WorldWideScience

Sample records for chromium alloys

  1. Galvanic cells including cobalt-chromium alloys.

    Science.gov (United States)

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  2. Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

  3. Evaluation of flexural bond strength of porcelain to used nickel-chromium alloy in various percentages

    Directory of Open Access Journals (Sweden)

    VNV Madhav

    2012-01-01

    Fresh nickel-chromium alloy shows the greatest porcelain adherence.There is no significant change in bond strength of ceramic to alloy with up to 75% of used nickel-chromium alloy.At least 25%- of new alloy should be added when recycled nickel-chromium alloy is being used for metal ceramic restorations.

  4. Iron chromium potential to model high-chromium ferritic alloys

    OpenAIRE

    Bonny, Giovanni; Pasianot, Roberto C; Terentyev, Dmitry; Malerba, Lorenzo

    2011-01-01

    Abstract In this paper we present a Fe-Cr interatomic potential to model high-Cr ferritic steels. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The here developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and exper...

  5. High temperature oxidation of iron-chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Lars

    2003-06-15

    The high temperature oxidation of the ferritic alloy Fe78Cr22 has been investigated in the present work. The effect of small alloying additions of cerium and/or silicon was also investigated. The alloys were oxidized at 973, 1173 and 1373 K in either air or a hydrogen/argon mixture. The various reaction atmospheres contained between 0.02 and 50% water vapour. The oxide scales formed on the various alloys at 973 K consisted of thin chromia layers. The oxide scales grown on the alloys at 1173 K also consisted of a chromia layer. The microstructure of the chromia scales was found to depend on the reaction atmosphere. The chromia scales grown in hydrogen/argon atmospheres formed oxide whiskers and oxide ridges at the surface of the scales, while the chromia scales grown in air formed larger oxide grains near the surface. This difference in oxide microstructure was due to the vaporization of chromium species from the chromia scales grown in air. Two different growth mechanisms are proposed for the growth of oxide whiskers. The growth rate of the chromia scales was independent of the oxygen activity. This is explained by a growth mechanism of the chromia scales, where the growth is governed by the diffusion of interstitial chromium. The addition of silicon to the iron-chromium alloy resulted in the formation of silica particles beneath the chromia scale. The presence of silicon in the alloy was found to decrease the growth rate of the chromia scale. This is explained by a blocking mechanism, where the silica particles beneath the chromia scale partly block the outwards diffusion of chromium from the alloy to the chromia scale. The addition of cerium to the iron-chromium alloy improved the adhesion of the chromia scale to the alloy and decreased the growth rate of chromia. It was observed that the minimum concentration of cerium in the alloy should be 0.3 at.% in order to observe an effect of the cerium addition. The effect of cerium is explained by the &apos

  6. Alkaline stress corrosion of iron-nickel-chromium austenitic alloys

    International Nuclear Information System (INIS)

    This research thesis reports the study of the behaviour in stress corrosion of austenitic iron-nickel-chromium alloys by means of tensile tests at imposed strain rate, in a soda solution at 50 pc in water and 350 degrees C. The author shows that the mechanical-chemical model allows the experimental curves to be found again, provided the adjustment of characteristic parameters, on the one hand, of corrosion kinetics, and on the other hand, of deformation kinetics. A classification of the studied alloys is proposed

  7. Standard Specification for Pressure Consolidated Powder Metallurgy Iron-Nickel-Chromium-Molybdenum (UNS N08367), Nickel-Chromium-Molybdenum-Columbium (Nb) (UNS N06625), Nickel-Chromium-Iron Alloys (UNS N06600 and N06690), and Nickel-Chromium-Iron-Columbium-Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings, Valves, and Parts

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Pressure Consolidated Powder Metallurgy Iron-Nickel-Chromium-Molybdenum (UNS N08367), Nickel-Chromium-Molybdenum-Columbium (Nb) (UNS N06625), Nickel-Chromium-Iron Alloys (UNS N06600 and N06690), and Nickel-Chromium-Iron-Columbium-Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings, Valves, and Parts

  8. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys.

    Science.gov (United States)

    Chen, Bo; Xia, Gang; Cao, Xin-Ming; Wang, Jue; Xu, Bi-Yao; Huang, Pu; Chen, Yue; Jiang, Qing-Wu

    2013-03-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  9. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

  10. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

  11. Recrystallization texture in nickel-chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Boer, B. de; Reger, N.; Holzapfel, B. [Inst. of Metallic Materials, IFW Dresden, Dresden (Germany)

    2001-07-01

    Ni and Ni-Cr tapes with Cr contents up to 20 at.% have been prepared by cold rolling with a thickness reduction of more than 99.5%. These tapes were heat treated at different temperatures between 200 C and 1000 C to examine the influence of recovery, recrystallization and grain growth on the development of the annealing texture. The recrystallization temperature increases with increasing alloying content. At 14at.% Cr content the main component of the recrystallisation texture changes from the cube orientation to {l_brace}025{r_brace} left angle 100 right angle. At the same time the size of the recrystallized grains decreases. These changes correlate with changes in the deformation texture and the stacking fault energy. (orig.)

  12. Effect of recasting on the thickness of metal-ceramic interface of nickel-chromium and cobalt-chromium alloys

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2008-01-01

    Full Text Available Introduction/Aim. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the thickness of their metal-ceramic interface in making fixed partial dentures. Metal-ceramic interface determines their functional integrity and prevents damages on ceramics during mastication. Investigation of metal-ceramic samples is supposed to show if base metal alloys for metalceramics are successfully recycled without any risk of reduction of metal-ceramic interface thickness. Methods. The research was performed as an experimental study. Per six metal-ceramic samples of nickel-chromium alloy (Wiron99 and cobalt-chromium alloy (Wirobond C were made each. Alloy residues were recycled through twelve casting generations with the addition of 50% of new alloy on the occasion of every recasting. Analysis Energy Dispersive X-ray (EDX (Oxford Instruments and Scanning Electon Microscop (SEM analysis (JEOL were used to determine thickness of metal-ceramic interface together with PC Software for quantification of visual information's (KVI POPOVAC. Results. Results of this research introduced significant differences between thickness of metal-ceramic interface in every examined recycle generation. Recasting had negative effect on thickness of metal-ceramic interface of the examined alloys. This research showed almost linear reduction of elastic modulus up to the 12th generation of recycling. Conclusion. Recasting of nickel-chromium and cobaltchromium alloys is not recommended because of reduced thickness of metal-ceramic interface of these alloys. Instead of recycling, the alloy residues should be returned to the manufacturers.

  13. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  14. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  15. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  16. Structure and growth of oxide on iron-chromium alloys

    International Nuclear Information System (INIS)

    Several oxides form during the initial stages of oxidation of iron-chromium alloys at 400 to 6000C in CO2-1%CO gas. The nature of the oxidation product depends upon crystallographic orientation and composition of the substrate, and can be explained by considering the maximum solubility of chromium in different oxide phases together with interfacial and strain energy factors. Kinetics of oxidation together with micrographic observations indicate that, as oxidation proceeds spinel oxide M3O4 nucleates at sites on the substrate surface associated with asperities. The spinel nuclei grow laterally and vertically until they coalesce and the scale subsequently thickens according to a parabolic rate law. The duplex structure of scales is interpreted in terms of an outward diffusion of cations together with simultaneous growth of an inner layer in the space created by this outward movement. Scale porosity provides a route for gas-phase transport of oxidant to support the growth of the inner layer. Regularly spaced lamellar voids which may form in the inner layer are believed to be associated with a cyclic vacancy condensation process. Enrichment of the inner layer in chromium is explained by analysis of the possible diffusion path networks in close-packed oxides. Some comments are made concerning possible practical applications of these data. (author)

  17. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys

    Institute of Scientific and Technical Information of China (English)

    Bo Chen; Gang Xia; Xin-Ming Cao; Jue Wang; Bi-Yao Xu; Pu Huang; Yue Chen; Qing-Wu Jiang

    2013-01-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of 〈 1 month of the restoration duration, among which higher Ni excretions were found in those with either a higher number of teeth replaced by dental alloys or a higher index of metal crown not covered with the porcelain. Urinary levels of Cr were significantly higher in the three patient groups of 〈1, 1 to 〈3 and 3 to 〈6 months, especially in those with a higher metal crown exposure index. Linear curve estimations showed better relationships between urinary Ni and Cr in patients within 6-month groups. Our data suggested significant increased excretions of urinary Ni and Cr after dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  18. Mechanical strength of laser-welded cobalt-chromium alloy.

    Science.gov (United States)

    Baba, N; Watanabe, I; Liu, J; Atsuta, M

    2004-05-15

    The purpose of this study was to investigate the effect of the output energy of laser welding and welding methods on the joint strength of cobalt-chromium (Co-Cr) alloy. Two types of cast Co-Cr plates were prepared, and transverse sections were made at the center of the plate. The cut surfaces were butted against one another, and the joints welded with a laser-welding machine at several levels of output energy with the use of two methods. The fracture force required to break specimens was determined by means of tensile testing. For the 0.5-mm-thick specimens, the force required to break the 0.5-mm laser-welded specimens at currents of 270 and 300 A was not statistically different (p > 0.05) from the results for the nonwelded control specimens. The force required to break the 1.0-mm specimens double-welded at a current of 270 A was the highest value among the 1.0-mm laser-welded specimens. The results suggested that laser welding under the appropriate conditions improved the joint strength of cobalt- chromium alloy. PMID:15116400

  19. Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory

    Institute of Scientific and Technical Information of China (English)

    HUANG Shun-hong; PENG Bing; YANG Zhi-hui; CHAI Li-yuan; ZHOU Li-cheng

    2009-01-01

    The environmental risk of chromium pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by chromium. 45 soil samples obtained from different places of the slag heap in a steel alloy factory were analyzed for chromium contamination level and its effect on soil microorganisms and enzyme activities. The results show that the average concentrations of total Cr in the soil under the slag heap, adjacent to the slag heap and outside the factory exceed the threshold of Secondary Environmental Quality Standard for Soil in China by 354%, 540% and 184%, respectively, and are 15, 21 and 9 times higher than the local background value, respectively. Elevated chromium loadings result in changes in the activity of the soil microbe, as indicated by the negative correlations between soil microbial population and chromium contents. Dehydrogenase activity is greatly depressed by chromium in the soil. The results imply that dehydrogenase activity can be used as an indicator for the chromium pollution level in the area of the steel alloy factory.

  20. Influence of Chromium and Molybdenum on the Corrosion of Nickel Based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J R; Gray, J; Szmodis, A W; Orme, C A

    2005-08-02

    The addition of chromium and molybdenum to nickel creates alloys with exceptional corrosion resistance in a diverse range of environments. This study examines the complementary roles of Cr and Mo in Ni alloy passivation. Four nickel alloys with varying amounts of chromium and molybdenum were studied in 1 molar salt solutions over a broad pH range. The passive corrosion and breakdown behavior of the alloys suggests that chromium is the primary element influencing general corrosion resistance. The breakdown potential was nearly independent of molybdenum content, while the repassivation potential is strongly dependant on the molybdenum content. This indicates that chromium plays a strong role in maintaining the passivity of the alloy, while molybdenum acts to stabilize the passive film after a localized breakdown event.

  1. STUDY ON MORPHOLOGY OF CHROMIUM IN CHILLED Cu-0.14%-2.0%Cr ALLOYS

    Institute of Scientific and Technical Information of China (English)

    H.W.Yang; Z.K.Fan

    2004-01-01

    The morphology of chromium in chilled Cu-Cr alloys with 0.14%-2.0% Cr has been studied. The results showed that eutectic Cr phase takes a fibrous shape, and pre-eutectic Cr is dendritic in the studied chilled Cu-Cr alloy. During solute treatment of the eutectic and super-eutectic Cu-Cr alloys, only part of chromium particles dissolved in copper phase,some fiber and dendritic chromium still remained. Forging before solute treatment can reduce the size of primary Cr particles, which benefits the aging structure.

  2. Investigations on the Oxidation of Iron-chromium and Iron-vanadium Molten Alloys

    OpenAIRE

    Wang, Haijuan

    2010-01-01

    With the progress of high alloy steelmaking processes, it is essential to minimize the loss of valuable metals, like chromium and vanadium during the decarburization process, from both economic as well as environmental view points. One unique technique to realize this aim, used in the present work, is the decarburization of high alloy steel grades using oxygen with CO2 in order to reduce the partial pressure of oxygen. In the present work, the investigation on the oxidation of iron-chromium a...

  3. Heat Treatment in High Chromium White Cast Iron Ti Alloy

    Directory of Open Access Journals (Sweden)

    Khaled M. Ibrahim

    2014-01-01

    Full Text Available The influence of heat treatment on microstructure and mechanical properties of high chromium white cast iron alloyed with titanium was investigated. The austenitizing temperatures of 980°C and 1150°C for 1 hour each followed by tempering at 260°C for 2 hours have been performed and the effect of these treatments on wear resistance/impact toughness combination is reported. The microstructure of irons austenitized at 1150°C showed a fine precipitate of secondary carbides (M6C23 in a matrix of eutectic austenite and eutectic carbides (M7C3. At 980°C, the structure consisted of spheroidal martensite matrix, small amounts of fine secondary carbides, and eutectic carbides. Titanium carbides (TiC particles with cuboidal morphology were uniformly distributed in both matrices. Irons austenitized at 980°C showed relatively higher tensile strength compared to those austenitized at 1150°C, while the latter showed higher impact toughness. For both cases, optimum tensile strength was reported for the irons alloyed with 1.31% Ti, whereas maximum impact toughness was obtained for the irons without Ti-addition. Higher wear resistance was obtained for the samples austenitized at 980°C compared to the irons treated at 1150°C. For both treatments, optimum wear resistance was obtained with 1.3% Ti.

  4. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  5. Synthesis of chromium and ferrochromium alloy in molten salts by the electro-reduction method

    Directory of Open Access Journals (Sweden)

    Ge X.

    2015-01-01

    Full Text Available In this work, we successfully applied the Fray-Farthing-Chen Cambridge electro-reduction process on the preparation of chromium from chromium oxide, and for the first time, the synthesis of ferrochromium alloy from chromium oxide and iron oxide mixture and the chromite ore in molten calcium chloride. The present work systematically investigated the influences of sintered temperature of the solid precursor, electrochemical potential, electrolysis temperature and time on the products by using a set of advanced characterization techniques, including XRD and SEM/EDS analyses. In particular, our results show that this process is energy-friendly and technically-feasible for the direct extraction of ferrochromium alloy from chromite ore. Our findings thus provide useful insights for designing a novel green process to produce ferrochromium alloy from low-grade chromite ore or stainless steel slag.

  6. The diffusion of chromium in a duplex alloy steel

    International Nuclear Information System (INIS)

    Diffusion of chromium in a duplex stainless steel containing approximately 8% ferrite has been investigated in the temperature range 600 to 10000C using the standard serial sectioning technique. The resulting concentration profiles exhibited up to four distinct regions. The two main regions are attributed to volume diffusion in the austenite and ferrite phases, the other zones being due to short circuiting paths. Volume diffusion in the austenite phase is in good agreement with chromium diffusion in Type 316 steel. The chromium diffusion coefficient in the ferrite phase of approximate composition 25 wt % Cr, 5 wt % Ni is given by: Dsub(α) = (6.0(+11,-3)) x 10-6 exp - ((212+-5)/RT) m2s-1 the activation energy being expressed in kJ.mol-1. Little evidence was found for enhanced chromium diffusion along austenite/ferrite interface boundaries. (author)

  7. Magnetic properties and fine structure of Fe-Co alloys with vanadium and chromium additions

    Energy Technology Data Exchange (ETDEWEB)

    Dzhavadov, D.M.; Tyapkin, Yu.D. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1982-11-01

    Magnetic properties of alloys iron-cobalt, iron-cobalt-vanadium, iron-cobalt-chromium have been investigated. Measurements of permeability, coercive force Hsub(c), B/sub 25/ and B/sub 100/ magnetic saturation on alloy samples on which electrical resistance previously is measured and fine crystalline structure is studied by the methods of transmission electron microscopy, diffusion scattering of X rays and electrons and NGR. Comparison of properties and structure makes possible to bind Hsub(c), B permeability values with such structure features as a long-range order of B2 type, short-range decomposition order and Cottrell clouds formation in vanadium containing alloys and a complex short-range order in chromium-containing alloys.

  8. Effect of recasting on the elastic modulus of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2007-01-01

    Full Text Available Background/Aim. Elastic modulus of metal-ceramic systems determines their flexural strength and prevents damages on ceramics during mastication. Recycling of basic alloys is often a clinical practice, despite the possible effects on the quality of the future metal-ceramic dentures. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the elastic modulus of metalceramic systems in making fixed partial dentures. Methods. The research was performed as an experimental study. Six metal-ceramic samples of nickel-chromium alloy (Wiron 99 and cobalt-chromium alloy (Wirobond C were made. Alloy residues were recycled through twelve casting generations with the addition of 50% of new alloy on the occasion of every recasting. Three- point bending test was used to determine elastic modulus, recommended by the standard ISO 9693:1999. Fracture load for damaging ceramic layer was recorded on the universal testing machine (Zwick, type 1464, with the speed of 0,05 mm/min. Results. The results of this research revealed significant differences between elasticity modules of metal-ceramic samples in every examined recycle generation. Recasting had negative effect on the elastic modulus of the examined alloys. This research showed the slight linear reduction of elastic modulus up to the 6th generation of recycling. After the 6th recycling there was a sudden fall of elastic modulus. Conclusion. Recasting of nickelchromium and cobalt-chromium alloys is not recommended because of the reduced elastic modulus of these alloys. Instead of reusing previously recasted alloys, the alloy residues should be returned to the manufacturer. .

  9. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-07-01

    To assess the effects of surface finishing condition (polished or alumina particle air abraded) on the biocompatibility of direct and indirect exposure to a nickel-chromium (Ni-Cr) d.Sign®10 dental casting alloy on oral keratinocytes. Biocompatibility was performed by assessing cellular viability and morphology, metabolic activity, cellular toxicity and presence of inflammatory cytokine markers.

  10. Chromium Activity Measurements in Nickel Based Alloys for Very High Temperature Reactors: Inconel 617, Haynes 230, and Model Alloys

    International Nuclear Information System (INIS)

    The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHXs) of (very) high temperature reactors ((V)-HTRs). The behavior under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra- and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer. The alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow (Rouillard, F., 2007, 'Mecanismes de formation et de destruction de la couche d'oxyde sur un alliage chrominoformeur en milieu HTR, Ph.D. thesis, Ecole des Mines de Saint-Etienne, France). To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T approximate to 1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617, and model alloys 1178, 1181, and 1201. This coupling makes it possible for the thermodynamic equilibrium to be obtained between the vapor phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (I) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared with that of the pure substance (Cr) at the same temperature

  11. On the coexistence of the magnetic phases in chromium alloys

    DEFF Research Database (Denmark)

    Lebech, Bente; Mikke, K.

    1969-01-01

    Detailed neutron diffraction investigations have been performed on Cr-Re alloys in order to explain the several observations in Cr alloys of the coexistence of a commensurable and an oscillatory magnetic phase. It is concluded that the individual magnetic phases probably occur in separate domains....

  12. Characterization of Two ODS Alloys: Chromium-18 ODS and Chromium-9 ODS

    Science.gov (United States)

    Goddard, Julianne

    ODS alloys, or oxide dispersion strengthened alloys, are made from elemental or pre-alloyed metal powders mechanically alloyed with oxide powders in a high-energy attributor mill, and then consolidated by either hot isostatic pressing or hot extrusion causing the production of nanometer scale oxide and carbide particles within the alloy matrix; crystalline properties such as creep strength, ductility, corrosion resistance, tensile strength, swelling resistance, and resistance to embrittlement are all observed to be improved by the presence of nanoparticles in the matrix. The presented research uses various methods to observe and characterize the microstructural and microchemical properties of two experimental ODS alloys, 18Cr ODS and 9Cr ODS. The results found aid in assessing the influence of chemical and structural variations on the effectiveness of the alloy, and further aid in the optimization of these advanced alloys for future use in nuclear cladding and structural applications in Generation IV nuclear reactors. Characterization of these alloys has been conducted in order to identify the second-phase small precipitates through FESEM, TEM, EDS, Synchrotron X-ray diffraction analysis, and CuKalpha XRD analysis of bulk samples and of nanoparticles after extraction from the alloy matrix. Comparison of results from these methods allows further substantiation of the accuracy of observed nanoparticle composition and identification. Also, TEM samples of the two alloys have been irradiated in-situ with 1 MeV Kr and 300 keV Fe ions to various doses and temperatures at the IVEM-Tandem TEM at Argonne National Laboratory and post-irradiated characterization has been conducted and compared to the pre-irradiated characterization results in order to observe the microstructural and microchemical evolution of nanoparticles under irradiation. Overall in the as-received state, the initial Y2O3 is not found anymore and in addition to oxide particles the alloys contain carbides

  13. Qualification of new filler metal made of high chromium content nickel base alloy

    International Nuclear Information System (INIS)

    A study has been carried out by EDF and FRAMATOME in the context of the French Association for design and manufacturing rules of nuclear power boiler's equipment, to research then qualify filler metals dedicated to the welding of the new nickel base including 30 % chromium alloy components of PWR. The aim is to assess their weldability and their stress corrosion behaviour in the conditions prevailing in the primary cooling system of PWR and to compare with products generally used. Moreover, numerous qualification tests have been carried out to verify that such metals meet the criteria accepted in the RCC-M code. Results allowed to qualify some filler metals made of nickel base alloy of qualify equivalent to the one of NC30Fe including 30 % chromium base metals. These metals are at present time used in manufacturing. (authors). 5 figs

  14. On Heat-Treatable Copper-Chromium Alloy, 1

    Science.gov (United States)

    Koda, S.; Isono, E.

    1984-01-01

    A mother alloy of 10% Cr and 90% Cu was prepared by sintering. This was alloyed with the Cu melt and Cu-Cr alloys containing about 0.5% Cr was obtained. These alloys could be deformed easily in both the hot and cold states. By measuring the hardness change, age-hardening properties of cast alloys were studied, which were quenched from 950 deg and aged at 300 to 700 deg for 1 hour. The maximum hardness was obtained with the tempering temperature of 500 deg. For the temperature of solution-treatment, 950 deg was insufficient and that above 1000 deg necessary. For the tempering time, a treatment at 500 deg for 1 hr. or at 450 deg for 3 hrs. yielded the maximum hardness. As for the properties for electrical conductors, 3 kinds of wires (diam. 2 mm.) were made: (1) after cold-drawn to 2 mm., solution-treated, quenched, and then tempered (500 deg, 1 hr.); (2) after quenching, cold-drawn (75% reduction) to 2 mm. and tempered (500 deg, 1 hr.); and (3) after quenching, cold-drawn (81%) to intermediate diameter, tempered (500 deg, 1 hr.) and then cold-drawn (88%) again. Properties obtained for the 3 kinds, respectively, were as follows: conductivity 91, 90, and 86%. Tensile strength and strength for electrical conductivity are given.

  15. Crevice corrosion kinetics of nickel alloys bearing chromium and molybdenum

    International Nuclear Information System (INIS)

    Highlights: ► The crevice corrosion resistance of the tested alloys increased with PREN, which is mainly affected by their Mo content. ► Crevice corrosion kinetics was controlled by ohmic drop only in the more dilute chloride solutions. ► Charge transfer control was observed in concentrated chloride solutions. ► A critical ohmic drop was not necessary for crevice corrosion to occur. ► Ohmic drop was a consequence of the crevice corrosion process in certain conditions. - Abstract: The crevice corrosion kinetics of alloys C-22, C-22HS and HYBRID-BC1 was studied in several chloride solutions at 90 °C. The crevice corrosion resistance of the alloys increased with PREN (Pitting Resistance Equivalent Number), which is mainly affected by the Mo content in the alloys. The crevice corrosion kinetics of the three alloys was analyzed at potentials slightly higher than the repassivation potential. Crevice propagation was controlled by ohmic drop in the more dilute chloride solutions, and by charge transfer in the more concentrated chloride solutions. Ohmic drop was not a necessary condition for crevice corrosion to occur.

  16. Segregation and precipitation in iron-chromium alloys during thermal ageing and irradiation

    International Nuclear Information System (INIS)

    Iron-Chromium alloys have a peculiar thermodynamic and diffusion behavior which is due to their magnetic properties. The alloy decomposition under thermal ageing has been studied in this thesis. An atomistic kinetic model has been performed in this aim in which we have modeled in details the chemical species thermodynamic and diffusion properties. In particular, the evolution of elements diffusion properties which the ferro-paramagnetic transition has been introduced in the model. Simulated decompositions have been compared with experiments for a large range of concentrations and temperatures. A good agreement between simulations and experiments was observed and these comparisons have highlighted the ferro to paramagnetic transition key role in the concentrated alloys kinetic decomposition. This study has also evidenced that the elements diffusion at phases interfaces is responsible for the alloy decomposition kinetic in long lasting.We have also started a study of the alloy radiation induced segregation. For that purpose, atomistic kinetic model has been performed modeling defects migration through a perfect planar sink. It have been shown, I agreement with former studies, that chromium tends to segregate in the vicinity of sinks at low temperatures and deplete at high temperature. (author)

  17. Surface passivation of nickel-chromium alloys at room temperature

    International Nuclear Information System (INIS)

    The surface composition and room temperature oxidation of atomically clean single crystal Ni-15%Cr(110) and polycrystalline Ni-23%Cr alloy have been studied using Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), Ion Scattering Spectroscopy (ISS) and Electron Stimulated Ion Desorption (ESID). It was found that Ni segregated preferentially to the surface of Ni-15%Cr(110) in vacuum at temperatures between 500 to 650 degree C, and the heat segregation was 2550 cal/mole. The surface region of the Ni-Cr alloy was depleted in Ni during Ar ion bombardment at temperatures above 200 degree C, which is an agreement with the model of preferential sputtering of Ni caused by radiation-enhanced surface segregation of Ni. But the subsurface region of room temperature sputtered Ni-Cr alloy was depleted in Cr. Possible causes for this observation were discussed

  18. Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling

    International Nuclear Information System (INIS)

    Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that

  19. Surface modification of cobalt-chromium-tungsten-nickel alloy using octadecyltrichlorosilanes

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Gopinath [Department of Biomedical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Feldman, Marc D. [Department of Biomedical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Division of Cardiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States); The Department of Veteran Affairs South Texas Health Care System, 7400 Merton Minter Blvd., San Antonio, TX 78229 (United States); Oh, Sunho [Department of Biomedical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Agrawal, C. Mauli [Department of Biomedical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States)], E-mail: Mauli.Agrawal@utsa.edu

    2009-03-15

    Cobalt-chromium (Co-Cr) alloys have been extensively used for medical implants because of their excellent mechanical properties, corrosion resistance, and biocompatibility. This first time study reports the formation and stability of self-assembled monolayers (SAMs) on a Co-Cr-W-Ni alloy. SAMs of octadecyltrichlorosilanes (OTS) were coated on sputtered Co-Cr-W-Ni alloy thin film and bulk Co-Cr-W-Ni alloy. OTS SAM coated alloy specimens were characterized using contact angle goniometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Contact angle analysis and FTIR suggested that ordered monolayers were coated on both sputtered and bulk alloy. XPS suggested the selective dissolution of cobalt from the alloy during the formation of OTS SAM. The bonding between the alloy and the OTS SAM was mainly attributed to Si-O-Cr and Si-O-W covalent bonds and a smaller contribution from Si-O-Co bonds. AFM images showed the distribution of islands of monolayers coated on the alloy. The height of monolayers in majority of the islands was closer to the theoretical length of fully extended OTS molecules oriented perpendicular to the surface. The stability of OTS SAM was investigated in tris-buffered saline at 37 {sup o}C for up to 7 days. Contact angle, FTIR, and XPS collectively confirmed that the monolayers remain ordered and bound to the alloy surface under this condition. This study shows that Co-Cr alloys can be surface modified using SAMs for potential biomedical applications.

  20. Bonding evolution with sintering temperature in low alloyed steels with chromium

    Directory of Open Access Journals (Sweden)

    Fuentes-Pacheco L.

    2009-01-01

    Full Text Available At present, high performance PM steels for automotive applications follow a processing route that comprises die compaction of water-atomized powder, followed by sintering and secondary treatments, and finishing operations. This study examines Cr-alloyed sintered steels with two level of alloying. In chromium-alloyed steels, the surface oxide on the powder is of critical importance for developing the bonding between the particles during sintering. Reduction of this oxide depends mainly on three factors: temperature, dew point of the atmosphere, and carbothermic reduction provided by the added graphite. The transformation of the initial surface oxide evolves sequence as temperature increases during sintering, depending on the oxide composition. Carbothermic reduction is supposed to be the controlling mechanism, even when sintering in hydrogen-containing atmospheres. The effect of carbothermic reduction can be monitored by investigating the behavior of the specimens under tensile testing, and studying the resultant fracture surfaces.

  1. The Sintering Temperature Effect on the Shrinkage Behavior of Cobalt Chromium Alloy

    Directory of Open Access Journals (Sweden)

    M. G. Kamardan

    2010-01-01

    Full Text Available Problem Statement: Co-Cr based alloys which is well known for its high Youngs modulus, fatigue strength, wear resistance and corrosion resistance is an important metallic bio-material. However, till date there are only two type of Co-Cr alloy which are the castable and wrought cobalt alloy. Powder Metallurgy route for cobalt is expected to give better result of Co-Cr alloy. The purpose of this research was mainly to study the sintering temperature effect to the shrinkage behavior of Cobalt Chromium (Co-Cr alloy of the powder metallurgy route. Approach: Co-Cr was produced following P/M route under sintering temperature of 1000, 1100, 1200, 1300 and 1400°C. The sintering time was fixed at 60 min. Several tests has been conducted to determine this effect such as the rate of shrinkage measurement, the bulk density and porosity percentage measurement, compression and hardness tests and micro structural study. Result: From the study, it was found that the sintering temperature has caused the shrinkage of Co-Cr. The increasing of the sintering temperature has caused to the increasing of shrinkage of Co-Cr. This has resulted to the reduction of the pore volume and hence increased it density. In conjunction to that, the strength and the hardness of Co-Cr was increased. Conclusion: Therefore, it is hope that it will bring new view of powder metallurgy Co-Cr alloy as bio-material.

  2. Microstructure and properties of Ti–Nb–V–Mo-alloyed high chromium cast iron

    Indian Academy of Sciences (India)

    Youping Ma; Xiulan Li; Yugao Liu; Shuyi Zhou; Xiaoming Dang

    2013-10-01

    The correlations of microstructure, hardness and fracture toughness of high chromium cast iron with the addition of alloys (titanium, vanadium, niobium and molybdenum) were investigated. The results indicated that the as-cast microstructure changed from hypereutectic, eutectic to hypoeutectic with the increase of alloy contents. Mo dissolved in austenite and increased the hardness by solid solution strengthening. TiC and NbC mainly existed in austenite and impeded the austenite dendrite development. V existed in multicomponent systems in forms of V alloy compounds (VCrFe8 and VCr2C2).With the increase of alloy additions, carbides size changed gradually from refinement to coarseness, hardness and impact toughness were increased and then decreased. Compared with the fracture toughness (6 J/cm2) and hardness (50.8HRC) without any alloy addition, the toughness and hardness at 0.60 V–0.60Ti–0.60Nb–0.35Mo (wt%) additions were improved and achieved to 11 J/cm2 and 58.9HRC, respectively. The synergistic roles of Ti, Nb, V and Mo influenced the solidification behaviour of alloy. The refinement of microstructure and improvement of carbides morphologies, size and distribution improved the impact toughness.

  3. The fatigue life of a cobalt-chromium alloy after laser welding.

    Science.gov (United States)

    Al-Bayaa, Nabil Jalal Ahmad; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2011-03-01

    The aim of this study was to investigate the fatigue life of laser welded joints in a commercially available cast cobalt-chromium alloy. Twenty rod shaped specimens (40 mm x 1.5 mm) were cast and sand blasted. Ten specimens were used as controls and the remaining ten were sectioned and repaired using a pulsed Nd: YAG laser welder. All specimens were subjected to fatigue testing (30N - 2Hz) in a controlled environment. A statistically significant difference in median fatigue life was found between as-cast and laser welded specimens (p < 0.001). Consequently, the technique may not be appropriate for repairing cobalt chromium clasps on removable partial dentures. Scanning electron microscopy indicated the presence of cracks, pores and constriction of the outer surface in the welded specimens despite 70% penetration of the weld. PMID:21528682

  4. Morphology of phase transformations on thermomagnetic treatment of iron-chromium-cobalt alloys

    International Nuclear Information System (INIS)

    The calculation techniques for magnetocrystalline, magnetostatic, elastic and interphase energies are shown along with their influence on structure, morphology of iron-chromium-cobalt (26-28 % Cr; 15-20 % Co) alloys treated for a high coercivity state. Formulas for specific surface energy determining are presented. This energy is revealed to increase from 0 to 1.5x10-3 J/m2 during supersaturated solid solution precipitation. The calculation shows that magnetic field should be applied immediately before thermomagnetic treatment. A nomogram is given to determine limiting values of a l/d ratio characterizing the anisotropy of α-phase precipitations

  5. Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy

    OpenAIRE

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneo...

  6. Study of a New Chromium-Free Conversion Coating Formed on ZnAl Alloy

    Institute of Scientific and Technical Information of China (English)

    LONG Jin-ming; GUO Zhong-cheng; HAN Xia-yun; YANG Ning

    2004-01-01

    A new chromium-free conversion film was obtained on surface of a ZnAl alloy by chemical conversion process.Influence of the additives in treating solution containing cerium salt on the corrosion protection of the conversion film formed on zinc alloy was investigated. Corrosion tests and electrochemical measurements in sodium chloride solution were performed. The microstructure and composition of the coatings were examined by means of SEM, EDS and XRD. It was found that the corrosion protection capabilities of the conversion film are markedly increased with the cerium nitride plus additives (hydrogen fluoride acid and an organic inhibitor) treating process. The modified conversion film is an organic/inorganic composite coating and is much more corrosion resistant than the conventional chromate conversion coating and the single cerium conversion coating.

  7. Study of a New Chromium-Free Conversion Coating Formed on ZnAl Alloy

    Institute of Scientific and Technical Information of China (English)

    LONGJin-ming; GUOZhong-cheng; HANXia-yun; YANGNing

    2004-01-01

    A new chromium-free conversion film was obtained on surface of a ZnA1 alloy by chemical conversion process. Influence of the additives in treating solution containing cerium salt on the corrosion protection of the conversion film formed on zinc alloy was investigated. Corrosion tests and electrochemical measurements in sodium chloride solution were performed. The microstructure and composition of the coatings were examined by means of SEM, EDS and XRD. It was found that the corrosion protection capabilities of the conversion film are markedly increased with the cerium nitride plus additives (hydrogen fluoride acid and an organic inhibitor) treating process. The modified conversion film is an organic/inorganic composite coating and is much more corrosion resistant than the conventional chromate conversion coating and the single cerium conversion coating.

  8. TEM investigations on the effect of chromium content and of stress relief treatment on precipitation in Alloy 82

    International Nuclear Information System (INIS)

    Highlights: •Slight change of the Cr content does not affect the microstructure of the butt welds. •Stress relief thermal treatment leads to the intergranular precipitation of Cr23C6. •The Cr23C6 carbides are supposed to improve the SCC resistance of the butt welds. -- Abstract: Nickel-base alloys are widely used in nuclear Pressurized Water Reactors (PWRs). Most of them have been found susceptible to Stress Corrosion Cracking (SCC) in nominal PWR primary water. The time to initiation depends on the material and is longer for weld metals than for Alloy 600. This study will focus on Alloy 82, which is used in Dissimilar Metal Welds (DMWs). In service, DMWs are either in the as-welded state or have undergone a stress relief treatment. Previous SCC studies showed that the heat treatment reduces significantly the SCC susceptibility of the weld. In this context, this study focuses on the microstructure characterization of the weld in the as-welded state and in the heat-treated state. As chromium content is also a key factor for the SCC susceptibility, welds with low chromium content and medium chromium content were studied. The lower SCC susceptibility of the heat-treated welds was attributed to intergranular Cr23C6 resulting from a combined effect of heat treatment and chromium and carbon contents. These intergranular carbides could explain the better behavior of Alloy 82, compared to other nickel-base alloys

  9. Simultaneous material flow analysis of nickel, chromium, and molybdenum used in alloy steel by means of input-output analysis.

    Science.gov (United States)

    Nakajima, Kenichi; Ohno, Hajime; Kondo, Yasushi; Matsubae, Kazuyo; Takeda, Osamu; Miki, Takahiro; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2013-05-01

    Steel is not elemental iron but rather a group of iron-based alloys containing many elements, especially chromium, nickel, and molybdenum. Steel recycling is expected to promote efficient resource use. However, open-loop recycling of steel could result in quality loss of nickel and molybdenum and/or material loss of chromium. Knowledge about alloying element substance flow is needed to avoid such losses. Material flow analyses (MFAs) indicate the importance of steel recycling to recovery of alloying elements. Flows of nickel, chromium, and molybdenum are interconnected, but MFAs have paid little attention to the interconnected flow of materials/substances in supply chains. This study combined a waste input-output material flow model and physical unit input-output analysis to perform a simultaneous MFA for nickel, chromium, and molybdenum in the Japanese economy in 2000. Results indicated the importance of recovery of these elements in recycling policies for end-of-life (EoL) vehicles and constructions. Improvement in EoL sorting technologies and implementation of designs for recycling/disassembly at the manufacturing phase are needed. Possible solutions include development of sorting processes for steel scrap and introduction of easier methods for identifying the composition of secondary resources. Recovery of steel scrap with a high alloy content will reduce primary inputs of alloying elements and contribute to more efficient resource use. PMID:23528100

  10. Effects of Conventional Welding and Laser Welding on the Tensile Strength, Ultimate Tensile Strength and Surface Characteristics of Two Cobalt–Chromium Alloys: A Comparative Study

    OpenAIRE

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-01-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt–chromium alloy. Samples were prepared with two commercially available cobalt–chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scann...

  11. Bond strength of gold alloys laser welded to cobalt-chromium alloy.

    Science.gov (United States)

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (Pcontrol and that welded to Co-Cr. Higher elongations were obtained for Type II in all conditions, whereas the lowest elongation occurred for low-gold welded to Co-Cr. This study indicated that, of the three gold alloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr. PMID:19088892

  12. Computer Simulation and Experimental Validation on the Oxidation and Sulfate Corrosion Resistance of Novel Chromium Based High Temperature Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shizhong

    2013-02-28

    This report summarizes our recent works of ab initio molecular dynamics inter-atomic potentials development on dilute rare earth element yttrium (Y) etc. doped chromium (Cr) alloy systems, its applications in oxidation and corrosion resistance simulation, and experiment validation on the candidate systems. The simulation methods, experimental validation techniques, achievements already reached, students training, and future improvement are briefly introduced.

  13. Chromium activity measurements in nickel based alloys for very high temperature reactors: Inconel 617, haynes 230 and model alloys - HTR2008-58147

    International Nuclear Information System (INIS)

    The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHX) of (V)-HTR reactors. The behaviour under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer Then, the alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow [1]. To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T∼1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617 and model alloys 1178, 1181, 1201. This coupling makes it possible thermodynamic equilibrium to be obtained between the vapour phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (/) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared to that of the pure substance (Cr) at the same temperature. These calculations provide thermodynamic data characteristic of the chromium behaviour in these alloys. These activity results call into question those previously measured by Hilpert [2], largely used in the literature. (authors)

  14. Chromium and iron contained half-Heusler MnNiGe-based alloys

    International Nuclear Information System (INIS)

    The magnetic characteristics of chromium and iron containing MnNiGe-based alloys with several types of quenching and annealing were investigated. It was found that the quenched Mn0.89Cr0.11NiGe has a spontaneous and magnetic field induced magnetostructural first-order transitions at room temperature. These transitions might be accompanied by a large magnetocaloric effect. In general, Mn0.89Cr0.11NiGe can be classified as promising material for use in the magnetocaloric application at room temperatures. The first order magnetostructural phase transition from the ferromagnetic to paramagnetic state is not realized in MnNi0.90Fe0.10Ge. In contrast to Mn0.89Cr0.11NiGe, however, the FM state in quenched-on-wheel MnNi0.90Fe0.10Ge is preserved to the lowest temperatures. Based on the set of the magnetic properties, it has been concluded that the iron containing MnNiGe-based alloys are less promising for practical use

  15. Chromium and iron contained half-Heusler MnNiGe-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Budzynski, M. [UMCS, Institute of Physics, 1 sq.M.Curie-Skłodowska, 20-031 Lublin (Poland); Valkov, V.I.; Golovchan, A.V.; Kamenev, V.I. [Donetsk Institute for Physics and Engineering, 72, R.Luxemburg str., 83114 Donetsk (Ukraine); Mitsiuk, V.I., E-mail: vmitsiuk@gmail.com [Scientific-Practical Materials Research Center of National Academy of Sciences of Belarus, 19 P.Brovky Str., 220072 Minsk (Belarus); Sivachenko, A.P. [Donetsk Institute for Physics and Engineering, 72, R.Luxemburg str., 83114 Donetsk (Ukraine); Surowiec, Z. [UMCS, Institute of Physics, 1 sq.M.Curie-Skłodowska, 20-031 Lublin (Poland); Tkachenka, T.M. [Scientific-Practical Materials Research Center of National Academy of Sciences of Belarus, 19 P.Brovky Str., 220072 Minsk (Belarus)

    2015-12-15

    The magnetic characteristics of chromium and iron containing MnNiGe-based alloys with several types of quenching and annealing were investigated. It was found that the quenched Mn{sub 0.89}Cr{sub 0.11}NiGe has a spontaneous and magnetic field induced magnetostructural first-order transitions at room temperature. These transitions might be accompanied by a large magnetocaloric effect. In general, Mn{sub 0.89}Cr{sub 0.11}NiGe can be classified as promising material for use in the magnetocaloric application at room temperatures. The first order magnetostructural phase transition from the ferromagnetic to paramagnetic state is not realized in MnNi0.90Fe0.10Ge. In contrast to Mn{sub 0.89}Cr{sub 0.11}NiGe, however, the FM state in quenched-on-wheel MnNi0.90Fe0.10Ge is preserved to the lowest temperatures. Based on the set of the magnetic properties, it has been concluded that the iron containing MnNiGe-based alloys are less promising for practical use.

  16. Effect of laser irradiation conditions on the laser welding strength of cobalt-chromium and gold alloys.

    Science.gov (United States)

    Kikuchi, Hisaji; Kurotani, Tomoko; Kaketani, Masahiro; Hiraguchi, Hisako; Hirose, Hideharu; Yoneyama, Takayuki

    2011-09-01

    Using tensile tests, this study investigated differences in the welding strength of casts of cobalt-chromium and gold alloys resulting from changes in the voltage and pulse duration in order to clarify the optimum conditions of laser irradiation for achieving favorable welding strength. Laser irradiation was performed at voltages of 150 V and 170 V with pulse durations of 4, 8, and 12 ms. For cobalt-chromium and gold alloys, it was found that a good welding strength could be achieved using a voltage of 170 V, a pulse duration of 8 ms, and a spot diameter of 0.5 mm. However, when the power density was set higher than this, defects tended to occur, suggesting the need for care when establishing welding conditions. PMID:21959656

  17. Adherence of Candida albicans in cobalto- chromium and titanium alloys, with different sandpapering

    Directory of Open Access Journals (Sweden)

    Sidnei MARCACCI

    2008-04-01

    Full Text Available Introduction: The capacity of Candida albicans adherence is one ofits main factors of virulence. Surfaces of different materials canpropitiate conditions for higher or lower adherence and greater virulence of the microorganisms. Objective: Evaluate the adherence of Candida albicans in cobalto-chromium and titanium alloys, with different sandpapering. Material and methods: Twenty-four cylindrical samples have been constructed, 12 of titanium and 12 of cobalt-chromium, divided in 4 groups of six. All have been polished in the habitual form by the same technician. Samples have been sandpapered at about high rotation for 15 seconds each sandpaper, on all its surface. A group of each metal was sandpapered only with sandpaper for metal number 80. The two other groups have been sandpapered in agreement with the sequence (decreasing granulation: 80, 150 and 220. Samples have been sterilized and located in plates of cells culture. In each well of the plate was added standardized amount of Sabouraud broth and suspension containing 106 cells per milliliter of C. albicans (ATCC 18804. After incubation, the number of adhered cells per mm2 was obtained by the method of sowing in plate of Petri. The obtained values have been tabulated and submitted to the tests of ANOVA and Tukey,with level of significance of 5%. Results: There was statistical difference for the granulation of sandpapers, what not occurred when considering metals.Conclusion: The bigger the final granulation of sandpaper, the greater the adherence and the type of metal did not influence in the result.

  18. Mechanical and microstructural properties of a nickel-chromium alloy after casting process

    Directory of Open Access Journals (Sweden)

    Mauro Sayão de Miranda

    2012-01-01

    Full Text Available Introduction: There is a growing concern on the development of adequate materials to interact with the human body. Several researches have been conducted on the development of biomaterials for dental applications. Objective: This study aimed to determine the microstructural and mechanical properties of a nickel- based alloy, after the casting process. Material and methods: The alloy was melted through lost wax technique and centrifugation, by using blowtorch with liquefied petroleum gas. To evaluate the mechanical properties, tensile bond strength and microhardness tests were performed. The microstructural characterization was performed using scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. Statistical analyses were performed on microhardness results, through Student t test. A program for digital image processing was used to determine the percentage of the existing phases. Results and conclusion: The tensile strength was higher than that reported by the manufacturer, 559.39±25.63MPa versus 306 MPa, respectively. However, the yield strength was slightly lower, 218.71±29.75 MPa versus 258 MPa, reported by the manufacturer. The microhardness tests showed about 70 HV, far above the value informed by the manufacturer (21 HV. It can be affirmed with 95% confidence interval that the casting process did not alter the material’s hardness. The alloy’s microstructure is formed by a matrix with dendritic aspect and gray color and a second white interdendritic phase with equally distributed precipitates as well as porosities. EDS tests showed that the matrix is rich in nickel and chromium, the interdendritic second phase is rich in molybdenum and the precipitates in titanium or silicon. The matrix represents 86% of the area and the second phase 12%.

  19. Comparative evaluation of tensile bond strength of denture base resins to surface pretreated cobalt chromium base metal alloys--an in vitro study.

    OpenAIRE

    Aazad A; Shetty P; Bhat S; Joseph M

    2001-01-01

    This study was undertaken to evaluate the tensile bond strength of acrylic resins to surface pretreated Cobalt-chromium base metal alloy. A total of 60 tensile bar specimens were prepared. One half of the bar was cast in cobalt-chromium alloy and the other half made of denture base resins attached to the alloy following surface pretreatment. Two denture base resins and five surface pre-treatments were used which included sandblasting, acid etching, use of metal adhesive primers and the combin...

  20. Growth and structural determination of He bubbles in iron/chromium alloys using molecular dynamics simulations

    Science.gov (United States)

    Abhishek, A.; Warrier, M.; Ganesh, R.; Caro, A.

    2016-04-01

    Helium(He) produced by transmutation process inside structural material due to neutron irradiation plays a vital role in the degradation of material properties. We have carried out Molecular dynamics(MD) simulations to study the growth of He bubble in Iron-Chromium alloy. Simulations are carried out at two different temperatures, viz. 0.1 K and 800 K, upto He bubble radius of 2.5 nm. An equation for variation of volume of He bubbles with the number of He atoms is obtained at both the temperatures. Bubble pressure and potential energy variation is obtained with increasing bubble radius. Dislocations are also found to be emitted after the bubble reaches a critical radius of 0.39 nm at 800 K. Separate MD simulations of He with pre-created voids are also carried out to study the binding energies of He and Vacancy (V) to Hem-Vn cluster. Binding energies are found to be in the range of 1-5.5 eV.

  1. Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover two tests as follows: 1.1.1 Method A, Ferric Sulfate-Sulfuric Acid Test (Sections 3-10, inclusive)—This test method describes the procedure for conducting the boiling ferric sulfate—50 % sulfuric acid test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to intergranular corrosion (see Terminology G 15), which may be encountered in certain service environments. The uniform corrosion rate obtained by this test method, which is a function of minor variations in alloy composition, may easily mask the intergranular corrosion components of the overall corrosion rate on alloys N10276, N06022, N06059, and N06455. 1.1.2 Method B, Mixed Acid-Oxidizing Salt Test (Sections 11-18, inclusive)—This test method describes the procedure for conducting a boiling 23 % sulfuric + 1.2 % hydrochloric + 1 % ferric chloride + 1 % cupric chloride test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to display a step function increa...

  2. Cobalt-chromium-molybdenum alloy causes metal accumulation and metallothionein up-regulation in rat liver and kidney

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Danscher, Gorm; Stoltenberg, Meredin;

    2007-01-01

    Cobalt-chromium-molybdenum (CoCrMo) metal-on-metal hip prosthesis has had a revival due to their excellent wear properties. However, particulate wear debris and metal ions liberated from the CoCrMo alloys might cause carcinogenicity, hypersensitivity, local and general tissue toxicity, genotoxicity...... and inflammation-generating qualities. Nine months after implanting small pieces of CoCrMo alloy intramuscularly and intraperitoneally in rats, we analysed the accumulation of metals with a multi-element analysis, and the levels of metallothionein I/II with real-time reverse transcriptase-polymerase chain reaction...... in liver and kidney. We found that metal ions are liberated from CoCrMo alloys and suggest that they are released by dissolucytosis, a process where macrophages causes the metallic surface to release metal ions. Animals with intramuscular implants accumulated metal in liver and kidney and metallohionein I...

  3. Stability of phosphonic self assembled monolayers (SAMs) on cobalt chromium (Co-Cr) alloy under oxidative conditions

    Science.gov (United States)

    Bhure, Rahul; Abdel-Fattah, Tarek M.; Bonner, Carl; Hall, Felicia; Mahapatro, Anil

    2011-04-01

    Cobalt chromium (Co-Cr) alloys have been widely used in the biomedical arena for cardiovascular, orthopedic and dental applications. Surface modification of the alloy allows us to tailor the interfacial properties to address critical challenges of Co-Cr alloy in medical applications. Self assembled monolayers (SAMs) of Octadecylphosphonic acid (ODPA) have been used to form thin films on the oxide layer of the Co-Cr alloy surface by solution deposition technique. The SAMs formed were investigated for their stability to oxidative conditions of ambient laboratory environment over periods of 1, 3, 7 and 14 days. The samples were then characterized for their stability using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and contact angle measurements. Detailed high energy XPS elemental scans confirmed the presence of the phosphonic monolayer after oxidative exposure which suggested that the SAMs were firmly attached to the oxide layer of Co-Cr alloy. AFM images gave topographical data of the surface and showed islands of SAMs on Co-Cr alloy surface, before and after SAM formation and also over the duration of the oxidative exposure. Contact angle measurements confirmed the hydrophobicity of the surface over 14 days. Thus the SAMs were found to be stable for the duration of the study. These SAMs could be subsequently tailored by modifying the terminal functional groups and could be used for various potential biomedical applications such as drug delivery, biocompatibility and tissue integration.

  4. Effect of chromium on the corrosion behaviour of powder-processed Fe–0·45 wt% P alloys

    Indian Academy of Sciences (India)

    Yashwant Mehta; Shefali Trivedi; K Chandra; P S Mishra

    2010-08-01

    The corrosion behaviour of Fe–0·45P with/without addition of chromium, prepared by powder forging route was studied in different environments. The corrosion studies in acidic (0·25 M H2SO4 solution of pH 0·6) and neutral/marine (3·5% NaCl solution of pH 6·8) solutions were conducted using Tafel Extrapolation method. The rate of corrosion in alkaline medium (0·5 M Na2CO3 + 1·0 M NaHCO3 solution of pH 9·4) was measured using linear polarization technique. The studies compare electrolytic Armco iron with Fe–P alloys. It was observed that, chromium improved the resistance to corrosion in acidic and marine environments. The corrosion rates were minimal in alkaline medium and low in neutral solution.

  5. Effect of oxidation heat treatment on the bond strength between a ceramic and cast and milled cobalt-chromium alloys.

    Science.gov (United States)

    Li, Jieyin; Ye, Xiuhua; Li, Bohua; Liao, Juankun; Zhuang, Peilin; Ye, Jiantao

    2015-08-01

    There is a dearth of dental scientific literature on the effect of different oxidation heat treatments (OHTs) (as surface pretreatments) on the bonding performance of cast and milled cobalt-chromium (CoCr) alloys. The objective of this study was to evaluate the effect of different OHTs on the bond strength between a ceramic and cast and milled CoCr alloys. Cobalt-chromium metallic specimens were prepared using either a cast or a milled method. Specimens were subjected to four different OHT methods: without OHT; OHT under normal atmospheric pressure; OHT under vacuum; and OHT under vacuum followed by sandblasting. The metal-ceramic bond strength was evaluated using a three-point bending test according to ISO9693. Scanning electron microscopy and energy-dispersive spectroscopy were used to study the specimens' microstructure and elemental composition. The bond strength was not affected by the CoCr manufacturing method. Oxidation heat treatment performed under normal atmospheric pressure resulted in the highest bond strength. The concentration of oxygen on the alloy surfaces varied with the different pretreatment methods in the following order: OHT under normal atmospheric pressure > OHT under vacuum > without OHT ≈ OHT under vacuum followed by sandblasting. PMID:26104804

  6. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks. PMID:23858281

  7. Effect of cleanser solutions on the color of acrylic resins associated with titanium and nickel-chromium alloys.

    Science.gov (United States)

    Freitas Oliveira Paranhos, Helena de; Bezzon, Osvaldo Luiz; Davi, Letícia Resende; Felipucci, Daniela Nair Borges; Silva, Cláudia Helena Lovato da; Pagnano, Valéria Oliveira

    2014-01-01

    This study evaluated the effect of cleanser solutions on the color of heat-polymerized acrylic resin (HPAR) and on the brightness of dental alloys with 180 immersion trials. Disk-shaped specimens were made with I) commercially pure titanium, II) nickel-chromium-molybdenum-titanium, III) nickel-chromium molybdenum, and IV) nickel-chromium-molybdenum beryllium. Each cast disk was invested in the flasks, incorporating the metal disk into the HPAR. The specimens (n=5) were then immersed in solutions containing: 0.05% sodium hypochlorite, 0.12% chlorhexidine digluconate, 0.500 mg cetylpyridinium chloride, a citric acid tablet, one of two different sodium perborate/enzyme tablets, and water. The color measurements (∆E) of the HPAR were determined by a colorimeter in accordance with the National Bureau of Standards. The surface brightness of the metal was visually examined for the presence of tarnish. The results (ANOVA; Tukey test-α=0.05) show that there was a significant difference between the groups (p<0.001) but not among the solutions (p=0.273). The highest mean was obtained for group III (5.06), followed by group II (2.14). The lowest averages were obtained for groups I (1.33) and IV (1.35). The color changes in groups I, II and IV were slight but noticeable, and the color change was considerable for group III. The visual analysis showed that 0.05% sodium hypochlorite caused metallic brightness changes in groups II and IV. It can be concluded that the agents had the same effect on the color of the resin and that the metallic alloys are not resistant to the action of 0.05% sodium hypochlorite.

  8. Effect of cleanser solutions on the color of acrylic resins associated with titanium and nickel-chromium alloys

    Directory of Open Access Journals (Sweden)

    Helena de Freitas Oliveira Paranhos

    2014-06-01

    Full Text Available This study evaluated the effect of cleanser solutions on the color of heat-polymerized acrylic resin (HPAR and on the brightness of dental alloys with 180 immersion trials. Disk-shaped specimens were made with I commercially pure titanium, II nickel-chromium-molybdenum-titanium, III nickel-chromium molybdenum, and IV nickel-chromium-molybdenum beryllium. Each cast disk was invested in the flasks, incorporating the metal disk into the HPAR. The specimens (n = 5 were then immersed in solutions containing: 0.05% sodium hypochlorite, 0.12% chlorhexidine digluconate, 0.500 mg cetylpyridinium chloride, a citric acid tablet, one of two different sodium perborate/enzyme tablets, and water. The color measurements (∆E of the HPAR were determined by a colorimeter in accordance with the National Bureau of Standards. The surface brightness of the metal was visually examined for the presence of tarnish. The results (ANOVA; Tukey test-α = 0.05 show that there was a significant difference between the groups (p < 0.001 but not among the solutions (p = 0.273. The highest mean was obtained for group III (5.06, followed by group II (2.14. The lowest averages were obtained for groups I (1.33 and IV (1.35. The color changes in groups I, II and IV were slight but noticeable, and the color change was considerable for group III. The visual analysis showed that 0.05% sodium hypochlorite caused metallic brightness changes in groups II and IV. It can be concluded that the agents had the same effect on the color of the resin and that the metallic alloys are not resistant to the action of 0.05% sodium hypochlorite.

  9. Current Developments of Alloyed Steels for Hot Strip Roughing Mills : Characterization of High-Chromium Steel and Semi-High Speed Steel

    OpenAIRE

    LECOMTE-BECKERS, Jacqueline; Sinnaeve, Mario; Tchuindjang, Jérôme Tchoufack

    2012-01-01

    Two alloys grades for work rolls used in the roughing stand of Hot Strip Mill - high chromium steel (HCS) and semi-high-speed steel (semi-HSS), In this paper, the new semi-high-speed steel grade is studied

  10. Influence of alloying elements and nitrogen content on deformation resistance of chromium-nickel stainless steels

    International Nuclear Information System (INIS)

    Four groups of steels with a type Kh20N15 matrix differing in the contents of nitrogen and additional alloying element (Cu, Si, V or Nb) were studied for the influence of the alloying system on deformation resistance in hot rolling. The one-pass rolling was carried out at 900, 1000, 1100 and 1200 deg C with 20, 40 and 60 % reductions. Experimental data statistical processing showed that vanadium alloying results in a sharp increase of nitrogen content influence comparable with strain hardening. The hardening effect in copper- and silicon-containing alloys almost is independent of nitrogen concentration. Niobium-containing alloys lie between two above mentioned groups

  11. Improvement of Corrosion Resistance of Binary Mg-Ca Alloys Using Duplex Aluminum-Chromium Coatings

    Science.gov (United States)

    Daroonparvar, Mohammadreza; Yajid, Muhamad Azizi Mat; Yusof, Noordin Mohd; Bakhsheshi-Rad, Hamid Reza; Adabi, Mohsen; Hamzah, Esah; Kamali, Hussein Ali

    2015-07-01

    Al-AlCr was coated on Mg-Ca and Mg-Zn-Ce-La alloys using physical vapor deposition method. The surface morphology of the specimens was characterized by x-ray diffraction, scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and atomic force microscopy (AFM). The AFM results indicated that the average surface roughness of Al-AlCr coating on the Mg-Ca alloy is much lower than that of Al-AlCr coating on the Mg-Zn-Ce-La alloy. However, Al-AlCr coating on the Mg-Ca alloy presented a more compact structure with fewer pores, pinholes, and cracks than Al-AlCr coating on the Mg-Zn-Ce-La alloy. Electrochemical studies revealed that the novel coating (Al-AlCr) can remarkably reduce the corrosion rate of the Mg-Ca alloy in 3.5 wt.% NaCl solution. It was seen that the anodic current density of the Al-AlCr-coated Mg-Ca alloy was very small when compared to the Al-AlCr-coated Mg-Zn-Ce-La and uncoated alloys. Impedance modulus ( Z) of the Al-AlCr-coated samples was higher than that of the bare Mg alloys. Z of Al-AlCr-coated Mg-Ca alloy was higher than that of the Al-AlCr-coated Mg-Zn-Ce-La alloy at low frequency.

  12. Effect of substitution of chromium for manganese on structure discharge characteristics of Ti-Zr-V-Mn-Ni-type multi-phase hydrogen storage electrode alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.Y. [Qingdao Inst. of Architecture Engineering (China). Dept. of Mechanical Engineering; Xu, Y.H. [Tsing Hua Univ., Beijing (China). Dept. of Chemical Engineering; Pan, H.G.; Wang, Q.D. [Zhejiang Univ., Hangzhou (China). Dept. of Material Science and Engineering

    2003-05-01

    In this paper the structure and discharge characteristics of Ti{sub 0.8}Zr{sub 0.2}V{sub 1.6}Mn{sub 0.8-x}Cr{sub x}Ni{sub 0.6} (0 <= x <= 0.64) hydrogen storage annealed electrodes are studied by the use of electrochemical techniques, XPS, XRD and EDS in detail. The results have shown that the organization of alloys is made up of dispersed branch crystals and continuous base body structure. With increase of the quantity of substitution of chromium for manganese, the branch crystals become coarser. Their phase structures are the compound phases of C14 Laves phase and b.c.c. phase, rich in vanadium. Substitution influences the parameters of lattice of the alloys. The quantity of vanadium in b.c.c. phase is the highest. The maximal capacity of the alloy is 545 mAh/g. The activation of alloys is very easy but the cycle property is rather poor. With increase of the quantity of substitution of chromium for manganese, the property deterioration decreases clearly but the maximal capacity decreases apparently too. Further, the studies of XPS have shown that the restrain effect of chromium substitution on property deterioration of alloys is due to the decrease of oxygenation and surface segregation of titanium, zirconium and vanadium.(author)

  13. Studies on the process aspects related to chemical decontamination of chromium-containing alloys with redox processes

    International Nuclear Information System (INIS)

    Presence of chromium in the oxide layer makes oxidative pre-treatment with oxidizing agents such as potassium permanganate (KMnO4) a must for the decontamination of stainless steels and other chromium containing alloys. The effectiveness of pre-treatment with oxidizing reagent varies with the conditions of treatment such as temperature, concentration and whether the medium is acidic or alkaline. A comparative study of the two acidic oxidizing agents, i.e., nitric acid-permanganate and permanganic acid was made. The dissolution behavior of copper and its oxide in permanganic acid was found to be comparable to that of chromium oxide. Citric acid and ascorbic acid were investigated as alternatives to oxalic acid for the reduction/decomposition of permanganate left over after the oxidizing pre-treatment step. It has been established that the reduction of chromate by citric acid is instantaneous only in presence of Mn2+ ions. It has also been established that reduction of residual permanganate can be achieved with ascorbic acid and with minimum chemical requirement. The capabilities of nitrilotriacetic acid (NTA)-ascorbic acid mixture for the dissolution of hematite have been explored. This study would help to choose the suitable oxidizing agent, the reducing agent used for decomposition of permanganate and to optimize the concentration of reducing formulation so that the process of decontamination is achieved with a minimum requirement of chemicals. The generation of radioactive ion exchange resin as waste is therefore held at a minimum. Ion exchange studies with metal ion complexes of relevance to decontamination were carried out with a view to choose a suitable type of ion exchanger. It has been established that treatment of the ion exchange resin with brine solution can solve the problem of leaching out of non-ionic organics from the resin. (orig.)

  14. Transmission electron microscope study of fusion-environment radiation damage in iron and iron-chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Horton, L.L.S.

    1982-07-01

    A transmission electron microscopy study of radiation damage microstructures in iron and iron-chromium alloys has been performed. This study consisted of both qualitative and quantitative characterization of the dislocation and cavity microstructures, including determination of vacancy/interstitial character and Burgers vectors for dislocation loops and analysis of the cavity morphology. The effects of irradiation temperature, fluence, helium implantation, and chromium content were investigated. Neutron irradiation (iron specimens, 1 dpa, 455 to 1000 K) and triple-beam ion irradiation (Fe-10% Cr specimens, 10 dpa, 725 to 950 K; Fe-10% Cr specimens, 850 K, 0.3 to 100 dpa; and Fe, Fe-5% Cr, Fe-10% Cr specimens, 850 K, 10 dpa) were employed. In the triple-beam ion irradiation procedure, simultaneous bombardment with 4 MeV Fe/sup + +/ ions and energetic He/sup +/ and D/sub 2//sup +/ ions was used to simulate the fusion environment (10 at. ppM He/dpa and 41 at. ppM D/dpa). In addition, single-beam 4 MeV Fe/sup + +/ ion irradiations of Fe-10% Cr both with and without pre-injection of helium and deuterium were performed.

  15. Transmission electron microscope study of fusion-environment radiation damage in iron and iron-chromium alloys

    International Nuclear Information System (INIS)

    A transmission electron microscopy study of radiation damage microstructures in iron and iron-chromium alloys has been performed. This study consisted of both qualitative and quantitative characterization of the dislocation and cavity microstructures, including determination of vacancy/interstitial character and Burgers vectors for dislocation loops and analysis of the cavity morphology. The effects of irradiation temperature, fluence, helium implantation, and chromium content were investigated. Neutron irradiation (iron specimens, 1 dpa, 455 to 1000 K) and triple-beam ion irradiation (Fe-10% Cr specimens, 10 dpa, 725 to 950 K; Fe-10% Cr specimens, 850 K, 0.3 to 100 dpa; and Fe, Fe-5% Cr, Fe-10% Cr specimens, 850 K, 10 dpa) were employed. In the triple-beam ion irradiation procedure, simultaneous bombardment with 4 MeV Fe++ ions and energetic He+ and D2+ ions was used to simulate the fusion environment (10 at. ppM He/dpa and 41 at. ppM D/dpa). In addition, single-beam 4 MeV Fe++ ion irradiations of Fe-10% Cr both with and without pre-injection of helium and deuterium were performed

  16. Health implication among occupational exposed workers in a chromium alloy factory,Thailand

    Institute of Scientific and Technical Information of China (English)

    S. Muttamara; Shing Tet Leong

    2004-01-01

    This study was conducted to assess the occupational exposure and its health impact on the chromium alloyworkers. Environmental and biological monitoring, noise and audiometry measurements were done to evaluate theexposure levels in the factory. A total of 112 non-smoking workers were monitored from July 2001 to August 2002.The results showed that most of the chromium and lead exposures in the factory were below the ACGIH-TWA of 50μg/m3 for chromium( Ⅵ ) and OSHA-PEL of 50 μg/m3 for lead. The highest chromium(7.25 ± 0. 16 μg/m3 ) and lead(14.50 ± 0.29 μg/m3) concentrations were measured in the vibro room. The results indicated that elevatedconcentrations of chromium and lead were found in both blood and urine samples especially in those areas whichwere characterized by poor ventilation. The metal contents in blood and urine samples were significantly correlatedwith airborne metal concentrations in the factory. The result demonstrated that blood and urinary levels amongworkers were associated with increasing age and duration of exposure.The background noise level of the factory ranged from 67.6 to 89.2 dBA and was frequently higher than thethreshold limit value for noise(90 dBA). According to the audiometric test, the exposed workers showed signs ofnoise-induced hearing loss. Noise at work continued to be an important factor to hearing loss among exposedworkers. In our statistical analysis, a significant hearing loss was established on age effect and year of exposureamong the workforce.

  17. Effect of selective laser melting deposition cobalt chromium alloy porcelain crown restoration on related molecule contents in serum and gingival crevicular fluid

    Institute of Scientific and Technical Information of China (English)

    Yu-Hua Wei; Lei Yang

    2015-01-01

    Objective:To study the effect of selective laser melting deposition cobalt chromium alloy porcelain crown restoration on contents of inflammatory cytokines and adhesion molecules in serum and gingival tissue.Methods:80 cases of patients who received cobalt chromium alloy porcelain crown restoration in our hospital from May 2013 to August 2014 were enrolled and randomly divided into two groups. Observation group received selective laser melting deposition cobalt chromium alloy porcelain crown restoration and control group received casting cobalt chromium metal porcelain crown restoration. Then contents of inflammatory cytokines and adhesion molecules in serum and gingival crevicular fluid of both groups were detected.Results: (1) Inflammatory cytokines: compared with serum inflammatory cytokine contents of control group, serum NF-κB, IL-6, IL-8, IL-1β, TNF-α and NO contents of observation group trended to decrease; (2) Adhesion molecules in gingival crevicular fluid: compared with adhesion molecule contents in gingival crevicular fluid of control group, mRNA contents of CD11a, CD18, LFA-1, E-selectin and P-selectin in gingival crevicular fluid of observation group trended to decrease; (3) Adhesion molecules in serum: compared with adhesion molecule contents in serum of control group, sICAM-1 and sVCAM-1 contents in serum of observation group were lower.Conclusion: Selective laser melting deposition cobalt chromium alloy porcelain crown restoration is helpful to relieve inflammatory response of gingival tissue, with expression of decreased generation of inflammatory cytokines and adhesion molecules; it’s an ideal material for crown restoration.

  18. Microstructure Evaluation and Wear-Resistant Properties of Ti-alloyed Hypereutectic High Chromium Cast Iron

    OpenAIRE

    Liu, Qiang

    2013-01-01

    High chromium cast iron (HCCI) is considered as one of the most useful wear resistance materials and their usage are widely spread in industry. The mechanical properties of HCCI mainly depend on type, size, number, morphology of hard carbides and the matrix structure (γ or α). The hypereutectic HCCI with large volume fractions of hard carbides is preferred to apply in wear applications. However, the coarser and larger primary M7C3 carbides will be precipitated during the solidification of the...

  19. The three dimensional distribution of chromium and nickel alloy welding fumes.

    Directory of Open Access Journals (Sweden)

    Takeoka,Kiyoshi

    1991-08-01

    Full Text Available In the present study, the fumes generated from manual metal arc (MMA and submerged metal arc (SMA welding of low temperature service steel, and the chromium and nickel percentages in these fumes, were measured at various horizontal distances and vertical heights from the arc in order to obtain a three dimensional distribution. The MMA welding fume concentrations were significantly higher than the SMA welding fume concentrations. The highest fume concentration on the horizontal was shown in the fumes collected directly above the arc. The fume concentration vertically was highest at 50 cm height and reduced by half at 150 cm height. The fume concentration at 250 cm height was scarcely different from that at 150 cm height. The distribution of the chromium concentration vertically was analogous to the fume concentration, and a statistically significant difference in the chromium percentages was not found at the different heights. The nickel concentrations were not statistically significant within the welding processes, but the nickel percentages in the SMA welding fumes were statistically higher than in the MMA welding fumes. The highest nickel concentration on the horizontal was found in the fumes collected directly above the arc. The highest nickel concentration vertically showed in the fume samples collected at 50 cm height, but the greater the height the larger the nickel percentage in the fumes.

  20. An invitro analysis of elemental release and cytotoxicity of recast nickel-chromium dental casting alloys.

    Science.gov (United States)

    Reddy, Nagam Raja; Abraham, Anandapandian Ponsekar; Murugesan, Krishnan; Matsa, Vasanthakumar

    2011-06-01

    Recasting of the casting alloys affects the composition and elemental release which may have cytotoxic effect different from the pure alloy in the surrounding tissues. An Invitro study was conducted to investigate the elemental release and their cytotoxic effects from commercially available Ni-Cr dental casting alloys, commonly used for fabricating fixed partial dentures. Three Ni-Cr alloys [Wiron 99(A), Ceramet (B), and Hi Nickel CB (C)] were tested. Alloy specimens (disks 3 × 5 mm) were casted and grouped as follows: Group I (A(1)/B(1)/C(1)): 100% pure alloy; Group II (A(2)/B(2)/C(2)): 50% new with 50% recast; and Group III (A(3)/B(3)/C(3)): 100% recast. Disks of each alloy type from each group were transferred to Dulbecco's modified eagle medium and left for 3 days at 37°C in an atmosphere of 5% CO(2). Ni, Cr, Co, Cu and Mo elemental release from metal alloys into culture medium was investigated using Inductively Coupled Plasma Mass Spectrometry. Cytotoxicity was tested using mouse fibroblast cells and MTT Assay. Controls consisted of 6 wells containing cells with no alloy specimens. Data were analyzed by two-way analysis of variance followed by t-test. The total amount of elements released in parts per billion for various casting groups were Group I, A(1)-6.572, B(1)-6.732, C(1)-8.407; Group II, A(2)-22.046, B(2)-26.450, C(2)-29.189; Group III, A(3)-84.554, B(3)-88.359, C(3)-92.264. More amounts of elements were released in Hi Nickel CB than Ceramet and Wiron 99 in all the three test groups. Percentage of viable cells from MTT analysis were Group I, A(1)-62.342, B(1)-61.322 C(1)-60.593, Group II, A(2)-58.699, B(2)-56.494, C(2)-52.688, Group III, A(3)-53.101, B(3)-52.195, C(3)-47.586. The viable cells present in the culture media were more in Wiron 99 than Ceramet and Hi Nickel CB. Elemental release increased with amount of recast alloy. Amongst the three alloys tested Hi Nickel CB had significantly higher elements released compared to Ceramet and Wiron 99

  1. Effect of cold working on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    In order to grasp the stress corrosion cracking resistance of cold worked nickel base alloys in PWR primary water, the effect of cold working on the stress corrosion cracking resistance of alloys 600, X-750 and 690, in high temperature water, have been studied. Stress corrosion cracking tests were conducted at 3600C (633K) in a simulated PWR primary water for about 12,000 hours (43.2Ms). From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked alloys of thermally treated 690 and X-750 have excellent stress corrosion cracking resistance. (Author)

  2. Niobium and chromium rich coatings tailored by laser alloying: XRD analysis at high temperatures

    OpenAIRE

    Adilson Rodrigues da Costa; Aldo Craievich; Rui Vilar

    2004-01-01

    Laser treatment technologies have been widely used to modify superficial layers of different materials. In this work we prepare Nb and Cr rich coatings according to laser alloying technique using cast iron as substrate material. Nb and Cr are intensive used in order to overcome challenges like good chemical and mechanical performance at high temperatures. Following laser alloying the surface-modified samples were submitted to an "in situ" XRD analysis under controlled high temperature and atm...

  3. SECM Study of Effect of Chromium Content on the Localized Corrosion Behavior of Low-Alloy Steels in Chloride Environment

    Science.gov (United States)

    Indira, K.; Nishimura, T.

    2016-10-01

    This paper investigates the effect of chromium (Cr) content (0, 1, 3 and 5% Cr) in epoxy-coated alloy steel against corrosion using in situ electrochemical techniques such as EIS and SECM in a 3% NaCl solution. The EIS results revealed that the epoxy-coated Cr steel exhibited higher impedance values than carbon steel, which is attributed to the greater resistance of Cr steel toward corrosion. Based on the cyclic voltammogram results, the tip potentials were set at -0.7, 0.04 and 0.60 V for determining the concentration of dissolved oxygen at cathodic region, and oxidation of Cr2+ and Fe2+ at anodic region, respectively. The SECM measurements showed that, the tip current in the anodic region has decreased with increase in Cr content of the sample, which indicates that the oxidation of Fe2+ and Cr2+ decreases (corrosion is reduced) with the increase in Cr content of the steel. Besides, 5% Cr steel can maintain the highest corrosion resistance, and 1 and 3% Cr steels have higher corrosion resistance than the 0% Cr steel. This higher corrosion resistance of Cr steel samples could be due to the formation of Cr-rich hydro-oxide layers [Cr(OH)3 as a corrosion product] on the surface of the samples. Thus, the epoxy-coated Cr alloy steel has greater corrosion resistance in a chloride-containing environment than the carbon steel. Hence, epoxy-coated Cr alloy steel can be successfully used as a construction material in structures.

  4. Study of the quenching and subsequent return to room temperature of uranium-chromium, uranium-iron, and uranium-molybdenum alloys containing only small amounts of the alloying element

    International Nuclear Information System (INIS)

    By means of an apparatus which makes possible thermal pre-treatments in vacuo, quenching carried out in a high purity argon atmosphere, and simultaneous recording of time temperature cooling and thermal contraction curves, the author has examined the transformations which occur in uranium-chromium, uranium-iron and uranium-molybdenum alloys during their quenching and subsequent return to room temperature. For uranium-chromium and uranium-iron alloys, the temperature at which the γ → β transformation starts varies very little with the rate of cooling. For uranium-molybdenum alloys containing 2,8 atom per cent of Mo, this temperature is lowered by 120 deg. C for a cooling rate of 500 deg. C/mn. The temperature at which the β → α transformation starts is lowered by 170 deg. C for a cooling rate of 500 deg. C/mn in the case of uranium-chromium alloy containing 0,37 atom per cent of Cr. The temperature is little affected in the case of uranium-iron alloys. The addition of chromium or iron makes it possible to conserve the form β at ordinary temperatures after quenching from the β and γ regions. The β phase is particularly unstable and changes into needles of the α form even at room temperatures according to an autocatalytic transformation law similar to the austenitic-martensitic transformation law in the case of iron. The β phase obtained by quenching from the β phase region is more stable than that obtained by quenching from the γ region. Chromium is a more effective stabiliser of the β phase than is iron. Unfortunately it causes serious surface cracking. The β → α transformation in uranium-chromium alloys has been followed at room temperature by means of micro-cinematography. The author has not observed the direct γ → α transformation in uranium-molybdenum alloys containing 2,8 per cent of molybdenum even for cooling rates of up to 2000 deg. C/s. He has however observed the formation of several martensitic structures. (author)

  5. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E. [KMI Energy Services, Livermore, CA (United States)

    1991-03-01

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H{sub 2}S and CO{sub 2}) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering.

  6. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    International Nuclear Information System (INIS)

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H2S and CO2) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering

  7. Niobium and chromium rich coatings tailored by laser alloying: XRD analysis at high temperatures

    Directory of Open Access Journals (Sweden)

    Costa Adilson Rodrigues da

    2004-01-01

    Full Text Available Laser treatment technologies have been widely used to modify superficial layers of different materials. In this work we prepare Nb and Cr rich coatings according to laser alloying technique using cast iron as substrate material. Nb and Cr are intensive used in order to overcome challenges like good chemical and mechanical performance at high temperatures. Following laser alloying the surface-modified samples were submitted to an "in situ" XRD analysis under controlled high temperature and atmosphere. The phase transitions registered point to transformations that do not implies formation of fragile phases or cracks induced by high volumes modifications.

  8. Pressure vessel code construction capabilities for a nickel-chromium-tungsten-molybdenum alloy

    International Nuclear Information System (INIS)

    HAYNES alloy 230 (UNS NO6230) has achieved wide usage in a variety of high-temperature aerospace, chemical process industry and industrial heating applications since its introduction in 1981. Combining high elevated temperature strength with excellent metallurgical stability, environment-resistance and relatively straight forward fabrication characteristics, this Ni-Cr-W-Mo alloy was an excellent candidate for ASME Pressure vessel Code applications. Coverage under case No. 2063 was granted in July, 1989, for both Section I and Section VIII Division 1 construction. In this paper, the metallurgy of 230 alloy will be described, and its design strength capabilities contrasted with those for more established code materials. Other important performance capabilities, such as long-term thermal stability, oxidation-resistance, fatigue-resistance, and resistance to other forms of environmental degradation will be discussed. It will be shown that the combined properties of 230 alloy offer some significant advantages over other materials for applications such as expansion bellows, heat-exchangers, valves and other components in the fossil energy, nuclear energy and chemical process industries, among others

  9. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Santa Coloma, P., E-mail: patricia.santacoloma@tecnalia.com [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J. [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Lapeña, N. [Boeing Research & Technology Europe, S.L.U., Avenida Sur del Aeropuerto de Barajas 38, Building 4 – 3rd Floor, E-28042 Madrid (Spain)

    2015-08-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  10. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T. [VTT Manufacturing Technology, Espoo (Finland)

    1999-01-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  11. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    Directory of Open Access Journals (Sweden)

    Christian Schröder

    2015-01-01

    Full Text Available Retropatellar complications after total knee arthroplasty (TKA such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics.

  12. Early Fixation of Cobalt-Chromium Based Alloy Surgical Implants to Bone Using a Tissue-engineering Approach

    Directory of Open Access Journals (Sweden)

    Yasuaki Tohma

    2012-05-01

    Full Text Available To establish the methods of demonstrating early fixation of metal implants to bone, one side of a Cobalt-Chromium (CoCr based alloy implant surface was seeded with rabbit marrow mesenchymal cells and the other side was left unseeded. The mesenchymal cells were further cultured in the presence of ascorbic acid, β-glycerophosphate and dexamethasone, resulting in the appearance of osteoblasts and bone matrix on the implant surface. Thus, we succeeded in generating tissue-engineered bone on one side of the CoCr implant. The CoCr implants were then implanted in rabbit bone defects. Three weeks after the implantation, evaluations of mechanical test, undecalcified histological section and electron microscope analysis were performed. Histological and electron microscope images of the tissue engineered surface exhibited abundant new bone formation. However, newly formed bone tissue was difficult to detect on the side without cell seeding. In the mechanical test, the mean values of pull-out forces were 77.15 N and 44.94 N for the tissue-engineered and non-cell-seeded surfaces, respectively. These findings indicate early bone fixation of the tissue-engineered CoCr surface just three weeks after implantation.

  13. An organic-reagent-free method for determination of chromium(VI) in steel alloys, sewage sludge and wastewater.

    Science.gov (United States)

    Fan, Jing; Sun, Yuping; Wang, Jianji; Fan, Maohong

    2009-04-27

    One of the active areas of green chemistry research and development is in the development of new analytical methods and techniques that reduce and eliminate the use and generation of hazardous substances. In this work, a rapid and organic-reagent-free method was developed for the determination of chromium(VI) by sequential injection analysis (SIA). The method was based on the detection of a blue unstable intermediate compound resulting from the reaction of Cr(VI) with hydrogen peroxide (H(2)O(2)) in acidic medium. H(2)O(2) and its reaction products were environmentally friendly, and chromogenic reagents and organic solvents were not used in the proposed method. Different SIA parameters have been optimized and used to obtain the analytical figures of merit. Under the optimum experimental conditions, the linear range for Cr(VI) was 0.5-100.0 microg mL(-1), and the detection limit was 0.16 microg mL(-1). The sample throughput was 80 h(-1), and the total volume of only 145 microL was consumed in each determination of Cr(VI). The method was applied for the determination of Cr(VI) in seven real samples, including alloy steel, sewage sludge and wastewater samples, and the results were compared with those obtained by atomic absorption spectrometry as well as with the certified value of Cr(VI) in standard reference material. Statistical analysis revealed that there was no significant difference at 95% confidence level. PMID:19362620

  14. Tensile and pack compressive tests of some sheets of aluminum alloy, 1025 carbon steel, and chromium-nickel steel

    Science.gov (United States)

    Atchison, C S; Miller, James A

    1942-01-01

    Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength.

  15. Vacuum-arc chromium coatings for Zr-1%Nb alloy protection against high-temperature oxidation in air

    International Nuclear Information System (INIS)

    The effect of vacuum-arc Cr coatings on the alloy E110 resistance to the oxidation in air at temperatures 1020 and 1100 deg C for 3600 s has been investigated. The methods of scanning electron microscope, X-ray analysis and nanoindentation were used to determine the thickness, phase, mechanical properties of coatings and oxide layers. The results show that the chromium coating can effectively protect fuel tubes against high-temperature oxidation in air for one hour. In the coating during oxidation at T = 1100 deg C a Cr2O3 oxide layer of 5 μm thickness is formed preventing further oxygen penetration into the coating, and thus the tube shape is conserved. Under similar test conditions the oxidation of uncoated tubes with formation of a porous monocline oxide of ZrO2 of a thickness more than ≥ 250 μm is observed, then the deformation and cracking of samples occur and the oxide layer breaks away

  16. Material composition and nuclear data libraries' influence on nickel-chromium alloys activation evaluation: a comparison with decay heat experiments

    International Nuclear Information System (INIS)

    The paper presents the activation analyses on Inconel-600 nickel-chromium alloy. Three activation data libraries, namely the EAF-4.1, the EAF-97 and the FENDL/A-2, and the FENDL/D-2 decay data library, have been used to perform the calculation with the European activation code ANITA-4/M. The neutron flux distribution into the material samples was provided by JAERI as results of 3D Monte-Carlo MCNP transport code experiment simulation. A comparison with integral decay heat measurement performed at the Fusion Neutronics Source (FNS), JAERI, Tokai, Japan, is used to validate the computational approach. The calculation results are given and discussed. The impact of the material composition, including impurities, on the decay heat of samples irradiated in fusion-like neutron spectra is assessed and discussed. The discrepancies calculations-experiments are within the experimental errors, that is between 6% and 10%, except for the short cooling times (less than 40 min after the end of irradiation). To improve calculation consistency with the experimental results, the knowledge of the material impurities content is mandatory

  17. Material composition and nuclear data libraries' influence on nickel-chromium alloys activation evaluation: a comparison with decay heat experiments

    CERN Document Server

    Cepraga, D G

    2000-01-01

    The paper presents the activation analyses on Inconel-600 nickel-chromium alloy. Three activation data libraries, namely the EAF-4.1, the EAF-97 and the FENDL/A-2, and the FENDL/D-2 decay data library, have been used to perform the calculation with the European activation code ANITA-4/M. The neutron flux distribution into the material samples was provided by JAERI as results of 3D Monte-Carlo MCNP transport code experiment simulation. A comparison with integral decay heat measurement performed at the Fusion Neutronics Source (FNS), JAERI, Tokai, Japan, is used to validate the computational approach. The calculation results are given and discussed. The impact of the material composition, including impurities, on the decay heat of samples irradiated in fusion-like neutron spectra is assessed and discussed. The discrepancies calculations-experiments are within the experimental errors, that is between 6% and 10%, except for the short cooling times (less than 40 min after the end of irradiation). To improve calcul...

  18. Electrical conductivity and phase diagram of binary alloys. 21: The system palladium-chromium

    Science.gov (United States)

    Grube, G.; Knabe, R.

    1985-01-01

    Pd-Cr alloys were investigated by thermal analysis, hardness measurements, X-ray analysis, microscopic examination of etched pieces, and temperature-resistance curves of the solid alloys. Only one compound, Pd2Cr3, m, 1389 deg, is formed. It possesses a cubic face centered lattice and forms with excess Pd a series of solid solutions with a minimum m.p. at 45 atoms% Pd. Hardness maximum appears at the Pd2Cr3 point. Pd2Cr3 forms no solid solutions with Cr but eutectic point appears at 25 atoms% Pd, m. 1320 deg. The sp. resistance of pure Cr in an atom of H, indicates no allotropic forms. Cr2O3 is solid in molten Cr. Pure Cr melts at 1890 plus or minus 10 deg but Cr contg. Cr2O3 starts to melt at 1770 to 1790 deg.

  19. Studies of oxide reduction and nitrogen uptake in sintering of chromium-alloyed steel powder

    OpenAIRE

    Bergman, Ola

    2008-01-01

    The powder metallurgy (PM) process route is very competitive for mass production of structural steel components with complex shape, due to efficient material utilisation, low energy consumption, and short overall production time. The most commonly used alloying elements are the processing friendly metals Cu, Ni and Mo. However, the prices for these metals are today high and volatile, which threatens to make the PM process less competitive compared to conventional metal forming processes. Cons...

  20. An investigation on corrosion protection of chromium nitride coated Fe-Cr alloy as a bipolar plate material for proton exchange membrane fuel cells

    Science.gov (United States)

    Pan, T. J.; Zhang, B.; Li, J.; He, Y. X.; Lin, F.

    2014-12-01

    The corrosion properties of chromium nitride (CrN) coating are investigated to assess the potential use of this material as a bipolar plate for proton exchange membrane fuel cells (PEMFCs). Conductive metallic ceramic CrN layers are firstly deposited onto Fe-Cr alloy using a multi-arc ion plating technique to increase the corrosion resistance of the base alloy. Electrochemical measurements indicate that the corrosion resistance of the substrate alloy is greatly enhanced by the CrN coating. The free corrosion potential of the substrate is increased by more than 50 mV. Furthermore, a decrease in three orders of magnitude of corrosive current density for the CrN-coated alloy is observed compared to the as-received Fe-Cr alloy. Long-term immersion tests show that the CrN layer is highly stable and effectively acts as a barrier to inhibit permeation of corrosive species. On the contrary, corrosion of the Fe-Cr alloy is rather severe without the protection of CrN coating due to the active dissolution. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion process of the CrN/Fe-Cr alloy submerged in a simulated PEMFCs environment.

  1. The chromium doping of Ni3Fe alloy and restructuring of grain boundary ensemble at the phase transition A1→L12

    Science.gov (United States)

    Perevalova, Olga; Konovalova, Elena; Koneva, Nina; Kozlov, Eduard

    2016-01-01

    The grain boundary structure of the Ni3(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L12. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L12 in the Ni3(Fe,Cr) alloy are determined by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping.

  2. The chromium doping of Ni{sub 3}Fe alloy and restructuring of grain boundary ensemble at the phase transition A1→L1{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Perevalova, Olga [Institute of Strength Physics and Material Science, Siberian Division of the Russian Academy of Sciences, Akademicheskii Av., 2/4, Tomsk, 634021 (Russian Federation); Konovalova, Elena, E-mail: knv123@yandex.ru [Surgut State University, Lenina Av., 1, Surgut, 628400 (Russian Federation); Koneva, Nina; Kozlov, Eduard [Tomsk State University of Architecture and Building, Solyanaya Sq., 2, Tomsk, 634003 (Russian Federation)

    2016-01-15

    The grain boundary structure of the Ni{sub 3}(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L1{sub 2}. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L1{sub 2} in the Ni{sub 3}(Fe,Cr) alloy are determined by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping.

  3. Influence of alloying on phase precipitation of high chromium cast iron%合金化对高铬铸铁相析出的影响

    Institute of Scientific and Technical Information of China (English)

    李秀兰; 周新军; 谢文玲; 马幼平

    2015-01-01

    The chromium alloy was prepared from 2.8wt%carbon and 31.0wt%chromium by the additions of trace multi-alloying elements ( Ti, Nb, V, Mo) .The existence forms of Ti , Nb, V in multicomponent system were studied by calculation from the alloy thermodynamic consideration .The effect of additions of alloy elements on carbides precipitation behavior of high chromium cast iron was investigated .The results show that Ti and Nb exist in the multi-alloying system in forms of TiC and NbC during solidification .V element exists mainly in alloy compounds ( VCr2 C2 ,VCrFe8 ) .The first precipitated high melted point particles ( TiC, NbC) during cooling can act as the heterogeneous nuclei of M7C3 carbides, As a result, the increase of nucleation rate results in refined M 7C3 carbides morphology.However,the addition of excess alloy elements weakens the roles of M 7 C3 carbides refinement .%添加多元微量合金元素V、Ti、Nb和Mo到2.8C-31Cr合金中制备多元铬系合金,从合金热力学析出角度,通过计算分析Ti、V、Nb在多元体系中的存在方式,探讨添加的合金元素对高铬铸铁凝固组织中碳化物析出的影响。结果表明,Ti和Nb在高铬铸铁凝固过程中主要形成TiC和NbC,V主要存在于合金化合物VCr2 C2和VCrFe8中。先析出的TiC和NbC能充当碳化物异质形核基底,增加形核率使组织细化。但添加过量的合金元素却削弱了对碳化物的细化作用。

  4. Goldstone modes and low-frequency dynamics of incommensurate chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fishman, R.S. [Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6032 (United States); Liu, S.H. [Physics Department, University of California, San Diego, California 92093 (United States)

    1996-03-01

    This Letter reports the first solution for the low-energy spin excitations about the incommensurate spin-density-wave (SDW) state of pure Cr and Cr alloys. The Goldstone modes evolving from the magnetic satellites consist of transverse spin-wave modes and longitudinal phason modes, which are associated with the rotational and translational symmetries of the SDW state, respectively. The phason modes bend toward the zone boundary {ital H} between the satellites and produce the recently observed 60 meV peak in the longitudinal cross section at {ital H}. We also report a new class of collective excitation which is associated with oscillations of the SDW wave vector. {copyright} {ital 1996 The American Physical Society.}

  5. Internal damage processes in low alloy chromium-molybdenum steels during high-temperature creep service

    International Nuclear Information System (INIS)

    Results are presented of investigations on structure of low alloy Cr-Mo steels exhibiting internal damage after long-term creep service. It was demonstrated that intercrystalline cavitation cracks were the dominant factor in service damage of power station boiler components operating in creep regimes. Consecutive stages in development of internal damage involving intercrystalline cavitation cracking were discussed and illustrated by means of micrographs. The results seem to indicate that nucleation of creep cavities in materials under consideration is related to gain boundary slip. Evidence confirming the shear mechanism proposed by Sklenicka and Saxl for cavity coalescence was obtained. Occurrence of intercrystalline service cracking was demonstrated. Micrographs were used to illustrate wedge service nucleation modes on triple junctions depending on the direction of slip according to Change and Grant. A classification of internal damages in relation to life exhaustion was proposed for materials under consideration. A method used in industrial practice for evaluation and qualification of creep-damaged materials was presented. (author)

  6. The mechanical, electrochemical, and morphological characteristics of passivating oxide films covering cobalt-chromium-molybdenum alloys: A study of five microstructures

    Science.gov (United States)

    Megremis, Spiro John

    2001-07-01

    Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys possess a combination of properties that make them well suited for employment as biomaterials, such as high-strength and excellent wear and corrosion resistance. They receive this excellent corrosion resistance from passive oxide films which cover their surface. Because of the important role these oxide films play in protecting Co-Cr Mo alloys used in biological applications, there is a need to better understand them. This thesis investigated the structural and physical properties of the passivating oxide films covering Co-Cr Mo alloys with five different microstructures. The Co-Cr-Mo alloys were separated into the following groups: cast, wrought high carbon, wrought high carbon aged, forged high carbon, and forged low carbon. Electrochemical scratch tests were performed which provided information on the electrochemical kinetics of oxide fracture and repassivation for the different Co-Cr-Mo alloys. Furthermore, the stability and mechanical integrity of the oxide films covering the alloys were also evaluated. Step-polarization impedance spectroscopy tests were also performed on the different Co-Cr-Mo alloys, which provided valuable information about their electrochemical behavior when immersed in phosphate buffered saline (PBS) solution. For instance, it was observed that the corrosion properties of the different alloy types did not vary significantly with respect to the behavior of their individual polarization curves. Likewise, impedance values (maximum early resistance, maximum polarization resistance, and minimum capacitance) for the five alloy groups did not reveal any statistically meaningful differences. The similar passive electrochemical behavior of the five alloy groups suggests that the oxide films covering them were not significantly altered by changes in carbon content and processing. This research also showed that it was possible to monitor changes in the surface morphology of the cast Co-Cr-Mo alloys over a

  7. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    Science.gov (United States)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  8. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Science.gov (United States)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J. B.; Cano, F. J.; Lapeña, N.

    2015-08-01

    Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an oxidation process occurred in the vicinity of the alloy's intermetallic particles. The amount of the Zr deposits at these locations increased with coating's formulations without Ti, which provided the best corrosion resistance. The Cr-free conversion coatings developed in this study for the AA7075-T6 and AA2024-T3 alloys do not meet yet the strict requirements of the aircraft industry. However, they significantly improved the corrosion

  9. The Study of Heat Treatment Effects on Chromium Carbide Precipitation of 35Cr-45Ni-Nb Alloy for Repairing Furnace Tubes

    Directory of Open Access Journals (Sweden)

    Nakarin Srisuwan

    2016-01-01

    Full Text Available This paper presents a specific kind of failure in ethylene pyrolysis furnace tubes. It considers the case in which the tubes made of 35Cr-45Ni-Nb high temperature alloy failed to carburization, causing creep damage. The investigation found that used tubes became difficult to weld repair due to internal carburized layers of the tube. The microstructure and geochemical component of crystallized carbide at grain boundary of tube specimens were characterized by X-ray diffractometer (XRD, scanning electron microscopy (SEM with back-scattered electrons mode (BSE, and energy dispersive X-ray spectroscopy (EDS. Micro-hardness tests was performed to determine the hardness of the matrix and the compounds of new and used tube material. The testing result indicated that used tubes exhibited a higher hardness and higher degree of carburization compared to those of new tubes. The microstructure of used tubes also revealed coarse chromium carbide precipitation and a continuous carbide lattice at austenite grain boundaries. However, thermal heat treatment applied for developing tube weld repair could result in dissolving or breaking up chromium carbide with a decrease in hardness value. This procedure is recommended to improve the weldability of the 35Cr-45Ni-Nb used tubes alloy.

  10. Atomic scale modelling of chromium diffusion and melting in α-iron and iron-chromium alloys using high-temperature molecular dynamics simulation

    Science.gov (United States)

    Terentiev, Dmitri A.; Malerba, Lorenzo; Olsson, Par; Hou, Marc

    2004-04-01

    EAM interatomic potential to be used for radiation effect simulations in the Fe-Cr system has been recently proposed. In the present work, this potential is used to calculate by means of classical molecular dynamics (MD) the diffusivity of solute Cr atoms in Fe-12%Cr random alloy. Fe self-diffusivity is calculated as well, both in the alloy and in the pure metal, for comparison. In addition, the melting point for both the pure metal and the alloy, as predicted by the potential, has been determined and a comparison between the efficiency of vacancy and interstitial mechanisms for diffusion has been performed. This study allows the validity of the potential to be checked against experimental data outside its fitting range, while providing some insight into the description that this potential gives of irradiation effects. A correct prediction of the diffusivity of solute atoms at high temperature and the melting point are indeed an important pre-requisite for a correct prediction of ion mixing and point defect clustering within a displacement cascade during the thermal spike phase. The conclusion of the study is that the present potential is capable of reproducing with excellent accuracy both the diffusion coefficient and the melting point in Fe and in the Fe-Cr alloy. Atomic diffusion through interstitials is also seen to be a more efficient mechanism than through vacancies in the materials considered.

  11. Comparison of Repairing Effect Between Cobalt Chromium Alloy Porcelain Teeth and Zirconium Dioxide Porcelain Teeth%钴铬合金烤瓷牙和二氧化锆烤瓷牙修复效果对比

    Institute of Scientific and Technical Information of China (English)

    肖银蓉

    2015-01-01

    Objective To compare repairing effect of cobalt chromium alloy porcelain teeth and zirconium dioxide porcelain teeth. Methods To retrospective analyze 96 cases (172 tooth)clinical data of porcelain teeth prosthesis in our department from January 2010 to December 2013, the patients of zirconium dioxide porcelain teeth were 38 cases (70 tooth),which was zirconium dioxide porcelain teeth group,the patients of cobalt chromium alloy porcelain teeth were 58 cases(102 tooth), which was cobalt chromium alloy porcelain teeth group,the clinical result of two groups were compared. Results The effective rate 34 cases (94.73%)of zirco-nium dioxide porcelain teeth and effective rate 53 cases (91.37%)of cobalt chromium alloy porcelain teeth were compared, which was no difference (χ2=0.87,P>0.05). But after treatment of two groups,incidence of complications of cobalt chromium alloy porce-lain teeth group were higher than those of zirconium dioxide porcelain teeth group(χ2=3.95,P0.05)。但是两组患者治疗后,钴铬合金组并发症发生率高于二氧化锆组,差异有统计学意义(χ2=3.95,P<0.05)。结论二氧化锆烤瓷牙的疗效优于钴铬合金烤瓷牙,若患者经济条件允许,应该优先考虑二氧化锆烤瓷牙。

  12. Influence of cobalt and chromium additions on the precipitation processes in a Cu-4Ti alloys; Influencia de la adicion de cobalto y cromo en el proceso de precipitacion en una aleacion de Cu-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E.

    2010-07-01

    The influence of 0.5% atomic cobalt and 1% atomic chromium additions on the precipitation hardening of Cu-4Ti alloy was studied by differential scanning calorimetry (DSC) and microhardness measurements. The analysis of the calorimetric curves, for binary alloy, shows the presence of two overlapping exothermic reactions (stages 1 and 2) attributed to the formation of Cu{sub 4}Ti and Cu{sub 3}Ti particles in the copper matrix, respectively. DSC curves for Cu-4Ti-0.5Co alloy shows three exothermic effects (overlapping stages 3 and 4 and stage 5) associated to the formation of phases Ti{sub 2}Co, TiCo and Cu{sub 4}Ti, respectively. DSC curves for Cu-4Ti1Cr alloy shows three exothermic reactions (stages 6, 7 and 9) and one endothermic peak (stage 8). The exothermic reactions correspond to the formation of phases Cr{sub 2}Ti, Cu{sub 4}Ti and Cu{sub 3}Ti, respectively, and the endothermic reactions are attributed to the Cr{sub 2}Ti dissolution. The activation energies calculated using the modified Kissinger method were lower than the ones corresponding to diffusion of cobalt, chromium, and titanium in copper. Kinetic parameters were obtained by a convolution method based on the Johnson-Mehl-Avrami (JMA) formalism. Microhardness measurements confirmed the formation of the mentioned phases. Also, these measurements confirmed the effect of cobalt and chromium addition on the binary alloy hardness. (Author). 31 refs.

  13. The growth and microstructure of α-Al2O3 on high-temperature iron-chromium-base alloys

    International Nuclear Information System (INIS)

    The morphologies and microstructures of the α-Al2O3 scales developed on Fe-27% Cr-4% Al and Fe-27% Cr-4% Al-0.82% Y in oxygen at 1473 K have been examined using transmission and scanning electron microscopy. The scale formed on the yttrium-free alloy develops a very convoluted configuration, with large areas of loss of contact between the scale and the alloy, and has a relatively equiaxed grain structure. It develops following formation of new oxide at the scale/ alloy interface and at oxide grain boundaries within the scale. The scale formed on the yttrium-containing alloy remains in complete contact with the alloy surface and develops a columnar grain structure. It thickens by formation of new oxide at the scale/alloy interface only. Possible short-circuit diffusion paths are discussed in relation to the observed microstructures of the scales. (author)

  14. Effect of cold working and applied stress on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    In order to grasp the stress corrosion cracking quantitative resistance of Alloys 600 and 690 in PWR primary water, the authors have studied the effect of cold working and applied stress on the stress corrosion cracking resistance of Alloys 600 and 690, in high temperature water. Stress corrosion cracking tests were conducted at 360 degrees C (633K) in a simulated PWR primary water for about 12,000 hours or 24,000 hours. From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked Alloys of thermally treated 690 have the excellent stress corrosion cracking resistance. Further, in this paper, the planning of stress corrosion cracking test for weld joints and weld metal of Alloy 600 is described

  15. The Effect of Artificial Aging on The Bond Strength of Heat-activated Acrylic Resin to Surface-treated Nickel-chromium-beryllium Alloy

    Science.gov (United States)

    Al Jabbari, Youssef S.; Zinelis, Spiros; Al Taweel, Sara M.; Nagy, William W.

    2016-01-01

    Purpose The debonding load of heat-activated polymethylmethacrylate (PMMA) denture base resin material to a nickel-chromium-beryllium (Ni-Cr-Be) alloy conditioned by three different surface treatments and utilizing two different commercial bonding systems was investigated. Materials and Methods Denture resin (Lucitone-199) was bonded to Ni-Cr-Be alloy specimens treated with Metal Primer II, the Rocatec system with opaquer and the Rocatec system without opaquer. Denture base resin specimens bonded to non-treated sandblasted Ni-Cr-Be alloy were used as controls. Twenty samples for each treatment condition (80 specimens) were tested. The 80 specimens were divided into two categories, thermocycled and non-thermocycled, containing four groups of ten specimens each. The non-thermocycled specimens were tested after 48 hours’ storage in room temperature water. The thermocycled specimens were tested after 2,000 cycles in 4°C and 55°C water baths. The debonding load was calculated in Newtons (N), and collected data were subjected by non parametric test Kruskal-Wallis One Way Analysis of Variance on Ranks and Dunn’s post hoc test at the α = 0.05. Results The Metal Primer II and Rocatec system without opaquer groups produced significantly higher bond strengths (119.9 and 67.6 N), respectively, than did the sandblasted and Rocatec system with opaquer groups, where the bond strengths were 2.6 N and 0 N, respectively. The Metal Primer II was significantly different from all other groups (P<0.05). The bond strengths of all groups were significantly decreased (P<0.05) after thermocycling. Conclusions Although thermocycling had a detrimental effect on the debonding load of all surface treatments tested, the Metal Primer II system provided higher values among all bonding systems tested, before and after thermocycling. PMID:27335613

  16. Safety and efficacy of cobalt chromium alloy based sirolimus-eluting stent with bioabsorbable polymer in porcine model

    Institute of Scientific and Technical Information of China (English)

    WU Yi-zhe; SHEN Li; WANG Qi-bing; HU Xi; XIE Jian; QIAN Ju-ying; GE Jun-bo

    2012-01-01

    Background First generation drug-eluting stents (DESs) were based on 316L stainless steel and coated with a permanent polymer.The vessel wall of these DESs was inflammatory and late in-stent thrombosis was reported.Hence,cobalt chromium based DES coated with a bioabsorbable polymer was an alternate choice.Methods Cobalt chromium based DES with bioabsorbable polymer (Simrex stent) as well as control stents (Polymer stent and EXCELTM stent) were implanted into porcine arteries.At a designated time,angiography,quantitative coronary angiography (QCA) analysis,histomorphometry,and electron-microscopical follow-up were performed.Results A total of 98 stents of all the three groups were harvested.At week 24,percent diameter stenosis (%DS),late loss (LL),and percent area stenosis (%AS) of Simrex was (12.9±0.4)%,(0.35±0.02) mm,and (24.5±4.2)%,respectively,without significant difference in comparison to commercialized EXCELTM stent.Slight inflammatory reaction was seen around the stent strut of Simrex,just as in the other two groups.Electron-microscopical follow-up suggested that it might take 4-12 weeks for Simrex to complete its re-endothelialization process.Conclusions Cobalt chromium based,bioabsorbable polymer coated sirolimus-eluting stent showed excellent biocompatibility.During 24 weeks observation in porcine model,it was proved that this novel DES system successfully inhibited neointima hyperplasia and decreased in-stent stenosis.It is feasible to launch a clinical evaluation to improve the current prognosis of DES implantation.

  17. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    International Nuclear Information System (INIS)

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an early process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information

  18. COMPARISON OF BOND STRENGTH OF COMMERCIALLY PURE TITANIUM AND NICKEL CHROMIUM ALLOY WITH THREE DIFFERENT LUTING CEMENTS: AN IN-VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Lakshmi

    2016-06-01

    Full Text Available BACKGROUND Metal ceramic fixed dental prosthesis remains widely used for oral rehabilitation. The type of alloy used to fabricate the metal substructure of the crown also affects its retention. The aim of this study is to compare the bond strength of commercially pure titanium and nickel chromium plates cemented with three different cements and to comparatively evaluate the bond strength of each luting cement. METHODS Specimens of each metal were divided into three groups, which received one of the following luting techniques: Group 1 (CPTi and Group 2 (NiCr with resin cement; Group 3 (CPTi and Group 4 (NiCr with Glass Ionomer Cement; Group 5 (CPTi and Group 6 (NiCr with Zinc phosphate cement. The bonded specimens were submitted for the bond strength tests conducted with a Universal Testing Machine with a shear mode under a crosshead speed of 0.5 mm/min. Debonded specimens were examined under electron microscope. RESULT The results indicate that Group 1 and 2 have significantly higher values than Group 3, 4, 5 and 6. Also, Group 3 and 4 have significantly higher values when compared to Group 5 and 6. Whereas, there was no significant difference between Group 1 and 2, Group 3 and 4 as well as Group 5 and 6. The scanning electron microscope illustrated the different modes of fracture that occurred at the metal cement interface. Resin cement showed predominantly cohesive failure. Glass ionomer cement showed a mixed mode of both cohesive and adhesive fracture and Zinc phosphate cement also showed mixed mode of fracture with predominantly adhesive failure. CONCLUSIONS Resin cements showed the most superior bond with both commercially pure titanium and nickel chromium metal. Zinc phosphate cement showed the lowest bond strength with both the metals. There was no significant difference observed between the cement bond with different metals.

  19. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Michelic, S.K., E-mail: susanne.michelic@unileoben.ac.at [Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Loder, D. [Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Reip, T.; Ardehali Barani, A. [Outokumpu Nirosta GmbH, Essener Straße 244, 44793 Bochum (Germany); Bernhard, C. [Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2015-02-15

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an early process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information

  20. Comparative evaluation of effect of metal primer and sandblasting on the shear bond strength between heat cured acrylic denture base resin and cobalt-chromium alloy: An in vitrostudy

    OpenAIRE

    Sandeep Kalra; Vishwas Kharsan; Nidhi Mangtani Kalra

    2015-01-01

    Aims: The aim of this study was to evaluate the effect of metal primers and sandblasting on the shear bond strength (SBS) of heat cured acrylic denture base resin to cobalt-chromium (Co-Cr) alloy. Materials and Methods: A total number of 40 disk shaped wax patterns (10 mm in diameter and 2 mm in thickness) were cast in Co-Cr alloy. Samples were divided into 4 groups depending on the surface treatment received. Group 1: No surface treatment was done and acts as control group. Group 2: Only san...

  1. The Effect of Slag on the Effectiveness of Phosphorus Removal from Ferrous Alloys Containing Carbon, Chromium and Nickel

    Directory of Open Access Journals (Sweden)

    Kawecka-Cebula E.

    2016-03-01

    Full Text Available The aim of this study was to determine the impact of slag composition on phosphorus removal from ferrous solutions containing carbon, chromium and nickel. Additions of cryolite, Na3AlF6, were applied for better fluxing and higher phosphate capacity of the slag. An X-ray analysis of final slags formed during dephosphorization of ferrous solutions containing chromium and nickel with CaO-CaF2 or CaO-CaF2-Na3AlF6 mixtures of different chemical compositions was carried out. The equilibrium composition of the liquid and the solid phase while cooling the slags from 1673K to 298K was computed using FactSage 6.2 software. The performed equilibrium computations indicated that the slags were not entirely liquid at those temperatures. The addition of cryolite causes a substantial increase of the liquid phase of the slag. It also has a favourable effect on the dephosphorization grade of hot metal. The obtained results were statistically processed and presented in the form of regression equations.

  2. 不锈钢中铬的X射线荧光光谱分析%ANALYSIS OF CHROMIUM IN STAINLESS STEEL ALLOY BY X- RAY FLUORESCENCE SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    刘海东; 侯丽华

    2011-01-01

    以北京钢铁研究院研制的GSB 03-2028系列不锈钢标准物质作为光谱标样,采用基本参数法校正基体效应,建立了X射线荧光光谱测定不锈钢中铬元素的方法.用该方法对标准样品进行分析,分析结果和化学法分析值相吻合,10次制样测量,测定结果的相对标准偏差约为0.14%.%X - ray fluorescence spectrometric method was developed for determination of chromium in stainless steel alloy of GSB 03 - 2028 series of standard samples from Beijing Research Institute of ferrous metal. The inter-element effect was corrected by fundamental parameter method. The results were in agreement with those from AAS and chemical method with relative standard deviation of 0.14% (n=10).

  3. Electrochemical investigation of the two-stage decomposition of oxide deposits on a high-alloy chromium nickel steel by the MOPAC decontamination process

    International Nuclear Information System (INIS)

    The dissertation explains the application of the MOPAC technique for decomposition of oxide layers deposited under PWR conditions on an austenitic, high-alloy chromium nickel steel (DIN material number 1.4550). The examinations were mainly done by impedance spectrometry. With this technique, Cr(III)-oxide is oxidized to chromate in a first step, in 'oxidation solution', and the remaining oxide deposit is then dissolved in 'decontamination solution'. The various specimens used for the examinations were pre-treated ('oxidized') in water in an autoclave at 300deg C and 160 bar, remaining there for either one, two, three, six, or eight months. Extensive pre-experiments were carried out with polished sections of the same material. Comparison of the impedance spectra of these specimens with those of specimens from the autoclave were expected to yield data allowing assignment of impedance spectra to specific transformations in the oxide layers produced in the autoclave. It was found out that the treatment in oxidation solution is the decisive step for oxide decomposition, and hence for the entire result of the decontamination process. (orig.)

  4. Influence of additional alloying with nitrogen on structure and properties of high chromium steel Kh17 after hot rolling

    International Nuclear Information System (INIS)

    A study was made into the structure and mechanical properties of steel Kh17 with 0.16% N after hot rolling under various conditions. It is shown that nitrogen alloying promotes steel transition into a two-phase state (α+γ) in heating above 850 deg C and affects mechanical properties of the steel in a hot rolled state. Impact strength is at its maximum in nitrogen containing steel kh17 if the rolling is in the temperature range of α-phase solid solution. Depending on the temperatures of hot rolling beginning and completion the distinctions in steel microstructure are investigated

  5. Stress corrosion cracking behavior of newer iron--chromium--nickel alloys at 5500F in high purity water

    International Nuclear Information System (INIS)

    As part of a long range materials development program, new commercial plant materials were evaluated for future BWR applications. These materials include ferritic, martensitic, austenitic, and austeno-ferritic stainless steels. Each alloy was characterized for chemical composition, microstructure, and mechanical properties. Stress corrosion cracking screening tests were performed in 5500F, high-purity water containing 36 ppM oxygen on uniaxial tensile specimens stressed at 75 percent of the 5500F ultimate tensile strength. Tests were continued to 5000 hours or failure which ever occurred first. Post-test metallographic examinations were performed on the failed specimen. Results of the evaluation program are presented. 12 fig, 3 tables

  6. Influence of Crucible Materials on High-temperature Properties of Vacuum-melted Nickel-chromium-cobalt Alloy

    Science.gov (United States)

    Decker, R F; Rowe, John P; Freeman, J W

    1957-01-01

    A study of the effect of induction-vacuum-melting procedure on the high-temperature properties of a titanium-and-aluminum-hardened nickel-base alloy revealed that a major variable was the type of ceramic used as a crucible. Reactions between the melt and magnesia or zirconia crucibles apparently increased high-temperature properties by introducing small amounts of boron or zirconium into the melts. Heats melted in alumina crucibles had relatively low rupture life and ductility at 1,600 F and cracked during hot-working as a result of deriving no boron or zirconium from the crucible.

  7. TEM characterisation of stress corrosion cracks in nickel based alloys: effect of chromium content and chemistry of environment; Caracterisation par MET de fissures de corrosion sous contrainte d'alliages a base de nickel: influence de la teneur en chrome et de la chimie du milieu

    Energy Technology Data Exchange (ETDEWEB)

    Delabrouille, F

    2004-11-15

    Stress corrosion cracking (SCC) is a damaging mode of alloys used in pressurized water reactors, particularly of nickel based alloys constituting the vapour generator tubes. Cracks appear on both primary and secondary sides of the tubes, and more frequently in locations where the environment is not well defined. SCC sensitivity of nickel based alloys depends of their chromium content, which lead to the replacement of alloy 600 (15 % Cr) by alloy 690 (30 % Cr) but this phenomenon is not yet very well understood. The goal of this thesis is two fold: i) observe the effect of chromium content on corrosion and ii) characterize the effect of environment on the damaging process of GV tubes. For this purpose, one industrial tube and several synthetic alloys - with controlled chromium content - have been studied. Various characterisation techniques were used to study the corrosion products on the surface and within the SCC cracks: SIMS; TEM - FEG: thin foil preparation, HAADF, EELS, EDX. The effect of chromium content and surface preparation on the generalised corrosion was evidenced for synthetic alloys. Moreover, we observed the penetration of oxygen along triple junctions of grain boundaries few micrometers under the free surface. SCC tests show the positive effect of chromium for contents varying from 5 to 30 % wt. Plastic deformation induces a modification of the structure, and thus of the protective character, of the internal chromium rich oxide layer. SCC cracks which developed in different chemical environments were characterised by TEM. The oxides which are formed within the cracks are different from what is observed on the free surface, which reveals a modification of medium and electrochemical conditions in the crack. Finally we were able to evidence some structural characteristics of the corrosion products (in the cracks and on the surface) which turn to be a signature of the chemical environment. (author)

  8. The impact on renal function by dental restoration of nickel-chromium alloys%佩戴镍铬烤瓷冠对肾功能的影响

    Institute of Scientific and Technical Information of China (English)

    王珏; 曹新明; 夏刚; 黄埔; 李国强; 陈霜; 姜庆五; 陈波

    2012-01-01

    目的 探讨镍铬合金烤瓷冠的佩戴是否会造成机体肾功能的损伤.方法 对33例镍铬合金烤瓷冠佩戴者进行佩戴前和佩戴2月后的肾功能重复测量,并采用配对t捡验和重复测量数据线性回归分析探讨肾功能的变化与镍铬合金冠佩戴的关系.结果 配对t检验未观察到镍铬合金烤瓷冠的佩戴对各血尿肾功能生化指标(血:总蛋白、白蛋白、血肌酐、血尿素氮、血尿酸、肾小球滤过率的估计值;尿:白蛋白、N-乙酰-β-D-氨基葡糖苷酶、视黄醇结合蛋白、β2-微球蛋白)实测值和异常率的明显改变.重复测量数据的广义线性模型仅发现年龄和肾功能的异常有关,但与镍铬合金烤瓷冠的佩戴时间、数量和金属裸露水平无关.结论 镍铬合金烤瓷冠的佩戴与机体的肾功能损伤无明确相关性.%Objective To explore whether the dental restoration of nickel-chromium (Ni-Cr) will lead to renal dysfunction. Methods A prospective follow-up study was conducted in 33 patients undergoing dental restoration of Ni-Cr alloy, and the associations of alloy restoration with biological parameters of renal function were analyzed by paired t test and general linear model of repeated measures. Results Paired t test did not show any significant change in both of the measurement values and the prevalence of abnormal serum or urine parameters of renal function (Serum: total protein, albumin, urea nitrogen, urea acid and estimated glomerular filtration rate (eGFR); urine: albumin, N -acetyl-β-D - glucosaminidase, retinol-binding protein and β2- microglobulin) (P>0.05). General linear models of repeated measures of renal dysfunction only showed a positive association with age, but with the time and number of alloy restoration, and the level of metal basis uncovered with porcelain. Conclusion Dental restoration of Ni-Cr alloy might not lead to the renal dysfunction in this prospective follow-up study.

  9. Chromium depletion from stainless steels during vacuum annealing

    International Nuclear Information System (INIS)

    The behaviour of chromium during selective evaporation by high temperature vacuum annealing has been investigated by means of energy dispersive X-ray analysis and by neutron activation analysis. It was established that the rate of chromium loss from austenitic stainless steels 316 and 321 is controlled by chromium inter-diffusion rather than tracer diffusion in the alloy. Two important parameters in selective removal of chromium from alloy steels are the variation in the chromium surface concentration with time and the depletion profile in the alloy. The present work gives support for the model in which loss of chromium is dependent on its diffusivity in the alloy and on an interface transfer coefficient. The results showed that the surface concentration of chromium decreased with increasing vacuum annealing time. The chromium depletion profile in the metal was in accord with the previous derived model, apart from an anomalous near surface region. Here the higher resolution of a neutron activation technique indicated a region within approximately 2 microns of the surface where the chromium concentration decreased more steeply than expected. (author)

  10. Relación entre factores micro- estructurales e impacto repetido en aleaciones de alto cromo para bolas de molino. // Relationship among factors micro - structural and impact repeated in alloys of high chromium for mill balls.

    Directory of Open Access Journals (Sweden)

    E. Albertin

    2008-01-01

    Full Text Available Las aleaciones de alto cromo son empleadas para la fabricación de bolas de molino en industrias de procesamiento deminerales. Los usuarios y fabricantes requieren lograr mejores resultados técnicos-económicos en sus aplicaciones, por loque necesitan aumentar los conocimientos relacionados con los aspectos estructurales de estos materiales. En este trabajo serealiza una investigación con vistas a establecer relaciones entre la estructura de las aleaciones y su comportamiento ante elimpacto repetido que es un fenómeno característico en estos procesos.Se funden bolas con varias aleaciones hipo eutécticas, eutécticas, e hipereutécticas; se prueban en un equipo que simula elimpacto repetido. Los resultados permiten comprobar los buenos resultados de aleaciones hipo eutécticas con relaciones deCr/C altas y a su vez altos contenidos de Cr y de aleaciones eutécticas para menores relaciones de Cr/C y menorescontenidos de Cr, en ambos casos los carburos eutécticos son de forma simétrica, regulares y no forman redes continuas decarburos asimétricos bordeando los granos, que presentan peores comportamiento en el impacto repetido y que son el casode las hipoeutécticas con bajas relaciones Cr/C y las hipereutécticas donde aparecen también grandes carburos primariosPalabras claves: Alto-cromo, bolas de molino, impacto repetido, desgaste.____________________________________________________________________________Abstract.High Chromium alloys are used to manufacture grinding balls for the Industry of Construction Materials. Customers andusers need to improve their knowledge about the relationships between microstructure and the parts damage in these alloysto obtain better technical-economics results. In this paper the results of a research to obtain different microstructures ofeutectics, hipoeutectics and hipereutectics alloys are presented, searching for the lesser damage in these alloys. These alloysare tested in a repeated impact testing

  11. Effect of manganese and chromium on microstructure and toughness of Fe-Cr-Mn alloys resulting from solid-solution treatment

    International Nuclear Information System (INIS)

    This study is aimed at making clear the effect of Mn and Cr on the microstructure and toughness of an Fe-Cr-Mn alloy which is considered as one of the candidate alloys for reduced activation materials for the first wall application of the fusion reactor. The microstructures of Fe-12% Cr-(5∼30)% Mn(mass%) alloys after solution treatment at 1373 K for 3.6 ks are markedly varied with Mn contents; α'(martensite) + δ(ferrite) in 5% Mn alloy, α' + δ + ε(martensite) + γ(austenite) in the 10% Mn alloy, α' + ε + γ in 15% Mn alloy, ε + γ in the 20% Mn alloy, and ε + γ +δ in the 25% Mn alloy, and γ + δ in the 30% Mn alloy. It is to be noted that the δ phase increases with increasing Mn content when the Fe-12% Cr alloy contains more than 25% Mn, which suggests that Mn plays the role of a ferrite former. In Fe-15% Mn-Cr alloy, the δ phase is not observed in the range of Cr contents up to 12%, whereas it is markedly increased with the addition of 16% Cr. C, N and Ni are very helpful in forming the γ phase in these alloys as generally known in Fe-Cr-Ni alloys. The toughness evaluated by the Charpy impact test at 273 K and room temperature is very low in the 5% Mn alloy which consists of the α' and δ phases. It is, however, significantly improved by a small amount of the γ phase and increases with increase of γ phase stability. (author)

  12. Stainless chromium-nickel steels. Chapter I

    International Nuclear Information System (INIS)

    The chemical composition is tabulated of 90 chromium-nickel stainless steels and alloys given in volume %. The values are also given of the corrosion resistance of the steels and alloys. The tables show data on the surface condition or the methods of material working, types and chemical composition of the medium where corrosion resistance tests were carried out, temperature, pressure, time of tests, corrosion rates, corrosion types, and literature references. A total of 35 references is given. (J.B.)

  13. Fabrication and characterisation of uranium, molybdenum, chromium, niobium and aluminium

    International Nuclear Information System (INIS)

    This paper describes fabrication of binary uranium alloys by melting and casting. The following alloys with nominal composition were obtained by melting in the vacuum furnace: uranium with niobium contents from 0.5%- 4.0% and uranium with molybdenum contents from 0.4% - 1.2%. Uranium alloys with chromium content from 0.4% - 1.2% and uranium alloy with 0.12% of aluminium were obtained by vacuum induction furnace (electric arc melting)

  14. Effects of chromium and nitrogen content on the microstructures and mechanical properties of as-cast Co-Cr-Mo alloys for dental applications.

    Science.gov (United States)

    Yoda, Keita; Suyalatu; Takaichi, Atsushi; Nomura, Naoyuki; Tsutsumi, Yusuke; Doi, Hisashi; Kurosu, Shingo; Chiba, Akihiko; Igarashi, Yoshimasa; Hanawa, Takao

    2012-07-01

    The microstructure and mechanical properties of as-cast Co-(20-33)Cr-5Mo-N alloys were investigated to develop ductile Co-Cr-Mo alloys without Ni addition for dental applications that satisfy the requirements of the type 5 criteria in ISO 22674. The effects of the Cr and N contents on the microstructure and mechanical properties are discussed. The microstructures were evaluated using scanning electron microscopy with energy-dispersive X-ray spectroscopy (EDS), X-ray diffractometry (XRD), and electron back-scattered diffraction pattern analysis. The mechanical properties were evaluated using tensile testing. The proof strength and elongation of N-containing 33Cr satisfied the type 5 criteria in ISO 22674. ε-phase with striations was formed in the N-free (20-29)Cr alloys, while there was slight formation of ε-phase in the N-containing (20-29)Cr alloys, which disappeared in N-containing 33Cr. The lattice parameter of the γ-phase increased with increasing Cr content (i.e. N content) in the N-containing alloys, although the lattice parameter remained almost the same in the N-free alloys because of the small atomic radius difference between Co and Cr. Compositional analyses by EDS and XRD revealed that in the N-containing alloys Cr and Mo were concentrated in the cell boundary, which became enriched in N, stabilizing the γ-phase. The mechanical properties of the N-free alloys were independent of the Cr content and showed low strength and limited elongation. Strain-induced martensite was formed in all the N-free alloys after tensile testing. On the other hand, the proof strength, ultimate tensile strength, and elongation of the N-containing alloys increased with increasing Cr content (i.e. N content). Since formation of ε-phase after tensile testing was confirmed in the N-containing alloys the deformation mechanism may change from strain-induced martensite transformation to another form, such as twinning or dislocation slip, as the N content increases. Thus the N

  15. Effect of chromium content on stress corrosion cracking of shielded metal arc weld metal for 600 type alloy in high temperature pressurized pure water

    International Nuclear Information System (INIS)

    When their Cr contents were increased to the same level as those of the alloy 82(18-22mass%Cr), the weld metals of alloy 182(13-17mass%Cr) sustained only slight SCCs in the as-welded state, and no crack was detected after the post weld heat treatment (SR+LTA) of stress relief annealing at 893 K followed by aging at 673 K. These results suggest that the higher Cr content of the alloy 82 is responsible for its higher resistance to SCC than that of the alloy 182. The carbide, Ni16(Mn, Cr)6Si7 (G phase) was precipitated at the grain boundary in the alloy 182 containing 18.5mass% Cr when the SR+LTA treatment was applied. TEM-EDS analyses suggested that the G phase was enriched in P, and so could decrease the P content in the grain boundary region. Probably, the decreased P content at the grain boundary due to the precipitation of G phase contributed to the enhancement of the SCC resistance of the Cr-added alloy 182 by the SR+LTA treatment. (author)

  16. Comparative evaluation of effect of metal primer and sandblasting on the shear bond strength between heat cured acrylic denture base resin and cobalt-chromium alloy: An in vitrostudy

    Directory of Open Access Journals (Sweden)

    Sandeep Kalra

    2015-01-01

    Full Text Available Aims: The aim of this study was to evaluate the effect of metal primers and sandblasting on the shear bond strength (SBS of heat cured acrylic denture base resin to cobalt-chromium (Co-Cr alloy. Materials and Methods: A total number of 40 disk shaped wax patterns (10 mm in diameter and 2 mm in thickness were cast in Co-Cr alloy. Samples were divided into 4 groups depending on the surface treatment received. Group 1: No surface treatment was done and acts as control group. Group 2: Only sandblasting was done. Group 3: Only metal primer was applied. Group 4: Both metal primer and sandblasting were done. After surface treatment samples had been tested in Universal Testing Machine at crosshead speed of 0.5 mm/min in shear mode and scanning, electron microscope evaluation was done to observe the mode of failure. Statistical Analysis: All the observations obtained were analyzed statistically using software SPSS version 17; one-way analysis of variance (ANOVA and post-hoc Tukey test were applied. Results: The one-way ANOVA indicated that SBS values varied according to type of surface treatment done. The SBS was highest (18.70 ± 1.2 MPa when both sandblasting and metal primer was done when compared with no surface treatment (2.59 ± 0.32 MPa. Conclusions: It could be concluded that the use of metal primers along with sandblasting significantly improves the bonding of heat cured acrylic denture base resin with the Co-Cr alloy.

  17. Effect of chromium content on stress corrosion cracking susceptibility of shielded metal arc weld metals for 600 type alloy in high temperature pressurized pure water

    International Nuclear Information System (INIS)

    The stress corrosion cracking (SCC) susceptibility of the SMAW metals for Inconel alloy 600 to which Cr was added to 14.8-21.4mass% has been investigated on the basis of CBB test in the pressurized hot water (corresponding to the service condition of BWR nuclear power plant), since the TIG weld metal of alloy 82 involving 18-22mass% Cr possesses much better resistance to SCC than the SMAW metal of alloy 182 (Cr content=13-17mass%). When their Cr contents were increased to the same level as those of the alloy 82, the weld metals of alloy 182 sustained only slight SCCs in the as-welded state, and no crack was detected after the post weld heat treatment (SR+LTA) of stress relief annealing at 893 K followed by aging at 673 K. These results suggest that the higher Cr content of the alloy 82 is responsible for its higher resistance to SCC than that of the alloy 182. The Cr carbides precipitated at the grain boundary during the welding and the SR+LTA treatment were also changed from M7C3 type to M23C6 type with the increase in the Cr content. Though the Cr content at the grain boundary in weld metal containing 14.8mass%Cr subjected to the SR+LTA treatment was 3mass%, the Cr content of weld metal containing 18.5mass%Cr was not less than 10mass%. The addition of the Cr to the alloy 182 increased the Cr content in the grain boundary region, suggesting that the intergranular SCC can be suppressed when the Cr content at the grain boundary is not less than 10mass%. In addition to the carbide, Ni16(Mn, Cr)6Si7 (G phase) was precipitated at the grain boundary in the alloy 182 containing 18.5mass% Cr when the SR+LTA treatment was applied. TEM-EDS analyses suggested that the G phase was enriched in P, and so could decrease the P content in the grain boundary region. Probably, the decreased P content at the grain boundary due to the precipitation of G phase contributed to the enhancement of the SCC resistance of the Cr-added alloy 182 by the SR+LTA treatment. (author)

  18. Wear resistance and dynamic fracture toughness of hypoeutectic high-chromium white cast iron alloyed with niobium and vanadium: Odpornost proti obrabi in dinamična lomna žilavost podevtektičnega belega litega železa, legiranega z niobijem in vanadijem:

    OpenAIRE

    Anđić, Zoran; FILIPOVIĆ, Mirjana; Kamberović, Željko; Korać, Marija

    2014-01-01

    The influence of mass fractions 1.5 % Nb and 1.5 % V, added singly and in combination, on the microstructural characteristics and properties relevant to the service performance of the hypoeutectic high-chromium white iron containing 18 % Cr and 2.9 % C, namely, the wear resistance and the fracture toughness, has been examined. The Fe-Cr-C-Nb-V alloy gives the best compromise between the wear resistance and the fracture toughness. The dynamic fracture toughness of this alloy is larger by about...

  19. Galvanic corrosion in odontological alloys

    International Nuclear Information System (INIS)

    Galvanic corrosion can occur when different alloys are placed in direct contact within the oral cavity or within tissues. Concern has been expressed associated with the coupling of selected restorative materials as well as implant material with various alloys used for restorative procedures. This could be critical if the crown or bridge had subgingival finish line with a metallic zone in contact with the tissue, and the implant was made in titanium alloy. The present work shows the results of galvanic coupling studies done on implants of titanium alloy connected to nickel-chromium and cobalt-chromium alloys. (Author)

  20. Chromium, aluminium and titanium effect on nickel corrosion resistance in sodium sulfate and chloride melts

    International Nuclear Information System (INIS)

    The purpose of the study is to determine corrosion resistance of binary nickel alloys, alloyed with aluminium, titanium and chromium, in sodium sulfate and chloride melts. The content of aluminium, titanium and chromium varied from 0 up to 13,2; 21.4 and 36%, respectively. It was estabslished that resistance against slulfide corrosion grows in chromium-alloyed nickel and deoreases in nickel alloyed with aluminium and titanium. Nickel-chronium solid solutions containing > 16 to 17% Cr are characterized by the maximal stability in sodium sulfide melt and Ni3Al and Ni3Ti intermetallics -by the minimal one. Alloying nickel with aluminium titanium (up to 6 to 8%) and chromium (up to 10 to 12%) increases its resistance aginst sodium chloride melt. Binary Ni-Al-, Ni-Ti- and ternary Ni-Al-Ti-alloys possess a lower corrosion resistance in sodium sulfate as compared to sodium chloride

  1. 钴铬合金烤瓷牙和二氧化锆烤瓷牙修复3年临床效果观察%Three-year restoration with cobalt-chromium alloy and zirconium dioxide porcelain teeth

    Institute of Scientific and Technical Information of China (English)

    罗良敏

    2015-01-01

    目的 探讨二氧化锆烤瓷牙与钴铬合金烤瓷牙的修复效果.方法 于2011年2月至2012年2月期间在我院接收烤瓷冠修复的患者中选取70例,将其按修复材料不同分为对照组与实验组,两组分别采用钴铬合金与二氧化锆进行冠修复,观察两组3年修复效果.结果 实验组在牙龈状况(98.5%)、龈着色(100.0%)、颜色匹配(100.0%)方面的合格率明显高于对照组(88.7%、87.1%、90.3%),P<0.05,同时实验组患者的满意度(94.3%)明显优于对照组(82.9%),P<0.05.结论 二氧化锆烤瓷冠修复牙体缺损、牙体缺失效果明显,值得推广.%Objective To study the restoration effect of cobalt-chromium alloy porcelain teeth and zirconium dioxide porcelain teeth.Methods 70 patients receiving restoration with porcelain teeth from February,2011 to February,2012 at our hospital were selected and divided into a control group and an experimental group according to different materials.The control group received restoration with cobalt-chromium alloy porcelain teeth and the experimental group with zirconium dioxide porcelain teeth for 3 years.The restoration effect of both groups was observed.Results The qualified rates of gingiva condition,coloring,and color matching were significantly higher in the experimental group than in the control group,98.5%,100.0%,and 100.0% vs.88.7%,87.1%,and 90.3%,P<0.05);the patients' satisfaction degree was significantly higher in the experimental group than in the control group(94.3% vs.82.9%,P<0.0S).Conclusions Zirconium dioxide porcelain teeth has an obvious effect in the restoration of dental defects and tooth loss.It is worth being generalized.

  2. Chromium in diet

    Science.gov (United States)

    The best source of chromium is brewer's yeast. However, many people do not use brewer's yeast because it causes bloating ( abdominal distention ) and nausea . Other good sources of chromium include ...

  3. 氟离子对两种不同工艺制作的钴铬合金耐腐蚀性能的影响%Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes

    Institute of Scientific and Technical Information of China (English)

    杨秋霞; 杨瑛; 徐晗; 吴迪; 郭恪

    2016-01-01

    目的:   在模拟口腔环境下研究氟离子对采用选择性激光熔覆(SLM)技术和传统铸造技术两种工艺制作的钴铬合金耐腐蚀性的影响。方法   选择具有相同材料成分的钴铬合金金属粉末和金属块,分别采用SLM(SLM组)和铸造技术(Cast组)各制作15个试件,置于含不同氟离子质量分数(0、0.05%、0.20%)的酸性人工唾液(pH值为5.0)中浸泡24 h进行电化学试验,采用动电位极化曲线法测试合金的自腐蚀电位Ecor、自腐蚀电流密度Icor和极化电阻Rp,同时结合扫描电子显微镜(SEM)观察,分析两组试件的耐腐蚀性能。结果   铸造工艺制作的钴铬合金在酸性人工唾液中的Ecor随着氟离子质量分数的升高而减小。当氟离子质量分数为0.20%时,两种工艺制作的钴铬合金的Ecor、Icor、Rp均有明显改变(P<0.05),SEM结果也显示合金表面均出现腐蚀现象。当氟离子质量分数为0.20%时,Cast组钴铬合金的Icor高于SLM组,而Ecor和Rp低于SLM组(P<0.05)。结论   氟离子可降低两种工艺制作的钴铬合金的耐腐蚀性,在氟离子质量分数较高(0.20%)时,SLM技术制作的钴铬合金的耐腐蚀性优于铸造工艺制作的钴铬合金。%Objective This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobaltchromium alloy fabricated by two different technology processes in a simulated oral environment. Methods A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH=5.0). The specimens were soaked in

  4. Chromium and Genomic Stability

    OpenAIRE

    Wise, Sandra S.; Wise, John Pierce

    2011-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as high...

  5. Distribution of soluble and precipitated iron and chromium products generated by anodic dissolution of 316L stainless steel and alloy C-22: final report

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J; Farmer, J; Gordon, S; King, K; Logotetta, L; Silberman, D

    1999-08-11

    At near neutral pH and at applied potentials above the threshold potential for localized breakdown of the passive film, virtually all of the dissolved chromium appeared to be in the hexavalent oxidation state (Cr(VI)). In acidic environments, such as crevice solutions formed during the crevice corrosion of 316L and C-22 samples in 4 M NaCl, virtually all of the dissolved chromium appeared to be in the trivalent oxidation state (Cr(III)). These general observations appear to be consistent with the Pourbaix diagram for chromium (Pourbaix 1974), pp. 307-321. At high pH and high anodic polarization (pH {approximately} 8 and 800 mV vs. SHE), the predominate species is believed to be the soluble chromate anion (CrO{sub 4}{sup 2{minus}}). At the same pH, but lower polarization (pH {approximately} 8 and 0 mV vs. SHE), the predominate species are believed to be precipitates such as trivalent Cr(OH){sub 3} {center_dot} n(H{sub 2}O) and hexavalent Cr{sub 2}O{sub 3}. In acidified environments such as those found in crevices (pH < 3), soluble Cr{sup 3+} is expected to form over a wide range of potential extending from 400 mV vs. SHE to approximately 1200 mV vs. SHE. Again, this is consistent with the observations from the creviced samples. In earlier studies by the principal investigator, it has been found that low-level chromium contamination in ground water is usually in the hexavalent oxidation state (Farmer et al. 1996). In general, dissolved iron measured during the crevice experiments appears to be Fe(II) in acidic media and Fe(III) in near-neutral and alkaline solutions (table 3). In the case of cyclic polarization measurements, the dissolved iron measured at the end of some cyclic polarization measurements with C-22 appeared to be in the Fe(III) state. This is probably due to the high electrochemical potential at which these species were generated during the potential scan. Note that the reversal potential was approximately 1200 mV vs. Ag/AgCl during these scans. These

  6. Study of the quenching and subsequent return to room temperature of uranium-chromium, uranium-iron, and uranium-molybdenum alloys containing only small amounts of the alloying element; Etude de la trempe et du revenu a la temperature ordinaire d'alliages uranium-chrome, uranium-fer et uranium-molybdene, a faible teneur en element d'alliage

    Energy Technology Data Exchange (ETDEWEB)

    Delaplace, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-09-15

    By means of an apparatus which makes possible thermal pre-treatments in vacuo, quenching carried out in a high purity argon atmosphere, and simultaneous recording of time temperature cooling and thermal contraction curves, the author has examined the transformations which occur in uranium-chromium, uranium-iron and uranium-molybdenum alloys during their quenching and subsequent return to room temperature. For uranium-chromium and uranium-iron alloys, the temperature at which the {gamma} {yields} {beta} transformation starts varies very little with the rate of cooling. For uranium-molybdenum alloys containing 2,8 atom per cent of Mo, this temperature is lowered by 120 deg. C for a cooling rate of 500 deg. C/mn. The temperature at which the {beta} {yields} {alpha} transformation starts is lowered by 170 deg. C for a cooling rate of 500 deg. C/mn in the case of uranium-chromium alloy containing 0,37 atom per cent of Cr. The temperature is little affected in the case of uranium-iron alloys. The addition of chromium or iron makes it possible to conserve the form {beta} at ordinary temperatures after quenching from the {beta} and {gamma} regions. The {beta} phase is particularly unstable and changes into needles of the {alpha} form even at room temperatures according to an autocatalytic transformation law similar to the austenitic-martensitic transformation law in the case of iron. The {beta} phase obtained by quenching from the {beta} phase region is more stable than that obtained by quenching from the {gamma} region. Chromium is a more effective stabiliser of the {beta} phase than is iron. Unfortunately it causes serious surface cracking. The {beta} {yields} {alpha} transformation in uranium-chromium alloys has been followed at room temperature by means of micro-cinematography. The author has not observed the direct {gamma} {yields} {alpha} transformation in uranium-molybdenum alloys containing 2,8 per cent of molybdenum even for cooling rates of up to 2000 deg. C

  7. Effect of yttrium additions on the elevated-temperature tensile properties and hardness of an advanced iron-nickel-chromium LMFBR cladding and duct alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, M.H.

    1981-10-01

    The effect of the addition of yttrium on the elevated temperature tensile properties and hardness of an Fe-34% Ni-12% Cr candidate LMFBR cladding and duct alloy was investigated. Tensile tests were performed from room temperature to 800/sup 0/C in 100/sup 0/C steps at strain rates of 2.2 x 10/sup -3/ and 2.2 x 10/sup -4/ sec/sup -1/. Hardness tests were performed from room temperature to 850/sup 0/C in 50/sup 0/C steps. The addition of 0.1% yttrium decreased the yield stress and ultimate tensile stress in the test temperature range employed. Hardness also decreased over this test temperature range. In tensile tests, dynamic strain aging behavior occurred both for the undoped and doped alloy in the temperature range from 200 to 600/sup 0/C and 300 to 600/sup 0/C for the lower and higher strain rate, respectively.

  8. The Production of Nickel-Chromium-Molybdenum Alloy with Open Pore Structure as an Implant and the Investigation of Its Biocompatibility In Vivo

    Directory of Open Access Journals (Sweden)

    Yusuf Er

    2013-01-01

    Full Text Available A dental crown material, Nickel-Chrome-Molybdenum alloy, is manufactured using precision casting method from a polyurethane foam model in a regular and open-pore form, as a hard tissue implant for orthopedic applications. The samples produced have 10, 20, and 30 (±3 pores per inch of pore densities and 0.0008, 0.0017, and 0.0027 g/mm3 densities, respectively. Samples were implanted in six dogs and observed for a period of two, four, and six months for the histopathological examinations. The dogs were examined radiologically in 15-day intervals and clinically in certain intervals. The implants were taken out with surrounding tissue at the end of these periods. Implants and surrounding tissues were examined histopathologically in terms of biocompatibility. As a result, it is seen that new bone tissue was formed, in pores of the porous implant at the head of the tibia in dogs implanted. Any pathology, inflammation, and reaction in old and new tissues were not observed. It was concluded that a dental alloy (Ni-Cr-Mo alloy could also be used as a biocompatible hard tissue implant material for orthopedics.

  9. Metal-on-metal bearings in total hip arthroplasties : Influence of cobalt chromium ions on bacterial growth and biofilm formation

    NARCIS (Netherlands)

    Hosman, Anton H.; van der Mei, Henny C.; Bulstra, Sjoerd K.; Busscher, Henk J.; Neut, Danielle

    2009-01-01

    Metal-on-metal (MOM) bearings involving cobalt-chromium (Co-Cr) alloys in total hip arthroplasties are becoming more and more popular due to their low wear. Consequences of corrosion products of Co-Cr alloys are for the most part unclear, and the influence of cobalt and chromium ions on biofilm form

  10. Nobilium 钴铬钼合金铸造卡环固位力的研究%Retention force of casting clasps for Nobilium 2000 cobalt-chromium-mo-lybdenum alloy removable partial dentures

    Institute of Scientific and Technical Information of China (English)

    唐婉容; 李丽华; 米方林; 吴艳; 刘英

    2016-01-01

    Objective:To compare the trend of the retention change during the circulation of the clasp dislodging and inserting between Cobalt-Chromium-Molybdenum alloy and pure titanium casting clasps,it can provide theoretical reference for the design of clasps in Nobilium casting framework dentures.Methods:Fabricating standard metal abutment of the second mandibular premolar,and then 36 RPT clasps was cast from Cobalt-Chromium-Molybdenum alloy (n =18)and pure titanium(n =18)with lost-wax casting craft. Each group was subdivided in three parts,corresponding to 0.25 mm,0.50 mm and 0.75 mm undercuts,respectively,and every part contains 6 clasps.The specimens were subjected to an insertion /removal circulation test.The chatillon force measuring instrument was used to record the retention force at different circulation times(0,1 200,2 400,3 600,4 800,6 000,7 000 times).Results:(1 )Under the 0.50 mm undercut,the retention force of Nobilium Co-Cr-Mo alloy T clasps is better than the pure titanium clasps,the difference has statistical significance (P =0.017 5).In the other conditions,although Co-Cr-Mo consistently showed greater rentention compared to pure titanium,no significant differences were observed (P >0.05 ).(2)Comparing retention force for the three undercuts between the pure titanium and Co-Cr-Mo,no statistically significant differences(P >0.05).(3)Analyzing the Co-Cr-Mo alloy during the test,it had a slight increase in retention force from the beginning to the end of the simulation test.Conclusion:Nobilium Cobalt-Chromium-Mo-lybdenum alloy casting T clasps have good retention force and greater ability to resist permanent deformation,and can keep effective re-tention force during the circulation of the clasp dislodging and inserting.The best undercut depth is 0.5 mm.%目的:比较钴铬钼合金和纯钛铸造卡环在反复脱位循环过程中固位力的变化趋势,为 Nobilium 整铸支架义齿的卡环设计提供理论参考。方法:制作下颌第二前

  11. Environmental impact and site-specific human health risks of chromium in the vicinity of a ferro-alloy manufactory, China.

    Science.gov (United States)

    Wang, Zhen-xing; Chen, Jian-qun; Chai, Li-yuan; Yang, Zhi-hui; Huang, Shun-hong; Zheng, Yu

    2011-06-15

    Previous studies often neglected the direct exposure to soil heavy metals in human health risk assessment. The purpose of this study was to assess the environmental impact and site-specific health risks of chromium (Cr) by both direct and indirect exposure assessment method. Results suggested that total Cr was shown a substantial buildup with a significant increase in the industrial and cultivated soils (averaged 1910 and 986 mg kg(-1), respectively). The Cr contents of vegetables exceeded the maximum permissible concentration by more than four times in every case. Human exposure to Cr was mainly due to dietary food intake in farming locations and due to soil ingestion in both industrial and residential sites. Soil ingestion was the main contributor pathway for direct exposure, followed by inhalation, and then dermal contact. The highest risks of vegetable ingestion were associated with consumption of Chinese cabbage. The results also indicated that plant tissues are able to convert the potentially toxic Cr (VI) species into the non-toxic Cr (III) species. The analyses of human health risks indicated that an important portion of the population is at risk, especially in the industrial site.

  12. ICP-OES法测定钛合金中的铬%Determination of Chromium in Titanium Alloys by Inductively Coupled Plasma-Optical Emission Spectrometry

    Institute of Scientific and Technical Information of China (English)

    陈磊

    2014-01-01

    A method for determination of Chromium in Titanium by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) was presented in this paper. The experiments studied dissolution methods, selection of analytical spectral lines of elements,acidity and interference conditions, and optimized instruments operating conditions.Under the optimum analytical conditions for a standard sample spiked recovery test, the recovery rate reached between 97%and 103%. For accuracy and precision test, the test results showed that the analysis results were in conformity with certified values, and the relative standard deviation was less than 1.0%.%研究了运用电感耦合等离子体原子发射光谱法(ICP-OES)测定钛合金中的铬元素,试验通过对钛合金的溶解方法、元素分析谱线的选择、酸度的影响、干扰情况消除等方面进行讨论,并对仪器测量条件进行优化。对标准样品进行加标回收试验,回收率在97%~103%之间。进行准确度和精密度试验,测量结果与认定值相符,相对标准偏差<1.0%。

  13. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    Science.gov (United States)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun; Heuser, Brent J.; Mandapaka, Kiran K.; Was, Gary S.

    2016-03-01

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  14. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  15. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  16. Effects of Multi-Alloying on Carbide of Eutectic High Chromium Cast Iron Containing 31%Cr%多元合金化对共晶31Cr高铬铸铁碳化物的影响

    Institute of Scientific and Technical Information of China (English)

    马幼平; 宋绍峰; 李秀兰; 党晓明

    2011-01-01

    The eutectic high chromium cast iron containing 31%Cr was deal with multi-alloying,the microstructure,composition,carbide size and morphology were investigated through metallurgical microscope,scanning electron microscope(SEM),AXIOS(PW4400) X fluorescence and Leica image analyzer.The results show that,the size is refined and the morphology was improved of carbide through multi-alloying,the morphology factor K of carbide increases and then decreases,while the grain factor D of carbide is contrary to the morphology factor K.The optimum composition is selected,which the morphology factor K is 0.83 and the grain factor D is 0.66 micron of the carbide.Recombination action between nucleation and growth mechanisms of eutectic composition phase improves the size of carbide.The reasons of carbide morphology evolved are the interaction among which the activity of carbon atoms and the interfacial tension of carbide are changed,and produce divorced eutectic.%采用多元合金化处理共晶31Cr高铬铸铁,借助金相显微镜、扫描电镜、AXIOS(PW4400)型X荧光及Leica图像分析仪对金相组织、成分、碳化物尺寸及形貌进行分析。结果表明,经多元合金化后,碳化物尺寸细化、形貌改善,碳化物形状因子K先增大后减小,粒度因子D先减小后增大;确定了最佳成分,其碳化物的形状因子K=0.83,粒度因子D=0.66μm;共晶组成相形核及长大机制转变的复合作用改善了碳化物尺寸;溶液中碳原子活度、碳化物界面张力的改变和产生离异共晶的共同作用导致了碳化物形貌的演变。

  17. Effect of processing parameters on hardness of selective laser melting cobalt-chromium alloy%加工参数设置对选择性激光熔积钴铬合金硬度的影响

    Institute of Scientific and Technical Information of China (English)

    张碧楚; 曾丽; 忻贤贞; 魏斌

    2015-01-01

    目的:观测几种加工参数设置对选择性激光熔积(SLM)钴铬合金的表面形貌和表面维氏硬度的影响。方法使用正交实验设计9组不同的加工参数,即激光功率为2500W、2750W、3000W,扫描速度为5mm/s、10mm/s、15mm/s,送粉速率为3r/min、4.5r/min、6r/min,制备9组选择性激光熔积钴铬合金试件,每组5个(直径10mm,厚度3mm),经抛光处理后分别进行扫描电镜观察和表面维氏硬度测试,采用SPSS16.0软件包进行数据处理。结果9组不同加工参数制备下SLM钴铬合金试件的扫描电镜图像均呈现均匀而规则的细胞样结构;其平均表面维氏硬度均在345HV以上。结论当加工参数设置在激光功率2500~3000W,扫描速度5~15mm/s,送粉速率3~6r/min范围内时,SLM钴铬合金具有较为理想的表面形貌和表面硬度,能适合临床应用需求。%Objective To investigate the effects of several processing parameters on surface morphol-ogy and surface hardness of cobalt-chromium(Co-Cr) alloy fabricated by selective laser melting (SLM). Methods Nine groups of selective laser melting Co-Cr alloy were fabricated by different processing parameters (laser power:2500W, 2750W, 3000W;scanning speed:5mm/s, 10mm/s, 15mm/s;power feeding rate:3r/min, 4.5r/min, 6r/min) by orthogonal experiment design, each group has five specimens (10mm diameter and 3mm thickness). The speci-mens’ surface morphology was observed by a scanning electron microscope and their Vickers hardness was mea-sured by micro-hardness tester. The data was analyzed with SPSS16.0 software package. Results The SEM im-ages showed all selective laser melting Co-Cr alloy had a homogeneous and regular cellular structure and the mean surface Vickers hardness were all above 345HV. Conclusion When laser power is set at 2500-3000W, scanning speed is set by 5-15mm/s and power feeding rate is set by 3-6r/min, SLM Co-Cr alloy has both ideal surface prop-erty and surface

  18. 佩戴镍铬合金烤瓷冠对肾功能影响的横断面研究%A cross-sectional study of impact of dental restoration of nickel-chromium alloy on renal function

    Institute of Scientific and Technical Information of China (English)

    王珏; 曹新明; 夏刚; 徐碧瑶; 邓汉龙; 王德芳; 姜庆五; 陈波

    2012-01-01

    Objective To explore whether the dental restoration of nickel-chromium (Ni-Cr) will lead to the renal dysfunction. Methods Seven hundred and ninety-five (795) Ni-Cr alloy consumers and 85 controls were investigated by the questionnaire and the biological examination of renal function. Independent t test, one-way ANOVA, linear regression models and logistic regression models were used to analyze the impact of alloy restoration (time, number and metal exposure level) on renal function parameters. Results There was no significant change between Ni-Cr alloy consumers and the controls regarding to both of the measurement values and the abnormality of the biological indexes from either serum examination [total protein, albumin, urea nitrogen, urea acid and estimated glomerular filtration rate (eGFR)] and urine examination (albumin, Nacetyl-β-D-glucosaminidase, retinol-binding protein and β2- microglobulin) (P>0. 05). Logistic analyses of both estimated eGFR and urinary indexes of renal dysfunction showed that the independent factors of renal dysfunction were age and body mass index, but not the parameters of dental restoration including wearing time, number and the level of metal basis uncovered with porcelain (P>0. 05). Conclusions Dental restoration of Ni-Cr alloy is not associated with renal dysfunction in human in this cross-sectional study.%目的 探讨镍铬合金烤瓷冠的佩戴是否会造成机体的肾功能损伤.方法 对795例镍铬合金烤瓷冠佩戴者(接触组)和85例口腔门诊非镍铬合金修复者(对照组)进行烤瓷冠修复的问卷调查和血尿肾功能生化指标的测定,采用两独立样本t检验,单因素方差分析,线性回归模型和logistic回归模型分析佩戴时间、数量和金属裸露水平对肾功能生化指标的影响,P<0.05为差异有统计学意义.结果 各血生化指标(血清总蛋白、白蛋白、血肌酐、血尿素氮、血尿酸和肾小球滤过率的估计值)和尿生化指标(尿白

  19. Standard practice for determining the susceptibility of stainless steels and related Nickel-Chromium-Iron Alloys to stress-corrosion cracking in polythionic acids

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for preparing and conducting the polythionic acid test at room temperature, 22 to 25°C (72 to 77°F), to determine the relative susceptibility of stainless steels or other related materials (nickel-chromiumiron alloys) to intergranular stress corrosion cracking. 1.2 This practice can be used to evaluate stainless steels or other materials in the “as received” condition or after being subjected to high-temperature service, 482 to 815°C (900 to 1500°F), for prolonged periods of time. 1.3 This practice can be applied to wrought products, castings, and weld metal of stainless steels or other related materials to be used in environments containing sulfur or sulfides. Other materials capable of being sensitized can also be tested in accordance with this test. 1.4 This practice may be used with a variety of stress corrosion test specimens, surface finishes, and methods of applying stress. 1.5 This standard does not purport to address all of the safety concerns, if any, ...

  20. Low-chromium reduced-activation chromium-tungsten steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J.; Maziasz, P.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Bainitic microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of non-classical bainite were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was found to be considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2 1/4Cr-2W and 2 1/4Cr-2WV steel compositions to increase their hardenability, and the microstructures and mechanical properties were examined.

  1. Nickel-base alloys combat corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, D.C. [VDM Technologies Corp., Houston, TX (United States); Herda, W. [Krupp-VDM GmbH, Werdohl (Germany)

    1995-06-01

    The modern chemical process industry must increase production efficiency to remain competitive. Manufacturers typically meet this challenge by utilizing higher temperatures and pressures, and more-corrosive catalysts. At the same time, the industry has to solve the technical and commercial problems resulting from rigid environmental regulations. To overcome these obstacles, new alloys having higher levels of corrosion resistance have been developed. These materials are based on increased understanding of the physical metallurgy of nickel-base alloys, especially the role of alloying elements. Results of many studies have led to innovations in nickel-chromium-molybdenum alloys containing both high and low amounts of nickel. Higher molybdenum and chromium contents, together with nitrogen additions, have opened up an entirely new class of alloys having unique properties. In addition, a new chromium-base, fully wrought super stainless steel shows excellent promise in solving many corrosion problems. These newer alloys have the ability to combat uniform corrosion, localized corrosion, and stress-corrosion cracking in the harsh halogenic environment of the chemical process industry. This article briefly lists some of the major highlights and corrosion data on recent nickel-chromium-molybdenum and nickel-molybdenum alloys, and the development of a chromium-base, wrought super-austenitic alloy known as Nicrofer 3033 (Alloy 33). Some comparisons with existing alloys are presented, along with a few commercial applications.

  2. A prospective follow-up study on the impact of urinary excretions of nickel and chromium after dental restoration by nickel-chromium based alloys%佩戴镍铬合金烤瓷冠对尿镍铬水平影响的前瞻性随访研究

    Institute of Scientific and Technical Information of China (English)

    曹新明; 王珏; 夏刚; 徐碧瑶; 沈庆平; 钟群; 姜庆五; 陈波

    2012-01-01

    Objective To explore whether the dental restoration of nickel-chromium (Ni-Cr) based alloys will lead to extra excretions of urinary Ni and Cr. Methods Urinary Ni and Cr were repeatedly measured in 33 patients before and 2 months after the dental restoration of Ni-Cr alloys. The associations between alloy restoration and urinary Ni or Cr were analyzed by paired t test and general linear model of repeated measures. Results A slightly higher urinary Ni was found in patients after 2 month of the alloy restoration, but the difference was not statistically significant (before: 46.4 ug·mol-1 crea; after: 67.6 ug·mol-1 crea; P=0.063). This difference was only in female subjects (before: 44.8 ug·mol-1 crea; after: 73.7 ug·mol-1 crea; P=0.068). A significant higher urinary Cr was found in patients after 2 month of the alloy restoration (before: 57.0 ug·mor-1 crea; after: 99.4 ug·mol-1 crea; P=0.024). This significant difference was only in female subjects (before: 59.8 ug·mol-1 crea; after: 124.4 ug·mol-1 crea; P=0.023). General linear models of repeated measurements showed that urinary excretions of Ni and Cr were associated with the number of restoration and the area of metal basis uncovered with porcelain. Conclusion Dental restoration of Ni-Cr alloy might lead to the enhanced excretions of urinary Ni and Cr.%目的 探讨镍铬合金烤瓷冠的佩戴是否会导致机体尿镍铬水平升高.方法 对33例镍铬合金烤瓷冠佩戴者进行佩戴前和佩戴2月后的尿镍和尿铬重复测量,并采用配对t检验和重复测量数据线性回归分析探讨尿镍铬水平的变化与镍铬合金烤瓷冠佩戴的关系.结果 镍铬合金烤瓷冠佩戴2月后,机体尿镍水平(67.6 μg·mol-1肌酐)略高于佩戴前(46.4 μg·mol-1肌酐),但差异无统计学意义(P=0.063);女性患者佩戴前为44.8 μg·mol-1肌酐,佩戴后为73.7μg·mol-1肌酐(P=0.068).佩戴2月后,机体尿铬水平(99.4 μg·Tol-1肌酐)明显高于佩戴前(57.0

  3. Research Progress on Process of Stainless Steelmaking by Chromium Ore Smelting Reduction and Direct Alloying in a Converter%转炉铬矿熔融还原法不锈钢直接合金化的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘岩; 许力贤; 王德永

    2012-01-01

    The study status of chromium ore smelting reduction process was summarized, based on the introduction of process technologies used for refining stainless steel with hot metal in converter. The existence problems of the study used for refining stainless steel by chromium ore smelting reduction and direct alloying in converter are also discussed. The main problems include that the behavior of chromium ore dissolution in the slag has rarely been reported, the consistent view about the mechanism of smelting reduction has not been achieved, the application of research results is limited and little work about the reaction kinetic model for the production of stainless steel by chromium ore smelting reduction and direct alloying has been done. Consequently, it is of very important strategic significance for the rapid development of stainless steel industry in our country and in the world to strengthen the study and generalization of chromium ore smelting reduction process for stainless steel in China and realize the industrialized production as soon as possible.%在介绍了转炉用铁水冶炼不锈钢工艺技术的基础上,论述了铬矿熔融还原工艺的研究现状,指出目前在转炉铬矿熔融还原法不锈钢直接合金化工艺的研究工作中存在的主要问题包括:对铬矿在渣中溶解行为的研究报道较少,目前为止,尚未对熔融还原机理达成一致观点,研究成果的应用具有局限性以及对于铬矿熔融还原过程反应动力学模型的研究很少.因此,加强铬矿熔融还原工艺的研究和推广工作,使我国早日实现转炉熔融还原直接冶炼不锈钢的工业化生产,将对推动我国和世界不锈钢产业快速发展具有十分重要的战略意义.

  4. Contingency plans for chromium utilization. Publication NMAB-335

    International Nuclear Information System (INIS)

    The United States depends entirely on foreign sources for the critical material, chromium, making it very vulnerable to supply disruptions. This vulnerability results because chromium is essential for the fabrication of corrosion-resisting steels and high-temperature, oxidation-resisting alloys in applications that are vital to the nation's technological well-being; because no substitutes are known for these materials in those applications; and because the known, substantial deposits of chromite ore are only in a few geographical locations that could become inaccessible to the United States as a result of political actions. The effectiveness of programs such as stockpiling, conservation, and research and development for substitutes to reduce the impact of disruption of imports of chromite and ferrochromium are discussed. Alternatives for decreasing chromium consumption also are identified for chromium-containing materials in the areas of design, processing, and substitution

  5. Substoichiometric extraction of chromium

    International Nuclear Information System (INIS)

    Substoichiometric extraction of chromium with tetraphenylarsonium chloride (TPACl), tri-n-octylamine (TNOA), diethylammonium diethyldithiocarbamate (DDDC) and ammonium pyrrolidinedithiocarbamate (APDC) was examined in detail. Chromium can be extracted substoichiometrically in a pH range, which is 1.1-2.6 for the TPACl compound, 0.6-2.3 for the TNOA compound, 5.1-6.4 for the DDDC chelate and 3.9-4.9 for the APDC chelate. Chromium in high-purity calcium carbonate, Orchard Leaves (NBS SRM-1571) and Brewers Yeast (NBS SRM-1569) was determined by neutron activation analysis combined with substoichiometric extraction by DDDC and APDC. The values of 2.0+-0.02 ppm and 2.6+-0.2 ppm were obtained for Brewers Yeast and Orchard Leaves, respectively. These values were in good agreement with those reported by NBS. The reaction mechanism and the reaction ratio between hexavalent chromium and dithiocarbamate are also discussed. (author)

  6. High hardness of alloyed ferrite after nitriding

    International Nuclear Information System (INIS)

    Detailed layer-by layer structure and phase analyses of the diffusion layer of nitrided binary alloys of iron with aluminium, chromium, vanadium and titanium have been carried out by means of a complex technique. Transition d-metals (chromium, vanadium and titanium) raise to a greater degree the solubility of nitrogen in the α solid solution, sharply increases the hardness of ferrite and decrease the depth of the layer. Nitrided binary alloys of iron with chromium, vanadium and titanium are strengthened through precipitation from the nitrogen-saturated α-solid solution of nitrides of alloying elements TiN, VN and CrN of a structure B1. A maximum hardness of ferrite alloyed by chromium, vanadium and titanium is observed after nitriding at 550 deg C when the precipitated special nitrides are fully coherent with the α matrix

  7. High strength ferritic alloy

    International Nuclear Information System (INIS)

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  8. The carcinogenicity of chromium

    OpenAIRE

    Norseth, Tor

    1981-01-01

    The carcinogenicity of chromium compounds is reviewed with specific attention to the gaps in knowledge for risk estimation and research needs. The most important problems at present are whether trivalent chromium compounds cause cancer, and whether there is a difference in cancer causing effects between the soluble and the slightly soluble hexavalent compounds in the practical exposure situation. Dose estimates for risk estimation based on epidemiological investigations are also lacking. Pres...

  9. Bainitic chromium-tungsten steels with 3 pct chromium

    International Nuclear Information System (INIS)

    Previous work on 3Cr-1.5MoV (nominally Fe-3Cr-2.5Mo-0.25V-0.1C), 2.25Cr-2W (Fe-2.25Cr-2W-0.1C), and 2.25Cr-2WV (Fe-2.25Cr-2W-0.25V-0.1C) steels indicated that the impact toughness of these steels depended on the microstructure of the bainite formed during continuous cooling from the austenization temperature. Microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of nonclassical microstructures were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2.25Cr-2W and 2.25Cr-2WV steel compositions to increase their hardenability. Charpy testing indicated that the new 3Cr-W and 3Cr-WV steels had improved impact toughness, as demonstrated by lower ductile-brittle transition temperatures and higher upper-shelf energies. This improvement occurred with less tempering than was necessary to achieve similar toughness for the 2.25Cr steels and for high-chromium (9 to 12 pct Cr) Cr-W and Cr-Mo steels

  10. Characterisation of exposure to total and hexavalent chromium of welders using biological monitoring.

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Heussen, G.A.; Peer, P.G.M.; Verbist, K.; Anzion, R.; Willems, J.

    2008-01-01

    Inhalation exposure to total and hexavalent chromium (TCr and HCr) was assessed by personal air sampling and biological monitoring in 53 welders and 20 references. Median inhalation exposure levels of TCr were 1.3, 6.0, and 5.4 microg/m(3) for welders of mild steel (MS, <5% alloys), high alloy st

  11. Obtaining decorative chromium plating from trivalent chromium solutions

    OpenAIRE

    Óscar Javier Suárez García

    2010-01-01

    The present work was aimed at a qualitative evaluation, in the laboratory, of different alternatives for assembling and operating a trivalent chromium bath for decorative chromium plating. Different chromium concentration solutions and different complexing agents were used. The initial result of this analysis was that chloride, formate and acetate solutions produced the best results. Solution preparation conditions were evaluated: temperature, chromium III complex formation time and also ...

  12. Influence of multi element micro alloying on solidification microstructure and impact wear properties of high chromium cast iron%多元微合金化对高铬铸铁凝固组织及冲击磨损性能的影响

    Institute of Scientific and Technical Information of China (English)

    李秀兰; 周新军; 谢文玲; 马幼平

    2015-01-01

    Titanium,vanadium,niobium and molybdenum were added into 2.85C⁃31Cr high chromium cast iron to prepare multicomponent chromium alloys. The influence of titanium,vanadium,niobium and molybdenum on microsturcture evolvement and impact wear properties was investigated. The results show that carbon in iron liquid together with strong carbides formation elements form the corresponding carbides or alloy carbides. With the increase of addition amount of alloy elements,the microstructure of high chromium cast iron changes from hypereutectic into eutectic and hypoeutectic alloy. The weight losses of the alloy with the same component increase first and then decrease with the increase of impact load(2.0,2.5,3.0,3.5 J),which is related with the hardening behavior of the wearing surface during the impact wear. The more the amount of austenite,the higher the wear weight loss rate. The microstructure with fine size and even distribution can decrease the wear weight loss rate. The wear weight loss for eutectic alloy is the minimum and that for hypoeutectic alloy is the maximum under the same impact load.%通过在2.85C-31Cr合金中加入多元微量合金元素V、Ti、Nb、Mo制备多元铬系合金,研究多元微合金化对高铬铸铁的凝固组织和冲击磨损性能的影响。结果表明:铁液中部分C与强碳化物形成元素结合生成碳化物或合金碳化物;随合金元素加入量的增加,高铬铸铁凝固组织从稍微过共晶转变成共晶、亚共晶组织;相同成分的合金质量损失率随冲击磨损载荷(2.0、2.5、3.0、3.5 J)的增加呈先增加后减小、再增大的变化规律,这与材料在冲击磨损过程中的硬化行为有关;凝固组织中奥氏体数量越多,磨损质量损失率越大,尺寸细小和分布均匀的凝固组织能减小磨损质量损失率;在同一冲击载荷下,共晶成分的合金质量损失率最小,亚共晶成分的质量损失率最大。

  13. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    that, above a certain concentration, the oscillatory magnetization becomes commensurate with the lattice. The resistivity and thermoelectric power have also been studied as a function of temperature between 4.2°K and 450°K. Pronounced anomalies were observed in the transport properties just below the...... Néel temperatute, and these are interpreted in terms of the magnitude and position of the magnetic superzone energy gaps and the change in magnetic disorder scattering....

  14. A cross-sectional survey on immunological function after dental restoration of nickel-chromium alloy%戴用镍铬合金烤瓷冠对免疫功能影响的横断面研究

    Institute of Scientific and Technical Information of China (English)

    夏刚; 陈波; 徐碧瑶; 曹新明; 王珏; 姜庆五

    2012-01-01

    目的 探讨口内戴用镍铬合金烤瓷冠是否导致机体免疫功能学指标改变.方法 对镍铬合金烤瓷冠戴用者795例和对照组198人进行问卷调查、测定尿镍铬和血免疫功能指标,并分析镍铬烤瓷冠戴用时间、尿镍铬与免疫功能指标间的关系.结果 将镍铬合金烤瓷冠戴用者和对照组的所有样本合并,根据尿镍和尿铬水平分为尿镍低水平组(< 37.28 μg/mol肌酐)、中水平组(37.28~ 115.73 μg/mol肌酐)和高水平组(>115.73 μg/mol肌酐);尿铬低水平组(<34.72 μg/mol肌酐)、中水平组(34.72 ~79.81 μg/mol肌酐)和高水平组(>79.81 μg/mol肌酐).结果 仅发现尿镍高水平组的血清白细胞介素( interleukin,IL)1β水平[(1.50±0.84) μg/L]显著低于尿镍低水平组[(1.63±0.82)μg/L](P<0.05),未发现尿镍中水平组与低水平组间、尿铬各水平组间在血清肿瘤坏死因子α(tumor necrosis factor-alpha,TNF-α)、IL-1β和IL-6间的差异有统计学意义.单因素方差分析和各影响因素的线性回归分析仅发现年龄与TNF-α的升高有关,未发现戴用时间、数量和金属裸露水平,以及尿镍和尿铬对TNF-α、IL-1β和IL-6等免疫学指标的显著影响.结论 本研究未观察 到戴用镍铬合金烤瓷冠与机体免疫功能指标TNF-α、IL-1β和IL-6的升高具有相关关系.%Objective To investigate the immunological function parameters in patients undergoing dental restoration of nickel-chromium (Ni-Cr).Methods Seven hundred and ninety-five Ni-Cr alloy consumers as exposure group,together with 198 controls,were surveyed by the questionnaire and the biological examination of immunological function.Results After splitting all subjects into three groups of equal sample size by urinary Ni or urinary Cr,serum interleukin-1 beta( IL-1 β) was found to be significantly higher in the group of urinary Ni > 115.73 μg/mol creatinine comparing to the group of urinary Ni < 37.28

  15. The analytical biochemistry of chromium.

    OpenAIRE

    Katz, S A

    1991-01-01

    The essentiality and carcinogenicity of chromium depend on its chemical form. Oxidation state and solubility are particularly important in determining the biological effects of chromium compounds. For this reason, total chromium measurements are of little value in assessing its nutritional benefits or its toxicological hazards. Aqueous sodium carbonate-sodium hydroxide solutions have been successfully used for extracting hexavalent chromium from a variety of environmental and biological matri...

  16. Chromium in potatoes

    International Nuclear Information System (INIS)

    Chromium concentration in potatoes was determined, and tubes were labeled either intrinsically or extrinsically with radioactive chromate (51Cr). A labeled chromium complex was isolated from preparations of raw, baked, or fried potatoes and chromatographed on gel permeation media. Potato pulp and peel contained 1.63 and 2.70 μg of Cr/g tissue, respectively. There was no correlation between the two, nor did they respond similarly to changes of variety or locations. No significant differences were apparent in relative migration of the isolated complexes except between raw and cooked extrinsically labeled preparations

  17. The effect of hydrogen peroxide on the electrochemical corrosion properties and metal ions release of nickel-chromium dental alloys%H2O2对镍铬合金电化学腐蚀性能及离子析出的影响

    Institute of Scientific and Technical Information of China (English)

    王珏; 乔广艳

    2013-01-01

    PURPOSE: To investigate the effect of hydrogen peroxide on the electrochemical corrosion and metal ions release of nickel-chromium dental alloys. METHODS: The corrosion resistance of nickel-chromium dental alloys was compared by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PD) methods in artificial saliva after immersed in different concentrations of hydrogen peroxide for 112 h. The metal ions released from nickel-chromium dental alloys to the artificial saliva were detected after electrochemical measurements using inductively coupled plasma mass spectrometry (ICP-MS). The data was statistically analyzed by analysis of variance (ANOVA) using SPSS 13.0 software package. RESULTS: The electrochemical experiment showed that the sequence of polarization resistance in equivalent circuit (Rct), corrosion potential (Ecorr), pitting breakdown potential (Eb), and the difference between Ecorr and Eb representing the "pseudo-passivation" (△E) of nickel-chromium alloys in artificial saliva was 30% < 10% < 0%(P<0.05). Furthermore, the metal ions including Ni, Cr, and Mo were released from the Ni-Cr alloys to the artificial saliva, and the order of the concentrations of metal ions was 0% < 10% < 30% (P<0.05). CONCLUSIONS: The corrosion resistance of nickel-chromium dental alloys decrease after immersed in different concentrations of hydrogen peroxide for 112 h. Nickel-chromium dental alloys are more prone to corrosion in the artificial saliva with the concentration of hydrogen peroxide increased, and more metal ions are released in the artificial saliva. Supported by Natural Science Foundation of Shanghai Municipality (12ZR1427200), Shanghai Municipal Health Bureau Fund (20124172) and Shanghai Municipal Health Bureau Youth Fund (20114Y053).%目的:比较不同浓度H2O2对镍铬合金电化学腐蚀性能及离子析出的影响.方法:应用电化学工作站的电化学阻抗谱法和动电位极化曲线法,对不同浓度H2O2浸泡112

  18. An universal formula for the calculation of nitrogen solubility in liquid nitrogen-alloyed steels

    OpenAIRE

    J. Siwka; A. Hutny

    2009-01-01

    The results of the authors’ own experimental studies on the Fe - N system, its standard state, binary alloys of iron with chromium, molybdenum, manganese, nickel, vanadium, silicon and carbon, as well as ternary alloys with chromium, have made it possible to work out the whole required complex of parameters of nitrogen interaction in liquid iron alloys, including the self-interaction parameters of nitrogen-nitrogen and nitrogen-alloying elements.

  19. Chromium--a material for fusion technology

    International Nuclear Information System (INIS)

    Due to their low neutron-induced radioactivity chromium based materials are considered to be candidates for structure materials in fusion technology. In this paper investigations are presented of unirradiated chromium with a purity of 99.96% (DUCROPUR) and a dispersion strengthened chromium alloy Cr5Fe1Y2O3 (DUCROLLOY). Both materials have been produced in a powder metallurgical route. Mechanical tests of smooth and pre-cracked specimens have been performed in a wide temperature range. Below 280 deg. C the fracture toughness values of DUCROPUR are very low (1/2), above the transition temperature they exceed 500 MPa m1/2. Large plastic deformations have been observed. DUCROLLOY does not indicate such a significant increase of fracture toughness in the tested temperature range. But above 400 deg. C large plastic deformations can be obtained in bending samples, too. The fatigue crack propagation behaviour of DUCROPUR at 300 deg. C is similar to that of a ductile metal

  20. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  1. Filler metal alloy for welding cast nickel aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  2. RESEARCH AND APPLICATION OF AS-CAST WEAR RESISTANCE HIGH CHROMIUM CAST IRON

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The influence of alloy elements, such as boron and silicon, on the microstructure and properties of as-cast high chromium cast iron is studied. The results show that boron and silicon have a great effect on the mechanical properties and the wear resistance. Through proper addition of boron and silicon, the properties of as-cast high chromium cast iron can be improved effectively. Through analyzing the distribution of elements by scanning electron microscope, it has been shown that the addition of boron and silicon lowers the mass fraction of chromium saturated in as-cast austenite, and makes it unstable and liable to be transformed into martensite. The as-cast high chromium cast iron with proper content of boron and silicon is suitable for the manufacture of lining for asphalt concrete mixer and its wear resistance is 14 times that of lining made of low alloy white cast iron.

  3. 21 CFR 872.3710 - Base metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  4. Chromium(VI) release from leather and metals can be detected with a diphenylcarbazide spot test

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten Stendahl;

    2015-01-01

    at 0.5 ppm without interference from other pure metals, alloys, or leather. A market survey using the test showed no chromium(VI) release from work tools (0/100). However, chromium(VI) release from metal screws (7/60), one earring (1/50), leather shoes (4/100) and leather gloves (6/11) was observed. We...... leather and metal articles. The spot test has the potential to become a valuable screening tool....

  5. Stability of chromium (III) sulfate in atmospheres containing oxygen and sulfur

    Science.gov (United States)

    Jacob, K. T.; Rao, B. D.; Nelson, H. G.

    1978-01-01

    The stability of chromium sulfate in the temperature range from 880 K to 1040 K was determined by employing a dynamic gas-solid equilibration technique. The solid chromium sulfate was equilibrated in a gas stream of controlled SO3 potential. Thermogravimetric and differential thermal analyses were used to follow the decomposition of chromium sulfate. X-ray diffraction analysis indicated that the decomposition product was crystalline Cr2O3 and that the mutual solubility between Cr2(SO4)3 and Cr2O3 was negligible. Over the temperature range investigated, the decomposition pressure were significantly high so that chromium sulfate is not expected to form on commercial alloys containing chromium when exposed to gaseous environments containing oxygen and sulfur (such as those encountered in coal gasification).

  6. Spontaneously Passivating Amorphous Fe-Cr-Mo-Metalloid Alloys in 6 N HCl at Room Temperature and 80℃

    OpenAIRE

    Kobayashi, Ken-ichi; Hashimoto, Koji; MASUMOTO, Tsuyoshi

    1980-01-01

    Amorphous iron-base alloys capable of passivating spontaneously in 6 N HCl at 80℃ were prepared by rapid quenching of molten alloys. The corrosion resistance and passivating ability of the alloys increased with increasing chromium and molybdenum contents. The critical concentrations of chromium and molybdenum in the alloys necessary for spontaneous passivation in 6 N HCl at room temperature and 80℃ were established. These concentrations were greatly affected by coexisting metalloids. The pass...

  7. Microbial Diversity of Chromium-Contaminated Soils and Characterization of Six Chromium-Removing Bacteria

    Science.gov (United States)

    He, Zhiguo; Hu, Yuting; Yin, Zhen; Hu, Yuehua; Zhong, Hui

    2016-06-01

    Three soil samples obtained from different sites adjacent to a chromium slag heap in a steel alloy factory were taken to examine the effect of chromium contamination on soil bacterial diversity as determined by construction of 16S rDNA clone libraries and sequencing of selected clones based on restriction fragment length polymorphism (RFLP) analysis. Results revealed that Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Alphaproteobacteria occurred in all three soil samples, although the three samples differed in their total diversity. Sample 1 had the highest microbial diversity covering 12 different classes, while Sample 3 had the lowest microbial diversity. Strains of six different species were successfully isolated, one of which was identified as Zobellella denitrificans. To our knowledge, this is the first report of a strain belonging to the genus Zobellella able to resist and reduce chromium. Among all isolates studied, Bacillus odysseyi YH2 exhibited the highest Cr(VI)-reducing capability, with a total removal of 23.5 % of an initial Cr(VI) concentration of 350 mg L-1.

  8. Microstructure and properties of laser surface alloyed PM austenitic stainless steel

    OpenAIRE

    Z. Brytan; M. Bonek; L.A. Dobrzański

    2010-01-01

    Purpose: The purpose of this paper is to analyse the effect of laser surface alloying with chromium on the microstructural changes and properties of vacuum sintered austenitic stainless steel type AISI 316L (EN 1.4404).Design/methodology/approach: Surface modification of AISI 316L sintered austenitic stainless steel was carried out by laser surface alloying with chromium powder using high power diode laser (HPDL). The influence of laser alloying conditions, both laser beam power (between 0.7 ...

  9. Bacterial adhesion of zirconia ceramics versus nickel chromium alloy as oral materials%氧化锆陶瓷与镍铬合金口腔材料的细菌黏附性对比

    Institute of Scientific and Technical Information of China (English)

    韩月红; 成之远; 王明德

    2016-01-01

    BACKGROUND: Experimental and clinical experiences show that the surface roughness of dental restoration materials directly affects bacterial adhesion; in addition, the material composition and physicochemical properties are also important influencing factors. OBJECTIVE: To compare the bacterial adhesion of zirconia ceramics and nickel chromium al oy as oral materials. METHODS: Zirconia ceramics and nickel chromium al oy were respectively cut into 10 pieces of 3. 0 cm ×3.0 cm×0. 2 cm plate specimens. For each material, five pieces were subjected to surface polishing treatment, and the other five pieces were glazed. Surface roughness value of specimens was detected. Experimental strains of Streptococcus mutans was cultured on the specimen surface at 37 ℃ for 48 hours, and the amount of bacteria adhering to the specimen surface was detected. RESULTS AND CONCLUSION: Surface roughness of four groups of specimens showed no difference. The amount of bacteria that adhered to the polishing specimens of zirconia ceramics was significantly lower than that of nickel chromium al oy (P < 0.05), but no difference was found in the amount of bacteria adhering to the glazing specimens of nickel-chromium al oy and zirconia ceramics. These findings indicate that zirconia ceramics has better ability to inhibit bacterial adhesion than nickel-chromium al oy, especial y after glazing.%背景:实验及临床经验表明,修复材料表面的粗糙度直接影响细菌的黏附性,除此之外,材料组成及本身理化性质也是重要影响因素。目的:对比氧化锆陶瓷与镍铬合金口腔材料的细菌黏附性。方法:将氧化锆陶瓷、镍铬合金分别制成3.0 cm ×3.0 cm ×0.2 cm 的板片,每种材料各10片。两种材料各选取其中5片进行抛光处理,另5片进行上釉处理,检测4组试件的粗糙度。将变形链球菌浮液滴加于4组材料表面,37℃厌氧培养48 h,检测各组细菌黏附数量。结果与结论:4

  10. Groundwater contaminant by hexavalent chromium

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, C. [Univ. of Texas, Austin, TX (United States)

    1995-11-01

    Oxidation of trivalent chromium to hexavalent chromium has been investigated as a function of total manganese in soils as well as various incubation conditions. Chromium and manganese contents were analyzed by atomic absorption (graphite furnace and flame emission respectively) following acid digestion. Total hexavalent chromium generation capacity was determined by addition of 0.001 M CrCL3, incubation, and analysis by s-diphenyl carbazide. Samples were then leached with CaSO{sub 4} and MgSO{sub 4} and incubated in various environments (oven, freeze-drier, field moist, ultrafreeze) to test for geogenic generation of Cr(IV). The degree of geogenic generation of hexavalent chromium was compared with total Mn and Cr content as well as hexavalent generational capacity.

  11. Chromium related degradation of solid oxide fuel cells; Chrom-bezogene Degradation von Festoxid-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Anita

    2011-05-04

    Solid Oxide Fuel Cells (SOFCs) offer a high potential for application as an auxiliary power unit (APU) for heavy goods vehicles as well as combined heat and power (CHP) systems. SOFCs are especially attractive due to their high efficiencies and the use of different fuel types. However, optimization in terms of long term stability and costs are still necessary. This work characterized the degradation of SOFCs with lanthanum strontium manganite (LSM) cathodes under chromium influence. Galvanostatic cell tests were carried out at 800 C with operation times from 250 - 3000 h and variation of the chromium source and current density. The current densities of j = 0 (A)/(cm{sup 2}), j = 0,3 (A)/(cm{sup 2}) and j = 0,5 (A)/(cm{sup 2}) were applied. The high temperature ferritic alloy Crofer22APU was used as a chromium source. Variation of the chromium source was realized by coating the Crofer22APU insert with the chromium retention layer Mn{sub 3}O{sub 4} and the cathode contact layer LCC10. Cell degradation was analyzed with regard to cell voltage, current density and area specific resistance (ASR). Microstructural alterations of the cathode as well as chromium content and distribution across the cell were investigated after completion of the cell tests. For cells with a chromium source present and operation with a nonzero current density, the course of cell degradation was divided into three phases: a run-in, weak linear degradation and strong linear degradation. A decrease of the chromium release rate by means of different coatings stretched the course of degradation along the timescale. Strong degradation, which is characterized by a significant increase in ASR as well as a decrease of current density at the operating point, was only observed when a chromium source in the setup was comb ined with operation of the cell with a non-zero current density. Operation of the cell with a chromium source but no current density caused a degradation of current density at the

  12. Properties of CuCr contact materials with low chromium content and fine particles

    Institute of Scientific and Technical Information of China (English)

    曹辉; 王亚平; 郑志; 冼爱平

    2003-01-01

    The voltage withstanding capability and electric conductivity of CuCr contact materials with low chromium content and fine Cr particles were studied. The results show that the withstanding voltage has little relation with the Cr content for the melted-casting CuCr alloy within 15%-29% Cr content, and that the electric conductivity of the alloy increases with the decreasing of Cr content.

  13. On texture formation of chromium electrodeposits

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Leisner, Peter; Horsewell, Andy

    1998-01-01

    The microstructure, texture and hardness of electrodeposited hard, direct current (DC) chromium and pulsed reversed chromium has been investigated. These investigations suggest that the growth and texture of hard chromium is controlled by inhibition processes and reactions. Further, it has been e...... established that codeposition of Cr2O3 nanoparticles is a general feature of DC chromium electrodeposition....

  14. Friction and wear behavior of chromium carbide coatings

    International Nuclear Information System (INIS)

    Chromium carbides, tungsten carbide, and chromium oxide have been tested and evaluated as coatings to protect high-temperature gas-cooled reactor (HTGR) steam generator and other HTGR components from adhesion, galling associated with sliding wear or from fretting. Tests were performed in commercially-pure helium and in helium doped with various gaseous impurities (H2, H2O, CH4, CO) to simulate the primary coolant of an HTGR. Several types of chromium carbide coatings including Cr3C2, Cr7C3, and Cr23C6, were tested for wear resistance and resistance to long-term spalling. Tungsten carbide and chromium oxide coatings were tested in sliding wear tests. Cr23C6-NiCr coatings showed the best performance (from 400 to 8160C) whether they were applied by detonation gun or plasma gun spraying methods. The presence of the Cr23C6-NiCr coatings did not affect the creep rupture properties of Alloy 800H substrates at temperatures up to 7600C. Low-cycle fatigue life of similar specimens at 5930C was reduced to 10 to 20% when tested in the 1 to 0.6% strain range

  15. Preparation and corrosion resistance studies of nanometric sol-gel-based CeO{sub 2} film with a chromium-free pretreatment on AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shiyan [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li Qing, E-mail: liqingswu@yeah.ne [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chen Bo [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China)

    2010-01-01

    Magnesium alloy, although valuable, is reactive and requires protection before it can be applied in many fields. In this study, a novel protective environmental-friendly gradient coating was performed on AZ91D magnesium alloy by non-chromate surface treatments, which consisted of phytic acid chemical conversion coating and the sol-gel-based CeO{sub 2} thin film. The surface morphologies, microstructure and composition of the coatings were investigated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. The effects of the concentration, layers, temperature of heat treatment of CeO{sub 2} sol on the anti-corrosion properties of the gradient coating for magnesium were also investigated. The results showed that the gradient coating was mainly composed of crystalline CeO{sub 2}. According to the results of electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environmental-friendly surface treatment.

  16. Corrosion of high temperature alloys in solar salt at 400, 500, and 680ÀC.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-09-01

    Corrosion tests at 400, 500, and 680ÀC were performed using four high temperature alloys; 347SS, 321SS In625, and HA230. Molten salt chemistry was monitored over time through analysis of nitrite, carbonate, and dissolved metals. Metallography was performed on alloys at 500 and 680ÀC, due to the relatively thin oxide scale observed at 400ÀC. At 500ÀC, corrosion of iron based alloys took the form of chromium depletion and iron oxides, while nickel based alloys also had chromium depletion and formation of NiO. Chromium was detected in relatively low concentrations at this temperature. At 680ÀC, significant surface corrosion occurred with metal losses greater than 450microns/year after 1025hours of exposure. Iron based alloys formed complex iron, sodium, and chromium oxides. Some data suggests grain boundary chromium depletion of 321SS. Nickel alloys formed NiO and metallic nickel corrosion morphologies, with HA230 displaying significant internal oxidation in the form of chromia. Nickel alloys both exhibited worse corrosion than iron based alloys likely due to preferential dissolution of chromium, molybdenum, and tungsten.

  17. Chromium reduction in Pseudomonas putida.

    OpenAIRE

    Ishibashi, Y.; Cervantes, C; Silver, S

    1990-01-01

    Reduction of hexavalent chromium (chromate) to less-toxic trivalent chromium was studied by using cell suspensions and cell-free supernatant fluids from Pseudomonas putida PRS2000. Chromate reductase activity was associated with soluble protein and not with the membrane fraction. The crude enzyme activity was heat labile and showed a Km of 40 microM CrO4(2-). Neither sulfate nor nitrate affected chromate reduction either in vitro or with intact cells.

  18. Effects of Cr and Nb contents on the susceptibility of Alloy 600 type Ni-base alloys to stress-corrosion cracking in a simulated BWR environment

    International Nuclear Information System (INIS)

    In order to discuss the effects of chromium and niobium contents on the susceptibility of Alloy 600 type nickel-base alloys to stress-corrosion cracking in the BWR primary coolant environment, a series of creviced bent-beam (CBB) tests were conducted in a high-temperature, high-purity water environment. Chromium, niobium, and titanium as alloying elements improved the resistivity to stress-corrosion cracking, whereas carbon enhanced the susceptibility to it. Alloy-chemistry-based correlations have been defined to predict the relative resistances of alloys to stress-corrosion cracking. A strong correlation was found, for several heats of alloys, between grain-boundary chromium depletion and the susceptibility to stress-corrosion cracking

  19. Determination of chromium content in ferrochromium alloy by automatic potentiometric titration%自动电位滴定法测定铬铁合金中的铬含量

    Institute of Scientific and Technical Information of China (English)

    赵晶晶; 宁海龙; 常健辉

    2011-01-01

    A new method based on automatic potentiometric titration was established for the determination of chromium content in ferrochromium. The precision, recovery and accuracy of the method were investigated. The RSD was 0. 07%~0. 09%, and the recovery was 100. 38%~100. 45%. The method is simple and rapid* and the results are satisfactory.%利用自动电位滴定仪,建立了铬铁合金铬含量检测的一种新方法,对方法的准确度、回收率、精密度进行了全面的分析,该方法相对标准偏差为0.07%~0.09%,回收率为100.38~100.45%,该方法操作简便、测定快速,结果令人满意,是一种简便易行的测定铬铁合金中铬含量的新方法.

  20. Heat resistance of multicomponent coatings on the niobium alloys

    International Nuclear Information System (INIS)

    Increase in heat resistance of niobium and its alloys by means of diffusion saturation with aluminium together with the elements reducing its mobility, i.e. chromium and silicon is studied. It is shown that the Cr-Al coating can be used for protection of niobium alloys at the temperatures below 1000 deg C or as a sublayer for silicide coatings. Simultaneous saturation with chromium, aluminium and silicon results in formation of a coating consisting of three layers, heat resistance of which increases considerably as compared to the one observed in the case of two-component saturation with chromium and aluminium. The study of the samples with the Cr-Al-Si coating has also shown that oxidation of alloys in this case proceeds less intensely. Possibility of the coating application for practical purposes for niobium alloys protection from oxidation in the air at high temperatures is shown

  1. Hydrogen permeation through chromium

    International Nuclear Information System (INIS)

    Steady state and non-steady state measurements of hydrogen permeation through metallic chromium are reported. The experiments have been conducted by use of hydrogen and deuterium within a pressure range of 10-8 - 1 bar and temperatures between 600 - 8000C. Numerical values for the physical quantities permeability, diffusion constant and solubility could be derived. At an upstream pressure above around 10-3 bar classical Sieverts-low was found (permeation rate proportional √p) with activation energies Qsub(perm) = 65 kJoule/mole, Qsub(Diff) = 4-8 kJoule/mole, Qsub(Sol) = 57-61 kJoule/mole for the respective processes involved. The isotopic effect between H and D of the permeabilities could be represented by a factor of 1,5 independence on temperature. All non steady-state measurements could be approximated reasonably well by classical diffusion kinetics. Below up-stream pressures of approx.= 10-7 bar the kinetics was no longer diffusion controlled, the dependence on up-stream pressure changed from √p -> p, the activation energy for permetation increased to 127 kJoule/mole and the isotopic factor resulted in about 2-3. (orig.)

  2. Influence of chromium on the initial corrosion behavior of low alloy steels in the CO2-O2-H2S-SO2 wet-dry corrosion environment of cargo oil tankers

    Institute of Scientific and Technical Information of China (English)

    Qing-he Zhao; Wei Liu; Jie Zhao; Dong Zhang; Peng-cheng Liu; Min-xu Lu

    2015-01-01

    The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2wet–dry corrosion envi-ronment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance (Rct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.

  3. Effects of Cerium on Alloy Elements Distribution in Ferrous Matrix Material

    Institute of Scientific and Technical Information of China (English)

    刘英才; 刘俊友; 尹衍生; 刘国权

    2001-01-01

    The effect of the addition of rare earths in Fe-based high chromium alloy powders on elements distribution in matrix materials and mechanical properties were studied. The results show that the addition of cerium can increase the chromium amount in carbonides and increase the micro-hardness after carbonization and the wear-resistant property of materials.

  4. Abrasive Wear Behavior of High Chromium Cast Iron and Hadfield Steel-- A Comparison

    Institute of Scientific and Technical Information of China (English)

    Mehdi Mazar Atabaki; Sajjad Jafari; Hassan Abdollah-pour

    2012-01-01

    Wear properties of two different crushers used for grinding raw materials of cement industry are compared using pin-on-disk wear test.The wear test was carried out with different loads on a pin.Abrasive wear behavior of two alloys was evaluated by comparing mass loss,wear resistance,microhardness and friction coefficient.The microstructure of the specimens was detected using optical microscope.The results showed that abrasive wear of high chromium cast iron is lower than that of Hadfield steel.Due to the presence of M7C3 carbides on the high chromium cast iron matrix,impact crushers exhibited higher friction coefficient

  5. 选择性激光熔化技术制作牙科钴铬合金的电化学腐蚀性能研究%Electrochemical-corrosion behavior of dental cobalt-chromium alloy fabricated by selective laser melting technique

    Institute of Scientific and Technical Information of China (English)

    忻贤贞; 项楠; 陈洁; 徐丹; 魏斌

    2012-01-01

    Objective To investigate the electrochemical-corrosion behavior of a dental cobalt-chromium ( Co-Cr) alloy fabricated by selective laser melting (SLM) under conditions simulating the oral environment. Methods Co-Cr alloy specimens for dental use (cylinder, 10 mm in diameter and 3 mm in thickness) were obtained by fabrication with the same Co-Cr alloy using SLM technique ( SLM group, n = 5) or traditional ca3t technique ( control group, n = 5). The electrochemical-corrosion behavior of the specimens were analysed with the parameter of polarization resistance ( Rp), which was examined with electrochemical impedance spectroscopy tests in an artificial saliva solution with two different pHs ( before diet, 5.0; after diet, 2.5). Results At pH of 5.0, Rp values of SLM group and control group were 4.25 ± 1. 11 and 3. 82 ± 1. 40 respectively, and there was no significant difference between two groups (P > 0.05). AtpHof2.5, R values of SLM group and control group were 5.83 ±0. 88 and 3.49 ±0.83 respectively, and there were significant differences between two groups (P <0. 05). Conclusion Compared with traditional cast technique, dental Co-Cr alloy fabricated by SLM has better anti-corrosion behavior in acid oral environment after diet.%目的 采用针对区域选择性激光熔化(SLM)技术制作钴铬合金口腔修复材料,考量其在特殊口腔环境中的电化学腐蚀性能.方法 选取具有相同成分的钴铬(Co-Cr)合金金属粉末和金属块,分别运用SLM技术(SLM组,n=5)和传统的铸造工艺(对照组,n=5)制作适用于口腔修复的Co-Cr合金试件(圆柱形,直径10 mm,厚度3 mm).模拟特殊口腔环境(未进食pH值为5.0,进食后pH值为2.5),采用电化学交流阻抗谱的方法获取相关拟合数据,根据极化电阻值Rp分析两组试件的耐腐蚀性能.结果当模拟口腔环境中pH值为5.0时,SLM组和对照组的Rp值分别为4.25±1.11和3.82±1.40,组间比较差异无统计学意义(P>0.05);当模

  6. Alloy selection for sulfidation: oxidation resistance in coal gasification environments

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, R.W.; Stoltz, R.E.

    1980-01-01

    A series of iron-nickel-chromium and nickel-chromium alloys were studied for their combined sulfidation-oxidation resistance in simulated coal gasification environments. All alloys contained a minimum of 20 w/o chromium, and titanium and aluminum in the range 0 to 4 w/o. Corrosion resistance was evaluated at 1255/sup 0/K (1800/sup 0/F) in both high BTU and low BTU coal gasification atmospheres with 1 v/o H/sub 2/S. Titanium at levels greater than 1 w/o imparted significant sulfidation resistance due to an adherent, solid solution chromium-titanium oxide layer which prevented sulfur penetration. Aluminum was less effective in preventing sulfidation since surface scales were not adherent. Of the commercial alloys tested, Nimomic 81, Pyromet 31, IN801, and IN825 exhibited the best overall corrosion resistance. However, futher alloy development, tailored to produce solid solution chromium-titanium oxide scales, may lead to alloys with greater sulfidation-oxidation resistance than those investigated here.

  7. LASER SURFACE ALLOYING OF A MILD STEEL FOR CORROSION RESISTANCE IMPROVEMENT

    OpenAIRE

    Fouquet, F.; Renaud, L.; Millet, J.; Mazille, H.

    1991-01-01

    Surface alloys were produced by laser melting of different predeposits into the outer part of a mild steel substrate. Three types of coatings were used : electroless nickel (containing phosphorous), electroless nickel in which chromium carbide particles were introduced during deposition and duplex coatings made of, first, a nickel layer (electroless or electrodeposited) and then, a chromium layer. The surface alloying treatments were performed using a cw high power CO2 laser and the multiple ...

  8. Nitriding of iron-based alloys : residual stresses and internal strain fields

    OpenAIRE

    Vives Díaz, Nicolás

    2007-01-01

    Different iron-chromium alloys (4, 8, 13 and 20 wt.% Cr) were nitrided in NH3/H2 gas mixtures at 580 ºC. The nitrided microstructure was investigated by X-ray diffraction, light microscopy, hardness measurements and scanning electron microscopy. Composition depth-profiles of the nitrided zone were determined by electron probe microanalysis. Various microstructures develop, depending on the nitriding conditions and the alloy composition (chromium content). The initial development of coherent, ...

  9. The effect of carbon on the metallography of a nickel base removable partial denture casting alloy.

    Science.gov (United States)

    Lewis, A J

    1979-04-01

    This study has demonstrated the pattern of carbide development associated with progressive increases in carbon content in a series of six nickel chromium alloys. The carbon content is critical since it influences the production and distribution of carbides, which have been shown to alter the mechanical properties, of the nickel chromium alloys, that are dependent upon the development of gamma prime. Furthermore, it has been shown that the attainment of suitable strength is invariably associated with an unacceptable level of ductility. PMID:288385

  10. Chromium(III) -- chromium(VI) interconversions in seawater

    NARCIS (Netherlands)

    Weijden, C.H. van der; Reith, M.

    1982-01-01

    The stable form of dissolved chromium in oxygenated seawater is Cr(VI). But Cr(III)-species are also present at an analytically significant level. It is shown that Cr(III) is oxidized only slowly by dissolved oxygen, and that manganese oxide is a strong catalyst for such oxidation. However, the low

  11. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  12. Aluminium effect on steel with 12%-chromium and various manganese contents

    International Nuclear Information System (INIS)

    To increase heat resistance, aluminium has been added to medium-carbon chromium-manganese steels, and its effect on the phase composition and microstructure has been studied. The investigation of alloys has been carried out over polythermal sections of the five-component Fe-C-Cr- Mn system at the constant carbon, chromium and aluminium content and cariable concentrations of manganese in the range of 1150 - 650 deg C. To study phase and structure transformations of alloys at high temperatures, the structure-hardening method has been used. The hardness of alloys containing to 12.6% of manganese appreciably depends on the quenching temperature. It is substantially higher in the original alloy quenched at high temperatures compared to the quenching at lower temperatures. It is due to the transition of its base from martensite-ferrite to ferrite state at 1000 deg C. The results obtained and the data of x-ray diffraction analysis allow a polythermal section of the Fe-C-Cr-Mn-Al system to be constructed at the constant 12%-chromium content, 2.4%-aluminium, 0.37%-carbon and variable manganese contents

  13. The influence of surface condition on the metal dusting behavior of cast and wrought chromia forming alloys

    NARCIS (Netherlands)

    Hermse, C.G.M.; Asteman, H.; Ijzerman, R.M.; Jakobi, D.

    2013-01-01

    The current work investigated the impact of surface condition on the metal dusting behavior of chromia forming alloys. Five commercial alloys were included in the study, wrought 800H, 353MA, and cast G4859, G4852 Micro, and ET45 Micro, these alloys have a chromium and nickel content in the range of

  14. AZ31变形镁合金化学镀前无铬酸洗工艺研究%An Investigation of Chromium-Free Pickling Process for Electroless Nickel Plating on AZ 31 Wrought Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    秦铁男; 马立群; 贺忠臣; 姚妍; 丁毅

    2011-01-01

    主要研究了AZ 31变形镁合金化学镀前的磷酸-硝酸-氢氟酸混合酸洗工艺及各组分对镁合金基体的腐蚀失重表面形貌、镀层与基体的截面形貌和结合力的影响.结果表明:氢氟酸的加入可以有效降低酸洗反应速率并防止新鲜的镁合金基体表面的再次氧化;硝酸的体积分数对镁合金表面形貌的改变有较大影响;当磷酸-硝酸-氢氟酸的体积分数分别为300 mL/L,60 mL/L和100 mL/L时,镀层与基体的结合力最好.%A phosphoric acid-nitric acid-hydrofuoric acid mixed acid pickling process was studied for electroless nickel plating on AZ 31 wrought magnesium alloy sheet. The effects of pickle components on corrosion weight loss, surface morphology, cross section morphology and adhesion strength between the substrate and coating were investigated. The results show that addition of hydrofluoric acid can effectively reduce the rate of pickling reaction and protect the fresh substrate from being Oxidized again. The volume fraction of nitric acid has a great impact on changes of the surface morphology of magnesium substrate. The best adhesion strength between the substrate and the coating is achieved when the pickle solution contains 300 mL/L phosphoric acid, 60 mL/L nitric acid and 100 mL/L hydrofluoric acid.

  15. Determination of chromium combined with DNA, RNA and protein in chromium-rich brewer's yeast

    International Nuclear Information System (INIS)

    The contents of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast were determined with the neutron activation analysis in order to study the combination of Cr with DNA, RNA and protein in chromium-rich brewer's yeast. The results showed that the extracting rats and concentrations of DNA, RNA and protein had no significant difference in two types of yeast, but the chromium contents of DNA, RNA and protein in the chromium-rich yeast were significantly higher than those in the normal. In addition, the content of chromium in DNA was much higher than that in RNA and protein, which indicated that the inorganic chromium compounds entered into the yeast cell, during the yeast cultivation in the culture medium containing chromium were converted into organic chromium compounds combined with DNA, RNA and protein

  16. Corrosion behavior of tantalum-coated cobalt-chromium modular necks compared to titanium modular necks in a simulator test.

    Science.gov (United States)

    Dorn, Ulrich; Neumann, Daniel; Frank, Mario

    2014-04-01

    This study compared the corrosion behavior of tantalum-coated cobalt-chromium modular necks with that of titanium alloy modular necks at their junction to titanium-alloy femoral stem. Tests were performed in a dry assembly and two wet assemblies, one contaminated with calf serum and the other contaminated with calf serum and bone particles. Whereas the titanium modular neck tested in the dry assembly showed no signs of corrosion, the titanium modular necks tested in both wet assemblies showed marked depositions and corrosive attacks. By contrast, the tantalum-coated cobalt-chromium modular necks showed no traces of corrosion or chemical attack in any of the three assemblies. This study confirms the protective effect of tantalum coating the taper region of cobalt-chromium modular neck components, suggesting that the use of tantalum may reduce the risk of implant failure due to corrosion. PMID:24099841

  17. Properties of electrodeposited amorphous Fe-Ni-W alloy deposits

    Institute of Scientific and Technical Information of China (English)

    HE Feng-jiao; WANG Miao; LU Xin

    2006-01-01

    A new technique of electroplating amorphous Fe-Ni-W alloy deposits was proposed. The structure and morphology of Fe-Ni-W alloy deposit were detected by XRD and SEM. The friction and wear behavior of Fe-Ni-W alloy deposit were studied and compared with that of chromium deposit. The corrosion properties against 5% sodium chloride, 5% sulfuric acid and 5% sodium hydroxide were also discussed. The experimental results indicate that Fe-Ni-W alloy deposits have superior properties against wear than hard chromium deposits under dry sliding condition. Under oil sliding condition, except their better wear resistance, the deposits can protect their counterparts against wear. The deposits plated on brass and AISI 1045 steel show good behavior against corrosion of 5% sodium chloride, 5% sulfuric acid and 5% sodium hydroxide. The bath of electroplating amorphous Fe-Ni-W alloy deposits is environmentally friendly and would find widely use in industry.

  18. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600ÀC with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  19. Density of liquid NiCoAlCr quarternary alloys measured by modified sessile drop method

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; ZHANG Shu-fang; XIAO Feng; YANG Ling-chuan; DONG Jian-xin; CAO Chun-lan; TAO Zai-nan; K. MUKAI

    2006-01-01

    The densities of liquid NiCoAlCr quaternary alloys with a fixed molar ratio of Ni to Co to Al (x(Ni)-x(Co)-x(Al)≈73-12-15) which is close to the average value of the commercial Ni-based superalloys TMS75, INCO713, CM247LC and CMSX-4, and the mass fraction of chromium changes from 0 to 9% were measured by a modified sessile drop method. It is found that with increasing temperature and chromium concentration in the alloys, the densities of the liquid NiCoAlCr quaternary alloys decrease, whereas the molar volume of the liquid NiCoAlCr quaternary alloys increases. And the liquid densities of NiCoAlCr quaternary alloys calculated from the partial molar volumes of nickel, cobalt, aluminum and chromium in the corresponding Ni-bases binary alloys are in good agreement with the experimental ones, i.e. within the error tolerance range the densities of the liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state. The molar volume of liquid NiCoAlCr binary alloy shows a negative deviation from the ideal linear mixing and the deviation changes small with the increase of chromium concentration at the same temperature.

  20. Synthesis of chromium containing pigments from chromium galvanic sludges.

    Science.gov (United States)

    Andreola, F; Barbieri, L; Bondioli, F; Cannio, M; Ferrari, A M; Lancellotti, I

    2008-08-15

    In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr(0.04)Sn(0.97)SiO(5) and green Ca(3)Cr(2)(SiO(4))(3) were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr(2)O(3). The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr(2)O(3). PMID:18289775

  1. Synthesis of chromium containing pigments from chromium galvanic sludges

    Energy Technology Data Exchange (ETDEWEB)

    Andreola, F.; Barbieri, L. [Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Bondioli, F. [Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy)], E-mail: bondioli.federica@unimore.it; Cannio, M. [Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Ferrari, A.M. [Dipartimento di Scienza e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, Viale Amendola 2, 42100 Reggio Emilia (Italy); Lancellotti, I. [Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy)

    2008-08-15

    In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr{sub 0.04}Sn{sub 0.97}SiO{sub 5} and green Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3} were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr{sub 2}O{sub 3}. The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr{sub 2}O{sub 3}.

  2. Tissues and urinary chromium concentrations in rats fed high-chromium diets

    International Nuclear Information System (INIS)

    Complete text of publication follows. Chromium is an essential trace elements and enhances the function of insulin as a form of chromodulin. In the subjects with a certain type of diabetics, 200 to 1,000 μg/d of chromium is administered to reduced the symptoms of diabetics. However, although there are not any health-promotive effects of chromium-administration in healthy subjects, various types of chromium supplements are commercially available in many countries; the adverse effects caused by an excessive chromium intake are feared. In the present study, to clarify the tolerable upper limit of chromium, tissue and urinary chromium concentrations, liver function and iron status were examined in rats fed high-chromium diets. Thirty-six male 4-weeks Wistar rats were divided into six groups and fed casein-based diets containing 1, 10 or 100 μg/g of chromium as chromium chloride (CrCl3) or chromium picolinate (CrPic) for 4 weeks. After the feeding, chromium concentrations in liver, kidney, small intestine and tibia were determined by inductively coupled plasma-mass spectrometry. In addition, urine samples were collected on 3rd to 4th week and their chromium concentrations were also determined. Chromium concentrations in liver, kidney, small intestine and tibia were elevated with increase of dietary chromium concentration. Urinary chromium excretion was also elevated with the increase of dietary chromium and the rate of urinary chromium excretion was less than 2% to dietary chromium intake in all the experimental groups. In the administration of 100 μg/g of chromium, rats given CrCl3 showed significantly higher tibia chromium concentration and lower urinary chromium excretion than those given CrPic. There were not any differences in iron status among the experimental groups. Activities of serum aspartate aminotransferase and alanine aminotransferase in rats fed diet containing 100 μg/g of chromium as CrPic were significantly higher than those in rats fed other diets.

  3. Study of structural transformations occuring in low carbon chromium-molybdenum ferritic steels: influence of small additions of vanadium and niobium

    International Nuclear Information System (INIS)

    This study has been carried out on several low carbon chromium-molybdenum ferritic steels: 2,25%0C to 13000C. In the case of alloys with high chromium concentration and additions of vanadium and niobium, the austenitic transformation is partial, and heat treating at higher temperatures results in increased delta transformation, a phenomenon which is accentuated by an important sensitivity to decarburization. Austenitic transformation during cooling leads to two types of CCT curves according to chromium content. Variations in chemical composition and austenitizing temperature significantly modify these diagrams, in particular those of the niobium stabilized steels. The morphology of the structures produced are very diverse, without important presence of residual austenite. The tempering behaviour in anisothermal and isothermal conditions was followed, and the temperature range limits within which precipitation reactions occur were determined in view of characterizing for each alloy the different types of precipitates formed and their influence on the mechanical resistance of the alloy after tempering

  4. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag

    International Nuclear Information System (INIS)

    Hexavalent chromium (Cr) is a toxic element causing serious environmental threat. Recently, more and more attention is paid to the bio-remediation of Cr (VI) in the contaminated soils. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag at a steel-alloy factory in Hunan Province, China, was investigated in the present study. The results showed that when sufficient nutrients were amended into the contaminated soils, total Cr (VI) concentration declined from the initial value of 462.8 to 10 mg kg-1 at 10 days and the removal rate was 97.8%. Water soluble Cr (VI) decreased from the initial concentration of 383.8 to 1.7 mg kg-1. Exchangeable Cr (VI) and carbonates-bound Cr (VI) were removed by 92.6% and 82.4%, respectively. Meanwhile, four Cr (VI) resistant bacterial strains were isolated from the soil under the chromium-containing slag. Only one strain showed a high ability for Cr (VI) reduction in liquid culture. This strain was identified as Pannonibacter phragmitetus sp. by gene sequencing of 16S rRNA. X-ray photoelectron spectroscope (XPS) analysis indicated that Cr (VI) was reduced into trivalent chromium. The results suggest that indigenous bacterial strains have potential application for Cr (VI) remediation in the soils contaminated by chromium-containing slag.

  5. Kinetics of chromium evaporation from heat-resisting steel under reduced pressure

    Directory of Open Access Journals (Sweden)

    C. Kolmasiak

    2012-07-01

    Full Text Available This paper describes a kinetic analysis of the process of chromium evaporation from ferrous alloys smelted under reduced pressure. The study discussed comprised determination of the liquid phase mass transfer coefficient as well as the value of the constant evaporation rate. By applying these values as well as the values of the overall mass transfer coefficient estimated based on the relevant experimental data, the fractions of resistance of the individual process stages were established.

  6. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    International Nuclear Information System (INIS)

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values

  7. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G., E-mail: gcao@wisc.edu; Weber, S.J.; Martin, S.O.; Sridharan, K.; Anderson, M.H.; Allen, T.R.

    2013-10-15

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  8. Problems of phase identification in high-nitrogen chromium-manganese cast steel

    OpenAIRE

    Z. Pirowski

    2008-01-01

    An atzcrnpt has been madc to offcr an intcrprctation of ihc rnicrostructurc of chromium-mangancx cast stccl aftcr adding to 1his stccla targc amount of nitrogcn as an alloying clcrncnr. Nitropcn was addcd 10 rhc cast stccl by two mcthods: rhc first mcthod consistcrl inadding a nitridcd fcrrornangancsc, the second method in rcmclting thc nitrogen-rscc alloy undcr rhc atrnosphcrc of nitrogen maintaininghigh N1 prcssurc abovc the mctal meSt (33 MPa).Somc imponant diffcrcnces in the microstructur...

  9. Microstructure and wear resistance of high chromium cast iron containing niobium

    OpenAIRE

    Zhang Zhiguo; Yang Chengkai; Zhang Peng

    2014-01-01

    In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, ...

  10. Soils contaminated with hexavalent chromium

    OpenAIRE

    Fonseca, Bruna Catarina da Silva

    2011-01-01

    Tese de doutoramento em Engenharia Química e Biológica The interest in environmental soil science has been growing in the last years due to the continuous degradation of this major natural resource. With this in mind, and because chromium and lead are two of the most toxic heavy metals frequently detected as soil contaminants in the Portuguese territory, the study and development of few remediation techniques and the indissociable description of the sorption and migration of...

  11. Simultaneous determination of chromium(III) and chromium(VI) in aqueous solutions by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jøns, O; Nielsen, B

    1992-01-01

    A method for the simultaneous determination of chromium(iii) and chromium(vi) in a flow system based on chemiluminescence was developed. A Dionex cation-exchange guard column was used to separate chromium(iii) from chromium(vi), and chromium(vi) was reduced by potassium sulfite, whereupon both sp...

  12. Inoculation of chromium white cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-01-01

    Full Text Available It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  13. REMOVAL OF HEXAVALENT CHROMIUM FROM DRINKING WATER

    OpenAIRE

    A. R. Asgari ، F. Vaezi ، S. Nasseri ، O. Dördelmann ، A. H. Mahvi ، E. Dehghani Fard

    2008-01-01

    Removal of chromium can be accomplished by various methods but none of them is cost-effective in meeting drinking water standards. For this study, granular ferric hydroxide was used as adsorbent for removal of hexavalent chromium. Besides, the effects of changing contact time, pH and concentrations of competitive anions were determined for different amounts of granular ferric hydroxide. It was found that granular ferric hydroxide has a high capacity for adsorption of hexavalent chromium from ...

  14. Microstructure of Cast Ni-Cr-Al-C Alloy

    Directory of Open Access Journals (Sweden)

    Cios G.

    2015-04-01

    Full Text Available Nickel based alloys, especially nickel based superalloys have gained the advantage over other alloys in the field of high temperature applications, and thus become irreplaceable at high temperature creep and aggressive corrosion environments, such as jet engines and steam turbines. However, the wear resistance of these alloys is insufficient at high temperatures. This work describes a microstructure of a new cast alloy. The microstructure consists of γ matrix strengthened by γ’ fine precipitates (dendrites improving the high temperature strength and of Chromium Cr7C3 primary carbides (in interdendritic eutectics which are designed to improve wear resistance as well as the high temperature strength.

  15. Reduction of chromium oxide from slags

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Paredes, J.

    2005-12-01

    Full Text Available Experimental and theoretical work were performed to estimate the effect of slag basicity and amount of reducing agents on the reduction of chromium oxide from the slag which interacted with molten steel at 1,600 °C. The slag system contained CaO, MgO, SiO2, CaF2 and Cr2O3 together with Fe-alloys (Fe-Si and Fe-Si-Mg. The CaF2 and MgO contents in the slags were 10 mass % each; Cr2O3 was 25%. The amount of the ferroalloys ranged from 12.5 to 50 g per 100 g of slag. The (CaO+MgO/SiO2 ratio was held at 1 and 2. The Cr yield was determined using both Fe-alloys as reducing agents. Some estimations were made to determine the theoretical effect of temperature, slag basicity, (CaO+MgO/SiO2, and amount of reducing agents in the slag on the chromium recovery. The FACT (Facility for the Analysis of Chemical Thermodynamics computational package is used to determine the equilibrium between the slag and molten steel.

    En el presente trabajo se realiza un estudio teórico y experimental para determinar el efecto de la basicidad de la escoria y la cantidad de agentes reductores sobre la reducción de óxidos de cromo contenidos en la escoria, la cual está en contacto con acero líquido a 1.600 °C. La escoria se prepara con los reactivos CaO, MgO, SiO2, CaF2 y ferroaleaciones (Fe-Si y Fe-Si-Mg. Los contenidos de CaF2 y MgO en la escoria son de 10 %, cada uno, y el de Cr2O3 es 25 %. La cantidad de la ferroaleación varía de 12,5 a 50 g por cada 100 g de escoria. La relación (CaO+MgO/SiO2 tiene los valores de 1 y 2. Se determina la eficiencia de recuperación de cromo empleando los dos tipos de ferroaleaciones. Se realizaron cálculos para determinar el efecto teórico de la temperatura, la basicidad de la escoria, (CaO+MgO/SiO2, y la cantidad de agentes reductores sobre la reducci

  16. Permeation of chromium salts through human skin in vitro

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Fullerton, A; Avnstorp, C;

    1992-01-01

    of the dichromate solution. Chromium skin levels increased with increasing concentrations of applied chromium salts up to 0.034 M Cr. The amount of chromium in recipient phase and skin layers increased with increasing pH when the applied solution contained potassium dichromate. This was ascribed to a decreased skin...... barrier function of the skin. The amount of chromium found in all skin layers after application of chromium chloride decreased with increasing pH due to lower solubility of the salt. The % of chromium found in the recipient phase as chromium(VI) increased with increasing total chromium concentration...... indicating a limited reduction ability of the skin in vitro....

  17. Study of the sensitisation of a highly alloyed austenitic stainless steel, Alloy 926 (UNS N08926), by means of scanning electrochemical microscopy

    OpenAIRE

    Leiva García, Rafael; Akid, R.; Greenfield, D.; Gittens, J.; Muñoz Portero, María José; García Antón, José

    2012-01-01

    The feedback mode of a scanning electrochemical microscope (SECM) was applied to study differences in the reactivity of a highly alloyed austenitic stainless steel, Alloy 926 (UNS N08926), in its unsensitised and sensitised state. Alloy 926 was heated at 825 °C for 1 h in an inert atmosphere in order to produce a sensitised metallurgical condition. Sensitisation was due to chromium carbide formation at the grain boundaries. The oxygen reduction reaction was used as an indicator to monitor the...

  18. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    This study was undertaken to determine if chromium(+6) could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium(+3) to chromium(+6) by nitric acid; and the reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium(+3) to chromium(+6) was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the (+6) oxidation state and would not exist in the (+6) state in the final process waste solutions

  19. Electrodeposition of chromium from trivalent chromium urea bath containing sulfate and chloride

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The reduction of Cr( Ⅲ) to Cr( Ⅱ ) on copper electrode in trivalent chromium urea bath containing chromium sulfate and chromium chloride as chromium source has been investigated by potentiodynamic sweep. The transfer coefficient α for reduction of Cr( Ⅲ ) to Cr( Ⅱ ) on copper electrode was calculated as 0.46. The reduction is a quasi-reversible process. J-t responses at different potential steps showed that the generation and adsorption characteristics of carboxylate bridged oligomer are relevant to cathode potential. The interface behavior between electrode and solution for Cr( Ⅲ ) complex is a critical factor influencing sustained electrode position of chromium. The hypotheses of the electro-inducing polymerization of Cr( Ⅲ ) was proposed. The potential scope in which sustained chromium deposits can be prepared is from- 1.3 V to- 1.7 V (vs SCE) in the urea bath. Bright chromium deposits with thickness of 30 μm can be prepared in the bath.

  20. Alkane dehydrogenation over supported chromium oxide catalysts

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    1999-01-01

    The dehydrogenation of alkanes over supported chromium oxide catalysts in the absence of oxygen is of high interest for the industrial production of propene and isobutene. In this review, a critical overview is given of the current knowledge nowadays available about chromium-based dehydrogenation ca

  1. Corrosion behavior of nickel-containing alloys in artificial sweat.

    Science.gov (United States)

    Randin, J P

    1988-07-01

    The corrosion resistance of various nickel-containing alloys was measured in artificial sweat (perspiration) using the Tafel extrapolation method. It was found that Ni, CuNi 25 (coin alloy), NiAl (colored intermetallic compounds), WC + Ni (hard metal), white gold (jewelry alloy), FN42 and Nilo Alby K (controlled expansion alloys), and NiP (electroless nickel coating) are in an active state and dissolve readily in oxygenated artificial sweat. By contrast, austenitic stainless steels, TiC + Mo2C + Ni (hard metal), NiTi (shape-memory alloy), Hastelloy X (superalloy), Phydur (precipitation hardening alloy), PdNi and SnNi (nickel-containing coatings) are in a passive state but may pit under certain conditions. Cobalt, Cr, Ti, and some of their alloys were also investigated for the purpose of comparison. Cobalt and its alloys have poor corrosion resistance except for Stellite 20. Chromium and high-chromium ferritic stainless steels have a high pitting potential but the latter are susceptible to crevice corrosion. Ti has a pitting potential greater than 3 V. Comparison between the in vitro measurements of the corrosion rate of nickel-based alloys and the clinical observation of the occurrence of contact dermatitis is discussed.

  2. Spin-wave and critical neutron scattering from chromium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Axe, J.D.; Shirane, G.

    1971-01-01

    Chromium and its dilute alloys are unique examples of magnetism caused by itinerant electrons. The magnetic excitations have been studied by inelastic neutron scattering using a high-resolution triple-axis spectrometer. Spin-wave peaks in q scans at constant energy transfer ℏω could, in general......, not be clearly resolved at any temperature below TN but it is still possible to deduce the slope ω/q of the dispersion curve and also to estimate the spin-wave lifetimes. The scattering displays a divergence as q→0, ω→0, T→TN characteristic of critical fluctuations. The critical scattering is confined...... to small values of q, but the ω range is very wide compared to critical scattering from systems with localized magnetic moments...

  3. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective

    Directory of Open Access Journals (Sweden)

    Hedberg Yolanda

    2010-09-01

    Full Text Available Abstract Background Production of ferrochromium alloys (FeCr, master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr, ferrosiliconchromium (FeSiCr, stainless steel (316L, iron (Fe, chromium (Cr, and chromium(IIIoxide (Cr2O3, in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549. Results The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death

  4. Microstructure and properties of laser surface alloyed PM austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Z. Brytan

    2010-05-01

    Full Text Available Purpose: The purpose of this paper is to analyse the effect of laser surface alloying with chromium on the microstructural changes and properties of vacuum sintered austenitic stainless steel type AISI 316L (EN 1.4404.Design/methodology/approach: Surface modification of AISI 316L sintered austenitic stainless steel was carried out by laser surface alloying with chromium powder using high power diode laser (HPDL. The influence of laser alloying conditions, both laser beam power (between 0.7 and 2.0 kW and powder feed rate (1.0-4.5 g/min at constant scanning rate of 0.5m/min on the width of alloyed surface layer, penetration depth, microstructure evaluated by LOM, SEM x-ray analysis, surface roughness and microhardness were presented.Findings: The microstructures of Cr laser alloyed surface consist of different zones, starting from the superficial zone rich in alloying powder particles embedded in the surface; these particles protrude from the surface and thus considerably increase the surface roughness. Next is alloyed zone enriched in alloying element where ferrite and austenite coexists. The following transient zone is located between properly alloyed material and the base metal and can be considered as a very narrow HAZ zone. The optimal microstructure homogeneity of Cr alloyed austenitic stainless steel was obtained for powder feed rate of 2.0 and 4.5 g/min and laser beam power of 1.4 kW and 2 kW.Practical implications: Laser surface alloying can be an efficient method of surface layer modification of sintered stainless steel and by this way the surface chromium enrichment can produce microstructural changes affecting mechanical properties.Originality/value: Application of high power diode laser can guarantee uniform heating of treated surface, thus uniform thermal cycle across treated area and uniform penetration depth of chromium alloyed surface layer.

  5. [Bioremediation of chromium (VI) contaminated site by reduction and microbial stabilization of chromium].

    Science.gov (United States)

    Zheng, Jia-Chuan; Zhang, Jian-Rong; Liu, Xi-Wen; Xu, Qian; Shi, Wei-Lin

    2014-10-01

    Chromium (VI) contaminated soil samples were collected from a chemical plant in Suzhou. Firstly, the reduced soil was prepared by adding reagent (Stone-sulfure reagent) into polluted soil to transfer most chromium (VI) into chromium (III), then a nutrient solution was introduced into the reduced soil, and the stabilized soil was obtained after 60 days culturing. The chromium (VI) content of the three kinds of soil was analyzed. The results showed that the chromium (VI) content in toxicity characteristic leaching liquid (TCLL) dropped by 96. 8% (from 8.26 mg · L(-1) to 0.26 mg · L(-1)), and the total chromium content dropped by 95.7% (from 14.66 mg · L(-1) to 0.63 mg · L(-1)) after bioremediation in 5% nutrient solution. Additionally, the durability of chromium stabilization was tested by potassium permanganate oxidation and sterilization of microbe-treated soil. After oxidation, the chromium (VI) content in TCLL of the reduced soil was increased from 8.26 mg · L(-1) to 14.68 mg · L(-1). However, the content after bioremediation was decreased to 2.68 mg · L(-1). The results of sterilization demonstrated that the death of microbe had no significant effect on the stabilization of chromium. Consequently, the research in this paper demonstrated the feasibility of bioremediation of chromium (VI) polluted soil through reduction followed by stabilization/soilidification, and provided a technique with low cost but high efficiency.

  6. High-temperature nitridation of Ni-Cr alloys

    Science.gov (United States)

    Kodentsov, A. A.; Gülpen, J. H.; Cserháti, C.; Kivilahti, J. K.; van Loo, F. J. J.

    1996-01-01

    The nitriding behavior of nickel-chromium alloys was investigated at 1398 K over the range 1 to 6000 bar of external nitrogen pressure. The morphology of the nitrided zone depends on the concentration of chromium in the initial alloy and the N2 pressure (fugacity) applied upon the system. The transition from CrN to Cr2N precipitation was observed within the reaction zone after nitriding at 100 to 6000 bar of N2 when the chromium content in the initial alloys was 28.0 at. pct or higher. It is shown that the ternary phase π (Cr10Ni7N3) is formed in this system at 1273 K. through a peritectoid reaction between Cr2N and nickel solid solution and becomes unstable above 1373 K. The thermodynamic evaluation of the Ni-Cr-N system was performed and phase equilibria calculated. Evidence for “up hill” diffusion of nitrogen near the reaction front during the internal nitridation of Ni-Cr alloys at 1398 K was found. It was attributed to the relative instability of chromium nitrides and strong Cr-N interaction in the matrix of the Ni-based solid solution within the nitrided zone.

  7. Development of high-chromium ferritic clad heat exchanger tubing. [Sanicro 28, Carpenter 20 Mo-76, Al-6XN, Monit, SEA-CURE, Inconel 625, Hastelloy C-276, Hastelloy G-3

    Energy Technology Data Exchange (ETDEWEB)

    Cox, T.B.; Sponseller, D.L.

    1986-05-01

    High chromium, corrosion resistant alloys are required to withstand the high temperatures and corrosive environment of coal gasification plants such as the Cool Water facility. The production of tubing for heat exchangers from high alloy materials is a priority goal of the EPRI gasification materials program. Because many high chromium alloys are very expensive and have little elevated temperature strength, it would be advantageous to clad the outside surface of low alloy, elevated temperature steel tubes with the corrosion resistant alloy and rely on the low alloy steel for structural strength. Evaluation of commercial alloys for possible use as monolithic or coextruded tubes identified four compositions suitable for evaporator tube applications and four compositions for superheater applications. In addition, a series of alloys containing 30% chromium were evaluated for their ability to be coextruded with 1.25Cr-0.5Mo steel, undergo welding and resist gasification corrosion. An alloy, nominally 30Cr-2Ni-2Mo, was successfully coextruded to various tubing sizes and provided to EPRI for testing in the Cool Water gasification plant. 18 refs., 28 figs., 28 tabs.

  8. Oxide-layer formation and stability on a nickel-base alloy in impure helium at high temperature

    International Nuclear Information System (INIS)

    The corrosion behavior in impure helium of Haynes 230, a nickel base alloy candidate for heat exchangers in Very High Temperature Reactors (VHTR), has been investigated. The study focused on the formation and the subsequent destruction of the surface oxide layer at 900 C and 980 C. In-situ gas-phase analysis coupled to post-exposure surface analyses showed that a chromium-rich surface oxide formed on Haynes 230 at 900 C but was unstable above a critical temperature TA: the chromium-rich oxide reacted with carbon in solution in the alloy to produce chromium and CO(g). The effect of carbon monoxide partial pressure in the gas phase as well as the influence of chromium and carbon activities in the alloy on TA are discussed taking thermodynamics and kinetics aspects into account. (authors)

  9. Surface segregation in HAYNES 230 alloy

    International Nuclear Information System (INIS)

    The surface segregation in the Ni-based alloy HAYNES 230 was studied by Auger Electron Spectroscopy and X-ray Photoelectron Spectroscopy between 400 and 1100 deg. C. The qualitative variations of the surface contents of S, P, W, Mo, N, Si, and Mn were determined as a function of annealing temperature and time. It was found that at 925 deg. C the maximum coverage of sulphur at the alloy surface is in the range 0.06-0.15 monolayers. Chromium evaporation from the HAYNES 230 surface under UHV conditions is clearly evidenced for annealing at 1100 deg. C

  10. Surface segregation in HAYNES 230 alloy

    Science.gov (United States)

    Pop, D.; Wolski, K.

    2006-12-01

    The surface segregation in the Ni-based alloy HAYNES 230 was studied by Auger Electron Spectroscopy and X-ray Photoelectron Spectroscopy between 400 and 1100 °C. The qualitative variations of the surface contents of S, P, W, Mo, N, Si, and Mn were determined as a function of annealing temperature and time. It was found that at 925 °C the maximum coverage of sulphur at the alloy surface is in the range 0.06-0.15 monolayers. Chromium evaporation from the HAYNES 230 surface under UHV conditions is clearly evidenced for annealing at 1100 °C.

  11. Chromium

    Science.gov (United States)

    ... 6+), a toxic form that results from industrial pollution. This fact sheet focuses exclusively on trivalent (3+) ... 1 medium 1 Banana, 1 medium 1 Green beans, ½ cup 1 What are recommended intakes of ...

  12. Reproductive toxicological aspects of chromium in males

    International Nuclear Information System (INIS)

    To expand our present understanding of the effects of chromium on male fertility a number of studies were designed to achieve this through the use of chromium intoxicated experimental animals and through investigation of sexual hormones and sperm quality in welders. Also in view of the lack of an experimental model for effects of noxious substance on the epididymal spermatozoa the main objectives of the series of studies reviewed here were: A. To establish a model for evaluation of epididymal sperm count and motility in the rat. B. To investigate and compare the effects of tri- and hexavalent chromium on epididymal spermatozoa. Further to describe the effects of low-dose long-time exposure of rats to the most toxicological interesting chromium oxidative state - hexavalent chromium. C. By the use of autoradiography and γ-countinuing to expand the present knowledge on the distribution of chromium in the body with special reference to the male reproductive organs. D. To describe the effects of exposure to hexavalent chromium in welding fume on levels of sexual hormones and semen parameters in welders. (EG)

  13. Microstructure and wear resistance of high chromium cast iron containing niobium

    Directory of Open Access Journals (Sweden)

    Zhang Zhiguo

    2014-05-01

    Full Text Available In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  14. Heat-Resistance of the Powder Cobalt Alloys Reinforced by Niobium or Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2016-01-01

    Full Text Available The characteristics of heat-resistance of powder cobalt alloys at 1100 °C were investigated. These alloys were developed for the protection of workers banding shelves GTE blades from wear. The alloys were prepared by hot pressing powders of cobalt, chromium, aluminum, iron and niobium or titanium carbides. The values of heat resistance alloys containing carbides between 30 and 70% (vol. depend on the type made of carbide alloys: alloys with titanium carbide superior in heat-resistant alloy of niobium carbide. The most significant factor affecting on the heat-resistant alloys, is porosity: with its increase the parameters decline regardless of the type and content of carbide. The optimum composition of powder heat resisting alloys of titanium carbide with a melting point above 1300 °C were determined for use in the aircraft engine.

  15. Influences of copper on solidification structure and hardening behavior of high chromium cast irons

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; XIONG Ji; FAN Hong-yuan; SHEN Bao-luo; GAO Sheng-ji

    2008-01-01

    The influences of copper on microstructure and the hardening behavior of high chromium cast irons subjected to sub-critical treatment were investigated.The results show that the mierostructure of the as-cast high chromium cast irons consists of retained austenite,martensite and M7 C3 type eutectic carbide.When copper is added into high chromium cast irons,austenite and carbide contents are increased.The increased addition of copper content from 0%to 1.84%leads to the increase of austenite and carbide from 15.9%and 20.0% to 61.0%and 35.5%,respectively.In the process of sub-critical treatment,the retained austenite in the matrix can be precipitated into secondary carbides and then transforms into martensite in cooling process,which causes the secondary hardening of the alloy under sub-critical treatment.High chromium cast irons containing copper in sub-critical treatment appear the second hardening curve peak due to the precipitation of copper from supersaturated matrix.

  16. Dry Sliding Wear Behaviours of Valve Seat Inserts Produced from High Chromium White Iron

    Science.gov (United States)

    Kalyon, Ali; Özyürek, Dursun; Günay, Mustafa; Aztekin, Hasan

    2015-11-01

    In this present study, wear behaviours of high chromium white iron valve seat inserts and tappets used in the automotive sector were investigated. Wear behaviours of three different rates of high chromium white cast irons (containing 10, 12 and 14% chromium) were examined under heavy service conditions. For that purpose, the produced valve seat inserts were characterized through Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray diffraction (XRD) and hardness measurements. They were tested at a sliding speed of 1 ms-1, under 120 N load and for six different sliding distances (500, 1000, 1500, 2000, 2500, 3000 m) by using a standard wear apparatus (pin-on-disk type). The result showed that as the amount of Cr increased in the alloys, their hardness decreased. The decrease in the hardness were considered to be as the result of transformation of M7C3 carbides into M23C6 carbides in the structure. This decrease in hardness with increasing chromium content also increased the weight loss. Thus, it was determined that the white iron with 14% Cr (which had a greater amount of M23C6 carbides) was subjected to the highest wear.

  17. Synthesis of Chromium (Ⅲ) 5-aminosalicylate

    Institute of Scientific and Technical Information of China (English)

    LI Wei; HAO Er-jun; JIANG Yu-qin

    2004-01-01

    As we all known that diabetes is a chronic disease with major health consequences.Research has revealed that the occurrence of diabetes have great thing to do with the chromium deficient. Almost 40 years after the first report of glucose tolerance factor(GTF) [1], no conclusive evidence for an isolable ,biologically active form of chromium exited. Three materials have been proposed to be the biologically active form of chromium: "glucose tolerance factor", chromium Picolinate and low-molecular-weight chromium-binding substance (LWMCr) [2] . So there is potential for the design of new chromium drugs .5-Aminosalicylic acid (5-ASA) is identified as an active component in the therapy of inflammatory bowel disease (IBD) such as Crohn's disease and ulcerative colitis . The therapeutic action of 5-ASA is believed to be coupled to its ability to act as a free radical scavenger [3-4],acting locally on the inflamed colonic mucosa [5-7]. However, the clinical use of 5-ASA is limited, since orally administered 5-ASA is rapidly and completely absorbed from the upper gastrointestinal tract and therefore the local therapeutic effects of 5-ASA in the colon is hardly expected.In this paper, we report the synthesis of chromium(Ⅲ)5-aminosalicylate from 5-ASA and CrCl3. 6H2O.The synthesis route is as follow:The complex has been characterized by elemental analysis, IR spectra, X-ray powder diffractionand TG-DTA . They indicate that the structure is tris(5-ASA) Chromium . Experiments show that thecomplex has a good activity for supplement tiny dietary chromium, lowering blood glucose levels,lowering serum lipid levels and in creasing lean body mass .

  18. Effect of titanium on the as-cast microstructure and impact toughness of hypereutectic high-chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhifu; Xing, Jiandong; Gao, Yimin; Zhi, Xiaohui [Xi' an Jiaotong Univ., Xi' an (China). State Key Lab. for Mechanical Behavior of Materials

    2012-05-15

    The effect of titanium on the as-cast microstructure of a hypereutectic high-chromium cast iron was investigated by means of optical microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The results indicate that the primary M{sub 7}C{sub 3} carbides are refined and spheroidized with the addition of a suitable amount of titanium. TiC is found in the primary carbide by energy dispersive spectroscopy analysis. The mechanism of titanium modification on the microstructure of the alloy is also discussed. In addition, the impact test result indicates that, compared with the hypereutectic high-chromium cast iron without titanium addition, the impact toughness value of hypereutectic high-chromium cast iron with titanium additions is improved and approximately reaches 6.4 J . cm{sup -2}. (orig.)

  19. Characteristics of chromium-allergic dermatitis patients prior to regulatory intervention for chromium in leather

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P; Zachariae, Claus;

    2014-01-01

    BACKGROUND: Chromium-tanned leather articles currently constitute the most important cause of contact allergy to chromium in Denmark. A regulation on the content of hexavalent chromium in leather was adopted in November 2013 by the EU member states. OBJECTIVES: To characterize patients...... with chromium allergy and their disease, to serve as a baseline for future studies on the potential effect of the new regulation on chromium in leather. METHODS: A questionnaire case-control study was performed on 155 dermatitis patients with positive patch test reactions to potassium dichromate and a matched...... control group of 621 dermatitis patients. Comparisons were made by use of a χ(2) -test and the Mann-Whitney U-test. Logistic regression analyses were used to test for associations. RESULTS: Sixty-six per cent of chromium-allergic patients had a positive history of contact dermatitis caused by leather...

  20. Chromium in leather footwear-risk assessment of chromium allergy and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Strandesen, Maria; Poulsen, Pia B;

    2012-01-01

    Background. Chromium-tanned leather footwear, which releases >3 ppm hexavalent Cr(VI), may pose a risk of sensitizing and eliciting allergic dermatitis. Objectives. To determine the content and potential release of chromium in leather footwear and to discuss the prevention of chromium contact...... allergy and dermatitis. Methods. Sixty pairs of leather shoes, sandals and boots (20 children's, 20 men's, and 20 women's) were purchased in Copenhagen and examined with X-ray fluorescence spectroscopy. Chromium was extracted according to the International Standard, ISO 17075. The detection level for Cr......(VI) was 3 ppm. Results. Chromium was identified in 95% of leather footwear products, the median content being 1.7% (range 0-3.3%). No association with store category or footwear category was found. A tendency for there to be a higher chromium content in footwear with high prices was shown (p(trend) = 0...

  1. Characterization of microstructure, local deformation and microchemistry in Alloy 690 heat-affected zone and stress corrosion cracking in high temperature water

    Science.gov (United States)

    Lu, Zhanpeng; Chen, Junjie; Shoji, Tetsuo; Takeda, Yoichi; Yamazaki, Seiya

    2015-10-01

    With increasing the distance from the weld fusion line in an Alloy 690 heat-affected zone, micro-hardness decreases, kernel average misorientation decreases and the fraction of Σ3 boundaries increases. Chromium depletion at grain boundaries in the Alloy 690 heat-affected zone is less significant than that in an Alloy 600 heat-affected zone. Alloy 690 heat-affected zone exhibits much higher IGSCC resistance than Alloy 600 heat-affected zone in simulated pressurized water reactor primary water. Heavily cold worked Alloy 690 exhibits localized intergranular stress corrosion cracking. The effects of metallurgical and mechanical properties on stress corrosion cracking in Alloy 690 are discussed.

  2. KCl-induced high temperature corrosion of selected commercial alloys. Part II: alumina and silica-formers

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Dahl, Kristian Vinter; Montgomery, Melanie;

    2016-01-01

    potassium-chromium-silicon-oxygen containing layer forms as the innermost corrosion product. The layer was uniformly distributed over the surface and appears to render some protection as this alloy exhibited the best performance among the investigated alloys. To reveal further aspects of the corrosion...

  3. Spectrophotometric determination of zirconium in nickel-base alloys with Arsenazo III after separation by froth flotation

    International Nuclear Information System (INIS)

    0.02-0.1% of zirconium can be determined in nickel alloys by spectrophotometry with Arsenazo III after its separation from the sample solution by means of froth flotation using Arsenazo III and Zephiramine. Nickel, chromium and iron do not interfere. Analysis of standard alloys yielded a standard deviation of 2.2%. (orig.)

  4. Mechanical and tribological characterization of the Al 6061-T651 and the Al 6061-T651 with chromium phosphate coating

    International Nuclear Information System (INIS)

    This work consist of two parts. The first one, related with theoretic concepts of tribology, condensed the friction and wear phenomena, considering aspects to bring something relevant into a process. In this conditions, to add lubricant cause a significant performance change during the phenomena mentioned above. The second part of this work, described experimental aspects as how we do a chromium phosphate coating in immersion cell, using 6061-T651 aluminum as substrate. In the process, we consider values of parameters in optimum conditions, obtained by commercial aluminum during previous investigations made in National Institute of Nuclear Research. Here, we characterized chromium phosphate coating and, 6061-T651 aluminum alloy using Sem and X-Ray Diffraction techniques. The measurement of some chromium phosphate characteristic as thickness, weight for area unit, density, roughness, microhardness, adhesion and corrosion resistant were made with appropriately equipment and, in accordance with international standards procedures. In tribological aspect, we determinate adhesive wear resistance and abrasive wear resistance for 6061-T651 aluminum alloy and chromium phosphate coating. Adhesive wear resistance was made for dry condition while abrasive wear resistance were made for dry and wet conditions. Tests are to guide by ASTM G99, G65 and G105 designations respectively. (Author)

  5. Potentiometry: A Chromium (III) -- EDTA Complex

    Science.gov (United States)

    Hoppe, J. I.; Howell, P. J.

    1975-01-01

    Describes an experiment that involves the preparation of a chromium (III)-EDTA compound, a study of its infrared spectrum, and the potentiometric determination of two successive acid dissociation constants. (Author/GS)

  6. AEROSOL BEHAVIOR IN CHROMIUM WASTE INCINERATION

    Institute of Scientific and Technical Information of China (English)

    Suyuan Yu

    2003-01-01

    Cr2O3 is considered as the dominant incineration product during the combustion disposal of chromium waste. A hydrogen/air diffusion flame was employed to simulate the industrial process of incineration. Cr2O3 aerosols were generated inside the flame by the gas phase reaction of chromium and oxygen. Chromium came from the rapid decomposition of chromium hexacarbonyl (Cr(CO)6) at room temperature and was carried into the combustion chamber by hydrogen. Aerosol and clusters can then be easily formed in the flame by nucleation and coagulation. A two dimensional Discrete-Sectional Model (DSM) was adopted to calculate the Cr2O3 aerosol behavior. The experimental measurement method was Dynamic Light Scattering. The numerically predicted results agreed well with those of the experimental measurement. Both results show that the Cr2O3 aerosol size reached about 70 nanometers at the flame top.

  7. Localized Corrosion of Chromium Coated Steel

    NARCIS (Netherlands)

    Zhang, X.; Beentjes, P.; Mol, A.; Terryn, H.

    2006-01-01

    In this paper, we report on the studies of the local corrosion behaviour of chromium-coated ultra low carbon steel in NaCl solution using polarization, electrochemical impedance spectroscopy (EIS) and SVET.

  8. Activities of chromium in molten copper at dilute concentrations by solid-state electrochemical cell

    Science.gov (United States)

    Inouye, T. K.; Fujiwara, H.; Iwase, M.

    1991-08-01

    In order to obtain the activities of chromium in molten copper at dilute concentrations (copper was brought to equilibrium with molten CaCl2 + Cr2O3 slag saturated with Cr2O3 (s), at temperatures between 1423 and 1573 K, and the equilibrium oxygen partial pressures were measured by means of solid-oxide galvanic cells of the type Mo/Mo + MoO2/ZrO2(MgO)/(Cu + Cr))alloy + Cr2O3 + (CaCl2 + Cr2O3)slag/Mo. The free energy changes for the dissolution of solid chromium in molten copper at infinite dilution referred to 1 wt pct were determined as Cr (s) = Cr(1 wt pct, in Cu) and Δ G° = + 97,000 + 73.3 (T/K) ± 2,000 J mol-1.

  9. Synthesis and Characterization of Chromium Oxide Nanoparticles

    OpenAIRE

    Vivek Sheel Jaswal; Avnish Kumar Arora; Joginder Singh; Mayank Kinger; Vishnu Dev Gupta

    2014-01-01

    Chromium oxide nanoparticles (NPs)have been rapidly synthesized by precipitation method using ammomia as precipitating agent and are characterized by using X-ray Diffraction (XRD), Thermo Gravimetric Analysis (TGA), UV-Visible absorption (UV), Infrared Spectoscopy (IR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). XRD studies show that chromium oxide NP is formed as Cr2O3 and it has hexagonal structure. The shape and particle size of the synthesized Cr2O3 NP...

  10. Nickel aluminide alloy for high temperature structural use

    Science.gov (United States)

    Liu, Chain T.; Sikka, Vinod K.

    1991-01-01

    The specification discloses nickel aluminide alloys including nickel, aluminum, chromium, zirconium and boron wherein the concentration of zirconium is maintained in the range of from about 0.05 to about 0.35 atomic percent to improve the ductility, strength and fabricability of the alloys at 1200.degree. C. Titanium may be added in an amount equal to about 0.2 to about 0.5 atomic percent to improve the mechanical properties of the alloys and the addition of a small amount of carbon further improves hot fabricability.

  11. Effects of different cleaning methods on surface of cobalt-chromium alloy framework of removeable denture%活动义齿不同清洁方式对钴铬合金义齿支架表面形貌的影响

    Institute of Scientific and Technical Information of China (English)

    马兰; 吴乐乐; 李风兰

    2016-01-01

    surface of cobalt-chromium (Co-Cr) alloy framework of removable denture. Methods Thirty-five Co-Cr alloy samples (15 mm×10 mm×1 mm) were established by centrifugal casting and mirror polishing. All samples were randomly divided into 5 groups:group A was included as the control group, which was immersed in distilled water; groups B, C, D and E were included as the study group. Group B was brushed with toothbrush+distilled water for 2 min. Group C was brushed with toothbrush+toothpaste for 2 min. Group D was immersed in Polident solution for 5 min. Group E was immersed in Polident solution for 5 min and brushed for 2 min. All the process was repeated 180 cycles. A roughness analyzer was used to measure the sur-face roughness (Ra) of the samples before and after the treatment. The surface changes of the samples were deter-mined by scanning electron microscope (SEM) before and after the treatment. Results ①The Ra in groups A and D before and after the treatment were (0.003 8 ± 0.002 0/0.004 2±0.001 3) and (0.005 1 ± 0.001 7/0.005 0 ± 0.001 4), respectively, and the difference was not statistically significant ( P>0.05). The Ra in groups B, C and E before and after the treatment were all increased, which were (0.003 7±0.001 0/0.037 6±0.003 3), (0.004 3±0.000 8/0.185 2±0.053 6) and (0.005 5 ±0.001 4/0.014 5 ±0.001 2), respectively, and the differences were statistically significant ( P0.05). After different treatments, the Ra of the samples was not all the same. The Ra in group D was slightly increased than that in group A (control group), and the difference was not statistically significant (all P>0.05). The Ra in groups B, C and E were significantly increased than that in group A, and the dif-ferences were statistically significant (all P<0.01). ③After treatment by the use of different cleaning methods, no sig-nificant scratches on the sample surface in groups A, B, D, and E were found by SEM. Significant scratches were found on the sample surface in group C

  12. Laser Alloyed Coatings of TiB2/Graphite on 9Cr18 Stainless Steel Surface

    Institute of Scientific and Technical Information of China (English)

    YING Li-xia; WANG Li-qin; JIA Xiao-mei; GU Le

    2007-01-01

    Modified coatings including carbide of iron, nickel, chromium, silicon, and titanium are obtained on 9Cr18 stainless steel surface by laser alloying. The processing method, the microstructure, the interface, the tribological properties, and the forming mechanisms of the coatings are analyzed. The results show that the microstructure of the alloyed coatings is mainly irregular FeC crystals. Carbides of chromium and iron are around the FeC crystals. Small granular TiC disperses in the alloyed coatings. The microhardness of the alloyed coatings is greatly improved because of the occurrence of carbide with high hardness. At the same time, the wear resistance of the alloyed coatings are higher than that of 9Cr18 stainless steel.

  13. Alloy 31 - a high alloyed Ni-Cr-Mo-steel - properties and applications for the process industry: Alloy 31 - visoko legirano Ni-Cr-Mo jeklo - lastnosti in aplikacije za procesno industrijo:

    OpenAIRE

    Brill, U.; Mast, Ralph; Rommerskirchen, I.; Schambach, L.

    1998-01-01

    Alloy 31 (Nicrofer 3127 hMo) is an austentic nickel-chromium-molybdenum steel comprising about 0.2 wt-% nitrogen to stabilize the austenitic structure. The alloy was developed to fill the gap between the commercial stainless steels and the nickel-base alloys. It is a material for many high-severity applications where conventional stainless steels have proven unadequate. On the other hand, Alloy 31 shows a high resistance to pitting and crevice corrosion in neutral and acid aqueous solutions, ...

  14. Bioremediation of chromium solutions and chromium containing wastewaters.

    Science.gov (United States)

    Malaviya, Piyush; Singh, Asha

    2016-08-01

    Cr(VI) represents a serious threat to human health, living resources and ecological system as it is persistent, carcinogenic and toxic, whereas, Cr(III), another stable oxidation state of Cr, is less toxic and can be readily precipitated out of solution. The conventional methods of Cr(VI) removal from wastewaters comprise of chemical reduction followed by chemical precipitation. However, these methods utilize large amounts of chemicals and generate toxic sludge. This necessitates the need for devising an eco-technological strategy that would use the untapped potential of the biological world for remediation of Cr(VI) containing wastewaters. Among several viable approaches, biotransformation of Cr(VI) to relatively non-toxic Cr(III) by chromium resistant bacteria offers an economical- and environment-friendly option for its detoxification. Various studies on use of Cr(VI) tolerant viable bacterial isolates for treatment of Cr(VI) containing solutions and wastewater have been reported. Therefore, a detailed account of mechanisms and processes involved in bioreduction of Cr(VI) from solutions and wastewaters by bacterial isolates are the focus of this review article in addition to a discussion on toxicity of Cr(VI) on bacterial strains and various factors affecting Cr(VI) bioreduction. PMID:25358056

  15. Nickel-based gadolinium alloy for neutron adsorption application in ram packages

    International Nuclear Information System (INIS)

    This paper will outline the results of a metallurgical development program that is investigating the alloying of gadolinium into a nickel-chromium-molybdenum alloy matrix. Gadolinium has been chosen as the neutron absorption alloying element due to its high thermal neutron absorption cross section and low solubility in the expected U.S. repository environment. The nickel-chromium-molybdenum alloy family was chosen for its known corrosion performance, mechanical properties, and weldability. The workflow of this program includes chemical composition definition, primary and secondary melting studies, ingot conversion processes, properties testing, and national consensus codes and standards work. The microstructural investigation of these alloys shows that the gadolinium addition is not soluble in the primary austenite metallurgical phase and is present in the alloy as gadolinium-rich second phase. This is similar to what is observed in a stainless steel alloyed with boron. The mechanical strength values are similar to those expected for commercial Ni-Cr-Mo alloys. The alloys have been corrosion tested in simulated Yucca Mountain aqueous chemistries with acceptable results. The initial results of weldability tests have also been acceptable. Neutronic testing in a moderated critical array has generated favorable results. An American Society for Testing and Materials material specification has been issued for the alloy and a Code Case has been submitted to the American Society of Mechanical Engineers for code qualification. The ultimate goal is acceptance of the alloy for use at the Yucca Mountain repository

  16. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    Science.gov (United States)

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated.

  17. Diminishing Chromium Use on Combined Chromium-Gambier Tanning Process Upon the Characteristics of Tanned Leather

    Directory of Open Access Journals (Sweden)

    A. Kasim

    2014-04-01

    Full Text Available The research was aimed to investigate the influence of minimizing chromium use on combined chromium-gambier process upon the characteristics of tanned leather. At the first stage of tanning process, chromium was used and in the second stage it was replaced by gambier. The raw material used was dried saline-preserved goat skin. The treatments applied on the tanning process were the different concentrations of chromium ranging from the highest level of 6% to the lowest level of 1% which was then re-tanned by using 8% concentration of gambier. The examination parameters included chemical and physical properties as well as visual investigation on the tanned leather in accordance with SNI-06-0463-1989-A. The result showed that the tanning process by using 2% chromium in the first step and 8% gambier in the second step was a treatment combination producing tanned leather that met the standard. The examination on tanned leather resulted from such treatment showed 56.33% rawhide, 17.45% of bound tannin, 31.22% of tanning level, tensile strength 386.30 kg/cm2, flexibility 31.91%, leather width 1.3 mm, density 0.75 g/cm3, the leather was quite elastic with light brownish color. In conclusion, minimizing the use of chromium in the combined tanning process of chromium and gambier can be implemented to the lowest of 2% chromium concentration and 8% gambier in the first and second step, respectively.

  18. Lateral stress evolution in chromium sulfide cermets with varying excess chromium

    Science.gov (United States)

    Petel, O. E.; Appleby-Thomas, G. J.; Wood, D. C.; Capozzi, A.; Nabavi, A.; Goroshin, S.; Frost, D. L.; Hazell, P. J.

    2016-04-01

    The shock response of chromium sulfide-chromium, a cermet of potential interest as a matrix material for ballistic applications, has been investigated at two molar ratios. Using a combustion synthesis technique allowed for control of the molar ratio of the material, which was investigated under near-stoichiometric (cermet) and excess chromium (interpenetrating composite) conditions, representing chromium:sulfur molar ratios of 1.15:1 and 4:1, respectively. The compacts were investigated via the plate-impact technique, which allowed the material to be loaded under a one-dimensional state of strain. Embedded manganin stress gauges were employed to monitor the temporal evolution of longitudinal and lateral components of stress in both materials. Comparison of these two components has allowed assessment of the variation of material shear strength both with impact pressure/strain-rate and time for the two molar ratio conditions. The two materials exhibited identical material strength despite variations in their excess chromium contents.

  19. Evaluation of Shear Bond Strength of Composite Resin Bonded to Alloy Treated With Sandblasting and Electrolytic Etching

    OpenAIRE

    M.M. Goswami; Gupta, S. H.; Sandhu, H.S.

    2013-01-01

    Conservation of natural tooth structure precipitated the emergence of resin-retained fixed partial dentures. The weakest link in this modality is the bond between resin cement and alloy of the retainer. Various alloy surface treatment have been recommended to improve alloy–resin bond. This in vitro study was carried out to observe changes in the Nickel–Chromium alloy (Wiron 99, Bego) surface following sandblasting or electrolytic etching treatment by scanning electron microscope (SEM) and to ...

  20. Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces

    DEFF Research Database (Denmark)

    Stiehler, Maik; Lind, M.; Mygind, Tina;

    2007-01-01

    interactions between human mesenchymal stem cells (MSCs) and smooth surfaces of titanium (Ti), tantalum (Ta), and chromium (Cr). Mean cellular area was quantified using fluorescence microscopy (4 h). Cellular proliferation was assessed by (3)H-thymidine incorporation and methylene blue cell counting assays (4...... other surfaces tested. Cells cultured on Cr demonstrated reduced spreading and proliferation. In conclusion, Ta metal, as an alternative for Ti, can be considered as a promising biocompatible material, whereas further studies are needed to fully understand the role of Cr and its alloys in bone implants...

  1. Chromium martensitic hot-work tool steels : damage, performance and microstructure

    OpenAIRE

    Sjöström, Johnny

    2004-01-01

    Chromium martensitic hot-work tool steel (AISI H13) is commonly used as die material in hot forming techniques such as die casting, hot rolling, extrusion and hot forging. They are developed to endure the severe conditions by high mechanical properties attained by a complex microstructure. Even though the hot-work tool steel has been improved over the years by alloying and heat treatment, damages still occur. Thermal fatigue is believed to be one of the most common failure mechanisms in hot f...

  2. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  3. Synthesis Of NiCrAlC alloys by mechanical alloying; Sintese de ligas NiCrAlC por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M., E-mail: alissonkws@gmail.co [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil)

    2010-07-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni{sub 3}Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  4. Hot ductility and high temperature microstructure of high purity iron alloys

    International Nuclear Information System (INIS)

    The inherent properties of metals are affected by impurity elements, sometimes strongly. There are many brittle phenomena in iron and its alloys due to the harmful effect of trace impurities such as sulphur, phosphorus, hydrogen and so on. On the other hand, a large number of alloying elements also embrittle iron due to the transformation and precipitation of secondary phase. For example, the ductility of Fe-Cr alloy decreases with the increase in chromium content, although the strength and the corrosion resistance increase with chromium content. In Fe-Cr alloy containing high chromium, 475 C embrittlement and σ-phase embrittlement are well known. An Fe-50mass%Cr alloy of conventional purity is extremely brittle due to the formation of σ-phase. However, we found the highly purified alloy is essentially ductile. In the workshop of UHPM-94, the experimental results on the ductility of Fe-50mass%Cr alloy were presented and discussed. In this research, the effect of purification on the hot ductility of high purity Fe-18mass%Cr and Fe-50mass%Cr alloys was investigated by tensile testing at high temperature. It was found that the ductility of Fe-18mass%Cr alloy is remarkably improved by purification, especially by the reduction of interstitial impurities such as carbon and nitrogen. The highly-purified Fe-50mass%Cr alloy has astonishing ductility at the temperature range between room temperature and 1073K. Also in a high purity Fe-50mass%Cr alloy, the formation of the σ-phase was not observed during ageing for 1000h at 973K. These results are also very important for the development of high-performance Fe-Cr alloys and of the manufacturing process. Consequently, purification technology is very useful for progress in metal science. (orig.)

  5. Serum chromium levels in gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    P G Sundararaman

    2012-01-01

    Full Text Available Objective: To measure serum chromium level in women with gestational diabetes mellitus (GDM from Chennai, South India. Materials and Methods: Thirty women with gestational diabetes, 60 age matched controls. Inclusion criteria: Gestational age 22-28 weeks, age group 20-35 years. Exclusion Criteria: Gestational age beyond 28 weeks, malnutrition or presence of infection. Serum chromium was measured using inductive couple plasma emission spectrometer. Results: Serum chromium levels of women with GDM, 1.59+/-0.02 ng/ml (range: 0.16-4.0 ng/ml were lower than in controls (4.58+/-0.62 ng/ml; range 0.82-5.33 ng/ml (P < 0.001. However, there were no significant differences among cases and controls when subdivided by parity. Conclusions: Women with GDM from a South Indian city had lower levels of serum chromium compared to pregnant women without GDM. Studies may be done whether chromium supplementation is useful in this group of women.

  6. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  7. Steam Initiated Surface Modification of Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud

    , crystalline nano-particles, role of steam-based treatment on adhesion of industrially applied powder coating, and investigations of a failed painted aluminium window profile due to defects in the extruded profile. Chapters 13 and 14 describe the overall discussion, conclusions and future work based......The extensive demand of aluminium alloys in various industries such as in transportationis mainly due to the high strength to weight ratio, which could be translated into fuel economy and efficiency. Corrosion protection of aluminium alloys is an important aspect for all applications which includes...... the use of aluminium alloys in the painted form requiring a conversion coating to improve the adhesion. Chromate based conversion coating processes are extremely good for these purposes, however the carcinogenic and toxic nature of hexavalent chromium led to the search for more benign and eco...

  8. Calorimetry studies on U-Cr alloys

    International Nuclear Information System (INIS)

    A calorimetric study of Uranium-Chromium system is of interest on both basic and applied fronts. With the advent of U-Pu-Zr alloy as the fuel, in combination with ferritic-martensitic steel as the cladding material, the metal fuelled fast reactors constitute the second major step in Indian nuclear power program. In such a context, a fundamental investigation on the high temperature phase stability of U-Cr alloys is of particular relevance in getting further insight in to the complex issue of the metallurgical compatibility of ferritic steels with metallic Uranium-Zirconium fuel. It may be added that following U-Fe, and U-Zr binaries, the U-Cr constitutes one of the important subsystems of the complex U-Zr-Pu-Fe- Cr-Mn-Si-V-Nb-C-N multinary system. In the current study, the results of calorimetry investigations on U, U-2, 3, 7, 15wt. % Cr alloys are presented

  9. A Novel Surface Treatment for Titanium Alloys

    Science.gov (United States)

    Lowther, S. E.; Park, C.; SaintClair, T. L.

    2004-01-01

    High-speed commercial aircraft require a surface treatment for titanium (Ti) alloy that is both environmentally safe and durable under the conditions of supersonic flight. A number of pretreatment procedures for Ti alloy requiring multi-stages have been developed to produce a stable surface. Among the stages are, degreasing, mechanical abrasion, chemical etching, and electrochemical anodizing. These treatments exhibit significant variations in their long-term stability, and the benefits of each step in these processes still remain unclear. In addition, chromium compounds are often used in many chemical treatments and these materials are detrimental to the environment. Recently, a chromium-free surface treatment for Ti alloy has been reported, though not designed for high temperature applications. In the present study, a simple surface treatment process developed at NASA/LaRC is reported, offering a high performance surface for a variety of applications. This novel surface treatment for Ti alloy is conventionally achieved by forming oxides on the surface with a two-step chemical process without mechanical abrasion. This acid-followed-by-base treatment was designed to be cost effective and relatively safe to use in a commercial application. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond after exposure to hot-wet environments. Phenylethynyl containing adhesives were used to evaluate this surface treatment with sol-gel solutions made of novel imide silanes developed at NASA/LaRC. Oxide layers developed by this process were controlled by immersion time and temperature and solution concentration. The morphology and chemical composition of the oxide layers were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Bond strengths made with this new treatment were evaluated using single lap shear tests.

  10. Flashlamp-pumped lasing of chromium-doped GSG garnet

    International Nuclear Information System (INIS)

    The implications for the practical use of chromium:GSGG in lamp-pumped tunable lasers are discussed in this paper. The authors report here some major improvements in the performance of the flashlamp-pumped chromium:GSGG laser

  11. Role of alloyed molybdenum on corrosion resistance of austenitic Ni–Cr–Mo–Fe alloys in H2S–Cl– environments

    International Nuclear Information System (INIS)

    Highlights: • The alloyed molybdenum improves corrosion resistance in the H2S–Cl– environment. • The formed surface film comprises sulfide including molybdenum and chromium oxide. • The Ni–Mo–Fe alloy shows good corrosion resistance in the H2S–Cl– environment. • It is revealed that molybdenum sulfide is stable and cation selective. • A possible role of alloyed molybdenum is proposed. - Abstract: Corrosion test and surface analysis were conducted in the H2S–Cl– environments to elucidate the role of alloyed molybdenum on the corrosion resistance of Ni–Cr–Mo–Fe alloys. The alloyed molybdenum improves the localized corrosion resistance. The surface film is of double layers which comprise sulfide including molybdenum and chromium oxide. However, the Ni–Mo–Fe alloy also shows good corrosion resistance in the H2S–Cl– environment. This good corrosion resistance is considered to be due to the cation selectivity of molybdenum sulfide, which can form in such environments. The role of alloyed molybdenum on the corrosion resistance of Ni–Cr–Mo–Fe alloys in H2S–Cl– environments is proposed

  12. Determination of chromium combined with DNA, RNA and proteins in chromium-rich brewer's yeast by NAA

    International Nuclear Information System (INIS)

    The content of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast was determined by neutron activation analysis (NAA). Our results show that the extracted relative amounts and concentrations of DNA, RNA and proteins have no significant difference for two types of yeast, but the chromium content in DNA, RNA and proteins fractions extracted from the chromium-rich yeast are substantially higher than those from the normal. In addition, the concentration of chromium in DNA is much higher than that in RNA and proteins. It is evident that the inorganic chromium compounds can enter the yeast cell during the yeast cultivation in the chromium-containing culture medium and are converted into organic chromium species, which are combined with DNA, RNA and proteins. (author)

  13. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions.

  14. Chromium allergy and dermatitis: prevalence and main findings

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten Stendahl;

    2015-01-01

    The history of chromium as an allergen goes back more than a century, and includesan interventional success with national legislation that led to significant changes inthe epidemiology of chromium allergy in construction workers. The 2015 EU Leather Regulation once again put a focus on chromium...

  15. Thermodynamic properties of chromium bearing slags and minerals. A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yanping; Holappa, L.

    1996-12-31

    In this report, the thermodynamic properties of chromium bearing slags and minerals were reviewed based on the available information in the literature. It includes the analysing methods for oxidation state of chromium in slags, oxidation state of chromium and activities of chromium oxides in slags and minerals. The phase diagrams of chromium oxide systems and chromium distributions between slag and metal phases are also covered ill this review. Concerning the analysing methods, it was found that most of the available approaches are limited to iron free slag systems and the sample preparation is very sensitive to the analysing results. In silicate slags under reducing atmosphere, divalent and trivalent chromium co-exist in the slags. It is agreed that the fraction of divalent chromium to total chromium increases with higher temperature, lower slag basicity and oxygen potential. For the slags under oxidising atmosphere, trivalent, pentavalent and hexavalent states were reported to be stable. The activities of CrO and CrO{sub 1.5} were concluded to have positive deviation from ideal solution. Slag basicity has a positive effect and temperature has a negative effect on the activities of chromium oxides. The phase diagrams of the Cr-O, binary, and ternary chromium containing oxide systems have been examined systematically. The analysis shows that the data on the quaternary and quinary systems are insufficient, and require further investigation. The most important features of the chromium containing silicate slags are the large miscibility gaps and the stability of the chromite spinel. (orig.) (76 refs.)

  16. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  17. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions. PMID:26361854

  18. Preparation of Chromium Oxide Coatings on Aluminum Borate Whiskers by a Hydrothermal Deposition Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Aluminum borate whiskers (9Al2O32B2O3) can be used to reinforce aluminum alloys to produce light and strong composites. However, the adverse interfacial reactions between the whiskers and the aluminum alloys inhibit their practical uses; therefore, a protective coating is needed on whiskers. In this work, aluminum borate whiskers were coated with chromium-coating deposits in a hydrothermal solution containing CrCl3, Na2C4H4O6, NaPH2O2, and H3BO3. The presence of the impurity P in the hydrothermal deposits can be avoided by reducing the amount of NaPH2O2 in the coating solution. Thermodynamic analysis was used to discuss the behavior of ions in the coating process. The subsequent heating of the hydrothermal products in air at 800 ℃ yielded smooth Cr2O3 films with a thickness of 0.060.07 μm.

  19. Metallurgical and mechanical tests on the low activating martensitic chromium steel OPTIFER-IV

    International Nuclear Information System (INIS)

    Derived from a martensitic chromium-steel (1.4914) with high strength at elevated temperatures, a new low activating steel OPTIFER-IV, Chg. 986489, had been developed for an application as 'First Wall' - and as structural material for fusion devices. The alloying elements with high activation like Mo, Ni and Nb had been substituted by similar acting, but low activating elements like W and Ta. Some metallurgical and mechanical properties had been tested in order to decide the kind of alloying. The new steel is fully martensitic without δ-ferrite, fine-grained and well hardenable. The tensile properties satisfy the requirements, and the notch impact bending properties are excellent. (orig.)

  20. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lapena, J.; Blazquez, F. [Ciemat, Madrid (Spain)

    2000-07-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigree. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs.

  1. Collisional properties of trapped cold chromium atoms

    CERN Document Server

    Pavlovich, Z; Côté, R; Sadeghpour, H R; Pavlovic, Zoran; Roos, Bjoern O.; Côté, Robin

    2004-01-01

    We report on calculations of the elastic cross section and thermalization rate for collision between two maximally spin-polarized chromium atoms in the cold and ultracold regimes, relevant to buffer-gas and magneto-optical cooling of chromium atoms. We calculate ab initio potential energy curves for Cr2 and the van der Waals coefficient C6, and construct interaction potentials between two colliding Cr atoms. We explore the effect of shape resonances on elastic cross section, and find that they dramatically affect the thermalization rate. Our calculated value for the s-wave scattering length is compared in magnitude with a recent measurement at ultracold temperatures.

  2. Studying chromium biosorption using arabica coffee leaves

    Directory of Open Access Journals (Sweden)

    Luis Carlos Florez García

    2010-05-01

    Full Text Available This work was aimed at providing an alternative for removing heavy metals such as chromium from waste water (effluent from the leather industry and galvanoplasty (coating with a thin layer of metal by electrochemical means, using coffee leaves as bio- mass. Using arabica coffee (Castle variety leaves led to 82% chromium removal efficiency for 1,000 mg/L synthetic dissolutions in 4 pH dissolution operating conditions, 0 rpm agitation, 0.149 mm diameter biomass particle size and 0.85 g/ml biomass / dissolution volume ratio.

  3. Strategies for chromium bioremediation of tannery effluent.

    Science.gov (United States)

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  4. Abrasive Performance of Chromium Carbide Reinforced Ni3Al Matrix Composite Cladding

    Institute of Scientific and Technical Information of China (English)

    LI Shang-ping; LUO He-li; FENG Di; CAO Xu; ZHANG Xi-e

    2009-01-01

    The Microstructure and room temperature abrasive wear resistance of chromium carbide reinforced NiM3Al matrix composite cladding at different depth on nickel base alloy were investigated. The results showed that there is a great difference in microstructure and wear resistance of the Ni3 Al matrix composite at different depth. Three kinds of tests, designed for different load and abrasive size, were used to understand the wear behaviour of this material. Under all three wear conditions, the abrasion resistance of the composite cladding at the depth of 6 mm, namely NC-M2, was much higher than that of the composite cladding at the depth of 2 mm, namely NC-M1. In addition, the wear-resistant advantage of NC-M2 was more obvious when the size of the abrasive was small. The relative wear resistance of NC-M2 increased from 1.63 times to 2.05 times when the size of the abrasive decreased from 180 μm to 50μm. The mierostructure of the composite cladding showed that the size of chromium carbide particles, which was mainly influenced by cooling rate of melting pool, was a function of distance from the interface between the coating and substrate varied gradually. The chromium carbide particles near the interface were finer than that far from inter-face, which was the main reason for the different wear resistance of the composite cladding at different depth.

  5. TO SELECTION OF TECHNOLOGICAL SCHEME OF SOFTENING HEAT TREATMENT FOR HIGH CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. G. Efremenko

    2014-03-01

    Full Text Available Purpose. High chromium cast irons with austenitic matrix have low machinability. The aim of work is search of new energy-saving modes of preliminary softening heat treatment enhancing the machinability of castings by forming an optimum microstructure. Methodology. Metallographic analysis, hardness testing and machinability testing are applied. Findings. It was found out that high temperature annealing with continuous cooling yields to martensite-austenite matrix in cast iron 270Х15Г2Н1MPhT, which abruptly affects the machinability of cast iron. Significant improvement of machinability is achieved by forming of structure "ferrite + granular carbides" and by decline of hardness to 37-39 HRC in the case of two-stage isothermal annealing in the subcritical temperature range or by the use of quenching and tempering (two-step or cyclic. Originality. It was found that the formation of the optimal structure of the matrix and achievement of desired hardness level needed for improving machinability of high chromium cast iron containing 3 % austenite-forming elements, can be obtained: 1 due to pearlite original austenite followed by spherodization eutectoid carbides, and 2 by getting predominantly martensite structure followed by the decay of martensite and carbides coagulation at high-temperature tempering. Practical value. The new energy-saving schemes of softening heat treatment to ensure the growth of machinability of high chromium cast iron, alloyed by higher quantity of austenite forming elements, are proposed.

  6. Study on comprehensive properties of duplex austenitic surfacing alloys for impacting abrasion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, comprehensive property crack resistance, work hardening and abrasion resistance of a series of double-phases austenitic alloys(FAW) has been studied by means of SEM, TEM and type MD-10 impacting wear test machine. FAW alloys are of middle chromium and low manganese, including Fe-Cr-Mo-C alloy,Fe-Cr-Mn-C alloy and Fe-Cr-Mn-Ni-C alloy, that are designed for working in condition of impacting abrasion resistance hardfacing.Study results show that the work hardening mechanism of FAW alloys are mainly deformation high dislocation density and dynamic carbide aging, the form of wearing is plastic chisel cutting. Adjusting the amount of carbon, nickel, manganese and other elements in austenitic phase area, the FAW alloy could fit different engineering conditions of high impacting, high temperature and so on.

  7. Corrosion Behavior of Alloy 22 in Chloride Solutions Containing Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Rebak, R B

    2005-11-04

    Alloy 22 (N06022) is a nickel based alloy containing alloying elements such as chromium, molybdenum and tungsten. It is highly corrosion resistant both under reducing and under oxidizing conditions. Electrochemical studies such as electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. Tests were also carried out in NaCl solutions containing oxalic acid or acetic acid. It is shown that the corrosion rate of Alloy 22 was higher in a solution containing oxalic acid than in a solution of the same pH acidified with HCl. Acetic acid was not corrosive to Alloy 22. The corrosivity of oxalic acid was attributed to its capacity to form stable complex species with metallic cations from Alloy 22.

  8. Microstructural, mechanical characterisation and fractography of As-cast Ti-Al alloy

    International Nuclear Information System (INIS)

    The effect of alloying element, namely chromium (Cr) on the microstructures, mechanical characterization and fracture surface of gamma titanium aluminide (Ti Al) has been studied. Micro-hardness and fatigue crack growth tests were performed on as-cast samples with composition of Ti-48at%Al and Ti-48%Al-2at%Cr. Prior to the micro-hardness tests; samples were metallurgically prepared for microstructural and structural analysis using optical microscope and scanning electron microscope. Field emission scanning electron microscope (FESEM) technique was employed to investigate the fracture surface of sample after fatigue crack growth test. Micro-hardness tests results showed increasing hardness value of Ti-48Al alloys when chromium is added. Both titanium aluminide alloys exhibited a nearly lamellae microstructure. However, finer laths of plates in lamellar structure have been observed in Ti-48at%Al-2at%Cr. FESEM micrograph of surface fracture indicates a mixed mode of failure for both alloys. (author)

  9. Stability of oxide film formed at different temperatures on Alloy 600 in lithiated environment

    International Nuclear Information System (INIS)

    The nickel base alloys are susceptible to localized corrosion attack and the major contributing factor in these corrosion mechanisms is the oxide film formed on the alloy. The chromium content in the oxide film determines its stability against localized attack that act as precursors for the initiation of stress corrosion cracking (SCC) in the material. The present study aimed at optimizing the hot conditioning parameter by varying the temperature of oxide formation for minimum ion release rate during reactor operation. The surface and in-depth compositional characterization of oxide film formed on Alloy 600 was carried out using micro-laser Raman spectroscopy (MLRS) and glow discharge quadrapole mass spectroscopy (GDQMS) respectively. The relative defect density of oxide films were studied using electrochemical impedance spectroscopy (EIS). The oxide film stability of Alloy 600 in chloride containing environment was correlated to chromium concentration in the film as well as relative defect density

  10. Effects of ultraviolet irradiation on bonding strength between Co-Cr alloy and citric acid-crosslinked gelatin matrix.

    Science.gov (United States)

    Inoue, Motoki; Sasaki, Makoto; Katada, Yasuyuki; Taguchi, Tetsushi

    2014-02-01

    Novel techniques for creating a strong bond between polymeric matrices and biometals are required. We immobilized polymeric matrices on the surface of biometal for drug-eluting stents through covalent bond. We performed to improve the bonding strength between a cobalt-chromium alloy and a citric acid-crosslinked gelatin matrix by ultraviolet irradiation on the surface of cobalt-chromium alloy. The ultraviolet irradiation effectively generated hydroxyl groups on the surface of the alloy. The bonding strength between the gelatin matrix and the alloy before ultraviolet irradiation was 0.38 ± 0.02 MPa, whereas it increased to 0.48 ± 0.02 MPa after ultraviolet irradiation. Surface analysis showed that the citric acid derivatives occurred on the surface of the cobalt-chromium alloy through ester bond. Therefore, ester bond formation between the citric acid derivatives active esters and the hydroxyl groups on the cobalt-chromium alloy contributed to the enhanced bonding strength. Ultraviolet irradiation and subsequent immobilization of a gelatin matrix using citric acid derivatives is thus an effective way to functionalize biometal surfaces.

  11. Electrodeposition of black chromium thin films from trivalent chromium-ionic liquid solution

    OpenAIRE

    Eugénio, S.; Vilar, Rui; C. M. Rangel; Baskaran, I.

    2009-01-01

    In the present study, black chromium thin films were electrodeposited from a solution of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIm][BF4] ionic liquid containing trivalent chromium (Cr(III)). Homogeneous and well adherent coatings have been obtained on nickel, copper and stainless steel substrates. The nucleation and growth of the films were investigated by cyclic voltammetry and current-density/time transient techniques. SEM/EDS, XPS and XRD were used to study the morphology, chem...

  12. Reduction of Hexavalent Chromium by Viable Cells of Chromium Resistant Bacteria Isolated from Chromite Mining Environment

    OpenAIRE

    Satarupa Dey; Baishali Pandit; A. K. Paul

    2014-01-01

    Environmental contamination of hexavalent chromium [Cr(VI)] is of serious concern for its toxicity as well as mutagenic and carcinogenic effects. Bacterial chromate reduction is a cost-effective technology for detoxification as well as removal of Cr(VI) from polluted environment. Chromium resistant and reducing bacteria, belonging to Arthrobacter, Pseudomonas, and Corynebacterium isolated from chromite mine overburden and seepage samples of Orissa, India, were found to tolerate 12–18 mM Cr(VI...

  13. Reduction of Chromium-VI by Chromium Resistant Lactobacilli: A Prospective Bacterium for Bioremediation

    OpenAIRE

    Mishra, Ritesh; Sinha, Vartika; Kannan, Ambrose; Upreti, Raj K.

    2012-01-01

    Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr (VI) and Cr (III). Highly soluble hexavalent chromium is carcinogenic due to its oxidizing nature. It is well established that the intestinal bacteria including Lactobacilli have regulatory effect on intestinal homeostasis and a breakdown in the relationship between intestinal cells and bacteria results in the manifestation of gastrointestinal (GI) disorders. In this study Cr (VI) resistance was developed in La...

  14. The electronic structure of antiferromagnetic chromium

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1981-01-01

    The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...

  15. Flashlamp-pumped lasing of chromium: GSGG

    International Nuclear Information System (INIS)

    Lasing action in chromium-doped gadolinium scandium gallium garnet (Cr:GSGG) is well established for both CW/sup (1)/ and flashlamp/sup (2)/ pumping. This paper describes an investigation of flashlamp-pumped Cr:GSGG lasers and indicates some of the factors which limit performance

  16. Defect structure of electrodeposited chromium layers

    CERN Document Server

    Marek, T; Vertes, A; El-Sharif, M; McDougall, J; Chisolm, C U

    2000-01-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  17. 29 CFR 1910.1026 - Chromium (VI).

    Science.gov (United States)

    2010-07-01

    ... Enhancements In Lieu of LEV Retrofitting • Eductors. Many chemical baths are currently mixed via air agitation... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide...

  18. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties; Alliages ferritiques 14/20% de chrome renforces par dispersion d`oxydes. Effets des procedes de mise en forme sur les textures de deformation, la recristallisation et les proprietes de traction

    Energy Technology Data Exchange (ETDEWEB)

    Regle, H.

    1994-12-31

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. (Abstract Truncated)

  19. Concentration profiles and electrochemical properties of chromium and nickel implanted iron

    International Nuclear Information System (INIS)

    The concentration profiles of chromium and nickel implanted in pure iron were measured with a secondary ion mass analyzer. The electrochemical properties of implanted iron were investigated by means of a cyclic voltammetry in 0.5 M acetate buffer solution (pH = 5.0 +- 0.1). Chromium, nickel and argon ion implantations have been carried out with doses of 1 x 1016 -- 1 x 1017 ions/cm2 at an energy of 150 keV. The target temperature during ion implantation rised to --1800C from room temperature by the heating effect of ion beam itself. The profile of Cr implanted in pure iron has two peaks; the first peak near the surface and the second peak near the depth predicted by the range theory. However, the first peak was not found in the specimen 1 st-implanted with Ni. The electrochemical properties of Cr implanted iron approach to that of Fe-18% Cr bulk alloy (SUS 430), as the dose increases. The polarization curve of Cr implanted iron with 1 x 1017 ions/cm2 is almost the same as that of SUS 430. The polarization curve of Ni and Cr implanted iron is similar to that of Fe-18%Cr-8%Ni bulk alloy (SUS 304) after annealing at --3000C for 20 min. These results show that Cr and Ni implanted surface layer is useful for the improvement of corrosion resistance of iron. (author)

  20. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    Science.gov (United States)

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively. PMID:26971177

  1. Chromium(III) and chromium(VI) surface treated galvanized steel for outdoor constructions: environmental aspects.

    Science.gov (United States)

    Lindström, David; Hedberg, Yolanda; Odnevall Wallinder, Inger

    2010-06-01

    The long-term degradation of chromium(III) (Zn-Cr(III)) and chromium(VI)-based (Zn-Cr(VI)) surface treatments on galvanized steel and their capacities to hinder the release of zinc induced by atmospheric corrosion at nonsheltered urban and marine exposure conditions for 2 years are investigated. Compared to bare zinc sheet, both surface treatments revealed high corrosion protection abilities and capacities to hinder the release of zinc, still evident after 2 years of exposure. The zinc barrier properties of the thinner Zn-Cr(VI) (10 nm) treatment were during the first 100 days of urban exposure slightly improved compared with Zn-Cr(III) (35 nm). However, their long-term protection capacities were inverse. Released concentrations of total chromium correspond to annual release rates less than 0.000032 (Zn-Cr(III)) and 0.00014 g Cr m(-2) yr(-1) (Zn-Cr(VI)) after 1 year of urban exposure. Aging by indoor storage of the surface treatments prior to outdoor exposure reduced the released Cr concentrations from the surface treatments. No Cr(VI) was released from the aged surfaces but from the freshly exposed Zn-Cr(VI). Marine exposure conditions resulted in a faster reduction of chromate to chromium(III)oxide compared with urban conditions, and a significantly lower amount of both chromium(III) and chromium(VI) released from Zn-Cr(VI) at the marine site compared with the urban site. PMID:20462267

  2. Electrodeposition of engineering alloy coatings

    DEFF Research Database (Denmark)

    Christoffersen, Lasse

    Nickel based electrodeposited alloys were investigated with respect to their deposition process, heat treatment, hardness, corrosion resistance and combined wear-corrosion resistance. The investigated alloys were Ni-B, Ni-P and Ni-W, which are not fully developed for industrial utilisation...... at the moment. It was the intention of this study to investigate whether the mentioned alloy processes are able to substitute conventional deposition techniques for wear and corrosion resistance, namely Ni-P produced by electroless deposition and electrodeposited hard chromium. The considerations......-P and Ni-W, respectively, resulted in hardness values of approx. 1000 HV0.1 in the case of Ni-P(6), approx. 1100 HV0.1 in the case of Ni-W(40-53) and approx. 1300 HV0.1 in the case of Ni-B(5). Cracks, which emerged during electrodeposition and heat treatment, were observed on Ni-W and Ni-B.The corrosion...

  3. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  4. A Kinetic Model of Chromium in a Flame

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chromium has been identified as a carcinogenic metal.Incineration is the useful method for disposal of toxic chromium hazard waste and a chromium kinetic model in a flame is very important to study chromium oxidation.Chromium chemical kinetics over a range of temperatures of a hydrogen/air flame is proposed.Nine chromium compounds and fifty-eight reversible chemical reactions were considered The forward reaction rates are calculated based on the molecular collision approach for unknown ones and Arrhenius's Law for known ones.The backward reaction rates were calculated according to forward reaction rates, the equilibrium constants and chemical thermodynamics.It is verified by several equilibrium cases and is tested by a hydrogen/air diffusion flame.The results show that the kinetic model could be used in cases in which the chromium kinetics play an important role in a flame

  5. Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steel with Chromium and Carbon

    Science.gov (United States)

    Wu, Ming-Wei; Fan, Yu-Chi; Huang, Her-Yueh; Cai, Wen-Zhang

    2015-11-01

    Liquid phase sintering is an effective method to improve the densification of powder metallurgy materials. Boron is an excellent alloying element for liquid phase sintering of Fe-based materials. However, the roles of chromium and carbon, and particularly that of the former, on liquid phase sintering are still undetermined. This study demonstrated the effects of chromium and carbon on the microstructure, elemental distribution, boride structure, liquid formation, and densification of Fe-B-Cr and Fe-B-Cr-C steels during liquid phase sintering. The results showed that steels with 0.5 wt pct C densify faster than those without 0.5 wt pct C. Moreover, although only one liquid phase forms in Fe-B-Cr steel, adding 0.5 wt pct C reduces the formation temperature of the liquid phase by about 50 K (°C) and facilitates the formation of an additional liquid, resulting in better densification at 1473 K (1200 °C). In both Fe-B-Cr and Fe-B-Cr-C steels, increasing the chromium content from 1.5 to 3 wt pct raises the temperature of liquid formation by about 10 K (°C). Thermodynamic simulations and experimental results demonstrated that carbon atoms dissolved in austenite facilitate the eutectic reaction and reduce the formation temperature of the liquid phase. In contrast, both chromium and molybdenum atoms dissolved in austenite delay the eutectic reaction. Furthermore, the 3Cr-0.5Mo additive in the Fe-0.4B steel does not change the typical boride structure of M2B. With the addition of 0.5 wt pct C, the crystal structure is completely transformed from M2B boride to M3(B,C) boro-carbide.

  6. In situ synchrotron X-ray diffraction study of the effect of chromium additions to the steel and solution on CO2 corrosion of pipeline steels

    International Nuclear Information System (INIS)

    Highlights: •We studied the effect of chromium on CO2 corrosion processes. •Chromium addition accelerates the onset of siderite and chukanovite precipitation. •One of the key effects is to decrease the critical supersaturation for siderite nucleation. -- Abstract: We demonstrate the important effects of chromium in the steel composition and of Cr3+ ions in solution on the nucleation and growth of corrosion layers in a CO2 environment. We propose that high-valent metal cations in solution (within the boundary layer) catalyse the nucleation of siderite, which otherwise has a high critical supersaturation for precipitation. One of the key effects of small alloy additions to the steel is to put into the local solution species that decrease the critical supersaturation for siderite and modify the growth rate of the scale, thereby promoting the formation of an adherent and protective scale

  7. Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection

    International Nuclear Information System (INIS)

    Highlights: → A regular solution model for solute segregation is capable of estimating the effect of solutes on the stability of nanocrystalline Fe. → Stability increases for solutes having larger heats of segregation. → Zr and Ta had an effect on stabilizing the nanocrystalline microstructure of Fe, while Cr and Ni did not. - Abstract: Using a modified regular solution model for grain boundary solute segregation, the relative thermal stability of a number of Fe-based nanocrystalline binary alloys was predicted with considerable accuracy. It was found that nanocrystalline iron was strongly stabilized by zirconium, moderately stabilized by tantalum, and not significantly stabilized by nickel or chromium. These findings are fully in line with the aforementioned predictions. This success with iron based alloys highlights the utility of this practical approach to selecting stabilizing solutes for nanocrystalline alloys.

  8. Description Of Alloy Layer Formation On A Cast Steel Substrate

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2015-09-01

    Full Text Available A description of alloy layer formation on a steel substrate is presented. Two types of formation are considered: diffusion of carbon and chromium into the solid from the pad in the direction of the cast steel within the FeCrC (grains and diffusion in a layer of liquid chromium cast iron formed in a preceding step. The influence of silicon in the pad on the pad’s transformation into the liquid is also examined. Solidus and liquidus temperatures of high carbon ferrochromium are determined. The larger the content of Si is used in the experiment, the lower the solidus temperature of the FeCrC alloy is observed. This results from the higher intensity of the elements’ diffusion and faster formation of the liquid.

  9. Effect of Ti-V-Nb-Mo addition on microstructure of high chromium cast iron

    Directory of Open Access Journals (Sweden)

    Ma Youping

    2012-05-01

    Full Text Available The effects of trace additions of multi-alloying elements (Ti, Nb, V, Mo on carbides precipitation and as-cast microstructure of eutectic high chromium cast iron containing 2.85wt.%C and 31.0wt.%Cr were investigated from thermodynamic and kinetic considerations. The thermodynamic calculations show that Ti and Nb exist in the multi-alloying system in the forms of TiC and NbC. The formation of VC during the solidification is not feasible from the thermodynamic consideration. XRD analysis shows that the V exists in alloy compounds (VCr2C2, VCrFe8. The first precipitated high melting point particles (TiC, NbC can act as the heterogeneous substrate of M7C3 carbides, which results in significant refinement of the M7C3 carbides. After the addition of alloying elements, C atom diffusion is hindered due to the strong affinities of the strong carbide forming elements for carbon, which decreases the growth rate of carbides. The combined roles of the increase of nucleation rate and the decrease of carbides growth rate lead to the finer microstructure.

  10. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    Science.gov (United States)

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; Yamamoto, Yukinori; Snead, Lance L.

    2015-10-01

    The Fe-Cr-Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe-Cr-Al alloys has not been fully established. In this study, a series of Fe-Cr-Al alloys with 10-18 wt % Cr and 2.9-4.9 wt % Al were neutron irradiated at 382 °C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition. Dislocation loops with Burgers vector of a/2 and a were detected and quantified. Results indicate precipitation of Cr-rich α‧ is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. A structure-property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α‧ precipitates at sufficiently high chromium contents after irradiation.

  11. The structure of rapidly solidified Al- Fe- Cr alloys

    Science.gov (United States)

    Yearim, R.; Shechtman, D.

    1982-11-01

    Four aluminum alloys, designed for use at elevated temperatures, were studied. The alloys were supersaturated with iron and chromium, and one of them contained small amounts of Ti, V, and Zr. The starting materials were alloy powders made by the RSR (Rapid Solidification Rate) centrifugal atomization process. Extrusion bars were made from the four powders. The as-extruded microstructure and the microstructure of the alloys after annealing at 482 °C were investigated by optical and transmission electron microscopy and by X-ray diffraction. The microstructure consists of equiaxed grains of aluminum matrix and two types of precipitates, namely, Al3(Fe ,Cr) and a metastable phase, Al6(Fe,Cr). The precipitates were different in their shape, size, distribution, and location within the grains.

  12. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  13. MODULATED STRUCTURES AND ORDERING STRUCTURES IN ALLOYING AUSTENITIC MANGANESE STEEL

    Institute of Scientific and Technical Information of China (English)

    L. He; Z.H. Jin; J.D. Lu

    2001-01-01

    The microstructure of Fe-10Mn-2Cr-1.5C alloy has been investigated with transmission electron microscopy and X-ray diffractometer. The superlattice diffraction spots and satellite reflection pattrens have been observed in the present alloy, which means the appearence of the ordering structure and modulated structure in the alloy. It is also proved by X-ray diffraction analysis that the austenite in the alloy is more stable than that in traditional austenitic manganese steel. On the basis of this investigation,it is suggested that the C-Mn ordering clusters exist in austenitic manganese steel and the chromium can strengthen this effect by linking the weaker C-Mn couples together,which may play an important role in work hardening of austenitic manganese steel.

  14. CHROMIUM INDUCED CYTOTOXICITY IN BLACKGRAM (VIGNA MUNGO L.

    Directory of Open Access Journals (Sweden)

    A. Chidambaram ، P. Sundaramoorthy ، A. Murugan ، K. Sankar Ganesh ، L. Baskaran

    2009-01-01

    Full Text Available Chromium is known to be highly toxic to biological systems. This study was designed to determine the mutagenic effects of different concentrations (0, 10, 25, 50, 100 and 200 mg/L of hexavalent chromium on root tip cells of blackgram (Vigna mungo L. Hepper. The blackgram seeds were equi-spacially arranged in sterilized petriplates lined with filter paper and they were treated with different concentrations of chromium solution. In germination studies, the morphological growth parameters such as germination percentage, root length, shoot length fresh weight and dry weight of blackgram seedlings were decreased with increasing dose of chromium concentrations. No germination of blackgram seeds was recorded at 300mg/l chromium concentration. Chromosome aberration assay was used to determine the mitotic indices and rate of chromosome aberration in blackgram root tip cells due to chromium treatment. The results showed that the mitotic indices were complicated due to different concentrations of chromium. However, the increase in chromium concentration has led to a gradual increase in the percentage of chromosomal aberration and mitotic index. The chromosome length, absolute chromosome length and average chromosome lengths were gradually found to decrease. There was no considerable change in 2n number of chromosome with the increase in chromium concentrations. It is concluded that the hexavalent chromium has significant mutagenic effect on the root tip cells of blackgram.

  15. Chromium supplementation improved post-stroke brain infarction and hyperglycemia.

    Science.gov (United States)

    Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung

    2016-04-01

    Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia. PMID:26477944

  16. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Liao, Y.P.; Jons, O.

    1997-01-01

    A sensitive method for the simultaneous determination of chromium(III) and chromium(VI) was chromatography and chemiluminescence detection. Two Dionex ion-exchange guard columns in series, CG5 and AG7, were used to separate chromium(III) from chromium(VI). Chromium(VI) was reduced by potassium su...

  17. Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys

    Science.gov (United States)

    Lavrentiev, M. Yu.; Wróbel, J. S.; Nguyen-Manh, D.; Dudarev, S. L.; Ganchenkova, M. G.

    2016-07-01

    A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rather than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.

  18. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    Science.gov (United States)

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept.

  19. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    Science.gov (United States)

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept. PMID:20031309

  20. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    International Nuclear Information System (INIS)

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr2O3 layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr2O3 layer. The α-Cr2O3 layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%

  1. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Mthunzi, P. [National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria (South Africa); Muller, T.F.G. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Julies, B. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Ramponi, R. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa)

    2014-12-01

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr{sub 2}O{sub 3} layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr{sub 2}O{sub 3} layer. The α-Cr{sub 2}O{sub 3} layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

  2. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bingtao Li

    2003-08-05

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  3. Microstructure and abrasive wear properties of M(Cr,Fe)7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW) process

    OpenAIRE

    Buytoz, Soner; M.Mustafa YILDIRIM

    2010-01-01

    In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW) process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray energy-dispersive spectroscopy (EDS). Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were c...

  4. Synthesis and Characterization of Chromium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vivek Sheel Jaswal

    2014-06-01

    Full Text Available Chromium oxide nanoparticles (NPshave been rapidly synthesized by precipitation method using ammomia as precipitating agent and are characterized by using X-ray Diffraction (XRD, Thermo Gravimetric Analysis (TGA, UV-Visible absorption (UV, Infrared Spectoscopy (IR, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM. XRD studies show that chromium oxide NP is formed as Cr2O3 and it has hexagonal structure. The shape and particle size of the synthesized Cr2O3 NPs is determined by SEM and TEM. The images showed that the size of NPs of Cr2O3 varied from 20 nm to 70 nm with average crystalline size 45 nm. UV-Visible absorption and IR spectoscopy confirm the formation of nanosized Cr2O3. TGA verifies that the Cr2O3 NPs are thermally stable upto 1000 °C.

  5. Development of new metallic alloys for biomedical applications.

    Science.gov (United States)

    Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko

    2012-11-01

    New low modulus β-type titanium alloys for biomedical applications are still currently being developed. Strong and enduring β-type titanium alloy with a low Young's modulus are being investigated. A low modulus has been proved to be effective in inhibiting bone atrophy, leading to good bone remodeling in a bone fracture model in the rabbit tibia. Very recently β-type titanium alloys with a self-tunable modulus have been proposed for the construction of removable implants. Nickel-free low modulus β-type titanium alloys showing shape memory and super elastic behavior are also currently being developed. Nickel-free stainless steel and cobalt-chromium alloys for biomedical applications are receiving attention as well. Newly developed zirconium-based alloys for biomedical applications are proving very interesting. Magnesium-based or iron-based biodegradable biomaterials are under development. Further, tantalum, and niobium and its alloys are being investigated for biomedical applications. The development of new metallic alloys for biomedical applications is described in this paper.

  6. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  7. CHROMIUM(II) AMIDES - SYNTHESIS AND STRUCTURES

    NARCIS (Netherlands)

    EDEMA, JJH; GAMBAROTTA, S; MEETSMA, A; SPEK, AL; SMEETS, WJJ; CHIANG, MY

    1993-01-01

    A novel class of mono- and di-meric chromium(II) amides has been prepared and characterized. Reaction of [CrCl2(thf)2] (thf = tetrahydrofuran) with 2 equivalents of M(NR2) (R = C6H11, Pr(i), Ph, or phenothiazinyl; M = Li or Na) allowed the formation of the homoleptic amides [{Cr(mu-NR2)(NR2)}2] (R =

  8. Iron-aluminum alloys having high room-temperature and method for making same

    Science.gov (United States)

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  9. High temperature oxidation behavior of ODS iron-base alloys for nuclear energy application

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Zhou, Z.; Liao, L.; Chen, W.; Ge, C. [Univ. of Science and Technology Beijing, School of Materials Science and Engineering, Beijing (China)

    2010-07-01

    Oxide dispersion strengthened (ODS) iron based alloys are considered as promising high temperature structural material for advanced nuclear energy systems due to its higher creep strength and radiation damage resistance than conventional commercial steels. In this study, the oxidation behavior of ODS iron based alloys with different Cr content (12-18%) was investigated by exposing samples at high temperature of 700℃ and 1000℃ in atmosphere environment, the exposure time is up to 500 h. Results showed that 14Cr and 18Cr ODS alloys exhibited better oxidation resistance than 12Cr ODS alloys. For the same chromium content, the oxidation resistance of ODS alloys are better than that of non-ODS alloys. (author)

  10. Void and precipitate structure in ion- and electron-irradiated ferritic alloys

    Science.gov (United States)

    Ohnuki, Soumei; Takahashi, Heishichiro; Takeyama, Taro

    1984-05-01

    Void formation and precipitation were investigated in Fe10Cr and Fe13Cr base alloys by 200 keV C + ion and 1 MeV electron irradiation. The ferritic alloys exhibited significant resistance to void swelling. In FeCr and FeCr-Si alloys, ion-irradiation produced the precipitates of M 23C 6 type. In the FeCrTi alloy, Ti-rich precipitates were formed with high number density on {100} plane. During electron-irradiation Fe-10Cr alloy, complex dislocation loops were produced with high number density, of which Burgers vector was mostly . EDX analysis showed slightly enrichment of chromium on dislocation loops. These results suggested that the stability of type dislocation structure at high dose is an important factor on good swelling resistance in the ferritic alloys, moreover, titanium addition will intensify the stability of the doslocations through the fine precipitation on dislocations.

  11. Dimensionally Controlled Lithiation of Chromium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fister, Tim T. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, Xianyi [Northwestern Univ., Evanston, IL (United States); Esbenshade, Jennifer [Univ. of Illinois, Urbana-Champaign, IL (United States); Chen, Xiao [Northwestern Univ., Evanston, IL (United States); Wu, Jinsong [Northwestern Univ., Evanston, IL (United States); Dravid, Vinayak [Northwestern Univ., Evanston, IL (United States); Bedzyk, Michael [Northwestern Univ., Evanston, IL (United States); Long, Brandon [Argonne National Lab. (ANL), Argonne, IL (United States); Gewirth, Andrew A. [Univ. of Illinois, Urbana-Champaign, IL (United States); Shi, Bing [Argonne National Lab. (ANL), Argonne, IL (United States); Schlepütz, Christian M. [Argonne National Lab. (ANL), Argonne, IL (United States); Fenter, Paul [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-12

    Oxide conversion reactions are an alternative approach for high capacity lithium ion batteries but are known to suffer from structural irreversibility associated with the phase separation and reconstitution of reduced metal species and Li2O. In particular, the morphology of the reduced metal species is thought to play a critical role in the electrochemical properties of a conversion material. Here we use a model electrode with alternating layers of chromium and chromium oxide to better understand and control these phase changes in real-time and at molecular length scales. Despite lacking crystallinity at the atomic scale, this superstructure is observed (with X-ray reflectivity, XR) to lithiate and delithiate in a purely one-dimensional manner, preserving the layered structure. The XR data show that the metal layers act as nucleation sites for the reduction of chromium in the conversion reaction. Irreversibility during delithiation is due to the formation of a ternary phase, LiCrO2, which can be further delithiated at higher potentials. The results reveal that the combination of confining lithiation to nanoscale sheets of Li2O and the availability of reaction sites in the metal layers in the layered structure is a strategy for improving the reversibility and mass transport properties that can be used in a wide range of conversion materials.

  12. Chromium Enrichment on P11 Ferritic Steel by Pack Cementation

    Directory of Open Access Journals (Sweden)

    Fauzi F. A.

    2016-01-01

    Full Text Available The future thermal power plant is expected to operate at higher temperature to improve its efficiency and to reduce greenhouse gas emission. This target requires better corrosion properties of ferritic steels, which commonly used as materials for superheater and reheater of boiler tubes. In this work, chromium enrichment on the surface of ferritic steel is studied. The deposited chromium is expected to become a reservoir for the formation of chromia protective layer. Chromium was deposited on the substrate of steel by pack cementation process for two hours at the temperature of 850ºC, 950ºC and 1050ºC, respectively. XRD analysis indicated that chromium was successfully deposited at all temperatures. Somehow, SEM cross sectional image showed that continuous layer of chromium was not continuously formed at 850oC. Therefore, this research clarify that chromium enrichment by pack cementation may be conducted at the temperature above 950°C.

  13. Effect of polyethylene glycol on electrochemically deposited trivalent chromium layers

    Institute of Scientific and Technical Information of China (English)

    Joo-Yul LEE; Man KIM; Sik-Chol KWON

    2009-01-01

    The structural characteristics of the trivalent chromium deposits and their interfacial behavior in the plating solution with and without polyethylene glycol molecules were observed by using various electrochemical methods such as cyclic voltammetry, open circuit potential transition, electrochemical impedance spectroscopy, scanning electron microscopy and X-ray photoelectron spectrometry. It is shown that the polyethylene glycol molecules make the reductive current density lower in the trivalent chromium plating system and promote a hydrogen evolution reaction through their adsorption on the electrode surface. And the trivalent chromium layer formed from the polyethylene glycol-containing solution has somewhat higher density of cracks on its surface and results in a lower film resistance, lower polarization resistance, and higher capacitance in a corrosive atmosphere. It is also revealed that the formation of chromium carbide layer is facilitated in the presence of polyethylene glycol, which means easier electrochemical codeposition of chromium and carbon, not single chromium deposition.

  14. From nanotechnology to nanogenotoxicology: genotoxic effect of cobalt-chromium nanoparticles

    Directory of Open Access Journals (Sweden)

    Zülal Atlı Şekeroğlu

    2013-03-01

    Full Text Available Nanotechnology is a multi-disciplinary technology that processes the materials that can be measured with nanometer-level and combines many research field or discipline. Nanomaterials (NMs are widely used in the fields of science, technology, communication, electronics, industry, pharmacy, medicine, environment, consumer products and military. Until recently little has been known about whether or not nanomaterials have the toxic or hazardous effects on human health and the environment. However, several studies have indicated that exposure to some nanomaterials, e.g. nanoparticles, can cause some adverse effects in humans and animals. Over the last years the number of publications focusing on nanotoxicology has gained momentum, but, there is still a gap about the genotoxicity of nanomaterials.Metal nanoparticles and their alloys with excellent mechanical properties are the materials which can be easily adapted to the mechanical conditions of the musculoskeletal system. Cobalt-chromium alloys are widely used in orthopedic applications as joint prosthesis and bone regeneration material, fillings and dental implants in jaw surgery, and in cardiovascular surgery, especially stent applications. Studies about cytotoxicity and genotoxicity of metal nanoparticles on human indicate that some metal nanoparticles have cytotoxic and genotoxic effects and they may be hazardous for humans. However, a few studies have been reported concerning the genotoxic effects of cobalt-chromium nanoparticles. The data from these studies indicate that cobalt-chromium nanoparticles have cytotoxic and genotoxic effects. It has been stated that the wear debris from implants cause DNA and chromosome damage in patients with cobalt-chromium replacements. It was also found that the risk of urinary cancers such as bladder, ureter, kidney and prostate in patients after hip replacement than among the wider population.Because there are very little biocompatibility and toxicity tests on

  15. New technology for comprehensive utilization of aluminum-chromium residue from chromium salts production

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-bin; QI Tian-gui; JIANG Xin-min; ZHOU Qiu-sheng; LIU Gui-hua; PENG Zhi-hong; HAN Deng-lun; ZHANG Zhong-yuan; YANG Kun-shan

    2008-01-01

    Colloidal aluminum-chromium residue(ACR) was mass-produced in chromate production process, and the large energy consumption and high recovery cost existed in traditional methods of utilizing such ACR. To overcome those problems, a new comprehensive method was proposed to deal with the ACR, and was proven valid in industry. In the new process, the chromate was separated firstly from the colloidal ACR by ripening and washing with additives, by which more than 95% hexavalent chromium was recovered. The chromium-free aluminum residue(CFAR), after properly dispersed, was digested at 120-130 ℃ and more than 90% alumina can be recovered. And then the pregnant aluminate solution obtained from digestion was seeded to precipitate aluminum hydroxide. This new method can successfully recover both alumina and sodium chromate, and thus realize the comprehensive utilization of ACR from chromate industry.

  16. Analysis of molybdenum, chromium, vanadium and iron by polarographic techniques

    International Nuclear Information System (INIS)

    The application of direct current Tast polarograph, differential pulse polarography and phase-selective alternative current Tast polarography to the problem of determining molybdenum, chromium, vanadium and iron in various supporting electrolytes is reported. The effect of the supporting electrolyte on the wave/peak potential and sensitivity of the metal ion have been examined. The polarographic methods were applied for simultaneous determination of chromium (3)/chromium (6), vanadium (4), vanadium (5) and iron (2)/iron (3) in different supporting electrolytes

  17. A REVIEW OF BIOSORPTION OF CHROMIUM IONS BY MICROORGANISMS

    OpenAIRE

    Inga Zinicovscaia

    2012-01-01

    Due to its widespread industrial use, chromium has become a serious pollutant in diverse environmental settings. The main source of chromium pollution including the Republic o Moldova is industry. It is a great need to develop new eco-friendly methods of chromium removal. Biosorption of heavy metals is a most promising technology involved in the removal of toxic metals from industrial waste streams and natural waters. This article is an extended abstract of a communication presented at the...

  18. CHROMIUM INDUCED CYTOTOXICITY IN BLACKGRAM (VIGNA MUNGO L.)

    OpenAIRE

    A. Chidambaram ، P. Sundaramoorthy ، A. Murugan ، K. Sankar Ganesh ، L. Baskaran

    2009-01-01

    Chromium is known to be highly toxic to biological systems. This study was designed to determine the mutagenic effects of different concentrations (0, 10, 25, 50, 100 and 200 mg/L) of hexavalent chromium on root tip cells of blackgram (Vigna mungo L. Hepper). The blackgram seeds were equi-spacially arranged in sterilized petriplates lined with filter paper and they were treated with different concentrations of chromium solution. In germination studies, the morphological growth parameters such...

  19. Processes affecting the remediation of chromium-contaminated sites.

    OpenAIRE

    Palmer, C.D.; Wittbrodt, P R

    1991-01-01

    The remediation of chromium-contaminated sites requires knowledge of the processes that control the migration and transformation of chromium. Advection, dispersion, and diffusion are physical processes affecting the rate at which contaminants can migrate in the subsurface. Heterogeneity is an important factor that affects the contribution of each of these mechanisms to the migration of chromium-laden waters. Redox reactions, chemical speciation, adsorption/desorption phenomena, and precipitat...

  20. Production of a chromium Bose-Einstein condensate

    OpenAIRE

    Griesmaier, Axel; Stuhler, Jürgen; Pfau, Tilman

    2005-01-01

    The recent achievement of Bose-Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 {$\\mu$}B, in contrast to other Bose- Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have been predicted in ...

  1. Increase of chromium utilization in stainless steel melting

    International Nuclear Information System (INIS)

    The processes of deoxidizing when melting stainless 18-10 steels in electric are furnaces by the method of remelting with wastes are investigated. The dependences of amount of reduced chromium on silicon consumption are made more precise. It is shown that it is useful to apply aluminium for deoxidation of acid high-chromium slags. Based on the data on pilot melts the extent to which aluminium can be used as a reducing agent for chromium is estimated. 3 refs., 2 figs

  2. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  3. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  4. Defect transformation in GSGG crystals during chromium ion activation

    International Nuclear Information System (INIS)

    Absorption and induced absorption spectra, dose dependence of induced absorption, thermoluminescence of GSGG crystals, nominally pure and activated with chromium and neodymium ions in different concentrations, are investigated. It is shown that it is chromium ion presence in large concentration that decreases the induced coloration in GSGG crystals after γ-irradiation at 300 K. Optimum concentration of chromium ions for the minimum of induced coloration are found. The mechanism of decrease of induced coloration consisting in Fermi level displacement by chromium ion activation is established. Defect concentration and localization and recombination possibilities of electrons and holes in GSGG crystals are estimated by computer simulation

  5. Tribological Characteristics of Chromium-active Carbon Electroplated Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    GUKa-fi; HUAMeng; Yi-min

    2004-01-01

    A process of chromium electroplating using a standard bath with additives and active carbon particles was reported, and the tribological behaviors of the composite coatings using the pin-on-disk tester and the table wear tester were i nvestig(aed. Experimental results indicate that the electroplated chromium-active carbon composite coatings exhibited the low friction coefficient anti excellent anti-wear properties whets coffered with the normal chromium electroplated ones. The formation of active carbon particles within the chromium matrices can be explained by SEM analysis and the mechanis of wear resistance of the composite coatings were studied.

  6. Method of trivalent chromium concentration determination by atomic spectrometry

    Science.gov (United States)

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  7. Influence of Chelating Agents on Chromium Fate in Sediment

    Institute of Scientific and Technical Information of China (English)

    WANGXIAOCHANG; SUNJINHE; 等

    1996-01-01

    A laboratory investigation on reaction between chelating agents and chromium was conducted to evaluate the effect of chelating agents on the adsorption and desorption of chromium in sediment.The amount of adsorbed chromium(VI) in sediment decreased slightly by 5%-10% because of addition of chelating agents.Chelating agents inhibited the removal of Cr(Ⅲ)by sediment from solutions and the inhibiting effect was in the order:citric acid>tartaric acid>EDTA,Salicylic acid.No effect of chelating agents on desorption of chromium in sediment was observed.

  8. Selective internal oxidation in Ni-Cr-Fe alloys during exposure in hydrogenated steam

    International Nuclear Information System (INIS)

    Selective internal oxidation (SIO) in hydrogenated steam was observed to occur in high-purity Ni-Cr-Fe alloys. Five alloys (Ni-9Fe, Ni-5Cr, Ni-5Cr-9Fe, Ni-16Cr-9Fe and Ni-30Cr-9Fe) were exposed to hydrogen-to-water vapor partial pressure ratios (PPR) of 0.09 and 0.5 at 400oC. The Ni-9Fe, Ni-5Cr and Ni-5Cr-9Fe alloys formed a uniform Ni(OH)2 film at a PPR up to 0.09 and the higher chromium alloys formed chromium-rich oxide films over the entire PPR range studied. Intergranular oxides formed by oxygen diffusion down the grain boundary. The formation of grain boundary chromium oxides is correlated with cracked grain boundary fraction and crack growth rate at 400oC. The observation of grain boundary oxides in stressed and unstressed samples as well as the influence of alloy content on intergranular (IG) cracking and oxidation support SIO as a mechanism for intergranular stress corrosion cracking (IGSCC). (author)

  9. Compaction study of particulate iron-chromium matrix composite reinforced with alumina

    International Nuclear Information System (INIS)

    Recently, a sharper focus on cost reduction in producing advanced composites systems has increased and leads to an interest in ferrous matrix composite which is cheaper compared to Cobalt, Nickel and their alloys that are scarce, expensive and their dust is especially harmful. In the present investigation, Fe-Cr-Al2O3 composite was prepared using conventional powder metallurgy technique; mixing, compaction and sintering. Consolidation of particulate materials is dependent on the compaction process. As load is increased, the number of contacting asperities increases and they flatten and grow to form a planar contact surface. These asperities eventually merge to form bonding surfaces between particles. This paper focused on finding the optimum compaction parameter in a uniaxial pressing. Six different pressure were studied; (250, 375, 500, 625, 750 and 875)MPa. experimental results show that the optimum compaction parameter is 750 MPa that produced highest linear shrinkage, highest bulk density, lowest porosity and highest hardness value. Every sample has formed binary alloy of Fe-Cr alloy, confirmed by XRD and alumina are homogeneously distributed in the Fe-Cr matrix revealed by optical micrograph and SEM. from EDX, the composites consist of iron, chromium and alumina. (author)

  10. Hyperfine field on Fe, Rh, Cd and Sn nucleus probes in chromium host

    Directory of Open Access Journals (Sweden)

    S. Sirousi

    2005-03-01

    Full Text Available   The incommensurate spin -density –wave magnetism of Cr has attracted great interest since its discovery via neutron scattering. Although the existence of spin- density –wave has been confirmed by experiment but the calculations which have been carried out have not been able to predict the correct ground state magnetic phase for chromium yet. To predict the magnetic hyperfine field at nucleus of different impurities in Cr host, we calculated the hyperfine field on Cd, Sn, Rh and Fe probes in the first step. Our calculations were performed within the framework of density functional theory, using the full-potential-linearized augmented plane-wave method. We used a supercell constructed from 8 bcc unit cells with impurity concentratin of 6.25 % and to analysise the supercell size effect on different magnetic quantities we repeated our calculation using a supercell with 54 atoms. The result of this effort showed that the magnetic hyperfine field and magnetic moment of nearesrt Cr is very little influenced by the size of supercell, so we can calculate the magnetic hyperfine field if it’s quantity is known in different alloys. we showed that the local properties such as hyperfine field, are calculated with acceptable accuracy by using small supercells. Meanwhile, we studied the structural and magnetic properties of different alloys and showed that the Fe alloy has two defferent magnetic phase.

  11. Synthesis of chromium-nickel nanoparticles prepared by a microemulsion method and mechanical milling.

    Science.gov (United States)

    Ban, Irena; Stergar, Janja; Drofenik, Miha; Ferk, Gregor; Makovec, Darko

    2013-01-01

    A chemical and a physical method have been applied for the preparation of chromium-nickel alloy nanoparticles. These particles were designed to be used for controlled magnetic hyperthermia applications. Microemulsions with Ni2+ and Cr3+ and/or NaBH4 as precursors were prepared using the isooctane/CTAB, n-butanol/H2O system. The samples of CrxNi1-x nanoparticles with the desired composition were obtained after the reduction of their salts with NaBH4 and afterwards heat treated in a TGA in a N2 atmosphere at various temperatures. The CrxNi1-x materials were also prepared by mechanical milling. Utilizing a ball-to-powder mass ratio of 20 : 1 and selecting the proper alloy compositions we were able to obtain nanocrystalline CrxNi1-x particles. Thermal demagnetization in the vicinity of the Curie temperature of the nanoparticles was studied using a modified TGA-SDTA method. The alloy's phase composition, size and morphology were determined with XRD measurements and TEM analyses. PMID:24362977

  12. Enhancement of ductility in aluminum alloys by the control of transition-metal solutes during thermo-mechanical processing

    Energy Technology Data Exchange (ETDEWEB)

    Saimoto, S.; Cao, S. [Materials and Metallurgical Eng. Queen' s Univ., Kingston, ON (Canada); Mishra, R.K. [General Motors R and D Center, Warren, MI (United States)

    2005-07-01

    Predictions of chromium additions to aluminum alloys to stabilize the deformation debris products were examined. Additions of 0.22 wt.% Cr to AA6063 extrusion alloys manifested enhanced formability under bending and precision-strain-rate-sensitivity tensile testing indicated that the stacking fault energy was reduced. The debris products were more resistant to dynamic recovery resulting in enhanced ductility at 27 C and the solute-drag effect of Mg was dramatically manifested in the Haasen plot. (orig.)

  13. Influence of Cr and Co on hardness and corrosion resistance CoCrMo alloys used on dentures

    OpenAIRE

    L.A. Dobrzański; Ł. Reimann

    2011-01-01

    Purpose: The goal of the study is to try find the relationship between cobalt content on hardness and chromium content on corrosion resistance on the basis of base cobalt alloys CoCrMo used in prosthodontia.Design/methodology/approach: To investigation was choose five base cobalt alloys with different concentration of cobalt and additions. Hardness test were obtained by use the microhardness FM ARS 9000 FUTURE TECH with load 1 kg. Structure observation was made after surface preparation by li...

  14. Palladium-chromium static strain gages for high temperatures

    Science.gov (United States)

    Lei, Jih-Fen

    1992-01-01

    An electrical resistance strain gage that can provide accurate static strain measurement to a temperature of 1500 F or above is being developed both in fine wire and thin film forms. The gage is designed to be temperature compensated on any substrate material. It has a dual element: the gage element is a special alloy, palladium-13wt percent chromium (PdCr), and the compensator element is platinum (Pt). Earlier results of a PdCr based wire gage indicated that the apparent strain of this gage can be minimized and the repeatability of the apparent strain can be improved by prestabilizing the gage on the substrate for a long period of time. However, this kind of prestabilization is not practical in many applications and therefore the development of a wire gage which is prestabilized before installation on the substrate is desirable. This paper will present our recent progress in the development of a prestabilized wire gage which can provide meaningful strain data for the first thermal cycle. A weldable PdCr gage is also being developed for field testing where conventional flame-spraying installation can not be applied. This weldable gage is narrower than a previously reported gage, thereby allowing the gage to be more resistant to buckling under compressive loads. Some preliminary results of a prestabilized wire gage flame-sprayed directly on IN100, an engine material, and a weldable gage spot-welded on IN100 and SCS-6/(beta)21-S Titanium Matrix Composite (TMC), a National Aero-Space Plane (NASP) structure material, will be reported. Progress on the development of a weldable thin film gage will also be addressed. The measurement technique and procedures and the lead wire effect will be discussed.

  15. High temperature oxidation behaviors of Ti-Cr alloys with Laves phase TiCr2

    Institute of Scientific and Technical Information of China (English)

    肖平安; 曲选辉; 雷长明; 祝宝军; 秦明礼; 敖晖; 黄培云

    2002-01-01

    The high temperature oxidation behaviors of Ti-Cr alloys containing 18%~35%Cr with Laves phase TiCr2 were investigated at 650~780 ℃ for exposure up to 104 h. The results reveal that chromium content has critical significance to the oxidation resistance of the alloys. The scaling rates of the alloys with less than 21%Cr are higher than those measured for pure titanium, but for the alloys with more than 26%Cr their scaling rate is lowered by 1~2 times, under the same oxidizing conditions. Both an external and an internal oxidation layers were observed. The oxidation resistance enhancement by chromium alloying is contributed to the formation of a continuous and compact chromic oxide interleaf in the scale. Oxidation temperature significantly affects the scaling rates of Ti-Cr alloys, and the mass gain is doubled with a temperature change from 650 ℃ to 700 ℃ or from 700 ℃ to 780 ℃, for the same exposure duration. TiCr2 shows no negative influence on the high temperature oxidation resistance of the alloys.

  16. Kinetics of passivation of a nickel-base alloy in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Machet, A. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France)]|[Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Galtayries, A.; Zanna, S.; Marcus, P. [Laboratoire de Physico-Chimie des Surfaces, CNRS-ENSCP (UMR 7045), Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, F-75231 Paris cedex 05 (France); Jolivet, P.; Scott, P. [Framatome ANP, Tour AREVA, F-92084 Paris-la-Defense (France); Foucault, M.; Combrade, P. [Framatome ANP, Centre Technique, F-71205 Le Creusot (France)

    2004-07-01

    The kinetics of passivation and the composition of the surface oxide layer, in high temperature and high pressure water, of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS). The samples have been exposed for short (0.4 - 8.2 min) and longer (0 - 400 hours) time periods to high temperature (325 deg. C) and high pressure water (containing boron and lithium) under controlled hydrogen pressure. The experiments were performed in two types of autoclaves: a novel autoclave dedicated to short time periods and a classic static autoclave for the longer exposures. In the initial stage of passivation, a continuous ultra-thin layer of chromium oxide (Cr{sub 2}O{sub 3}) is rapidly formed on the surface with an external layer of chromium hydroxide. For longer times of passivation, the oxide layer is in a duplex form with an internal chromium oxide layer and an external layer of nickel hydroxide. The growth of the internal Cr{sub 2}O{sub 3} oxide layer has been fitted by three classical models (parabolic, logarithmic and inverse logarithmic laws) for the short passivation times, and the growth curves have been extrapolated to longer passivation periods. The comparison with the experimental results reveals that the kinetics of passivation of Alloy 600 in high temperature and high pressure water, for passivation times up to 400 hours, is well fitted by a logarithmic growth law. (authors)

  17. Influence of chemical composition, heat treatment and structure on the properties of heat-treatable nickel-chromium-molybdenum-vanadium steels for heavy forgings, especially for low-pressure turbine and generator shafts

    International Nuclear Information System (INIS)

    The following report deals with the optimization of the chemical composition of nickel-chromium-molybdenum-vanadium steels. The influence of nickel, chromium, molybdenum, and carbon on the through hardening and tempering and the structure-specific effect of the alloying elements were investigated. Measures to suppress temper brittleness are discussed, a fracture mechanics assessment is given. Furthermore, the magnetic properties and problems of heat treatment, especially in obtaining fine grain, are discussed. Examples for possibilities and limits particularly of 26 NiCrMoV 14 5 steel are discussed. (GSCH/LH)

  18. Radiometric and spectrophotometric studies of the behavior of chromium(VI) oxide in concentrated perchloric acid

    Energy Technology Data Exchange (ETDEWEB)

    Pezzin, S.H.; Collins, C.H.; Collins, K.E. [Universidade Estadual de Campinas (Brazil). Inst. de Quimica; Archundia, C. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares

    1997-11-01

    A study of the behavior of {sup 51}CrO{sub 3} in 70% HClO{sub 4} over the temperature range from 20 to 194 C by means of Cr-51 labelling, UV-VIS spectrophotometry and ion exchange chromatography, shows that the solubility of {sup 51}CrO{sub 3} depends on a competition between the dissolution process and the acid reduction of solution phase Cr(VI). These processes occur simultaneously and are dependent on both the temperature and the concentration of Cr(VI), as shown by comparison between radiometric measurements (where total chromium can be accurately determined) and spectrophotometric measurements (where only the Cr(VI) is detectable at the wavelengths studied). These conclusions are confirmed by PbCrO{sub 4} precipitation of {sup 51}Cr(VI), where at 194 C, 97% of the total chromium appears as Pb{sup 51}CrO{sub 4} while at 86 C only 5% does. Cation exchange chromatography of the solution after brief contact of {sup 51}CrO{sub 3} with concentrated HClO{sub 4} at 20 C shows only traces of {sup 51}Cr(VI), most of the radioactivity eluting as {sup 51}Cr(H{sub 2}O){sup 3+}{sub 6}, with smaller amounts of species with +2 and +1 charges. These results imply serious limitations to the spectrophotometric determination of low concentrations of total chromium in alloys or in biological material which use dissolution in 70% HClO{sub 4} as a primary analytical step. (orig.)

  19. IRIS Toxicological Review of Hexavalent Chromium (2010 External Review Draft)

    Science.gov (United States)

    [UPDATE] New Schedule for IRIS Hexavalent Chromium Assessment In Feb 2012, EPA developed a new schedule for completing the IRIS hexavalent chromium assessment. Based on the recommendations of the external peer review panel, which met in May 2011 to review the dra...

  20. Chromium and Polyphenols From Cinnamon Improve Insulin Sensitivity

    Science.gov (United States)

    Naturally occurring compounds that have been shown to improve insulin sensitivity include chromium and polyphenols found in cinnamon. These compounds also have similar effects on insulin signaling and glucose control. The signs of chromium deficiency are similar to those for the metabolic syndrome ...

  1. Safety, absorption, and antioxidant effects of chromium histidine

    Science.gov (United States)

    Supplemental chromium has been shown to be involved in the alleviation of the metabolic syndrome, glucose intolerance, polycystic ovary syndrome, depression, excess body fat, and gestational, steroid-induced, and type 2 diabetes. Chromium amino acid complexes that contained histidine displayed cons...

  2. Toxicity and adaptation of Dictyosphaerium chlorelloides to extreme chromium contamination.

    Science.gov (United States)

    Sánchez-Fortún, Sebastián; López-Rodas, Victoria; Navarro, Macarena; Marvá, Fernando; D'ors, Ana; Rouco, Mónica; Haigh-Florez, David; Costas, Eduardo

    2009-09-01

    Metals are often spilled by industries into inland water environments, with adverse consequences. Numerous papers have reported that heavy metals produce massive destruction of algae. Nevertheless, algal populations seem to become tolerant when they have had previous exposures to heavy metals. Because the mechanisms allowing heavy metal tolerance of algae are not yet known, the present study analyzed the effect of hexavalent chromium on growth and photosynthetic performance of Dictyosphaerium chlorelloides, stressing on the adaptation mechanisms to chromium contamination. Growth and photosynthetic performance of algal cells were inhibited by Cr(VI) at 10 mg/L, and the 72-h median inhibition concentration was established as 1.64 and 1.54 mg/L, respectively. However, after further incubation for a three month period in an environment with 25 mg/L of chromium, some rare, chromium-resistant cells occasionally were found. A Luria-Delbrück fluctuation analysis was performed to distinguish between resistant algae arising from rare, spontaneous mutations and resistant algae arising from physiological adaptation and other adaptive mechanisms. Resistant cells arose only by spontaneous mutations before the addition of chromium, with a rate of 1.77 x 10(-6) mutants per cell division. From a practical point of view, the use of both chromium-sensitive and chromium-resistant genotypes could make possible a specific algal biosensor for chromium. PMID:19323601

  3. Residual Chromium in Leather by Instrumental Neutron Activation Analysis

    Directory of Open Access Journals (Sweden)

    S. Okoh

    2012-01-01

    Full Text Available Problem statement: Most tanning processes employ the use of chromium sulphate. For chromium tanned leather, finished products may contain high amount of residual chromium. This may pose some health hazards, since chromium is known to be toxic at elevated concentration. This justifies the need for the study. Approach: Various samples of leather were collected from a tannery, a leather crafts market, a leather dump site and from local tanners all in Kano, Nigeria in 2009. The samples were irradiated for 6 h in the inner site of the Nigerian Research Reactor (NIRR-1 at a flux of 5×1011 ncm-2 sec-1. Results: After evaluating the spectrum, the mean results for chromium in the samples were determined as 2.33±0.3, 2.23±0.3 and 2.93±0.4% for samples from the tannery, leather crafts market and leather dump sites respectively. Chromium concentration in samples collected from local tanners who use tannins from Acacia nilotica as tanning agent was below the detection limit of Instrumental Neutron Activation Analysis (INAA technique used in the study. Conclusion: Although, the concentrations of chromium in the analysed samples were not much higher than what were obtained in literature, they may be enough to sensitize the population that is allergic to chromium.

  4. Transmutation-induced embrittlement of V-Ti-Ni and V-Ni alloys in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuki, S.; Takahashi, H. [Hokkaido Univ., Sapparo (Japan); Garner, F.A. [Pacific Northwest National Laboratory, Richland, WA (United States); Pawel, J.E. [Oak Ridge National Laboratory, TN (United States)] [and others

    1996-04-01

    Vanadium, V-1Ni, V-10Ti and V-10Ti-1Ni (at %) were irradiated in HFIR to doses ranging from 18 to 30 dpa and temperatures between 300 and 600C. Since the irradiation was conducted in a highly thermalized neutron spectrum without shielding against thermal neutrons, significant levels of chromium (15-22%) were formed by transmutation. The addition of such large chromium levels strongly elevated the ductile to brittle transition temperature. At higher irradiation temperatures radiation-induced segregation of transmutant Cr and solute Ti at specimen surfaces leads to strong increases in the density of the alloy.

  5. Impact toughness of high strength low alloy TMT reinforcement ribbed bar

    Indian Academy of Sciences (India)

    Bimal Kumar Panigrahi; Surendra Kumar Jain

    2002-08-01

    Charpy V-notch impact toughness of 600 MPa yield stress TMT rebars alloyed with copper, phosphorus, chromium and molybdenum has been evaluated. Subsize Charpy specimens were machined from the rebar keeping the tempered martensite rim intact. The copper–phosphorus rebar showed toughness of 35 J at room temperature. The toughness of copper–molybdenum and copper–chromium rebars was 52 J. The lower toughness of phosphorus steel is attributed to solid solution strengthening and segregation of phosphorus to grain boundaries. Due to superior corrosion resistance, copper–phosphorus TMT rebar is a candidate material in the construction sector.

  6. A ferric-austenitic CrNiMoN steel alloy to be used as material to manufacture welded components

    International Nuclear Information System (INIS)

    A chromium-nickel-molybdenum-nitrogen steel alloy (ferritic-austenite) is used to manufacture welded articles which without thermal treatment are resistant to pitting corrosion, intergranular corrosion (Monypenny-Stauss test) or boiling in 65% nitric acid with subsequent cross-breaking test. (IHOE)

  7. CHROMIUM BIOACCUMULATION FROM COMPOSTS AND VERMICOMPOSTS BASED ON TANNERY SLUDGES

    Directory of Open Access Journals (Sweden)

    Krzysztof GONDEK

    2008-07-01

    Full Text Available Storage of waste substances is not indifferent to ecological equilibrium in the environment therefore should not be the ultimate way to limit waste arduousness. Therefore, the conducted investigations aimed to determine the effect of tannery composts and vermicomposts loaded with chromium on this element bioaccumulation in earthworm bodies and biomass of selected plants. Chromium in composts and vermicomposts based on tannery sludges occurred in small quantities and easily soluble compounds. Chromium concentrations in redworm biomass points to this metal accumulation in Eisenia fetida body tissues. This element content in redworm biomass was signifi cantly positively correlated with its content in composts. Chromium content in plants was diversifi ed and on treatments was generally smaller than on mineral treatment or farmyard manure. Chromium absorbed by plants was stored mainly in the root systems, and over the norm content of this element found in vermicomposts did not cause its excessive accumulation in plant biomass.

  8. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Wang, Yuan-Shan; Pan, Zhi-Yan; Lang, Jian-Min; Xu, Jian-Miao; Zheng, Yu-Guo

    2007-08-17

    Chromium in tannery sludge will cause serious environmental problems and is toxic to organisms. The acidophilic sulfur-oxidizing Acidithiobacillus thiooxidans can leach heavy metals form urban and industrial wastes. This study examined the ability of an indigenous sulfur-oxidizing A. thiooxidans to leach chromium from tannery sludge. The results showed that the pH of sludge mixture inoculated with the indigenous A. thiooxidans decreased to around 2.0 after 4 days. After 6 days incubation in shaking flasks at 30 degrees C and 160 rpm, up to 99% of chromium was solubilized from tannery sludge. When treated in a 2-l bubble column bioreactor for 5 days at 30 degrees C and aeration of 0.5 vvm, 99.7% of chromium was leached from tannery sludge. The results demonstrated that chromium in tannery sludge can be efficiently leached by the indigenous A. thiooxidans.

  9. Biosorption potency of Aspergillus niger for removal of chromium (VI).

    Science.gov (United States)

    Srivastava, Shaili; Thakur, Indu Shekhar

    2006-09-01

    Aspergillus niger isolated from soil and effluent of leather tanning mills had higher activity to remove chromium. The potency of Aspergillus niger was evaluated in shake flask culture by absorption of chromium at pH 6 and temperature 30 degrees C. The results of the study indicated removal of more than 75% chromium by Aspergillus niger determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometry after 7 days. Study of microbial Cr(VI) reduction and identification of reduction intermediates has been hindered by the lack of analytical techniques that can identify the oxidation state with subcellular spatial resolution. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), which indicated an accumulation of chromium in the fungal mycelium. PMID:16874547

  10. Enhancement of surface properties of SAE 1020 by chromium plasma immersion recoil implantation

    Science.gov (United States)

    Ueda, M.; Mello, C. B.; Beloto, A. F.; Rossi, J. O.; Reuther, H.

    2007-04-01

    SAE 1020 steel is commonly used as concrete reinforcement and small machine parts, but despite its good mechanical properties, as ductility, hardness and wear resistance, it is susceptible to severe corrosion. It is well known that chromium content above 12% in Fe alloys increases their corrosion resistance. In order to obtain this improvement, we studied the introduction of chromium atoms into the matrix of SAE 1020 steel by recoil implantation process using a plasma immersion ion implantation (PIII) system. Potentiodynamic scans showed that the presence of Cr film leads to a gain in the corrosion potential, from -650 mV to -400 mV. After PIII treatment, the corrosion potential increased further to -340 mV, but the corrosion current density presented no significant change. Vickers microhardness tests showed surface hardness increase of up to about 27% for the treated samples. Auger electron spectroscopy showed that, for a 30 nm film, Cr was introduced for about 20 nm into the steel matrix. Tribology tests, of pin-on-disk type, showed that friction coefficient of treated samples was reduced by about 50% and a change in wear mechanism, from adhesive to abrasive mode, occurred.

  11. The relationship between microstructure and mechanical properties of ferritic chromium steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Peter; Cerjak, Horst [Graz Univ. of Technology (Austria); Toda, Yoshiaki; Hara, Toru; Abe, Fujio [National Institute for Materials Science (Japan)

    2008-07-01

    Welding as the major joining and repair technology for steels in thermal power plants has a significant influence on the steels microstructure and, therefore, on its properties. Heat-resistant martensitic 9-12% chromium steels show an affinity to the retention of delta ferrite in the heat-affected zone of their weldments. This is related to their high level of ferrite stabilizing alloying elements such as Cr, W or Mo. Retained delta ferrite in martensitic steel grades has a significant negative influence on creep strength, fatigue strength, toughness and oxidation resistance. In the long-term range of creep exposure, many weldments of martensitic heatresistant steels fail by Type IV cracking in the fine-grained region of the heat-affected zone. In this work, the formation of the heat-affected zone microstructures in martensitic chromium steels is studied by in-situ X-ray diffraction using synchrotron radiation, optical microscopy as well as most advanced electron microscopical methods. The observed microstructure is directly linked to the mechanical properties, i.e. ductility, toughness and creep strength. Characteristic failure modes are discussed in detail. (orig.)

  12. Effect of Manganese on As-Cast Microstructure and Hardening Behavior of High Chromium White Cast Iron

    Institute of Scientific and Technical Information of China (English)

    SUN Zhi-ping; SHEN Bao-luo; WANG Jun; LIU Hao-huai; LUO Cheng

    2005-01-01

    The effect of manganese on the as-cast structure and hardening behavior of high chromium white cast iron subjected to sub-critical treatment was studied. The results indicate that the fraction of retained austenite and the manganese distribution in as-cast alloys are controlled by manganese content. The manganese distribution in as-cast alloys is not homogeneous. The manganese content in carbide is higher than that in matrix. Whether the secondary hardening occurs or not and the peak hardness of secondary hardening is controlled by manganese content in retained austenite in as-cast structure. Higher manganese content can cause more retained austenite. The secondary hardening occurs in sub-critical treating process if the fraction of retained austenite is high.

  13. Evaluation of sprayed chromium carbide coatings for gas-cooled reactor applications

    International Nuclear Information System (INIS)

    Sprayed chromium carbide-nichrome coatings are candidates for protection of faying and sliding surfaces of critical components of gas-cooled reactors from friction and wear damage. These coatings must provide protection throughout the reactor lifetime under high temperature exposure conditions. Extensive evaluation work to characterize these coatings is underway. The work includes studies of friction and wear behavior in helium; stability of the coatings in a low oxygen potential helium environment; impure helium corrosion of coated specimens; and the effect of the coatings on mechanical properties of the substrate alloy. Much of the work reported is on the evaluation of plasma-sprayed coatings. However, a brief discussion of the behavior of coatings applied by the detonation-gun process and high-energy plasma-gun processes is also included

  14. Effect of cerium modification on microstructure and properties of hypereutectic high chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiaohui, E-mail: mkmkzxh@hotmail.com [School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei Province (China); Liu, Jinzhi [School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei Province (China); Xing, Jiandong; Ma, Shengqiang [State Key Laboratory Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi Province (China)

    2014-05-01

    The effect of cerium modification on the microstructure and properties of hypereutectic high chromium cast iron primarily containing 4.0 wt% C and 20.0 wt% Cr was studied by means of optical microscopy, transmission electron microscope, scanning electron microscope, and energy dispersive X-ray spectrometry. The primary M{sub 7}C{sub 3} carbides were refined obviously when cerium was added in the melt. Ce{sub 2}S{sub 3} was found in the primary M{sub 7}C{sub 3} carbides and acted as the heterogeneous substrate of M{sub 7}C{sub 3} carbides. The impact toughness of the specimen modified with 0.5 wt% cerium increased by 50% compared with the specimen without cerium modification. The hardness of the alloy modified with cerium increased slightly compared with the specimen without cerium modification.

  15. Microstructure and wear resistance of high chromium cast iron containing niobium

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhiguo; Yang Chengkai; Zhang Peng; Li Wei

    2014-01-01

    In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated aloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the aloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  16. Selenium protection from cadmium and chromium poisoning

    International Nuclear Information System (INIS)

    The interaction of selenium with cadmium and chromium was studied in 168 chicken-broilers (DWCxWR) divided into four equal groups. Eight-week old control animals received an intravenous dose of /sup 115m/Cd Chloride 370 KBq/Kg (Group I), or 51Cr Chloride 370 KBq/Kg (Group II). The kinetics of these isotopes were studied by scintillation spectrometry (NaI/TI) carried out for whole blood, plasma, plasma proteins, urine, feces and homogenates of all organs at various time intervals. Animals in Groups III and IV received eight subcutaneous doses of sodium selenate (5ug) at 8-week intervals prior to /sup 115m/Cd or 51Cr. The kinetics of these elements were studied as in the previous two groups. It was found that selenium affected those kinetics in two ways: (a) by increasing the excretion of Cd by 11 +/- 3% (P < 0.001) and that of Cr by 7 +/- 1% (P < 0.001); and (b) by favoring redistribution of those elements, with significant (P < 0.001) reductions in liver, endocrine glands and kidney and increases (P < 0.01) in bone. The study suggests that selenium protects the animals' vital organs from environmental pollutants, such as cadmium and chromium

  17. Pool Boiling Heat Transfer Characteristics of Chromium Coatings Deposited by RF Magnetron Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Gwang Hyeok; Son, Hong Hyun; Jeong, Uiju; Jeun, Gyoodong; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    Many researches have suggested fundamental changes to satisfy the safety requirements, including development of accident tolerant fuels (ATFs). The adoption of coating techniques is one of promising approaches for ATF systems because surface modification with a highly oxidation-resistant material can prevent hydrogen generation and cladding embrittlement. Compared to the development of a new cladding for the replacement of the current zirconium-based alloy cladding and new fuel forms instead of the current ceramic oxide fuels, the surface coating technique is cost-effective and easily applicable to the current LWR system with no significant design changes. Recently, a wide variety of oxidation-resistant materials have been proposed: iron-based alloys and SiC-based materials. Among them, chromium (Cr) is suggested as a coating material for fuel claddings because it is known for has oxidation-resistant characteristic. In order to assess the feasibility of coating techniques with an oxidation-resistant material, in this study chromium (Cr) film was deposited on a metal substrate via a physical vapor deposition (PVD) process. After preparing test specimens, pool boiling heat transfer experiments were carried out to investigate the boiling performance of both cases. Moreover, during a test, visualization works were conducted for a phenomenological understanding. In this study, Cr deposition on the SS316 surface was conducted using the sputtering process. Specifically, sophisticated surface characterization was performed with the wettability measurement and surface morphology analysis. Furthermore, the pool boiling heat transfer experiments were carried out to obtain the CHF value of the test heater. The major findings observed from this study can be summarized as follows. The surface wettability increased 77% after the sputtering deposition.

  18. Laser cladding of Ni-based alloy on stainless steel

    Institute of Scientific and Technical Information of China (English)

    XUE Chun-fang; TIAN Xin-li; TAN Yong-sheng; WU Zhi-yuan

    2004-01-01

    The coatings on a stainless steel substrate were conducted by laser cladding of Ni-based alloy, using a 5 kW continuous wave CO2 flow transverse laser. SEM, EDX and X-ray diffraction were used to analyze the microstructure and constituent phases of the obtained coatings by laser cladding with direct injection of the powder into the melt pool. Solidification planar, cellular and dendrite structures were observed in Ni-based alloy coating. There exists an optimum metallurgical bond between Ni-based laser cladding layer and the base material. The high hardness of the Ni-based alloy coating is attributed to the presence of M7C3-type carbides (essentially chromium-riched carbide) dispersed in the γ(Ni,Fe) phase matrix.

  19. Abrasive wear property of laser melting/deposited Ti2Ni/TiNi intermetallic alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A wear resistant intermetallic alloy consisting of TiNi primary dendrites and Ti2Ni matrix was fabricated by the laser melting deposition manufacturing process. Wear resistance of Ti2Ni/TiNi alloy was evaluated on an abrasive wear tester at room temperature under the different loads. The results show that the intermetallic alloy suffers more abrasive wear attack under low wear test load of 7, 13 and 25 N than high-chromium cast-iron. However, the intermetallic alloy exhibits better wear resistance under wear test load of 49 N. Abrasive wear of the laser melting deposition Ti2Ni/TiNi alloy is governed by micro-cutting and plowing.Pseudoelasticity of TiNi plays an active role in contributing to abrasive wear resistance.

  20. Fracture toughness of copper-base alloys for ITER applications: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.J.; Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Oxide-dispersion strengthened copper alloys and a precipitation-hardened copper-nickel-beryllium alloy showed a significant reduction in toughness at elevated temperature (250{degrees}C). This decrease in toughness was much larger than would be expected from the relatively modest changes in the tensile properties over the same temperature range. However, a copper-chromium-zirconium alloy strengthened by precipitation showed only a small decrease in toughness at the higher temperatures. The embrittled alloys showed a transition in fracture mode, from transgranular microvoid coalescence at room temperature to intergranular with localized ductility at high temperatures. The Cu-Cr-Zr alloy maintained the ductile microvoid coalescence failure mode at all test temperatures.

  1. Principles of alloying of Ni superalloys resistant to high-temperature corrosion

    International Nuclear Information System (INIS)

    The effect of alloying elements (Cr, Ti, Al, Co, W, Nb) on resistance against high-temperature corrosion of the nickel alloys, applied in the gas turbine building, is studied. The diagram of the alloys heat resistance level dependence on the alloying elements concentration is plotted, wherein three areas are separated: 1) the area of improved heat resistance due to the solid solution and dispersion strengthening; 2) the area of decreasing heat resistance due to formation of the carbide net by the grain boundaries; 3) the area of catastrophic decrease in the heat resistance by separation of the embrittlement topologically close-packed phases. The class of the high-temperature corrosion-resistant nickel alloys with different chromium content (13-30%), the Ti/Al > 1 concentration ratio and balanced content of high-melting and rare earth elements is created

  2. Industrial Experience on the Caustic Cracking of Stainless Steels and Nickel Alloys - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2005-10-09

    Caustic environments are present in several industries, from nuclear power generation to the fabrication of alkalis and alumina. The most common material of construction is carbon steel but its application is limited to a maximum temperature of approximately 80 C. The use of Nickel (Ni) alloys is recommended at higher temperatures. Commercially pure Ni is the most resistant material for caustic applications both from the general corrosion and the stress corrosion cracking (SCC) perspectives. Nickel rich alloys also offer a good performance. The most important alloying elements are Ni and chromium (Cr). Molybdenum (Mo) is not a beneficial alloying element and it dissolves preferentially from the alloy in presence of caustic environments. Austenitic stainless steels such as type 304 and 316 seem less resistant to caustic conditions than even plain carbon steel. Experimental evidence shows that the most likely mechanism for SCC is anodic dissolution.

  3. Criticality of iron and its principal alloying elements.

    Science.gov (United States)

    Nuss, Philip; Harper, E M; Nassar, N T; Reck, Barbara K; Graedel, T E

    2014-04-01

    Because modern technology depends on reliable supplies of a wide variety of materials and because of increasing concern about those supplies, a comprehensive methodology was created to quantify the degree of criticality of the metals of the periodic table. In this paper, we apply this methodology to iron and several of its main alloying elements (i.e., vanadium, chromium, manganese, and niobium). These elements represent the basic metals of any industrial society and are vital for national security and economic well-being. Assessments relating to the dimensions of criticality - supply risk, vulnerability to supply restriction, and environmental implications - for 2008 are made on the global level and for the United States. Evaluations of each of the multiple indicators are presented, with aggregate results plotted in "criticality space", together with Monte Carlo simulation-derived "uncertainty cloud" estimates. Iron has the lowest supply risk, primarily because of its widespread geological occurrence. Vanadium displays the highest cradle-to-gate environmental implications, followed by niobium, chromium, manganese, and iron. Chromium and manganese, both essential in steel making, display the highest vulnerability to supply restriction, largely because substitution or substitution at equal performance is not possible for all end-uses. From a comprehensive perspective, we regard the overall criticality as low for iron and modest for the alloying elements we evaluated.

  4. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression.

    Science.gov (United States)

    Zhang, Songmei; Qiu, Jing; Ren, Yanfang; Yu, Weiqiang; Zhang, Fuqiang; Liu, Xiuxin

    2016-04-01

    Corrosion of dental alloys is a major concern in dental restorations. Streptococcus mutans reduces the pH in oral cavity and induces demineralization of the enamel as well as corrosion of restorative dental materials. The rough surfaces of dental alloys induced by corrosion enhance the subsequent accumulation of plaque. In this study, the corrosion process of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys in a nutrient-rich medium containing S. mutans was studied using inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test. Our results showed that the release of Ni and Co ions increased, particularly after incubation for 3 days. The electrochemical corrosion results showed a significant decrease in the corrosion resistance (Rp) value after the alloys were immersed in the media containing S. mutans for 3 days. Correspondingly, XPS revealed a reduction in the relative dominance of Ni, Co, and Cr in the surface oxides after the alloys were immersed in the S. mutans culture. After removal of the biofilm, the pre-corroded alloys were re-incubated in S. mutans medium, and the expressions of genes associated with the adhesion and acidogenesis of S. mutans, including gtfBCD, gbpB, fif and ldh, were evaluated by detecting the mRNA levels using real-time reverse transcription polymerase chain reaction (RT-PCR). We found that the gtfBCD, gbpB, ftf and Idh expression of S. mutans were noticeably increased after incubation with pre-corroded alloys for 24 h. This study demonstrated that S. mutans enhanced the corrosion behavior of the dental alloys, on the other hand, the presence of corroded alloy surfaces up-regulated the virulent gene expression in S. mutans. Compared with smooth surfaces, the rough corroded surfaces of dental alloys accelerated the bacteria-adhesion and corrosion process by changing the virulence gene expression of S. mutans.

  5. 75 FR 65067 - National Emission Standards for Hazardous Air Pollutant Emissions: Hard and Decorative Chromium...

    Science.gov (United States)

    2010-10-21

    ... Decorative Chromium Electroplating and Chromium Anodizing Tanks; Group I Polymers and Resins; Marine Tank...: Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks; Group I Polymers and Resins... Tanks. Group I Polymers and Resins Production.. Scott Throwe, (202) 564-7013,...

  6. Chromium-induced membrane damage: protective role of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100gbody weight). It has been observed that the intoxication with chromium ( i. p. ) at the dose of 0.8 mg/100g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospbolipid of both liver and kidney. The alkaline pbosphatase, total ATPase and Na + -K + -ATPase activities were significantly decreased in both liver and kidney after chromium treatment,except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid ( i.p. at the dose of 0.5 mg,/100g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  7. Bioavailability of a potato chromium complex to the laboratory rat

    International Nuclear Information System (INIS)

    Research objectives were to study the effect of food source, preparation method and chemical form on bioavailability of chromium. Chromium concentration in potatoes was determined and tubers labeled either intrinsically or extrinsically with radioactive chromate. A labeled chromium complexes was isolated from preparations of raw, baked or fried potatoes and chromatographed on gel permeation media. Availability of the potato chromium complex to the rat was examined in three feeding studies. Animals were dosed with radioactive extrinsically or intrinsically labeled potato extract or with chromate. A labeled chromium complex was isolated from gastrointestinal contents of rats and chromatographed. Potato pulp and peel contained 1.63 and 2.70 μg Cr/g tissue respectively. True and apparent absorption from extrinsically labeled feedings were 33.4 +/- 4.7 and 29.8 +/- 11.2% respectively, and no differences existed between absorption from raw and cooked potatoes. Absorption from the extrinsic labeled potatoes differed significantly from absorption of inorganic chromatium. Apparent absorption of raw (11.1 +/- 7.9%) and cooked (-0.7 +/- 2.8%) intrinsically labeled feedings differed significantly. Absorption of inorganic chromium was 17.8% (true) and 11.5% (apparent). Examination of the chromium complex isolated from gastrointestinal tract contents showed enlargement of the complex in the stomach after consumption

  8. Stabilization of chromium salt in ordinary portland cement

    Indian Academy of Sciences (India)

    Damir Barbir; Pero Dabić; Petar Krolo

    2012-12-01

    Ordinary Portland cement (OPC) samples containing the chromium salt have been investigated using differential microcalorimetry, conductometry and Fourier transform infrared spectroscopic analysis. The effect of chromium on OPC hydration was evaluated by continuous observing of early hydration. The microcalorimetrical results show that with increasing the share of chromium salt, heat maximums assume lower values and the occurrence of the maximum registered in the earlier hydration times. Conductometrical measurements show that with increasing addition of chromium salt, curve did not show any specific shape, immediate drop in specific conductivity is noticed and the maximum is reached earlier. This coincides with microcalorimetrical results. It can be concluded that the addition of chromium does not affect the mechanism of the hydration process, but it does affect the kinetic parameters and dynamics of the cement hydration process. It was found that chromium salt addition to the cement–water system is acceptable up to 2 wt.%. According to standard EN 196-3 for OPC, the beginning of binding time should occur after 60 minutes. Increased amount of chromium over 2 wt.% significantly accelerate the beginning of binding time and for the system it is not acceptable.

  9. Chromium speciation in rainwater: temporal variability and atmospheric deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kieber, R.J.; Willey, J.D.; Zvalaren, S.D. [University of North Carolina at Wilmington, Wilmington, NC (United States). Dept. of Chemistry

    2002-12-15

    Chromium is released into the atmosphere by a variety of anthropogenic activities which include steel manufacturing, leather tanning, wood presentation and fossil fuel combustion. The concentrations of the various chromium species were determined in 89 rainwater samples collected in Wilmington, NC from October 1, 1999 to December 31, 2001. Volume weighted annual average concentrations of Cr{sub total}, particulate Cr, Cr(III)(aq), and Cr(VI)(aq) were 4.6, 2.2, 0.8 and 1.2 nM, respectively. There was distinct seasonal and diurnal variability in the concentrations of the various chromium species. Chromium emissions to the global atmosphere by both natural and anthropogenic sources are estimated to be 2.2 x 10{sup 9} mol/yr. Using rainwater concentration data along with other published rainwater Cr concentrations and an estimate for total global annual rain, the total global flux of chromium removed from the atmosphere via wet deposition is 2.1 x 10{sup 9} mol/yr. This represents complete removal of Cr and indicates that essentially all chromium released into the global atmosphere is removed via rain. About half this chromium is dissolved with roughly equal concentrations of toxic Cr(VI) and relatively harmless Cr(III) species. 48 refs., 4 figs., 3 tabs.

  10. Workshop on effects of chromium coating on Nb3Sn superconductor strand: Proceedings

    International Nuclear Information System (INIS)

    This report discusses the following topics: Chromium coating on superconductor strand -- an overview; technology of chromium plating; comparison of wires plated by different platers; search for chromium in copper; strand manufactures' presentations; chromium plating at the Lawrence Livermore National Laboratory; a first look at a chromium plating process development project tailored for T.P.X. and I.T.E.R. strand; and influence of chromium diffusion and related phenomena on the reference ratios of bare and chromium plated Nb3Sn strand

  11. Workshop on effects of chromium coating on Nb{sub 3}Sn superconductor strand: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-12

    This report discusses the following topics: Chromium coating on superconductor strand -- an overview; technology of chromium plating; comparison of wires plated by different platers; search for chromium in copper; strand manufactures` presentations; chromium plating at the Lawrence Livermore National Laboratory; a first look at a chromium plating process development project tailored for T.P.X. and I.T.E.R. strand; and influence of chromium diffusion and related phenomena on the reference ratios of bare and chromium plated Nb{sub 3}Sn strand.

  12. Fertilizers and Mixed Crop Cultivation of Chromium Tolerant and Sensitive Plants under Chromium Toxicity

    OpenAIRE

    B. Dheeba; Sampathkumar, P; Kannan, K.

    2015-01-01

    Zea mays (maize) and Vigna radiata (green gram) are found to be the chromium (Cr) tolerant and sensitive plants, respectively. In the present paper, we investigate the reduction of the toxicity of Cr in the sensitive plants by the mixed crop cultivation in the field using various amendments. Further, the potassium dichromate was used as the source of hexavalent Cr. The results indicated that Cr adversely affects both the growth and yield of plants. The soil properties vary with Cr and differe...

  13. A REVIEW OF BIOSORPTION OF CHROMIUM IONS BY MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Inga Zinicovscaia

    2012-12-01

    Full Text Available Due to its widespread industrial use, chromium has become a serious pollutant in diverse environmental settings. The main source of chromium pollution including the Republic o Moldova is industry. It is a great need to develop new eco-friendly methods of chromium removal. Biosorption of heavy metals is a most promising technology involved in the removal of toxic metals from industrial waste streams and natural waters. This article is an extended abstract of a communication presented at the Conference Ecological Chemistry 2012

  14. Thermal incorporation behavior during the reduction and stabilization of chromium wastes

    OpenAIRE

    Yang, Jun; 楊駿

    2015-01-01

    The possibility of employing periclase to stabilize chromium in chromium wastes into spinel-based ceramics through thermal method was investigated by heating mixture of simulated chromium waste and magnesium oxide. Different types of magnesium oxide precursors were introduced to incorporate chromium oxide into magnesiochromite (MgCr2O4) ranging from 550 ºC to 1350 ºC. Magnesium oxide precursors of both types can effectively incorporate chromium oxide but via different mechanisms. Three main f...

  15. Effects of Supplemental Dietary Chromium on Yield and Nutrient Digestibility of Laying Hens Under Low Temperature

    OpenAIRE

    ŞAHİN, Kazım; ERTAŞ, O. Nihat; GÜLER, Talat; ÇİFTÇİ, Mehmet

    2001-01-01

    This study was conducted to determine the effects of chromium picolinate (CrPi) added into diet containing 710.3 ppb chromium on yield and nutrient digestibility of laying hens at low temperature. Forty-six-week-old laying hens were randomly assigned to four groups of 30 hens per group. Treatment groups were fed different supplemental dietary chromium levels. Thus, hens were fed diets with no supplemental chromium (Control Group), 100 ppb of supplemental chromium (100 Group), 200 ppb of s...

  16. The fate of chromium during tropical weathering

    DEFF Research Database (Denmark)

    Berger, Alfons; Frei, Robert

    2014-01-01

    We performed a mineral, geochemical and Cr–Sr–Pb isotope study on a laterite profile developed on ca. 540 Ma old tonalitic bedrock in Madagascar with special emphasis on the behavior of chromium during tropical weathering. The observed strong depletions of Ca, Si, and P, and enrichment of Fe and Al...... of the soil profile relative to stage one altered saprolite. This gain in Cr is accompanied by decreasing δ53Cr values and can be explained by partial immobilization (possibly by adsorption/coprecipitation on/with Fe-oxy-hydroxides) of mobile Cr(III) during upward transport in the weathering profile....... The negatively fractionated δ53Cr values measured in the weathering profile relative to the unaltered tonalitic bedrock characterized by a high temperature magmatic inventory Cr isotope signature are consistent with loss of a positively fractionated Cr(VI) pool formed during weathering. The predicted existence...

  17. Evaluation of chromium in red blood cells as an indicator of exposure to hexavalent chromium: An in vitro study.

    Science.gov (United States)

    Devoy, Jérôme; Géhin, Antoine; Müller, Samuel; Melczer, Mathieu; Remy, Aurélie; Antoine, Guillaume; Sponne, Isabelle

    2016-07-25

    Chromium(VI) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and whole blood (i.e., including plasma) are indicative of recent exposure, chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure. Before recommending Cr in RBC as a biological indicator of Cr(VI) exposure, in-vitro studies must be undertaken to assess its reliability. The present study examines the relationship between the chromium added to a blood sample and that subsequently found in the RBC. After incubation of total blood with chromium, RBC were isolated, counted and their viability assessed. Direct analysis of chromium in RBC was conducted using Atomic Absorption Spectrometry. Hexavalent, but not trivalent Cr, was seen to accumulate in the RBC and we found a strong correlation between the Cr(VI) concentration added to a blood sample and the amount of Cr in RBC. This relationship appears to be independent of the chemical properties of the human blood samples (e.g., different blood donors or different reducing capacities). Even though in-vivo studies are still needed to integrate our understanding of Cr(VI) toxicokinetics, our findings reinforce the idea that a single determination of the chromium concentration in RBC would enable biomonitoring of critical cases of Cr(VI) exposure. PMID:27178267

  18. Effects of Chromium(VI) and Chromium(III) on Desulfovibrio vulgaris Cells

    Energy Technology Data Exchange (ETDEWEB)

    M.E. Clark; A. Klonowska; S.B. Thieman; B. Giles; J.D. Wall; and M.W. Fields

    2007-04-19

    Desulfovibrio vulgaris ATCC 29579 is a well studied sulfate reducer that has known capabilities of reducing heavy metals and radionuclides, like chromium and uranium. Cultures grown in a defined medium (i.e. LS4D) had a lag period of approximately 40 h when exposed to 50 μMof Cr(VI). Substrate analysis revealed that although chromium is reduced within the first 5 h, growth does not resume for another 35 h. During this time, small amounts of lactate are still utilized but the reduction of sulfate does not occur. Sulfate reduction occurs concurrently with the accumulation of acetate approximately 40 h after inoculation, when growth resumes. Similar amounts of hydrogen are produced during this time compared to hydrogen production by cells not exposed to Cr(VI); therefore an accumulation of hydrogen cannot account for the utilization of lactate. There is a significant decrease in the carbohydrate to protein ratio at approximately 25 h, and this result indicated that lactate is not converted to glycogen. Most probable number analysis indicated that cell viability decreased steadily after inoculation and reached approximately 6 x 104 cells/ml 20 h post-chromium exposure. Regeneration of reducing conditions during chromium exposure does not induce growth and in fact may make the growth conditions even more unfavorable. This result suggested that an increase in Eh was not solely responsible for the decline in viability. Cell pellets collected 10 h after chromium-exposure were unable to resume growth when suspended into fresh medium. Supernatants from these pellets were able to support cell growth upon re- inoculation. D. vulgaris cells treated with a non-dose dependent addition of ascorbate at the same time of Cr(VI) addition did not enter a lag period. Ascorbate added 3 h post-Cr(VI) exposure did not prevent the growth lag. These results indicated that Desulfovibrio utilized lactate to reduce Cr(VI) without the reduction of sulfate, that the decline in cell viability and

  19. Dissolution of chromium from stellites in acid and alkaline permanganate-an electrochemical study

    International Nuclear Information System (INIS)

    Stellite-3 and stellite-6 were used as material of construction in primary and auxiliary systems of nuclear reactors. These materials have superior high temperature corrosion and wear resistance. Even though the actual surface area exposed to neutron flux and their corrosion and wear rates are negligibly small, they are the major contributors for total 60Co activity mainly because of their high cobalt content (50-60%). Apart from the general radiation build up which is due to the redistribution of activated corrosion products, the particles of cobalt released mainly from stellite could contribute to the radioactive hotspots in both high temperature as well as low temperature circuits of nuclear reactors. A detailed study was done to develop and optimize a decontamination process to dissolve out these hotspots that were formed mainly due to stellite. For this purpose dissolution studies were done for the stellite-3 and stellite-6 alloy powders in various permanganate based decontaminating formulations. It was of importance to understand the difference in efficiencies for different formulations. Dissolution capability of the alloy powder was observed to depend not only on the concentration of MnO4-, pH and temperature but also on the microstructure of the alloy. Stellite-3 and stellite-6 are both Co-Cr-W alloys but are quite different in their microstructures. The present study was carried out in order to understand the mechanistic aspects of corrosion of both these stellites in nitric acid permanganate (NP) and alkaline permanganate (AP) formulations. Electrochemical impedance measurements in NP showed that in both the alloys corrosion takes place via an adsorbed intermediate. However in AP, the process seems to be diffusion controlled. SEM/EDAX analysis done on the specimens exposed to full redox step indicated preferential corrosion attack on both the alloys in both the formulations. In NP, the attack was predominantly on Co-rich matrix phase and Cr

  20. Scientific Opinion on ChromoPrecise® cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS

    2012-11-01

    Full Text Available The Panel on Food Additives and Nutrient Sources added to Food (ANS provides a scientific opinion re-evaluating the safety of ChromoPrecise® cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source. ChromoPrecise® is a yeast preparation with an enriched trivalent chromium content, obtained by culture of Saccharomyces cerevisiae in the presence of chromium chloride. A daily intake of 100 µg chromium(III. There are limited data on the nature and identity of the organic chromium(III compounds contained in chromium-enriched yeast and on their toxicokinetic and toxicodynamic behaviour in the body. Overall, the Panel concluded that the bioavailability in man of chromium from chromium-enriched yeast is potentially up to approximately ten times higher than that of chromium from chromium chloride. A NOAEL of 2500 mg/kg bw/day ChromoPrecise® was identified in a 90-day feeding study in rats; no evidence of adverse effects of chromium yeasts were reported in other animal studies investigating the effects of dietary supplementation with chromium yeast. ChromoPrecise® chromium yeast was non-genotoxic in a range of in vitro genotoxicity studies. Although no information was available on the chronic toxicity, carcinogenicity or reproductive toxicity of ChromoPrecise® chromium yeast, the ANS Panel has previously concluded that trivalent chromium is not carcinogenic, and limited data on other chromium yeasts provide no evidence of an effect on reproductive endpoints. No adverse effects have been reported in clinical efficacy trials with chromium yeasts. The Panel concluded that the use of ChromoPrecise® chromium yeast in food supplements is not of concern, despite the lack of data on the nature and identity of the organic chromium(III compounds contained in the product, provided that the intake does not exceed 250 μg/day, as recommended by the WHO.

  1. Creep crack growth in weld metal/base metal/fusion zone regions in chromium molybdenum steels

    Energy Technology Data Exchange (ETDEWEB)

    Norris, R.H.; Saxena, A.

    1996-11-01

    An intensive study of the elevated temperature crack growth behavior of the base metal, weld metal, and heat-affected zone regions was performed on 1{1/4} chromium (Cr)-{1/2} molybdenum (Mo) and 2{1/4} Cr-1 Mo steel weldments at 538 C. Creep tests were conducted on samples removed from the weld and base metal regions of the two alloys to determine the creep deformation properties of the two different regions, whereas constant load creep crack growth tests were performed on compact-type specimens taken from all three aforementioned regions of both alloys. After the mechanical testing of the materials, extensive characterization analyses were performed on samples removed from the test specimens, which included microhardness testing, metallurgical analysis, scanning electron microscopic analysis (SEM), Auger electron spectrography (AES), cleanliness analysis, and quantification of creep-related damage. By using the information generated in this study, a model was developed to describe the crack growth in these alloys in terms of the accumulated creep damage ahead of the advancing crack front. The creep deformation behavior of these alloys is dominated by secondary and tertiary creep. The creep crack growth behavior of the alloys showed good correlation between the crack growth rate (da/dt) and the crack tip parameter (C{sub t}) in the weld metal and heat-affected zone regions. Creep crack propagation appears to occur by continuous nucleation, growth, and coalescence of grain boundary cavities. The model proposed to describe the creep crack growth in these alloys shows good agreement with the experimental results. 81 refs.

  2. Fabrication of high rate chromium getter sources for fusion applications

    International Nuclear Information System (INIS)

    Design and fabrication techniques are described for the manufacture of large-capacity chromium getter sources, analogous to the commercially available titanium getter source known as Ti-Ball, manufactured by Varian Associates

  3. IRIS Toxicological Review of Hexavalent Chromium (Peer Review Plan)

    Science.gov (United States)

    EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of hexavalent chromium that will appear on the Integrated Risk Information System (IRIS) database.

  4. Chromium and Polyphenols from Cinnamon and Insulin Sensitivity

    Science.gov (United States)

    Factors that improve insulin sensitivity usually lead to improvements in risk factors associated with the metabolic syndrome, diabetes, and cardiovascular diseases. Naturally occurring bioactive compounds that have been shown to improve insulin sensitivity include chromium and polyphenols found in ...

  5. Effect of pre-oxidation on high temperature sulfidation behavior of FeCr and FeCrAl alloys

    Directory of Open Access Journals (Sweden)

    Pillis Marina Fuser

    2004-01-01

    Full Text Available High temperature corrosion of structural alloys in sulfur bearing environments is many orders of magnitude higher than in oxidizing environments. Efforts to increase sulfidation resistance of these alloys include addition of alloying elements. Aluminum additions to iron-chromium alloys bring about increase in sulfidation resistance. This paper reports the effect of pre-oxidation on the sulfidation behavior of Fe-20Cr and Fe-20Cr-5Al alloys in H2-2% H2S environment at 800 °C. The surfaces of sulfidized specimens were also examined. Pre-oxidation of the two alloys results in an incubation period during subsequent sulfidation. After this incubation period, the Fe-20Cr alloy showed sulfidation behavior similar to that when the alloy was not pre-oxidized. The incubation period during sulfidation of the Fe-20Cr-5Al alloy was significantly longer, over 45 h, compared to 2 h for the Al free alloy. Based on the microscopic and gravimetric data a mechanism for sulfidation of these alloys with pre-oxidation has been proposed.

  6. 镍铬-镍硅热电偶老化失效机理初探%Primary study of nickel chromium-nickel silicon thermocouple aging failure mechanism

    Institute of Scientific and Technical Information of China (English)

    谌立新; 郭卫芳; 陈东

    2011-01-01

    In this paper,the oxidation of nickel chromium-nickel silicon thermocouple after 605h aging failure test in the atmosphere in 1200℃ was carried out and the oxidation process was analysed,and that the priority oxidation of the Si and Ni in the nickel-silicon alloy is main cause of the tolerance of nickel chromium-nickel silicon thermocouple thermo-electromotive force.%就镍铬-镍硅热电偶在大气中1200℃、605h老化失效试验后的氧化情况进行了分析,对氧化过程进行了探讨,结果表明镍硅合金中的硅和镍的优先氧化是引起镍铬-镍硅热电偶热电动势超差的主要原因。

  7. Oxidation-induced phase transformations and lifetime limits of chromia-forming nickel-base alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Chyrkin, Anton

    2011-12-05

    For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of δ-Ni{sub 3}Nb and (Ni,Mo,Si){sub 6}C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900-1000 C in oxidation-induced chromium depletion in the subsurface zone of the alloy. Microstructural analyses of the cross-sectioned specimens revealed that this process results in formation of a wide subsurface zone in which the mentioned strengthening phases are dissolved, in spite of the fact that both phases do not contain substantial amounts of the scale-forming element chromium. The cross-sectional analyses revealed that, in parallel to the formation of a precipitate depleted zone, a thin, continuous layer of niobium-rich intermetallic precipitates formed in the immediate vicinity of the scale/alloy interface. The Subsurface Phase Enrichment (abbreviated as SPE) was shown to be the result of an uphill-diffusion of niobium, i.e. the element stabilizing the strengthening precipitates δ-Ni{sub 3}Nb, in the chromium activity gradient and is thus a natural consequence of the oxidation-induced chromium depletion beneath the chromia scale. The thermodynamic calculations carried out using the Thermo-Calc/DICTRA software packages revealed that in alloy 625 the chemical activity of niobium decreases with decreasing chromium content. As chromium is being continuously removed from the alloy as the result of the chromia scale growth, the zone of lowest Nb-activity is formed in the location with the lowest chromium concentration, i.e. the scale/alloy interface. This creates a driving force for Nb to diffuse towards the scale/alloy interface against its own concentration gradient, which is known

  8. Biosorption of Chromium (VI) from Aqueous Solutions onto Fungal Biomass

    OpenAIRE

    Ismael Acosta R.; Xöchitl Rodríguez; Conrado Gutiérrez; Ma. de Guadalupe Moctezuma

    2004-01-01

    The biosorption of chromium (VI) on eighteen different natural biosorbents: Natural sediment, chitosan, chitin, Aspergillus flavus I-V, Aspergillus fumigatus I-ll, Helmintosporium sp, Cladosporium sp, Mucor rouxii mutant, M. rouxii IM-80, Mucor sp-I and 2, Candida albicans and Cryptococcus neoformans was studied in this work. It was found that the biomass of C. neoformans, natural sediment, Helmintosporium sp and chitosan was more efficient to remove chromium (VI) (determined spectrophotometr...

  9. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  10. Thermodynamic Equilibrium Diagrams of Sulphur-Chromium System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The chemical and electrochemical equilibria in the presence of gaseous phase were investigated. Many substances, which consisted of sulphur and chromium, were considered. Various thermodynamic equilibria were calculated in different pressures. Calculation results were shown as log p―1/T and E―T diagrams. These diagrams may be used to study the corrosion of chromium in sulphur-containing circumstances. The diagrams are also used to thermodynami-cally determine the existence area of various substances and so on.

  11. Stereology of carbide phase in modified hypereutectic chromium cast iron

    OpenAIRE

    J. Suchoń; A. Studnicki; M. Przybył

    2010-01-01

    In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C), ferroniobium (FeNb) and mixture of ferroniobium and rare-earth (RE). The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  12. SCIENCE AND TECHNOLOGY ACTIVITIES FOR CHROMIUM IN THE 100 AREAS

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2009-07-02

    {sm_bullet} Primary Objective: Protect the Columbia River - Focus is control and treatment of contamination at or near the shoreline, which is influenced by bank storage {sm_bullet} Secondary Objective: Reduce hexavalent chromium to <48 parts per billion (ppb) in aquifer (drinking water standard) - Large plumes with isolated areas of high chromium concentrations (> 40,000 ppb), - Unknown source location(s); probably originating in reactor operation areas

  13. Genetic Predisposition for Dermal Problems in Hexavalent Chromium Exposed Population

    OpenAIRE

    Priti Sharma; Vipin Bihari; Agarwal, Sudhir K.; Goel, Sudhir K.

    2012-01-01

    We studied the effect of genetic susceptibility on hexavalent chromium induced dermal adversities. The health status of population was examined from the areas of Kanpur (India) having the elevated hexavalent chromium levels in groundwater. Blood samples were collected for DNA isolation to conduct polymorphic determination of genes, namely: NQO1 (C609T), hOGG1 (C1245G), GSTT1, and GSTM1 (deletion). Symptomatic exposed subjects (n = 38) were compared with asymptomatic exposed subjects (n = 108)...

  14. Performance of chromium nitride based coatings under plastic processing conditions

    OpenAIRE

    Cunha, l.; Andritschky, M.; Pischow, K.; Wang, Z.(Institute of High Energy Physics, Beijing, China); Zarychta, A.; Miranda, A. S.; A.M. Cunha

    2000-01-01

    Chromium nitride based coatings were produced in the form of monolithic and multilayer coatings, by DC and RF reactive magnetron sputtering. These coatings were deposited onto stainless steel and tool steel substrates. Chromium nitride coatings have;proved to be wear and corrosion resistant. The combination of these characteristics was necessary to protect surfaces during plastic processing. In order to select the best coatings, some mechanical and tribological tests were performed. Har...

  15. DANGER OF HEXAVALENT CHROMIUM AND STRATEGY FOR THE REMEDITATION

    OpenAIRE

    Aniruddha Roy; Ayan Das; Nirmal Paul

    2013-01-01

    Some metals as micronutrients have a major role in the life and growth process of plants and animals. However, certain forms of some metals may also act as toxic material even in relatively small quantities. Chromium is such a metal, whose concentration above a certain limit may cause a serious problem to the health of living organisms. Chromium (Cr) may occur in several chemical forms in organic and inorganic systems. In biological systems only Cr (III) and Cr (VI) are signifi...

  16. Chromium reduction from slag on electromelting of stainless steel

    International Nuclear Information System (INIS)

    Specific features of chromium reduction from the slag on electromelting of stainless steel type Kh18N10T according to one- or two-slag procedure were studied. It was shown that one-slag melting technology allows double decrease of chromium losses in the form of incompletely reduced oxides. This occurs due to additional chemical reactions between metal and slag on their combined pouring into the ladle. 1 ref.; 3 figs

  17. Corrosion Behavior of Alloys in Molten Fluoride Salts

    Science.gov (United States)

    Zheng, Guiqiu

    The molten fluoride salt-cooled high-temperature nuclear reactor (FHR) has been proposed as a candidate Generation IV nuclear reactor. This reactor combines the latest nuclear technology with the use of molten fluoride salt as coolant to significantly enhance safety and efficiency. However, an important challenge in FHR development is the corrosion of structural materials in high-temperature molten fluoride salt. The structural alloys' degradation, particularly in terms of chromium depletion, and the molten salt chemistry are key factors that impact the lifetime of nuclear reactors and the development of future FHR designs. In support of materials development for the FHR, the nickel base alloy of Hastelloy N and iron-chromium base alloy 316 stainless steel are being actively considered as critical structural alloys. Enriched 27LiF-BeF2 (named as FLiBe) is a promising coolant for the FHR because of its neutronic properties and heat transfer characteristics while operating at atmospheric pressure. In this study, the corrosion behavior of Ni-5Cr and Ni-20Cr binary model alloys, and Hastelloy N and 316 stainless steel in molten FLiBe with and without graphite were investigated through various microstructural analyses. Based on the understanding of the corrosion behavior and data of above four alloys in molten FLiBe, a long-term corrosion prediction model has been developed that is applicable specifically for these four materials in FLiBe at 700ºC. The model uses Cr concentration profile C(x, t) as a function of corrosion distance in the materials and duration fundamentally derived from the Fick's diffusion laws. This model was validated with reasonable accuracy for the four alloys by fitting the calculated profiles with experimental data and can be applied to evaluate corrosion attack depth over the long-term. The critical constant of the overall diffusion coefficient (Deff) in this model can be quickly calculated from the experimental measurement of alloys' weight

  18. Base-metal dental casting alloy biocompatibility assessment using a human-derived three-dimensional oral mucosal model.

    LENUS (Irish Health Repository)

    McGinley, E L

    2012-01-01

    Nickel-chromium (Ni-Cr) alloys used in fixed prosthodontics have been associated with type IV Ni-induced hypersensitivity. We hypothesised that the full-thickness human-derived oral mucosa model employed for biocompatibility testing of base-metal dental alloys would provide insights into the mechanisms of Ni-induced toxicity. Primary oral keratinocytes and gingival fibroblasts were seeded onto Alloderm™ and maintained until full thickness was achieved prior to Ni-Cr and cobalt-chromium (Co-Cr) alloy disc exposure (2-72 h). Biocompatibility assessment involved histological analyses with cell viability measurements, oxidative stress responses, inflammatory cytokine expression and cellular toxicity analyses. Inductively coupled plasma mass spectrometry analysis determined elemental ion release levels. We detected adverse morphology with significant reductions in cell viability, significant increases in oxidative stress, inflammatory cytokine expression and cellular toxicity for the Ni-Cr alloy-treated oral mucosal models compared with untreated oral mucosal models, and adverse effects were increased for the Ni-Cr alloy that leached the most Ni. Co-Cr demonstrated significantly enhanced biocompatibility compared with Ni-Cr alloy-treated oral mucosal models. The human-derived full-thickness oral mucosal model discriminated between dental alloys and provided insights into the mechanisms of Ni-induced toxicity, highlighting potential clinical relevance.

  19. Metal alloy identifier

    Science.gov (United States)

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  20. Removal of Chromium and Lead from Industrial Wastewater Using

    Directory of Open Access Journals (Sweden)

    Mohamed Hilal

    2013-04-01

    Full Text Available In this research an attempt is made on the ability of aerobic treatment of synthetic solutions containing lead and chromium using effective microorganisms within the reactor. To achieve the desired objectives of the research, synthetic aqueous solutions of lead and chromium was used in the concentration of chromium and lead ions of 5, 10,50 and 100 mg / l .The work was done at constant pH equal to 4.5 and temperature of 30 ± 1 º C. Effective microorganisms solutions was added to the reactor at Vol.% of 1/50 ,1/100 ,1/500 and 1/1000, with retention time was 24 hours to measure the heavy metals concentration the atomic absorption device was used. The experimental results showed that each 1mg / l of lead and chromium ions need 24 mg of effective microorganisms to achieve removal of 92.0% and 82.60% for lead and chromium respectively. Increasing the concentration of effective microorganisms increases the surface of adsorption and thus increasing the removal efficiency. It is found that the microorganisms activity occur in the first five hours of processing and about 94% of adsorption capacity of biomass will take place. It is also found the selectivity of microorganisms to lead ions is higher than for chromium ions.

  1. Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants.

    Science.gov (United States)

    Lukina, A O; Boutin, C; Rowland, O; Carpenter, D J

    2016-11-01

    Elevated chromium levels in soil from mining can impact the environment, including plants. Mining of chromium is concentrated in South Africa, several Asian countries, and potentially in Northern Ontario, Canada, raising concerns since chromium toxicity to wild plants is poorly understood. In the first experiment, concentration-response tests were conducted to evaluate effects of chromium on terrestrial and wetland plants. Following established guidelines using artificial soil, seeds of 32 species were exposed to chromium (Cr(3+)) at concentrations simulating contamination (0-1000 mg kg(-1)). This study found that low levels of chromium (250 mg kg(-1)) adversely affected the germination of 22% of species (33% of all families), while higher levels (500 and 1000 mg kg(-1)) affected 69% and 94% of species, respectively, from 89% of the families. Secondly, effects on seedbanks were studied using soil collected in Northern Ontario and exposed to Cr(3+) at equivalent concentrations (0-1000 mg kg(-1)). Effects were less severe in the seedbank study with significant differences only observed at 1000 mg kg(-1). Seeds exposed to Cr(3+) during stratification were greatly affected. Seed size was a contributing factor as was possibly the seed coat barrier. This study represents an initial step in understanding Cr(3+) toxicity on wild plants and could form the basis for future risk assessments. PMID:27543852

  2. Lime enhanced chromium removal in advanced integrated wastewater pond system.

    Science.gov (United States)

    Tadesse, I; Isoaho, S A; Green, F B; Puhakka, J A

    2006-03-01

    The removal of trivalent chromium from a combined tannery effluent in horizontal settling tanks and subsequent Advanced Integrated Wastewater Pond System (AIWPS) reactors was investigated. The raw combined effluent from Modjo tannery had pH in the range of 11.2-12. At this pH, a trivalent chromium removal of 46-72% was obtained in the horizontal settling tanks after a one-day detention time. Trivalent chromium precipitated as chromium hydroxide, Cr(OH)3. 58-95% Cr(III) was removed in the advanced facultative pond (AFP) where the water column pH of 7.2-8.4 was close to pH 8, which is the optimum precipitation pH for trivalent chromium. Chromium removals in the secondary facultative pond (SFP) and maturation pond (MP) were 30-50% and 6-16%, respectively. With Cr(III) concentration of 0.2-0.8 mg/l in the final treated effluent, the AIWPS preceded by horizontal settling tanks produced effluent that could easily meet most of the current Cr(III) discharge limits to receive water bodies.

  3. 镍铬合金烤瓷修复体拆除前后患牙龈下菌群的变化%Variation in subgingival flora of abutments before and after removal of nickel-chromium alloy porcelain-fused-to-metal restoration

    Institute of Scientific and Technical Information of China (English)

    郭大伟; 宋玲; 张春艳; 曹阳; 李菁文; 梁星

    2013-01-01

    BACKGROUND:Currently, there are few reports on the effect of nickel-chromium (Ni-Cr) al oy porcelain-fused-to-metal (PFM) restoration on subgingival flora of abutment. OBJECTIVE:To investigate the effect of the Ni-Cr al oy PFM restoration on subgingival flora ratio of abutment. METHODS:Nine patients (12 teeth) who suspected that Ni-Cr al oy PFM could affect their health and therefore came to hospital to ask for removal of the prosthesis were selected in this study. Their subgingival plaques of abutment were obtained before and 1 month, 3 months after the Ni-Cr al oy PFM restorations were removed, respectively, and the changes of subgingival flora were observed and analyzed by the method of denaturing gradient gel electrophoresis. RESULTS AND CONCLUSION:The images of denaturing gradient gel electrophoresis in subgingival bacteria of experimental group had significant changes at 1 and 3 months after Ni-Cr al oy PFM restorations removed, furthermore, there were significant differences in the images of denaturing gradient gel electrophoresis at 1 and 3 months. In addition, the specific bands were selected from denaturing gradient gel electrophoresis image that appeared before Ni-Cr al oy PFM restorations removed and weakened or disappeared after the removal of restorations, then 16S rDNA sequence in the specific bands were analyzed. The results showed that the gene sequences of these bands were closest related to Eikenel a corrodens, Campylobacter rectus and Eubacterium saphenu. These findings indicated that the Ni-Cr al oy PFM restorations would result in the changes of the proportion of subgingival microflora and increases in the detection rates of some periodontal pathogens.%背景:目前有关镍铬合金烤瓷修复体对龈下菌群影响的研究还较少。  目的:探讨镍铬合金烤瓷修复体对龈下菌群构成比的影响。  方法:选择因怀疑镍铬合金烤瓷修复体影响健康而要求拆除原修复体的烤瓷牙患者9

  4. Interaction of Cr-Ti-Si coating on VN-3 niobium alloy with air environment

    International Nuclear Information System (INIS)

    Investigation of heat-resistance, microstructure and phase composition of Cr-Ti-Si coating on VN-3 niobium alloy with air oxidation in the temperature interval of 1200-1600 deg C is conducted. Thermogravimetry, metallography, X-ray diffraction and microprobe analysis methods are used. It is ascertained that the coating is a dense niobium disilicide layer, luriched on the surface with chromium and titanium disilicides and separated and from the protected alloy by a narrow zone of the lowest niobium silicide Nb5Si3. The coating protective junctions are provided by a selective chromium and titanium disilicides oxidation as well as niobium disilicide oxidation at the temperature of 1600 deg C, and by the rates of niobium and silicon diffusion through Nb5SI3 and NbSi2 and oxygen diffusion through the amorphous SiO2

  5. Experimental skin deposition of chromium on the hands following handling of samples of leather and metal

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P.; Jellesen, Morten Stendahl;

    2016-01-01

    Background: Chromium is an important skin sensitizer. Exposure to it has been regulated in cement, and recently in leather. Studies on the deposition of chromium ions on the skin as a result of handling different chromium-containing materials are sparse, but could improve the risk assessment...... of contact sensitization and allergic contact dermatitis caused by chromium. Objectives: To determine whether the handling of chromium-containing samples of leather and metal results in the deposition of chromium onto the skin. Methods: Five healthy volunteers participated. For 30 min, they handled samples...... of leather and metal known to contain and release chromium. Skin deposition of chromium was assessed with the acid wipe sampling technique. Results: Acid wipe sampling of the participants' fingers showed chromium deposition on the skin in all participants who had been exposed to leather (range 0.01–0.20 µg...

  6. USE OF TWO DIGESTION METHODS IN THE EVALUATION OF CHROMIUM CONTENT IN CATTLE'S MEAT SUPPLEMENTED WITH CHROMIUM CHELATES

    OpenAIRE

    R. L. T. Andrade; P.S.A. Moreira; R. Arruda; F. J. Lourenço; C. Palhari, F. F. Faria, V. B. Arevalo; Faria, F. F.; V. B. Arevalo

    2015-01-01

    The present study aimed to analyze the chromium content in beef using two digestion methods. There were used samples from 24 18-month-old male cattle, and twelve of them were supplemented and twelve were not supplemented with chromium chelate. These samples were evaluated by atomic absorption spectroscopy, previously submitted to digestion method using nitric acid (65%) with hydrogen peroxide (35%) and to digestion method, using solution of nitric perchloric acid in the proportion 3:1. Immedi...

  7. Activation of bentonite to remove the chromium from waste water produced by panning industry, and studying the chromium recovery efficiency

    International Nuclear Information System (INIS)

    The fast development of tanning industry led to an increase in environmental problems resulting from discharging its wastes to the surrounding environment. Thus solving this problem became one of the most important aims that the researchers work on. The chromium content of the industrial water wastes of the tanning industry considered as the main pollutant for the environment. The Aleppo Bentonite is used in early research to remove the chromium from the industrial waste water.The current research aims to find a method to activate the Aleppo Bentonite in order to increase the effective removal of chromium from the industrial waste water which is produced by tanning industry, as well as to specify the optimal conditions for chromium recovery.This study used the Aleppo Bentonite, whose origin is Tal Ajar-Aleppo to study the activation aspects using Sulfuric Acid, Hydrochloric Acid and Nitric Acid, in addition to study the recovery aspects using the same acids and hydrogen peroxide and to specify the optimal conditions for chromium recovery through applying some experiments based on three main factors: concentration, settling time and temperature.It was observed from the applied experiments that it is possible to recover chromium from Bentonite efficiently up to (80% - 90%) by treating the Bentonite with hydrogen peroxide(33% concentration) at room temperature, or by treating it with hydrogen peroxide(8.25% concentration) at 75oC, while the settling time factor proved that full recovery of chromium is obtained during the first hour, and increasing the time factor does not affect the efficiency of chromium recovery. (author)

  8. Oxidation-induced phase transformations and lifetime limits of chromia-forming nickel-base alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Chyrkin, Anton

    2011-12-05

    For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of δ-Ni{sub 3}Nb and (Ni,Mo,Si){sub 6}C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900-1000 C in oxidation-induced chromium depletion in the subsurface zone of the alloy. Microstructural analyses of the cross-sectioned specimens revealed that this process results in formation of a wide subsurface zone in which the mentioned strengthening phases are dissolved, in spite of the fact that both phases do not contain substantial amounts of the scale-forming element chromium. The cross-sectional analyses revealed that, in parallel to the formation of a precipitate depleted zone, a thin, continuous layer of niobium-rich intermetallic precipitates formed in the immediate vicinity of the scale/alloy interface. The Subsurface Phase Enrichment (abbreviated as SPE) was shown to be the result of an uphill-diffusion of niobium, i.e. the element stabilizing the strengthening precipitates δ-Ni{sub 3}Nb, in the chromium activity gradient and is thus a natural consequence of the oxidation-induced chromium depletion beneath the chromia scale. The thermodynamic calculations carried out using the Thermo-Calc/DICTRA software packages revealed that in alloy 625 the chemical activity of niobium decreases with decreasing chromium content. As chromium is being continuously removed from the alloy as the result of the chromia scale growth, the zone of lowest Nb-activity is formed in the location with the lowest chromium concentration, i.e. the scale/alloy interface. This creates a driving force for Nb to diffuse towards the scale/alloy interface against its own concentration gradient, which is known

  9. Effect of small additions of Cu and Cr on crystallization of Fe80B9Si11 amorphous alloy

    International Nuclear Information System (INIS)

    By means of differential thermal and X-ray structure analyses, as well as, by measurement of microstrength one studied the effect of small additions of chromium and copper on the peculiarities of crystallization of Fe80B9Si11 amorphous alloy (Fe79Cr1B9Si11 and Fe79Cu1B9Si11). Chromium was determined to stabilize Fe3B nonequilibrium phase the formation of which resulted in eutectic type of crystallization at early stages while copper was determined to enable formation of α-Fe and Fe2B equilibrium phases and primary crystallization with precipitation of α-Fe primary crystals

  10. TEM study of mechanically alloyed ODS steel powder

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Jan, E-mail: j.hoffmann@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP), Karlsruhe (Germany); Klimenkov, Michael; Lindau, Rainer; Rieth, Michael [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP), Karlsruhe (Germany)

    2012-09-15

    Compared to present reactors, modern nuclear power plant concepts are based on materials which can be operated at higher temperatures and up to higher neutron doses. Oxide dispersion strengthened (ODS) steels - produced by mechanical alloying - with chromium contents of 9 and 14 wt.% (or even more) are typical candidate materials. As the preparation of TEM samples from milled powders is usually very difficult, a new approach has been successfully adopted coming from the TEM sample preparation of biological tissues. Here, the alloyed powder is first embedded and then cut into thin films of 60-90 nm thickness using a microtom. The focal point is to gain a better knowledge of the solution mechanism of Y{sub 2}O{sub 3} in the steel powder during mechanical alloying. Investigations on mechanically alloyed powders containing 13% Cr and Y{sub 2}O{sub 3} were made using a Tecnai Scanning Transmission Electron Microscope (STEM) with EDX detector. Detailed elemental mappings of the powder particles show the presence of Y{sub 2}O{sub 3} particles after different milling times. The non-dissolved Y{sub 2}O{sub 3} phase was detected on the surface of the mechanically alloyed powder particles in the specimen alloyed at times down to 24 h. After mechanically alloying of 80 h, no Y{sub 2}O{sub 3} phase has been detected. Inside the mechanically alloyed powder, no particles were detected. All further results of the elemental mappings after different milling times are analyzed, compared, and discussed in this paper.

  11. Surface hardening of steels by alloying under laser heating with subsequent chemical thermal treatment

    International Nuclear Information System (INIS)

    The combination of laser alloying of carbon and low-chromium steels (20, 40, 45, 20Kh and 40Kh) with nitride-forming elements (V, Cr, Mo, Al) and subsequent nitriding is under consideration as a promising technology of enhancing wear resistance of steels. It is shown that the technology proposed permits increasing microhardness, wear resistance and favourable distribution of residual stresses in surface layers

  12. Two-Phase (TiAl+TiCrAl) Coating Alloys for Titanium Aluminides

    Science.gov (United States)

    Brady, Michael P. (Inventor); Smialek, James L. (Inventor); Brindley, William J. (Inventor)

    1998-01-01

    A coating for protecting titanium aluminide alloys, including the TiAl gamma + Ti3Al (alpha(sub 2)) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C. is disclosed. This protective coating consists essentially of titanium, aluminum. and chromium in the following approximate atomic ratio: Ti(41.5-34.5)Al(49-53)Cr(9.5-12.5)

  13. Magnetic behaviour of Co-Cr alloys above the critical concentration for ferromagnetism

    OpenAIRE

    Gavoille, G.; Durupt, S.; Hubsch, J.

    1982-01-01

    We have investigated Co-Cr alloys with chromium concentrations slightly larger than the critical concentration for long range magnetic order (25 %). Our results suggest a strong inhomogeneous magnetic state consisting of clusters with a large distribution of formation températures. At low temperatures one observes a superparamagnetic to ferromagnetic transition followed by a ferromagnetic to spin glass transition at lower temperature in the range of concentration 25 % to 29 %.

  14. Influence of cooling rates on properties of pre-alloyed PM materials

    OpenAIRE

    L.A. Dobrzański; M. Musztyfaga

    2009-01-01

    Purpose: The paper focuses on microstructural and mechanical properties of pre-alloyed Astaloy CrL and CrM sintered steels with high addition of carbon.Design/methodology/approach: The main objective of the present work was to establish the effect of cooling rates on the microstructure and properties such as: Charpy impact test, microhardness, wear resistance (disk on disk test) were evaluated depending on chemical composition. Compacts containing low amounts of chromium, molybdenum and high ...

  15. Thermodynamic Modeling as a Strategy for Casting High Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Peri Reddy V; S Raman Sankaranarayanan

    2009-01-01

    Strategies based on thermodynamic calculations can be used to overcome the problems associated with oxides encountered in steel plant operations, which can lead to certain difficulties in the process such as clogging of submerged entry nozzle during continuous casting. Approaches to producing high alloy steels by continuous casting have been taken. One of the strategies to avoid the oxidation of chromium is to add a small amount of other elements (subject to other constraints), which do not cause subsequent problems. The problem has been studied using the Thermo-CalcR software, with related databases; and the results obtained for different process conditions or generic com-positions have been presented.

  16. Adherence of electrodeposited Zn-Ni coatings on EN AW2024 T3 aluminium alloy

    OpenAIRE

    Alexis, Joël; Adrian, Denise; Masri, Talal; Petit, Jacques-Alain

    2004-01-01

    The use of hexavalent chromium in surface treatments will be reduced in the future, as it is suspected to be carcinogenic. Electrodeposition of Zn-Ni, which is currently used on steel, represents a non-chromate alternative surface treatment for the corrosion protection of aluminium alloys. Zn-Ni coatings were electrodeposited onto an EN AW2024 T3 aluminium alloy sheet in a laboratory flow cell. To obtain several percentages of Ni in the coatings, solutions with different Ni2+ concentrations w...

  17. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    Science.gov (United States)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  18. Influence of alloying elements on the corrosion resistance of rolled zinc sheet

    Energy Technology Data Exchange (ETDEWEB)

    Bos, C. van den [Department of Materials Science and Technology, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft (Netherlands)]. E-mail: c.vandenbos@tnw.tudelft.nl; Schnitger, H.C. [Department of Materials Science and Technology, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft (Netherlands); Zhang, X. [Department of Materials Science and Technology, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft (Netherlands); Hovestad, A. [TNO Science and Industry, De Rondom 1, 5612 AP Eindhoven (Netherlands); Terryn, H. [Netherlands Institute for Metals Research, P.O. Box 5008, 2600 GA Delft (Netherlands); Wit, J.H.W. de [Department of Materials Science and Technology, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft (Netherlands)

    2006-06-15

    The influence of alloying elements on the corrosion behaviour of rolled zinc sheet in aqueous media has been investigated by means of electrochemical techniques. All the changes in corrosion behaviour seen in this study could be attributed to modification of the formation or the stability of the passivating oxide film on the zinc surface. A low concentration of copper (0.6 wt.%) inhibited the formation of the passivating film and reduced the stability of the film. Conversely, a low concentration of chromium (0.5 wt.%) accelerated the passivation process and raised the stability of the film. The passivation and corrosion behaviour shown by a commercially produced ternary alloy containing copper and titanium additions was almost the same as the behaviour shown by a model binary alloy containing only copper. All the results obtained in this study were consistent with the hypothesis that alloying elements alter the electron-conducting and/or ion-conducting properties of the passivating oxide film.

  19. Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys

    Science.gov (United States)

    Raj, Sai V. (Inventor)

    2005-01-01

    A method of forming an environmental resistant thermal barrier coating on a copper alloy is disclosed. The steps include cleansing a surface of a copper alloy, depositing a bond coat on the cleansed surface of the copper alloy, depositing a NiAl top coat on the bond coat and consolidating the bond coat and the NiAl top coat to form the thermal barrier coating. The bond coat may be a nickel layer or a layer composed of at least one of copper and chromium-copper alloy and either the bond coat or the NiAl top coat or both may be deposited using a low pressure or vacuum plasma spray.

  20. Characterization of microstructure and corrosion properties of cold worked Alloy 800

    International Nuclear Information System (INIS)

    X-ray diffraction studies indicated that cold worked (∼50%) Alloy 800 was austenitic and transmission electron microscopy revealed the presence of a small volume fraction of hexagonal ε-martensite along with deformation bands, high dislocation density and primary TiN particle with a few dislocations within it. The passivity of cold worked alloy was very stable in H2SO4 solution but unstable in HCl solution at room temperature. The exposure of cold worked alloy in 673 K steam (initial pH of water was 10.1) for a period of 264 h showed almost nil corrosion rate. Scanning electron microscopy revealed a number of small oxide particles on the surface exposed in steam indicating initiation of oxide formation. Energy dispersive X-ray analyses of the surface containing small oxide particles indicated that the surface composition was similar to bulk composition of the alloy. X-ray photoelectron spectroscopy revealed that the alloy surface exposed in steam contained mixed oxides of iron and chromium as well as elemental form of iron, nickel and chromium

  1. Alloyed steel

    International Nuclear Information System (INIS)

    The composition and properties are listed of alloyed steel for use in the manufacture of steam generators, collectors, spacers, emergency tanks, and other components of nuclear power plants. The steel consists of 0.08 to 0.11% w.w. C, 0.6 to 1.4% w.w. Mn, 0.35 to 0.6% w.w. Mo, 0.02 to 0.07% w.w. Al, 0.17 to 0.37% w.w. Si, 1.7 to 2.7% w.w. Ni, 0.03 to 0.07% w.w. V, 0.005 to 0.012% w.w. N, and the rest is Fe. The said steel showed a sufficiently low transition temperature between brittle and tough structures, a greater depth of hardenability, and better weldability than similar steels. (B.S.)

  2. Low energy spin excitations in chromium metal

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Lab., NM (United States); Azuah, R.T. [Hahn-Meitner-Inst., Berlin (Germany); Stirling, W.G. [Univ. of Liverpool (United Kingdom). Dept. of Physics; Kulda, J. [Inst. Laue Langevin, Grenoble (France)

    1997-12-31

    Neutron scattering experiments with full polarization analysis have been performed with a single crystal of chromium to study the low-energy spin fluctuations in the transverse spin density wave (TSDW) state. A number of remarkable results have been found. Inelastic scattering observed close to the TSDW satellite positions at (1 {+-} {delta},0,0) does not behave as expected for magnon scattering. In particular, the scattering corresponds to almost equally strong magnetization fluctuations both parallel and perpendicular to the ordered moments of the TSDW phase. As the Neel temperature is approached from below, scattering at the commensurate wavevector (1,0,0) increases in intensity as a result of critical scattering at silent satellites (1,0, {+-} {delta}) being included within the spectrometer resolution function. This effect, first observed by Sternlieb et al, does not account for all of the inelastic scattering around the (1,0,0) position, however, Rather, there are further collective excitations, apparently emanating from the TSDW satellites, which correspond to magnetic fluctuations parallel to the ordered TSDW moments. These branches have a group velocity that is close to that of (1,0,0) longitudinal acoustic (LA) phonons, but assigning their origin to magneto-elastic scattering raises other unanswered questions.

  3. High temperature oxidation of slurry coated interconnect alloys

    DEFF Research Database (Denmark)

    Persson, Åsa Helen

    2012-01-01

    and resistance in this oxide scale. Slurry coated ferritic alloy samples were oxidized long term in air containing 1% water at 900˚C to measure the oxidation rate of the coated samples. The ferritic alloys included in the study were Crofer 22APU and Sandvik 1C44Mo20. Some complementary experiments were also.......85Sr0.15)CoO3 + 10% Co3O4, LSC, coatings were found to be relatively successful in decreasing the oxidation rate, the chromium content in the outermost part of ii the dense scale, and the electrical resistance in the growing oxide scales when applied onto Crofer 22APU. But, the positive effects...... on Crofer 22APU alloy samples and their failure on Sandvik 1C44Mo20 samples are believed to depend on the manganese access in the coating/alloy system. It appeared that a certain amount of manganese was acquired to stabilize the oxide growth on the alloy samples coated with cobalt rich coatings...

  4. Hexavalent Chromium Reduction and Its Distribution in the Cell and Medium by Chromium Resistant Fusarium solani

    Directory of Open Access Journals (Sweden)

    Mousumi Sen

    2013-01-01

    Full Text Available In the present work, batch biosorption of Cr(VI was studied using the fungal strain isolated from soil. The fungal strain was characterized as Fusarium solani. The total Cr distribution in the biomass (fungus and in the media obtained from the experiment conducted at 500 mg l -1 initial Cr(VI concentration and pH 5.0. The results indicated both intracellular and extracellular accumulation and enzymatic reduction of Cr(VI and this was supported by the Transmission Electron Microscopic (TEM observation at the same Cr(VI concentration and pH value. Chromium elution from Fusarium solani containing Cr was then tried out using a number of chromium eluting reagents and a maximum Cr could be eluted using 0.5N sodium hydroxide solution without destructing the biomass structure. The total Cr was recovered by pH adjustment from both biomass and media was found to be 44% of the initial Cr(VI concentration (500 mg l-1.

  5. Ostwald ripening of decomposed phases in Cu-Ni-Cr alloys

    International Nuclear Information System (INIS)

    A study of the coarsening process of the decomposed phases was carried out in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys using transmission electron microscopy. As aging progressed, the morphology of the coherent decomposed Ni-rich phase changed from cuboids to platelets aligned in the Cu-rich matrix directions. Prolonged aging caused the loss of coherency between the decomposed phases and the morphology of the Ni-rich phase changed to ellipsoidal. The variation of mean radius of the coherent decomposed phases with aging time followed the modified LSW theory for thermally activated growth in ternary alloy systems. The linear variation of the density number of precipitates and matrix supersaturation with aging time, also confirmed that the coarsening process followed the modified LSW theory in both alloys. The coarsening rate was faster in the symmetrical Cu-45 wt.% Ni-10 wt.% Cr alloy due to its higher volume fraction of precipitates. The activation energy for thermally activated growth was determined to be about 182 and 102 kJ mol-1 in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys, respectively. The lower energy for the former alloy seems to be related to an increase in the atomic diffusion process as the chromium content increases. The size distributions of precipitates in the Cu-Ni-Cr alloys were broader and more symmetric than that predicted by the modified LSW theory for ternary alloys

  6. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  7. Evaluation of mechanical properties in stainless alloy ferritic with 5 % molybdenum; Avaliacao das propriedades mecanicas em ligas inoxidaveis ferriticas com 5% de molibdenio

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, V.X.; Gomes, F.H.F.; Guimaraes, R.F.; Saboia, F.H.C.; Abreu, H.F.G. de [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara (IFCE). Campus Maracanau, CE (Brazil)], e-mail: venceslau@ifce.edu.br

    2010-07-01

    The deterioration of equipment in the oil industry is caused by high aggressiveness in processing the same. One solution to this problem would increase the content of molybdenum (Mo) alloys, since this improves the corrosion resistance. As the increase of Mo content causes changes in mechanical properties, we sought to evaluate the mechanical properties of alloys with 5% Mo and different levels of chromium (Cr). Were performed metallography and hardness measurement of the alloys in the annealed condition. Subsequent tests were performed tensile and Charpy-V, both at room temperature. The results showed that 2% difference in the content of Cr did not significantly alter the mechanical properties of alloys. The alloys studied had higher values in measured properties when compared to commercial ferritic alloys with similar percentages of Cr. The high content of Mo resulted in a brittle at room temperature but ductile at temperatures above 70 degree C. (author)

  8. Influence of laser alloying with boron and niobium on microstructure and properties of Nimonic 80A-alloy

    Science.gov (United States)

    Makuch, N.; Piasecki, A.; Dziarski, P.; Kulka, M.

    2015-12-01

    Ni-base superalloys were widely used in aeronautics, chemical and petrochemical industries due to their high corrosion resistance, high creep and rupture strength at high temperature. However, these alloys were not considered for applications in which conditions of appreciable mechanical wear were predominant. The diffusion boriding provided suitable protection against wear. Unfortunately, this process required long duration and high temperature. In this study, instead of the diffusion process, the laser alloying with boron and niobium was used in order to produce the hard and wear resistant layer on Nimonic 80A-alloy. The laser-alloying was carried out as a two-step process. First, the external cylindrical surface of specimens was pre-placed with a paste containing boron and niobium. Then, the pre-placed coating and the thin surface layer of the substrate were re-melted by a laser beam. The high laser beam power (P=1.56 kW) and high averaging irradiance (E=49.66 kW/cm2) provided the thick laser re-melted zone. The laser-borided layers were significantly thicker (470 μm) in comparison with the layers obtained as a consequence of the diffusion boriding. Simultaneously, the high overlapping of multiple laser tracks (86%) caused that the laser-alloyed layer was uniform in respect of the thickness. The produced layer consisted of nickel borides (Ni3B, Ni2B, Ni4B3, NiB), chromium borides (CrB, Cr2B), niobium borides (NbB2, NbB) and Ni-phase. The presence of hard borides caused the increase in microhardness up to 1000 HV in the re-melted zone. However, the measured values were lower than those-characteristic of niobium borides, chromium borides and nickel borides. The presence of the soft Ni-phase in re-melted zone was the reason for such a situation. After laser alloying, the significant increase in abrasive wear resistance was also observed. The mass wear intensity factor, as well as the relative mass loss of the laser-alloyed specimens, was over 10 times smaller in

  9. Electron transfer. 75. Reduction of carboxylato-bound chromium(V) with vanadium(IV). Intervention of chromium(IV)

    International Nuclear Information System (INIS)

    The chelated (carboxylato)chromium(V) anion bis(2-hydroxy-2-ethylbutyrato)oxochromate(V) (I), [(Lig)2Cr(O)]-, reacts with oxovanadium(IV) to form a strongly absorbing species (lambda/sub max/ = 515 nm; epsilon = 1.7 x 103 M-1) in the presence of 2-hydroxy-2-ethylbutyric acid buffers (pH 2-4). EPR data support 1:1 stoichiometry with VO2+ in deficiency, indicating the formation of a chromium(IV) species by reduction. With excess VO2+ a chromium(III) product was obtained. Spectral and ion-exchange properties of this product correspond to those observed for the titanium(III) and iron(II) reductions of chromium(V) and are consistent with the formulation of the product as a bis(hydroxycarboxylate) chelate of (H2O)2Cr/sup III/. With excess vanadium(IV), the reaction exhibits triphasic kinetics. The remaining step of the reaction is the reduction of the chromium(IV) intermediate with VO2+. Rates for all steps increase with decreasing [H+] and level off at low [H+]. The limiting rate constants for the formation of the chromium(IV) intermediate by the (Lig)3Cr(O)2- and (Lig)2Cr(O)- pathways are 2.8 x 103 and 2.2 x 102 M-1s-1. The bimolecular limiting rate constant for the reduction of chromium(IV) is computed to be 7.7 x 102 M-1 s-1. 33 references, 7 tables

  10. Mechanical alloying in immiscible alloy systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In recent years, mechanical alloying (MA) of immiscible alloy systems characterized by positive heat of mixing has been extensively investigated. The present article reviews the latest progress in MA of immiscible alloy systems including the mechanisms of non-equilibrium phase transformation and metastable phase formation of the MA-driven supersaturated solid solutions, amorphous phases and nanophase composites as well as their mechanical and physical properties related to those metastable phases.

  11. Low-chromium reduced-activation ferritic steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J.; Kenik, E.A. [Oak Ridge National Laboratory, TN (United States)

    1996-04-01

    Development of reduced-activation ferritic steels has concentrated on high-chromium (8-10 wt% Cr) steels. However, there are advantages for a low-chromium steel, and initial ORNL studies on reduced-activation steels were on compositions with 2.25 to 12% Cr. Those studies showed an Fe-2.25Cr-2W-0.25V-0.1C (2 1/4Cr-2WV) steel to have the highest strenglth of the steels studied. Although this steel had the best strength, Charpy impact properties were inferior to those of an Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) and an Fe-2.25Cr-2W-0.1C (2 1/4Cr-2W) steel. Therefore, further development of the low-chromium Cr-W steels was required. These results indicate that it is possible to develop low-chromium reduced-activation ferritic steels that have tensile and impact properties as good or better than those of high-chromium (7-9% Cr) steels. Further improvement of properties should be possible by optimizing the composition.

  12. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594.

    Science.gov (United States)

    Sandana Mala, John Geraldine; Unni Nair, Balachandran; Puvanakrishnan, Rengarajulu

    2006-06-01

    Chromium toxicity is of prime concern due to chrome tanning processes in the leather sector. Chrome tanning results in the discharge of toxic levels of chromium causing pollution hazards. Chromium levels of Cr(III) and Cr(VI) were high above permissible limits in chrome samples after chrome tanning. The potential of Aspergillus niger MTCC 2594 to accumulate chromium as well as its biosorption capacity is investigated in this study. Bioaccumulation of Cr(III) and Cr(VI) in the spent chrome liquor has resulted in a 75-78% reduction of the initial Cr content in 24-36 h. A. niger biomass is found to be very effective in the biosorption of Cr(III) and Cr(VI) in spent chrome liquor. Maximum adsorption of 83% for biosorption of Cr(III) at 48 h and 79% of Cr(VI) at 36 h in spent chrome liquor is observed. The biosorption characteristics fit well with Langmuir and Freundlich isotherms and the adsorption parameters are evaluated. The biosorption of Cr also follows Lagergren kinetics. A. niger biomass is effectively used for the biosorption of chromium with 79-83% Cr removal in 36-48 h.

  13. Chromium propionate enhances adipogenic differentiation of bovine intramuscular adipocytes

    Directory of Open Access Journals (Sweden)

    Rebecca eTokach

    2015-09-01

    Full Text Available In vitro experiments were performed to determine the effects of increasing concentrations of chromium propionate on mRNA and protein abundance of different enzymes and receptors. Intramuscular and subcutaneous preadipocytes and bovine satellite cells were isolated from the longissimus muscle to determine the effect of treatment on glucose transporter type 4 (GLUT4 and peroxisome proliferator-activated receptor γ mRNA and GLUT4 protein abundance. Preadipocyte cultures were treated with differentiation media plus either sodium propionate or different concentrations of chromium propionate (CrPro for 96, 120, and 144 h before harvest. This study indicated adipogenesis of the bovine intramuscular adipocytes were more sensitive to the treatment of chromium propionate as compared to subcutaneous adipocytes. Enhancement of adenosine monophosphate-activated protein kinase and GLUT4 mRNA by CrPro treatment may enhance glucose uptake in intramuscular adipocytes. Chromium propionate decreased GLUT4 protein levels in muscle cell cultures suggesting those cells have increased efficiency of glucose uptake due to exposure to increased levels of CrPro. In contrast, each of the two adipogenic lines had opposing responses to the CrPro. It appeared that CrPro had the most stimulative effect of GLUT4 response in the intramuscular adipocytes as compared to subcutaneous adipocytes. These findings indicated opportunities to potentially augment marbling in beef cattle fed chromium propionate during the finishing phase.

  14. Anthropogenic chromium emissions in china from 1990 to 2009.

    Science.gov (United States)

    Cheng, Hongguang; Zhou, Tan; Li, Qian; Lu, Lu; Lin, Chunye

    2014-01-01

    An inventory of chromium emission into the atmosphere and water from anthropogenic activities in China was compiled for 1990 through to 2009. We estimate that the total emission of chromium to the atmosphere is about 1.92×10⁵ t. Coal and oil combustion were the two leading sources of chromium emission to the atmosphere in China, while the contribution of them showed opposite annual growth trend. In total, nearly 1.34×10⁴ t of chromium was discharged to water, mainly from six industrial categories in 20 years. Among them, the metal fabrication industry and the leather tanning sector were the dominant sources of chromium emissions, accounting for approximately 68.0% and 20.0% of the total emissions and representing increases of 15.6% and 10.3% annually, respectively. The spatial trends of Cr emissions show significant variation based on emissions from 2005 to 2009. The emission to the atmosphere was heaviest in Hebei, Shandong, Guangdong, Zhejiang and Shanxi, whose annual emissions reached more than 1000t for the high level of coal and oil consumption. In terms of emission to water, the largest contributors were Guangdong, Jiangsu, Shandong and Zhejiang, where most of the leather production and metal manufacturing occur and these four regions accounted for nearly 47.4% of the total emission to water. PMID:24505309

  15. Anthropogenic chromium emissions in china from 1990 to 2009.

    Directory of Open Access Journals (Sweden)

    Hongguang Cheng

    Full Text Available An inventory of chromium emission into the atmosphere and water from anthropogenic activities in China was compiled for 1990 through to 2009. We estimate that the total emission of chromium to the atmosphere is about 1.92×10⁵ t. Coal and oil combustion were the two leading sources of chromium emission to the atmosphere in China, while the contribution of them showed opposite annual growth trend. In total, nearly 1.34×10⁴ t of chromium was discharged to water, mainly from six industrial categories in 20 years. Among them, the metal fabrication industry and the leather tanning sector were the dominant sources of chromium emissions, accounting for approximately 68.0% and 20.0% of the total emissions and representing increases of 15.6% and 10.3% annually, respectively. The spatial trends of Cr emissions show significant variation based on emissions from 2005 to 2009. The emission to the atmosphere was heaviest in Hebei, Shandong, Guangdong, Zhejiang and Shanxi, whose annual emissions reached more than 1000t for the high level of coal and oil consumption. In terms of emission to water, the largest contributors were Guangdong, Jiangsu, Shandong and Zhejiang, where most of the leather production and metal manufacturing occur and these four regions accounted for nearly 47.4% of the total emission to water.

  16. Enhancement of chromium uptake in tanning using oxazolidine.

    Science.gov (United States)

    Sundarapandiyan, S; Brutto, Patrick E; Siddhartha, G; Ramesh, R; Ramanaiah, B; Saravanan, P; Mandal, A B

    2011-06-15

    Monocyclic and bicyclic oxazolidines were offered at three different junctures of chrome tanning process viz. prior to BCS offer, along with BCS and after basification. It was found that oxazolidine when offered after basification brought about better chromium uptake and reduction of chromium load in the wastewater. Offer of oxazolidine was also varied. Increase in offer of oxazolidine from 0.25% to 1% was found to enhance the chromium uptake and decrease the chromium load in wastewater. But the increase in uptake was not proportionate to the increase in oxazolidine offer more than 0.75%. Offer of 1% Zoldine ZA 78 (monocyclic oxazolidine) and Zoldine ZE (bicyclic oxazolidine) after basification brought about 63.4% and 73.1% enhancement in chrome content in leather compared to control where oxazolidine was not offered. The tone of the wetblue was found to be altered moderately. However this did not call for any process adjustments in wet-finishing. The oxazolidine treated leathers were found to be immensely fuller and tighter. It was found experimentally that offer of 1% of oxazolidine facilitated reduction in the offer of syntans administered for filling and grain tightening by around 46%. Oxazolidine could bring about significant reduction in cost of chemicals apart from resulting environmental benefits due to enhancement of chromium uptake during tanning. PMID:21536383

  17. One-step pickling-activation before magnesium alloy plating

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-juan; YU Gang; OUYANG Yue-jun; HE Xiao-mei; ZHANG Jun; YE Li-yuan

    2009-01-01

    A one-step pickling-activation process was proposed as an environmental friendly pretreatment method in phosphate-permanganate solution before electroplating on magnesium alloys. The effects of pickling-activation on qualities of coating were assessed by adhesion and porosity testing of copper plating. The interfacial reactions between specimen and solution were analyzed with SEM, EDX and XRD. The results show that the developed process of pickling-activation can equalize the potentials on substrate surface. The compacted zinc film can be obtained by zinc immersion after treating magnesium alloy in the pH 4-6 phosphate-permanganate solution for 3-5 min. The adhesion and corrosion resistance of copper plating are enhanced. The one-step pickling-activation can replace the existing two-step process of acid pickling and activation which contains a great deal of chromium and fluorine. The procedure of surface pretreatment is simplified and the production environment is improved.

  18. Corrosion-resistant nickel-base alloys for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.W.; Hulsizer, W.R.

    1976-08-01

    Laboratory corrosion screening procedures used during the past ten years in developing nickel-base superalloys for gas turbine applications are described. Hot salt corrosion tests have included crucible and salt shower exposures. Reproducible techniques were established and alloy composition effects defined, leading to development of M313, IN-587, a IN-792. Correlations have been made with corrosion results in burner rigs, and engine experience confirming anticipated behavior is now becoming available. During this work a number of limitations of these accelerated laboratory tests were uncovered; these are discussed. Finally, brief descriptions of the states of development of alloy MA 755E (an oxide dispersion-strengthened superalloy) and IN-939 (a cast 23 percent chromium superalloy) are outlined as examples of advanced corrosion resistant, high strength materials of the future.

  19. Corrosion of low alloy steels in natural seawater. Influence of alloying elements and bacteria

    International Nuclear Information System (INIS)

    Metallic infrastructures immersed in natural seawater are exposed to important corrosion phenomena, sometimes characterised as microbiologically influenced corrosion. The presence of alloying elements in low alloy steels could present a corrosion resistance improvement of the structures. In this context, tests are performed with commercial steel grades, from 0,05 wt pc Cr to 11,5 wt pc Cr. They consist in 'on site' immersion in natural seawater on the one hand, and in laboratory tests with immersion in media enriched with marine sulphide-producing bacteria on the other hand. Gravimetric, microbiological, electrochemical measurements and corrosion product analyses are carried out and show that corrosion phenomenon is composed of several stages. A preliminary step is the reduction of the corrosion kinetics and is correlated with the presence of sessile sulphide-producing bacteria and an important formation of sulphur-containing species. This phase is shorter when the alloying element content of the steel increases. This phase is probably followed by an increase of corrosion, appearing clearly after an 8-month immersion in natural seawater for some of the grade steels. Chromium and molybdenum show at the same time a beneficial influence to generalised corrosion resistance and a toxic effect on sulphide-producing bacteria. This multidisciplinary study reflects the complexity of the interactions between bacteria and steels; sulphide-producing bacteria seem to be involved in corrosion processes in natural seawater and complementary studies would have to clarify occurring mechanisms. (author)

  20. Electrochemical modification of chromium surfaces using 4-nitro- and4-fluorobenzenediazonium salts

    DEFF Research Database (Denmark)

    Hinge, Mogens; Cecatto, Marcel; Kingshott, Peter;

    2009-01-01

    Chromium surfaces can be electrografted with organic surface films using 4-nitro- or 4-fluorobenzenediazonium salts, despite the fact that the surfaces are covered with a protective chromium oxide layer...

  1. FORMATION AND DESTRUCTION OF HEXAVALENT CHROMIUM IN A LABORATORY SWIRL FLAME INCINERATOR

    Science.gov (United States)

    The partitioning of chromium (Cr) in combustion systems was investigated theoretically and experimentally. Theoretical predictions were based on chemical equilibrium and suggested that hexavalent chromium [Cr(VI)] was favored by the presence of chlorine (Cl) and diminished by the...

  2. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.

    Science.gov (United States)

    Zeng, Jing; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Sun, Zhao-Yong; Kida, Kenji

    2016-10-01

    In this study, a sulfur-oxidizing community was enriched from activated sludge generated in tannery wastewater treatment plants. Bioleaching of tannery sludge containing 0.9-1.2% chromium was investigated to evaluate the effectiveness of the enriched community, the effect of chromium binding forms on bioleaching efficiency, and the dominant microbes contributing to chromium bioleaching. Sludge samples inoculated with the enriched community presented 79.9-96.8% of chromium leaching efficiencies, much higher than those without the enriched community. High bioleaching efficiencies of over 95% were achieved for chromium in reducible fraction, while 60.9-97.9% were observed for chromium in oxidizable and residual fractions. Acidithiobacillus thiooxidans, the predominant bacteria in the enriched community, played an important role in bioleaching, whereas some indigenous heterotrophic species in sludge might have had a supporting role. The results indicated that A. thiooxidans-dominant enriched microbial community had high chromium bioleaching efficiency, and chromium binding forms affected the bioleaching performance.

  3. CHROMIUM ELECTROANALYSIS AT SCREEN PRINTED ELECTRODE MODIFIED BY THIN FILMS OF NICKEL

    Science.gov (United States)

    A rapid and potentially cost-effective electrochemical method is reported for analysis of chromium (VI) and Chromium(III) using a nickel modified screen printed carbon ink electrode. Electrochemical characteristics of nickel modified electrode as well voltammetric behavior f...

  4. Reactive Boride Brazing on Low-Alloy Automotive Grade Steel

    Science.gov (United States)

    Palanisamy, B.; Upadhyaya, A.

    2011-11-01

    Brazing is a widely used process to improve the performance of steels used in automotive applications. The substrate material is often exposed to harsh conditions in these applications and may affect the service life of the component. Reactive boride brazing aims to improve the mechanical properties of the substrate material by forming a ceramic-metal composite coating in a single-step process in situ. In this study, sintered Ancor 4300 low-alloy steel is used as the substrate with chromium-rich braze and chromium-lean braze materials. The mechanical properties of the brazed samples were studied in detail using microindentation hardness measurements and the transverse rupture test. The results indicate that the brazed superlayer has a 10 times higher hardness. There was a significant improvement in the transverse rupture strength of the steel brazed with the chromium-rich boride as compared to the pure substrate material. In an effort to reduce processing time, green compacts of the substrate were also directly brazed and yielded favorable results.

  5. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  6. Scientific Opinion on chromium(III lactate tri-hydrate as a source of chromium added for nutritional purposes to foodstuff

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS

    2012-10-01

    Full Text Available

    The Panel on Food Additives and Nutrient Sources added to Food provides a scientific opinion on the safety and bioavailability of chromium(III lactate tri-hydrate as a source of chromium(III added for nutritional purposes to foodstuffs. The safety of chromium itself, in terms of the amounts that may be consumed, is outside the remit of this Panel. No new data have been provided as regards the safety and bioavailability of chromium from chromium(III lactate tri-hydrate. The Panel concurs with its earlier views stating that no evidence was provided supporting the bioavailability of chromium from chromium(III lactate tri-hydrate. Chromium(III lactate tri-hydrate is claimed to be freely soluble in water, however, chromium(III lactate tri-hydrate exists as a weak complex that may influence the bioavailability of chromium(III in the gastrointestinal tract. The Panel re-iterates that because of the complex chemistry of chromium(III lactate tri-hydrate in aqueous solutions and its limited solubility at pH >5, the bioavailability of chromium(III from chromium(III lactate tri-hydrate is low. Based on a conservative exposure estimate, the Panel calculated the combined intake of chromium(III from supplements and from foods fortified with chromium(III lactate tri-hydrate, for both adults and children, to be approximately 240 μg chromium(III/day, which is below the value of 250 µg/day established by the WHO for supplemental intake of chromium that should not be exceeded. The Panel noted that the use of chromium(III lactate tri-hydrate in the form of a premix with lactose, added to foods, would result in an exposure at the mean for adults of approximately 7-37 mg lactose/day (0.12-0.62 μg lactose/kg bw/day and to 36-192 μg lactate/day (0.60-3.20 μg/kg bw/day. Given that subjects with lactose maldigestion will tolerate up to 12 g of lactose with no or minor symptoms, these levels are not of safety concern.

  7. Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species

    OpenAIRE

    Sivakumar, D.

    2016-01-01

    The isolated fungi species of different kinds from chromium contaminated soil sites located in Nagalkeni, Chennai were used for reducing chromium(VI) in a tannery industry wastewater of Nagalkeni, Chennai.  The experiments were conducted to know biosorption potential of isolated fungi species for removing chromium(VI) in a tannery industry wastewater against the different pH, fungi biomass and chromium(VI) concentration (dilution ratio).  The results of this study indicated that the order of ...

  8. Investigation of hexavalent chromium removal from Synthetic wastewater by using Peaganum

    OpenAIRE

    Ali Akbar Taghizadeh; Maryam khodadadi; Taher Shahriary; Hadighe Dorri; mahla zaferanieh; rasoul khosravi

    2012-01-01

    Background and Aim: Discharge of industrial wastewater containing hexavalent chromium into the environment can have harmful effects to the types of organisms. So, chromium should remove before discharging to the environment with an effective method. The purpose of this study of is hexavalent chromium removed with Peganum harmala granular seeds(PGS).   Materials and Methods: In this experimental study, The removal of hexavalent chromium with using PGS, with changes in time, pH, adsorbent dose,...

  9. Influence of chromium, oxygen, carbon and nitrogen on iron viscosity

    International Nuclear Information System (INIS)

    Kinetic viscosity of 70 beforehand melted iron samples with additions of chromium (up to 2%) and carbon (up to 1%) has been investigated. Different conditions of melting brought about differences in oxygen and nitrogen contents. Viscosity of most samples has been determined in the 1550-1650 deg C temperature range. It is stated that small additions to pure iron of each of the investigated elements (O, Cr, C, N) decrease its viscosity. Combined effect of these additions on viscosity is inadditive. Simultaneous introduction of oxygen and carbon may result in increase of melt viscosity. The same fact is observed at combined introduction of chromium and nitrogen. Simultaneous introduction of other impurities-chromium with oxygen or carbon, nitrogen with oxygen causes amplification of their individual effect. Reasons for the observed regularities result from changes in energies of interparticle interactions in the melt and therefore rebuilding of structure of its short-range order

  10. A study of the process of desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    W.B. Amorim

    2003-09-01

    Full Text Available In this work the process of desorption of hexavalent chromium, a toxic metal ion, from the marine algae Sargassum sp, following biosorption experiments 2³ factorial design was studied. A technique was applied to three eluents: HCl, H2SO4 and EDTA. Three factors of importance were evaluated: concentration of eluent, the ratio between mass of biosorbent and volume of eluent (S/L and process time. A statistical analysis of the experimental results showed that the three variables evaluated are significant for all three eluents. The models for chromium desorption were validated, as the results agreed well with the observed values. Through use of the response surface methodology, a factorial design based optimization technique; it was possible to identify the most suitable eluent and the interval of values for the process variables that resulted in the most significant desorption of chromium, which is relevant information for work aiming at process optimization.

  11. Structural and magnetic properties of chromium doped zinc ferrite

    International Nuclear Information System (INIS)

    Zinc chromium ferrites with chemical formula ZnCrxFe2−xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by Sol - Gel technique. The structural as well as magnetic properties of the synthesized samples have been studied and reported here. The structural characterizations of the samples were analyzed by using X – Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). The single phase spinel cubic structure of all the prepared samples was tested by XRD and FTIR. The particle size was observed to decrease from 18.636 nm to 6.125 nm by chromium doping and induced a tensile strain in all the zinc chromium mixed ferrites. The magnetic properties of few samples (x = 0.0, 0.4, 1.0) were investigated using Vibrating Sample Magnetometer (VSM)

  12. Chromium Resistant Bacteria: Impact on Plant Growth in Soil Microcosm

    Directory of Open Access Journals (Sweden)

    Sayel Hanane

    2014-07-01

    Full Text Available Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.

  13. Electron magnetic resonance investigation of chromium diffusion in yttria powders

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, R.S. de, E-mail: rsbiasi@ime.eb.b [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, Pr. General Tiburcio, 80, 22290-270 Rio de Janeiro, RJ (Brazil); Grillo, M.L.N., E-mail: mluciag@uerj.b [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil)

    2010-03-01

    The electron magnetic resonance (EMR) technique was used to investigate the diffusion of chromium in yttria (Y{sub 2}O{sub 3}) powders. The EMR absorption intensity was measured for several annealing times and three different temperatures of isothermal annealing: 1273, 1323 and 1373 K. The activation temperature for diffusion, calculated from the experimental data using a theoretical model based on the Fick equation, was found to be E{sub A}=342+-5 kJ mol{sup -1}. This value is larger than the activation energy for the diffusion of chromium in rutile (TiO{sub 2}), periclase (MgO) and cobalt monoxide (CoO) and smaller than the activation energy for the diffusion of chromium in chrysoberyl (BeAl{sub 2}O{sub 4}).

  14. Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric Chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 These test methods cover procedures for the determination of the resistance of stainless steels and related alloys to pitting and crevice corrosion (see Terminology G 15) when exposed to oxidizing chloride environments. Six procedures are described and identified as Methods A, B, C, D, E, and F. 1.1.1 Method A—Ferric chloride pitting test. 1.1.2 Method B—Ferric chloride crevice test. 1.1.3 Method C—Critical pitting temperature test for nickel-base and chromium-bearing alloys. 1.1.4 Method D—Critical crevice temperature test for nickel-base and chromium-bearing alloys. 1.1.5 Method E—Critical pitting temperature test for stainless steels. 1.1.6 Method F—Critical crevice temperature test for stainless steels. 1.2 Method A is designed to determine the relative pitting resistance of stainless steels and nickel-base, chromium-bearing alloys, whereas Method B can be used for determining both the pitting and crevice corrosion resistance of these alloys. Methods C, D, E and F allow for a rankin...

  15. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.

    Science.gov (United States)

    Zhang, Xue-Hong; Liu, Jie; Huang, Hai-Tao; Chen, Jun; Zhu, Yi-Nian; Wang, Dun-Qiu

    2007-04-01

    Leersia hexandra Swartz (Gramineae), which occurs in Southern China, has been found to be a new chromium hyperaccumulator by means of field survey and pot-culture experiment. The field survey showed that this species had an extraordinary accumulation capacity for chromium. The maximum Cr concentration in the dry leaf matter was 2978 mg kg(-1) on the side of a pond near an electroplating factory. The average concentration of chromium in the leaves was 18.86 times as that in the pond sediment, and 297.41 times as that in the pond water. Under conditions of the nutrient solution culture, it was found that L. hexandra had a high tolerance and accumulation capacity to Cr(III) and Cr(VI). Under 60 mg l(-1) Cr(III) and 10 mg l(-1) Cr(VI) treatment, there was no significant decrease of biomass in the leaves of L. hexandra (p>0.05). The highest bioaccumulation coefficients of the leaves for Cr(III) and Cr(VI) were 486.8 and 72.1, respectively. However, L. hexandra had a higher accumulation capacity for Cr(III) than for Cr(VI). At the Cr(III) concentration of 10 mg l(-1) in the culture solution, the concentration of chromium in leaves was 4868 mg kg(-1), while at the same Cr(VI) concentration, the concentration of chromium in leaves was only 597 mg kg(-1). These results confirmed that L. hexandra is a chromium hyperaccumulator which grows rapidly with a great tolerance to Cr and broad ecological amplitude. This species could provide a new plant resource that explores the mechanism of Cr hyperaccumulation, and has potential for usage in the phytoremediation of Cr-contaminated soil and water. PMID:17207838

  16. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg....

  17. 75 FR 60454 - Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the...

    Science.gov (United States)

    2010-09-30

    ... AGENCY Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the..., ``Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the Integrated Risk..., 2010. The listening session on the draft assessment for hexavalent chromium will be held on November...

  18. 76 FR 20349 - Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the...

    Science.gov (United States)

    2011-04-12

    ... AGENCY Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the..., ``Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the Integrated Risk... workshop on the draft assessment for Hexavalent Chromium will be held on May 12, 2011, beginning at 8:30...

  19. 77 FR 61431 - Hexavalent Chromium Standards; Extension of the Office of Management and Budget's (OMB) Approval...

    Science.gov (United States)

    2012-10-09

    ... Occupational Safety and Health Administration Hexavalent Chromium Standards; Extension of the Office of...) approval of the information collection requirements specified in the Hexavalent Chromium Standards for... requirements specified in the Hexavalent Chromium (Cr(VI)) Standards for General Industry (29 CFR...

  20. Speciation dependent radiotracer studies on chromium preconcentration using iron doped calcium alginate biopolymer

    International Nuclear Information System (INIS)

    The work aims to study the differential attitude of Ca-alginate (CA) and Fe-doped calcium alginate (Fe-CA) and towards Cr(III) and Cr (IV) so that, depending on the oxidation state of chromium effluent, environmentally sustainable methodologies can be prescribed for removal of chromium. Throughout the experiment 51Cr has been used as the precursor of stable chromium