4. Diffusion of hexavalent chromium in chromium-containing slag as affected by microbial detoxification.

    Science.gov (United States)

    Wang, Yunyan; Yang, Zhihui; Chai, Liyuan; Zhao, Kun

    2009-09-30

    An electrochemical method was used to determine the diffusion coefficient of chromium(VI) in chromium-containing slag. A slag plate was prepared from the original slag or the detoxified slag by Achromobacter sp. CH-1. The results revealed that the apparent diffusion coefficient of Cr(VI) was 4.4 x 10(-9)m(2)s(-1) in original slag and 2.62 x 10(-8)m(2)s(-1) in detoxified slag. The results implied that detoxification of chromium-containing slag by Achromobacter sp. CH-1 could enhance Cr(VI) release. Meanwhile, the results of laboratory experiment showed that the residual total Cr(VI) in slag decreased from an initial value of 6.8 mg g(-1) to 0.338 mg g(-1) at the end of the detoxification process. The Cr(VI) released from slag was also reduced by Achromobacter sp. CH-1 strain since water soluble Cr(VI) in the leachate was not detected after 4 days. Therefore, Achromobacter sp. CH-1 has potential application for the bio-detoxification of chromium-containing slag.

  5. Quantitative evaluation of carbides in nickel-base superalloy MAR-M247

    Science.gov (United States)

    Szczotok, A.

    2011-05-01

    It has been established that carbides in superalloys serve three functions. Fine carbides precipitated in the matrix give strengthening results. Carbides also can tie up certain elements that would otherwise promote phase instability during service. Grain boundary carbides prevent or retard grain-boundary sliding and strengthen the grain boundary, which depends significantly on carbide shape, size and distribution. Various types of carbides are possible, depending on superalloy composition and processing. In the paper optical and scanning electron microscopy investigations of carbides occurring in specimens of the polycrystalline nickel-base superalloy MAR-M247 were carried out. Conditions of carbides revealing and microstructure images acquisition have been described. Taking into consideration distribution and morphology of the carbides in matrix a method of quantitative description of Chinese script-like and blocky primary carbides on the basis of image analysis was proposed.

  6. Salt flux synthesis of single and bimetallic carbide nanowires

    Science.gov (United States)

    Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng

    2016-07-01

    Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.

  7. Computational Studies of Physical Properties of Boron Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  8. Effects of carbides on fatigue characteristics of austempered ductile iron

    Science.gov (United States)

    Stokes, B.; Gao, N.; Reed, P. A. S.; Lee, K. K.

    2005-04-01

    Crack initiation and growth behavior of an austempered ductile iron (ADI) austenitized at 800 °C and austempered at 260 °C have been assessed under three-point bend fatigue conditions. Initiation sites have been identified as carbides remaining from the as-cast ductile iron due to insufficient austenization. The number of carbides cracking on loading to stresses greater than 275 MPa is critical in determining the failure mechanism. In general, high carbide area fractions promote coalescence-dominated fatigue crack failure, while low area fractions promote propagation-dominated fatigue crack failure. Individual carbides have been characterized using finite body tessellation (FBT) and adaptive numerical modeling (Support vector Parsimonious Analysis Of Variance (SUPANOVA)) techniques in an attempt to quantify the factors promoting carbide fracture. This indicated that large or long and thin carbides on the whole appear to be susceptible to fracture, and carbides that are locally clustered and aligned perpendicular to the tensile axis are particularly susceptible to fracture.

  9. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-04-25

    A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving

  10. Safety, absorption, and antioxidant effects of chromium histidine

    Science.gov (United States)

    Supplemental chromium has been shown to be involved in the alleviation of the metabolic syndrome, glucose intolerance, polycystic ovary syndrome, depression, excess body fat, and gestational, steroid-induced, and type 2 diabetes. Chromium amino acid complexes that contained histidine displayed cons...

  11. Mechanisms of bacterial resistance to chromium compounds.

    Science.gov (United States)

    Ramírez-Díaz, Martha I; Díaz-Pérez, César; Vargas, Eréndira; Riveros-Rosas, Héctor; Campos-García, Jesús; Cervantes, Carlos

    2008-06-01

    Chromium is a non-essential and well-known toxic metal for microorganisms and plants. The widespread industrial use of this heavy metal has caused it to be considered as a serious environmental pollutant. Chromium exists in nature as two main species, the trivalent form, Cr(III), which is relatively innocuous, and the hexavalent form, Cr(VI), considered a more toxic species. At the intracellular level, however, Cr(III) seems to be responsible for most toxic effects of chromium. Cr(VI) is usually present as the oxyanion chromate. Inhibition of sulfate membrane transport and oxidative damage to biomolecules are associated with the toxic effects of chromate in bacteria. Several bacterial mechanisms of resistance to chromate have been reported. The best characterized mechanisms comprise efflux of chromate ions from the cell cytoplasm and reduction of Cr(VI) to Cr(III). Chromate efflux by the ChrA transporter has been established in Pseudomonas aeruginosa and Cupriavidus metallidurans (formerly Alcaligenes eutrophus) and consists of an energy-dependent process driven by the membrane potential. The CHR protein family, which includes putative ChrA orthologs, currently contains about 135 sequences from all three domains of life. Chromate reduction is carried out by chromate reductases from diverse bacterial species generating Cr(III) that may be detoxified by other mechanisms. Most characterized enzymes belong to the widespread NAD(P)H-dependent flavoprotein family of reductases. Several examples of bacterial systems protecting from the oxidative stress caused by chromate have been described. Other mechanisms of bacterial resistance to chromate involve the expression of components of the machinery for repair of DNA damage, and systems related to the homeostasis of iron and sulfur.

  12. High precision optical finishing of lightweight silicon carbide aspheric mirror

    Science.gov (United States)

    Kong, John; Young, Kevin

    2010-10-01

    Critical to the deployment of large surveillance optics into the space environment is the generation of high quality optics. Traditionally, aluminum, glass and beryllium have been used; however, silicon carbide becomes of increasing interest and availability due to its high strength. With the hardness of silicon carbide being similar to diamond, traditional polishing methods suffer from slow material removal rates, difficulty in achieving the desired figure and inherent risk of causing catastrophic damage to the lightweight structure. Rather than increasing structural capacity and mass of the substrate, our proprietary sub-aperture aspheric surface forming technology offers higher material removal rates (comparable to that of Zerodur or Fused Silica), a deterministic approach to achieving the desired figure while minimizing contact area and the resulting load on the optical structure. The technology performed on computer-controlled machines with motion control software providing precise and quick convergence of surface figure, as demonstrated by optically finishing lightweight silicon carbide aspheres. At the same time, it also offers the advantage of ideal pitch finish of low surface micro-roughness and low mid-spatial frequency error. This method provides a solution applicable to all common silicon carbide substrate materials, including substrates with CVD silicon carbide cladding, offered by major silicon carbide material suppliers. This paper discusses a demonstration mirror we polished using this novel technology. The mirror is a lightweight silicon carbide substrate with CVD silicon carbide cladding. It is a convex hyperbolic secondary mirror with 104mm diameter and approximately 20 microns aspheric departure from best-fit sphere. The mirror has been finished with surface irregularity of better than 1/50 wave RMS @632.8 nm and surface micro-roughness of under 2 angstroms RMS. The technology has the potential to be scaled up for manufacturing capabilities of

  13. Growth kinetics of cubic carbide free layers in graded cemented carbides

    Science.gov (United States)

    Shi, Liu-Yong; Liu, Yi-Min; Huang, Ji-Hua; Zhang, Shou-Quan; Zhao, Xing-Ke

    2012-01-01

    In order to reveal the formation mechanism of cubic carbide free layers (CCFL), graded cemented carbides with CCFL in the surface zone were fabricated by a one-step sintering procedure in vacuum, and the analysis on microstructure and element distribution were performed by scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA), respectively. A new physical model and kinetic equation were established based on experimental results. Being different from previous models, this model suggests that nitrogen diffusion outward is only considered as an induction factor, and the diffusion of titanium through liquid phase plays a dominative role. The driving force of diffusion is expressed as the differential value between nitrogen partial pressure and nitrogen equilibrium pressure essentially. Simulation results by the kinetic equation are in good agreement with experimental values, and the effect of process parameters on the growth kinetics of CCFL can also be explained reasonably by the current model.

  14. Observational Approach to Chromium Site Remediation - 13266

    Energy Technology Data Exchange (ETDEWEB)

    Scott Myers, R. [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)

    2013-07-01

    Production reactors at the U.S. Department of Energy's (DOE) Hanford Site in Richland, Washington, required massive quantities of water for reactor cooling and material processing. To reduce corrosion and the build-up of scale in pipelines and cooling systems, sodium dichromate was added to the water feedstock. Spills and other releases at the makeup facilities, as well as leaks from miles of pipelines, have led to numerous areas with chromium-contaminated soil and groundwater, threatening fish populations in the nearby Columbia River. Pump-and-treat systems have been installed to remove chromium from the groundwater, but significant contamination remain in the soil column and poses a continuing threat to groundwater and the Columbia River. Washington Closure Hanford, DOE, and regulators are working on a team approach that implements the observational approach, a strategy for effectively dealing with the uncertainties inherent in subsurface conditions. Remediation of large, complex waste sites at a federal facility is a daunting effort. It is particularly difficult to perform the work in an environment of rapid response to changing field and contamination conditions. The observational approach, developed by geotechnical engineers to accommodate the inherent uncertainties in subsurface conditions, is a powerful and appropriate method for site remediation. It offers a structured means of quickly moving into full remediation and responding to the variations and changing conditions inherent in waste site cleanups. A number of significant factors, however, complicate the application of the observational approach for chromium site remediation. Conceptual models of contamination and site conditions are difficult to establish and get consensus on. Mid-stream revisions to the design of large excavations are time-consuming and costly. And regulatory constraints and contract performance incentives can be impediments to the flexible responses required under the

  15. Atom Lithography with a Chromium Atomic Beam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Tao; LI Tong-Bao

    2006-01-01

    @@ Direct write atom lithography is a new technique in which resonant light is used to pattern an atomic beam and the nanostructures are formed when the atoms deposit on the substrate. We design an experiment setup to fabricate chromium nanolines by depositing an atomic beam of 52 Cr through an off-resonant laser standing wave with the wavelength of 425.55 nm onto a silicon substrate. The resulting nanolines exhibit a period of 215 ± 3 nm with height of 1 nm.

  16. The fate of chromium during tropical weathering

    DEFF Research Database (Denmark)

    Berger, Alfons; Frei, Robert

    2014-01-01

    We performed a mineral, geochemical and Cr–Sr–Pb isotope study on a laterite profile developed on ca. 540 Ma old tonalitic bedrock in Madagascar with special emphasis on the behavior of chromium during tropical weathering. The observed strong depletions of Ca, Si, and P, and enrichment of Fe and Al......, in the soil, relative to bedrock and underlying saprolite, are the characteristic features pertinent to laterites. The enrichment of Fe in topsoil horizon can be correlated with enrichment of P, and the redox sensitive elements Mn and Cr, and indicates redistribution of these elements related to oxidation...

  17. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Wang, Yuan-Shan; Pan, Zhi-Yan; Lang, Jian-Min; Xu, Jian-Miao; Zheng, Yu-Guo

    2007-08-17

    Chromium in tannery sludge will cause serious environmental problems and is toxic to organisms. The acidophilic sulfur-oxidizing Acidithiobacillus thiooxidans can leach heavy metals form urban and industrial wastes. This study examined the ability of an indigenous sulfur-oxidizing A. thiooxidans to leach chromium from tannery sludge. The results showed that the pH of sludge mixture inoculated with the indigenous A. thiooxidans decreased to around 2.0 after 4 days. After 6 days incubation in shaking flasks at 30 degrees C and 160 rpm, up to 99% of chromium was solubilized from tannery sludge. When treated in a 2-l bubble column bioreactor for 5 days at 30 degrees C and aeration of 0.5 vvm, 99.7% of chromium was leached from tannery sludge. The results demonstrated that chromium in tannery sludge can be efficiently leached by the indigenous A. thiooxidans.

  18. Microstructure and Properties of Plasma Spraying Boron Carbide Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical,mechanical and electrical properties were measured. The results showed that high microhardness,modulus and Iow porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young′s modulus, comparing with that of the bulk materials, is explained by porosity. The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.

  19. Hugoniot equation of state and dynamic strength of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Grady, Dennis E. [Applied Research Associates, Southwest Division, 4300 San Mateo Blvd NE, A-220, Albuquerque, New Mexico 87110-129 (United States)

    2015-04-28

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable

  20. Hugoniot equation of state and dynamic strength of boron carbide

    Science.gov (United States)

    Grady, Dennis E.

    2015-04-01

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20-60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic

  1. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  2. Analysis of carbides and inclusions in high speed tool steels

    DEFF Research Database (Denmark)

    Therkildsen, K.T.; Dahl, K.V.

    2002-01-01

    The fracture surfaces of fatigued specimens were investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The aim was to quantify the distribution of cracked carbides and non-metallic inclusions on the fracturesurfaces as well as on polished cross......-metallic inclusions and the crack initiation. Surprisingly, no differences were found between the carbide size distributions of the micro-clean and conventional grades.Also, the distribution of the fractured carbides was found to be the same regardless of steel type, manufacturing method or location on the specimen....

  3. First-principles study of structural and bonding properties of vanadium carbide and niobium carbide

    Science.gov (United States)

    Joshi, K. B.; Paliwal, U.

    2009-11-01

    An ab initio linear combination of atomic orbitals method founded on density functional theory is applied to study the structural and bonding properties of vanadium carbide and niobium carbide. We present structural properties, namely, first-principles total energies, equilibrium lattice constants, bulk moduli and their pressure derivatives, together with the x-ray structure factors. Two generalized correction schemes—P86 and PW92—are applied to treat correlation. P86 gives a favourable ground state compared with the PW92. The computed equilibrium lattice constants and bulk moduli of the two compounds are compared with available experimental data. The x-ray structure factors for a few reflection planes are also reported. Comparison with experiment could be done only for niobium carbide. More refined measurements on x-ray structure factors for both compounds are required. We also present the autocorrelation functions derived from the ground-state momentum density. The electronic behaviour and bonding properties are discussed in terms of absolute and anisotropies in the directional autocorrelation functions. Our findings on structural and bonding parameters are well in accordance with the experimental data.

  4. First-principles study of structural and bonding properties of vanadium carbide and niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, K B; Paliwal, U [Department of Physics, University College of Science, M L Sukhadia University, Udaipur - 313001 (India)], E-mail: k_joshi@yahoo.com

    2009-11-15

    An ab initio linear combination of atomic orbitals method founded on density functional theory is applied to study the structural and bonding properties of vanadium carbide and niobium carbide. We present structural properties, namely, first-principles total energies, equilibrium lattice constants, bulk moduli and their pressure derivatives, together with the x-ray structure factors. Two generalized correction schemes-P86 and PW92-are applied to treat correlation. P86 gives a favourable ground state compared with the PW92. The computed equilibrium lattice constants and bulk moduli of the two compounds are compared with available experimental data. The x-ray structure factors for a few reflection planes are also reported. Comparison with experiment could be done only for niobium carbide. More refined measurements on x-ray structure factors for both compounds are required. We also present the autocorrelation functions derived from the ground-state momentum density. The electronic behaviour and bonding properties are discussed in terms of absolute and anisotropies in the directional autocorrelation functions. Our findings on structural and bonding parameters are well in accordance with the experimental data.

  5. The Theory for the Mechanism of Chromium Plating: The Theory for the Physical Characteristics of Chromium Plate

    Science.gov (United States)

    1947-01-01

    deposits arc pro- duced as the coll potential is successively raised. The sulfato ion "hus has an extremely important effect in the chromium plating...and sulfato iDU in the bath wore then used in an attempt to obtain more satisfactory hexagonal chromium deposits. The data obtained are summarUod

  6. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    Science.gov (United States)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  7. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  8. Production of titanium carbide from ilmenite

    Directory of Open Access Journals (Sweden)

    Sutham Niyomwas

    2008-03-01

    Full Text Available The production of titanium carbide (TiC powders from ilmenite ore (FeTiO3 powder by means of carbothermal reduction synthesis coupled with hydrochloric acid (HCl leaching process was investigated. A mixture of FeTiO3 and carbon powders was reacted at 1500oC for 1 hr under flowing argon gas. Subsequently, synthesized product of Fe-TiC powders were leached by 10% HCl solutions for 24 hrs to get final product of TiC powders. The powders were characterized using X-ray diffraction, scanning electron and transmission electron microscopy. The product particles were agglomerated in the stage after the leaching process, and the size of this agglomerate was 12.8 μm with a crystallite size of 28.8 nm..

  9. Development of a silicon carbide sewing thread

    Science.gov (United States)

    Sawko, Paul M.; Vasudev, Anand

    1989-01-01

    A silicon carbide (SiC) sewing thread has been designed which consists of a two-ply yarn in a 122 turns-per-meter-twist construction. Two processing aids in thread construction were evaluated. Prototype blankets were sewn using an SiC thread prepared either with polytetrafluoroethylene sizing or with an overwrap of rayon/dacron service yarn. The rayon/dacron-wrapped SiC thread was stronger, as shown by higher break-strength retention and less damage to the outer-mold-line fabric. This thread enables thermal protection system articles to be sewn or joined, or have perimeter close-out of assembled parts when using SiC fabric for high-temperature applications.

  10. Reaction Kinetics of Nanostructured Silicon Carbide

    Science.gov (United States)

    Wallis, Kendra; Zerda, T. W.

    2006-10-01

    Nanostructured silicon carbide (SiC) is of interest particularly for use in nanocomposites that demonstrate high hardness as well as for use in semiconductor applications. Reaction kinetics studies of solid-solid reactions are relatively recent and present a method of determining the reaction mechanism and activation energy by measuring reaction rates. We have used induction heating to heat quickly, thus reducing the error in reaction time measurements. Data will be presented for reactions using silicon nanopowder (melting point of silicon. Using the well-known Avrami-Erofeev model, a two-parameter chi- square fit of the data provided a rate constant (k) and parameter (n), related to the reaction mechanism, for each temperature. From these data, an activation energy of 138 kJ/mol was calculated. In addition, the parameter n suggests the reaction mechanism, which will also be discussed. Experiments are continuing at higher temperatures to consider the liquid- solid reaction as well.

  11. Tunable plasticity in amorphous silicon carbide films.

    Science.gov (United States)

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold.

  12. Stable field emission from nanoporous silicon carbide.

    Science.gov (United States)

    Kang, Myung-Gyu; Lezec, Henri J; Sharifi, Fred

    2013-02-15

    We report on a new type of stable field emitter capable of electron emission at levels comparable to thermal sources. Such an emitter potentially enables significant advances in several important technologies which currently use thermal electron sources. These include communications through microwave electronics, and more notably imaging for medicine and security where new modalities of detection may arise due to variable-geometry x-ray sources. Stable emission of 6 A cm(-2) is demonstrated in a macroscopic array, and lifetime measurements indicate these new emitters are sufficiently robust to be considered for realistic implementation. The emitter is a monolithic structure, and is made in a room-temperature process. It is fabricated from a silicon carbide wafer, which is formed into a highly porous structure resembling an aerogel, and further patterned into an array. The emission properties may be tuned both through control of the nanoscale morphology and the macroscopic shape of the emitter array.

  13. Preparation of Silicon Carbide with High Properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to prepare silicon carbide with high properties, three kinds of SiC powders A, B, and C with different composition and two kinds of additives, which were Y2O3-Al2O3 system and Y2O3-La2O3 system, were used in this experiment. The properties of hot-pressed SiC ceramics were measured. With the same additives, different SiC powder resulted in different properties. On the other hand, with the same SiC powder, increasing the amount of the additive Y2O3-Al2O3 improved properties of SiC ceramics at room temperature, and increasing the amount of the additive Y2O3-La2O3 improved property SiC ceramics at elevated temperature. In addition, the microstructure of SiC ceramics was studied by scanning electron microscopy.

  14. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  15. Thermal Oxidation of Silicon Carbide Substrates

    Institute of Scientific and Technical Information of China (English)

    Xiufang Chen; Li'na Ning; Yingmin Wang; Juan Li; Xiangang Xu; Xiaobo Hu; Minhua Jiang

    2009-01-01

    Thermal oxidation was used to remove the subsurface damage of silicon carbide (SiC) surfaces. The anisotrow of oxidation and the composition of oxide layers on Si and C faces were analyzed. Regular pits were observed on the surface after the removal of the oxide layers, which were detrimental to the growth of high quality epitaxial layers. The thickness and composition of the oxide layers were characterized by Rutherford backscat-tering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), respectively. Epitaxial growth was performed in a metal organic chemical vapor deposition (MOCVD) system. The substrate surface morphol-ogy after removing the oxide layer and gallium nitride (GaN) epilayer surface were observed by atomic force microscopy (AFM). The results showed that the GaN epilayer grown on the oxidized substrates was superior to that on the unoxidized substrates.

  16. Stored energy in irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Burchell, T.D. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This report presents a short review of the phenomenon of Wigner stored energy release from irradiated graphite and discusses it in relation to neutron irradiation of silicon carbide. A single published work in the area of stored energy release in SiC is reviewed and the results are discussed. It appears from this previous work that because the combination of the comparatively high specific heat of SiC and distribution in activation energies for recombining defects, the stored energy release of SiC should only be a problem at temperatures lower than those considered for fusion devices. The conclusion of this preliminary review is that the stored energy release in SiC will not be sufficient to cause catastrophic heating in fusion reactor components, though further study would be desirable.

  17. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  18. Dissolution of chromium in sulfuric acid

    Directory of Open Access Journals (Sweden)

    J. P. POPIC

    2002-11-01

    Full Text Available By combining electrochemical corrosion rate measurements and spectrophotometric analysis of the electrolyte it was shown that at room temperature chromium dissolves in deaerated 0.1 M Na2SO4 + H2SO4 (pH 1 solution as Cr(II and Cr(III ions in he ratio Cr(II : Cr(III @ 7 : 1. This process was stable over 4 h without any detectable change. The total corrosion rate of chromium calculated from the analytical data is about 12 times higher, than that determined electrochemically by cathodic Tafel line extrapolation to the corrosion potential. This finding was confirmed by applying the weight-loss method for the determination of the corrosion rate. This enormous difference between these experimentally determined corrosion rates can be explained by the rather fast, “anomalous” dissolution process proposed by Kolotyrkin and coworkers (chemical reaction of Cr with H2O molecules occurring simultaneously with the electrochemical corrosion process.

  19. Investigation on the Effects of Titanium Diboride Particle Size on Radiation Shielding Properties of Titanium Diboride Reinforced Boron Carbide-Silicon Carbide Composites

    OpenAIRE

    A.O. Addemir; A.C. Akarsu; A.B. Tugrul; B. Buyuk

    2012-01-01

    Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the expe...

  20. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water.

    Science.gov (United States)

    Ying, Yulong; Liu, Yu; Wang, Xinyu; Mao, Yiyin; Cao, Wei; Hu, Pan; Peng, Xinsheng

    2015-01-28

    Two dimensional (2-D) Ti3C2Tx nanosheets are obtained by etching bulk Ti3C2Tx powders in HF solution and delaminating ultrasonically, which exhibit excellent removal capacity for toxic Cr(VI) from water, due to their high surface area, well dispersibility, and reductivity. The Ti3C2Tx nanosheets delaminated by 10% HF solution present more efficient Cr(VI) removal performance with capacity of 250 mg g(-1), and the residual concentration of Cr(VI) in treated water is less than 5 ppb, far below the concentration (0.05 ppm) of Cr(VI) in the drinking water standard recommended by the World Health Organization. This kind of 2-D Ti3C2Tx nanosheet can not only remove Cr(VI) rapidly and effectively in one step from aqueous solution by reducing Cr(VI) to Cr(III) but also adsorb the reduced Cr(III) simultaneously. Furthermore, these reductive 2-D Ti3C2Tx nanosheets are generally explored to remove other oxidant agents, such as K3[Fe(CN)6], KMnO4, and NaAuCl4 solutions, by converting them to low oxidation states. These significantly expand the potential applications of 2-D Ti3C2Tx nanosheets in water treatment.

  1. Novel Manufacturing Process for Unique Mixed Carbide Refractory Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR Phase I project will establish the feasibility of an innovative manufacturing process to fabricate a range of unique hafnium/silicon based carbide...

  2. Silicon Carbide Threads For High-Temperature Service

    Science.gov (United States)

    Sawko, Paul M.; Vasudev, Anand

    1991-01-01

    New thread material outperforms silica. Sewing threads containing silicon carbide (SiC) yarn withstand temperatures of more than 1,100 degrees C. Intended for use in stitching thermally insulating blankets.

  3. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  4. Status of advanced carbide fuels: Past, present, and future

    Science.gov (United States)

    Anghaie, Samim; Knight, Travis

    2002-01-01

    Solid solution, mixed uranium/refractory metal carbide fuels such as (U, Zr, Nb)C, so called ternary carbide or tri-carbide fuels have great potential for applications in next generation advanced nuclear power reactors. Because of their high melting points, high thermal conductivity, improved resistance to hot hydrogen corrosion, and good fission product retention, these advanced nuclear fuels have great potential for high performance reactors with increased safety margins. Despite these many benefits, some concerns regarding carbide fuels include compatibility issues with coolant and/or cladding materials and their endurance under the extreme conditions associated with nuclear thermal propulsion. The status of these fuels is reviewed to characterize their performance for space nuclear power applications. Results of current investigations are presented and as well as future directions of study for these advanced nuclear fuels. .

  5. Silicon carbide materials for high duty seal applications

    Energy Technology Data Exchange (ETDEWEB)

    Berroth, K.E. (Schunk Ingenieurkeramik GmbH, Duesseldorf (Germany, F.R.))

    1990-12-01

    Properties, fabrication, and high-duty applications of silicon carbide grades are discussed. The two types of silicon carbide, i.e., reaction-bonded and sintered, are considered. The potential for adhesion and the lack of dry running abilities lead to a variety of microstructures. For reaction-bonded silicon carbide, the microstructure can be a tool for optimization of the tribological behavior. Besides the high corrosion resistance of the material, its thermal conductivity is excellent. Grain sizes of about 40-50 microns are used in high-duty applications. Reaction-bonded silicon carbide with residual content of carbon graphite has improved tribological/hydrodynamic characteristics and performs well in sealing hard faces.

  6. Ion implantation phenomena in 4H-silicon carbide

    CERN Document Server

    Phelps, Gordon James

    2003-01-01

    Silicon Carbide is a promising wide band gap semiconductor with many new properties yet to be established and investigated. Ion implantation is the dominant method of incorporating dopant materials into the Silicon Carbide crystalline structure for electronic device fabrication. The implantation process of dopants into Silicon Carbide, both theoretical and practical, is described in this Thesis. Additional fabrication process steps, such as annealing, and their implications are also described. To gain further insight into the process of ion implantation into Silicon Carbide, the detailed design of a special test die is discussed. The aim of the special test die was to obtain general information such as implanted dopant sheet resistivity and to test a novel bipolar transistor design. The fabrication steps involved for the special test die are discussed in detail. The results from the special test die take the form of specific electrical measurements, together with detailed visual observations provided by a sca...

  7. Radial furnace shows promise for growing straight boron carbide whiskers

    Science.gov (United States)

    Feingold, E.

    1967-01-01

    Radial furnace, with a long graphite vaporization tube, maintains a uniform thermal gradient, favoring the growth of straight boron carbide whiskers. This concept seems to offer potential for both the quality and yield of whiskers.

  8. On surface Raman scattering and luminescence radiation in boron carbide.

    Science.gov (United States)

    Werheit, H; Filipov, V; Schwarz, U; Armbrüster, M; Leithe-Jasper, A; Tanaka, T; Shalamberidze, S O

    2010-02-01

    The discrepancy between Raman spectra of boron carbide obtained by Fourier transform Raman and conventional Raman spectrometry is systematically investigated. While at photon energies below the exciton energy (1.560 eV), Raman scattering of bulk phonons of boron carbide occurs, photon energies exceeding the fundamental absorption edge (2.09 eV) evoke additional patterns, which may essentially be attributed to luminescence or to the excitation of Raman-active processes in the surface region. The reason for this is the very high fundamental absorption in boron carbide inducing a very small penetration depth of the exciting laser radiation. Raman excitations essentially restricted to the boron carbide surface region yield spectra which considerably differ from bulk phonon ones, thus indicating structural modifications.

  9. Structure and thermal expansion of NbC complex carbides

    Energy Technology Data Exchange (ETDEWEB)

    Khatsinskaya, I.M.; Chaporova, I.N.; Cheburaeva, R.F.; Samojlov, A.I.; Logunov, A.V.; Ignatova, I.A.; Dodonova, L.P.

    1983-11-01

    Alloying dependences of the crystal lattice parameters at indoor temperature and coefficient of thermal linear expansion within a 373-1273 K range are determined for complex NbC-base carbides by the method of mathematical experimental design. It is shown that temperature changes in the linear expansion coefficient of certain complex carbides as distinct from NbC have an anomaly (minimum) within 773-973 K caused by occurring reversible phase transformations. An increase in the coefficient of thermal linear expansion and a decrease in hardness of NbC-base tungsten-, molybdenum-, vanadium- and hafnium-alloyed carbides show a weakening of a total chemical bond in the complex carbides during alloying.

  10. Process for preparing fine grain silicon carbide powder

    Science.gov (United States)

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  11. Electrochemical modification of chromium surfaces using 4-nitro- and4-fluorobenzenediazonium salts

    DEFF Research Database (Denmark)

    Hinge, Mogens; Cecatto, Marcel; Kingshott, Peter;

    2009-01-01

    Chromium surfaces can be electrografted with organic surface films using 4-nitro- or 4-fluorobenzenediazonium salts, despite the fact that the surfaces are covered with a protective chromium oxide layer......Chromium surfaces can be electrografted with organic surface films using 4-nitro- or 4-fluorobenzenediazonium salts, despite the fact that the surfaces are covered with a protective chromium oxide layer...

  12. Standard Specification for Pressure Consolidated Powder Metallurgy Iron-Nickel-Chromium-Molybdenum (UNS N08367), Nickel-Chromium-Molybdenum-Columbium (Nb) (UNS N06625), Nickel-Chromium-Iron Alloys (UNS N06600 and N06690), and Nickel-Chromium-Iron-Columbium-Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings, Valves, and Parts

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Pressure Consolidated Powder Metallurgy Iron-Nickel-Chromium-Molybdenum (UNS N08367), Nickel-Chromium-Molybdenum-Columbium (Nb) (UNS N06625), Nickel-Chromium-Iron Alloys (UNS N06600 and N06690), and Nickel-Chromium-Iron-Columbium-Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings, Valves, and Parts

  13. Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility

    Science.gov (United States)

    2014-11-18

    Fracture Toughness in Nanostructured Diamond−SiC Composites. Appl . Phys. Lett. 2004, 84, 1356−1358. (8) Sigl, L. S.; Mataga, P. A.; Dalgleish, B. J...Commun. 2012, 3, 1052. (11) Sezer, A. O.; Brand , J. I. Chemical Vapor Deposition of Boron Carbide. Mater. Sci. Eng., B 2001, 79, 191−202. (12) Thevenot...23) Johnson, G. R.; Holmquist, T. J. Response of Boron Carbide Subjected to Large Strains, High Strain Rates, and High Pressures. J. Appl . Phys. 1999

  14. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  15. ADHERENCE AND PROPERTIES OF SILICON CARBIDE BASED FILMS ON STEEL

    OpenAIRE

    Lelogeais, M.; Ducarroir, M.; Berjoan, R.

    1991-01-01

    Coatings of silicon carbide with various compositions have been obtained in a r.f plasma assisted process using tetramethylsilane and argon as input gases. Some properties against mechanical applications of such deposits on steel have been investigated. Residual stresses and hardness are reported and discussed in relation with plasma parameters and deposit composition. By scratch testing, it was shown that the silicon carbide films on steel denote a good adherence when compared with previous ...

  16. Dynamic compaction of boron carbide by a shock wave

    Science.gov (United States)

    Buzyurkin, Andrey E.; Kraus, Eugeny I.; Lukyanov, Yaroslav L.

    2016-10-01

    This paper presents experiments on explosive compaction of boron carbide powder and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the boron carbide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  17. Single-Event Effects in Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2015-01-01

    This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.

  18. Implanted Bottom Gate for Epitaxial Graphene on Silicon Carbide

    OpenAIRE

    Waldmann, Daniel; Jobst, Johannes; Fromm, Felix; Speck, Florian; Seyller, Thomas; Krieger, Michael; Weber, Heiko B.

    2011-01-01

    We present a technique to tune the charge density of epitaxial graphene via an electrostatic gate that is buried in the silicon carbide substrate. The result is a device in which graphene remains accessible for further manipulation or investigation. Via nitrogen or phosphor implantation into a silicon carbide wafer and subsequent graphene growth, devices can routinely be fabricated using standard semiconductor technology. We have optimized samples for room temperature as well as for cryogenic...

  19. Bainite obtaining in cast iron with carbides castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available In these paper the possibility of upper and lower bainite obtaining in cast iron with carbides castings are presented. Conditions, when in cast iron with carbides castings during continuous free air cooling austenite transformation to upper bainite or its mixture with lower bainte proceeds, have been given. A mechanism of this transformation has been given, Si, Ni, Mn and Mo distribution in the eutectic cell has been tested and hardness of tested castings has been determined.

  20. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovskii, Alexander L [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2009-04-30

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  1. Process for preparing fine-grain metal carbide powder

    Science.gov (United States)

    Kennedy, C.R.; Jeffers, F.P.

    Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.

  2. Workshop on effects of chromium coating on Nb{sub 3}Sn superconductor strand: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-12

    This report discusses the following topics: Chromium coating on superconductor strand -- an overview; technology of chromium plating; comparison of wires plated by different platers; search for chromium in copper; strand manufactures` presentations; chromium plating at the Lawrence Livermore National Laboratory; a first look at a chromium plating process development project tailored for T.P.X. and I.T.E.R. strand; and influence of chromium diffusion and related phenomena on the reference ratios of bare and chromium plated Nb{sub 3}Sn strand.

  3. Bioavailability of a potato chromium complex to the laboratory rat

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, H.K.

    1985-01-01

    Research objectives were to study the effect of food source, preparation method and chemical form on bioavailability of chromium. Chromium concentration in potatoes was determined and tubers labeled either intrinsically or extrinsically with radioactive chromate. A labeled chromium complexes was isolated from preparations of raw, baked or fried potatoes and chromatographed on gel permeation media. Availability of the potato chromium complex to the rat was examined in three feeding studies. Animals were dosed with radioactive extrinsically or intrinsically labeled potato extract or with chromate. A labeled chromium complex was isolated from gastrointestinal contents of rats and chromatographed. Potato pulp and peel contained 1.63 and 2.70 ..mu..g Cr/g tissue respectively. True and apparent absorption from extrinsically labeled feedings were 33.4 +/- 4.7 and 29.8 +/- 11.2% respectively, and no differences existed between absorption from raw and cooked potatoes. Absorption from the extrinsic labeled potatoes differed significantly from absorption of inorganic chromatium. Apparent absorption of raw (11.1 +/- 7.9%) and cooked (-0.7 +/- 2.8%) intrinsically labeled feedings differed significantly. Absorption of inorganic chromium was 17.8% (true) and 11.5% (apparent). Examination of the chromium complex isolated from gastrointestinal tract contents showed enlargement of the complex in the stomach after consumption.

  4. Chromium Content in the Human Hip Joint Tissues

    Institute of Scientific and Technical Information of China (English)

    Barbara Brodziak-Dopiera; Jerzy Kwapuliski; Krzysztof Sobczyk; Danuta Wiechua

    2015-01-01

    Objective Chromium has many important functions in the human body. For the osseous tissue, its role has not been clearly defined. This study was aimed at determining chromium content in hip joint tissues. Methods A total of 91 hip joint samples were taken in this study, including 66 from females and 25 from males. The sample tissues were separated according to their anatomical parts. The chromium content was determined by the AAS method. The statistical analysis was performed with U Mann-Whitney's non-parametric test, P≤0.05. Results The overall chromium content in tissues of the hip joint in the study subjects was as follows:5.73 µg/g in the articular cartilage, 5.33 µg/g in the cortical bone, 17.86 µg/g in the cancellous bone, 5.95 µg/g in the fragment of the cancellous bone from the intertrochanteric region, and 1.28 µg/g in the joint capsule. The chromium contents were observed in 2 group patients, it was 7.04 µg/g in people with osteoarthritis and 12.59 µg/g in people with fractures. Conclusion The observed chromium content was highest in the cancellous bone and the lowest in the joint capsule. Chromium content was significantly different between the people with hip joint osteoarthritis and the people with femoral neck fractures.

  5. Mode of occurrence of chromium in four US coals

    Science.gov (United States)

    Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Crowley, S.; Palmer, C.A.; Finkelman, R.B.

    2000-01-01

    The mode of occurrence of chromium in three US bituminous coals and one US subbituminous has been examined using both X-ray absorption fine structure (XAFS) spectroscopy and a selective leaching protocol supplemented by scanning electron microscopy (SEM) and electron microprobe measurements. A synthesis of results from both methods indicates that chromium occurs principally in two forms in the bituminous coals: the major occurrence of chromium is associated with the macerals and is not readily leached by any reagent, whereas a second, lesser occurrence, which is leachable in hydrofluoric acid (HF), is associated with the clay mineral, illite. The former occurrence is believed to be a small particle oxyhydroxide phase (CrO(OH)). One coal also contained a small fraction (<5%) of the chromium in the form of a chromian magnetite, and the leaching protocol indicated the possibility of a similar small fraction of chromium in sulfide form in all three coals. There was little agreement between the two techniques on the mode of occurrence of chromium in the subbituminous coal; however, only a limited number of subbituminous coals have been analyzed by either technique. The chromium in all four coals was trivalent as no evidence was found for the Cr6+ oxidation state in any coal.

  6. Removal of chromium from tannery effluents by adsorption.

    Science.gov (United States)

    Fadali, O A; Magdy, Y H; Daifullah, A A M; Ebrahiem, E E; Nassar, M M

    2004-01-01

    Tannery effluent is characterized not only by heavy loads but also with toxic heavy metals especially chromium ions. Chromium is considered an important source of contamination due to large volume of exhaust liquid discharged and solid sludge produced. Details on adsorption studies were carried out using synthetic chromium salts (chromium chloride) as adsorbate, and cement kiln dust (a waste from white cement industry) as adsorbent. Equilibrium isotherms have been determined for the adsorption of chromium ions on cement kiln dust. Kinetic study provided that the adsorption process is diffusion controlled. The experimental results have been fitted using Freundlich, Langmuir, and Redlich Peterson isotherms. The maximum adsorption capacity of cement kiln dust was found to be 33 mg/g. Industrial tannery effluent (22-mg/L chromium and COD 952 mg/L) was also treated by cement dust. The treated effluent (using 20 g cement dust per 1 L) contains only 0.6 mg/L chromium and COD 200 mg/L.

  7. Chromium-induced membrane damage: protective role of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100gbody weight). It has been observed that the intoxication with chromium ( i. p. ) at the dose of 0.8 mg/100g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospbolipid of both liver and kidney. The alkaline pbosphatase, total ATPase and Na + -K + -ATPase activities were significantly decreased in both liver and kidney after chromium treatment,except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid ( i.p. at the dose of 0.5 mg,/100g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  8. Stabilization of chromium salt in ordinary portland cement

    Indian Academy of Sciences (India)

    Damir Barbir; Pero Dabić; Petar Krolo

    2012-12-01

    Ordinary Portland cement (OPC) samples containing the chromium salt have been investigated using differential microcalorimetry, conductometry and Fourier transform infrared spectroscopic analysis. The effect of chromium on OPC hydration was evaluated by continuous observing of early hydration. The microcalorimetrical results show that with increasing the share of chromium salt, heat maximums assume lower values and the occurrence of the maximum registered in the earlier hydration times. Conductometrical measurements show that with increasing addition of chromium salt, curve did not show any specific shape, immediate drop in specific conductivity is noticed and the maximum is reached earlier. This coincides with microcalorimetrical results. It can be concluded that the addition of chromium does not affect the mechanism of the hydration process, but it does affect the kinetic parameters and dynamics of the cement hydration process. It was found that chromium salt addition to the cement–water system is acceptable up to 2 wt.%. According to standard EN 196-3 for OPC, the beginning of binding time should occur after 60 minutes. Increased amount of chromium over 2 wt.% significantly accelerate the beginning of binding time and for the system it is not acceptable.

  9. Development and Evaluation of Mixed Uranium-Refractory Carbide/Refractory Carbide Cer-Cer Fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal a new carbide-based fuel is introduced with outstanding potential to eliminate the loss of uranium, minimizes the loss of uranium, and retains...

  10. Spectroscopic analysis of chromium bioremediation products

    Science.gov (United States)

    Varadharajan, C.; Nico, P. S.; Yang, L.; Marcus, M. A.; Steefel, C.; Larsen, J. T.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Remediation of chromium contamination frequently involves reducing the toxic and soluble hexavalent form, Cr(VI), to the relatively harmless and mostly immobile trivalent state, Cr(III). The objective of this study is to identify the biogeochemical reactions that control in situ chromium reduction in the presence of different dominant electron acceptors, i.e., NO3-, Fe(III), and SO42-. It was hypothesized that indirect, abiotic reduction of Cr(VI) by reduced metabolic products [Fe(II) and sulfides] would dominate over direct enzymatic reduction by denitrifying, iron-reducing, or sulfate-reducing bacteria. It is further hypothesized that the enzymatic reduction of Cr(VI) would produce relatively pure chromium hydroxide precipitates, whereas indirect reduction would result in mixed Cr-Fe hydroxide solid phases. Flow-through columns containing homogenized sediments from the 100H site at Hanford, WA were subjected to nitrate-, sulfate- or iron-reducing conditions in the presence of 5 µM Cr(VI) and 5 mM lactate. Cr(VI) was depleted in the effluent solutions from the nitrate- and sulfate-reducing columns; however only a small amount of Cr(VI) was removed under iron-reducing conditions. Preliminary analysis of micro X-ray absorption spectra indicate that the untreated and iron-reducing column sediments contained pre-existing Cr in the form of primary minerals, e.g. chromite and/or Cr-bearing micas. However, there was an increase in the relative abundance of mixed-phase Cr-Fe hydroxides, i.e., Cr1-xFex(OH)3 in the nitrate- and sulfate-treated columns. A possible explanation for the observations is that the production of Fe(II) was enhanced under the nitrate- and sulfate- reducing conditions, and was most likely sulfide-driven in the latter case. The Fe(II) was subsequently available for reduction of Cr(VI) resulting in the mixed-phase precipitates. The results from the spectroscopic analysis support the hypothesis that Fe(II)-mediated Cr reduction prevails over direct

  11. Mutagenic and carcinogenic actions of chromium and its compounds.

    Science.gov (United States)

    Mamyrbaev, Arstan Abdramanovich; Dzharkenov, Timur Agataevich; Imangazina, Zina Amangalievna; Satybaldieva, Umit Abulkhairovna

    2015-05-01

    Numerous experimental observations have been made on microorganisms and culture of the cells of mammals as well as the accounting of the chromosomal aberrations in the bone marrow cells of the mammals and of human cells displayed that the chromium and its compounds possess a pronounced mutagenic effect. Translocation test, induction record of DNA damage and repair systems in the mammalian and human cells with greater precision proves the presence of the mutagenic effect of the chromium and its compounds, which in turn is dependent on dose and time of this metal intoxication. Chromium and its compounds have pronounced mutagenic effect, on increased admission to organism of mammals and protozoa.

  12. Microbial biotechnology for remediation of aquatic habitats polluted with chromium

    OpenAIRE

    Viorica Coşier; I. Valentin Petrescu-Mag

    2008-01-01

    Chromium may occur in nine different forms of oxidation ranging from ?II to +VI, with forms II, III and VI as the most commonly encountered. In Cluj county, chromium pollution dates well back in time and has caused important dysfunction to the mechanical-biological wastewater purification station of the city of Cluj (Coşier & Diţă 1996). The purpose of this study was to develop one microbial method able to reduce hexavalent chromium (mobile, permeable to cell membrane, carcinogenic and mutage...

  13. Microbial Diversity of Chromium-Contaminated Soils and Characterization of Six Chromium-Removing Bacteria

    Science.gov (United States)

    He, Zhiguo; Hu, Yuting; Yin, Zhen; Hu, Yuehua; Zhong, Hui

    2016-06-01

    Three soil samples obtained from different sites adjacent to a chromium slag heap in a steel alloy factory were taken to examine the effect of chromium contamination on soil bacterial diversity as determined by construction of 16S rDNA clone libraries and sequencing of selected clones based on restriction fragment length polymorphism (RFLP) analysis. Results revealed that Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Alphaproteobacteria occurred in all three soil samples, although the three samples differed in their total diversity. Sample 1 had the highest microbial diversity covering 12 different classes, while Sample 3 had the lowest microbial diversity. Strains of six different species were successfully isolated, one of which was identified as Zobellella denitrificans. To our knowledge, this is the first report of a strain belonging to the genus Zobellella able to resist and reduce chromium. Among all isolates studied, Bacillus odysseyi YH2 exhibited the highest Cr(VI)-reducing capability, with a total removal of 23.5 % of an initial Cr(VI) concentration of 350 mg L-1.

  14. [Blood and urine chromium: compared values between chromium exposed workers and common people].

    Science.gov (United States)

    Provenzani, A; Verso, M G; Picciotto, D

    2008-01-01

    Aim of present study is the valutation and quantification of chromium in blood and urine. We compared 3 groups of persons formed by building workers, in particular masons, because cement contains potassium chromate that is dangerous for health, and by common people: urban population and outside the town population. In fact, exposure to CrVI risk is high for people who live near chromate industries. We maked a medical examination, blood and instrumental tests, chromium measuring in blood (recent exposure indicator) and urine (recent and previous indicator). Then we used statistical methods to estimate obtained values of blood and urine chromium among professional exposed people and common people. At the end we think that preventive measures in working environment reduced exposure to CrVI but environmental exposure (for example road dust from catalytic converter erosion, from brake lining erosion, cement dust and tobacco smoke), in the last years, has increased. So there are no difference between urban population and outside the town population and there are also no difference with professional exposed people for work prevention according to law in force, that let down professional risk using safe limits.

  15. Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory

    Institute of Scientific and Technical Information of China (English)

    HUANG Shun-hong; PENG Bing; YANG Zhi-hui; CHAI Li-yuan; ZHOU Li-cheng

    2009-01-01

    The environmental risk of chromium pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by chromium. 45 soil samples obtained from different places of the slag heap in a steel alloy factory were analyzed for chromium contamination level and its effect on soil microorganisms and enzyme activities. The results show that the average concentrations of total Cr in the soil under the slag heap, adjacent to the slag heap and outside the factory exceed the threshold of Secondary Environmental Quality Standard for Soil in China by 354%, 540% and 184%, respectively, and are 15, 21 and 9 times higher than the local background value, respectively. Elevated chromium loadings result in changes in the activity of the soil microbe, as indicated by the negative correlations between soil microbial population and chromium contents. Dehydrogenase activity is greatly depressed by chromium in the soil. The results imply that dehydrogenase activity can be used as an indicator for the chromium pollution level in the area of the steel alloy factory.

  16. Solid-state formation of titanium carbide and molybdenum carbide as contacts for carbon-containing semiconductors

    Science.gov (United States)

    Leroy, W. P.; Detavernier, C.; van Meirhaeghe, R. L.; Kellock, A. J.; Lavoie, C.

    2006-03-01

    Metal carbides are good candidates to contact carbon-based semiconductors (SiC, diamond, and carbon nanotubes). Here, we report on an in situ study of carbide formation during the solid-state reaction between thin Ti or Mo films and C substrates. Titanium carbide (TiC) was previously reported as a contact material to diamond and carbon nanotubes. However, the present study shows two disadvantages for the solid-state reaction of Ti and C. First, because Ti reacts readily with oxygen, a capping layer should be included to enable carbide formation. Second, the TiC phase can exist over a wide range of composition (about 10%, i.e., from Ti0.5C0.5 to Ti0.6C0.4), leading to significant variations in the properties of the material formed. The study of the Mo-C system suggests that molybdenum carbide (Mo2C) is a promising alternative, since the phase shows a lower resistivity (about 45% lower than for TiC), the carbide forms below 900 °C, and its formation is less sensitive to oxidation as compared with the Ti-C system. The measured resistivity for Mo2C is ρ=59 μΩ cm, and from kinetic studies an activation energy for Mo2C formation of Ea=3.15+/-0.15 eV was obtained.

  17. Understanding the Irradiation Behavior of Zirconium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  18. Crystal structural and diffusion property in titanium carbides: A molecular dynamics study

    Science.gov (United States)

    Lv, Yanan; Gao, Weimin

    2016-09-01

    Titanium carbides were studied via molecular dynamics simulation to characterize TiCx structures with respect to the carbon diffusion properties in this study. The effect of carbon concentration on atomic structures of titanium carbides was investigated through discussing the structure variation and the radial distribution functions of carbon atoms in titanium carbides. The carbon diffusion in titanium carbides was also analyzed, focusing on the dependence on carbon concentration and carbide structure. Carbon diffusivity with different carbon concentrations was determined by molecular dynamics (MD) calculations and compared with the available experimental data. The simulation results showed an atomic exchange mechanism for carbon diffusion in titanium carbide.

  19. Development and characterization of nickel based tungsten carbide laser cladded coatings

    Science.gov (United States)

    Rombouts, Marleen; Persoons, Rosita; Geerinckx, Eric; Kemps, Raymond; Mertens, Myrjam; Hendrix, Willy; Chen, Hong

    Laser cladded coatings consisting of various types of tungsten carbides embedded in a NiCrBSiCFe matrix are characterized. At optimal process parameters crack-free coatings with a thickness of 0.85-1 mm, excellent bonding with the substrate, carbide concentrations up to 60 wt% and a hardness in the range of 40-55 HRC are obtained. During laser cladding the carbides have partly dissolved in the matrix as indicated by the presence of dispersed carbides in the matrix and by a carbide phase growing into the matrix along the edges of the particles. The wear coefficient during sliding contact decreases logarithmically with increasing carbide concentration.

  20. Possible adverse effect of chromium in occupational exposure of tannery workers.

    Science.gov (United States)

    Kornhauser, Carlos; Wróbel, Katarzyna; Wróbel, Kazimierz; Malacara, Juan Manuel; Nava, Laura Eugenia; Gómez, Leobardo; González, Rita

    2002-04-01

    Our aim was to investigate the adverse effects of occupational exposure to trivalent chromium. We measured chromium and iron levels in serum and urine and hemoglobin levels in tannery workers and unexposed persons. We studied three groups of subjects. Group 1 included 15 non-smoking male tannery workers highly exposed to chromium from tanning and retanning departments. Group 2 included 14 non-smoking male tannery workers with moderate chromium exposure from dying, drying and finishing departments. Group 3 included 11 healthy, non-smoking male subjects without direct chromium exposure. Higher serum chromium levels were observed in groups 1 and 2 with respect to group 3 (mean values respectively: 0.43; 0.25 and 0.13 microg x l(-1)). Urine chromium levels in group 1 were higher than those in controls (mean values: 1.78 and 1.35 microg x l(-1)). In group 1 an inverse association was found between serum chromium and urine iron (-0.524), urine chromium and hemoglobin (-0.594) and between the urine chromium to iron ratio and hemoglobin (-0.693, p<0.05). The results suggest a chromium adverse effect on iron metabolism, possibly associated with excessive body chromium accumulation. In conclusion, chromium urine test could be recommended for diagnosis of chromium adverse effect on iron metabolism. Further studies are needed to quantify the relationship between urine chromium and hemoglobin metabolism.

  1. Scientific Opinion on ChromoPrecise® cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS

    2012-11-01

    Full Text Available The Panel on Food Additives and Nutrient Sources added to Food (ANS provides a scientific opinion re-evaluating the safety of ChromoPrecise® cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source. ChromoPrecise® is a yeast preparation with an enriched trivalent chromium content, obtained by culture of Saccharomyces cerevisiae in the presence of chromium chloride. A daily intake of 100 µg chromium(III. There are limited data on the nature and identity of the organic chromium(III compounds contained in chromium-enriched yeast and on their toxicokinetic and toxicodynamic behaviour in the body. Overall, the Panel concluded that the bioavailability in man of chromium from chromium-enriched yeast is potentially up to approximately ten times higher than that of chromium from chromium chloride. A NOAEL of 2500 mg/kg bw/day ChromoPrecise® was identified in a 90-day feeding study in rats; no evidence of adverse effects of chromium yeasts were reported in other animal studies investigating the effects of dietary supplementation with chromium yeast. ChromoPrecise® chromium yeast was non-genotoxic in a range of in vitro genotoxicity studies. Although no information was available on the chronic toxicity, carcinogenicity or reproductive toxicity of ChromoPrecise® chromium yeast, the ANS Panel has previously concluded that trivalent chromium is not carcinogenic, and limited data on other chromium yeasts provide no evidence of an effect on reproductive endpoints. No adverse effects have been reported in clinical efficacy trials with chromium yeasts. The Panel concluded that the use of ChromoPrecise® chromium yeast in food supplements is not of concern, despite the lack of data on the nature and identity of the organic chromium(III compounds contained in the product, provided that the intake does not exceed 250 μg/day, as recommended by the WHO.

  2. Nanostructured carbide catalysts for the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Ram Seshadri, Susannah Scott, Juergen Eckert

    2008-07-21

    The above quote, taken from the executive summary of the Report from the US DOE Basic Energy Sciences Workshop held August 6–8, 2007,[1] places in context the research carried out at the University of California, Santa Barbara, which is reported in this document. The enormous impact of heterogeneous catalysis is exemplified by the Haber process for the synthesis of ammonia, which consumes a few % of the world’s energy supply and natural gas, and feeds as many as a third of the world’s population. While there have been numerous advances in understanding the process,[2] culminating in the awarding of the Nobel Prize to Gerhard Ertl in 2007, it is interesting to note that the catalysts themselves have changed very little since they were discovered heuristically in the the early part of the 20th century. The thesis of this report is that modern materials chemistry, with all the empirical knowledge of solid state chemistry, combined with cutting edge structural tools, can help develop and better heterogeneous catalysis. The first part of this report describes research in the area of early transition metal carbides (notably of Mo and W), potentially useful catalysts for water gas shift (WGS) and related reactions of use to the hydrogen economy. Although these carbides have been known to be catalytically useful since the 1970s,[3] further use of these relatively inexpensive materials have been plagued by issues of low surface areas and ill-defined, and often unreactive surfaces, in conjunction with deactivation. We have employed for the first time, a combination of constant-wavelength and time-of-flight neutron scattering, including a total scattering analysis of the latter data, to better understand what happens in these materials, in a manner that for the first time, reveals surface graphitic carbon in these materials in a quantitative manner. Problems of preparation, surface stability, and irreversible reactivity have become manifest in this class of materials

  3. Thermal properties of wood-derived silicon carbide and copper-silicon carbide composites

    Science.gov (United States)

    Pappecena, Kristen E.

    Wood-derived ceramics and composites have been of interest in recent years due to their unique microstructures, which lead to tailorable properties. The porosity and pore size distribution of each wood type is different, which yields variations in properties in the resultant materials. The thermal properties of silicon carbide ceramics and copper-silicon carbide composites derived from wood were studied as a function of their pore structures. Wood was pyrolyzed at temperatures ranging from 300-2400°C to yield porous carbon. The progression toward long-range order was studied as a function of pyrolyzation temperature. Biomorphic silicon carbide (bioSiC) is a porous ceramic material resulting from silicon melt infiltration of these porous carbon materials. BioSiC has potential applicability in many high temperature environments, particularly those in which rapid temperature changes occur. To understand the behavior of bioSiC at elevated temperatures, the thermal and thermo-mechanical properties were studied. The thermal conductivity of bioSiC from five precursors was determined using flash diffusivity at temperatures up to 1100°C. Thermal conductivity results varied with porosity, temperature and orientation, and decreased from 42-13 W/mK for porosities of 43-69%, respectively, at room temperature. The results were compared with to object-oriented finite-element analysis (OOF). OOF was also used to model and understand the heat-flow paths through the complex bioSiC microstructures. The thermal shock resistance of bioSiC was also studied, and no bioSiC sample was found to fail catastrophically after up to five thermal shock cycles from 1400°C to room temperature oil. Copper-silicon carbide composites have potential uses in thermal management applications due to the high thermal conductivity of each phase. Cu-bioSiC composites were created by electrodeposition of copper into bioSiC pores. The detrimental Cu-SiC reaction was avoided by using this room temperature

  4. Feasibility study of fluxless brazing cemented carbides to steel

    Science.gov (United States)

    Tillmann, W.; Sievers, N.

    2017-03-01

    One of the most important brazing processes is the joints between cemented carbides and steel for the tool industry such as in rotary drill hammers or saw blades. Even though this technique has already been used for several decades, defects in the joint can still occur and lead to quality loss. Mostly, the joining process is facilitated by induction heating and the use of a flux to enhance the wetting of the filler alloy on the surface of the steel and cemented carbide in an ambient atmosphere. However, although the use of flux enables successful joining, it also generates voids within the joint, which reduces the strength of the connection while the chemicals within the flux are toxic and polluting. In this feasibility study, a fluxless brazing process is used to examine the joint between cemented carbides and steel for the first time. For this, ultrasound is applied during induction heating to enable the wetting between the liquid filler metal and the surfaces of the cemented carbide and steel. The ultrasound generates cavitations within the liquid filler metal, which remove the oxides from the surface. Several filler metals such as a silver based alloy Ag449, pure Zn, and an AlSi-alloy were used to reduce the brazing temperature and to lower the thermal residual stresses within the joint. As a result, every filler metal successfully wetted both materials and led to a dense connection. The ultrasound has to be applied carefully to prevent a damage of the cemented carbide. In this regard, it was observed that single grains of the cemented carbide broke out and remained in the joint. This positive result of brazing cemented carbides to steel without a flux but using ultrasound, allows future studies to focus on the shear strength of these joints as well as the behavior of the thermally induced residual stresses.

  5. Methods for producing silicon carbide architectural preforms

    Science.gov (United States)

    DiCarlo, James A. (Inventor); Yun, Hee (Inventor)

    2010-01-01

    Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties for each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.

  6. In situ ion irradiation of zirconium carbide

    Science.gov (United States)

    Ulmer, Christopher J.; Motta, Arthur T.; Kirk, Mark A.

    2015-11-01

    Zirconium carbide (ZrC) is a candidate material for use in one of the layers of TRISO coated fuel particles to be used in the Generation IV high-temperature, gas-cooled reactor, and thus it is necessary to study the effects of radiation damage on its structure. The microstructural evolution of ZrCx under irradiation was studied in situ using the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory. Samples of nominal stoichiometries ZrC0.8 and ZrC0.9 were irradiated in situ using 1 MeV Kr2+ ions at various irradiation temperatures (T = 20 K-1073 K). In situ experiments made it possible to continuously follow the evolution of the microstructure during irradiation using diffraction contrast imaging. Images and diffraction patterns were systematically recorded at selected dose points. After a threshold dose during irradiations conducted at room temperature and below, black-dot defects were observed which accumulated until saturation. Once created, the defect clusters did not move or get destroyed during irradiation so that at the final dose the low temperature microstructure consisted only of a saturation density of small defect clusters. No long-range migration of the visible defects or dynamic defect creation and elimination were observed during irradiation, but some coarsening of the microstructure with the formation of dislocation loops was observed at higher temperatures. The irradiated microstructure was found to be only weakly dependent on the stoichiometry.

  7. Casimir forces from conductive silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-05-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of frequencies. The samples show significant far-infrared absorption due to concentration of charge carriers and a sharp surface phonon-polariton peak. The Casimir interaction of SiC with different materials is calculated and discussed. As a result of the infrared structure and beyond to low frequencies, the Casimir force for SiC-SiC and SiC-Au approaches very slowly the limit of ideal metals, while it saturates significantly below this limit if interaction with insulators takes place (SiC-SiO2). At short separations (<10 nm) analysis of the van der Waals force yielded Hamaker constants for SiC-SiC interactions lower but comparable to those of metals, which is of significance to adhesion and surface assembly processes. Finally, bifurcation analysis of microelectromechanical system actuation indicated that SiC can enhance the regime of stable equilibria against stiction.

  8. Casimir force measurements from silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  9. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  10. Analysis of boron carbides' electronic structure

    Science.gov (United States)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  11. Thermodynamic Equilibrium Diagrams of Sulphur-Chromium System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The chemical and electrochemical equilibria in the presence of gaseous phase were investigated. Many substances, which consisted of sulphur and chromium, were considered. Various thermodynamic equilibria were calculated in different pressures. Calculation results were shown as log p―1/T and E―T diagrams. These diagrams may be used to study the corrosion of chromium in sulphur-containing circumstances. The diagrams are also used to thermodynami-cally determine the existence area of various substances and so on.

  12. SCIENCE AND TECHNOLOGY ACTIVITIES FOR CHROMIUM IN THE 100 AREAS

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2009-07-02

    {sm_bullet} Primary Objective: Protect the Columbia River - Focus is control and treatment of contamination at or near the shoreline, which is influenced by bank storage {sm_bullet} Secondary Objective: Reduce hexavalent chromium to <48 parts per billion (ppb) in aquifer (drinking water standard) - Large plumes with isolated areas of high chromium concentrations (> 40,000 ppb), - Unknown source location(s); probably originating in reactor operation areas

  13. Chromium Ions Improve Moisure Resistance of Epoxy Resins

    Science.gov (United States)

    St. Clair, A. K.; St. Clair, T. L.; Stoakley, D. M.; Singh, J. J.; Sprinkle, D. R.

    1986-01-01

    Broad spectrum of thermosetting epoxy resins used on commercial and military aircraft, primarily as composite matrices and adhesives. In new technique, chromium-ion containing epoxy with improved resistance to moisture produced where chromium ions believed to prevent absorption of water molecules by coordinating themselves to hydroxyl groups on epoxy chain. Anticipated that improved epoxy formulation useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft. Improvement made without sacrifice in mechanical properties of polymer.

  14. Performance of chromium nitride based coatings under plastic processing conditions

    OpenAIRE

    Cunha, l.; Andritschky, M.; Pischow, K.; Wang, Z.(Institute of High Energy Physics, Beijing, China); Zarychta, A.; Miranda, A. S.; A.M. Cunha

    2000-01-01

    Chromium nitride based coatings were produced in the form of monolithic and multilayer coatings, by DC and RF reactive magnetron sputtering. These coatings were deposited onto stainless steel and tool steel substrates. Chromium nitride coatings have;proved to be wear and corrosion resistant. The combination of these characteristics was necessary to protect surfaces during plastic processing. In order to select the best coatings, some mechanical and tribological tests were performed. Har...

  15. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery Furnaces XII Appendix XII to Part 266... FACILITIES Pt. 266, App. XII Appendix XII to Part 266—Nickel or Chromium-Bearing Materials that may...

  16. 钼铁对高锰钢自生碳化物组织与耐磨性的影响%Effects of Molybdenum on Carbide Structure and Wear Resistance of High Manganese Steel Authigenic Carbide

    Institute of Scientific and Technical Information of China (English)

    李国威; 刘立新; 韩彦朝; 李海玉

    2013-01-01

    The abrasive performance of hardfacing material was improved by hard particles (such as borides and carbides )generating in the surfacing layer using the welding metallurgy reaction by adding the second phase methods of strengthening the matrix material, such as an amount of ilmenite D256 electrode covering, ferro-vanadium, molybdenum, chromium, boron carbide, graphite and rare-earth. The surfacing layer microstructure was studied by microscopy. The effects of molybdenum iron electrode coating component on the hardness, abrasive wear and adhesive wear were studied. The results show that: the hardness and wear resistance of the cladding layer with autogenetic paniculate phase are improved. The highest hardness is 60 HRC, improved by 8 HRC than D256 electrodes, and the wear resistance improves by 1 times.%通过在D256焊条药皮中加入一定量的钛铁、钒铁、钼铁、铬铁、碳化硼、石墨和稀土,利用焊接冶金反应在堆焊层中自生成硼化物、碳化物等硬质颗粒以提高耐磨堆焊材料的抗磨粒磨损性能.本文利用金相显微镜对堆焊层显微组织进行分析,通过硬度试验、磨损试验等,研究了焊条药皮组分中钼铁的加入对堆焊层硬度及耐磨性的影响.研究结果表明:加入钼铁后,堆焊层硬度和耐磨性都有所提高,其最高硬度达到60 HRC,比D256焊条提高了8HRC,耐磨性也提高了1倍.

  17. Lime enhanced chromium removal in advanced integrated wastewater pond system.

    Science.gov (United States)

    Tadesse, I; Isoaho, S A; Green, F B; Puhakka, J A

    2006-03-01

    The removal of trivalent chromium from a combined tannery effluent in horizontal settling tanks and subsequent Advanced Integrated Wastewater Pond System (AIWPS) reactors was investigated. The raw combined effluent from Modjo tannery had pH in the range of 11.2-12. At this pH, a trivalent chromium removal of 46-72% was obtained in the horizontal settling tanks after a one-day detention time. Trivalent chromium precipitated as chromium hydroxide, Cr(OH)3. 58-95% Cr(III) was removed in the advanced facultative pond (AFP) where the water column pH of 7.2-8.4 was close to pH 8, which is the optimum precipitation pH for trivalent chromium. Chromium removals in the secondary facultative pond (SFP) and maturation pond (MP) were 30-50% and 6-16%, respectively. With Cr(III) concentration of 0.2-0.8 mg/l in the final treated effluent, the AIWPS preceded by horizontal settling tanks produced effluent that could easily meet most of the current Cr(III) discharge limits to receive water bodies.

  18. Experimental skin deposition of chromium on the hands following handling of samples of leather and metal

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P.; Jellesen, Morten Stendahl;

    2016-01-01

    Background: Chromium is an important skin sensitizer. Exposure to it has been regulated in cement, and recently in leather. Studies on the deposition of chromium ions on the skin as a result of handling different chromium-containing materials are sparse, but could improve the risk assessment...... of contact sensitization and allergic contact dermatitis caused by chromium. Objectives: To determine whether the handling of chromium-containing samples of leather and metal results in the deposition of chromium onto the skin. Methods: Five healthy volunteers participated. For 30 min, they handled samples...... of leather and metal known to contain and release chromium. Skin deposition of chromium was assessed with the acid wipe sampling technique. Results: Acid wipe sampling of the participants' fingers showed chromium deposition on the skin in all participants who had been exposed to leather (range 0.01–0.20 µg...

  19. [Chromium content in foods and dietary intake estimation in the Northwest of Mexico].

    Science.gov (United States)

    Grijalva Haro, M I; Ballesteros Vázquez, M N; Cabrera Pacheco, R M

    2001-03-01

    Chromium is an indispensable nutrient for the carbohydrates and lipids metabolism. In this study the chromium content in the twenty main foods of the diet from Northwestern Mexico was determined, as well as the daily mean intake which was estimated based on the food intake basket of this region. Chromium content was analyzed by atomic absorption spectrophotometry using the graphite furnace technique and previous digestion of foods in microwave oven. The chromium mean intake was estimated considering the chromium daily mean intake for person per day and the chromium content of the foods analyzed in this study. The range chromium content in the foods analyzed was between 0.0004 and 0.1641 microgram/g dry weight. White cheese showed the highest chromium content followed by pasta soup, wheat tortilla, bread and meat. The main foods chromium contributors in the diet were: wheat tortilla (20%), white cheese (11%), corn tortilla (11%), pasta soup (10%), milk (10%), meat (9%) and white bread (8%). The daily chromium intake was 30.43 +/- 1.6 micrograms/d. Chromium values obtained in the food analyzed are considered low. Moreover, chromium intake obtained from the diet is not enough to meet the safety and adequate daily chromium intake. Therefore, the population from the Northwestern Mexico has a suboptimal dietary chromium intake.

  20. Converting a carbon preform object to a silicon carbide object

    Science.gov (United States)

    Levin, Harry (Inventor)

    1990-01-01

    A process for converting in depth a carbon or graphite preform object to a silicon carbide object, silicon carbide/silicon object, silicon carbide/carbon-core object, or a silicon carbide/silicon/carbon-core object, by contacting it with silicon liquid and vapor over various lengths of contact time in a reaction chamber. In the process, a stream comprised of a silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a coreactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into the reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. Thus, the precursor gas is decomposed directly to silicon in the reaction chamber. Any stream of decomposition gas and any unreacted precursor gas from the reaction chamber is removed. A carbon or graphite preform object placed in the reaction chamber is contacted with the silicon. The carbon or graphite preform object is recovered from the reactor chamber after it has been converted to a desired silicon carbide, silicon and carbon composition.

  1. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures....... spectroscopy were applied for determining the carburization temperature and evaluating the composition of the carbide clusters of different samples through determinations of the Mo-C and Mo-Mo coordination numbers....

  2. Investigation on the Effects of Titanium Diboride Particle Size on Radiation Shielding Properties of Titanium Diboride Reinforced Boron Carbide-Silicon Carbide Composites

    Directory of Open Access Journals (Sweden)

    A.O. Addemir

    2012-03-01

    Full Text Available Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the experiments which has a single gamma-peak at 0.662 MeV. Gamma transmission technique was used for the measurements. The effects of titanium diboride particle size on radiation attenuation of titanium diboride reinforced boron carbide-silicon carbide composites were evaluated in related with gamma transmission and the results of the experiments were interpreted and compared with each other. Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the experiments which has a single gamma-peak at 0.662 MeV. Gamma transmission technique was used for the measurements. The effects of titanium diboride particle size on radiation attenuation of titanium diboride reinforced boron carbide-silicon carbide composites were evaluated in related with gamma transmission and the results of the experiments were interpreted and compared with each other. Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion

  3. THE INFLUENCE OF CHEMICAL COMPOSITION OF HIGH-CHROMIUM CAST IRONS ON THE MACHINABILITY

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2016-02-01

    Full Text Available Purpose. This research is aimed to obtain the regression dependence of the machinability on the chemical composition of pig iron (C, Cr, Mn and Ni in cast state. Methodology. The method of active experiment planning was used to build a mathematical model. Cast irons of composition 1.09…3.91 % С; 11.43…25.57 % Cr; 0.6…5.4 % Mn; 0.19…3.01 % Ni were studied. Cutting tools with plates 10х10 mm out of ВК8 according to State Standard 19051-80 were used for turning. Cutting modes: cutting depth – 0.8 mm, longitudinal feed – 0.15 mm/rot., spindle’s rotation frequency during turning – 200…360 rot./min. Lubricating and cooling liquids were not applied. Evaluation of iron workability was produced by determining the linear tool flank wear per unit length of the cutting path. Findings. Mathematically probabilistic equation of the regression dependence of the cutting tool’s wear on the C, Cr, Mn and Ni content in the machined cast iron were obtained. It was established that with the increase of Cr content in the cast iron to 14.8 % the cutting tool’s wear decreased as a result of formation of carbide eutectic which destroyed the doped ledeburite continuous frame. Further increase of chromium content promoted appearing of chromic carbides with high microhardness which considerably increased the tool’s wear. The conducted research shown that the minimum cutting tool’s wear 0,18 mkm/m was observed during the machining of cast iron containing: 1.09 % C, 14.8 % Cr, 2.3 % Mn and 1.2 % Ni; and the maximum wear is 48,96 mkm/m – when the content was: 3.91 % C, 11.43 % Cr, 5.4 % Mn and 0.19 % Ni. The tool’s wear reached 47.61 mkm/m during the treatment of cast iron containing 3.91 % C, 25.57 % Cr, 5.4 % Mn and 0.19 % Ni. Originality. Mathematically probabilistic model of the dependence of the cutting tool’s wear on the C, Cr, Mn and Ni content in the machined cast iron has been elaborated by the author. Practical value. The model

  4. Chromium-chromium interaction in a binuclear mixed-valent Cr(I)-Cr(II) complex.

    Science.gov (United States)

    Alzamly, Ahmed; Gorelsky, Serge I; Gambarotta, Sandro; Korobkov, Ilia; Le Roy, Jennifer; Murugesu, Muralee

    2014-11-03

    A mixed-valent Cr(I)-Cr(II) binuclear complex, {κ(1),κ(2),κ(3)-N,P,P-cyclo[(Ph)PCH2N(CH2Ph)CH2]}2(CrCl2)[Cr(μ-Cl)(AlClMe2)]·4toluene (1), of a P2N2 cyclic ligand was obtained upon treatment of the chromium precursor with alkylaluminum. Complex 1 was accessible from either its trivalent or divalent precursors, and density functional theory calculations revealed the presence of only σ- and π-orbital interactions in the Cr-Cr bond.

  5. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, K. [Laboratory of Atomic Spectrochemistry, Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)], E-mail: codl@sci.muni.cz; Stankova, A. [Laboratory of Atomic Spectrochemistry, Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Haekkaenen, H.; Korppi-Tommola, J. [Department of Chemistry, University of Jyvaeskylae, P.O. BOX 35, FIN-40014 (Finland); Otruba, V.; Kanicky, V. [Laboratory of Atomic Spectrochemistry, Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2007-12-15

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r{sup 2} > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r{sup 2} = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  6. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Novotný, K.; Staňková, A.; Häkkänen, H.; Korppi-Tommola, J.; Otruba, V.; Kanický, V.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  7. 40 CFR 415.30 - Applicability; description of the calcium carbide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... calcium carbide production subcategory. 415.30 Section 415.30 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbide Production Subcategory § 415.30 Applicability; description of the calcium carbide production subcategory. The provisions of this subpart are applicable to discharges resulting...

  8. 40 CFR 424.50 - Applicability; description of the other calcium carbide furnaces subcategory.

    Science.gov (United States)

    2010-07-01

    ... calcium carbide furnaces subcategory. 424.50 Section 424.50 Protection of Environment ENVIRONMENTAL... CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.50 Applicability; description of the other calcium carbide furnaces subcategory. The provisions of this subpart are applicable to...

  9. Physical Properties of the NbC Carbide

    Directory of Open Access Journals (Sweden)

    Marcio Gustavo Di Vernieri Cuppari

    2016-10-01

    Full Text Available Transition metal carbides are interesting materials with a singular combination of properties, such as high melting points, high hardness, good transport properties and relatively low costs, which makes them excellent candidates for several technological applications. The possible applications of NbC carbide remained unexplored as it was in the past expensive and available in limited volumes. In order to guide investigations of the applicability of NbC, a deeper understanding of the physical properties of this carbide is fundamental. In this review paper, key physical properties of NbC are compiled with emphasis on its chemical bonding, a careful description of the C-Nb phase diagram, the phases formed and the crystal structures. Thermal properties are discussed and correlated with the intrinsic and extrinsic features of NbC. Finally, elastic properties are discussed.

  10. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca;

    2013-01-01

    Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over...... clusters. Unpromoted, active carbon supported Mo2C exhibits a high activity for CO conversion with hydrocarbons as the dominant products. The K2CO3 promoter plays an essential role in directing the selectivity to alcohols rather than to hydrocarbons. The optimum selectivity toward higher alcohols and total...... supported molybdenum carbide are significantly higher compared to the bulk carbide. The CO conversion reaches a maximum, when about 20wt% Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active carbon and reaches a maximum over bulk molybdenum...

  11. Studies on the equation of state of mixed carbide fuel

    Science.gov (United States)

    Joseph, M.; Mathews, C. K.; Rao, P. Bhaskar

    1989-12-01

    The equation of state of reactor fuels is required up to very high temperatures in order to assess the energy release in hypothetical core disruptive accidents (HCM). Though the mixed carbide of uranium and plutonium is a candidate fuel material for fast breeder reactors, much information is not available on its equation of state. This paper reports the results of our studies to obtain the equilibrium vapour pressures of uranium carbide and uranium-plutonium mixed carbide of varying compositions in the temperature range of 1300-9000 K. An extrapolation method based on the principles of equilibrium thermodynamics has been used as also the principle of corresponding states. The agreement between the different results are discussed and their implications in HCDA calculations brought out.

  12. Palladium in cubic silicon carbide: Stability and kinetics

    Science.gov (United States)

    Roma, Guido

    2009-12-01

    Several technological applications of silicon carbide are concerned with the introduction of palladium impurities. Be it intentional or not, this may lead to the formation of silicides. Not only this process is not well understood, but the basic properties of palladium impurities in silicon carbide, such as solubility or diffusion mechanisms, are far from being known. Here the stability and kinetics of isolated Pd impurities in cubic silicon carbide are studied by first principles calculations in the framework of density functional theory. The preferential insertion sites, as well as the main migration mechanisms, are analyzed and presented here, together with the results for solution and migration energies. The early stages of nucleation are discussed based on the properties of isolated impurities and the smallest clusters.

  13. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  14. Optimum Design of Lightweight Silicon Carbide Mirror Assembly

    Institute of Scientific and Technical Information of China (English)

    HAN Yuanyuan; ZHANG Yumin; HAN Jiecai; ZHANG Jianhan; YAO Wang; ZHOU Yufeng

    2008-01-01

    According to the design requirement and on the basis of the principle that the thermal expansion coefficient of the support structure should match with that of the mirror, a lightweight silicon carbide primary mirror assembly was designed. Finite element analysis combined with the parameter-optimized method was used during the design. Lightweight cell and rigid rib structure were used for the mirror assembly. The static, dynamic and thermal properties of the primary mirror assembly were analyzed. It is shown that after optimization, the lightweight ratio of the silicon carbide mirror is 52.5%, and the rigidity of the silicon carbide structure is high enough to support the required mirror. When temperature changes, the deformation of the mirror surface is in proportion to the temperature difference.

  15. Ordering of carbon atoms in boron carbide structure

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, V. I., E-mail: i2212@yandex.ru; Kovalev, I. D.; Konovalikhin, S. V.; Vershinnikov, V. I. [Russian Academy of Sciences, Institute of Structural Macrokinetics and Materials Science (Russian Federation)

    2013-05-15

    Boron carbide crystals have been obtained in the entire compositional range according to the phase diagram by self-propagating high-temperature synthesis (SHS). Based on the results of X-ray diffraction investigations, the samples were characterized by the unit-cell metric and reflection half-width in the entire range of carbon concentrations. A significant spread in the boron carbide unit-cell parameters for the same carbon content is found in the data in the literature; this spread contradicts the structural concepts for covalent compounds. The SHS samples have not revealed any significant spread in the unit-cell parameters. Structural analysis suggests that the spread of parameters in the literary data is related to the unique process of ordering of carbon atoms in the boron carbide structure.

  16. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  17. New process of silicon carbide purification intended for silicon passivation

    Science.gov (United States)

    Barbouche, M.; Zaghouani, R. Benabderrahmane; Benammar, N. E.; Aglieri, V.; Mosca, M.; Macaluso, R.; Khirouni, K.; Ezzaouia, H.

    2017-01-01

    In this work, we report on a new, efficient and low cost process of silicon carbide (SiC) powder purification intended to be used in photovoltaic applications. This process consists on the preparation of porous silicon carbide layers followed by a photo-thermal annealing under oxygen atmosphere and chemical treatment. The effect of etching time on impurities removal efficiency was studied. Inductively coupled plasma atomic emission spectrometry (ICP-AES) results showed that the best result was achieved for an etching time of 10 min followed by gettering at 900 °C during 1 h. SiC purity is improved from 3N (99.9771%) to 4N (99.9946%). Silicon carbide thin films were deposited onto silicon substrates by pulsed laser deposition technique (PLD) using purified SiC powder as target. Significant improvement of the minority carrier lifetime was obtained encouraging the use of SiC as a passivation layer for silicon.

  18. Implanted bottom gate for epitaxial graphene on silicon carbide

    Science.gov (United States)

    Waldmann, D.; Jobst, J.; Fromm, F.; Speck, F.; Seyller, T.; Krieger, M.; Weber, H. B.

    2012-04-01

    We present a technique to tune the charge density of epitaxial graphene via an electrostatic gate that is buried in the silicon carbide substrate. The result is a device in which graphene remains accessible for further manipulation or investigation. Via nitrogen or phosphor implantation into a silicon carbide wafer and subsequent graphene growth, devices can routinely be fabricated using standard semiconductor technology. We have optimized samples for room temperature as well as for cryogenic temperature operation. Depending on implantation dose and temperature we operate in two gating regimes. In the first, the gating mechanism is similar to a MOSFET, the second is based on a tuned space charge region of the silicon carbide semiconductor. We present a detailed model that describes the two gating regimes and the transition in between.

  19. CALVES GROWTH INFANT OF BREED NELLORE SUPPLEMENTED WITH CHROMIUM

    Directory of Open Access Journals (Sweden)

    C. C. Lima

    2016-11-01

    Full Text Available The present study evaluated the growth of nursling Nelore calves supplemented with chromium during creep feeding. The study was conducted using 131 Nelore calves with an average age of 60 days and average adjusted initial weight of 75 kg; considering that all calves were accompanied by their mothers. Therefore, the experimental groups were defined as T1: 35 males supplemented with chromium; T2: 34 males without chromium, T3: 30 females supplemented with chromium and T4: 32 females supplemented without chromium. The experimental period lasted from 60 days of age to 210 days (weaning, the animals were kept in two pickets of Panicum maximum cv. Mombasa provided with troughs for the creep feeding system, which permitted calves exclusive access to the concentrate formula based on 75% of TDN and 20% of crude protein, with 35% of soybean meal, 63% of corn and 2% of mineral nucleus containing 10 mg of chromium chelate for each kg of the product. The data were subjected to the analysis of variance, using the software R (R Development Core Team, 2013. In the evaluation of the live weight at 150 days of age, no significant difference was found in the use of chromium in males and females (regardless of sex. However, in the analysis between sexes, females’ live weights were lower than males’ live weight (p = 0.04, being 131.1 kg and 138.1 kg respectively. In the evaluation of live weight at 210 days there was no significant difference between males and females (p = 0.07, but there was a difference (p = 0.03 in the use of chrome in the evaluated treatments. So, it could be concluded that the creep feeding system with chrome chelate supplementation promoted an improvement in male and females calves’ growth for average daily weight gain and weaning weight, with a positive influence on the weight of cows.

  20. Nitridation of chromium powder in ammonia atmosphere

    Institute of Scientific and Technical Information of China (English)

    Ling Li; Qiang Zhen; Rong Li

    2015-01-01

    CrN powder was synthesized by nitriding Cr metal in ammonia gas flow, and its chemical reaction mechanism and nitridation process were studied. Through thermodynamic calculations, the Cr−N−O predominance diagrams were constructed for different tempera-tures. Chromium nitride formed at 700−1200°C under relatively higher nitrogen and lower oxygen partial pressures. Phases in the products were then investigated using X-ray diffraction (XRD), and the Cr2N content varied with reaction temperature and holding time. The results indicate that the Cr metal powder nitridation process can be explained by a diffusion model. Further, Cr2N formed as an intermediate product because of an incomplete reaction, which was observed by high-resolution transmission electron microscopy (HRTEM). After nitriding at 1000°C for 20 h, CrN powder with an average grain size of 63 nm was obtained, and the obtained sample was analyzed by using a scanning electron microscope (SEM).

  1. Chromium increases pancreatic metallothionein in the rat.

    Science.gov (United States)

    Solis-Heredia, M J; Quintanilla-Vega, B; Sierra-Santoyo, A; Hernández, J M; Brambila, E; Cebrián, M E; Albores, A

    2000-01-03

    The ability of chromium (Cr) salts to increase metallothionein (MT) levels in rat liver, kidney and pancreas, and its relationship with the presence of toxic effects are reported here. Rats were injected subcutaneously with 0, 10, 20, 30, 40, or 50 mg K2Cr2O7/kg and sacrificed 24 h later. Total Cr accumulation followed a dose-dependent pattern, levels in kidney being higher than those in liver or pancreas, suggesting different tissue bioavailabilities and accumulation patterns. Cr(IV) administration resulted in a tissue-specific MT induction: pancreas and liver showed five- and 3.5-fold MT increases, respectively; no increase was observed in the kidney. A positive correlation was observed between zinc and MT concentrations in liver, and between total Cr and MT concentrations in pancreas. Serum alpha-amylase activity showed a dose-dependent increase starting from 20 mg/kg, whereas serum glucose levels increased at doses higher than 30 mg/kg. Serum aspartate aminotransferase and alanine aminotransferase activities were increased in a dose-dependent manner, from 20 and 30 mg/kg, respectively. Our results showed that treatment with Cr(VI) can induce MT synthesis in pancreas and suggests a subsequent binding of Cr to MT. Also, pancreas is a target organ for Cr toxicity, and the usefulness of alpha-amylase activity as a sensitive biomarker of Cr toxicity in human exposed populations merits further study.

  2. Can elevated chromium induce somatopsychic responses?

    Science.gov (United States)

    Lovrincevic, I; Leung, F Y; Alfieri, M A; Grace, D M

    1996-01-01

    The possible somatopsychological effects of chromium (Cr) was investigated in a population of patients, from a surgical ward of our hospital, who required total parenteral nutrition (TPN) solutions, and who became exposed to various amounts of this metal from this treatment. The study involved a questionnaire as well as biochemical tests which included serum Cr and other selected trace metals. The renal status for all eligible patients was within normal parameters. The patient population varied in age, pathology, surgical treatment, and duration on TPN. The results showed that every patient who received TPN had an increased serum Cr level; some increases were up to 50-fold above the normal reference level for serum Cr. Although statistical analysis failed to show any significant statistical relationship between an increased serum Cr and the investigated somatopsychological disturbances, this effect cannot be ruled out since one case did show all the dream disturbances. Considering these cases, the action of sedative medications that may suppress the effects of Cr, cannot be ruled out. As Cr(III) may be potentially genotoxic at high concentrations, infusion of this metal over long time periods should be avoided. Supplementation of Cr in TPN solutions appears to be unnecessary for short-term TPN because this metal is a known contaminant of these solutions. Efforts are required to find TPN nutrients with low or no Cr contamination.

  3. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga-Arceo, L [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Orozco, E [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Garibay-Febles, V [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Bucio-Galindo, L [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Mendoza Leon, H [FM-UPALM, IPN, Apartado Postal 75-395 CP 07300, DF (Mexico); Castillo-Ocampo, P [UAM-Iztapalapa, Apartado Postal 55-334 CP 09340, DF (Mexico); Montoya, A [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico)

    2004-06-09

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 {mu}m in length and 20-200 nm in diameter and 0.6-1.2 {mu}m in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process.

  4. Effects of laser ablation on cemented tungsten carbide surface quality

    Energy Technology Data Exchange (ETDEWEB)

    Tan, J.L.; Butler, D.L.; Sim, L.M.; Jarfors, A.E.W. [Singapore Institute of Manufacturing Technology, Singapore (Singapore)

    2010-11-15

    Although laser micromachining has been touted as being the most promising way to fabricate micro tools, there has been no proper evaluation of the effects of laser ablation on bulk material properties. The current work demonstrates the effects of laser ablation on the properties of a cemented tungsten carbide surface. Of particular interest is the resultant increase in compressive residual stresses in the ablated surface. From this study it is seen that there are no adverse effects from laser ablation of cemented tungsten carbide that would preclude its use for the fabrication of micro-tools but a finishing process may not be avoidable. (orig.)

  5. Effects of laser ablation on cemented tungsten carbide surface quality

    Science.gov (United States)

    Tan, J. L.; Butler, D. L.; Sim, L. M.; Jarfors, A. E. W.

    2010-11-01

    Although laser micromachining has been touted as being the most promising way to fabricate micro tools, there has been no proper evaluation of the effects of laser ablation on bulk material properties. The current work demonstrates the effects of laser ablation on the properties of a cemented tungsten carbide surface. Of particular interest is the resultant increase in compressive residual stresses in the ablated surface. From this study it is seen that there are no adverse effects from laser ablation of cemented tungsten carbide that would preclude its use for the fabrication of micro-tools but a finishing process may not be avoidable.

  6. High-Q silicon carbide photonic-crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonathan Y. [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Lu, Xiyuan [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Lin, Qiang, E-mail: qiang.lin@rochester.edu [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2015-01-26

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 10{sup 4} with mode volume ∼0.60(λ/n){sup 3} at wavelength 1.5 μm. A corresponding Purcell factor value of ∼10{sup 4} is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  7. Shock-induced localized amorphization in boron carbide.

    Science.gov (United States)

    Chen, Mingwei; McCauley, James W; Hemker, Kevin J

    2003-03-01

    High-resolution electron microscope observations of shock-loaded boron carbide have revealed the formation of nanoscale intragranular amorphous bands that occur parallel to specific crystallographic planes and contiguously with apparent cleaved fracture surfaces. This damage mechanism explains the measured, but not previously understood, decrease in the ballistic performance of boron carbide at high impact rates and pressures. The formation of these amorphous bands is also an example of how shock loading can result in the synthesis of novel structures and materials with substantially altered properties.

  8. Ultrathin fiber poly-3-hydroxybutyrate, modified by silicon carbide nanoparticles

    Science.gov (United States)

    Olkhov, A. A.; Krutikova, A. A.; Goldshtrakh, M. A.; Staroverova, O. V.; Iordanskii, A. L.; Ischenko, A. A.

    2016-11-01

    The article presents the results of studies the composite fibrous material based on poly-3-hydroxybutyrate (PHB) and nano-size silicon carbide obtained by the electrospinning method. Size distribution of the silicon carbide nanoparticles in the fiber was estimated by X-ray diffraction technique. It is shown that immobilization of the SiC nanoparticles to the PHB fibers contributes to obtaining essentially smaller diameter of fibers, high physical-mechanical characteristics and increasing resistance to degradation in comparison with the fibers of PHB.

  9. Catalytic carbide formation at aluminium-carbon interfaces

    Science.gov (United States)

    Maruyama, B.; Rabenberg, L.; Ohuchi, F. S.

    1990-01-01

    X-ray photoelectron spectroscopy investigations of the reaction of several monolayer-thick films of aluminum with glassy carbon substrates are presented. The influence of molecular oxygen and water vapor on the rate of reaction is examined. It is concluded that water vapor catalyzed the formation of aluminum carbide from aluminum and carbon by forming active sites which weakened carbon-carbon bonds at the glassy carbon surface, thus assisting their cleavage. The rate of carbide formation for undosed and molecular oxygen-dosed examples was less as neither metallic aluminum nor oxygen-formed alumina could bond to the carbon atom with sufficient strength to dissociate it quickly.

  10. Characterization of Two ODS Alloys: Chromium-18 ODS and Chromium-9 ODS

    Science.gov (United States)

    Goddard, Julianne

    ODS alloys, or oxide dispersion strengthened alloys, are made from elemental or pre-alloyed metal powders mechanically alloyed with oxide powders in a high-energy attributor mill, and then consolidated by either hot isostatic pressing or hot extrusion causing the production of nanometer scale oxide and carbide particles within the alloy matrix; crystalline properties such as creep strength, ductility, corrosion resistance, tensile strength, swelling resistance, and resistance to embrittlement are all observed to be improved by the presence of nanoparticles in the matrix. The presented research uses various methods to observe and characterize the microstructural and microchemical properties of two experimental ODS alloys, 18Cr ODS and 9Cr ODS. The results found aid in assessing the influence of chemical and structural variations on the effectiveness of the alloy, and further aid in the optimization of these advanced alloys for future use in nuclear cladding and structural applications in Generation IV nuclear reactors. Characterization of these alloys has been conducted in order to identify the second-phase small precipitates through FESEM, TEM, EDS, Synchrotron X-ray diffraction analysis, and CuKalpha XRD analysis of bulk samples and of nanoparticles after extraction from the alloy matrix. Comparison of results from these methods allows further substantiation of the accuracy of observed nanoparticle composition and identification. Also, TEM samples of the two alloys have been irradiated in-situ with 1 MeV Kr and 300 keV Fe ions to various doses and temperatures at the IVEM-Tandem TEM at Argonne National Laboratory and post-irradiated characterization has been conducted and compared to the pre-irradiated characterization results in order to observe the microstructural and microchemical evolution of nanoparticles under irradiation. Overall in the as-received state, the initial Y2O3 is not found anymore and in addition to oxide particles the alloys contain carbides

  11. Hexavalent Chromium Reduction and Its Distribution in the Cell and Medium by Chromium Resistant Fusarium solani

    Directory of Open Access Journals (Sweden)

    Mousumi Sen

    2013-01-01

    Full Text Available In the present work, batch biosorption of Cr(VI was studied using the fungal strain isolated from soil. The fungal strain was characterized as Fusarium solani. The total Cr distribution in the biomass (fungus and in the media obtained from the experiment conducted at 500 mg l -1 initial Cr(VI concentration and pH 5.0. The results indicated both intracellular and extracellular accumulation and enzymatic reduction of Cr(VI and this was supported by the Transmission Electron Microscopic (TEM observation at the same Cr(VI concentration and pH value. Chromium elution from Fusarium solani containing Cr was then tried out using a number of chromium eluting reagents and a maximum Cr could be eluted using 0.5N sodium hydroxide solution without destructing the biomass structure. The total Cr was recovered by pH adjustment from both biomass and media was found to be 44% of the initial Cr(VI concentration (500 mg l-1.

  12. Spectroscopic study for a chromium-adsorbed montmorillonite

    Science.gov (United States)

    Nurtay, Maidina ·; Tuersun, Maierdan ·; Cai, Yuanfeng; Açıkgöz, Muhammed; Wang, Hongtao; Pan, Yuguan; Zhang, Xiaoke; Ma, Xiaomei

    2017-02-01

    Samples of purified montmorillonite with trace amounts of quartz were subjected to different concentrations of chromium sulphate solutions for one week to allow cation exchange. The chromium-bearing montmorillonites were verified and tested using powder X-ray diffractometry (XRD), X-ray fluorescence spectrometry, electron spin resonance (ESR) spectrometry and Fourier transformation infrared (FTIR) spectroscopy to explore the occupation sites of the chromium. The ESR spectra recorded before and after the chromium exchange show clear differences: a strong and broad resonance with two shoulders at the lower magnetic field side was present to start, and its intensity as well as that of the ferric iron resonance, increased with the concentration of added chromium. The signals introduced by the chromium, for example at g = 1.975 and 2.510 etc., suggested that the chromium had several occupational sites. The ESR peak with g = 2.510 in the second derivative spectrum suggested that Cr3+ was weakly bounded to TOT with the form of [Cr(H2O)3]3+ in hexagonal cavities. This was verified by comparing the FTIR spectra of the pure and modified montmorillonite. The main resonance centred at g = 1.975 indicated that the majority of Cr3+ occupied the interlayer region as [Cr(H2O)6]3+. The substitution of Ca2 + by Cr3+ also greatly affected the vibration of the hydrogens associate to water, ranged from 3500 to 2600 cm-1 in FTIR. Furthermore, the presence of two diffraction lines in the XRD results (specifically those with d-values of 1.5171 and 1.2673 nm) and the calculations of the size of the interlayer space suggested the presence of two types of montmorillonite with different hydration cations in the sample exposed to 0.2 M chromium sulphate. The two diffraction lines were assigned to [Cr(H2O)6]3+ and [Cr(H2O)3O3]3+, respectively. This also suggested that the species of hydration cation was constrained by the concentration of the chromium solution.

  13. Wear behaviour of cobalt-chromium-molybdenum alloys used in metal-on-metal hip implants

    Science.gov (United States)

    Varano, Rocco

    The influence of carbon (C) content, microstructure, crystallography and mechanical properties on the wear behaviour of metal-on-metal (MM) hip implants made from commercially available cobalt-chromium-molybdenum (CoCrMo) alloys designated as American Society of Testing and Materials (ASTM) grade F1537, F75 and as-cast were studied in this work. The as-received bars of wrought CoCrMo alloys (ASTM F1537 of either about 0.05% or 0.26% C) were each subjected to various heat treatments to develop different microstructures. Pin and plate specimens were fabricated from each bar and were tested against each other using a linear reciprocating pin-on-plate apparatus in 25% by volume bovine serum solution. The applied normal load was 9.81 N and the reciprocating plate had a sinusoidal velocity with an average speed of 26 mm/s. The wear was measured gravimetrically and it was found to be most strongly affected by alloy C content, irrespective of grain size or carbide morphology. More precisely, the wear behaviour was directly correlated to the dissolved C content of the alloys. Increased C in solid-solution coincided with lower volumetric wear since C helps to stabilize the face-centred cubic (FCC) crystal structure thus limiting the amount of strain induced transformation (SIT) to the hexagonal close-packed crystal structure (HCP). Based on the observed surface twinning in and around the contact zone and the potentially detrimental effect of the HCP phase, it was postulated that the MM wear behaviour of CoCrMo alloys in the present study was controlled by a deformation mechanism, rather than corrosion or tribochemical reactions.

  14. The Kinetics of Formation and Decomposition of Austenite in Relation to Carbide Morphology

    Science.gov (United States)

    Alvarenga, Henrique Duarte; Van Steenberge, Nele; Sietsma, Jilt; Terryn, Herman

    2017-02-01

    The effect of the carbide morphology on the kinetics of austenite formation and its decomposition was investigated by a combination of measurements of austenite fraction by dilatometry and metallography. These measurements show that coarse carbide morphology is generated by fast cooling through the early stages of eutectoid transformation, enabling fast precipitation of pro-eutectoid ferrite, followed by slow cooling during the final stages of transformation, during the precipitation of carbides. Additionally, a strong influence of the morphology of carbides on the kinetics of austenite formation is observed. The presence of coarse carbides can determine the rate of austenite formation during intercritical annealing as a result of its slow dissolution kinetics.

  15. A possible role for chromium(III) in genotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Snow, E.T. (New York Univ. Medical Center, Tuxedo (United States))

    1991-05-01

    Chromium is found in the environment in two major forms: reduced Cr{sup III} and Cr{sup VI}, or chromate. Chromate, the most biologically active species, is readily taken up by living cells and reduced intracellularly, via reactive intermediates, to stable Cr{sup III} species. Cr{sup III}, the most abundant form of chromium in the environment, does not readily cross cell membranes and is relatively inactive in vivo. However, intracellular Cr{sup III} can react slowly with both nucleic acids and proteins and can be genotoxic. The authors have investigated the genotoxicity of Cr{sup III} in vitro using a DNA replication assay and in vivo by CaCl{sub 2}-mediated transfection of chromium-treated DNA into Escherichia coli. These results suggest that Cr{sup III} alters the interaction between the DNA template and the polymerase such that the binding strength of the DNA polymerase is increased and the fidelity of DNA replication is decreased. These interactions may contribute to the mutagenicity of chromium ions in vivo and suggest that Cr{sup III} can contribute to chromium-mediated carcinogenesis.

  16. Low-chromium reduced-activation ferritic steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J.; Kenik, E.A. [Oak Ridge National Laboratory, TN (United States)

    1996-04-01

    Development of reduced-activation ferritic steels has concentrated on high-chromium (8-10 wt% Cr) steels. However, there are advantages for a low-chromium steel, and initial ORNL studies on reduced-activation steels were on compositions with 2.25 to 12% Cr. Those studies showed an Fe-2.25Cr-2W-0.25V-0.1C (2 1/4Cr-2WV) steel to have the highest strenglth of the steels studied. Although this steel had the best strength, Charpy impact properties were inferior to those of an Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) and an Fe-2.25Cr-2W-0.1C (2 1/4Cr-2W) steel. Therefore, further development of the low-chromium Cr-W steels was required. These results indicate that it is possible to develop low-chromium reduced-activation ferritic steels that have tensile and impact properties as good or better than those of high-chromium (7-9% Cr) steels. Further improvement of properties should be possible by optimizing the composition.

  17. Enhancement of chromium uptake in tanning using oxazolidine.

    Science.gov (United States)

    Sundarapandiyan, S; Brutto, Patrick E; Siddhartha, G; Ramesh, R; Ramanaiah, B; Saravanan, P; Mandal, A B

    2011-06-15

    Monocyclic and bicyclic oxazolidines were offered at three different junctures of chrome tanning process viz. prior to BCS offer, along with BCS and after basification. It was found that oxazolidine when offered after basification brought about better chromium uptake and reduction of chromium load in the wastewater. Offer of oxazolidine was also varied. Increase in offer of oxazolidine from 0.25% to 1% was found to enhance the chromium uptake and decrease the chromium load in wastewater. But the increase in uptake was not proportionate to the increase in oxazolidine offer more than 0.75%. Offer of 1% Zoldine ZA 78 (monocyclic oxazolidine) and Zoldine ZE (bicyclic oxazolidine) after basification brought about 63.4% and 73.1% enhancement in chrome content in leather compared to control where oxazolidine was not offered. The tone of the wetblue was found to be altered moderately. However this did not call for any process adjustments in wet-finishing. The oxazolidine treated leathers were found to be immensely fuller and tighter. It was found experimentally that offer of 1% of oxazolidine facilitated reduction in the offer of syntans administered for filling and grain tightening by around 46%. Oxazolidine could bring about significant reduction in cost of chemicals apart from resulting environmental benefits due to enhancement of chromium uptake during tanning.

  18. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594.

    Science.gov (United States)

    Sandana Mala, John Geraldine; Unni Nair, Balachandran; Puvanakrishnan, Rengarajulu

    2006-06-01

    Chromium toxicity is of prime concern due to chrome tanning processes in the leather sector. Chrome tanning results in the discharge of toxic levels of chromium causing pollution hazards. Chromium levels of Cr(III) and Cr(VI) were high above permissible limits in chrome samples after chrome tanning. The potential of Aspergillus niger MTCC 2594 to accumulate chromium as well as its biosorption capacity is investigated in this study. Bioaccumulation of Cr(III) and Cr(VI) in the spent chrome liquor has resulted in a 75-78% reduction of the initial Cr content in 24-36 h. A. niger biomass is found to be very effective in the biosorption of Cr(III) and Cr(VI) in spent chrome liquor. Maximum adsorption of 83% for biosorption of Cr(III) at 48 h and 79% of Cr(VI) at 36 h in spent chrome liquor is observed. The biosorption characteristics fit well with Langmuir and Freundlich isotherms and the adsorption parameters are evaluated. The biosorption of Cr also follows Lagergren kinetics. A. niger biomass is effectively used for the biosorption of chromium with 79-83% Cr removal in 36-48 h.

  19. Microbial exudate promoted dissolution and transformation of chromium containing minerals

    Science.gov (United States)

    Saad, E. M.; Sun, J.; Tang, Y.

    2015-12-01

    Because of its utility in many industrial processes, chromium has become the second most common metal contaminant in the United States. The two most common oxidation states of chromium in nature are Cr(III), which is highly immobile, and Cr(VI), which is highly mobile and toxic. In both natural and engineered environments, the most common remediation of Cr(VI) is through reduction, which results in chromium sequestration in the low solubility mixed Cr(III)-Fe(III) (oxy)hydroxide phases. Consequently, the stability of these minerals must be examined to assess the fate of chromium in the subsurface. We examined the dissolution of mixed Cr(III)-Fe(III) (oxy)hydroxides in the presence of common microbial exudates, including the siderophore desferrioxamine B (DFOB; a common organic ligand secreted by most microbes with high affinity for ferric iron and other trivalent metal ions) and oxalate (a common organic acid produced by microbes). The solids exhibited incongruent dissolution with preferential leaching of Fe from the solid phase. Over time, this leads to a more Cr rich mineral, which is known to be more soluble than the corresponding mixed mineral phase. We are currently investigating the structure of the reacted mineral phases and soluble Cr(III) species, as well as the potential oxidation and remobilization of the soluble Cr species. Results from this study will provide insights regarding the long term transport and fate of chromium in the natural environment in the presence of microbial activities.

  20. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.

    Science.gov (United States)

    Zeng, Jing; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Sun, Zhao-Yong; Kida, Kenji

    2016-10-01

    In this study, a sulfur-oxidizing community was enriched from activated sludge generated in tannery wastewater treatment plants. Bioleaching of tannery sludge containing 0.9-1.2% chromium was investigated to evaluate the effectiveness of the enriched community, the effect of chromium binding forms on bioleaching efficiency, and the dominant microbes contributing to chromium bioleaching. Sludge samples inoculated with the enriched community presented 79.9-96.8% of chromium leaching efficiencies, much higher than those without the enriched community. High bioleaching efficiencies of over 95% were achieved for chromium in reducible fraction, while 60.9-97.9% were observed for chromium in oxidizable and residual fractions. Acidithiobacillus thiooxidans, the predominant bacteria in the enriched community, played an important role in bioleaching, whereas some indigenous heterotrophic species in sludge might have had a supporting role. The results indicated that A. thiooxidans-dominant enriched microbial community had high chromium bioleaching efficiency, and chromium binding forms affected the bioleaching performance.

  1. Development of a coprecipitation system for the speciation/preconcentration of chromium in tap waters

    Energy Technology Data Exchange (ETDEWEB)

    Karatepe, Aslihan, E-mail: karatepea@gmail.com [Nevsehir University, Faculty of Science and Arts, Department of Chemistry, 50000 Nevsehir (Turkey); Korkmaz, Esra [Bozok University, Faculty of Science and Arts, Department of Chemistry, Yozgat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey); Elci, Latif [Pamukkale University, Faculty of Science and Arts, Department of Chemistry, 20020 Denizli (Turkey)

    2010-01-15

    A method for the speciation of chromium(III), chromium(VI) and determination of total chromium based on coprecipitation of chromium(III) with dysprosium hydroxide has been investigated and applied to tap water samples. Chromium(III) was quantitatively recovered by the presented method, while the recovery values for chromium(VI) was below 10%. The influences of analytical parameters including amount of dysprosium(III), pH, centrifugation speed and sample volume for the quantitative precipitation were examined. No interferic effects were observed from alkali, earth alkali and some transition metals for the analyte ions. The detection limits (k = 3, N = 15) were 0.65 {mu}g/L for chromium(III) and 0.78 {mu}g/L for chromium(VI). The validation of the presented method was checked by the analysis of certified reference materials.

  2. Process for improving moisture resistance of epoxy resins by addition of chromium ions

    Science.gov (United States)

    St.clair, A. K.; Stoakley, D. M.; St.clair, T. L.; Singh, J. J. (Inventor)

    1985-01-01

    A process for improving the moisture resistance properties of epoxidized TGMDA and DGEBA resin system by chemically incorporating chromium ions is described. The addition of chromium ions is believed to prevent the absorption of water molecules.

  3. CHROMIUM ELECTROANALYSIS AT SCREEN PRINTED ELECTRODE MODIFIED BY THIN FILMS OF NICKEL

    Science.gov (United States)

    A rapid and potentially cost-effective electrochemical method is reported for analysis of chromium (VI) and Chromium(III) using a nickel modified screen printed carbon ink electrode. Electrochemical characteristics of nickel modified electrode as well voltammetric behavior f...

  4. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy

    Science.gov (United States)

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-09-01

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process.

  5. Reduction of chromium oxide from slags

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Paredes, J.

    2005-12-01

    Full Text Available Experimental and theoretical work were performed to estimate the effect of slag basicity and amount of reducing agents on the reduction of chromium oxide from the slag which interacted with molten steel at 1,600 °C. The slag system contained CaO, MgO, SiO2, CaF2 and Cr2O3 together with Fe-alloys (Fe-Si and Fe-Si-Mg. The CaF2 and MgO contents in the slags were 10 mass % each; Cr2O3 was 25%. The amount of the ferroalloys ranged from 12.5 to 50 g per 100 g of slag. The (CaO+MgO/SiO2 ratio was held at 1 and 2. The Cr yield was determined using both Fe-alloys as reducing agents. Some estimations were made to determine the theoretical effect of temperature, slag basicity, (CaO+MgO/SiO2, and amount of reducing agents in the slag on the chromium recovery. The FACT (Facility for the Analysis of Chemical Thermodynamics computational package is used to determine the equilibrium between the slag and molten steel.

    En el presente trabajo se realiza un estudio teórico y experimental para determinar el efecto de la basicidad de la escoria y la cantidad de agentes reductores sobre la reducción de óxidos de cromo contenidos en la escoria, la cual está en contacto con acero líquido a 1.600 °C. La escoria se prepara con los reactivos CaO, MgO, SiO2, CaF2 y ferroaleaciones (Fe-Si y Fe-Si-Mg. Los contenidos de CaF2 y MgO en la escoria son de 10 %, cada uno, y el de Cr2O3 es 25 %. La cantidad de la ferroaleación varía de 12,5 a 50 g por cada 100 g de escoria. La relación (CaO+MgO/SiO2 tiene los valores de 1 y 2. Se determina la eficiencia de recuperación de cromo empleando los dos tipos de ferroaleaciones. Se realizaron cálculos para determinar el efecto teórico de la temperatura, la basicidad de la escoria, (CaO+MgO/SiO2, y la cantidad de agentes reductores sobre la reducci

  6. Effects of irradiation on chromium's behavior in ferritic/martensitic FeCr alloy

    Institute of Scientific and Technical Information of China (English)

    Xinfu HE; Wen YANG; Zhehao QU; Sheng FAN

    2009-01-01

    The effects of irradiation on chromium performance under different temperatures in Fe-20at%Cr were modeled by modified Marlowe code. Chromium precipitation was observed in FeCr alloy after irradiation; interstitial Chromium atoms are the preferred formation of mixed FeCr dumbbells in the direction ofand; interstitial chromium atoms congregated on {111} and {110} plane. The results are compared with experiment observations and are useful to understanding the irradiation performances of FeCr alloy.

  7. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jannotti, Phillip; Subhash, Ghatu, E-mail: subhash@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Zheng, James Q.; Halls, Virginia [Program Executive Office—Soldier Protection and Individual Equipment, US Army, Fort Belvoir, Virginia 22060 (United States); Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K. [M-Cubed Technologies, Inc., Newark, Delaware 19711 (United States)

    2015-01-26

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  8. Mullite Coating on Recrytallized Silicon Carbide and Its Cycling Oxidation Behavior

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mullite coating on recrystallized silicon carbide was successfully prepared by the sol-gel route. The cycling oxidation of coated recrystallized silicon carbide was performed at 1500℃. For comparison, the oxidation of uncoated recrystallized silicon carbide was also carried out at the same condition. The results indicated that a layer of compact, adhesive and crack free mullite coating was found on the recrystallized silicon carbide. After oxidation, the new coatings exhibit adherence and crack resistance under thermal cycling between room temperature and 1500℃, therefore the oxidation resistance capability of silicon carbide was enhanced. With the increase of the dipping frequencies, namely, the increase of the thickness of mullite coating, the oxidation resistance of silicon carbide would be further improved. The formation mechanism of mullite coating was analyzed and discussed and the oxidation dynamics model of coatedmullite silicon carbide has been also proposed.

  9. Formation mechanism of spheroidal carbide in ultra-low carbon ductile cast iron

    Directory of Open Access Journals (Sweden)

    Bin-guo Fu

    2016-09-01

    Full Text Available The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.

  10. Deterioration of yttria-stabilized zirconia by boron carbide alone or mixed with metallic or oxidized Fe, Cr, Zr mixtures

    Energy Technology Data Exchange (ETDEWEB)

    De Bremaecker, A., E-mail: adbremae@sckcen.be [Belgian Nuclear Research Center (SCK-CEN), NMS, Mol (Belgium); Ayrault, L., E-mail: laurent.ayrault@cea.fr [Institut de Radio-Protection et Sûreté Nucléaire/DPAM/SEMIC, Bât 702, CEN de Cadarache BP3, F-13115 Saint-Paul-lez-Durance (France); Clément, B. [Institut de Radio-Protection et Sûreté Nucléaire/DPAM/SEMIC, Bât 702, CEN de Cadarache BP3, F-13115 Saint-Paul-lez-Durance (France)

    2014-08-01

    In the frame of severe accident conditions (PHEBUS FPT3 test), different experiments were carried out on the interactions of 20% yttria-stabilized zirconia (YSZ) and 20% ceria-stab zirconia with boron carbide or its oxidation products (B{sub 2}O{sub 3}): either tests under steam between 1230° and 1700 °C with B{sub 4}C alone or B{sub 4}C mixed with metals, either tests under Ar with boron oxide present in a mixture of iron and chromium oxides. In all cases an interaction was observed with formation of intergranular yttrium borate. At 1700 °C boron oxide is able to “pump out” the Y stabiliser from the YSZ grains but also some trace elements (Ca and Al) and to form a eutectic containing YBO{sub 3} and yttrium calcium oxy-borate (YCOB). At the same time a substantial swelling (“bloating”) of the zirconia happens, qualitatively similar to the foaming of irradiated fuel in contact with a Zr-melt. In all samples the lowering of the Y (or Ce)-content in the YSZ grains is so sharp that in the interaction layers zirconia is no longer stabilized. This is important when YSZ is envisaged as simulant of UO{sub 2} or as inert matrix for Am-transmutation.

  11. Deterioration of yttria-stabilized zirconia by boron carbide alone or mixed with metallic or oxidized Fe, Cr, Zr mixtures

    Science.gov (United States)

    De Bremaecker, A.; Ayrault, L.; Clément, B.

    2014-08-01

    In the frame of severe accident conditions (PHEBUS FPT3 test), different experiments were carried out on the interactions of 20% yttria-stabilized zirconia (YSZ) and 20% ceria-stab zirconia with boron carbide or its oxidation products (B2O3): either tests under steam between 1230° and 1700 °C with B4C alone or B4C mixed with metals, either tests under Ar with boron oxide present in a mixture of iron and chromium oxides. In all cases an interaction was observed with formation of intergranular yttrium borate. At 1700 °C boron oxide is able to “pump out” the Y stabiliser from the YSZ grains but also some trace elements (Ca and Al) and to form a eutectic containing YBO3 and yttrium calcium oxy-borate (YCOB). At the same time a substantial swelling (“bloating”) of the zirconia happens, qualitatively similar to the foaming of irradiated fuel in contact with a Zr-melt. In all samples the lowering of the Y (or Ce)-content in the YSZ grains is so sharp that in the interaction layers zirconia is no longer stabilized. This is important when YSZ is envisaged as simulant of UO2 or as inert matrix for Am-transmutation.

  12. MICROSTRUCTURE AT THE INTERFACE OF TITANIUM CARBIDE AND NICKEL ALUMINIDES

    Institute of Scientific and Technical Information of China (English)

    Shen Dian-hong; Wu Xing-fang; Lu Hua; N.Froumin; M.Polak

    2000-01-01

    Microstructure at the interface of titanium carbide and nickelaluminides in the samples obtained by infiltration of molten Ni3Al alloyhas studied by a scanning electron microscopy (SEM) and an analyticaltransmission electron microscopy (ATEM) with an energy dispersivespectrometer (EDS). It is found that the morphology at the interfacesbetween hard phase skeleton of TiC{0.7 and metallic phases depends on theratio of Ti/C in carbide. Some periodic zigzag fringes are observed ata smooth interface between metallic phase and carbides in the sampleof Ni3Al/TiC0.7. The results of analysis using EDS show that Ti inTiC0.7 carbide is easier than that in TiC0.9 to dissolve into the moltenalloy during solid-liquid reaction. The formation of this periodic zigzagfringe,which may be a growth zone of a new Ti-Ni-Al phase,in the interfaceof TiC0.7/Ni3Al would occur during the initial stage of solidification.

  13. The synthesis of titanium carbide-reinforced carbon nanofibers.

    Science.gov (United States)

    Zhu, Pinwen; Hong, Youliang; Liu, Bingbing; Zou, Guangtian

    2009-06-24

    Tailoring hard materials into nanoscale building blocks can greatly extend the applications of hard materials and, at the same time, also represents a significant challenge in the field of nanoscale science. This work reports a novel process for the preparation of carbon-based one-dimensional hard nanomaterials. The titanium carbide-carbon composite nanofibers with an average diameter of 90 nm are prepared by an electrospinning technique and a high temperature pyrolysis process. A composite solution containing polyacrylonitrile and titanium sources is first electrospun into the composite nanofibers, which are subsequently pyrolyzed to produce the desired products. The x-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The Raman analyses show that the composite nanofibers have low graphite clusters in comparison with the pure carbon nanofibers originating from the electrospun polyacrylonitrile nanofibers. The mechanical property tests demonstrate that the titanium carbide-carbon nanofiber membranes have four times higher tensile strength than the carbon nanofiber membranes, and the Young's modulus of the titanium carbide-carbon nanofiber membranes increases in direct proportion to the titanium quantity.

  14. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  15. PECVD silicon carbide surface micromachining technology and selected MEMS applications

    NARCIS (Netherlands)

    Rajaraman, V.; Pakula, L.S.; Yang, H.; French, P.J.; Sarro, P.M.

    2011-01-01

    Attractive material properties of plasma enhanced chemical vapour deposited (PECVD) silicon carbide (SiC) when combined with CMOS-compatible low thermal budget processing provides an ideal technology platform for developing various microelectromechanical systems (MEMS) devices and merging them with

  16. Dynamic strength of reaction-sintered boron carbide ceramic

    Science.gov (United States)

    Savinykh, A. S.; Garkushin, G. V.; Razorenov, S. V.; Rumyantsev, V. I.

    2015-06-01

    The shock compression wave profiles in three modifications of boron carbide ceramic are studied in the compressive stress range 3-19 GPa. The Hugoniot elastic limit and the spall strength of the materials are determined. It is confirmed that the spall strength of high-hardness ceramic changes nonmonotonically with the compressive stress in a shock wave.

  17. Standard specification for nuclear-Grade boron carbide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This specification applies to boron carbide pellets for use as a control material in nuclear reactors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  18. High-hardness ceramics based on boron carbide fullerite derivatives

    Science.gov (United States)

    Ovsyannikov, D. A.; Popov, M. Yu.; Perfilov, S. A.; Prokhorov, V. M.; Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2017-02-01

    A new type of ceramics based on the phases of fullerite derivatives and boron carbide B4C is obtained. The material is synthesized at a temperature of 1500 K and a relatively low pressure of 4 GPa; it has a high hardness of 45 GPa and fracture toughness of 15 MPa m1/2.

  19. Influence of nanometric silicon carbide on phenolic resin composites properties

    Indian Academy of Sciences (India)

    GEORGE PELIN; CRISTINA-ELISABETA PELIN; ADRIANA STEFAN; ION DINC\\u{A}; ANTON FICAI; ECATERINA ANDRONESCU; ROXANA TRUSC\\u{A}

    2016-06-01

    This paper presents a preliminary study on obtaining and characterization of phenolic resin-based composites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ensure uniform dispersion of the nanopowder, followed by heat curing of the phenolic-based materials at controlled temperature profile up to 120$^{\\circ}$C. The obtained nanocomposites were characterized by FTIR spectroscopy and scanning electron microscopy analysis and evaluated in terms of mechanical, tribological and thermal stability under load. The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric silicon carbide content. The results indicate that these materials could be effectively used to obtain ablative or carbon–carbon composites in future studies.

  20. Design and Fabrication of Silicon Carbide Semiconductor Detectors

    Institute of Scientific and Technical Information of China (English)

    MENG; Xin; LIU; Yang; HE; Gao-kui

    2015-01-01

    The potential of silicon carbide(SiC)for use in semiconductor nuclear radiation detectors has been recognized for years.SiC detectors have now been demonstrated for high-resolution alpha particle and X-ray energy spectrometry,beta ray,gamma-ray,thermal-and fast-neutron

  1. Protective infrared antireflection coating based on sputtered germanium carbide

    Science.gov (United States)

    Gibson, Des; Waddell, Ewan; Placido, Frank

    2011-09-01

    This paper describes optical, durablility and environmental performance of a germanium carbide based durable antireflection coating. The coating has been demonstrated on germanium and zinc selenide infra-red material however is applicable to other materials such as zinc sulphide. The material is deposited using a novel reactive closed field magnetron sputtering technique, offering significant advantages over conventional evaporation processes for germanium carbide such as plasma enhanced chemical vapour deposition. The sputtering process is "cold", making it suitable for use on a wide range of substrates. Moreover, the drum format provide more efficient loading for high throughput production. The use of the closed field and unbalanced magnetrons creates a magnetic confinement that extends the electron mean free path leading to high ion current densities. The combination of high current densities with ion energies in the range ~30eV creates optimum thin film growth conditions. As a result the films are dense, spectrally stable, supersmooth and low stress. Films incorporate low hydrogen content resulting in minimal C-H absorption bands within critical infra-red passbands such as 3 to 5um and 8 to 12um. Tuning of germanium carbide (Ge(1-x)Cx) film refractive index from pure germanium (refractive index 4) to pure germanium carbide (refractive index 1.8) will be demonstrated. Use of film grading to achieve single and dual band anti-reflection performance will be shown. Environmental and durability levels are shown to be suitable for use in harsh external environments.

  2. Silicon carbide and other films and method of deposition

    Science.gov (United States)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy (Inventor)

    2011-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  3. Highly permeable and mechanically robust silicon carbide hollow fiber membranes

    NARCIS (Netherlands)

    Wit, de P.; Kappert, Emiel J.; Lohaus, T.; Wessling, M.; Nijmeijer, A.; Benes, N.E.

    2015-01-01

    Silicon carbide (SiC) membranes have shown large potential for applications in water treatment. Being able to make these membranes in a hollow fiber geometry allows for higher surface-to-volume ratios. In this study, we present a thermal treatment procedure that is tuned to produce porous silicon ca

  4. Tungsten-yttria carbide coating for conveying copper

    Science.gov (United States)

    Rothman, Albert J.

    1993-01-01

    A method is provided for providing a carbided-tungsten-yttria coating on the interior surface of a copper vapor laser. The surface serves as a wick for the condensation of liquid copper to return the condensate to the interior of the laser for revolatilization.

  5. Growth stress in tungsten carbide-diamond-like carbon coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Arnoldbik, W.M.; Sloof, W.G.; Janssen, G.C.A.M.

    2009-01-01

    Growth stress in tungsten carbide-diamond-like carbon coatings, sputter deposited in a reactive argon/acetylene plasma, has been studied as a function of the acetylene partial pressure. Stress and microstructure have been investigated by wafer curvature and transmission electron microscopy (TEM) whe

  6. Investigation of the weldability of iron-aluminum-chromium overlay coatings for corrosion protection in oxidizing/sulfidizing environments

    Science.gov (United States)

    Regina, Jonathan R.

    The current study investigated the effect of chromium additions on the hydrogen cracking susceptibility of Fe-Al weld overlay claddings containing chromium additions. It was found that the weldability of FeAlCr claddings was a function of both the aluminum and chromium concentrations of the weld coatings. Weld overlay compositions that were not susceptible to hydrogen cracking were identified and the underlying mechanism behind the hydrogen cracking phenomenon was investigated further. It was concluded that the cracking behavior of the FeAlCr welds depended strongly on the microstructure of the weld fusion zone. Although it was found that the cracking susceptibility was influenced by the presence of Fe-Al intermetallic phases (namely Fe3 Al and FeAl), the cracking behavior of FeAlCr weld overlay claddings also depended on the size and distribution of carbide and oxide particles present within the weld structure. These particles acted as hydrogen trapping sites, which are areas where free hydrogen segregates and can no longer contribute to the hydrogen embrittlement of the metal. It was determined that in practical applications of these FeAlCr weld overlay coatings, carbon should be present within these welds to reduce the amount of hydrogen available for hydrogen cracking. Based on the weldability results of the FeAlCr weld claddings, coating compositions that were able to be deposited crack-free were used for long-term corrosion testing in a simulated low NOx environment. These alloys were compared to a Ni-based superalloy (622), which is commonly utilized as boiler tube coatings in power plant furnaces for corrosion protection. It was found that the FeAlCr alloys demonstrated superior corrosion resistance when compared to the Ni-based superalloy. Due to the excellent long-term corrosion behavior of FeAlCr weld overlays that were immune to hydrogen cracking, it was concluded that select FeAlCr weld overlay compositions would make excellent corrosion resistant

  7. A study of the process of desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    W.B. Amorim

    2003-09-01

    Full Text Available In this work the process of desorption of hexavalent chromium, a toxic metal ion, from the marine algae Sargassum sp, following biosorption experiments 2³ factorial design was studied. A technique was applied to three eluents: HCl, H2SO4 and EDTA. Three factors of importance were evaluated: concentration of eluent, the ratio between mass of biosorbent and volume of eluent (S/L and process time. A statistical analysis of the experimental results showed that the three variables evaluated are significant for all three eluents. The models for chromium desorption were validated, as the results agreed well with the observed values. Through use of the response surface methodology, a factorial design based optimization technique; it was possible to identify the most suitable eluent and the interval of values for the process variables that resulted in the most significant desorption of chromium, which is relevant information for work aiming at process optimization.

  8. Bioabsorption of chromium from retan chrome liquor by cyanobacteria.

    Science.gov (United States)

    Pandi, M; Shashirekha, V; Swamy, Mahadeswara

    2009-01-01

    The bioaccumulation of chromium from retan chrome liquor by Spirulina fusiformis was investigated under laboratory as well as field conditions. At the optimal conditions, metal ion uptake increased with initial metal ion concentration up to 300mg/l. The effect on various physico-chemical parameters like total solids (TS), total dissolved solids (TDS), total suspended solids (TSS), chlorides, sulphates, phenols, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) and biochemical studies related to biomass, chlorophyll-a and protein were also carried out. The present study indicates that S. fusiformis is very effective in removal of chromium (93-99%) besides removing other toxicants from retan chrome liquor. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and FTIR studies indicate the interaction/complexation between Cr and alga. The mechanism involved in bioaccumulation of chromium is also discussed. The process when upgraded can be applied for detoxification of tannery effluents.

  9. Extraction of Chromium from Carbon Ferrochromium Residual Wastes

    Science.gov (United States)

    Lazarevskiy, P. P.; Gizatulin, R. A.; Romanenko, Yu E.; Valuev, D. V.; Valueva, A. V.; Serikbol, A.

    2015-09-01

    This work reports the problem of processing residual wastes after producing carbon ferrochrome by recycling dust using a hydrometallurgical method with the purpose of extracting the basic component - chromium, The X-ray diffraction analysis results, chemical and granulometric compositions of dust from the carbon ferrochrome production are given, The method for the production of chemical-enrichment concentrate (CEC) by processing ferrous dust is described, with obtaining a middling product - sodium mono-chromate with its further reduction to chromium hydroxide, followed by autoclave leaching, and resulting in the production of chemically enriched chrome concentrate, The plant used for autoclave leaching and filtering is schematically depicted, The smelting process of metallic chromium using the ladle aluminothermic method is described,

  10. Studies of removal of chromium by model constructed wetland

    Directory of Open Access Journals (Sweden)

    C. Mant

    2005-09-01

    Full Text Available Chromium is a pollutant present in tannery wastewater, its removal is necessary for protection of the environment. Penisetum purpureum, Brancharia decumbens and Phragmites australis were grown hydroponically in experimental gravel beds to determine their potential for the phytoremediation of solutions containing 10 and 20 mg Cr dm-3. These concentrations, similar to tannery wastewater after initial physico-chemical treatment were used with the aim of developing an economic secondary treatment to protect the environment. All the systems achieved removal efficiencies of 97 - 99.6% within 24 hours. P. purpureum and B. decumbens removed 78.1% and 68.5% respectively within the first hour. Both P. purpureum and B. decumbens were tolerant of the concentrations of chromium applied, but P. purpureum showed the greatest potential because its faster growth and larger biomass achieved a much greater chromium removal over the whole length of time of the experiment.

  11. Electron magnetic resonance investigation of chromium diffusion in yttria powders

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, R.S. de, E-mail: rsbiasi@ime.eb.b [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, Pr. General Tiburcio, 80, 22290-270 Rio de Janeiro, RJ (Brazil); Grillo, M.L.N., E-mail: mluciag@uerj.b [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil)

    2010-03-01

    The electron magnetic resonance (EMR) technique was used to investigate the diffusion of chromium in yttria (Y{sub 2}O{sub 3}) powders. The EMR absorption intensity was measured for several annealing times and three different temperatures of isothermal annealing: 1273, 1323 and 1373 K. The activation temperature for diffusion, calculated from the experimental data using a theoretical model based on the Fick equation, was found to be E{sub A}=342+-5 kJ mol{sup -1}. This value is larger than the activation energy for the diffusion of chromium in rutile (TiO{sub 2}), periclase (MgO) and cobalt monoxide (CoO) and smaller than the activation energy for the diffusion of chromium in chrysoberyl (BeAl{sub 2}O{sub 4}).

  12. Chromium Resistant Bacteria: Impact on Plant Growth in Soil Microcosm

    Directory of Open Access Journals (Sweden)

    Sayel Hanane

    2014-07-01

    Full Text Available Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.

  13. An Exploration of Neutron Detection in Semiconducting Boron Carbide

    Science.gov (United States)

    Hong, Nina

    The 3He supply problem in the U.S. has necessitated the search for alternatives for neutron detection. The neutron detection efficiency is a function of density, atomic composition, neutron absorption cross section, and thickness of the neutron capture material. The isotope 10B is one of only a handful of isotopes with a high neutron absorption cross section---3840 barns for thermal neutrons. So a boron carbide semiconductor represents a viable alternative to 3He. This dissertation provides an evaluation of the performance of semiconducting boron carbide neutron detectors grown by plasma enhance chemical vapor deposition (PECVD) in order to determine the advantages and drawbacks of these devices for neutron detection. Improved handling of the PECVD system has resulted in an extremely stable plasma, enabling deposition of thick films of semiconducting boron carbide. A variety of material and semiconducting characterization tools have been used to investigate the structure and electronic properties of boron carbide thin films, including X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, infrared/Raman spectroscopy, current-voltage measurements and capacitance-voltage measurements. Elemental concentrations in the boron carbide films have been obtained from Rutherford backscattering and elastic recoil detection analysis. Solid state neutron detection devices have been fabricated in the form of heterostructured p-n diodes, p-type boron carbide/n-type Si. Operating conditions, including applied bias voltage, and time constants, have been optimized for maximum detection efficiency and correlated to the semiconducting properties investigated in separate electronic measurements. Accurate measurements of the neutron detection efficiency and the response of the detector to a wide range of neutron wavelengths have been performed at a well calibrated, tightly collimated, "white" cold neutron beam source using time-of-flight neutron detection technique

  14. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Liao, Y.P.; Jons, O.

    1997-01-01

    A sensitive method for the simultaneous determination of chromium(III) and chromium(VI) was chromatography and chemiluminescence detection. Two Dionex ion-exchange guard columns in series, CG5 and AG7, were used to separate chromium(III) from chromium(VI). Chromium(VI) was reduced by potassium......, the stabilities of reductant and luminol solutions were studied. The linear range of the calibration curve for chromium(III) and chromium(VI) was 1-400 mu g l(-1). The detection limit was 0.12 mu g l(-1) for chromium(III) and 0.09 mu g l(-1) for chromium(VI), respectively. The precision at the 20 mu g l(-1) level...... was 1.4% for chromium(III) and 2.5% for chromium(VI), respectively. The accuracy of the chromium(III) determination was determined by analysis of the NIST standard reference material 1643c, Trace elements in water with the result 19.1 +/- 1.0 mu g Cr(III) l(-1) (certified value 19.0 +/- 0.6 mu g Cr...

  15. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg....

  16. Sputtering and codeposition of silicon carbide with deuterium

    Science.gov (United States)

    Causey, Rion A.

    2003-03-01

    Due to its excellent thermal properties, silicon carbide is being considered as a possible plasma-facing material for fusion devices. If used as a plasma-facing material, the energetic hydrogen isotope ions and charge-exchanged neutrals escaping from the plasma will sputter the silicon carbide. To assess the tritium inventory problems that will be generated by the use of this material, it is necessary that we know the codeposition properties of the redeposited silicon carbide. To determine the codeposition properties, the deuterium plasma experiment at Sandia National Laboratories in Livermore, California has been used to directly compare the deuterium sputtering and codeposition of silicon carbide with that of graphite. A Penning discharge at a flux of 6×10 19 D/m 2 and an energy of ≈300 eV was used to sputter silicon and carbon from a pair of 0.05 m diameter silicon carbide disks. The removal rate of deuterium gas from the fixed volume of the system isolated from all other sources and sinks was used to measure the codeposition probability (probability that a hydrogen isotope atom will be removed through codeposition per ion striking the sample surface). A small catcher plate used to capture a fraction of the codeposited film was analyzed using Auger spectroscopy. This analysis showed the film to begin with a high carbon to silicon ratio due to preferential sputtering of the carbon. As the film became thicker, the ratio of the depositing material changed over to the (1:1) value that must eventually be attained.

  17. Experimental study on 830 MPa grade pipeline steel containing chromium

    Institute of Scientific and Technical Information of China (English)

    Yi Ren; Shuai Zhang; Shuang Wang; Wen-yue Liu

    2009-01-01

    The diversity of microstructure and properties of 830 Mpa grade pipeline steel containing chromium was investigated by optical microscope and transmission electron microscopy. The main microstructures were multiple configurations, containing lath bainite and granule bainite. Mechanical properties test results showed that the yield strength and tensile strength improved with in-creasing chromium content. The toughness and elongation decreased at the same time, so temper process was introduced. Appling proper temper parameters, the values of toughness and elongation were improved dramatically, and the strength decreased slightly.

  18. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    2015-01-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenviro......Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track...

  19. Use of chitosan for chromium removal from exhausted tanning baths.

    Science.gov (United States)

    Cesaro, Raffaele; Fabbricino, Massimiliano; Lanzetta, Rosa; Mancino, Anna; Naviglio, Biagio; Parrilli, Michelangelo; Sartorio, Roberto; Tomaselli, Michele; Tortora, Gelsomina

    2008-01-01

    A novel approach, based on chitosan heavy-metal sequestrating ability, is proposed for chromium(III) removal from spent tanning liquor. Experimental results, obtained at lab-scale using real wastewater, are presented and discussed. Resulting efficiencies are extremely high, and strongly dependent on chitosan dose and pH value. Comparative analyses with other polysaccharides is also carried out showing that amine groups are more efficient than carboxyl and sulphate ones. Chromium recovery from sorption complexes and chitosan regeneration is finally proposed to optimize the whole process.

  20. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Zhang, Jie; Chen, Jinwei; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin

    2016-12-01

    This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe3C and Co3C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe3C, and Co3C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  1. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  2. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys.

    Science.gov (United States)

    Chen, Bo; Xia, Gang; Cao, Xin-Ming; Wang, Jue; Xu, Bi-Yao; Huang, Pu; Chen, Yue; Jiang, Qing-Wu

    2013-03-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  3. Fertilizers and Mixed Crop Cultivation of Chromium Tolerant and Sensitive Plants under Chromium Toxicity

    Directory of Open Access Journals (Sweden)

    B. Dheeba

    2015-01-01

    Full Text Available Zea mays (maize and Vigna radiata (green gram are found to be the chromium (Cr tolerant and sensitive plants, respectively. In the present paper, we investigate the reduction of the toxicity of Cr in the sensitive plants by the mixed crop cultivation in the field using various amendments. Further, the potassium dichromate was used as the source of hexavalent Cr. The results indicated that Cr adversely affects both the growth and yield of plants. The soil properties vary with Cr and different fertilizer amendments and the yield of both plants were affected by Cr. We conclude that metal accumulation of seeds of green gram was higher than corn and the application of single fertilizer either farm yard manure (FYM or nitrogen, phosphorous, and potassium (NPK enhances the growth and yield of both the tolerant and sensitive plants in the mixed crop cultivations.

  4. The Active Oxidation of Silicon Carbide

    Science.gov (United States)

    Jacobson, Nathan S.; Myers, Dwight L.

    2009-01-01

    The high temperature oxidation of silicon carbide occurs in two very different modes. Passive oxidation forms a protective oxide film which limits further attack of the SiC: SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g) Active oxidation forms a volatile oxide and may lead to extensive attack of the SiC: SiC(s) + O2(g) = SiO(g) + CO(g) Generally passive oxidation occurs at higher oxidant pressures and active oxidation occurs at lower oxidant pressures and elevated temperatures. Active oxidation is a concern for reentry, where the flight trajectory involves the latter conditions. Thus the transition points and rates of active oxidation are a major concern. Passive/active transitions have been studied by a number of investigators. An examination of the literature indicates many questions remain regarding the effect of impurity, the hysteresis of the transition (i.e. the difference between active-to-passive and passive-toactive), and the effect of total pressure. In this study we systematically investigate each of these effects. Experiments were done in both an alumina furnace tube and a quartz furnace tube. It is known that alumina tubes release impurities such as sodium and increase the kinetics in the passive region [1]. We have observed that the active-to-passive transition occurs at a lower oxygen pressure when the experiment is conducted in alumina tubes and the resultant passive silica scale contains sodium. Thus the tests in this study are conducted in quartz tubes. The hysteresis of the transition has been discussed in the detail in the original theoretical treatise of this problem for pure silicon by Wagner [2], yet there is little mention of it in subsequent literature. Essentially Wagner points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO2 equilibria and the passive-to-active transition is governed by the decomposition of the SiO2 film. A series of experiments were conducted for active-to-passive and passive

  5. Spatial distribution of chromium in soils contaminated by chromium-containing slag

    Institute of Scientific and Technical Information of China (English)

    HUANG Shun-hong; PENG Bing; YANG Zhi-hui; CHAI Li-yuan; XU You-ze; SU Chang-qing

    2009-01-01

    To evaluate the metal chromium (Cr) contamination of soil at a chromium-containing slag site by ferrochromium production, the contaminated sites, under slag heap, in the vicinity of slag heap and arable soils near the outlet of sewer channel, and unpolluted site 5 km away from one ferroalloy plant in Hunan Province, China, were selected. The concentrations of total Cr and water soluble Cr in bulk soil samples and profile depth samples were determined. The results show that the soils in the vicinity of slag heap have the highest total Cr content followed by the soils under the slag heap and near the outlet of sewer channel of the factory. The mean concentrations of total Cr in the top soils at above three contaminated locations exceed the critical level of Secondary Environmental Quality Standard for Soil in China by 3.5, 5.4 and 1.8 times. In most Cr polluted soils, total Cr has a relative accumulation in soil depth of 40-60 cm, but this trend is not found in unpolluted soils. The average concentrations of water soluble Cr (Ⅵ) in top soils under slag heap and in the vicinity of slag heap are 176.9 times and 52.7 times higher than that in the uncontaminated soils, respectively. However, water soluble Cr (Ⅵ) contents in soils near sewer channel are all low and the values are close to that in the uncontaminated soils. Although water soluble Cr (Ⅵ) content in soil profiles decreases with soil depths, it in soils under slag heap maintains a high level even at a depth of 100-150 cm. The results imply that the transportation of Cr (Ⅵ) can result in a potential risk of groundwater system in this area.

  6. Influence of nitrogen admixture to argon on the ion energy distribution in reactive high power pulsed magnetron sputtering of chromium

    Science.gov (United States)

    Breilmann, W.; Maszl, C.; Hecimovic, A.; von Keudell, A.

    2017-04-01

    Reactive high power impulse magnetron sputtering (HiPIMS) of metals is of paramount importance for the deposition of various oxides, nitrides and carbides. The addition of a reactive gas such as nitrogen to an argon HiPIMS plasma with a metal target allows the formation of the corresponding metal nitride on the substrate. The addition of a reactive gas introduces new dynamics into the plasma process, such as hysteresis, target poisoning and the rarefaction of two different plasma gases. We investigate the dynamics for the deposition of chromium nitride by a reactive HiPIMS plasma using energy- and time-resolved ion mass spectrometry, fast camera measurements and temporal and spatially resolved optical emission spectroscopy. It is shown that the addition of nitrogen to the argon plasma gas significantly changes the appearance of the localized ionization zones, the so-called spokes, in HiPIMS plasmas. In addition, a very strong modulation of the metal ion flux within each HiPIMS pulse is observed, with the metal ion flux being strongly suppressed and the nitrogen molecular ion flux being strongly enhanced in the high current phase of the pulse. This behavior is explained by a stronger return effect of the sputtered metal ions in the dense plasma above the racetrack. This is best observed in a pure nitrogen plasma, because the ionization zones are mostly confined, implying a very high local plasma density and consequently also an efficient scattering process.

  7. Spark plasma sintering of tantalum carbide and graphene reinforced tantalum carbide composites

    Science.gov (United States)

    Kalluri, Ajith Kumar

    Tantalum carbide (TaC), an ultra-high temperature ceramic (UHTC), is well known for its exceptional properties such as high hardness (15-19 GPa), melting point (3950 °C), elastic modulus (537 GPa), chemical resistance, and thermal shock resistance. To make TaC to be the future material for hypersonic vehicles, it is required to improve its thermal conductivity, strength, and fracture toughness. Researchers have previously reinforced TaC ceramic with carbides of silicon and boron as well as carbon nanotubes (CNTs), however, these reinforcements either undergo chemical changes or induce defects in the matrix during processing. In addition, these reinforcements exhibit a very minimal improvement in the properties. In the present work, we attempted to improve TaC fracture toughness by reinforcing with graphene nano-platelets (GNPs) and processing through spark plasma sintering at high temperature of 2000 °C, pressure of 70 MPa, and soaking time of 10 min. In addition, we investigated the active densification mechanism during SPS of TaC powder and the effect of ball milling time on mechanical properties of sintered TaC. A relative density of >96% was achieved using SPS of monolithic TaC (<3 μm). Ball milling improved the sintering kinetics and improved the mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness). Activation energy (100 kJ/mol) and stress exponent (1.2) were obtained using the analytical model developed for power-law creep. Grain boundary sliding is proposed as active densification mechanism based on these calculations. Reinforcing GNPs (2-6 vol.% ) in the TaC matrix improved relative density (99.8% for TaC-6 vol.% GNP). Also ˜150% and ˜180% increase in flexural strength and fracture toughness, respectively, was observed for TaC-6 vol.% GNP composite. The significant improvement in these properties is attributed to improved densification and toughening mechanisms such as sheet pull-out and crack

  8. Physiological, biochemical and histometric responses of Nile tilapia (Oreochromis niloticus L.) by dietary organic chromium (chromium picolinate) supplementation

    OpenAIRE

    2014-01-01

    Chromium has been recognized as a new and important micro-nutrient, essential for both human and animal nutrition. This study was conducted to evaluate the appropriateness and/or the use of safety level of dietary chromium picolinate (Cr-Pic), and its effects on the physiological responses, the histometric characteristics, and the chemical analysis of dorsal muscles of mono-sex Nile tilapia, Oreochromis niloticus. A total of 420 fingerlings (28.00 ± 0.96 g) were randomly distributed into 21 f...

  9. Chromium(VI) release from leather and metals can be detected with a diphenylcarbazide spot test

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten Stendahl

    2015-01-01

    Along with chromium, nickel and cobalt are the clinically most important metal allergens. However, unlike for nickel and cobalt, there is no validated colorimetric spot test that detects chromium. Such a test could help both clinicians and their patients with chromium dermatitis to identify culprit...... at 0.5 ppm without interference from other pure metals, alloys, or leather. A market survey using the test showed no chromium(VI) release from work tools (0/100). However, chromium(VI) release from metal screws (7/60), one earring (1/50), leather shoes (4/100) and leather gloves (6/11) was observed. We...

  10. Reactor target from metal chromium for "pure" high-intensive artificial neutrino source

    Science.gov (United States)

    Gavrin, V. N.; Kozlova, Yu. P.; Veretenkin, E. P.; Logachev, A. V.; Logacheva, A. I.; Lednev, I. S.; Okunkova, A. A.

    2017-01-01

    The paper presents the first results of development of manufacturing technology of metallic chromium targets from highly enriched isotope 50Cr for irradiation in a high flux nuclear reactor to obtain a compact high intensity neutrino source with low content of radionuclide impurities and minimum losses of enriched isotope. The main technological stages are the hydrolysis of chromyl fluoride, the electrochemical reduction of metallic chromium, the hot isostatic pressing of chromium powder and the electrical discharge machining of chromium bars. The technological stages of hot isostatic pressing of chromium powder and of electrical discharge machining of Cr rods have been tested.

  11. The oxidation and reduction of chromium of stainless steels in an eletric arc furnace

    Directory of Open Access Journals (Sweden)

    B. Arh

    2011-07-01

    Full Text Available The oxidation of chromium during the elaboration of stainless steels occurs with oxygen in solution blown inthe melt and with oxides in the slag. A higher content of silicon in the furnace charge decreases the extent of oxidation of chromium, however, the efficient reduction of chromium from the slag is of essential importance for a minimal loss of chromium. In this survey, the theory of the oxidation of chromium, its reduction from the slag and the conditions for the formation of foaming slag are discussed.

  12. Electric Heating Property from Butyl Rubber-Loaded Boron Carbide Composites

    Institute of Scientific and Technical Information of China (English)

    MENG Dechuan; WANG Ninghui; LI Guofeng

    2014-01-01

    We researched the electric heating property from butyl rubber-loaded boron carbide composite. The effects of boron carbide content on bulk resistivity, voltage-current characteristic, thermal conductivity and thermal stability of boron carbide/butyl rubber (IIR) polymer composite were introduced. The analysis results indicated that the bulk resistivity decreased greatly with increasing boron carbide content, and when boron carbide content reached to 60%, the bulk resistivity achieved the minimum. Accordingly, electric heating behavior of the composite is strongly dependent on boron carbide content as well as applied voltage. The content of boron carbide was found to be effective in achieving high thermal conductivity in composite systems. The thermal conductivity of the composite material with added boron carbide was improved nearly 20 times than that of the pure IIR. The thermal stability test showed that, compared with pure IIR, the thermal stable time of composites was markedly extended, which indicated that the boron carbide can significantly improve the thermal stability of boron carbide/IIR composite.

  13. Silicon carbide high performance optics: a cost-effective, flexible fabrication process

    Science.gov (United States)

    Casstevens, John M.; Rashed, Abuagela; Plummer, Ronald; Bray, Don; Gates, Rob L.; Lara-Curzio, Edgar; Ferber, Matt K.; Kirkland, Tim

    2001-12-01

    Silicon carbide may well be the best known material for the manufacture of high performance optical components. This material offers many advantages over glasses and metals that have historically been used in high performance optical systems. A combination of extremely high specific stiffness (E/r), high thermal conductivity and outstanding dimensional stability make silicon carbide superior overall to beryllium and low-expansion glass ceramics. A major impediment to wide use of silicon carbide in optical systems has been the cost associated with preliminary shaping and final finishing of silicon carbide. Because silicon carbide is an extremely hard and strong material, precision machining can only be done with expensive diamond tooling on very stiff high quality machine tools. Near-net-shape slip casting of silicon carbide can greatly reduce the cost of silicon carbide mirror substrates but this process still requires significant diamond grinding of the cast components. The process described here begins by machining the component from all special type of graphite. This graphite can rapidly be machined with conventional multi-axis CNC machine tools to achieve any level of complexity and lightweighting required. The graphite is then directly converted completely to silicon carbide with very small and very predictable dimensional change. After conversion to silicon carbide the optical surface is coated with very fine grain CVD silicon carbide which is easily polished to extreme smoothness. Details of the fabrication process are described and photos and performance specifications of an eight-inch elliptical demonstration mirror are provided.

  14. Titanium Carbide and Silicon Carbide Thermal Conductivity under Heavy Ions Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cabrero, J.; Weisbecker, P.; Pailler, R. [LCTS, F-33600 Pessac (France); Cabrero, J.; Audubert, F. [CEA Cadarache, DEN 13108 Saint Paul Iez Durance (France); Kusiak, A. [TREFLE, Esplanade des Arts et Metiers 33405 Talence Cedex (France)

    2010-07-01

    SiC(f)/SiC ceramic matrix composites (CMC) are considered as structural materials in next generation fission nuclear reactors. However, thermal conductivity of SiC is reduced on the one hand at the highest temperatures, but also under irradiation. Titanium carbide, because of its peculiar thermal properties is an attractive material to be used as a matrix in a CMC to enhance the thermal conductivity of CMC under irradiation and at high temperature. In this study, we performed irradiation experiments on TiC, TiC{sub x}SiC{sub 1-x} and SiC samples, with heavy ions at room temperature (74 MeV Kr, fluence from 10{sup 13} to 10{sup 15} ions/cm{sup 2}). This energy results in an irradiated layer of about 7 {mu}m for TiC. Thermal conductivity of the irradiated layer is measured using IR radiometry as a function of fluence and composition. The structural evolution of the irradiated samples was investigated by Raman micro spectroscopy and transmission electron microscopy. (authors)

  15. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  16. Novel fabrication of silicon carbide based ceramics for nuclear applications

    Science.gov (United States)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  17. Development and Processing of Nickel Aluminide-Carbide Alloys

    Science.gov (United States)

    Newport, Timothy Scott

    1996-01-01

    With the upper temperature limit of the Ni-based superalloys attained, a new class of materials is required. Intermetallics appear as likely candidates because of their attractive physical properties. With a relatively low density, high thermal conductivity, excellent oxidation resistance, high melting point, and simple crystal structure, nickel aluminide (NiAl) appears to be a potential candidate. However, NiAl is limited in structural applications due to its low room temperature fracture toughness and poor elevated temperature strength. One approach to improving these properties has been through the application of eutectic composites. Researchers have shown that containerless directional solidification of NiAl-based eutectic alloys can provide improvement in both the creep strength and fracture toughness. Although these systems have shown improvements in the mechanical properties, the presence of refractory metals increases the density significantly in some alloys. Lower density systems, such as the carbides, nitrides, and borides, may provide NiAl-based eutectic structure. With little or no information available on these systems, experimental investigation is required. The objective of this research was to locate and develop NiAl-carbide eutectic alloys. Exploratory arc-melts were performed in NiAl-refractory metal-C systems. Refractory metal systems investigated included Co, Cr, Fe, Hf, Mo, Nb, Ta, Ti, W, and Zr. Systems containing carbides with excellent stability (i.e.,HfC, NbC, TaC, TiC, and ZrC) produced large blocky cubic carbides in an NiAl matrix. The carbides appeared to have formed in the liquid state and were randomly distributed throughout the polycrystalline NiAl. The Co, Cr, Fe, Mo, and W systems contained NiAl dendrites with a two-phase interdendritic microconstituent present. Of these systems, the NiAl-Mo-C system had the most promising microstructure for in-situ composites. Three processing techniques were used to evaluate the NiAl-Mo-C system

  18. Chromium(VI) transport and fate in unsaturated zone and aquifer: 3D Sandbox results.

    Science.gov (United States)

    Zhao, Xingmin; Sobecky, Patricia A; Zhao, Lanpo; Crawford, Patrice; Li, Mingtang

    2016-04-01

    The simulation of Cr(VI) behavior in an unsaturated zone and aquifer, using a 3D experimental set-up were performed to illustrate the distribution, transport and transformation of Cr(VI), and further to reveal the potential harm of Cr(VI) after entering the groundwater. The result indicated that chromium(VI) was transported in the vertical direction, meanwhile, was transported in the horizontal direction under the influence of groundwater flow. The direction and distance away from the pollution source zone had great effect on the chromium(VI) concentration. At the sampling sites near the pollution source zone, there was a sudden increase of chromium(VI) concentration. The concentration of chromium(III) concentration in some random effluent samples was not detected. Chromium had not only transported but also had fraction and specie transformation in the unsaturated zone and aquifer. The relative concentration of residue fraction chromium was decreased with time. The content of Fe-Mn oxide fraction chromium was increased with time. The relative content of exchangeable and carbonate-bound fraction chromium was lower and the content variations were not obvious. Chromium(VI) (91-98%) was first reduced to chromium(III) rapidly. The oxidation reaction occurred later and the relative content of chromium(VI) was increased again. The presence of manganese oxides under favorable soil conditions can promote the reoxidation of Cr(III) to Cr(VI).

  19. 75 FR 67100 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2010-11-01

    ... superalloy degassed chromium from Japan (70 FR 76030). The Commission is conducting a review to determine..., subparts A, D, E, and F (19 CFR part 207), as most recently amended at 74 FR 2847 (January 16, 2009). \\1... rule 201.15(b)(19 CFR 201.15(b)), 73 FR 24609 (May 5, 2008). This advice was developed in...

  20. 76 FR 8773 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2011-02-15

    ... applicable deadline.'' (75 FR 80457). Accordingly, pursuant to section 751(c) of the Tariff Act of 1930 (19 U... COMMISSION Superalloy Degassed Chromium From Japan AGENCY: United States International Trade Commission... Japan would be likely to lead to continuation or recurrence of material injury. On December 22,...

  1. Effects of chromium picolinate supplementation in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Niladê Rosinski Rocha

    2014-10-01

    Full Text Available The effects of chromium picolinate in Type 2 diabetic patients are investigated.  Seventeen Type 2 diabetic patients were randomly divided into two groups. The experimental group received fiber-rich hypocaloric diet and chromium picolinate whereas the control group received fiber-rich hypocaloric diet and placebo. The chromium picolinate was offered twice a day at the dose of 100 μg. Anthropometric data such as blood pressure, fasting glycemia and glycated hemoglobin (HbA1c were measured and these parameters were evaluated again after 90 days. No difference was reported in rates of body weight, waist, hip, body mass index, blood pressure and fasting glycemia (Control vs. Experimental groups after treatment. However, a decrease (p = 0.0405 of HbA1c occurred in the experimental group when the pre- and post-treatment rates were compared. HbA1c data showed that chromium picolinate improved the glycemic control in Type 2 diabetes.

  2. Cobalt chromium stents versus stainless steel stents in diabetic patients

    Directory of Open Access Journals (Sweden)

    Mahmoud Ahmed Tantawy

    2014-03-01

    Conclusions: We concluded that no significant statistical difference was found between the two stents (cobalt-chromium alloy bare metal stent versus conventional bare metal stainless steel stent in diabetic patients regarding (initial procedural success, in-hospital complications, the incidence of ISR at follow up, event-free survival at follow up.

  3. Intestinal absorption of chromium as affected by wheat bran

    Energy Technology Data Exchange (ETDEWEB)

    Keim, K.S.; Holloway, C.L.; Hegsted, M.

    1986-03-01

    This study was designed to investigate the influence of dietary fiber, as found in wheat bran, on the absorption of chromium. Twenty male Sprague-Dawley rats were divided into two groups of 10. The control was fed a semi-purified diet containing casein, methionine, cornstarch, sucrose, corn oil, mineral and vitamin mix, and choline bitartrate. The experimental group was fed the same diet but with soft red winter wheat bran added to a level of 35% of the diet at the expense of sucrose. To determine chromium absorption and uptake by selected tissues, rats were fasted for 24 hr, fed 5 g of the respective diet, 2 hr later intubated with 100..mu..Ci of Cr-51of sacrificed 24 hr later. The rats wee housed in metabolic cages after the Cr-51 intubation. The addition of wheat brand to the diet did not significantly affect chromium absorption as measured by percent dose of Cr-51 in the 24 hr urine. The percent dose in the control group was 0.68 +/- 0.20% (mean +/- SEM) and in the experimental group 0.63 +/- 0.24% (mean +/-SEM) (N.S.). The cr-51 uptake of liver, spleen, jejunum, and blood was not statistically different between groups. These results indicate that dietary fiber as found in wheat bran does not impair intestinal absorption of chromium.

  4. Domestic Production Issues in Chromium and Platinum-Group Metals

    Science.gov (United States)

    1988-09-01

    Protection Agency. OPA 87-005. Washington: Government Printing Office, May 1987. 16. Foley, Jeffrey Y. and James C. Barker . Chromite Deposits Along...Mining, Metallurgical, and Petroleum Engineers, 1976. 52. Stowe, Clive W. Evolution of Chromium Ore Fields. New York: Van Nostrand Reinhold Company

  5. Spin-wave and critical neutron scattering from chromium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Axe, J.D.; Shirane, G.

    1971-01-01

    Chromium and its dilute alloys are unique examples of magnetism caused by itinerant electrons. The magnetic excitations have been studied by inelastic neutron scattering using a high-resolution triple-axis spectrometer. Spin-wave peaks in q scans at constant energy transfer ℏω could, in general, ...

  6. New alloys to conserve critical elements. [replacing chromium in steels

    Science.gov (United States)

    Stephens, J. R.

    1978-01-01

    Previous studies and surveys on availability of domestic reserves have shown that chromium is a most critical element within the U.S. metal industry. More precisely, the bulk of chromium is consumed in the production of stainless steels, specifically Type 304 stainless steel (304SS) which contains 18% Cr. The present paper deals with means of reducing chromium in commercial stainless steels by substituting more abundant or less expensive elements with the intent of maintaining the properties of 304SS. The discussion focuses on some of the oxidation and corrosion properties of new substitute stainless steels with only 12% Cr, which represents a potential saving of 33% of the chromium consumed in the production of 304SS. The alloying elements substituted for Cr in 304SS are selected according to their potential for protective oxide formation during high-temperature oxidation; these are Al, Si, Ti, Y, and misch metal which is 99.7% rare-earth metals containing 50 to 55% cerium. Other alloying elements to impart corrosion resistance are Mn, Mo, and V.

  7. Microbial biotechnology for remediation of aquatic habitats polluted with chromium

    Directory of Open Access Journals (Sweden)

    Viorica Coşier

    2008-12-01

    Full Text Available Chromium may occur in nine different forms of oxidation ranging from ?II to +VI, with forms II, III and VI as the most commonly encountered. In Cluj county, chromium pollution dates well back in time and has caused important dysfunction to the mechanical-biological wastewater purification station of the city of Cluj (Coşier & Diţă 1996. The purpose of this study was to develop one microbial method able to reduce hexavalent chromium (mobile, permeable to cell membrane, carcinogenic and mutagenic (Ishikawa et al 1994 to the trivalent form (insoluble and an essential element for humans (Song et al 2006. Different sources of chromium-reducing bacteria and many sources of carbon and energy added to the Kvasnikov mineral basal medium (Komori et al 1990 with increasing amount of chromate (200- 1000 mg/l were tested. Two bacterial strains, able to reduce even 1000 mg chromate/l, were isolated in pure culture. For one of these bacterial strains, we determined the optimum conditions for the reduction of Cr (VI.

  8. Oxidation resistant, thoria-dispersed nickel-chromium-aluminum alloy

    Science.gov (United States)

    Baranow, S.; Klingler, L. J.

    1973-01-01

    Modified thoria-dispersed nickel-chromium alloy has been developed that exhibits greatly improved resistance to high-temperature oxidation. Additions of aluminum have been made to change nature of protective oxide scale entirely and to essentially inhibit oxidation at temperatures up to 1260 C.

  9. DANGER OF HEXAVALENT CHROMIUM AND STRATEGY FOR THE REMEDITATION

    Directory of Open Access Journals (Sweden)

    Aniruddha Roy

    2013-02-01

    Full Text Available Some metals as micronutrients have a major role in the life and growth process of plants and animals. However, certain forms of some metals may also act as toxic material even in relatively small quantities. Chromium is such a metal, whose concentration above a certain limit may cause a serious problem to the health of living organisms. Chromium (Cr may occur in several chemical forms in organic and inorganic systems. In biological systems only Cr (III and Cr (VI are significant. Among these two states, trivalent chromium (Cr-III is considered as an essential component, while hexavalent Chromium (Cr-VI in biological system has been detected as responsible for so many diseases, even some specific forms of cancer. This paper intends to present the adverse effect of Cr(VI on environment as well as on human beings and also try to find a way out to dissolve the problem by a newly developed efficient and cost effective technique.

  10. Structure and morphology studies of chromium film at elevated temperature in hypersonic environment

    Indian Academy of Sciences (India)

    G M Hegde; V Kulkarni; M Nagaboopathy; K P J Reddy

    2012-06-01

    This paper presents the after shock heated structural and morphological studies of chromium film coated on hypersonic test model as a passive drag reduction element. The structural changes and the composition of phases of chromium due to shock heating (2850 K) are characterized using X-ray diffraction studies. Surface morphology changes of chromium coating have been studied using scanning electron microscopy (SEM) before and after shock heating. Significant amount of chromium ablation and sublimation from the model surface is noticed from SEM micrographs. Traces of randomly oriented chromium oxides formed along the coated surface confirm surface reaction of chromium with oxygen present behind the shock. Large traces of amorphous chromium oxide phases are also observed.

  11. Preparation and Characterization of Plasma-Sprayed Ultrafine Chromium Oxide Coatings

    Institute of Scientific and Technical Information of China (English)

    LIN Feng; JIANG Xianliang; YU Yueguang; ZENG Keli; REN Xianjing; LI Zhenduo

    2007-01-01

    Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured.The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings.

  12. Investigations on the fracture toughness of austempered ductile iron alloyed with chromium

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P. Prasad; Putatunda, Susil K

    2003-04-15

    An investigation was carried out to examine the influence of chromium content on the plane strain fracture toughness of austempered ductile iron (ADI). ADIs containing 0, 0.3 and 0.5 wt.% chromium were austempered over a range of temperatures to produce different microstructures. The microstructures were characterized by optical microscopy and X-ray diffraction. Plane strain fracture toughness of all these materials was determined and correlated with microstructure and chromium content. The chromium content was found to influence the fracture toughness through its influence on the processing window. Since the chromium addition shifts the processing window to shorter durations, the higher chromium alloys at higher austempering temperatures tend to fall outside of the processing window, resulting in less than optimum microstructure and inferior fracture toughness. A small chromium addition of 0.3 wt.% was found to be beneficial for the fracture toughness of ADI.

  13. Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil.

    Science.gov (United States)

    Ranieri, Ezio; Fratino, Umberto; Petrella, Andrea; Torretta, Vincenzo; Rada, Elena Cristina

    2016-08-01

    The comparative effectiveness for hexavalent chromium removal from irrigation water, using two selected plant species (Phragmites australis and Ailanthus altissima) planted in soil contaminated with hexavalent chromium, has been studied in the present work. Total chromium removal from water was ranging from 55 % (Phragmites) to 61 % (Ailanthus). After 360 days, the contaminated soil dropped from 70 (initial) to 36 and 41 mg Cr/kg (dry soil), for Phragmites and Ailanthus, respectively. Phragmites accumulated the highest amount of chromium in the roots (1910 mg Cr/kg(dry tissue)), compared with 358 mg Cr/kg(dry tissue) for Ailanthus roots. Most of chromium was found in trivalent form in all plant tissues. Ailanthus had the lowest affinity for Cr(VI) reduction in the root tissues. Phragmites indicated the highest chromium translocation potential, from roots to stems. Both plant species showed good potentialities to be used in phytoremediation installations for chromium removal.

  14. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  15. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  16. Laboratory scale studies on removal of chromium from industrial wastes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr 3+) and hexavalent (Cr 6+) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr3+ is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases.In phase I, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase II showed that lower dose of sodium meta bisulfate was sufficient to obtain 100 % efficiency in reducing Cr6+ to Cr3+, and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents.Phase III studies indicated the best pH was 8.5 for precipitation of Cr 3+ to chromium hydroxide by using lime. An efficiency of 100 % was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase IV actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100 % efficiency at a settling time of 30 minutes and confirmed that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries.

  17. Arsenic and chromium topsoil levels and cancer mortality in Spain.

    Science.gov (United States)

    Núñez, Olivier; Fernández-Navarro, Pablo; Martín-Méndez, Iván; Bel-Lan, Alejandro; Locutura, Juan F; López-Abente, Gonzalo

    2016-09-01

    Spatio-temporal cancer mortality studies in Spain have revealed patterns for some tumours which display a distribution that is similar across the sexes and persists over time. Such characteristics would be common to tumours that shared risk factors, including the chemical soil composition. The objective of the present study is to assess the association between levels of chromium and arsenic in soil and the cancer mortality. This is an ecological cancer mortality study at municipal level, covering 861,440 cancer deaths in 7917 Spanish mainland towns from 1999 to 2008. Chromium and arsenic topsoil levels (partial extraction) were determined by ICP-MS at 13,317 sampling points. To estimate the effect of these concentrations on mortality, we fitted Besag, York and Mollié models, which included, as explanatory variables, each town's chromium and arsenic soil levels, estimated by kriging. In addition, we also fitted geostatistical-spatial models including sample locations and town centroids (non-aligned data), using the integrated nested Laplace approximation (INLA) and stochastic partial differential equations (SPDE). All results were adjusted for socio-demographic variables and proximity to industrial emissions. The results showed a statistical association in men and women alike, between arsenic soil levels and mortality due to cancers of the stomach, pancreas, lung and brain and non-Hodgkin's lymphomas (NHL). Among men, an association was observed with cancers of the prostate, buccal cavity and pharynx, oesophagus, colorectal and kidney. Chromium topsoil levels were associated with mortality among women alone, in cancers of the upper gastrointestinal tract, breast and NHL. Our results suggest that chronic exposure arising from low levels of arsenic and chromium in topsoil could be a potential risk factor for developing cancer.

  18. Activated carbon adsorption for chromium treatment and recovery; Adsorbimento di cromo su carboni attivi a scopo di recupero e decontaminazione

    Energy Technology Data Exchange (ETDEWEB)

    Baroncelli, F.; Castelli, S.; De Francesco, M. [ENEA, Casaccia (Italy). Area Energia e Innovazione

    1994-05-01

    The capability of actived carbon systems to adsorb chromium from wastewater of galvanic industry is valued. Batch tests and column tests are carried out with good results. An activated carbon with acidic surface oxides can adsorb both chromate and chromium (III); chromate is reduced in situ and then adsorbed as chromium (III). Chromium can be desorbed from carbon by an acid or basic treatment obtaining respectively chromium (III) or chromate solutions. Carbon can be regenerated many times without evident signs of deterioration.

  19. Electrical transport and thermoelectric properties of boron carbide nanowires

    Science.gov (United States)

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-01

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200–450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  20. Preparation and electrocatalytic properties of tungsten carbide electrocatalysts

    Institute of Scientific and Technical Information of China (English)

    马淳安; 张文魁; 成旦红; 周邦新

    2002-01-01

    The tungsten carbide(WC) electrocatalysts with definite phase components and high specific surface area were prepared by gas-solid reduction method. The crystal structure, phase components and electrochemical properties of the as-prepared materials were characterized by XRD, BET(Brunauer Emmett and Teller Procedure) and electrochemical test techniques. It is shown that the tungsten carbide catalysts with definite phase components can be obtained by controlling the carburizing conditions including temperature, gas flowing rate and duration time. The electrocatalysts with the major phase of W2C show higher electrocatalytic activity for the hydrogen evolution reaction. The electrocatalysts with the major phase of WC are suitable to be used as the anodic electrocatalyst for hydrogen anodic oxidation, which exhibit higher hydrogen anodic oxidation electrocatalytic properties in HCl solutions.

  1. Indentation fatigue in silicon nitride, alumina and silicon carbide ceramics

    Indian Academy of Sciences (India)

    A K Mukhopadhyay

    2001-04-01

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker’s microhardness tester at various loads in the range 1–20 N. Subsequently, the gradual evolution of the damage was characterized using an optical microscope in conjunction with the image analysing technique. The materials were classified in the order of the decreasing resistance against repeated indentation fatigue at the highest applied load of 20 N. It was further shown that there was a strong influence of grain size on the development of resistance against repeated indentation fatigue on the same spot. Finally, the poor performance of the sintered silicon carbide was found out to be linked to its previous thermal history.

  2. PREPARATION OF TANTALUM CARBIDE FROM AN ORGANOMETALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    C. P. SOUZA

    1999-03-01

    Full Text Available In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta2O5.nH2O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, TaC, in the powder form at 1000oC. The natural sintering of TaC powder in an inert atmosphere at 1400°C during 10 hours, under inert atmosphere made it possible to densify the carbide to 96% of the theoretical value.

  3. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  4. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  5. Electronic transport properties of the armchair silicon carbide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Song Jiuxu; Yang Yintang; Liu Hongxia [Key Laboratory of Ministry of Education for Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China); Guo Lixin [School of Science, Xidian University, Xi' an 710071 (China); Zhang Zhiyong, E-mail: songjiuxu@126.com [Information Science and Technology Institution, Northwest University, Xi' an 710069 (China)

    2010-11-15

    The electronic transport properties of the armchair silicon carbide nanotube (SiCNT) are investigated by using the combined nonequilibrium Green's function method with density functional theory. In the equilibrium transmission spectrum of the nanotube, a transmission valley of about 2.12 eV is discovered around Fermi energy, which means that the nanotube is a wide band gap semiconductor and consistent with results of first principle calculations. More important, negative differential resistance is found in its current voltage characteristic. This phenomenon originates from the variation of density of states caused by applied bias voltage. These investigations are meaningful to modeling and simulation in silicon carbide nanotube electronic devices.

  6. Synthesis of titanium carbide by induction plasma reactive spray

    Institute of Scientific and Technical Information of China (English)

    JIANG Xian-Liang(蒋显亮); M.Boulos

    2004-01-01

    A novel method capable of sufficient mixing of titanium powder and methane of carbon source was developed in the synthesis of titanium carbide by induction plasma reactive spray. X-ray diffraction analysis, optical microscopy, scanning electron microscopy, and microhardness test were used to characterize the spray-formed deposit.The experimental results show that both primary carburization of the titanium particles inside the plasma flame and secondary carburization of the growing deposit on high temperature substrate contribute to the forming of titanium carbide. The transitional phase of TiC1-x has the same crystal structure as TiC, but has a slightly low lattice constant. The deposit consists of fine grain structure and large grain structure. The fine grain structure, harder than large grain structure, shows grain boundary fracture.

  7. Process for coating an object with silicon carbide

    Science.gov (United States)

    Levin, Harry (Inventor)

    1989-01-01

    A process for coating a carbon or graphite object with silicon carbide by contacting it with silicon liquid and vapor over various lengths of contact time. In the process, a stream of silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a co-reactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into a reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. The precursor gas is decomposed directly to silicon in the reaction chamber. A stream of any decomposition gas and any unreacted precursor gas from said reaction chamber is removed. The object within the reaction chamber is then contacted with silicon, and recovered after it has been coated with silicon carbide.

  8. Determination of thorium in plutonium-thorium oxides and carbides

    Energy Technology Data Exchange (ETDEWEB)

    Walker, L.F.; Temer, D.J.

    1979-10-01

    Thorium is determined in (PuTh)C and (PuTh)O/sub 2/ by complexometric titration with ethylenediaminetetraacetic acid (EDTA) following separation on anion-exchange resin. Carbides are first oxidized by ignition in air at about 800/sup 0/C. Oxide or oxidized carbide samples are dissolved in acids by the sealed-reflux technique or by heating in beakers. The plutonium is selectively sorbed from the 12M hydrochloric acid solution of the fuel on a Bio-Rad AG1-X2 anion-exchange resin column, and the eluted thorium is titrated with EDTA using xylenol orange as the indicator. The average recovery of thorium in 20 samples is 99.98% with a relative standard deviation of 0.07%.

  9. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.;

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...... melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded...... with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy....

  10. Boron carbide (B4C) coating. Deposition and testing

    Science.gov (United States)

    Azizov, E.; Barsuk, V.; Begrambekov, L.; Buzhinsky, O.; Evsin, A.; Gordeev, A.; Grunin, A.; Klimov, N.; Kurnaev, V.; Mazul, I.; Otroshchenko, V.; Putric, A.; Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A.

    2015-08-01

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  11. Atomic-Level Understanding of "Asymmetric Twins" in Boron Carbide

    Science.gov (United States)

    Xie, Kelvin Y.; An, Qi; Toksoy, M. Fatih; McCauley, James W.; Haber, Richard A.; Goddard, William A.; Hemker, Kevin J.

    2015-10-01

    Recent observations of planar defects in boron carbide have been shown to deviate from perfect mirror symmetry and are referred to as "asymmetric twins." Here, we demonstrate that these asymmetric twins are really phase boundaries that form in stoichiometric B4C (i.e., B12C3 ) but not in B13C2 . TEM observations and ab initio simulations have been coupled to show that these planar defects result from an interplay of stoichiometry, atomic positioning, icosahedral twinning, and structural hierarchy. The composition of icosahedra in B4C is B11C and translation of the carbon atom from a polar to equatorial site leads to a shift in bonding and a slight distortion of the lattice. No such distortion is observed in boron-rich B13C2 because the icosahedra do not contain carbon. Implications for tailoring boron carbide with stoichiometry and extrapolations to other hierarchical crystalline materials are discussed.

  12. Single crystalline boron carbide nanobelts:synthesis and characterization

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    This paper reports that the large-scale single crystalline boron carbide nanobelts have been fabricated through a simple carbothermal reduction method with B/B203/C/Fe powder as precursors at ll00~C.Transmission electron microscopy and selected area electron diffraction characterizations show that the boron carbide nanobelt has a B4C rhomb-centred hexagonal structure with good crystallization.Electron energy loss spectroscopy analysis indicates that the nanobelt contains only B and C,and the atomic ratio of B to C is close to 4:1.High resolution transmission electron microscopy results show that the preferential growth direction of the nanobelt is [101].A possible growth mechanism is also discussed.

  13. Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas

    2007-01-01

    A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.

  14. Room temperature quantum emission from cubic silicon carbide nanoparticles.

    Science.gov (United States)

    Castelletto, Stefania; Johnson, Brett C; Zachreson, Cameron; Beke, David; Balogh, István; Ohshima, Takeshi; Aharonovich, Igor; Gali, Adam

    2014-08-26

    The photoluminescence (PL) arising from silicon carbide nanoparticles has so far been associated with the quantum confinement effect or to radiative transitions between electronically active surface states. In this work we show that cubic phase silicon carbide nanoparticles with diameters in the range 45-500 nm can host other point defects responsible for photoinduced intrabandgap PL. We demonstrate that these nanoparticles exhibit single photon emission at room temperature with record saturation count rates of 7 × 10(6) counts/s. The realization of nonclassical emission from SiC nanoparticles extends their potential use from fluorescence biomarker beads to optically active quantum elements for next generation quantum sensing and nanophotonics. The single photon emission is related to single isolated SiC defects that give rise to states within the bandgap.

  15. Scalable Quantum Photonics with Single Color Centers in Silicon Carbide.

    Science.gov (United States)

    Radulaski, Marina; Widmann, Matthias; Niethammer, Matthias; Zhang, Jingyuan Linda; Lee, Sang-Yun; Rendler, Torsten; Lagoudakis, Konstantinos G; Son, Nguyen Tien; Janzén, Erik; Ohshima, Takeshi; Wrachtrup, Jörg; Vučković, Jelena

    2017-02-24

    Silicon carbide is a promising platform for single photon sources, quantum bits (qubits), and nanoscale sensors based on individual color centers. Toward this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy centers in 4H-SiC, readily available for efficient interfacing with free-space objective and lensed-fibers. A commercially obtained substrate is irradiated with 2 MeV electron beams to create vacancies. Subsequent lithographic process forms 800 nm tall nanopillars with 400-1400 nm diameters. We obtain high collection efficiency of up to 22 kcounts/s optical saturation rates from a single silicon vacancy center while preserving the single photon emission and the optically induced electron-spin polarization properties. Our study demonstrates silicon carbide as a readily available platform for scalable quantum photonics architecture relying on single photon sources and qubits.

  16. Laser-induced phase separation of silicon carbide

    Science.gov (United States)

    Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae

    2016-11-01

    Understanding the phase separation mechanism of solid-state binary compounds induced by laser-material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (~2.5 nm) and polycrystalline silicon (~5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system.

  17. Preferential killing of cancer cells using silicon carbide quantum dots.

    Science.gov (United States)

    Mognetti, Barbara; Barberis, Alessandro; Marino, Silvia; Di Carlo, Francesco; Lysenko, Vladimir; Marty, Olivier; Géloën, Alain

    2010-12-01

    Silicon carbide quantum dots are highly luminescent biocompatible nanoparticles whose properties might be of particular interest for biomedical applications. In this study we investigated Silicon Carbide Quantum Dots (3C-SiC QDs) cellular localisation and influence on viability and proliferation on oral squamous carcinoma (AT-84 and HSC) and immortalized cell lines (S-G). They clearly localize into the nuclei, but the presence of 3C-SiC QDs in culture medium provoke morphological changes in cultured cells. We demonstrate that 3C-SiC QDs display dose- and time-dependent selective cytotoxicity on cancer versus immortalized cells in vitro. Since one of the limitations of classical antineoplastic drugs is their lack of selectivity, these results open a new way in the search for antiproliferative drugs.

  18. Preparation of tantalum carbide from an organometallic precursor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.P. [Rio Grande do Norte Univ., Natal, RN (Brazil). Programa de Pos-graduacao em Geoquimica. Lab. de Termodinamica e Reatores]. E-mail: carlson at ufrnet.ufrn.br; Favotto, C.; Satre, P.; L' Honore, A.; Roubin, M. [Universite du Toulon et de Var B.P. (France). Equipe der Materiaux a Finalite Specifique. Lab. de Physicochimie du Materiaux et du Milieu Marin]. E-mail: roubin at univ-tln.fr

    1999-03-01

    In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta{sub 2} O{sub 5} nH{sub 2}O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, Ta C, in the powder form at 1000 deg C. The natural sintering of Ta C powder in an inert atmosphere at 1400 deg C during 10 hours, under inert atmosphere made it possible to density the carbide to 96% of the theoretical value. (author)

  19. PARAMETER OPTIMIZATION OF CARBIDIC AUSTEMPERED DUCTILE IRON USING TAGUCHI METHOD

    Directory of Open Access Journals (Sweden)

    P.DHANAPAL

    2010-08-01

    Full Text Available Carbidic austempered ductile iron [CADI] is the family of ductile iron containing wear resistance alloy carbides in the ausferrite matrix. This CADI is manufactured by selecting proper material composition through the melting route.In an effort to obtain the optimal production parameters, Taguchi method is applied. To analyse the effect of production parameters on the machanical properties, signal-to-noise (S/N ratio is calculated based on the design ofexperiments and the linear graph. The analysis of varience is calculated to find the amount of contribution of factors on individual mechanical properties and its significancy. The analytical results of taguchi method are compared with the experimental values, and it shows both are identical.

  20. CALCIUM CARBIDE: AN EFFICIENT ALTERNATIVE TO THE USE OF ALUMINUM

    Directory of Open Access Journals (Sweden)

    Amilton Carlos Pinheiro Cardoso Filho

    2013-03-01

    Full Text Available The steel demand for fine applications have increased considerably in the last years, and the criteria for its production are even stricter, mainly in relation to the residual elements content and cleanness required. In relation to the steel cleanness, the main problem faced is the control of the amount and morphology of alumina inclusions, generated in the steel deoxidation with aluminum. Besides harming the products quality, the presence of non metallic inclusions can originate nozzle clogging, and consequently interruptions in the process flux. Aiming to improve the steel cleanness and to minimize nozzle clogging, this study is developed to evaluate the partial substitution of aluminum by calcium carbide in the steel deoxidation. Along the operational procedures, the calcium carbide was applied to 397 heats, through what the improvement in steel cleanness is confirmed, with consequent reduction in the nozzle clogging occurrence.