WorldWideScience

Sample records for chromium alloys

  1. Mechanical properties of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    OpenAIRE

    Mirković Nemanja

    2007-01-01

    Background/Aim. Metal-ceramic bond strength and alloys' elastic modulus clearly determine the potential of alloy application, because the ceramic integrity during mastication depends on these two characteristics. The aim of this study was to evaluate metal-ceramic bond strength and elastic modulus of cobalt-chromium alloys in making porcelainfused- to-metal restorations, regarding the application of the most frequent nickel-chromium alloy. Methods. The research was performed as an experimenta...

  2. Evaluation of flexural bond strength of porcelain to used nickel-chromium alloy in various percentages

    Directory of Open Access Journals (Sweden)

    VNV Madhav

    2012-01-01

    Fresh nickel-chromium alloy shows the greatest porcelain adherence.There is no significant change in bond strength of ceramic to alloy with up to 75% of used nickel-chromium alloy.At least 25%- of new alloy should be added when recycled nickel-chromium alloy is being used for metal ceramic restorations.

  3. MICRO-SEGREGATION OF CHROMIUM IN Fe-Cr ALLOY

    OpenAIRE

    Igata, N.; Sato, S; ANDO, T.; H. Doi; Nishikawa, O.; Shibata, M.

    1984-01-01

    The objective of this investigation is to clarify the behavior of chromium atoms in iron-5at.% chromium alloy. When the specimens were quenched after soultion annealing at 1150°C for 1hr, FIM image was only a bright area, but when they were tempered from 450°C to 650°C, both bright areas and dark areas were observed in the FIM image. In these quenched specimens there was microsegregation of chromium atoms : In bright areas the chromium concentration was lower, and in dark areas it was higher ...

  4. High temperature oxidation of iron-chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Lars

    2003-06-15

    The high temperature oxidation of the ferritic alloy Fe78Cr22 has been investigated in the present work. The effect of small alloying additions of cerium and/or silicon was also investigated. The alloys were oxidized at 973, 1173 and 1373 K in either air or a hydrogen/argon mixture. The various reaction atmospheres contained between 0.02 and 50% water vapour. The oxide scales formed on the various alloys at 973 K consisted of thin chromia layers. The oxide scales grown on the alloys at 1173 K also consisted of a chromia layer. The microstructure of the chromia scales was found to depend on the reaction atmosphere. The chromia scales grown in hydrogen/argon atmospheres formed oxide whiskers and oxide ridges at the surface of the scales, while the chromia scales grown in air formed larger oxide grains near the surface. This difference in oxide microstructure was due to the vaporization of chromium species from the chromia scales grown in air. Two different growth mechanisms are proposed for the growth of oxide whiskers. The growth rate of the chromia scales was independent of the oxygen activity. This is explained by a growth mechanism of the chromia scales, where the growth is governed by the diffusion of interstitial chromium. The addition of silicon to the iron-chromium alloy resulted in the formation of silica particles beneath the chromia scale. The presence of silicon in the alloy was found to decrease the growth rate of the chromia scale. This is explained by a blocking mechanism, where the silica particles beneath the chromia scale partly block the outwards diffusion of chromium from the alloy to the chromia scale. The addition of cerium to the iron-chromium alloy improved the adhesion of the chromia scale to the alloy and decreased the growth rate of chromia. It was observed that the minimum concentration of cerium in the alloy should be 0.3 at.% in order to observe an effect of the cerium addition. The effect of cerium is explained by the &apos

  5. Hot corrosion resistance of nickel-chromium-aluminum alloys

    Science.gov (United States)

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  6. Chromium

    Science.gov (United States)

    ... health risks of too much chromium? Chromium and medication interactions Supplemental sources of chromium Chromium and Healthful Diets References Disclaimer What foods provide chromium? Chromium is widely distributed in the ...

  7. On the rational alloying of structural chromium-nickel steels

    International Nuclear Information System (INIS)

    A study was made on the influence of chromium nickel, phosphorus on the critical brittleness temperature of Cr-Ni-Mo-V structural steels. It is shown that the critical brittleness temperature of these steels increases at chromium content more over than 2% and nickel content more than 2% in the result of carbide transformations during tempering. Increase of nickel content in Cr-Ni-Mo-V-steels strengthens the tendency to embrittlement during slow cooling, from tempering temperature owing to development of process of phosphorus grain-boundary segregation. Two mentioned mechanisms of embrittlement determine principles of rational steel alloying. The extreme dependence of the critical brittleness temperature on chromium and nickel content, which enables to choose the optimum composition of Cr-Ni-Mo-V-steels, was established

  8. New alloys to conserve critical elements. [replacing chromium in steels

    Science.gov (United States)

    Stephens, J. R.

    1978-01-01

    Previous studies and surveys on availability of domestic reserves have shown that chromium is a most critical element within the U.S. metal industry. More precisely, the bulk of chromium is consumed in the production of stainless steels, specifically Type 304 stainless steel (304SS) which contains 18% Cr. The present paper deals with means of reducing chromium in commercial stainless steels by substituting more abundant or less expensive elements with the intent of maintaining the properties of 304SS. The discussion focuses on some of the oxidation and corrosion properties of new substitute stainless steels with only 12% Cr, which represents a potential saving of 33% of the chromium consumed in the production of 304SS. The alloying elements substituted for Cr in 304SS are selected according to their potential for protective oxide formation during high-temperature oxidation; these are Al, Si, Ti, Y, and misch metal which is 99.7% rare-earth metals containing 50 to 55% cerium. Other alloying elements to impart corrosion resistance are Mn, Mo, and V.

  9. Alkaline stress corrosion of iron-nickel-chromium austenitic alloys

    International Nuclear Information System (INIS)

    This research thesis reports the study of the behaviour in stress corrosion of austenitic iron-nickel-chromium alloys by means of tensile tests at imposed strain rate, in a soda solution at 50 pc in water and 350 degrees C. The author shows that the mechanical-chemical model allows the experimental curves to be found again, provided the adjustment of characteristic parameters, on the one hand, of corrosion kinetics, and on the other hand, of deformation kinetics. A classification of the studied alloys is proposed

  10. Effect of recasting on the thickness of metal-ceramic interface of nickel-chromium and cobalt-chromium alloys

    OpenAIRE

    Mirković Nemanja; Draganjac Miroslav; Stamenković Dragoslav; Ristić Ljubiša

    2008-01-01

    Introduction/Aim. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the thickness of their metal-ceramic interface in making fixed partial dentures. Metal-ceramic interface determines their functional integrity and prevents damages on ceramics during mastication. Investigation of metal-ceramic samples is supposed to show if base metal alloys for metalceramics are successfully recycled without any risk of reduction of metal-ceramic interface...

  11. The correlation between swelling and radiation-induced segregation in iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    The magnitudes of both void swelling and radiation-induced segregation (RIS) in iron-chromium-nickel alloys are dependent on bulk alloy composition. Because the diffusivity of nickel via the vacancy flux is slow relative to chromium, nickel enriches and chromium depletes at void surfaces during irradiation. This local composition change reduces the subsequent vacancy flux to the void, thereby reducing void swelling. In this work, the resistance to swelling from major element segregation is estimated using diffusivities derived from grain boundary segregation measurements in irradiated iron-chromium-nickel alloys. The resistance to void swelling in iron- and nickel-base alloys correlates with the segregation and both are functions of bulk alloy composition. Alloys that display the greatest amount of nickel enrichment and chromium depletion are found to be most resistant to void swelling, as predicted. Additionally, swelling is shown to be greater in alloys in which the RIS profiles are slow to develop

  12. Recrystallization texture in nickel-chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Boer, B. de; Reger, N.; Holzapfel, B. [Inst. of Metallic Materials, IFW Dresden, Dresden (Germany)

    2001-07-01

    Ni and Ni-Cr tapes with Cr contents up to 20 at.% have been prepared by cold rolling with a thickness reduction of more than 99.5%. These tapes were heat treated at different temperatures between 200 C and 1000 C to examine the influence of recovery, recrystallization and grain growth on the development of the annealing texture. The recrystallization temperature increases with increasing alloying content. At 14at.% Cr content the main component of the recrystallisation texture changes from the cube orientation to {l_brace}025{r_brace} left angle 100 right angle. At the same time the size of the recrystallized grains decreases. These changes correlate with changes in the deformation texture and the stacking fault energy. (orig.)

  13. Effect of recasting on the thickness of metal-ceramic interface of nickel-chromium and cobalt-chromium alloys

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2008-01-01

    Full Text Available Introduction/Aim. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the thickness of their metal-ceramic interface in making fixed partial dentures. Metal-ceramic interface determines their functional integrity and prevents damages on ceramics during mastication. Investigation of metal-ceramic samples is supposed to show if base metal alloys for metalceramics are successfully recycled without any risk of reduction of metal-ceramic interface thickness. Methods. The research was performed as an experimental study. Per six metal-ceramic samples of nickel-chromium alloy (Wiron99 and cobalt-chromium alloy (Wirobond C were made each. Alloy residues were recycled through twelve casting generations with the addition of 50% of new alloy on the occasion of every recasting. Analysis Energy Dispersive X-ray (EDX (Oxford Instruments and Scanning Electon Microscop (SEM analysis (JEOL were used to determine thickness of metal-ceramic interface together with PC Software for quantification of visual information's (KVI POPOVAC. Results. Results of this research introduced significant differences between thickness of metal-ceramic interface in every examined recycle generation. Recasting had negative effect on thickness of metal-ceramic interface of the examined alloys. This research showed almost linear reduction of elastic modulus up to the 12th generation of recycling. Conclusion. Recasting of nickel-chromium and cobaltchromium alloys is not recommended because of reduced thickness of metal-ceramic interface of these alloys. Instead of recycling, the alloy residues should be returned to the manufacturers.

  14. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  15. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  16. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  17. Structure and growth of oxide on iron-chromium alloys

    International Nuclear Information System (INIS)

    Several oxides form during the initial stages of oxidation of iron-chromium alloys at 400 to 6000C in CO2-1%CO gas. The nature of the oxidation product depends upon crystallographic orientation and composition of the substrate, and can be explained by considering the maximum solubility of chromium in different oxide phases together with interfacial and strain energy factors. Kinetics of oxidation together with micrographic observations indicate that, as oxidation proceeds spinel oxide M3O4 nucleates at sites on the substrate surface associated with asperities. The spinel nuclei grow laterally and vertically until they coalesce and the scale subsequently thickens according to a parabolic rate law. The duplex structure of scales is interpreted in terms of an outward diffusion of cations together with simultaneous growth of an inner layer in the space created by this outward movement. Scale porosity provides a route for gas-phase transport of oxidant to support the growth of the inner layer. Regularly spaced lamellar voids which may form in the inner layer are believed to be associated with a cyclic vacancy condensation process. Enrichment of the inner layer in chromium is explained by analysis of the possible diffusion path networks in close-packed oxides. Some comments are made concerning possible practical applications of these data. (author)

  18. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys

    Institute of Scientific and Technical Information of China (English)

    Bo Chen; Gang Xia; Xin-Ming Cao; Jue Wang; Bi-Yao Xu; Pu Huang; Yue Chen; Qing-Wu Jiang

    2013-01-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of 〈 1 month of the restoration duration, among which higher Ni excretions were found in those with either a higher number of teeth replaced by dental alloys or a higher index of metal crown not covered with the porcelain. Urinary levels of Cr were significantly higher in the three patient groups of 〈1, 1 to 〈3 and 3 to 〈6 months, especially in those with a higher metal crown exposure index. Linear curve estimations showed better relationships between urinary Ni and Cr in patients within 6-month groups. Our data suggested significant increased excretions of urinary Ni and Cr after dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  19. Mechanical strength of laser-welded cobalt-chromium alloy.

    Science.gov (United States)

    Baba, N; Watanabe, I; Liu, J; Atsuta, M

    2004-05-15

    The purpose of this study was to investigate the effect of the output energy of laser welding and welding methods on the joint strength of cobalt-chromium (Co-Cr) alloy. Two types of cast Co-Cr plates were prepared, and transverse sections were made at the center of the plate. The cut surfaces were butted against one another, and the joints welded with a laser-welding machine at several levels of output energy with the use of two methods. The fracture force required to break specimens was determined by means of tensile testing. For the 0.5-mm-thick specimens, the force required to break the 0.5-mm laser-welded specimens at currents of 270 and 300 A was not statistically different (p > 0.05) from the results for the nonwelded control specimens. The force required to break the 1.0-mm specimens double-welded at a current of 270 A was the highest value among the 1.0-mm laser-welded specimens. The results suggested that laser welding under the appropriate conditions improved the joint strength of cobalt- chromium alloy. PMID:15116400

  20. Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory

    Institute of Scientific and Technical Information of China (English)

    HUANG Shun-hong; PENG Bing; YANG Zhi-hui; CHAI Li-yuan; ZHOU Li-cheng

    2009-01-01

    The environmental risk of chromium pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by chromium. 45 soil samples obtained from different places of the slag heap in a steel alloy factory were analyzed for chromium contamination level and its effect on soil microorganisms and enzyme activities. The results show that the average concentrations of total Cr in the soil under the slag heap, adjacent to the slag heap and outside the factory exceed the threshold of Secondary Environmental Quality Standard for Soil in China by 354%, 540% and 184%, respectively, and are 15, 21 and 9 times higher than the local background value, respectively. Elevated chromium loadings result in changes in the activity of the soil microbe, as indicated by the negative correlations between soil microbial population and chromium contents. Dehydrogenase activity is greatly depressed by chromium in the soil. The results imply that dehydrogenase activity can be used as an indicator for the chromium pollution level in the area of the steel alloy factory.

  1. Effect of Heat Treatment on the Corrosion Behavior of Nickel Chromium (Wiron 99) Alloys

    OpenAIRE

    Supreetha SN; Ravindra K.; Murali H

    2010-01-01

    The purpose of this study was to evaluate the corrosion behavior of Nickel chromium alloys (Wiron 99) in the as-cast condition and when subjected to different firing temperatures. This information is important as the firing porcelain on the metal substructure of a restoration may produce changes in corrosion behavior that could influence an alloy behavior during long term use. This study was also designed to study comprehensively the clinical serviceability of these Nickel chromium alloys.

  2. Influence of Chromium and Molybdenum on the Corrosion of Nickel Based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J R; Gray, J; Szmodis, A W; Orme, C A

    2005-08-02

    The addition of chromium and molybdenum to nickel creates alloys with exceptional corrosion resistance in a diverse range of environments. This study examines the complementary roles of Cr and Mo in Ni alloy passivation. Four nickel alloys with varying amounts of chromium and molybdenum were studied in 1 molar salt solutions over a broad pH range. The passive corrosion and breakdown behavior of the alloys suggests that chromium is the primary element influencing general corrosion resistance. The breakdown potential was nearly independent of molybdenum content, while the repassivation potential is strongly dependant on the molybdenum content. This indicates that chromium plays a strong role in maintaining the passivity of the alloy, while molybdenum acts to stabilize the passive film after a localized breakdown event.

  3. STUDY ON MORPHOLOGY OF CHROMIUM IN CHILLED Cu-0.14%-2.0%Cr ALLOYS

    Institute of Scientific and Technical Information of China (English)

    H.W.Yang; Z.K.Fan

    2004-01-01

    The morphology of chromium in chilled Cu-Cr alloys with 0.14%-2.0% Cr has been studied. The results showed that eutectic Cr phase takes a fibrous shape, and pre-eutectic Cr is dendritic in the studied chilled Cu-Cr alloy. During solute treatment of the eutectic and super-eutectic Cu-Cr alloys, only part of chromium particles dissolved in copper phase,some fiber and dendritic chromium still remained. Forging before solute treatment can reduce the size of primary Cr particles, which benefits the aging structure.

  4. Investigations on the Oxidation of Iron-chromium and Iron-vanadium Molten Alloys

    OpenAIRE

    Wang, Haijuan

    2010-01-01

    With the progress of high alloy steelmaking processes, it is essential to minimize the loss of valuable metals, like chromium and vanadium during the decarburization process, from both economic as well as environmental view points. One unique technique to realize this aim, used in the present work, is the decarburization of high alloy steel grades using oxygen with CO2 in order to reduce the partial pressure of oxygen. In the present work, the investigation on the oxidation of iron-chromium a...

  5. Effect of chromium concentration on microstructure and properties of Fe-3.5B alloy

    International Nuclear Information System (INIS)

    Research highlights: → With the increasing chromium additions, the boride changes from Fe2B to (Fe,Cr)2B-type boride. → The matrix of Fe-3.5B alloy transforms to supersaturated α-(Fe,Cr) solid solution when high chromium concentration is added. → The fracture toughness of boride increases with the increase of chromium addition. → Secondary phase precipitates during the heat treatment of Fe-3.5B alloy with various chromium concentrations. - Abstract: The cast low carbon Fe-3.5B alloys containing various chromium concentrations were prepared in a 10 kg medium frequency induction furnace and the effects of chromium concentration on microstructure and properties of Fe-3.5B alloys have been examined by means of optical microscope (OM), scanning electron microscope (SEM), back-scattered electron microscope (BSE), electron probe microanalyzer (EPMA), energy dispersive spectrum (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Vickers hardness. As a result, the as-cast structures of Fe-3.5B-XCr (X = 0, 2, 5, 8, 12, 18, mass fraction) alloys are mainly composed of dendrite ferrite, martensite, pearlite and boride. The boride in the alloy without chromium addition comprises the eutectic Fe2B, which is continuous netlike or fish-bone structure distributed over the metallic matrix. With the increase of chromium concentration in Fe-3.5B alloy, matrix structure turns into the supersaturated α-Fe solid solution while the morphology of boride becomes dispersed due to the transformation of boride from simple Fe2B to (Fe,Cr)2B when the chromium concentration in Fe-3.5B alloy exceeds 8 wt.%. Meanwhile, some primary M2B-type borides may precipitate under this condition. The bulk hardness of the as-cast alloy ranges from 41.8 to 46.8 HRC. However, the bulk hardness of the heat treated alloy rises first and falls later mainly because of the morphology variation of structure. Fracture toughness of boride is improved gradually owing to the entrance of

  6. Stress corrosion cracking of Alloy 600 in primary water of PWR: study of chromium diffusion

    International Nuclear Information System (INIS)

    Alloy 600 (Ni-15%Cr-10%Fe) is known to be susceptible to Stress Corrosion Cracking (SCC) in primary water of Pressurized Water Reactors (PWR). Recent studies have shown that chromium diffusion is a controlling rate step in the comprehension of SCC mechanism. In order to improve the understanding and the modelling of SCC of Alloy 600 in PWR primary medium the aim of this study was to collect data on kinetics diffusion of chromium. Volume and grain boundary diffusion of chromium in pure nickel and Alloy 600 (mono and poly-crystals) has been measured in the temperature range 678 K to 1060 K by using Secondary Ions Mass Spectroscopy (SIMS) and Glow Discharge-Optical Spectrometry (GD-OES) techniques. A particular emphasis has been dedicated to the influence of plastic deformation on chromium diffusion in nickel single crystals (orientated <101>) for different metallurgical states. The experimental tests were carried out in order to compare the chromium diffusion coefficients in free lattice (not deformed), in pre-hardening specimens (4% and 20%) and in dynamic deformed tensile specimens at 773 K. It has been found that chromium diffusivity measured in dynamic plastic deformed creep specimens were six orders of magnitude greater than those obtained in not deformed or pre-hardening specimens. The enhancement of chromium diffusivity can be attributed to the presence of moving dislocations generated during plastic deformation. (author)

  7. Effect of recasting on the elastic modulus of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    OpenAIRE

    Mirković Nemanja

    2007-01-01

    Background/Aim. Elastic modulus of metal-ceramic systems determines their flexural strength and prevents damages on ceramics during mastication. Recycling of basic alloys is often a clinical practice, despite the possible effects on the quality of the future metal-ceramic dentures. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the elastic modulus of metalceramic systems in making fixed partial dentures. Methods. The research was perform...

  8. AMORPHOUS ALLOY SURFACE COATINGS FOR HARD CHROMIUM REPLACEMENT - PHASE I

    Science.gov (United States)

    Hard chromium coatings (0.25 to10 mil thick) are used extensively for imparting wear and erosion resistance to components in both industrial and military applications. The most common means of depositing hard chromium has been through the use of chromic acid baths containing ...

  9. Synthesis of chromium and ferrochromium alloy in molten salts by the electro-reduction method

    Directory of Open Access Journals (Sweden)

    Ge X.

    2015-01-01

    Full Text Available In this work, we successfully applied the Fray-Farthing-Chen Cambridge electro-reduction process on the preparation of chromium from chromium oxide, and for the first time, the synthesis of ferrochromium alloy from chromium oxide and iron oxide mixture and the chromite ore in molten calcium chloride. The present work systematically investigated the influences of sintered temperature of the solid precursor, electrochemical potential, electrolysis temperature and time on the products by using a set of advanced characterization techniques, including XRD and SEM/EDS analyses. In particular, our results show that this process is energy-friendly and technically-feasible for the direct extraction of ferrochromium alloy from chromite ore. Our findings thus provide useful insights for designing a novel green process to produce ferrochromium alloy from low-grade chromite ore or stainless steel slag.

  10. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  11. Evaluation of flexural bond strength of porcelain to used nickel-chromium alloy in various percentages

    OpenAIRE

    VNV Madhav; Padmanabhan, T. V.; R Subramnian

    2012-01-01

    Aim: The aim of this in vitro study was to evaluate the flexural bond strength of porcelain to combinations of used and new nickel-chromium alloy in various proportions. Materials and Methods: Used and new nickel-chromium bonding alloys were combined in various proportions (groups I to V; 10 samples per group) and their flexural bond strengths with porcelain were compared. A three-point loading system was used for the application of load. Load was applied at a constant speed of 0.5 mm/min...

  12. The diffusion of chromium in a duplex alloy steel

    International Nuclear Information System (INIS)

    Diffusion of chromium in a duplex stainless steel containing approximately 8% ferrite has been investigated in the temperature range 600 to 10000C using the standard serial sectioning technique. The resulting concentration profiles exhibited up to four distinct regions. The two main regions are attributed to volume diffusion in the austenite and ferrite phases, the other zones being due to short circuiting paths. Volume diffusion in the austenite phase is in good agreement with chromium diffusion in Type 316 steel. The chromium diffusion coefficient in the ferrite phase of approximate composition 25 wt % Cr, 5 wt % Ni is given by: Dsub(α) = (6.0(+11,-3)) x 10-6 exp - ((212+-5)/RT) m2s-1 the activation energy being expressed in kJ.mol-1. Little evidence was found for enhanced chromium diffusion along austenite/ferrite interface boundaries. (author)

  13. Magnetic properties and fine structure of Fe-Co alloys with vanadium and chromium additions

    Energy Technology Data Exchange (ETDEWEB)

    Dzhavadov, D.M.; Tyapkin, Yu.D. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1982-11-01

    Magnetic properties of alloys iron-cobalt, iron-cobalt-vanadium, iron-cobalt-chromium have been investigated. Measurements of permeability, coercive force Hsub(c), B/sub 25/ and B/sub 100/ magnetic saturation on alloy samples on which electrical resistance previously is measured and fine crystalline structure is studied by the methods of transmission electron microscopy, diffusion scattering of X rays and electrons and NGR. Comparison of properties and structure makes possible to bind Hsub(c), B permeability values with such structure features as a long-range order of B2 type, short-range decomposition order and Cottrell clouds formation in vanadium containing alloys and a complex short-range order in chromium-containing alloys.

  14. Electrochemical characterization of oxide formed on chromium containing mild steel alloys in LiOH medium

    International Nuclear Information System (INIS)

    Flow accelerated corrosion leads to wall thinning of outlet-feeder pipes in the primary heat transport system of pressurized heavy water reactors and can even necessitate enmasse feeder replacement. Replacement of carbon steel 106-grade-B (CS) with chromium containing carbon steel reduces the risk of this failure. This paper discusses the role of small additions of chromium in modifying the properties of the oxide film. CS and chromium containing mild steels viz., A333, 2.25Cr–1Mo and modified 9Cr–1Mo alloy were exposed to primary heat transport (PHT) system chemistry conditions. The oxide films formed were characterized by electrochemical and surface characterization techniques. Mott–Schottky analysis showed donor type of defects. The densities of defects in the oxides of chromium containing alloys were 3–15 times less than that in CS. In presence of ∼200 ppb of dissolved oxygen, the oxides formed were hematite with two orders of magnitude smaller concentration of defects as compared to that formed under reducing conditions. These results suggest that the presence of chromium lowers the defect density of the oxide film and thus ensures a reduced corrosion rate. - Graphical abstract: Display Omitted - Highlights: • High temperature oxides formed on Cr containing mild steels are less defective. • Defect densities of oxides decrease with increase in Cr content in the alloy. • O2 in solution greatly influences the nature and defect chemistry of oxides

  15. Effect of recasting on the elastic modulus of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2007-01-01

    Full Text Available Background/Aim. Elastic modulus of metal-ceramic systems determines their flexural strength and prevents damages on ceramics during mastication. Recycling of basic alloys is often a clinical practice, despite the possible effects on the quality of the future metal-ceramic dentures. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the elastic modulus of metalceramic systems in making fixed partial dentures. Methods. The research was performed as an experimental study. Six metal-ceramic samples of nickel-chromium alloy (Wiron 99 and cobalt-chromium alloy (Wirobond C were made. Alloy residues were recycled through twelve casting generations with the addition of 50% of new alloy on the occasion of every recasting. Three- point bending test was used to determine elastic modulus, recommended by the standard ISO 9693:1999. Fracture load for damaging ceramic layer was recorded on the universal testing machine (Zwick, type 1464, with the speed of 0,05 mm/min. Results. The results of this research revealed significant differences between elasticity modules of metal-ceramic samples in every examined recycle generation. Recasting had negative effect on the elastic modulus of the examined alloys. This research showed the slight linear reduction of elastic modulus up to the 6th generation of recycling. After the 6th recycling there was a sudden fall of elastic modulus. Conclusion. Recasting of nickelchromium and cobalt-chromium alloys is not recommended because of the reduced elastic modulus of these alloys. Instead of reusing previously recasted alloys, the alloy residues should be returned to the manufacturer. .

  16. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-07-01

    To assess the effects of surface finishing condition (polished or alumina particle air abraded) on the biocompatibility of direct and indirect exposure to a nickel-chromium (Ni-Cr) d.Sign®10 dental casting alloy on oral keratinocytes. Biocompatibility was performed by assessing cellular viability and morphology, metabolic activity, cellular toxicity and presence of inflammatory cytokine markers.

  17. Chromium Activity Measurements in Nickel Based Alloys for Very High Temperature Reactors: Inconel 617, Haynes 230, and Model Alloys

    International Nuclear Information System (INIS)

    The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHXs) of (very) high temperature reactors ((V)-HTRs). The behavior under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra- and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer. The alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow (Rouillard, F., 2007, 'Mecanismes de formation et de destruction de la couche d'oxyde sur un alliage chrominoformeur en milieu HTR, Ph.D. thesis, Ecole des Mines de Saint-Etienne, France). To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T approximate to 1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617, and model alloys 1178, 1181, and 1201. This coupling makes it possible for the thermodynamic equilibrium to be obtained between the vapor phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (I) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared with that of the pure substance (Cr) at the same temperature

  18. Application of the Positron Annihilation Spectroscopy for Chromium Effect Investigation in Binary Fe-Cr Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sojak, S.; Krsjak, V.; Slugen, V.; Stancek, S.; Petriska, M.; Vitazek, K.; Stacho, M. [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2008-07-01

    Positron annihilation spectroscopy (PAS) is one of the non-destructive techniques applied with advantage for evaluation of the radiation treated materials microstructure. In this work, the PAS was used for study of different Fe-Cr alloys implanted by ions of helium. Investigation was focused on the chromium effect and the radiation defects resistance. In particular, the vacancy type defects (mono-vacancies, vacancy clusters) have been studied. The results show that the specific content of chromium has important influence on the size and distribution of induced defects. (authors)

  19. On the coexistence of the magnetic phases in chromium alloys

    DEFF Research Database (Denmark)

    Lebech, Bente; Mikke, K.

    1969-01-01

    Detailed neutron diffraction investigations have been performed on Cr-Re alloys in order to explain the several observations in Cr alloys of the coexistence of a commensurable and an oscillatory magnetic phase. It is concluded that the individual magnetic phases probably occur in separate domains....

  20. Metallurgical characterization of new palladium-containing cobalt chromium and nickel chromium alloys

    Science.gov (United States)

    Puri, Raghav

    Recently introduced to the market has been an entirely new subclass of casting alloy composition whereby palladium (˜25 wt%) is added to traditional base metal alloys such as CoCr and NiCr. Objectives. The purpose of this study was to evaluate the microstructure and Vickers hardness of two new CoPdCr and one new NiPdCr alloy and compare them to traditional CoCr and NiCr alloys. Methods. The casting alloys investigated were: CoPdCr-A (Noble Crown NF, The Argen Corporation), CoPdCr-I (Callisto CP+, Ivoclar Vivadent), NiPdCr (Noble Crown, Argen), CoCr (Argeloy N.P. Special, Argen), and NiCr (Argeloy N.P. Star, Argen). As-cast cylindrical alloy specimens were mounted in epoxy resin and prepared with standard metallographic procedures, i.e. grinding with successive grades of SiC paper and polishing with alumina suspensions. The alloys were examined with an optical microscope, SEM/EPMA, and XRD to gain insight into their microstructure, composition, and crystal structure. Vickers hardness (VHN) was measured and statistically analyzed by one way ANOVA and Tukey's HSD test (alpha=0.05). Results. Optical microscopy showed a dendritic microstructure for all alloys. The Pd-containing alloys appear to possess a more complex microstructure. SEM/EPMA showed Cr to be rather uniformly distributed in the matrix with palladium tending to be segregated apart from Mo and Ni or Co. Areas of different composition may explain the poor electrochemical results noted in previous studies. XRD suggested the main phase in the Ni-containing solutions was a face centered cubic Ni solid solution, whereas the CoCr exhibited a hexagonal crystal structure that was altered to face centered cubic when Pd was included in the composition. For Vickers hardness, the Co-containing alloys possessed a greater hardness than the Ni-containing alloys. However, the incorporation of Pd in CoCr and NiCr had only a slight effect on microhardness. Conclusion. Overall, the inclusion of palladium increases the

  1. Characterization of Two ODS Alloys: Chromium-18 ODS and Chromium-9 ODS

    Science.gov (United States)

    Goddard, Julianne

    ODS alloys, or oxide dispersion strengthened alloys, are made from elemental or pre-alloyed metal powders mechanically alloyed with oxide powders in a high-energy attributor mill, and then consolidated by either hot isostatic pressing or hot extrusion causing the production of nanometer scale oxide and carbide particles within the alloy matrix; crystalline properties such as creep strength, ductility, corrosion resistance, tensile strength, swelling resistance, and resistance to embrittlement are all observed to be improved by the presence of nanoparticles in the matrix. The presented research uses various methods to observe and characterize the microstructural and microchemical properties of two experimental ODS alloys, 18Cr ODS and 9Cr ODS. The results found aid in assessing the influence of chemical and structural variations on the effectiveness of the alloy, and further aid in the optimization of these advanced alloys for future use in nuclear cladding and structural applications in Generation IV nuclear reactors. Characterization of these alloys has been conducted in order to identify the second-phase small precipitates through FESEM, TEM, EDS, Synchrotron X-ray diffraction analysis, and CuKalpha XRD analysis of bulk samples and of nanoparticles after extraction from the alloy matrix. Comparison of results from these methods allows further substantiation of the accuracy of observed nanoparticle composition and identification. Also, TEM samples of the two alloys have been irradiated in-situ with 1 MeV Kr and 300 keV Fe ions to various doses and temperatures at the IVEM-Tandem TEM at Argonne National Laboratory and post-irradiated characterization has been conducted and compared to the pre-irradiated characterization results in order to observe the microstructural and microchemical evolution of nanoparticles under irradiation. Overall in the as-received state, the initial Y2O3 is not found anymore and in addition to oxide particles the alloys contain carbides

  2. Comparative Evaluation of Metal-ceramic Bond Strengths of Nickel Chromium and Cobalt Chromium Alloys on Repeated Castings: An In vitro Study

    OpenAIRE

    Atluri, Kaleswara Rao; Vallabhaneni, Tapan Teja; Tadi, Durga Prasad; Vadapalli, Sriharsha Babu; Tripuraneni, Sunil Chandra; Averneni, Premalatha

    2014-01-01

    Background: Recasting the base metal alloys is done as a routine procedure in the dental laboratories whenever there is casting failure or to decrease the unit cost of a fixed partial denture. However, this procedure may affect the metal ceramic bond. Furthermore, it is unclear, as to which test closely predicts the bond strength of metal-ceramic interface. The aim was to compare the bond strength of nickel chromium (Ni-Cr) and cobalt chromium (Co-Cr) alloys with dental ceramic on repeated ca...

  3. Qualification of new filler metal made of high chromium content nickel base alloy

    International Nuclear Information System (INIS)

    A study has been carried out by EDF and FRAMATOME in the context of the French Association for design and manufacturing rules of nuclear power boiler's equipment, to research then qualify filler metals dedicated to the welding of the new nickel base including 30 % chromium alloy components of PWR. The aim is to assess their weldability and their stress corrosion behaviour in the conditions prevailing in the primary cooling system of PWR and to compare with products generally used. Moreover, numerous qualification tests have been carried out to verify that such metals meet the criteria accepted in the RCC-M code. Results allowed to qualify some filler metals made of nickel base alloy of qualify equivalent to the one of NC30Fe including 30 % chromium base metals. These metals are at present time used in manufacturing. (authors). 5 figs

  4. Biocompatibility and characterization of a Kolsterised® medical grade cobalt-chromium-molybdenum alloy

    OpenAIRE

    Conti, Malcolm Caligari; Karl, Andreas; Wismayer, Pierre Schembri; Buhagiar, Joseph

    2014-01-01

    High failure rates of cobalt-chromium-molybdenum (Co-Cr-Mo) metal-on-metal hip prosthesis were reported by various authors, probably due to the alloy's limited hardness and tribological properties. This thus caused the popularity of the alloy in metal-on-metal hip replacements to decrease due to its poor wear properties when compared with other systems such as ceramic-on-ceramic. S-phase surface engineering has become an industry standard when citing surface hardening of austenitic stainless ...

  5. Crevice corrosion kinetics of nickel alloys bearing chromium and molybdenum

    International Nuclear Information System (INIS)

    Highlights: ► The crevice corrosion resistance of the tested alloys increased with PREN, which is mainly affected by their Mo content. ► Crevice corrosion kinetics was controlled by ohmic drop only in the more dilute chloride solutions. ► Charge transfer control was observed in concentrated chloride solutions. ► A critical ohmic drop was not necessary for crevice corrosion to occur. ► Ohmic drop was a consequence of the crevice corrosion process in certain conditions. - Abstract: The crevice corrosion kinetics of alloys C-22, C-22HS and HYBRID-BC1 was studied in several chloride solutions at 90 °C. The crevice corrosion resistance of the alloys increased with PREN (Pitting Resistance Equivalent Number), which is mainly affected by the Mo content in the alloys. The crevice corrosion kinetics of the three alloys was analyzed at potentials slightly higher than the repassivation potential. Crevice propagation was controlled by ohmic drop in the more dilute chloride solutions, and by charge transfer in the more concentrated chloride solutions. Ohmic drop was not a necessary condition for crevice corrosion to occur.

  6. Laser transformation hardening of a high-purity iron-carbon-chromium alloy

    International Nuclear Information System (INIS)

    Successful laser transformation hardening of steel surfaces requires that the absorbed laser energy is sufficient to austenitize the initial microstructure to a depth of 0.5 mm or more. Hardening is accomplished when rapid cooling by conduction of heat away from the surface causes transformation of the austenite layer to martensite. Heating and cooling rates of 104 K/s or greater are typical of the laser hardening process and the entire thermal cycle may be accomplished in less than 0.1 s. In an earlier study, laser surface hardening of commercial plain carbon and chromium alloyed steels was examined. It was shown that in the alloyed steel chromium enrichment of the cementite in the initial microstructure could prevent complete transformation of pearlite to asutenite during the very rapid laser heating cycle. However, interpretation of the results was complicated somewhat by the fact that manganese was also partitioned to the cementite. The purpose of this work was to conduct selected identical laser heating experiments on a high-purity Fe-C-Cr alloy to test the effect of chromium unequivocally, i.e., in the absence of manganese and other elements normally present in commercial steels

  7. Segregation and precipitation in iron-chromium alloys during thermal ageing and irradiation

    International Nuclear Information System (INIS)

    Iron-Chromium alloys have a peculiar thermodynamic and diffusion behavior which is due to their magnetic properties. The alloy decomposition under thermal ageing has been studied in this thesis. An atomistic kinetic model has been performed in this aim in which we have modeled in details the chemical species thermodynamic and diffusion properties. In particular, the evolution of elements diffusion properties which the ferro-paramagnetic transition has been introduced in the model. Simulated decompositions have been compared with experiments for a large range of concentrations and temperatures. A good agreement between simulations and experiments was observed and these comparisons have highlighted the ferro to paramagnetic transition key role in the concentrated alloys kinetic decomposition. This study has also evidenced that the elements diffusion at phases interfaces is responsible for the alloy decomposition kinetic in long lasting.We have also started a study of the alloy radiation induced segregation. For that purpose, atomistic kinetic model has been performed modeling defects migration through a perfect planar sink. It have been shown, I agreement with former studies, that chromium tends to segregate in the vicinity of sinks at low temperatures and deplete at high temperature. (author)

  8. Surface passivation of nickel-chromium alloys at room temperature

    International Nuclear Information System (INIS)

    The surface composition and room temperature oxidation of atomically clean single crystal Ni-15%Cr(110) and polycrystalline Ni-23%Cr alloy have been studied using Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), Ion Scattering Spectroscopy (ISS) and Electron Stimulated Ion Desorption (ESID). It was found that Ni segregated preferentially to the surface of Ni-15%Cr(110) in vacuum at temperatures between 500 to 650 degree C, and the heat segregation was 2550 cal/mole. The surface region of the Ni-Cr alloy was depleted in Ni during Ar ion bombardment at temperatures above 200 degree C, which is an agreement with the model of preferential sputtering of Ni caused by radiation-enhanced surface segregation of Ni. But the subsurface region of room temperature sputtered Ni-Cr alloy was depleted in Cr. Possible causes for this observation were discussed

  9. Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling

    International Nuclear Information System (INIS)

    Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that

  10. Surface modification of cobalt-chromium-tungsten-nickel alloy using octadecyltrichlorosilanes

    International Nuclear Information System (INIS)

    Cobalt-chromium (Co-Cr) alloys have been extensively used for medical implants because of their excellent mechanical properties, corrosion resistance, and biocompatibility. This first time study reports the formation and stability of self-assembled monolayers (SAMs) on a Co-Cr-W-Ni alloy. SAMs of octadecyltrichlorosilanes (OTS) were coated on sputtered Co-Cr-W-Ni alloy thin film and bulk Co-Cr-W-Ni alloy. OTS SAM coated alloy specimens were characterized using contact angle goniometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Contact angle analysis and FTIR suggested that ordered monolayers were coated on both sputtered and bulk alloy. XPS suggested the selective dissolution of cobalt from the alloy during the formation of OTS SAM. The bonding between the alloy and the OTS SAM was mainly attributed to Si-O-Cr and Si-O-W covalent bonds and a smaller contribution from Si-O-Co bonds. AFM images showed the distribution of islands of monolayers coated on the alloy. The height of monolayers in majority of the islands was closer to the theoretical length of fully extended OTS molecules oriented perpendicular to the surface. The stability of OTS SAM was investigated in tris-buffered saline at 37 oC for up to 7 days. Contact angle, FTIR, and XPS collectively confirmed that the monolayers remain ordered and bound to the alloy surface under this condition. This study shows that Co-Cr alloys can be surface modified using SAMs for potential biomedical applications

  11. Bonding evolution with sintering temperature in low alloyed steels with chromium

    Directory of Open Access Journals (Sweden)

    Fuentes-Pacheco L.

    2009-01-01

    Full Text Available At present, high performance PM steels for automotive applications follow a processing route that comprises die compaction of water-atomized powder, followed by sintering and secondary treatments, and finishing operations. This study examines Cr-alloyed sintered steels with two level of alloying. In chromium-alloyed steels, the surface oxide on the powder is of critical importance for developing the bonding between the particles during sintering. Reduction of this oxide depends mainly on three factors: temperature, dew point of the atmosphere, and carbothermic reduction provided by the added graphite. The transformation of the initial surface oxide evolves sequence as temperature increases during sintering, depending on the oxide composition. Carbothermic reduction is supposed to be the controlling mechanism, even when sintering in hydrogen-containing atmospheres. The effect of carbothermic reduction can be monitored by investigating the behavior of the specimens under tensile testing, and studying the resultant fracture surfaces.

  12. Sorption of iodine on low-chromium-alloy steel

    International Nuclear Information System (INIS)

    The sorption behavior of iodine on the surfaces of 2 1/4% Cr-1% Mo steel was investigated as a part of the High Tmeperature Gas-Cooled Reactor (HTGR) Chemistry Program at Oak Ridge National Laboratory (ORNL). The primary objective of these tests was to determine the equilibrium sorptive capacity of this alloy, which comprises most of the cooler regions of HTGR coolant circuit, under representative conditions. The data will be used to improve the capability for predicting, with computer programs, iodine deposition as functions of temperature and location in the primary circuit

  13. Review on the current state of developing of advanced Creep Damage Constitutive Equations for high Chromium Alloy

    OpenAIRE

    An, Lili; Xu, Qiang; Xu, Donglai; Lu, Zhongyu

    2012-01-01

    This paper presents a review of developing of creep damage constitutive equations for high chromium alloy (such as P91 alloy). Firstly, it briefly introduces the background of creep damage for P91 materials. Then, it summarizes the typical creep damage constitutive equations developed and applied for P91 alloy, and the main deficiencies of KRH (Kachanov-Robatnov-Hayhurst) type and Xus type constitutive equations. Finally it suggests the directions for future work. This paper contributes to th...

  14. The potential for using high chromium ferritic alloys for hydroprocessing reactors

    International Nuclear Information System (INIS)

    This paper outlines the development of hydroprocessing reactors and the parallel development of applicable steels for their high temperature and high pressure process environments. Trends in the development of newer processes for severe hydroprocessing applications have been increasing in operating hydrogen partial pressures and operating temperatures that require the development of new alloys to meet these more severe process environments. The paper outlines the properties of conventional hydroprocessing reactor materials and discusses the advantages of the advanced high chromium ferritic steel alloy Grade 91 (9Cr-1Mo-V) for high temperature hydroprocessing applications. Additionally, the alloys permitted for ASME Section I and Section VIII Division I construction, Grade 92 (Code Case 2179), and what will probably be called Grade 122 (Code Case 2180) are briefly introduced as possible future choices for hydroprocessing reactor construction. These three alloys contain 9-12% Cr and have time independent allowable stress values above 566 deg. C. These high, time independent, strength values provide materials that will in some cases permit extending hydroprocessing temperature limits by 112 deg. C. The paper provides room temperature and elevated temperature mechanical and toughness properties for the low chrome and Grade 91 materials and discusses the effects of hydrogen attack, and hydrogen and isothermal embrittlement. Fabrication aspects, including forming and welding are addressed. The paper discusses the environmental resistance of these alloys and investigates the possibility of utilizing excess wall metal thickness in these materials in less severe applications in lieu of the deposition of a higher chromium alloy weld overlay to overcome the corrosive effects of the process environment

  15. The fatigue life of a cobalt-chromium alloy after laser welding.

    Science.gov (United States)

    Al-Bayaa, Nabil Jalal Ahmad; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2011-03-01

    The aim of this study was to investigate the fatigue life of laser welded joints in a commercially available cast cobalt-chromium alloy. Twenty rod shaped specimens (40 mm x 1.5 mm) were cast and sand blasted. Ten specimens were used as controls and the remaining ten were sectioned and repaired using a pulsed Nd: YAG laser welder. All specimens were subjected to fatigue testing (30N - 2Hz) in a controlled environment. A statistically significant difference in median fatigue life was found between as-cast and laser welded specimens (p < 0.001). Consequently, the technique may not be appropriate for repairing cobalt chromium clasps on removable partial dentures. Scanning electron microscopy indicated the presence of cracks, pores and constriction of the outer surface in the welded specimens despite 70% penetration of the weld. PMID:21528682

  16. Single-kink relaxation processes in iron-chromium binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinovic, M.J., E-mail: mkonstan@sckcen.be [Studiecentrum voor Kernenergie/Centre d' Etude de l' Energie Nucleaire (SCK.CEN), Boeretang 200, B-2400 Mol (Belgium); Terentyev, D. [Studiecentrum voor Kernenergie/Centre d' Etude de l' Energie Nucleaire (SCK.CEN), Boeretang 200, B-2400 Mol (Belgium)

    2009-09-15

    The internal friction spectra in cold-worked pure iron and iron-chromium alloys are measured in the inverted torsion pendulum, operating at 1.8 Hz and in the temperature range from 100 K to 600 K. The addition of chromium, in combination with a plastic deformation, activates the relaxation process producing an internal friction peak at about 210 K. The peak intensity exhibits a strong increase by increasing the concentration of solute atoms. On the basis of the estimated activation energy, E{sub sk}{approx}0.57 eV, and atomistic simulations, this mode is assigned to the single-kink relaxation process corresponding to the recombination of geometrical kinks formed as a result of Cr-dislocation core interaction in the 1/2<111> screw dislocations.

  17. Single-kink relaxation processes in iron-chromium binary alloys

    International Nuclear Information System (INIS)

    The internal friction spectra in cold-worked pure iron and iron-chromium alloys are measured in the inverted torsion pendulum, operating at 1.8 Hz and in the temperature range from 100 K to 600 K. The addition of chromium, in combination with a plastic deformation, activates the relaxation process producing an internal friction peak at about 210 K. The peak intensity exhibits a strong increase by increasing the concentration of solute atoms. On the basis of the estimated activation energy, Esk∼0.57 eV, and atomistic simulations, this mode is assigned to the single-kink relaxation process corresponding to the recombination of geometrical kinks formed as a result of Cr-dislocation core interaction in the 1/2 screw dislocations.

  18. Precipitation and irradiation damage in proton-irradiated palladium-chromium alloys

    International Nuclear Information System (INIS)

    Irradiation damage of Pd-Cr alloys containing 15, 20 and 25 at.% Cr was studied over the temperature range 100 to 5500C, primarily in samples irradiated to a dose of 0.7 d.p.a. The solubility limit in this range of temperatures varies from 22 to 38% Cr, and precipitation of a phase having the L12 crystal structure was observed in unirradiated samples of the 25% Cr alloy aged at temperatures as low as 1000C. Octahedrally shaped voids, with faces parallel to {1 1 1}, were found only in the 25% Cr alloy irradiated from 350 to 5500C, but not in the other alloys at any temperature. The undersized chromium atoms migrate to point-defect sinks during irradiation, resulting in solute segregation and, eventually, precipitation under certain conditions. The precipitation of the L12 phase, was irradiation-induced at dislocation loops, voids and grain boundaries in the more concentrated undersaturated alloys. This precipitation was observed in the mid-range and surface regions of the samples containing 20 and 25% Cr, but not in those containing 15% Cr. Comparisons were made with Pd-Fe and Ni-Si alloys, which had also been proton-irradiated, and the similarities and differences noted and discussed. (author)

  19. The Sintering Temperature Effect on the Shrinkage Behavior of Cobalt Chromium Alloy

    Directory of Open Access Journals (Sweden)

    M. G. Kamardan

    2010-01-01

    Full Text Available Problem Statement: Co-Cr based alloys which is well known for its high Youngs modulus, fatigue strength, wear resistance and corrosion resistance is an important metallic bio-material. However, till date there are only two type of Co-Cr alloy which are the castable and wrought cobalt alloy. Powder Metallurgy route for cobalt is expected to give better result of Co-Cr alloy. The purpose of this research was mainly to study the sintering temperature effect to the shrinkage behavior of Cobalt Chromium (Co-Cr alloy of the powder metallurgy route. Approach: Co-Cr was produced following P/M route under sintering temperature of 1000, 1100, 1200, 1300 and 1400°C. The sintering time was fixed at 60 min. Several tests has been conducted to determine this effect such as the rate of shrinkage measurement, the bulk density and porosity percentage measurement, compression and hardness tests and micro structural study. Result: From the study, it was found that the sintering temperature has caused the shrinkage of Co-Cr. The increasing of the sintering temperature has caused to the increasing of shrinkage of Co-Cr. This has resulted to the reduction of the pore volume and hence increased it density. In conjunction to that, the strength and the hardness of Co-Cr was increased. Conclusion: Therefore, it is hope that it will bring new view of powder metallurgy Co-Cr alloy as bio-material.

  20. Microstructure and properties of Ti–Nb–V–Mo-alloyed high chromium cast iron

    Indian Academy of Sciences (India)

    Youping Ma; Xiulan Li; Yugao Liu; Shuyi Zhou; Xiaoming Dang

    2013-10-01

    The correlations of microstructure, hardness and fracture toughness of high chromium cast iron with the addition of alloys (titanium, vanadium, niobium and molybdenum) were investigated. The results indicated that the as-cast microstructure changed from hypereutectic, eutectic to hypoeutectic with the increase of alloy contents. Mo dissolved in austenite and increased the hardness by solid solution strengthening. TiC and NbC mainly existed in austenite and impeded the austenite dendrite development. V existed in multicomponent systems in forms of V alloy compounds (VCrFe8 and VCr2C2).With the increase of alloy additions, carbides size changed gradually from refinement to coarseness, hardness and impact toughness were increased and then decreased. Compared with the fracture toughness (6 J/cm2) and hardness (50.8HRC) without any alloy addition, the toughness and hardness at 0.60 V–0.60Ti–0.60Nb–0.35Mo (wt%) additions were improved and achieved to 11 J/cm2 and 58.9HRC, respectively. The synergistic roles of Ti, Nb, V and Mo influenced the solidification behaviour of alloy. The refinement of microstructure and improvement of carbides morphologies, size and distribution improved the impact toughness.

  1. TEM characterisation of stress corrosion cracks in nickel based alloys: effect of chromium content and chemistry of environment

    International Nuclear Information System (INIS)

    Stress corrosion cracking (SCC) is a damaging mode of alloys used in pressurized water reactors, particularly of nickel based alloys constituting the vapour generator tubes. Cracks appear on both primary and secondary sides of the tubes, and more frequently in locations where the environment is not well defined. SCC sensitivity of nickel based alloys depends of their chromium content, which lead to the replacement of alloy 600 (15 % Cr) by alloy 690 (30 % Cr) but this phenomenon is not yet very well understood. The goal of this thesis is two fold: i) observe the effect of chromium content on corrosion and ii) characterize the effect of environment on the damaging process of GV tubes. For this purpose, one industrial tube and several synthetic alloys - with controlled chromium content - have been studied. Various characterisation techniques were used to study the corrosion products on the surface and within the SCC cracks: SIMS; TEM - FEG: thin foil preparation, HAADF, EELS, EDX. The effect of chromium content and surface preparation on the generalised corrosion was evidenced for synthetic alloys. Moreover, we observed the penetration of oxygen along triple junctions of grain boundaries few micrometers under the free surface. SCC tests show the positive effect of chromium for contents varying from 5 to 30 % wt. Plastic deformation induces a modification of the structure, and thus of the protective character, of the internal chromium rich oxide layer. SCC cracks which developed in different chemical environments were characterised by TEM. The oxides which are formed within the cracks are different from what is observed on the free surface, which reveals a modification of medium and electrochemical conditions in the crack. Finally we were able to evidence some structural characteristics of the corrosion products (in the cracks and on the surface) which turn to be a signature of the chemical environment. (author)

  2. Irradiation effect on the precipitation in Fe-Cr model alloys with around 15% of chromium

    International Nuclear Information System (INIS)

    The ferritic-martensitic steels containing around 12% of chromium are considered for nuclear applications. But, under working reactor conditions, they can become brittle because of the precipitation of a new chromium rich phase called α'. To answer this question, we study this phase separation in Fe-Cr (10 to 25%) model alloys under irradiation at 300 C with a weak flux of electron and under thermal annealing at 500 C. When the precipitation of the α' phase occurs, the alloys become harder. We measured the hardening by Vickers testings. The precipitates are detected by small-angle neutron scattering. Analysis of the intensities with a hard sphere model gives the mean precipitate size and density. These parameters obtained that way can explain the hardening. Under irradiation at 300 C, the growth kinetic is very slow - the precipitates remain very small with a typical radius of 7-8 Angstroms - and the density of precipitates rises up 1019 per cm3. On the other hand, when the alloys are annealed at 500 C, the precipitates grow with a coarsening kinetic. Assuming that the only effect of irradiation is to enhance the diffusion, we calculate the precipitation kinetic with the cluster dynamic model. It is able to reproduce the thermal precipitation at 500 C but not the precipitation at 300 C. An other mechanism, induced by a coupling between fluxes of point defects and solute atoms, is clearly relevant under irradiation. The precipitation kinetic observed in the alloys irradiated at 300 C could relate to this mechanism: the negative coupling of fluxes in Fe-Cr alloys could slow down the precipitate growth. (author)

  3. Morphology of phase transformations on thermomagnetic treatment of iron-chromium-cobalt alloys

    International Nuclear Information System (INIS)

    The calculation techniques for magnetocrystalline, magnetostatic, elastic and interphase energies are shown along with their influence on structure, morphology of iron-chromium-cobalt (26-28 % Cr; 15-20 % Co) alloys treated for a high coercivity state. Formulas for specific surface energy determining are presented. This energy is revealed to increase from 0 to 1.5x10-3 J/m2 during supersaturated solid solution precipitation. The calculation shows that magnetic field should be applied immediately before thermomagnetic treatment. A nomogram is given to determine limiting values of a l/d ratio characterizing the anisotropy of α-phase precipitations

  4. Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy

    OpenAIRE

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneo...

  5. Study of a New Chromium-Free Conversion Coating Formed on ZnAl Alloy

    Institute of Scientific and Technical Information of China (English)

    LONG Jin-ming; GUO Zhong-cheng; HAN Xia-yun; YANG Ning

    2004-01-01

    A new chromium-free conversion film was obtained on surface of a ZnAl alloy by chemical conversion process.Influence of the additives in treating solution containing cerium salt on the corrosion protection of the conversion film formed on zinc alloy was investigated. Corrosion tests and electrochemical measurements in sodium chloride solution were performed. The microstructure and composition of the coatings were examined by means of SEM, EDS and XRD. It was found that the corrosion protection capabilities of the conversion film are markedly increased with the cerium nitride plus additives (hydrogen fluoride acid and an organic inhibitor) treating process. The modified conversion film is an organic/inorganic composite coating and is much more corrosion resistant than the conventional chromate conversion coating and the single cerium conversion coating.

  6. TEM investigations on the effect of chromium content and of stress relief treatment on precipitation in Alloy 82

    International Nuclear Information System (INIS)

    Highlights: •Slight change of the Cr content does not affect the microstructure of the butt welds. •Stress relief thermal treatment leads to the intergranular precipitation of Cr23C6. •The Cr23C6 carbides are supposed to improve the SCC resistance of the butt welds. -- Abstract: Nickel-base alloys are widely used in nuclear Pressurized Water Reactors (PWRs). Most of them have been found susceptible to Stress Corrosion Cracking (SCC) in nominal PWR primary water. The time to initiation depends on the material and is longer for weld metals than for Alloy 600. This study will focus on Alloy 82, which is used in Dissimilar Metal Welds (DMWs). In service, DMWs are either in the as-welded state or have undergone a stress relief treatment. Previous SCC studies showed that the heat treatment reduces significantly the SCC susceptibility of the weld. In this context, this study focuses on the microstructure characterization of the weld in the as-welded state and in the heat-treated state. As chromium content is also a key factor for the SCC susceptibility, welds with low chromium content and medium chromium content were studied. The lower SCC susceptibility of the heat-treated welds was attributed to intergranular Cr23C6 resulting from a combined effect of heat treatment and chromium and carbon contents. These intergranular carbides could explain the better behavior of Alloy 82, compared to other nickel-base alloys

  7. The relationship between chromium content and erosion-corrosion resistance of Fe-Cr{sub C} alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Hue, Nguyen Viet; Phuong, Doan Dinh; Tich, Nguyen Van; Binh, Hoang Thi [The Institute of Materials Science Hoang Quoc Viet Rd., Hanoi (Viet Nam)

    2002-02-15

    In order to determine the influence of chromium on erosion-corrosion coefficient of alloy in acid media, experiments were performed with chromium content in the range of 12-33% in different typical erosion -corrosion environments such as solution of sand with free acid in pH 2-7. The erosion-corrosion coefficient was evaluated by Apparatus for abrasion-corrosion testing. Wear coefficient, K, was calculated by formula: K= {Delta} M{sub etalon} / {Delta} M{sub alloy} Testing results were showed that the alloy with composition (%): Cr = 28-30: C = 1.8-2.0: Mn = 2.5-3.0: is the optimum for manufacturing details resistant erosion-corrosion in media upto pH=2-3. This alloy is used successfully to produce details for sand-pumps, minerals processing cyclones

  8. Effects of Conventional Welding and Laser Welding on the Tensile Strength, Ultimate Tensile Strength and Surface Characteristics of Two Cobalt–Chromium Alloys: A Comparative Study

    OpenAIRE

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-01-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt–chromium alloy. Samples were prepared with two commercially available cobalt–chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scann...

  9. INFLUENCE OF SURFACTANTS ON THE CORROSION PROPERTIES OF CHROMIUM-FREE ELECTROLESS NICKEL DEPOSIT ON MAGNESIUM ALLOY

    OpenAIRE

    JOTHI SUDAGAR; RUAN DEWEN; YAQIN LIANG; RASU ELANSEZHIAN; JIANSHE LIAN

    2012-01-01

    Influence of surfactants on the corrosion properties of chromium-free electroless nickel deposit were investigated on AZ91D magnesium alloy. The corrosion tests were carried out by immersion test (1 M HCl) and electrochemical polarization test (3.5 wt% NaCl). The surfactants in the electroless nickel bath increases the corrosion resistance properties of the deposit on the magnesium alloy. In addition, smoothness and amorphous plus nano-crystalline phase were increased and accounted for the si...

  10. Bond strength of gold alloys laser welded to cobalt-chromium alloy.

    Science.gov (United States)

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (Pcontrol and that welded to Co-Cr. Higher elongations were obtained for Type II in all conditions, whereas the lowest elongation occurred for low-gold welded to Co-Cr. This study indicated that, of the three gold alloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr. PMID:19088892

  11. Mechanical failure of hydroxyapatite-coated titanium and cobalt-chromium-molybdenum alloy implants. An animal study

    DEFF Research Database (Denmark)

    Nimb, L; Gotfredsen, K; Steen Jensen, J

    1993-01-01

    histological and biomechanical evaluation of HA-coated titanium and cobalt-chromium-molybdenum alloy implants in a non-weight-bearing model. Twelve cylindrical plugs were inserted into the medial femoral condyle on 6 mongrel dogs. HA-coatings of 80-120 microns thickness were applied to 6 Cr-Co-Mo implants and...

  12. Computer Simulation and Experimental Validation on the Oxidation and Sulfate Corrosion Resistance of Novel Chromium Based High Temperature Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shizhong

    2013-02-28

    This report summarizes our recent works of ab initio molecular dynamics inter-atomic potentials development on dilute rare earth element yttrium (Y) etc. doped chromium (Cr) alloy systems, its applications in oxidation and corrosion resistance simulation, and experiment validation on the candidate systems. The simulation methods, experimental validation techniques, achievements already reached, students training, and future improvement are briefly introduced.

  13. Plasma boriding of a cobalt–chromium alloy as an interlayer for nanostructured diamond growth

    International Nuclear Information System (INIS)

    Highlights: • Metal-boride layer creates a compatible surface for NSD deposition. • PECVD boriding on CoCrMo produces robust metal-boride layer. • Deposition temperature comparison shows 750 °C boriding masks surface cobalt. • EDS shows boron diffusion as well as deposition. • Nanoindentation hardness of CoCrMo substantially increases after boriding. - Abstract: Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt–chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B2H6) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal–boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness

  14. Chromium activity measurements in nickel based alloys for very high temperature reactors: Inconel 617, haynes 230 and model alloys - HTR2008-58147

    International Nuclear Information System (INIS)

    The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHX) of (V)-HTR reactors. The behaviour under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer Then, the alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow [1]. To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T∼1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617 and model alloys 1178, 1181, 1201. This coupling makes it possible thermodynamic equilibrium to be obtained between the vapour phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (/) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared to that of the pure substance (Cr) at the same temperature. These calculations provide thermodynamic data characteristic of the chromium behaviour in these alloys. These activity results call into question those previously measured by Hilpert [2], largely used in the literature. (authors)

  15. The relationship between chromium content and erosion-corrosion resistance of Fe-CrC alloy system

    International Nuclear Information System (INIS)

    In order to determine the influence of chromium on erosion-corrosion coefficient of alloy in acid media, experiments were performed with chromium content in the range of 12-33% in different typical erosion -corrosion environments such as solution of sand with free acid in pH 2-7. The erosion-corrosion coefficient was evaluated by Apparatus for abrasion-corrosion testing. Wear coefficient, K, was calculated by formula: K= Δ Metalon / Δ Malloy Testing results were showed that the alloy with composition (%): Cr = 28-30: C = 1.8-2.0: Mn = 2.5-3.0: is the optimum for manufacturing details resistant erosion-corrosion in media upto pH=2-3. This alloy is used successfully to produce details for sand-pumps, minerals processing cyclones

  16. Effects of surface chromium depletion on the localized corrosion of Alloy 825 as a high-level waste container material

    International Nuclear Information System (INIS)

    The effects of the chromium depleted mill finished surface on the localized corrosion resistance of alloy 825 were investigated. Tests conducted in solutions simulating the groundwater at Yucca Mountain with a higher concentration of chloride indicated that the breakdown and repassivation potentials for the mill finished surfaces were more active than those for polished surfaces. Potentiodynamic polarization tests indicated that pits can be initiated on the chromium depleted surface at potentials of 220 mVSCE in a solution containing 1,000 ppm chloride at 95 C. Potentiostatic tests identified a similar pit initiation potential for the mill finished surface. However, under longer term potentiostatic tests, a higher potential of 300 mVSCE was needed to sustain stable pit growth beyond the chromium depleted layer. An increase in the surface roughness decreased the localized corrosion resistance of the material

  17. Chromium and iron contained half-Heusler MnNiGe-based alloys

    International Nuclear Information System (INIS)

    The magnetic characteristics of chromium and iron containing MnNiGe-based alloys with several types of quenching and annealing were investigated. It was found that the quenched Mn0.89Cr0.11NiGe has a spontaneous and magnetic field induced magnetostructural first-order transitions at room temperature. These transitions might be accompanied by a large magnetocaloric effect. In general, Mn0.89Cr0.11NiGe can be classified as promising material for use in the magnetocaloric application at room temperatures. The first order magnetostructural phase transition from the ferromagnetic to paramagnetic state is not realized in MnNi0.90Fe0.10Ge. In contrast to Mn0.89Cr0.11NiGe, however, the FM state in quenched-on-wheel MnNi0.90Fe0.10Ge is preserved to the lowest temperatures. Based on the set of the magnetic properties, it has been concluded that the iron containing MnNiGe-based alloys are less promising for practical use

  18. Chromium and iron contained half-Heusler MnNiGe-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Budzynski, M. [UMCS, Institute of Physics, 1 sq.M.Curie-Skłodowska, 20-031 Lublin (Poland); Valkov, V.I.; Golovchan, A.V.; Kamenev, V.I. [Donetsk Institute for Physics and Engineering, 72, R.Luxemburg str., 83114 Donetsk (Ukraine); Mitsiuk, V.I., E-mail: vmitsiuk@gmail.com [Scientific-Practical Materials Research Center of National Academy of Sciences of Belarus, 19 P.Brovky Str., 220072 Minsk (Belarus); Sivachenko, A.P. [Donetsk Institute for Physics and Engineering, 72, R.Luxemburg str., 83114 Donetsk (Ukraine); Surowiec, Z. [UMCS, Institute of Physics, 1 sq.M.Curie-Skłodowska, 20-031 Lublin (Poland); Tkachenka, T.M. [Scientific-Practical Materials Research Center of National Academy of Sciences of Belarus, 19 P.Brovky Str., 220072 Minsk (Belarus)

    2015-12-15

    The magnetic characteristics of chromium and iron containing MnNiGe-based alloys with several types of quenching and annealing were investigated. It was found that the quenched Mn{sub 0.89}Cr{sub 0.11}NiGe has a spontaneous and magnetic field induced magnetostructural first-order transitions at room temperature. These transitions might be accompanied by a large magnetocaloric effect. In general, Mn{sub 0.89}Cr{sub 0.11}NiGe can be classified as promising material for use in the magnetocaloric application at room temperatures. The first order magnetostructural phase transition from the ferromagnetic to paramagnetic state is not realized in MnNi0.90Fe0.10Ge. In contrast to Mn{sub 0.89}Cr{sub 0.11}NiGe, however, the FM state in quenched-on-wheel MnNi0.90Fe0.10Ge is preserved to the lowest temperatures. Based on the set of the magnetic properties, it has been concluded that the iron containing MnNiGe-based alloys are less promising for practical use.

  19. Effect of laser irradiation conditions on the laser welding strength of cobalt-chromium and gold alloys.

    Science.gov (United States)

    Kikuchi, Hisaji; Kurotani, Tomoko; Kaketani, Masahiro; Hiraguchi, Hisako; Hirose, Hideharu; Yoneyama, Takayuki

    2011-09-01

    Using tensile tests, this study investigated differences in the welding strength of casts of cobalt-chromium and gold alloys resulting from changes in the voltage and pulse duration in order to clarify the optimum conditions of laser irradiation for achieving favorable welding strength. Laser irradiation was performed at voltages of 150 V and 170 V with pulse durations of 4, 8, and 12 ms. For cobalt-chromium and gold alloys, it was found that a good welding strength could be achieved using a voltage of 170 V, a pulse duration of 8 ms, and a spot diameter of 0.5 mm. However, when the power density was set higher than this, defects tended to occur, suggesting the need for care when establishing welding conditions. PMID:21959656

  20. The development of advanced creep constitutive equations for high chromium alloy steel (P91) at transition stress range

    OpenAIRE

    An, Lili

    2015-01-01

    Creep damage is a time-dependent deformation in metals under a constant stress at high temperature condition. Since the 1980s, high chromium alloy steel P91 (9%Cr-1%Mo-0.25%V) is highly demanded in high temperature industries (Saha, 2003). Continuum damage mechanism is becoming a generic life assessment tool to predict the lifetime of materials at creep condition. The consitutive equations were proposed to predict the lifetime and creep behaviours of materials. The most widely used constituti...

  1. Cobalt-chromium-molybdenum alloy causes metal accumulation and metallothionein up-regulation in rat liver and kidney

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Danscher, Gorm; Stoltenberg, Meredin; Larsen, Agnete; Mygind, Tina; Bruun, Jens M; Kemp, Kaare; Søballe, Kjeld

    2007-01-01

    Cobalt-chromium-molybdenum (CoCrMo) metal-on-metal hip prosthesis has had a revival due to their excellent wear properties. However, particulate wear debris and metal ions liberated from the CoCrMo alloys might cause carcinogenicity, hypersensitivity, local and general tissue toxicity, genotoxicity...... metallohionein I/II were elevated in liver tissue. The present data do not tell whether kidney and liver are the primary target organs or what possible toxicological effect the different metal ions might have, but they show that metal ions are liberated from CoCrMo alloys that are not subjected to mechanical...

  2. The influence of directed alloying and thermomechanical treatment on the structure and mechanical properties of high-purity chromium, molybdenum and tungsten

    International Nuclear Information System (INIS)

    The possibilities of directed alloying as well as thermomechanical treatment for improvement of the mechanical properties of high-purity chromium, molybdenum and tungsten are considered. Classification of methods of directed alloying is given. The conditions are considered of hot, warm and cold metal working as well as the peculiarities of structure formation in each temperature range. (orig.)

  3. Mechanical and microstructural properties of a nickel-chromium alloy after casting process

    Directory of Open Access Journals (Sweden)

    Mauro Sayão de Miranda

    2012-01-01

    Full Text Available Introduction: There is a growing concern on the development of adequate materials to interact with the human body. Several researches have been conducted on the development of biomaterials for dental applications. Objective: This study aimed to determine the microstructural and mechanical properties of a nickel- based alloy, after the casting process. Material and methods: The alloy was melted through lost wax technique and centrifugation, by using blowtorch with liquefied petroleum gas. To evaluate the mechanical properties, tensile bond strength and microhardness tests were performed. The microstructural characterization was performed using scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. Statistical analyses were performed on microhardness results, through Student t test. A program for digital image processing was used to determine the percentage of the existing phases. Results and conclusion: The tensile strength was higher than that reported by the manufacturer, 559.39±25.63MPa versus 306 MPa, respectively. However, the yield strength was slightly lower, 218.71±29.75 MPa versus 258 MPa, reported by the manufacturer. The microhardness tests showed about 70 HV, far above the value informed by the manufacturer (21 HV. It can be affirmed with 95% confidence interval that the casting process did not alter the material’s hardness. The alloy’s microstructure is formed by a matrix with dendritic aspect and gray color and a second white interdendritic phase with equally distributed precipitates as well as porosities. EDS tests showed that the matrix is rich in nickel and chromium, the interdendritic second phase is rich in molybdenum and the precipitates in titanium or silicon. The matrix represents 86% of the area and the second phase 12%.

  4. Comparative evaluation of tensile bond strength of denture base resins to surface pretreated cobalt chromium base metal alloys--an in vitro study.

    OpenAIRE

    Aazad A; Shetty P; Bhat S; Joseph M

    2001-01-01

    This study was undertaken to evaluate the tensile bond strength of acrylic resins to surface pretreated Cobalt-chromium base metal alloy. A total of 60 tensile bar specimens were prepared. One half of the bar was cast in cobalt-chromium alloy and the other half made of denture base resins attached to the alloy following surface pretreatment. Two denture base resins and five surface pre-treatments were used which included sandblasting, acid etching, use of metal adhesive primers and the combin...

  5. Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy

    Science.gov (United States)

    Abd Malek, N. M. S.; Mohamed, S. R.; Che Ghani, S. A.; Harun, W. S. Wan

    2015-12-01

    In order to improve the stiffness characteristics of orthopedic devices implants that mimic the mechanical behavior of bone need to be considered. With the capability of Additive layer manufacturing processes to produce orthopedic implants with tailored mechanical properties are needed. This paper discusses finite element (FE) analysis and mechanical characterization of porous medical grade cobalt chromium (CoCr) alloy in cubical structures with volume based porosity ranging between 60% to 80% produced using direct metal laser sintering (DMLS) process. ANSYS 14.0 FE modelling software was used to predict the effective elastic modulus of the samples and comparisons were made with the experimental data. The effective mechanical properties of porous samples that were determined by uniaxial compression testing show exponential decreasing trend with the increase in porosity. Finite element model shows good agreement with experimentally obtained stress-strain curve in the elastic regions. The models prove that numerical analysis of actual prosthesis implant can be computed particularly in load bearing condition

  6. Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover two tests as follows: 1.1.1 Method A, Ferric Sulfate-Sulfuric Acid Test (Sections 3-10, inclusive)—This test method describes the procedure for conducting the boiling ferric sulfate—50 % sulfuric acid test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to intergranular corrosion (see Terminology G 15), which may be encountered in certain service environments. The uniform corrosion rate obtained by this test method, which is a function of minor variations in alloy composition, may easily mask the intergranular corrosion components of the overall corrosion rate on alloys N10276, N06022, N06059, and N06455. 1.1.2 Method B, Mixed Acid-Oxidizing Salt Test (Sections 11-18, inclusive)—This test method describes the procedure for conducting a boiling 23 % sulfuric + 1.2 % hydrochloric + 1 % ferric chloride + 1 % cupric chloride test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to display a step function increa...

  7. The role of intergranular chromium carbides on intergranular oxidation of nickel based alloys in pressurized water reactors primary water

    Science.gov (United States)

    Gaslain, F. O. M.; Le, H. T.; Duhamel, C.; Guerre, C.; Laghoutaris, P.

    2016-02-01

    Alloy 600 is used in pressurized water reactors (PWRs) but is susceptible to primary water stress corrosion cracking (PWSCC). Intergranular chromium carbides have been found beneficial to reduce PWSCC. Focussed ion beam coupled with scanning electron microscopy (FIB/SEM) 3D tomography has been used to reconstruct the morphology of grain boundary oxide penetrations and their interaction with intergranular Cr carbides in Alloy 600 subjected to a PWR environment. In presence of intergranular Cr carbides, the intergranular oxide penetrations are less deep but larger than without carbide. However, the intergranular oxide volumes normalized by the grain boundary length for both samples are similar, which suggest that intergranular oxidation growth rate is not affected by carbides. Analytical transmission electron microscopy (TEM) shows that the intergranular oxide consists mainly in a spinel-type oxide containing nickel and chromium, except in the vicinity of Cr carbides where Cr2O3 was evidenced. The formation of chromium oxide may explain the lower intergranular oxide depth observed in grain boundaries containing Cr carbides.

  8. Effect of chromium on the corrosion behaviour of powder-processed Fe–0·45 wt% P alloys

    Indian Academy of Sciences (India)

    Yashwant Mehta; Shefali Trivedi; K Chandra; P S Mishra

    2010-08-01

    The corrosion behaviour of Fe–0·45P with/without addition of chromium, prepared by powder forging route was studied in different environments. The corrosion studies in acidic (0·25 M H2SO4 solution of pH 0·6) and neutral/marine (3·5% NaCl solution of pH 6·8) solutions were conducted using Tafel Extrapolation method. The rate of corrosion in alkaline medium (0·5 M Na2CO3 + 1·0 M NaHCO3 solution of pH 9·4) was measured using linear polarization technique. The studies compare electrolytic Armco iron with Fe–P alloys. It was observed that, chromium improved the resistance to corrosion in acidic and marine environments. The corrosion rates were minimal in alkaline medium and low in neutral solution.

  9. Stability of phosphonic self assembled monolayers (SAMs) on cobalt chromium (Co-Cr) alloy under oxidative conditions

    International Nuclear Information System (INIS)

    Cobalt chromium (Co-Cr) alloys have been widely used in the biomedical arena for cardiovascular, orthopedic and dental applications. Surface modification of the alloy allows us to tailor the interfacial properties to address critical challenges of Co-Cr alloy in medical applications. Self assembled monolayers (SAMs) of Octadecylphosphonic acid (ODPA) have been used to form thin films on the oxide layer of the Co-Cr alloy surface by solution deposition technique. The SAMs formed were investigated for their stability to oxidative conditions of ambient laboratory environment over periods of 1, 3, 7 and 14 days. The samples were then characterized for their stability using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and contact angle measurements. Detailed high energy XPS elemental scans confirmed the presence of the phosphonic monolayer after oxidative exposure which suggested that the SAMs were firmly attached to the oxide layer of Co-Cr alloy. AFM images gave topographical data of the surface and showed islands of SAMs on Co-Cr alloy surface, before and after SAM formation and also over the duration of the oxidative exposure. Contact angle measurements confirmed the hydrophobicity of the surface over 14 days. Thus the SAMs were found to be stable for the duration of the study. These SAMs could be subsequently tailored by modifying the terminal functional groups and could be used for various potential biomedical applications such as drug delivery, biocompatibility and tissue integration.

  10. Stability of phosphonic self assembled monolayers (SAMs) on cobalt chromium (Co-Cr) alloy under oxidative conditions

    Science.gov (United States)

    Bhure, Rahul; Abdel-Fattah, Tarek M.; Bonner, Carl; Hall, Felicia; Mahapatro, Anil

    2011-04-01

    Cobalt chromium (Co-Cr) alloys have been widely used in the biomedical arena for cardiovascular, orthopedic and dental applications. Surface modification of the alloy allows us to tailor the interfacial properties to address critical challenges of Co-Cr alloy in medical applications. Self assembled monolayers (SAMs) of Octadecylphosphonic acid (ODPA) have been used to form thin films on the oxide layer of the Co-Cr alloy surface by solution deposition technique. The SAMs formed were investigated for their stability to oxidative conditions of ambient laboratory environment over periods of 1, 3, 7 and 14 days. The samples were then characterized for their stability using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and contact angle measurements. Detailed high energy XPS elemental scans confirmed the presence of the phosphonic monolayer after oxidative exposure which suggested that the SAMs were firmly attached to the oxide layer of Co-Cr alloy. AFM images gave topographical data of the surface and showed islands of SAMs on Co-Cr alloy surface, before and after SAM formation and also over the duration of the oxidative exposure. Contact angle measurements confirmed the hydrophobicity of the surface over 14 days. Thus the SAMs were found to be stable for the duration of the study. These SAMs could be subsequently tailored by modifying the terminal functional groups and could be used for various potential biomedical applications such as drug delivery, biocompatibility and tissue integration.

  11. Theoretical study of the correlation between magnetism and the properties of defects in iron, chromium and their alloys

    International Nuclear Information System (INIS)

    This PhD thesis is devoted to the study of the correlation between the magnetism and the properties of defects in 3d metals, mainly iron- and chromium-based systems, which are used in many technological applications, such as the new-generation nuclear reactors. This work is based on two complementary approaches: the Density Functional Theory (DFT) and a Tight Binding model (TB). We begin this study by the properties of pure materials such as chromium and α-iron. For the first one, we observe that the presence of a spin density wave (SDW) induces an anisotropy in the formation of point defects as well as the migration of vacancies. For the second, the solution energy of various 3d impurities depends on two terms: a chemical contribution mainly linked to the difference between the number of d electrons of iron and solute, and a magnetic contribution that reveals to be predominant in Fe-Cr. In the following parts, we tackle the correlation between magnetism and extended defects. We show in particular that the existence of magnetic frustrations near Fe/Cr interfaces can lead to the creation of non collinear magnetic structures. It also influences the energetic stability of these interfaces. We have noticed, in agreement with experimental findings, the presence of SDW near Fe/Cr interfaces, which is able to decrease those magnetic frustrations at the interface. We have also studied the magnetic structure of iron or chromium clusters embedded in an Fe-Cr alloy. We have finally shown, in the last part of this work, how the TB approach was able to account for the energetic and magnetic properties of defects not only in pure iron or chromium, but also in Fe-Cr alloys. (author)

  12. Effect of oxidation heat treatment on the bond strength between a ceramic and cast and milled cobalt-chromium alloys.

    Science.gov (United States)

    Li, Jieyin; Ye, Xiuhua; Li, Bohua; Liao, Juankun; Zhuang, Peilin; Ye, Jiantao

    2015-08-01

    There is a dearth of dental scientific literature on the effect of different oxidation heat treatments (OHTs) (as surface pretreatments) on the bonding performance of cast and milled cobalt-chromium (CoCr) alloys. The objective of this study was to evaluate the effect of different OHTs on the bond strength between a ceramic and cast and milled CoCr alloys. Cobalt-chromium metallic specimens were prepared using either a cast or a milled method. Specimens were subjected to four different OHT methods: without OHT; OHT under normal atmospheric pressure; OHT under vacuum; and OHT under vacuum followed by sandblasting. The metal-ceramic bond strength was evaluated using a three-point bending test according to ISO9693. Scanning electron microscopy and energy-dispersive spectroscopy were used to study the specimens' microstructure and elemental composition. The bond strength was not affected by the CoCr manufacturing method. Oxidation heat treatment performed under normal atmospheric pressure resulted in the highest bond strength. The concentration of oxygen on the alloy surfaces varied with the different pretreatment methods in the following order: OHT under normal atmospheric pressure > OHT under vacuum > without OHT ≈ OHT under vacuum followed by sandblasting. PMID:26104804

  13. Effect of process parameters on surface oxides on chromium-alloyed steel powder during sintering

    International Nuclear Information System (INIS)

    The use of chromium in the PM steel industry today puts high demands on the choice and control of the atmosphere during the sintering process due to its high affinity to oxygen. Particular attention is required in order to control the surface chemistry of the powder which in turn is the key factor for the successful sintering and production of PM parts. Different atmosphere compositions, heating rates and green densities were employed while performing sintering trials on water atomized steel powder pre-alloyed with 3 wt.% Cr in order to evaluate the effect on surface chemical reactions. Fracture surfaces of sintered samples were examined using high resolution scanning electron microscopy combined with X-ray microanalysis. The investigation was complemented with thermogravimetric (TG) studies. Reaction products in particulate form containing strong-oxide forming elements such as Cr, Si and Mn were formed during sintering for all conditions. Processing in vacuum results in intensive inter-particle neck development during the heating stage and consequently in the excessive enclosure of surface oxide which is reflected in less good final mechanical properties. Enhanced oxide reduction was observed in samples processed in hydrogen-containing atmospheres independent of the actual content in the range of 3–10 vol.%. An optimum heating rate was required for balancing reduction/oxidation processes. A simple model for the enclosure and growth of oxide inclusions during the sinter-neck development is proposed. The obtained results show that significant reduction of the oxygen content can be achieved by adjusting the atmosphere purity/composition. - Highlights: ► A local atmosphere microclimate is very important for sintering of PM steels. ► High risk of surface oxide enclosure between 800 and 1000 °C. ► Coalescence and agglomeration of enclosed oxides take place during sintering. ► The effect of different process parameters on the oxide reduction is examined. ► A

  14. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks. PMID:23858281

  15. High-Purity Chromium Targets

    OpenAIRE

    Rudoy, A.; Milman, Yu.; Korzhova, N.

    1995-01-01

    A procedure for producing large-scale chromium ingots by means of induction-arc melting was developed. From the high-purity, low-alloyed chromium ingots obtained, chromium targets were produced by of thermoplastic treatment techniques. The method of electron-beam evaporation of high-purity chromium was also used for production of targets.

  16. Analysis of INIS, MSCI, INSPEC databases concerning the dynamics of publications on low-activated chromium alloys for use in the nuclear and fusion power engineering

    International Nuclear Information System (INIS)

    The paper presents the results of scientometric analysis of data flows from the International Databases, over a period since 1971 to 2011, on low-activated chromium alloys suitable for operation under extremely hard conditions in nuclear and fusion reactors. A detailed analysis of three Databases makes it possible to obtain the data on temporal trends of publications and on contributions to them from different countries, as well as, to define the type of publications and their languages. It is shown that investigations and developments on low-activated chromium alloys are of current importance

  17. Studies on tempering at different temperatures of the beta phase retained by water quenching in uranium-chromium alloys containing from 0,37 to 4 atoms of chromium percent (1963)

    International Nuclear Information System (INIS)

    The author made a systematic study of the annealing of the beta phase retained by water-quenching in uranium-chromium alloys of concentrations between 0.37 and 4 of chromium percent. It is shown that alloys containing less than 1 atom per cent are transformed at temperatures between room temperature and 250 deg. C according to a bainitic process involving activation energies of the order of 14,500 cal/mole. Alloys containing more than 1 at. per cent are transformed at temperature between 400 and 650 deg. C by way of a germination and growth process involving an activation energy of the order of 33,000 cal/mole. The limit of solubility of chromium in beta uranium plays a fundamental part in the transformations of the alloys. The TTT curves of beta → alpha transformation were drawn by the use of a thermo-dilatometer of very low inertia. The transformation law may be expressed 1 x = exp. (kt)n; x represents the degree of progression of the transformation, k a coefficient dependent on the temperature, and n an exponent depending only on the composition of the alloy. A micrographic and crystallographic study confirmed the results found by dilatometry; in particular it was possible to measure the progression rates of the transformation. (author)

  18. Effect of welding thermal cycle on the structure and properties of new effective alloying chromium-manganese-nickel steels

    International Nuclear Information System (INIS)

    The structure and properties of efficiently alloyed chromium-manganese-nickel steels of three experimental meltings with variable content of manganese - 2% (meltings 1 and 2) and 10% (melting 3). Steel of melting 3 was additionally alloyed with molybdenum and vanadium, and that of melting 2 - with nitrogen. The effect of different cooling rates (5, 25, 100 deg C) corresponding to electroslag, automatic flux-shielded and manual arc weldings on the structure and properties of HAZ metal of the experimental melting steels. It is shown that to decrease grain growth and intensive carbide formation, when developing technology of the steel welding attempts should be made to decrease the duration of HAZ metal maintaining at high temperature and to increase cooling rate

  19. Effect of recasting of nickel-chromium alloy on its porosity

    OpenAIRE

    Jayant Palaskar; Nadgir, D.V.; Ila Shah

    2010-01-01

    Statement of Problem: As per the review of literature very few studies have been carried on recasting of dental casting alloy and in particlular its effect on occurrence of porosities. Purpose of Study: This study was designed to find out occurrence of porosities in new alloy and recasted alloy using a scanning electron microscope. Materials and Methods: Different percentage combinations of new and once casted alloy were used to produce twenty five samples. Castings obtained from new alloy we...

  20. Microstructural characterisation of chromium slags

    OpenAIRE

    Burja, J.; F. Tehovnik; Vode, F.; Arh, B.

    2015-01-01

    In this chromium slags that form during melting of chromium alloyed steels are examined. During melting and oxidation of these steel grades a considerable amount of chromium is lost, and gained back with slag reduction. Laboratory experiments were performed to study the mechanism of chromium oxide reduction by silicon. Slags chemistry and phase composition have a strong effect on the steelmaking process. Phase analysis revealed two types of chromium oxides, calcium chromites and chromite spin...

  1. Current Developments of Alloyed Steels for Hot Strip Roughing Mills : Characterization of High-Chromium Steel and Semi-High Speed Steel

    OpenAIRE

    LECOMTE-BECKERS, Jacqueline; Sinnaeve, Mario; Tchuindjang, Jérôme Tchoufack

    2012-01-01

    Two alloys grades for work rolls used in the roughing stand of Hot Strip Mill - high chromium steel (HCS) and semi-high-speed steel (semi-HSS), In this paper, the new semi-high-speed steel grade is studied

  2. The influence of chromium on structure and mechanical properties of B2 nickel aluminide alloys. Ph.D. Thesis - Florida Univ., 1991 Final Report

    Science.gov (United States)

    Cotton, James Dean

    1992-01-01

    Major obstacles to the use of NiAl-based alloys and composites are low ductility and toughness. These shortcomings result in part from a lack of sufficient slip systems to accommodate plastic deformation of polycrystalline material (von Mises Criterion). It has been reported that minor additions of chromium to polycrystalline NiAl cause the predominant slip system to shift from the usual. If true, then a major step toward increasing ductility in this compound may be realized. The purpose of the present study was to verify this phenomenon, characterize it with respect to chromium level and Ni to Al ratio, and correlate any change in slip system with microstructure and mechanical properties. Compression and tensile specimens were prepared from alloys containing 0 to 5 percent chromium and 45 to 55 percent aluminum. Following about one percent strain, transmission electron microscopy foils were produced and the slip systems determined using the g x b = 0 invisibility criterion. Contrary to previous results, chromium was found to have no effect on the preferred slip system of any of the alloys studied. Possible reasons for the inconsistency of the current results with previous work are considered. Composition-structure-property relationships are discerned for the alloys, and good correlation are demonstrated in terms of conventional strengthening models for metallic systems.

  3. Comparison of Adhesive Resistance to Chewing Gum among Denture Base Acrylic Resin, Cobalt-Chromium Alloy, and Zirconia.

    Science.gov (United States)

    Wada, Takeshi; Takano, Tomofumi; Ueda, Takayuki; Sakurai, Kaoru

    2016-01-01

    The purpose of this study was to compare the adhesiveness of chewing gum to acrylic resin, cobalt-chromium alloy, and zirconia. Test specimens were fabricated using acrylic resin (resin), cobalt-chromium alloy (Co-Cr), and Ceria stabilized tetragonal zirconia polycrystal-based nanostructured zirconia/alumina composite (zirconia). Specimens of each material were attached to the upper and lower terminals of a digital force gauge. The operator masticated chewing gum, wiped off any saliva, and placed the gum on the lower specimen. The gum was compressed to a thickness of 1 mm between the upper and lower specimens. Thereafter, traction was applied to the upper specimen at a cross-head speed of 100 mm/min under 3 different conditions (dry, wet with distilled water, and wet with artificial saliva) to determine the maximum adhesive strength of the chewing gum. The statistical analysis was performed using the Bonferroni test after a one-way analysis of variance (α=0.05). Under dry conditions, adhesive force was 14.8±6.8 N for resin, 14.0±4.8 N for Co-Cr, and 4.3±2.3 N for zirconia. Significant differences were noted between resin and zirconia, and between Co-Cr and zirconia. When distilled water was applied to the specimen surface, the adhesive strength was 16.8±1.7 N for resin, 8.3±2.1 N for Co-Cr, and 2.7±0.8 N for zirconia. Significant differences were noted between resin and Co-Cr, resin and zirconia, and Co-Cr and zirconia. When artificial saliva was applied to the specimen surface, the adhesive force was 18.5±2.8 N for resin, 5.3±0.8 N for Co-Cr, and 3.0±1.7 N for zirconia. Significant differences were noted between resin and Co-Cr, and resin and zirconia. Chewing gum adhered less strongly to zirconia than to acrylic resin or cobalt-chromium alloy. PMID:26961330

  4. Influence of alloying elements and nitrogen content on deformation resistance of chromium-nickel stainless steels

    International Nuclear Information System (INIS)

    Four groups of steels with a type Kh20N15 matrix differing in the contents of nitrogen and additional alloying element (Cu, Si, V or Nb) were studied for the influence of the alloying system on deformation resistance in hot rolling. The one-pass rolling was carried out at 900, 1000, 1100 and 1200 deg C with 20, 40 and 60 % reductions. Experimental data statistical processing showed that vanadium alloying results in a sharp increase of nitrogen content influence comparable with strain hardening. The hardening effect in copper- and silicon-containing alloys almost is independent of nitrogen concentration. Niobium-containing alloys lie between two above mentioned groups

  5. Improvement of Corrosion Resistance of Binary Mg-Ca Alloys Using Duplex Aluminum-Chromium Coatings

    Science.gov (United States)

    Daroonparvar, Mohammadreza; Yajid, Muhamad Azizi Mat; Yusof, Noordin Mohd; Bakhsheshi-Rad, Hamid Reza; Adabi, Mohsen; Hamzah, Esah; Kamali, Hussein Ali

    2015-07-01

    Al-AlCr was coated on Mg-Ca and Mg-Zn-Ce-La alloys using physical vapor deposition method. The surface morphology of the specimens was characterized by x-ray diffraction, scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and atomic force microscopy (AFM). The AFM results indicated that the average surface roughness of Al-AlCr coating on the Mg-Ca alloy is much lower than that of Al-AlCr coating on the Mg-Zn-Ce-La alloy. However, Al-AlCr coating on the Mg-Ca alloy presented a more compact structure with fewer pores, pinholes, and cracks than Al-AlCr coating on the Mg-Zn-Ce-La alloy. Electrochemical studies revealed that the novel coating (Al-AlCr) can remarkably reduce the corrosion rate of the Mg-Ca alloy in 3.5 wt.% NaCl solution. It was seen that the anodic current density of the Al-AlCr-coated Mg-Ca alloy was very small when compared to the Al-AlCr-coated Mg-Zn-Ce-La and uncoated alloys. Impedance modulus ( Z) of the Al-AlCr-coated samples was higher than that of the bare Mg alloys. Z of Al-AlCr-coated Mg-Ca alloy was higher than that of the Al-AlCr-coated Mg-Zn-Ce-La alloy at low frequency.

  6. Studies on the process aspects related to chemical decontamination of chromium-containing alloys with redox processes

    International Nuclear Information System (INIS)

    Presence of chromium in the oxide layer makes oxidative pre-treatment with oxidizing agents such as potassium permanganate (KMnO4) a must for the decontamination of stainless steels and other chromium containing alloys. The effectiveness of pre-treatment with oxidizing reagent varies with the conditions of treatment such as temperature, concentration and whether the medium is acidic or alkaline. A comparative study of the two acidic oxidizing agents, i.e., nitric acid-permanganate and permanganic acid was made. The dissolution behavior of copper and its oxide in permanganic acid was found to be comparable to that of chromium oxide. Citric acid and ascorbic acid were investigated as alternatives to oxalic acid for the reduction/decomposition of permanganate left over after the oxidizing pre-treatment step. It has been established that the reduction of chromate by citric acid is instantaneous only in presence of Mn2+ ions. It has also been established that reduction of residual permanganate can be achieved with ascorbic acid and with minimum chemical requirement. The capabilities of nitrilotriacetic acid (NTA)-ascorbic acid mixture for the dissolution of hematite have been explored. This study would help to choose the suitable oxidizing agent, the reducing agent used for decomposition of permanganate and to optimize the concentration of reducing formulation so that the process of decontamination is achieved with a minimum requirement of chemicals. The generation of radioactive ion exchange resin as waste is therefore held at a minimum. Ion exchange studies with metal ion complexes of relevance to decontamination were carried out with a view to choose a suitable type of ion exchanger. It has been established that treatment of the ion exchange resin with brine solution can solve the problem of leaching out of non-ionic organics from the resin. (orig.)

  7. Transmission electron microscope study of fusion-environment radiation damage in iron and iron-chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Horton, L.L.S.

    1982-07-01

    A transmission electron microscopy study of radiation damage microstructures in iron and iron-chromium alloys has been performed. This study consisted of both qualitative and quantitative characterization of the dislocation and cavity microstructures, including determination of vacancy/interstitial character and Burgers vectors for dislocation loops and analysis of the cavity morphology. The effects of irradiation temperature, fluence, helium implantation, and chromium content were investigated. Neutron irradiation (iron specimens, 1 dpa, 455 to 1000 K) and triple-beam ion irradiation (Fe-10% Cr specimens, 10 dpa, 725 to 950 K; Fe-10% Cr specimens, 850 K, 0.3 to 100 dpa; and Fe, Fe-5% Cr, Fe-10% Cr specimens, 850 K, 10 dpa) were employed. In the triple-beam ion irradiation procedure, simultaneous bombardment with 4 MeV Fe/sup + +/ ions and energetic He/sup +/ and D/sub 2//sup +/ ions was used to simulate the fusion environment (10 at. ppM He/dpa and 41 at. ppM D/dpa). In addition, single-beam 4 MeV Fe/sup + +/ ion irradiations of Fe-10% Cr both with and without pre-injection of helium and deuterium were performed.

  8. Transmission electron microscope study of fusion-environment radiation damage in iron and iron-chromium alloys

    International Nuclear Information System (INIS)

    A transmission electron microscopy study of radiation damage microstructures in iron and iron-chromium alloys has been performed. This study consisted of both qualitative and quantitative characterization of the dislocation and cavity microstructures, including determination of vacancy/interstitial character and Burgers vectors for dislocation loops and analysis of the cavity morphology. The effects of irradiation temperature, fluence, helium implantation, and chromium content were investigated. Neutron irradiation (iron specimens, 1 dpa, 455 to 1000 K) and triple-beam ion irradiation (Fe-10% Cr specimens, 10 dpa, 725 to 950 K; Fe-10% Cr specimens, 850 K, 0.3 to 100 dpa; and Fe, Fe-5% Cr, Fe-10% Cr specimens, 850 K, 10 dpa) were employed. In the triple-beam ion irradiation procedure, simultaneous bombardment with 4 MeV Fe++ ions and energetic He+ and D2+ ions was used to simulate the fusion environment (10 at. ppM He/dpa and 41 at. ppM D/dpa). In addition, single-beam 4 MeV Fe++ ion irradiations of Fe-10% Cr both with and without pre-injection of helium and deuterium were performed

  9. Effect of selective laser melting deposition cobalt chromium alloy porcelain crown restoration on related molecule contents in serum and gingival crevicular fluid

    Institute of Scientific and Technical Information of China (English)

    Yu-Hua Wei; Lei Yang

    2015-01-01

    Objective:To study the effect of selective laser melting deposition cobalt chromium alloy porcelain crown restoration on contents of inflammatory cytokines and adhesion molecules in serum and gingival tissue.Methods:80 cases of patients who received cobalt chromium alloy porcelain crown restoration in our hospital from May 2013 to August 2014 were enrolled and randomly divided into two groups. Observation group received selective laser melting deposition cobalt chromium alloy porcelain crown restoration and control group received casting cobalt chromium metal porcelain crown restoration. Then contents of inflammatory cytokines and adhesion molecules in serum and gingival crevicular fluid of both groups were detected.Results: (1) Inflammatory cytokines: compared with serum inflammatory cytokine contents of control group, serum NF-κB, IL-6, IL-8, IL-1β, TNF-α and NO contents of observation group trended to decrease; (2) Adhesion molecules in gingival crevicular fluid: compared with adhesion molecule contents in gingival crevicular fluid of control group, mRNA contents of CD11a, CD18, LFA-1, E-selectin and P-selectin in gingival crevicular fluid of observation group trended to decrease; (3) Adhesion molecules in serum: compared with adhesion molecule contents in serum of control group, sICAM-1 and sVCAM-1 contents in serum of observation group were lower.Conclusion: Selective laser melting deposition cobalt chromium alloy porcelain crown restoration is helpful to relieve inflammatory response of gingival tissue, with expression of decreased generation of inflammatory cytokines and adhesion molecules; it’s an ideal material for crown restoration.

  10. Oxidation of chromium telluride

    International Nuclear Information System (INIS)

    The authors study the interaction between chromium telluride and oxygen at elevated temperatures in view of its application in semiconductor technology. Thermodynamic analysis of the oxidation process and experimental data showed that the alloys of chromium telluride suffer oxidation in the presence of even traces of oxygen in a gaseous medium. Chromium telluride oxidation is a complex process that gives rise to various oxides and is accompanied by partial sublimation

  11. Oxidation of chromium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Pakhomovskaya, N.S.; Iorga, E.V.; Sheveleva, T.F.; Solov' eva, A.E.

    1986-03-01

    The authors study the interaction between chromium telluride and oxygen at elevated temperatures in view of its application in semiconductor technology. Thermodynamic analysis of the oxidation process and experimental data showed that the alloys of chromium telluride suffer oxidation in the presence of even traces of oxygen in a gaseous medium. Chromium telluride oxidation is a complex process that gives rise to various oxides and is accompanied by partial sublimation.

  12. Microstructure Evaluation and Wear-Resistant Properties of Ti-alloyed Hypereutectic High Chromium Cast Iron

    OpenAIRE

    Liu, Qiang

    2013-01-01

    High chromium cast iron (HCCI) is considered as one of the most useful wear resistance materials and their usage are widely spread in industry. The mechanical properties of HCCI mainly depend on type, size, number, morphology of hard carbides and the matrix structure (γ or α). The hypereutectic HCCI with large volume fractions of hard carbides is preferred to apply in wear applications. However, the coarser and larger primary M7C3 carbides will be precipitated during the solidification of the...

  13. An invitro analysis of elemental release and cytotoxicity of recast nickel-chromium dental casting alloys.

    Science.gov (United States)

    Reddy, Nagam Raja; Abraham, Anandapandian Ponsekar; Murugesan, Krishnan; Matsa, Vasanthakumar

    2011-06-01

    Recasting of the casting alloys affects the composition and elemental release which may have cytotoxic effect different from the pure alloy in the surrounding tissues. An Invitro study was conducted to investigate the elemental release and their cytotoxic effects from commercially available Ni-Cr dental casting alloys, commonly used for fabricating fixed partial dentures. Three Ni-Cr alloys [Wiron 99(A), Ceramet (B), and Hi Nickel CB (C)] were tested. Alloy specimens (disks 3 × 5 mm) were casted and grouped as follows: Group I (A(1)/B(1)/C(1)): 100% pure alloy; Group II (A(2)/B(2)/C(2)): 50% new with 50% recast; and Group III (A(3)/B(3)/C(3)): 100% recast. Disks of each alloy type from each group were transferred to Dulbecco's modified eagle medium and left for 3 days at 37°C in an atmosphere of 5% CO(2). Ni, Cr, Co, Cu and Mo elemental release from metal alloys into culture medium was investigated using Inductively Coupled Plasma Mass Spectrometry. Cytotoxicity was tested using mouse fibroblast cells and MTT Assay. Controls consisted of 6 wells containing cells with no alloy specimens. Data were analyzed by two-way analysis of variance followed by t-test. The total amount of elements released in parts per billion for various casting groups were Group I, A(1)-6.572, B(1)-6.732, C(1)-8.407; Group II, A(2)-22.046, B(2)-26.450, C(2)-29.189; Group III, A(3)-84.554, B(3)-88.359, C(3)-92.264. More amounts of elements were released in Hi Nickel CB than Ceramet and Wiron 99 in all the three test groups. Percentage of viable cells from MTT analysis were Group I, A(1)-62.342, B(1)-61.322 C(1)-60.593, Group II, A(2)-58.699, B(2)-56.494, C(2)-52.688, Group III, A(3)-53.101, B(3)-52.195, C(3)-47.586. The viable cells present in the culture media were more in Wiron 99 than Ceramet and Hi Nickel CB. Elemental release increased with amount of recast alloy. Amongst the three alloys tested Hi Nickel CB had significantly higher elements released compared to Ceramet and Wiron 99

  14. Hydrogen transport and embrittlement for palladium coated vanadium-chromium-titanium alloys

    International Nuclear Information System (INIS)

    Vanadium based alloys have been identified as a leading candidate material for fusion first-wall blanket structure application because they exhibit favorable safety and environmental characteristics, good fabricability, potential for high performance and long-time operation lifetime in a fusion environment. As part of a study of the thermodynamics, kinetics and embrittlement properties of hydrogen in vanadium based alloys, experiments were conducted to determine the rate of hydrogen transport through the vanadium reference alloys, V-7.5Cr-15Ti and V-4Cr-4Ti, and to determine these alloys' hydrogen embrittlement, they were exposed to hydrogen pressures of 3 and 300 kPa (0.03--3 atm) at temperatures between 380 and 475 C. To facilitate hydrogen entry and egress, tubes of these alloys were coated with palladium on the inside and outside faces. Observed permeabilities were 0.015 to 0.065 micromoles/(m2sPa0.5) for the V-7.5Cr-15Ti alloy and 0.02 to 0.05 micromoles/m2sPa0.5 for the V-4Cr-4Ti alloy depending on the quality of the coat and the operating temperature. At 1.7 atm hydrogen, V-7.5Cr-15Ti embrittled at temperatures below 380 C while V-4Cr-4Ti embrittled around 330 C

  15. Chromium enrichment on the habit plane of dislocation loops in ion-irradiated high-purity Fe–Cr alloys

    International Nuclear Information System (INIS)

    Reduced activation high-chromium ferritic/martensitic steels are candidate materials for Generation IV fission and fusion reactors. To gain knowledge about the radiation resistance of these steels in such environments, the first step is to study the Fe–Cr matrix of this material. For that purpose and to understand ballistic damage by neutrons, self-ion irradiations, with and without simultaneous He injection, were performed on a series of high-purity Fe–Cr binary alloys at 773 K. Transmission electron microscopy (TEM) analysis revealed “displacement fringe contrast” inside the dislocation loops. This was attributed to the presence of Cr-enriched zones on their habit plane, which is a defect-free region for body-centered cubic Fe-based alloys. A plausible mechanism is discussed to explain the phenomenon, the first step of which would be the radiation-induced segregation of Cr atoms on the dislocation loop core. Energy-dispersive X-ray spectroscopy in scanning TEM mode and atom probe tomography (APT) gave a coherent quantitative estimate of the Cr concentration in these enriched areas. APT study showed that the enrichment was heterogeneous on the loop plane. Upon in situ annealing up to 900 K, the loops and the fringes disappeared completely, without leaving a secondary-phase particle, such as carbide, at their position. Fringes were present until the loop disappeared

  16. Effect of cold working on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    In order to grasp the stress corrosion cracking resistance of cold worked nickel base alloys in PWR primary water, the effect of cold working on the stress corrosion cracking resistance of alloys 600, X-750 and 690, in high temperature water, have been studied. Stress corrosion cracking tests were conducted at 3600C (633K) in a simulated PWR primary water for about 12,000 hours (43.2Ms). From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked alloys of thermally treated 690 and X-750 have excellent stress corrosion cracking resistance. (Author)

  17. Mechanical and microstructural properties of a nickel-chromium alloy after casting process

    OpenAIRE

    Mauro Sayão de Miranda; José Maria Paolucci Pimenta; Carlos Antonio Freire Sampaio; Sidnei Paciornik; Marilia Garcia Diniz; André Rocha Pimenta

    2012-01-01

    Introduction: There is a growing concern on the development of adequate materials to interact with the human body. Several researches have been conducted on the development of biomaterials for dental applications. Objective: This study aimed to determine the microstructural and mechanical properties of a nickel- based alloy, after the casting process. Material and methods: The alloy was melted through lost wax technique and centrifugation, by using blowtorch with liquefied petroleum gas. To e...

  18. Niobium and chromium rich coatings tailored by laser alloying: XRD analysis at high temperatures

    OpenAIRE

    Adilson Rodrigues da Costa; Aldo Craievich; Rui Vilar

    2004-01-01

    Laser treatment technologies have been widely used to modify superficial layers of different materials. In this work we prepare Nb and Cr rich coatings according to laser alloying technique using cast iron as substrate material. Nb and Cr are intensive used in order to overcome challenges like good chemical and mechanical performance at high temperatures. Following laser alloying the surface-modified samples were submitted to an "in situ" XRD analysis under controlled high temperature and atm...

  19. Hydrogen transport and embrittlement for palladium coated vanadium-chromium-titanium alloys

    International Nuclear Information System (INIS)

    As part of a study of the thermodynamics, kinetics and embrittlement properties of hydrogen in vanadium based alloys, experiments were conducted to determine the rate of hydrogen transport through the vanadium reference alloys, V-7.5Cr-15Ti and V-4Cr-4Ti, and to determine these alloys' hydrogen embrittlement, they were exposed to hydrogen pressures of 3 and 300 kPa (0.03-3 atm) at temperatures between 380 and 475 C. To facilitate hydrogen entry and egress, tubes of these alloys were coated with palladium on the inside and outside faces. Observed permeabilities were 0.015 to 0.065 μmol/(m2 s Pa0.5) for the V-7.5Cr-15Ti alloy and 0.02 to 0.05 μmol/(m2 s Pa0.5) for the V-4Cr-4Ti alloy depending on the quality of the coat and the operating temperature. At 1.7 atm hydrogen, V-7.5Cr-15Ti embrittled at temperatures below 380 C while V-4Cr-4Ti embrittled around 330 C. (orig.)

  20. Study of the quenching and subsequent return to room temperature of uranium-chromium, uranium-iron, and uranium-molybdenum alloys containing only small amounts of the alloying element

    International Nuclear Information System (INIS)

    By means of an apparatus which makes possible thermal pre-treatments in vacuo, quenching carried out in a high purity argon atmosphere, and simultaneous recording of time temperature cooling and thermal contraction curves, the author has examined the transformations which occur in uranium-chromium, uranium-iron and uranium-molybdenum alloys during their quenching and subsequent return to room temperature. For uranium-chromium and uranium-iron alloys, the temperature at which the γ → β transformation starts varies very little with the rate of cooling. For uranium-molybdenum alloys containing 2,8 atom per cent of Mo, this temperature is lowered by 120 deg. C for a cooling rate of 500 deg. C/mn. The temperature at which the β → α transformation starts is lowered by 170 deg. C for a cooling rate of 500 deg. C/mn in the case of uranium-chromium alloy containing 0,37 atom per cent of Cr. The temperature is little affected in the case of uranium-iron alloys. The addition of chromium or iron makes it possible to conserve the form β at ordinary temperatures after quenching from the β and γ regions. The β phase is particularly unstable and changes into needles of the α form even at room temperatures according to an autocatalytic transformation law similar to the austenitic-martensitic transformation law in the case of iron. The β phase obtained by quenching from the β phase region is more stable than that obtained by quenching from the γ region. Chromium is a more effective stabiliser of the β phase than is iron. Unfortunately it causes serious surface cracking. The β → α transformation in uranium-chromium alloys has been followed at room temperature by means of micro-cinematography. The author has not observed the direct γ → α transformation in uranium-molybdenum alloys containing 2,8 per cent of molybdenum even for cooling rates of up to 2000 deg. C/s. He has however observed the formation of several martensitic structures. (author)

  1. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    International Nuclear Information System (INIS)

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H2S and CO2) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering

  2. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E. [KMI Energy Services, Livermore, CA (United States)

    1991-03-01

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H{sub 2}S and CO{sub 2}) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering.

  3. Niobium and chromium rich coatings tailored by laser alloying: XRD analysis at high temperatures

    Directory of Open Access Journals (Sweden)

    Costa Adilson Rodrigues da

    2004-01-01

    Full Text Available Laser treatment technologies have been widely used to modify superficial layers of different materials. In this work we prepare Nb and Cr rich coatings according to laser alloying technique using cast iron as substrate material. Nb and Cr are intensive used in order to overcome challenges like good chemical and mechanical performance at high temperatures. Following laser alloying the surface-modified samples were submitted to an "in situ" XRD analysis under controlled high temperature and atmosphere. The phase transitions registered point to transformations that do not implies formation of fragile phases or cracks induced by high volumes modifications.

  4. Effect of the chromium content on the mechanical properties and microstructural evolution of ion-irradiated Fe-Cr model alloys

    International Nuclear Information System (INIS)

    Full text of publication follows: Effect on the chromium content on the hardness changes and microstructural evolution in irradiated Fe-Cr model alloys (Fe-5, 9, 12 and 15 wt%) before and after a post-irradiation heat treatment at 673 K or 773 K is investigated using a nano-indentor and transmission electron microscopy (TEM). Ion-irradiation experiments (up to 12 dpa) were preformed with 8 MeV Fe+ ions accelerated at room temperature. TRIM calculation and TEM observation indicated that the depth of maximum displacement damage layer of ion-irradiated regions was about 1.7 μm. nano-indentation with a continuous stiffness measurement (CSM) technique was used to measure a change of the relative hardness of thin ion-irradiated regions. Hardness measurement of the ion-irradiated Fe-Cr alloys before a post-irradiation heat treatment showed that an increase of the hardness by an ion irradiation rises linearly with the chromium content at a low dose level. However, Fe-9wt%Cr showed a reduced irradiation-induced the increase of hardness with the level of a dose. Fine ion-irradiation induced dislocation loops were observed by a weak beam dark field TEM imaging. These fine dislocation loops had Burgers vectors of and 1/2, which were distinguished with actual TEM images. TEM analysis showed that the size of the dislocation loops increased and the population of the dislocation loops with a Burgers vector of increased with the chromium additions. After a post-irradiation heat treatment, the hardness measurement of irradiated Fe-Cr alloys showed that the reduction of the hardness by a heat treatment decreased with the chromium additions. An interesting feature is that as the chromium content is lowered in Fe-Cr model alloys, the size of the ion-irradiation induced dislocation loops increases significantly after a post-irradiation heat treatment, whereas it decreases before a post-irradiation heat treatment. Based on the present experimental results, we discuss in detail the

  5. Pressure vessel code construction capabilities for a nickel-chromium-tungsten-molybdenum alloy

    International Nuclear Information System (INIS)

    HAYNES alloy 230 (UNS NO6230) has achieved wide usage in a variety of high-temperature aerospace, chemical process industry and industrial heating applications since its introduction in 1981. Combining high elevated temperature strength with excellent metallurgical stability, environment-resistance and relatively straight forward fabrication characteristics, this Ni-Cr-W-Mo alloy was an excellent candidate for ASME Pressure vessel Code applications. Coverage under case No. 2063 was granted in July, 1989, for both Section I and Section VIII Division 1 construction. In this paper, the metallurgy of 230 alloy will be described, and its design strength capabilities contrasted with those for more established code materials. Other important performance capabilities, such as long-term thermal stability, oxidation-resistance, fatigue-resistance, and resistance to other forms of environmental degradation will be discussed. It will be shown that the combined properties of 230 alloy offer some significant advantages over other materials for applications such as expansion bellows, heat-exchangers, valves and other components in the fossil energy, nuclear energy and chemical process industries, among others

  6. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T. [VTT Manufacturing Technology, Espoo (Finland)

    1999-01-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  7. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    International Nuclear Information System (INIS)

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  8. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Santa Coloma, P., E-mail: patricia.santacoloma@tecnalia.com [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J. [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Lapeña, N. [Boeing Research & Technology Europe, S.L.U., Avenida Sur del Aeropuerto de Barajas 38, Building 4 – 3rd Floor, E-28042 Madrid (Spain)

    2015-08-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  9. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    International Nuclear Information System (INIS)

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  10. Tensile and pack compressive tests of some sheets of aluminum alloy, 1025 carbon steel, and chromium-nickel steel

    Science.gov (United States)

    Atchison, C S; Miller, James A

    1942-01-01

    Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength.

  11. Material composition and nuclear data libraries' influence on nickel-chromium alloys activation evaluation: a comparison with decay heat experiments

    International Nuclear Information System (INIS)

    The paper presents the activation analyses on Inconel-600 nickel-chromium alloy. Three activation data libraries, namely the EAF-4.1, the EAF-97 and the FENDL/A-2, and the FENDL/D-2 decay data library, have been used to perform the calculation with the European activation code ANITA-4/M. The neutron flux distribution into the material samples was provided by JAERI as results of 3D Monte-Carlo MCNP transport code experiment simulation. A comparison with integral decay heat measurement performed at the Fusion Neutronics Source (FNS), JAERI, Tokai, Japan, is used to validate the computational approach. The calculation results are given and discussed. The impact of the material composition, including impurities, on the decay heat of samples irradiated in fusion-like neutron spectra is assessed and discussed. The discrepancies calculations-experiments are within the experimental errors, that is between 6% and 10%, except for the short cooling times (less than 40 min after the end of irradiation). To improve calculation consistency with the experimental results, the knowledge of the material impurities content is mandatory

  12. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    Science.gov (United States)

    Schröder, Christian; Steinbrück, Arnd; Müller, Tatjana; Woiczinski, Matthias; Chevalier, Yan; Müller, Peter E.; Jansson, Volkmar

    2015-01-01

    Retropatellar complications after total knee arthroplasty (TKA) such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM) by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM) prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE) were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics. PMID:25879019

  13. An organic-reagent-free method for determination of chromium(VI) in steel alloys, sewage sludge and wastewater.

    Science.gov (United States)

    Fan, Jing; Sun, Yuping; Wang, Jianji; Fan, Maohong

    2009-04-27

    One of the active areas of green chemistry research and development is in the development of new analytical methods and techniques that reduce and eliminate the use and generation of hazardous substances. In this work, a rapid and organic-reagent-free method was developed for the determination of chromium(VI) by sequential injection analysis (SIA). The method was based on the detection of a blue unstable intermediate compound resulting from the reaction of Cr(VI) with hydrogen peroxide (H(2)O(2)) in acidic medium. H(2)O(2) and its reaction products were environmentally friendly, and chromogenic reagents and organic solvents were not used in the proposed method. Different SIA parameters have been optimized and used to obtain the analytical figures of merit. Under the optimum experimental conditions, the linear range for Cr(VI) was 0.5-100.0 microg mL(-1), and the detection limit was 0.16 microg mL(-1). The sample throughput was 80 h(-1), and the total volume of only 145 microL was consumed in each determination of Cr(VI). The method was applied for the determination of Cr(VI) in seven real samples, including alloy steel, sewage sludge and wastewater samples, and the results were compared with those obtained by atomic absorption spectrometry as well as with the certified value of Cr(VI) in standard reference material. Statistical analysis revealed that there was no significant difference at 95% confidence level. PMID:19362620

  14. Material composition and nuclear data libraries' influence on nickel-chromium alloys activation evaluation: a comparison with decay heat experiments

    CERN Document Server

    Cepraga, D G

    2000-01-01

    The paper presents the activation analyses on Inconel-600 nickel-chromium alloy. Three activation data libraries, namely the EAF-4.1, the EAF-97 and the FENDL/A-2, and the FENDL/D-2 decay data library, have been used to perform the calculation with the European activation code ANITA-4/M. The neutron flux distribution into the material samples was provided by JAERI as results of 3D Monte-Carlo MCNP transport code experiment simulation. A comparison with integral decay heat measurement performed at the Fusion Neutronics Source (FNS), JAERI, Tokai, Japan, is used to validate the computational approach. The calculation results are given and discussed. The impact of the material composition, including impurities, on the decay heat of samples irradiated in fusion-like neutron spectra is assessed and discussed. The discrepancies calculations-experiments are within the experimental errors, that is between 6% and 10%, except for the short cooling times (less than 40 min after the end of irradiation). To improve calcul...

  15. Vacuum-arc chromium coatings for Zr-1%Nb alloy protection against high-temperature oxidation in air

    International Nuclear Information System (INIS)

    The effect of vacuum-arc Cr coatings on the alloy E110 resistance to the oxidation in air at temperatures 1020 and 1100 deg C for 3600 s has been investigated. The methods of scanning electron microscope, X-ray analysis and nanoindentation were used to determine the thickness, phase, mechanical properties of coatings and oxide layers. The results show that the chromium coating can effectively protect fuel tubes against high-temperature oxidation in air for one hour. In the coating during oxidation at T = 1100 deg C a Cr2O3 oxide layer of 5 μm thickness is formed preventing further oxygen penetration into the coating, and thus the tube shape is conserved. Under similar test conditions the oxidation of uncoated tubes with formation of a porous monocline oxide of ZrO2 of a thickness more than ≥ 250 μm is observed, then the deformation and cracking of samples occur and the oxide layer breaks away

  16. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    Directory of Open Access Journals (Sweden)

    Christian Schröder

    2015-01-01

    Full Text Available Retropatellar complications after total knee arthroplasty (TKA such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics.

  17. Oxidation and corrosion behavior of modified-composition, low-chromium 304 stainless steel alloys

    International Nuclear Information System (INIS)

    The effects of substituting less strategic elements than Cr on the oxidation and corrosion resistance of AISI 304 stainless steel were investigated. Cyclic oxidation resistance was evaluated at 870 C. Corrosion resistance was determined by exposure of specimens to a boiling copper-rich solution of copper sulfate and sulfuric acid. Alloy substitutes for Cr included Al, Mn, Mo, Si, Ti, V, Y, and misch metal. A level of about 12% Cr was the minimum amount of Cr required for adequate oxidation and corrosion resistance in the modified composition 304 stainless steels. This represents a Cr saving of at least 33%. Two alloys containing 12% Cr and 2% Al plus 2% Mo and 12% Cr plus 2.65% Si were identified as most promising for more detailed evaluation

  18. Production of chromium base alloys by ball milling in hydrogen iodide

    Science.gov (United States)

    Arias, A.

    1975-01-01

    The effects of processing variables on the tensile properties and ductile-to-brittle transition temperature (DBTT) of Cr + 4 vol% ThO2 alloys and of pure Cr produced by ball milling in hydrogen iodide were investigated. Hot rolled Cr + ThO2 was stronger than either hot pressed Cr + ThO2 or pure Cr at temperatures up to 1540 C. Hot pressed Cr + ThO2 had a DBTT of 500 C as compared with -8 to 24 C for the hot rolled Cr + ThO2 and with 140 C for pure Cr. It is postulated that the dispersoid in the hot rolled alloys lowers the DBTT by inhibiting recovery and recrystallization of the strained structure.

  19. Diffusion in thoriated and nonthoriated nickel and nickel-chromium alloys at 1260 C

    Science.gov (United States)

    Whittenberger, J. D.

    1972-01-01

    Various solid-solid diffusion couples were assembled from thoriated and nonthoriated nickel-base alloys, welded, and diffusion annealed at 1260 C. Concentration profiles indicated that a thoria dispersion does not affect diffusion in Cr(alloy):Ni and Ni-4.8Al:Ni types of couples unless a fine grain structure is retained by the thoria particles. Metallography revealed the presence of thoria-free bands in the thoriated-Ni side of the diffusion zone. The bands contained grain boundaries and, in some cases, non-Kirkendall porosity. A mechanism based on the operation of vacancy sources is proposed to explain the thoria-free bands. In addition, a particular DS-NiCr:Ni couple had negligible Kirkendall porosity. This behavior was related to the grain structure of the particular lot of DS-NiCr.

  20. Investigation of the process of plasma-electrolyte formation surface microrelief of cobalt chromium alloy

    Science.gov (United States)

    Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.

    2014-11-01

    The goal is to investigate the possibilities of plasma-electrolytic formation of microrelief for replacement method of sandblasting. We found that with the cathode mode of plasma electrolytic surface treatment, CoCr-alloy has two kinds of structures: "porous" and "reflow". "Reflow" the surface was also covered with tubercles, the size of 200 - 300 nm. Analysis of roughness parameters and surface microrelief showed the possibility of replacing the sandblasting on the plasma-electrolytic treatment.

  1. Studies of oxide reduction and nitrogen uptake in sintering of chromium-alloyed steel powder

    OpenAIRE

    Bergman, Ola

    2008-01-01

    The powder metallurgy (PM) process route is very competitive for mass production of structural steel components with complex shape, due to efficient material utilisation, low energy consumption, and short overall production time. The most commonly used alloying elements are the processing friendly metals Cu, Ni and Mo. However, the prices for these metals are today high and volatile, which threatens to make the PM process less competitive compared to conventional metal forming processes. Cons...

  2. An investigation on corrosion protection of chromium nitride coated Fe-Cr alloy as a bipolar plate material for proton exchange membrane fuel cells

    Science.gov (United States)

    Pan, T. J.; Zhang, B.; Li, J.; He, Y. X.; Lin, F.

    2014-12-01

    The corrosion properties of chromium nitride (CrN) coating are investigated to assess the potential use of this material as a bipolar plate for proton exchange membrane fuel cells (PEMFCs). Conductive metallic ceramic CrN layers are firstly deposited onto Fe-Cr alloy using a multi-arc ion plating technique to increase the corrosion resistance of the base alloy. Electrochemical measurements indicate that the corrosion resistance of the substrate alloy is greatly enhanced by the CrN coating. The free corrosion potential of the substrate is increased by more than 50 mV. Furthermore, a decrease in three orders of magnitude of corrosive current density for the CrN-coated alloy is observed compared to the as-received Fe-Cr alloy. Long-term immersion tests show that the CrN layer is highly stable and effectively acts as a barrier to inhibit permeation of corrosive species. On the contrary, corrosion of the Fe-Cr alloy is rather severe without the protection of CrN coating due to the active dissolution. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion process of the CrN/Fe-Cr alloy submerged in a simulated PEMFCs environment.

  3. Release of Chromium from Orthopaedic Arthroplasties

    OpenAIRE

    Afolaranmi, G.A.; Tettey, J; Meek, R.M.D; Grant, M.H

    2008-01-01

    Many orthopaedic implants are composed of alloys containing chromium. Of particular relevance is the increasing number of Cobalt Chromium bearing arthroplasies being inserted into young patients with osteoarthritis. Such implants will release chromium ions. These patients will be exposed to the released chromium for over 50 years in some cases. The subsequent chromium ion metabolism and redistribution in fluid and tissue compartments is complex. In addition, the potential biological effects o...

  4. The chromium doping of Ni3Fe alloy and restructuring of grain boundary ensemble at the phase transition A1→L12

    International Nuclear Information System (INIS)

    The grain boundary structure of the Ni3(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L12. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L12 in the Ni3(Fe,Cr) alloy are determined by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping

  5. The chromium doping of Ni3Fe alloy and restructuring of grain boundary ensemble at the phase transition A1→L12

    Science.gov (United States)

    Perevalova, Olga; Konovalova, Elena; Koneva, Nina; Kozlov, Eduard

    2016-01-01

    The grain boundary structure of the Ni3(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L12. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L12 in the Ni3(Fe,Cr) alloy are determined by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping.

  6. The chromium doping of Ni{sub 3}Fe alloy and restructuring of grain boundary ensemble at the phase transition A1→L1{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Perevalova, Olga [Institute of Strength Physics and Material Science, Siberian Division of the Russian Academy of Sciences, Akademicheskii Av., 2/4, Tomsk, 634021 (Russian Federation); Konovalova, Elena, E-mail: knv123@yandex.ru [Surgut State University, Lenina Av., 1, Surgut, 628400 (Russian Federation); Koneva, Nina; Kozlov, Eduard [Tomsk State University of Architecture and Building, Solyanaya Sq., 2, Tomsk, 634003 (Russian Federation)

    2016-01-15

    The grain boundary structure of the Ni{sub 3}(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L1{sub 2}. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L1{sub 2} in the Ni{sub 3}(Fe,Cr) alloy are determined by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping.

  7. Investigation of the process of plasma-electrolyte formation surface microrelief of cobalt chromium alloy

    International Nuclear Information System (INIS)

    The goal is to investigate the possibilities of plasma-electrolytic formation of microrelief for replacement method of sandblasting. We found that with the cathode mode of plasma electrolytic surface treatment, CoCr-alloy has two kinds of structures: ''porous'' and ''reflow''. ''Reflow'' the surface was also covered with tubercles, the size of 200 - 300 nm. Analysis of roughness parameters and surface microrelief showed the possibility of replacing the sandblasting on the plasma-electrolytic treatment

  8. Effect of ion irradiation on the microstructure of an iron--nickel--chromium alloy

    International Nuclear Information System (INIS)

    Void and disloation structures in an Fe-25Ni-15Cr alloy were studied following irradiation with 2.8 MeV 58Ni+ ions at temperatures between 600 and 7500C (1112 and 13820F) to maximum damage levels up to 80 displacements per atom (dpa). Void formation was observed at all the temperatures investigated, with the maximum swelling between 650 and 7000C (1202 and 12920F). The swelling versus dose relations exhibited an incubation dose followed by swelling at a rate that increased with increasing damage level. These data were consistent with previous swelling results for austenitic alloys irradiated with charged particles, which indicate that the swelling should become linear with irradiation dose at higher damage levels. Tangled dislocation networks were observed to form at low doses and to be fairly stable up to the highest damage levels examined. With the assumption of the observed stable dislocation networks, the dose dependence of swelling could be explained by a general form of the chemical rate theory for swelling due to void growth

  9. Study of the simulated HAZ of a boron alloyed creep resistant 9% chromium steel

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, P.; Cerjak, H. [Graz Univ. of Technology (Austria). Inst. for Materials Science, Welding and Forming

    2006-07-01

    A basic study an the weldability of a boron alloyed advanced 9% Cr steel was performed applying the so-called 'Heat Affected Zone Simulation' technique using a Gleeble 1500 thermo-mechanical testing machine. Changes in the microstructure and in the materials properties of the HAZ were examined, before and after a postweld heat treatment (PWHT) of 730 C for 12 hours by applying light-microscopy, scanning electron microscopy (SEM), different methods of analytical transmission electron microscopy, hardness measurements and Charpy-V notched bar impact tests. The microstructures at representative points during a typical welding cycle and ensuing postweld heat treatment were studied in detail. The evolution of precipitates during a characteristic welding cycle and subsequent PWHT was observed, showing the complete dissolution of all precipitates during the weld thermal cycle and re-precipitation during the PWHT. Delta-ferrite formation was observed for welding cycles with high enough peak temperatures causing retained delta-ferrite in the material after PWHT. (orig.)

  10. Internal damage processes in low alloy chromium-molybdenum steels during high-temperature creep service

    International Nuclear Information System (INIS)

    Results are presented of investigations on structure of low alloy Cr-Mo steels exhibiting internal damage after long-term creep service. It was demonstrated that intercrystalline cavitation cracks were the dominant factor in service damage of power station boiler components operating in creep regimes. Consecutive stages in development of internal damage involving intercrystalline cavitation cracking were discussed and illustrated by means of micrographs. The results seem to indicate that nucleation of creep cavities in materials under consideration is related to gain boundary slip. Evidence confirming the shear mechanism proposed by Sklenicka and Saxl for cavity coalescence was obtained. Occurrence of intercrystalline service cracking was demonstrated. Micrographs were used to illustrate wedge service nucleation modes on triple junctions depending on the direction of slip according to Change and Grant. A classification of internal damages in relation to life exhaustion was proposed for materials under consideration. A method used in industrial practice for evaluation and qualification of creep-damaged materials was presented. (author)

  11. The effect of remelting various combinations of new and used cobalt-chromium alloy on the mechanical properties and microstructure of the alloy

    Directory of Open Access Journals (Sweden)

    Sharad Gupta

    2012-01-01

    Conclusion: Repeated remelting of base metal alloy for dental casting without addition of new alloy can affect the mechanical properties of the alloy. Microstructure analysis shows deterioration upon remelting. However, the addition of 25% and 50% (by weight of new alloy to the remelted alloy can bring about improvement both in mechanical properties and in microstructure.

  12. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    Science.gov (United States)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  13. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Science.gov (United States)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J. B.; Cano, F. J.; Lapeña, N.

    2015-08-01

    Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an oxidation process occurred in the vicinity of the alloy's intermetallic particles. The amount of the Zr deposits at these locations increased with coating's formulations without Ti, which provided the best corrosion resistance. The Cr-free conversion coatings developed in this study for the AA7075-T6 and AA2024-T3 alloys do not meet yet the strict requirements of the aircraft industry. However, they significantly improved the corrosion

  14. The Study of Heat Treatment Effects on Chromium Carbide Precipitation of 35Cr-45Ni-Nb Alloy for Repairing Furnace Tubes

    Directory of Open Access Journals (Sweden)

    Nakarin Srisuwan

    2016-01-01

    Full Text Available This paper presents a specific kind of failure in ethylene pyrolysis furnace tubes. It considers the case in which the tubes made of 35Cr-45Ni-Nb high temperature alloy failed to carburization, causing creep damage. The investigation found that used tubes became difficult to weld repair due to internal carburized layers of the tube. The microstructure and geochemical component of crystallized carbide at grain boundary of tube specimens were characterized by X-ray diffractometer (XRD, scanning electron microscopy (SEM with back-scattered electrons mode (BSE, and energy dispersive X-ray spectroscopy (EDS. Micro-hardness tests was performed to determine the hardness of the matrix and the compounds of new and used tube material. The testing result indicated that used tubes exhibited a higher hardness and higher degree of carburization compared to those of new tubes. The microstructure of used tubes also revealed coarse chromium carbide precipitation and a continuous carbide lattice at austenite grain boundaries. However, thermal heat treatment applied for developing tube weld repair could result in dissolving or breaking up chromium carbide with a decrease in hardness value. This procedure is recommended to improve the weldability of the 35Cr-45Ni-Nb used tubes alloy.

  15. The role of carbon and chromium on the mechanical and oxidation behavior of nickel-base alloys in high temperature water

    International Nuclear Information System (INIS)

    Constant extension rate testing of controlled-purity nickel-base alloys in argon and high purity, deaerated water at 360 degrees C, have shown that the degree of intergranular cracking (IG) increases as the bulk chromium content and carbon in solution decrease. Constant load testing in argon at 360 degrees C and 430 degrees C have revealed that as the amounts of chromium and carbon in solution decrease, the creep rate increases. The occurrence of severe IG cracking in water correlates with a high steady state creep rate in Ar. This suggests that creep likely plays a role in the IG cracking behavior in water at 360 degrees C. Surface film analysis of a Ni-16Cr-9Fe alloy after exposure in 360 degrees C, deaerated, high purity water for 100 hours revealed that as the carbon in solution is decreased, Cr2O3 is favored. Increasing the Cr content of Ni-16Cr-9Fe-300wppmC to 30 atom % also promoted the formation of Cr2O3. Mechanistically, Cr and C improve the mechanical properties by increasing the creep resistance, while an increase in Cr most likely offers better protection from environmental degradation through the formation of Cr2O3

  16. Atomic scale modelling of chromium diffusion and melting in α-iron and iron-chromium alloys using high-temperature molecular dynamics simulation

    Science.gov (United States)

    Terentiev, Dmitri A.; Malerba, Lorenzo; Olsson, Par; Hou, Marc

    2004-04-01

    EAM interatomic potential to be used for radiation effect simulations in the Fe-Cr system has been recently proposed. In the present work, this potential is used to calculate by means of classical molecular dynamics (MD) the diffusivity of solute Cr atoms in Fe-12%Cr random alloy. Fe self-diffusivity is calculated as well, both in the alloy and in the pure metal, for comparison. In addition, the melting point for both the pure metal and the alloy, as predicted by the potential, has been determined and a comparison between the efficiency of vacancy and interstitial mechanisms for diffusion has been performed. This study allows the validity of the potential to be checked against experimental data outside its fitting range, while providing some insight into the description that this potential gives of irradiation effects. A correct prediction of the diffusivity of solute atoms at high temperature and the melting point are indeed an important pre-requisite for a correct prediction of ion mixing and point defect clustering within a displacement cascade during the thermal spike phase. The conclusion of the study is that the present potential is capable of reproducing with excellent accuracy both the diffusion coefficient and the melting point in Fe and in the Fe-Cr alloy. Atomic diffusion through interstitials is also seen to be a more efficient mechanism than through vacancies in the materials considered.

  17. Comparison of Repairing Effect Between Cobalt Chromium Alloy Porcelain Teeth and Zirconium Dioxide Porcelain Teeth%钴铬合金烤瓷牙和二氧化锆烤瓷牙修复效果对比

    Institute of Scientific and Technical Information of China (English)

    肖银蓉

    2015-01-01

    Objective To compare repairing effect of cobalt chromium alloy porcelain teeth and zirconium dioxide porcelain teeth. Methods To retrospective analyze 96 cases (172 tooth)clinical data of porcelain teeth prosthesis in our department from January 2010 to December 2013, the patients of zirconium dioxide porcelain teeth were 38 cases (70 tooth),which was zirconium dioxide porcelain teeth group,the patients of cobalt chromium alloy porcelain teeth were 58 cases(102 tooth), which was cobalt chromium alloy porcelain teeth group,the clinical result of two groups were compared. Results The effective rate 34 cases (94.73%)of zirco-nium dioxide porcelain teeth and effective rate 53 cases (91.37%)of cobalt chromium alloy porcelain teeth were compared, which was no difference (χ2=0.87,P>0.05). But after treatment of two groups,incidence of complications of cobalt chromium alloy porce-lain teeth group were higher than those of zirconium dioxide porcelain teeth group(χ2=3.95,P0.05)。但是两组患者治疗后,钴铬合金组并发症发生率高于二氧化锆组,差异有统计学意义(χ2=3.95,P<0.05)。结论二氧化锆烤瓷牙的疗效优于钴铬合金烤瓷牙,若患者经济条件允许,应该优先考虑二氧化锆烤瓷牙。

  18. The Effect of Slag on the Effectiveness of Phosphorus Removal from Ferrous Alloys Containing Carbon, Chromium and Nickel

    OpenAIRE

    Kawecka-Cebula E.; Karbowniczek M.; Suliga I.

    2016-01-01

    The aim of this study was to determine the impact of slag composition on phosphorus removal from ferrous solutions containing carbon, chromium and nickel. Additions of cryolite, Na3AlF6, were applied for better fluxing and higher phosphate capacity of the slag. An X-ray analysis of final slags formed during dephosphorization of ferrous solutions containing chromium and nickel with CaO-CaF2 or CaO-CaF2-Na3AlF6 mixtures of different chemical compositions was carried out. The equilibrium composi...

  19. The growth and microstructure of α-Al2O3 on high-temperature iron-chromium-base alloys

    International Nuclear Information System (INIS)

    The morphologies and microstructures of the α-Al2O3 scales developed on Fe-27% Cr-4% Al and Fe-27% Cr-4% Al-0.82% Y in oxygen at 1473 K have been examined using transmission and scanning electron microscopy. The scale formed on the yttrium-free alloy develops a very convoluted configuration, with large areas of loss of contact between the scale and the alloy, and has a relatively equiaxed grain structure. It develops following formation of new oxide at the scale/ alloy interface and at oxide grain boundaries within the scale. The scale formed on the yttrium-containing alloy remains in complete contact with the alloy surface and develops a columnar grain structure. It thickens by formation of new oxide at the scale/alloy interface only. Possible short-circuit diffusion paths are discussed in relation to the observed microstructures of the scales. (author)

  20. Effect of cold working and applied stress on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    In order to grasp the stress corrosion cracking quantitative resistance of Alloys 600 and 690 in PWR primary water, the authors have studied the effect of cold working and applied stress on the stress corrosion cracking resistance of Alloys 600 and 690, in high temperature water. Stress corrosion cracking tests were conducted at 360 degrees C (633K) in a simulated PWR primary water for about 12,000 hours or 24,000 hours. From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked Alloys of thermally treated 690 have the excellent stress corrosion cracking resistance. Further, in this paper, the planning of stress corrosion cracking test for weld joints and weld metal of Alloy 600 is described

  1. Effect of yttrium additions on the tensile properties and hardness of an iron-nickel-chromium alloy

    International Nuclear Information System (INIS)

    Results of the research work show that the addition of 0.1% yttrium does not significantly change the mechanical properties of the AL1 alloy with temperature (even though the yttrium-doped samples did show a slight increase in yield stress and hardness for tests above 7000C); the room temperature strength of the undoped AL1 alloy increases upon annealing at temperatures above 6000C; and the room temperature uniform and fracture strains of the undoped AL1 alloy decrease upon annealing at temperatures above 6000C

  2. The Effect of Artificial Aging on The Bond Strength of Heat-activated Acrylic Resin to Surface-treated Nickel-chromium-beryllium Alloy

    Science.gov (United States)

    Al Jabbari, Youssef S.; Zinelis, Spiros; Al Taweel, Sara M.; Nagy, William W.

    2016-01-01

    Purpose The debonding load of heat-activated polymethylmethacrylate (PMMA) denture base resin material to a nickel-chromium-beryllium (Ni-Cr-Be) alloy conditioned by three different surface treatments and utilizing two different commercial bonding systems was investigated. Materials and Methods Denture resin (Lucitone-199) was bonded to Ni-Cr-Be alloy specimens treated with Metal Primer II, the Rocatec system with opaquer and the Rocatec system without opaquer. Denture base resin specimens bonded to non-treated sandblasted Ni-Cr-Be alloy were used as controls. Twenty samples for each treatment condition (80 specimens) were tested. The 80 specimens were divided into two categories, thermocycled and non-thermocycled, containing four groups of ten specimens each. The non-thermocycled specimens were tested after 48 hours’ storage in room temperature water. The thermocycled specimens were tested after 2,000 cycles in 4°C and 55°C water baths. The debonding load was calculated in Newtons (N), and collected data were subjected by non parametric test Kruskal-Wallis One Way Analysis of Variance on Ranks and Dunn’s post hoc test at the α = 0.05. Results The Metal Primer II and Rocatec system without opaquer groups produced significantly higher bond strengths (119.9 and 67.6 N), respectively, than did the sandblasted and Rocatec system with opaquer groups, where the bond strengths were 2.6 N and 0 N, respectively. The Metal Primer II was significantly different from all other groups (P<0.05). The bond strengths of all groups were significantly decreased (P<0.05) after thermocycling. Conclusions Although thermocycling had a detrimental effect on the debonding load of all surface treatments tested, the Metal Primer II system provided higher values among all bonding systems tested, before and after thermocycling. PMID:27335613

  3. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    International Nuclear Information System (INIS)

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an early process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information

  4. COMPARISON OF BOND STRENGTH OF COMMERCIALLY PURE TITANIUM AND NICKEL CHROMIUM ALLOY WITH THREE DIFFERENT LUTING CEMENTS: AN IN-VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Lakshmi

    2016-06-01

    Full Text Available BACKGROUND Metal ceramic fixed dental prosthesis remains widely used for oral rehabilitation. The type of alloy used to fabricate the metal substructure of the crown also affects its retention. The aim of this study is to compare the bond strength of commercially pure titanium and nickel chromium plates cemented with three different cements and to comparatively evaluate the bond strength of each luting cement. METHODS Specimens of each metal were divided into three groups, which received one of the following luting techniques: Group 1 (CPTi and Group 2 (NiCr with resin cement; Group 3 (CPTi and Group 4 (NiCr with Glass Ionomer Cement; Group 5 (CPTi and Group 6 (NiCr with Zinc phosphate cement. The bonded specimens were submitted for the bond strength tests conducted with a Universal Testing Machine with a shear mode under a crosshead speed of 0.5 mm/min. Debonded specimens were examined under electron microscope. RESULT The results indicate that Group 1 and 2 have significantly higher values than Group 3, 4, 5 and 6. Also, Group 3 and 4 have significantly higher values when compared to Group 5 and 6. Whereas, there was no significant difference between Group 1 and 2, Group 3 and 4 as well as Group 5 and 6. The scanning electron microscope illustrated the different modes of fracture that occurred at the metal cement interface. Resin cement showed predominantly cohesive failure. Glass ionomer cement showed a mixed mode of both cohesive and adhesive fracture and Zinc phosphate cement also showed mixed mode of fracture with predominantly adhesive failure. CONCLUSIONS Resin cements showed the most superior bond with both commercially pure titanium and nickel chromium metal. Zinc phosphate cement showed the lowest bond strength with both the metals. There was no significant difference observed between the cement bond with different metals.

  5. Comparative evaluation of effect of metal primer and sandblasting on the shear bond strength between heat cured acrylic denture base resin and cobalt-chromium alloy: An in vitrostudy

    OpenAIRE

    Sandeep Kalra; Vishwas Kharsan; Nidhi Mangtani Kalra

    2015-01-01

    Aims: The aim of this study was to evaluate the effect of metal primers and sandblasting on the shear bond strength (SBS) of heat cured acrylic denture base resin to cobalt-chromium (Co-Cr) alloy. Materials and Methods: A total number of 40 disk shaped wax patterns (10 mm in diameter and 2 mm in thickness) were cast in Co-Cr alloy. Samples were divided into 4 groups depending on the surface treatment received. Group 1: No surface treatment was done and acts as control group. Group 2: Only san...

  6. The Effect of Slag on the Effectiveness of Phosphorus Removal from Ferrous Alloys Containing Carbon, Chromium and Nickel

    Directory of Open Access Journals (Sweden)

    Kawecka-Cebula E.

    2016-03-01

    Full Text Available The aim of this study was to determine the impact of slag composition on phosphorus removal from ferrous solutions containing carbon, chromium and nickel. Additions of cryolite, Na3AlF6, were applied for better fluxing and higher phosphate capacity of the slag. An X-ray analysis of final slags formed during dephosphorization of ferrous solutions containing chromium and nickel with CaO-CaF2 or CaO-CaF2-Na3AlF6 mixtures of different chemical compositions was carried out. The equilibrium composition of the liquid and the solid phase while cooling the slags from 1673K to 298K was computed using FactSage 6.2 software. The performed equilibrium computations indicated that the slags were not entirely liquid at those temperatures. The addition of cryolite causes a substantial increase of the liquid phase of the slag. It also has a favourable effect on the dephosphorization grade of hot metal. The obtained results were statistically processed and presented in the form of regression equations.

  7. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties

    International Nuclear Information System (INIS)

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. Technologically, cold-drawing is the only way

  8. Stress corrosion cracking of iron-nickel-chromium alloys in primary circuit environment of PWR-type reactors

    International Nuclear Information System (INIS)

    Stress corrosion cracking of Alloy 600 steam generator tubing is a great concern for pressurized water reactors. The mechanism that controls intergranular stress corrosion cracking of Alloy 600 in primary water (lithiated-borated water) has yet to be clearly identified. A study of stress corrosion cracking behaviour, which can identify the main parameters that control the cracking phenomenon, was so necessary to understand the stress corrosion cracking process. Constant extension rate tests, and constant load tests have evidenced that Alloy 600 stress corrosion cracking involves firstly an initiation period, then a slow propagation stage with crack less than 50 to 80 micrometers, and finally a rapid propagation stage leading to failure. The influence of mechanical parameters have shown the next points: - superficial strain hardening and cold work have a strong effect of stress corrosion cracking resistance (decrease of initiation time and increase of crack growth rate), - strain rate was the most suitable parameter for describing the different stage of propagation. The creep behaviour of alloy 600 has shown an increase of creep rate in primary water compared to air, which implies a local interaction plasticity/corrosion. An assessment of the durations of the initiation and the propagation stages was attempted for the whole uniaxial tensile tests, using the macroscopic strain rate: - the initiation time is less than 100 hours and seems to be an electrochemical process, - the durations of the propagation stage are strongly dependent on the strain rate. The behaviour in high primary water temperature of Alloys 690 and 800, which replace Alloy 600, was studied to appraise their margin, and validate their choice. Then the last chapter has to objective to evaluate the crack tip strain rate, in order to better describe the evolution of the different stages of cracking. (author)

  9. 不锈钢中铬的X射线荧光光谱分析%ANALYSIS OF CHROMIUM IN STAINLESS STEEL ALLOY BY X- RAY FLUORESCENCE SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    刘海东; 侯丽华

    2011-01-01

    以北京钢铁研究院研制的GSB 03-2028系列不锈钢标准物质作为光谱标样,采用基本参数法校正基体效应,建立了X射线荧光光谱测定不锈钢中铬元素的方法.用该方法对标准样品进行分析,分析结果和化学法分析值相吻合,10次制样测量,测定结果的相对标准偏差约为0.14%.%X - ray fluorescence spectrometric method was developed for determination of chromium in stainless steel alloy of GSB 03 - 2028 series of standard samples from Beijing Research Institute of ferrous metal. The inter-element effect was corrected by fundamental parameter method. The results were in agreement with those from AAS and chemical method with relative standard deviation of 0.14% (n=10).

  10. Electrochemical investigation of the two-stage decomposition of oxide deposits on a high-alloy chromium nickel steel by the MOPAC decontamination process

    International Nuclear Information System (INIS)

    The dissertation explains the application of the MOPAC technique for decomposition of oxide layers deposited under PWR conditions on an austenitic, high-alloy chromium nickel steel (DIN material number 1.4550). The examinations were mainly done by impedance spectrometry. With this technique, Cr(III)-oxide is oxidized to chromate in a first step, in 'oxidation solution', and the remaining oxide deposit is then dissolved in 'decontamination solution'. The various specimens used for the examinations were pre-treated ('oxidized') in water in an autoclave at 300deg C and 160 bar, remaining there for either one, two, three, six, or eight months. Extensive pre-experiments were carried out with polished sections of the same material. Comparison of the impedance spectra of these specimens with those of specimens from the autoclave were expected to yield data allowing assignment of impedance spectra to specific transformations in the oxide layers produced in the autoclave. It was found out that the treatment in oxidation solution is the decisive step for oxide decomposition, and hence for the entire result of the decontamination process. (orig.)

  11. Influence of additional alloying with nitrogen on structure and properties of high chromium steel Kh17 after hot rolling

    International Nuclear Information System (INIS)

    A study was made into the structure and mechanical properties of steel Kh17 with 0.16% N after hot rolling under various conditions. It is shown that nitrogen alloying promotes steel transition into a two-phase state (α+γ) in heating above 850 deg C and affects mechanical properties of the steel in a hot rolled state. Impact strength is at its maximum in nitrogen containing steel kh17 if the rolling is in the temperature range of α-phase solid solution. Depending on the temperatures of hot rolling beginning and completion the distinctions in steel microstructure are investigated

  12. Stress corrosion cracking behavior of newer iron--chromium--nickel alloys at 5500F in high purity water

    International Nuclear Information System (INIS)

    As part of a long range materials development program, new commercial plant materials were evaluated for future BWR applications. These materials include ferritic, martensitic, austenitic, and austeno-ferritic stainless steels. Each alloy was characterized for chemical composition, microstructure, and mechanical properties. Stress corrosion cracking screening tests were performed in 5500F, high-purity water containing 36 ppM oxygen on uniaxial tensile specimens stressed at 75 percent of the 5500F ultimate tensile strength. Tests were continued to 5000 hours or failure which ever occurred first. Post-test metallographic examinations were performed on the failed specimen. Results of the evaluation program are presented. 12 fig, 3 tables

  13. A comparison of corrosion-resistant steel (18 percent chromium - 8 percent nickel) and aluminum alloy (24st)

    Science.gov (United States)

    Sullivan, J E

    1936-01-01

    In the selection of materials for aircraft application, it is not enough to make the selection on a strength-weight basis alone. A strength-weight comparison is significant but other factors must be considered, for while a material with a high ratio of strength to weight may be perfectly satisfactory for one use, it may be totally unfitted for another. It is essential, among other things, that the probable nature, magnitude, and direction of the principal stresses be given special consideration. The following analysis has therefore been made with this in mind. An attempt has been made to cover insofar as possible the major, but not all the points, that a designer would consider in the use of "18-8", as it is commonly referred to, and 24ST aluminum alloy, as applied to aircraft. 24ST was selected for this comparison as it has practically replaced 17ST for aircraft construction and it appears to have the best combination of properties of the alloys now available for this purpose. The cost of fabrication has not been considered.

  14. TEM characterisation of stress corrosion cracks in nickel based alloys: effect of chromium content and chemistry of environment; Caracterisation par MET de fissures de corrosion sous contrainte d'alliages a base de nickel: influence de la teneur en chrome et de la chimie du milieu

    Energy Technology Data Exchange (ETDEWEB)

    Delabrouille, F

    2004-11-15

    Stress corrosion cracking (SCC) is a damaging mode of alloys used in pressurized water reactors, particularly of nickel based alloys constituting the vapour generator tubes. Cracks appear on both primary and secondary sides of the tubes, and more frequently in locations where the environment is not well defined. SCC sensitivity of nickel based alloys depends of their chromium content, which lead to the replacement of alloy 600 (15 % Cr) by alloy 690 (30 % Cr) but this phenomenon is not yet very well understood. The goal of this thesis is two fold: i) observe the effect of chromium content on corrosion and ii) characterize the effect of environment on the damaging process of GV tubes. For this purpose, one industrial tube and several synthetic alloys - with controlled chromium content - have been studied. Various characterisation techniques were used to study the corrosion products on the surface and within the SCC cracks: SIMS; TEM - FEG: thin foil preparation, HAADF, EELS, EDX. The effect of chromium content and surface preparation on the generalised corrosion was evidenced for synthetic alloys. Moreover, we observed the penetration of oxygen along triple junctions of grain boundaries few micrometers under the free surface. SCC tests show the positive effect of chromium for contents varying from 5 to 30 % wt. Plastic deformation induces a modification of the structure, and thus of the protective character, of the internal chromium rich oxide layer. SCC cracks which developed in different chemical environments were characterised by TEM. The oxides which are formed within the cracks are different from what is observed on the free surface, which reveals a modification of medium and electrochemical conditions in the crack. Finally we were able to evidence some structural characteristics of the corrosion products (in the cracks and on the surface) which turn to be a signature of the chemical environment. (author)

  15. Abatement of Chromium Emissions from Steelmaking Slags - Cr Stabilization by Phase Separation

    OpenAIRE

    Albertsson, Galina

    2013-01-01

    Chromium is an important alloying element in stainless steel but also environmentally harmful element. A number of mineralogical phases present in the slag matrix can contain chromium and lead to chromium leaching. Chromium in slag if not stabilized, could oxidize to the cancerogenic hexavalent state, and leach out if exposed to acidic and oxygen rich environment. Other environmental concerns are slag dusting and chromium escape to the atmosphere. Despite the fact that there is a certain risk...

  16. Chromium depletion from stainless steels during vacuum annealing

    International Nuclear Information System (INIS)

    The behaviour of chromium during selective evaporation by high temperature vacuum annealing has been investigated by means of energy dispersive X-ray analysis and by neutron activation analysis. It was established that the rate of chromium loss from austenitic stainless steels 316 and 321 is controlled by chromium inter-diffusion rather than tracer diffusion in the alloy. Two important parameters in selective removal of chromium from alloy steels are the variation in the chromium surface concentration with time and the depletion profile in the alloy. The present work gives support for the model in which loss of chromium is dependent on its diffusivity in the alloy and on an interface transfer coefficient. The results showed that the surface concentration of chromium decreased with increasing vacuum annealing time. The chromium depletion profile in the metal was in accord with the previous derived model, apart from an anomalous near surface region. Here the higher resolution of a neutron activation technique indicated a region within approximately 2 microns of the surface where the chromium concentration decreased more steeply than expected. (author)

  17. Influence of supply of heat to cobalt-chromium frameworks during soldering and subsequent hardening heat treatment of wrought clasps.

    Science.gov (United States)

    Eriksson, T; Sjögren, G; Bergman, M

    1983-01-01

    Retentive clasp arms of wrought gold alloy wire were soldered to frameworks made of three dental cobalt-chromium alloys. The clasps were then subjected to a conventional hardening heat treatment. Microstructure and hardness of the cobalt-chromium alloys were determined before and after these operations. The results reveal that the supply of heat during soldering and hardening heat treatment of the clasp does not influence the microstructure and hardness of the cobalt-chromium alloys. PMID:6134347

  18. Relación entre factores micro- estructurales e impacto repetido en aleaciones de alto cromo para bolas de molino. // Relationship among factors micro - structural and impact repeated in alloys of high chromium for mill balls.

    Directory of Open Access Journals (Sweden)

    E. Albertin

    2008-01-01

    Full Text Available Las aleaciones de alto cromo son empleadas para la fabricación de bolas de molino en industrias de procesamiento deminerales. Los usuarios y fabricantes requieren lograr mejores resultados técnicos-económicos en sus aplicaciones, por loque necesitan aumentar los conocimientos relacionados con los aspectos estructurales de estos materiales. En este trabajo serealiza una investigación con vistas a establecer relaciones entre la estructura de las aleaciones y su comportamiento ante elimpacto repetido que es un fenómeno característico en estos procesos.Se funden bolas con varias aleaciones hipo eutécticas, eutécticas, e hipereutécticas; se prueban en un equipo que simula elimpacto repetido. Los resultados permiten comprobar los buenos resultados de aleaciones hipo eutécticas con relaciones deCr/C altas y a su vez altos contenidos de Cr y de aleaciones eutécticas para menores relaciones de Cr/C y menorescontenidos de Cr, en ambos casos los carburos eutécticos son de forma simétrica, regulares y no forman redes continuas decarburos asimétricos bordeando los granos, que presentan peores comportamiento en el impacto repetido y que son el casode las hipoeutécticas con bajas relaciones Cr/C y las hipereutécticas donde aparecen también grandes carburos primariosPalabras claves: Alto-cromo, bolas de molino, impacto repetido, desgaste.____________________________________________________________________________Abstract.High Chromium alloys are used to manufacture grinding balls for the Industry of Construction Materials. Customers andusers need to improve their knowledge about the relationships between microstructure and the parts damage in these alloysto obtain better technical-economics results. In this paper the results of a research to obtain different microstructures ofeutectics, hipoeutectics and hipereutectics alloys are presented, searching for the lesser damage in these alloys. These alloysare tested in a repeated impact testing

  19. Effect of manganese and chromium on microstructure and toughness of Fe-Cr-Mn alloys resulting from solid-solution treatment

    International Nuclear Information System (INIS)

    This study is aimed at making clear the effect of Mn and Cr on the microstructure and toughness of an Fe-Cr-Mn alloy which is considered as one of the candidate alloys for reduced activation materials for the first wall application of the fusion reactor. The microstructures of Fe-12% Cr-(5∼30)% Mn(mass%) alloys after solution treatment at 1373 K for 3.6 ks are markedly varied with Mn contents; α'(martensite) + δ(ferrite) in 5% Mn alloy, α' + δ + ε(martensite) + γ(austenite) in the 10% Mn alloy, α' + ε + γ in 15% Mn alloy, ε + γ in the 20% Mn alloy, and ε + γ +δ in the 25% Mn alloy, and γ + δ in the 30% Mn alloy. It is to be noted that the δ phase increases with increasing Mn content when the Fe-12% Cr alloy contains more than 25% Mn, which suggests that Mn plays the role of a ferrite former. In Fe-15% Mn-Cr alloy, the δ phase is not observed in the range of Cr contents up to 12%, whereas it is markedly increased with the addition of 16% Cr. C, N and Ni are very helpful in forming the γ phase in these alloys as generally known in Fe-Cr-Ni alloys. The toughness evaluated by the Charpy impact test at 273 K and room temperature is very low in the 5% Mn alloy which consists of the α' and δ phases. It is, however, significantly improved by a small amount of the γ phase and increases with increase of γ phase stability. (author)

  20. Stainless chromium-nickel steels. Chapter I

    International Nuclear Information System (INIS)

    The chemical composition is tabulated of 90 chromium-nickel stainless steels and alloys given in volume %. The values are also given of the corrosion resistance of the steels and alloys. The tables show data on the surface condition or the methods of material working, types and chemical composition of the medium where corrosion resistance tests were carried out, temperature, pressure, time of tests, corrosion rates, corrosion types, and literature references. A total of 35 references is given. (J.B.)

  1. Possibility to use high-chromium nickel base alloys in accordance with criteria of operational capability of materials for ITEP first wall

    International Nuclear Information System (INIS)

    Experimental data on corrosion resistance, strength and plastic properties are presented for alloy KhNM-1 and steel 00Kh16N15M3B. It is shown that alloy KhNM substantially surpasses austenitic stainless steel in processing (weldability) and operational (tendency to corrosion cracking) properties as a candidate material for ITER first wall and blanket

  2. Fabrication and characterisation of uranium, molybdenum, chromium, niobium and aluminium

    International Nuclear Information System (INIS)

    This paper describes fabrication of binary uranium alloys by melting and casting. The following alloys with nominal composition were obtained by melting in the vacuum furnace: uranium with niobium contents from 0.5%- 4.0% and uranium with molybdenum contents from 0.4% - 1.2%. Uranium alloys with chromium content from 0.4% - 1.2% and uranium alloy with 0.12% of aluminium were obtained by vacuum induction furnace (electric arc melting)

  3. Heterogeneous chromium catalysts

    OpenAIRE

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based silica-containing support, (c) activating the chromium-based silica-containing support, (d) chemically reducing the activated chromium-based silica-containing support to produce a precursor catalyst, (e) r...

  4. Detecting Grain-Boundary Chromium Depletion in Inconel 600

    Science.gov (United States)

    Airey, G. P.; Vaia, A. R.; Pessall, N.; Aspden, R. G.

    1981-11-01

    Techniques to evaluate grain-boundary chromium depletion in Inconel Alloy 600 were investigated. Procedures studied were a modified Huey test, reactivation polarization, magnetic permeability measurements, and eddy current measurements. Results from these tests were correlated with susceptibility to stress-assisted intergranular cracking in polythionic acid. Thermally treated Inconel Alloy 600 steam generator tubing was the principal source of material evaluated, but experimental heats of Ni-Cr-Fe alloys with 8-18 wt.% Cr were prepared to determine the critical chromium level below which stress-assisted intergranular cracking occurs; this critical chromium content was found to be between 9.8 and 11.7 wt.%. All four techniques were considered suitable to evaluate grain-boundary chromium depletion; the modified Huey test and reactivation polarization technique showed a greater sensitivity than the magnetic permeability and eddy current measurements.

  5. Phase stability and high-temperature strengths of high manganese-chromium-iron base alloys as reduced radio-activation materials

    International Nuclear Information System (INIS)

    The Fe-Cr-Mn alloy system has been proposed to replace the Fe-Cr-Ni alloy system in the construction of components for fusion energy devices. The present work is to investigate the potential properties of high Mn-Cr austenitic steels. Especially, the focus is placed on the microstructural stability and high-temperature mechanical properties of Fe-12% Cr-15% Mn-C-N alloys. By the combined addition of 0.2% C and 0.2% N to the Fe-12% Cr-15% Mn alloy, a good microstructural stability of austenitic phase and high-temperature tensile strengths comparable with those of Type 316 austenitic stainless steel are obtained. (orig.)

  6. Effect of chromium content on stress corrosion cracking of shielded metal arc weld metal for 600 type alloy in high temperature pressurized pure water

    International Nuclear Information System (INIS)

    When their Cr contents were increased to the same level as those of the alloy 82(18-22mass%Cr), the weld metals of alloy 182(13-17mass%Cr) sustained only slight SCCs in the as-welded state, and no crack was detected after the post weld heat treatment (SR+LTA) of stress relief annealing at 893 K followed by aging at 673 K. These results suggest that the higher Cr content of the alloy 82 is responsible for its higher resistance to SCC than that of the alloy 182. The carbide, Ni16(Mn, Cr)6Si7 (G phase) was precipitated at the grain boundary in the alloy 182 containing 18.5mass% Cr when the SR+LTA treatment was applied. TEM-EDS analyses suggested that the G phase was enriched in P, and so could decrease the P content in the grain boundary region. Probably, the decreased P content at the grain boundary due to the precipitation of G phase contributed to the enhancement of the SCC resistance of the Cr-added alloy 182 by the SR+LTA treatment. (author)

  7. Comparative evaluation of effect of metal primer and sandblasting on the shear bond strength between heat cured acrylic denture base resin and cobalt-chromium alloy: An in vitrostudy

    Directory of Open Access Journals (Sweden)

    Sandeep Kalra

    2015-01-01

    Full Text Available Aims: The aim of this study was to evaluate the effect of metal primers and sandblasting on the shear bond strength (SBS of heat cured acrylic denture base resin to cobalt-chromium (Co-Cr alloy. Materials and Methods: A total number of 40 disk shaped wax patterns (10 mm in diameter and 2 mm in thickness were cast in Co-Cr alloy. Samples were divided into 4 groups depending on the surface treatment received. Group 1: No surface treatment was done and acts as control group. Group 2: Only sandblasting was done. Group 3: Only metal primer was applied. Group 4: Both metal primer and sandblasting were done. After surface treatment samples had been tested in Universal Testing Machine at crosshead speed of 0.5 mm/min in shear mode and scanning, electron microscope evaluation was done to observe the mode of failure. Statistical Analysis: All the observations obtained were analyzed statistically using software SPSS version 17; one-way analysis of variance (ANOVA and post-hoc Tukey test were applied. Results: The one-way ANOVA indicated that SBS values varied according to type of surface treatment done. The SBS was highest (18.70 ± 1.2 MPa when both sandblasting and metal primer was done when compared with no surface treatment (2.59 ± 0.32 MPa. Conclusions: It could be concluded that the use of metal primers along with sandblasting significantly improves the bonding of heat cured acrylic denture base resin with the Co-Cr alloy.

  8. Effect of chromium content on stress corrosion cracking susceptibility of shielded metal arc weld metals for 600 type alloy in high temperature pressurized pure water

    International Nuclear Information System (INIS)

    The stress corrosion cracking (SCC) susceptibility of the SMAW metals for Inconel alloy 600 to which Cr was added to 14.8-21.4mass% has been investigated on the basis of CBB test in the pressurized hot water (corresponding to the service condition of BWR nuclear power plant), since the TIG weld metal of alloy 82 involving 18-22mass% Cr possesses much better resistance to SCC than the SMAW metal of alloy 182 (Cr content=13-17mass%). When their Cr contents were increased to the same level as those of the alloy 82, the weld metals of alloy 182 sustained only slight SCCs in the as-welded state, and no crack was detected after the post weld heat treatment (SR+LTA) of stress relief annealing at 893 K followed by aging at 673 K. These results suggest that the higher Cr content of the alloy 82 is responsible for its higher resistance to SCC than that of the alloy 182. The Cr carbides precipitated at the grain boundary during the welding and the SR+LTA treatment were also changed from M7C3 type to M23C6 type with the increase in the Cr content. Though the Cr content at the grain boundary in weld metal containing 14.8mass%Cr subjected to the SR+LTA treatment was 3mass%, the Cr content of weld metal containing 18.5mass%Cr was not less than 10mass%. The addition of the Cr to the alloy 182 increased the Cr content in the grain boundary region, suggesting that the intergranular SCC can be suppressed when the Cr content at the grain boundary is not less than 10mass%. In addition to the carbide, Ni16(Mn, Cr)6Si7 (G phase) was precipitated at the grain boundary in the alloy 182 containing 18.5mass% Cr when the SR+LTA treatment was applied. TEM-EDS analyses suggested that the G phase was enriched in P, and so could decrease the P content in the grain boundary region. Probably, the decreased P content at the grain boundary due to the precipitation of G phase contributed to the enhancement of the SCC resistance of the Cr-added alloy 182 by the SR+LTA treatment. (author)

  9. Wear resistance and dynamic fracture toughness of hypoeutectic high-chromium white cast iron alloyed with niobium and vanadium: Odpornost proti obrabi in dinamična lomna žilavost podevtektičnega belega litega železa, legiranega z niobijem in vanadijem:

    OpenAIRE

    Anđić, Zoran; FILIPOVIĆ, Mirjana; Kamberović, Željko; Korać, Marija

    2014-01-01

    The influence of mass fractions 1.5 % Nb and 1.5 % V, added singly and in combination, on the microstructural characteristics and properties relevant to the service performance of the hypoeutectic high-chromium white iron containing 18 % Cr and 2.9 % C, namely, the wear resistance and the fracture toughness, has been examined. The Fe-Cr-C-Nb-V alloy gives the best compromise between the wear resistance and the fracture toughness. The dynamic fracture toughness of this alloy is larger by about...

  10. Chromium, aluminium and titanium effect on nickel corrosion resistance in sodium sulfate and chloride melts

    International Nuclear Information System (INIS)

    The purpose of the study is to determine corrosion resistance of binary nickel alloys, alloyed with aluminium, titanium and chromium, in sodium sulfate and chloride melts. The content of aluminium, titanium and chromium varied from 0 up to 13,2; 21.4 and 36%, respectively. It was estabslished that resistance against slulfide corrosion grows in chromium-alloyed nickel and deoreases in nickel alloyed with aluminium and titanium. Nickel-chronium solid solutions containing > 16 to 17% Cr are characterized by the maximal stability in sodium sulfide melt and Ni3Al and Ni3Ti intermetallics -by the minimal one. Alloying nickel with aluminium titanium (up to 6 to 8%) and chromium (up to 10 to 12%) increases its resistance aginst sodium chloride melt. Binary Ni-Al-, Ni-Ti- and ternary Ni-Al-Ti-alloys possess a lower corrosion resistance in sodium sulfate as compared to sodium chloride

  11. Hexavalent Chromium Workshop

    Science.gov (United States)

    EPA is developing an updated IRIS assessment of hexavalent chromium. This assessment will evaluate the potential health effects of hexavalent chromium from oral and inhalation exposures. An important component of determining the cancer causing potential of ingested hexavalent chr...

  12. Chromium and Genomic Stability

    OpenAIRE

    Wise, Sandra S.; Wise, John Pierce

    2011-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as high...

  13. Galvanic corrosion in odontological alloys

    International Nuclear Information System (INIS)

    Galvanic corrosion can occur when different alloys are placed in direct contact within the oral cavity or within tissues. Concern has been expressed associated with the coupling of selected restorative materials as well as implant material with various alloys used for restorative procedures. This could be critical if the crown or bridge had subgingival finish line with a metallic zone in contact with the tissue, and the implant was made in titanium alloy. The present work shows the results of galvanic coupling studies done on implants of titanium alloy connected to nickel-chromium and cobalt-chromium alloys. (Author)

  14. Distribution of soluble and precipitated iron and chromium products generated by anodic dissolution of 316L stainless steel and alloy C-22: final report

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J; Farmer, J; Gordon, S; King, K; Logotetta, L; Silberman, D

    1999-08-11

    At near neutral pH and at applied potentials above the threshold potential for localized breakdown of the passive film, virtually all of the dissolved chromium appeared to be in the hexavalent oxidation state (Cr(VI)). In acidic environments, such as crevice solutions formed during the crevice corrosion of 316L and C-22 samples in 4 M NaCl, virtually all of the dissolved chromium appeared to be in the trivalent oxidation state (Cr(III)). These general observations appear to be consistent with the Pourbaix diagram for chromium (Pourbaix 1974), pp. 307-321. At high pH and high anodic polarization (pH {approximately} 8 and 800 mV vs. SHE), the predominate species is believed to be the soluble chromate anion (CrO{sub 4}{sup 2{minus}}). At the same pH, but lower polarization (pH {approximately} 8 and 0 mV vs. SHE), the predominate species are believed to be precipitates such as trivalent Cr(OH){sub 3} {center_dot} n(H{sub 2}O) and hexavalent Cr{sub 2}O{sub 3}. In acidified environments such as those found in crevices (pH < 3), soluble Cr{sup 3+} is expected to form over a wide range of potential extending from 400 mV vs. SHE to approximately 1200 mV vs. SHE. Again, this is consistent with the observations from the creviced samples. In earlier studies by the principal investigator, it has been found that low-level chromium contamination in ground water is usually in the hexavalent oxidation state (Farmer et al. 1996). In general, dissolved iron measured during the crevice experiments appears to be Fe(II) in acidic media and Fe(III) in near-neutral and alkaline solutions (table 3). In the case of cyclic polarization measurements, the dissolved iron measured at the end of some cyclic polarization measurements with C-22 appeared to be in the Fe(III) state. This is probably due to the high electrochemical potential at which these species were generated during the potential scan. Note that the reversal potential was approximately 1200 mV vs. Ag/AgCl during these scans. These

  15. 氟离子对两种不同工艺制作的钴铬合金耐腐蚀性能的影响%Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes

    Institute of Scientific and Technical Information of China (English)

    杨秋霞; 杨瑛; 徐晗; 吴迪; 郭恪

    2016-01-01

    目的:   在模拟口腔环境下研究氟离子对采用选择性激光熔覆(SLM)技术和传统铸造技术两种工艺制作的钴铬合金耐腐蚀性的影响。方法   选择具有相同材料成分的钴铬合金金属粉末和金属块,分别采用SLM(SLM组)和铸造技术(Cast组)各制作15个试件,置于含不同氟离子质量分数(0、0.05%、0.20%)的酸性人工唾液(pH值为5.0)中浸泡24 h进行电化学试验,采用动电位极化曲线法测试合金的自腐蚀电位Ecor、自腐蚀电流密度Icor和极化电阻Rp,同时结合扫描电子显微镜(SEM)观察,分析两组试件的耐腐蚀性能。结果   铸造工艺制作的钴铬合金在酸性人工唾液中的Ecor随着氟离子质量分数的升高而减小。当氟离子质量分数为0.20%时,两种工艺制作的钴铬合金的Ecor、Icor、Rp均有明显改变(P<0.05),SEM结果也显示合金表面均出现腐蚀现象。当氟离子质量分数为0.20%时,Cast组钴铬合金的Icor高于SLM组,而Ecor和Rp低于SLM组(P<0.05)。结论   氟离子可降低两种工艺制作的钴铬合金的耐腐蚀性,在氟离子质量分数较高(0.20%)时,SLM技术制作的钴铬合金的耐腐蚀性优于铸造工艺制作的钴铬合金。%Objective This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobaltchromium alloy fabricated by two different technology processes in a simulated oral environment. Methods A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH=5.0). The specimens were soaked in

  16. Study of the quenching and subsequent return to room temperature of uranium-chromium, uranium-iron, and uranium-molybdenum alloys containing only small amounts of the alloying element; Etude de la trempe et du revenu a la temperature ordinaire d'alliages uranium-chrome, uranium-fer et uranium-molybdene, a faible teneur en element d'alliage

    Energy Technology Data Exchange (ETDEWEB)

    Delaplace, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-09-15

    By means of an apparatus which makes possible thermal pre-treatments in vacuo, quenching carried out in a high purity argon atmosphere, and simultaneous recording of time temperature cooling and thermal contraction curves, the author has examined the transformations which occur in uranium-chromium, uranium-iron and uranium-molybdenum alloys during their quenching and subsequent return to room temperature. For uranium-chromium and uranium-iron alloys, the temperature at which the {gamma} {yields} {beta} transformation starts varies very little with the rate of cooling. For uranium-molybdenum alloys containing 2,8 atom per cent of Mo, this temperature is lowered by 120 deg. C for a cooling rate of 500 deg. C/mn. The temperature at which the {beta} {yields} {alpha} transformation starts is lowered by 170 deg. C for a cooling rate of 500 deg. C/mn in the case of uranium-chromium alloy containing 0,37 atom per cent of Cr. The temperature is little affected in the case of uranium-iron alloys. The addition of chromium or iron makes it possible to conserve the form {beta} at ordinary temperatures after quenching from the {beta} and {gamma} regions. The {beta} phase is particularly unstable and changes into needles of the {alpha} form even at room temperatures according to an autocatalytic transformation law similar to the austenitic-martensitic transformation law in the case of iron. The {beta} phase obtained by quenching from the {beta} phase region is more stable than that obtained by quenching from the {gamma} region. Chromium is a more effective stabiliser of the {beta} phase than is iron. Unfortunately it causes serious surface cracking. The {beta} {yields} {alpha} transformation in uranium-chromium alloys has been followed at room temperature by means of micro-cinematography. The author has not observed the direct {gamma} {yields} {alpha} transformation in uranium-molybdenum alloys containing 2,8 per cent of molybdenum even for cooling rates of up to 2000 deg. C

  17. The effect of nitrogen on the coarsening rate of precipitate phases in iron-based alloys with chromium and vanadium. Experimental and theoretical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Lindwall, Greta; Frisk, Karin [Swerea KIMAB AB, Kista (Sweden). Virtual Lab.

    2013-05-15

    A comparison of the coarsening of nitrogen-rich vanadium precipitates and the coarsening of carbon-rich vanadium precipitates is presented. The precipitate phases are studied experimentally, via fabrication of model alloys, and theoretically, via simulations utilizing the DICTRA software. The experimental investigations indicate that the nitrogen-rich precipitates exhibit a slower coarsening behaviour than the carbon-rich precipitates. Analysis using thermodynamic and kinetic modelling shows that this can be explained by the higher thermodynamic stability of the nitrogen-rich precipitate compared to the carbon-rich precipitate. The calculated coarsening rates are compared with the measured rates, and found to be in satisfactory agreement using reasonable values for the interfacial energies. The investigations are motivated by the fine precipitate size distribution of nitrides and carbonitrides characteristic for high nitrogen alloyed tool steels produced by means of powder metallurgy. (orig.)

  18. Effect of yttrium additions on the elevated-temperature tensile properties and hardness of an advanced iron-nickel-chromium LMFBR cladding and duct alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, M.H.

    1981-10-01

    The effect of the addition of yttrium on the elevated temperature tensile properties and hardness of an Fe-34% Ni-12% Cr candidate LMFBR cladding and duct alloy was investigated. Tensile tests were performed from room temperature to 800/sup 0/C in 100/sup 0/C steps at strain rates of 2.2 x 10/sup -3/ and 2.2 x 10/sup -4/ sec/sup -1/. Hardness tests were performed from room temperature to 850/sup 0/C in 50/sup 0/C steps. The addition of 0.1% yttrium decreased the yield stress and ultimate tensile stress in the test temperature range employed. Hardness also decreased over this test temperature range. In tensile tests, dynamic strain aging behavior occurred both for the undoped and doped alloy in the temperature range from 200 to 600/sup 0/C and 300 to 600/sup 0/C for the lower and higher strain rate, respectively.

  19. Effect of yttrium additions on the elevated-temperature tensile properties and hardness of an advanced iron-nickel-chromium LMFBR cladding and duct alloy

    International Nuclear Information System (INIS)

    The effect of the addition of yttrium on the elevated temperature tensile properties and hardness of an Fe-34% Ni-12% Cr candidate LMFBR cladding and duct alloy was investigated. Tensile tests were performed from room temperature to 8000C in 1000C steps at strain rates of 2.2 x 10-3 and 2.2 x 10-4 sec-1. Hardness tests were performed from room temperature to 8500C in 500C steps. The addition of 0.1% yttrium decreased the yield stress and ultimate tensile stress in the test temperature range employed. Hardness also decreased over this test temperature range. In tensile tests, dynamic strain aging behavior occurred both for the undoped and doped alloy in the temperature range from 200 to 6000C and 300 to 6000C for the lower and higher strain rate, respectively

  20. The Production of Nickel-Chromium-Molybdenum Alloy with Open Pore Structure as an Implant and the Investigation of Its Biocompatibility In Vivo

    Directory of Open Access Journals (Sweden)

    Yusuf Er

    2013-01-01

    Full Text Available A dental crown material, Nickel-Chrome-Molybdenum alloy, is manufactured using precision casting method from a polyurethane foam model in a regular and open-pore form, as a hard tissue implant for orthopedic applications. The samples produced have 10, 20, and 30 (±3 pores per inch of pore densities and 0.0008, 0.0017, and 0.0027 g/mm3 densities, respectively. Samples were implanted in six dogs and observed for a period of two, four, and six months for the histopathological examinations. The dogs were examined radiologically in 15-day intervals and clinically in certain intervals. The implants were taken out with surrounding tissue at the end of these periods. Implants and surrounding tissues were examined histopathologically in terms of biocompatibility. As a result, it is seen that new bone tissue was formed, in pores of the porous implant at the head of the tibia in dogs implanted. Any pathology, inflammation, and reaction in old and new tissues were not observed. It was concluded that a dental alloy (Ni-Cr-Mo alloy could also be used as a biocompatible hard tissue implant material for orthopedics.

  1. Influence of various annealing temperatures on the long-term strength under corrosion of a molybdenum alloyed 13% chromium steel in chloride containing media

    International Nuclear Information System (INIS)

    Corrosion fatigue tests were performed at varied levels of tensile strength of the material X20CrMo13 at temperatures of 150 and 2000C in 0.01 n solution of NaCl. A considerable decrease in the resistance to corrosion fatigue could be observed with increasing tensile strength of the material. As expected, the material shows a distinct sensitivity to stress corrosion at the highest tensile strength. Additional investigations of the morphology of the fracture proved that stress corrosion mechanisms are not directly controlling the formation of fracture surfaces. Spots of pitting corrosion on the surface of the samples can be coordinated with the amount of stressing. Pitting and fracture initiation under corrosion fatigue conditions, however, cannot be coordinated. Analyses of the microstructure reveal a layer on the samples which is expected to have a good protective effect against corrosion. Obviously the course of the fatigue corrosion depends on the rebuilding time of passivity which should be influenced by alloying of molybdenum. Under the selected testing conditions, however, the alloying of molybdenum was not yet sufficient to obtain a distinct improvement of the resistance to corrosion fatigue. The investigations will be carried on with the chosen material with higher amounts of alloyed molybdenum. (orig.)

  2. Specific features of the electrocrystallization of chromium together with molybdenum

    International Nuclear Information System (INIS)

    A study was made on molybdenum effect on surface structure and some physicomechanical properties of electrolytic chromium during Cr-Mo electrodeposition from CrO3 solutions with additions of SO42- and SiFe62- anions. Cr-Mo deposition was conducted at 55 deg C and 0.5 A/cm2 current density which corresponds to conditions of hard chromizing. It is shown that the change hardness, hydridation and internal stresses of chromium coatings during their alloying with molybdenum is conditioned by structure change. Mo introduction into chromium is not manifested clearly in these characteristics. The change of chromium structure during deposition with molybdenum is probably related both with change of anion relation in cathode film (decrease of catalytic anion content in it) and peculiarities of chromium electrocrystallization. This requires special study with application of methods for investigation into fine and surface structure

  3. ICP-OES法测定钛合金中的铬%Determination of Chromium in Titanium Alloys by Inductively Coupled Plasma-Optical Emission Spectrometry

    Institute of Scientific and Technical Information of China (English)

    陈磊

    2014-01-01

    A method for determination of Chromium in Titanium by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) was presented in this paper. The experiments studied dissolution methods, selection of analytical spectral lines of elements,acidity and interference conditions, and optimized instruments operating conditions.Under the optimum analytical conditions for a standard sample spiked recovery test, the recovery rate reached between 97%and 103%. For accuracy and precision test, the test results showed that the analysis results were in conformity with certified values, and the relative standard deviation was less than 1.0%.%研究了运用电感耦合等离子体原子发射光谱法(ICP-OES)测定钛合金中的铬元素,试验通过对钛合金的溶解方法、元素分析谱线的选择、酸度的影响、干扰情况消除等方面进行讨论,并对仪器测量条件进行优化。对标准样品进行加标回收试验,回收率在97%~103%之间。进行准确度和精密度试验,测量结果与认定值相符,相对标准偏差<1.0%。

  4. Chromium-manganese steels of transition class

    International Nuclear Information System (INIS)

    Possibilities of nickel replacing by manganese and preparing the same level of mechanical properties as in chromium-nickel steels due to γ-α transformations taking place during property tests, are studied. Chromium-manganese steels with the composition of 0.05-0.1%C, 13-14%Cr, 5.0-6.5%Mn, 0.2-0.5%Si, 0.03-0.13%N, 0.05-0.01%Al and additionally alloyed 0.3-2.0%Cu, 0.05-0.6%V, 0.3-1.0%Mo, 0.02-0.05%Ca in various combinations have been melted. It is shown, that using alloying and heat treatment one can control the phase composition, austenite resistance to martensite transformation during loading and mechanical properties of chromium-manganese steels of the transition class. The use of the phase transformation in the process of testing determines the level of mechanical properties. The optimum development of the transformation accompanied by a sufficient development of processes of hardening and microstresses relaxation permits to obtain a high level of mechanical properties: σsub(B)=1500 MPa, σsub(0.2)-1130MPa, delta=15%, psi=37%, asub(H)=1000 kJ/msup(2) which exceeds the level for chromium-nickel steels. Steels have a lower cost and do not require any complecated heat treatment regime

  5. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  6. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  7. Effect of processing parameters on hardness of selective laser melting cobalt-chromium alloy%加工参数设置对选择性激光熔积钴铬合金硬度的影响

    Institute of Scientific and Technical Information of China (English)

    张碧楚; 曾丽; 忻贤贞; 魏斌

    2015-01-01

    目的:观测几种加工参数设置对选择性激光熔积(SLM)钴铬合金的表面形貌和表面维氏硬度的影响。方法使用正交实验设计9组不同的加工参数,即激光功率为2500W、2750W、3000W,扫描速度为5mm/s、10mm/s、15mm/s,送粉速率为3r/min、4.5r/min、6r/min,制备9组选择性激光熔积钴铬合金试件,每组5个(直径10mm,厚度3mm),经抛光处理后分别进行扫描电镜观察和表面维氏硬度测试,采用SPSS16.0软件包进行数据处理。结果9组不同加工参数制备下SLM钴铬合金试件的扫描电镜图像均呈现均匀而规则的细胞样结构;其平均表面维氏硬度均在345HV以上。结论当加工参数设置在激光功率2500~3000W,扫描速度5~15mm/s,送粉速率3~6r/min范围内时,SLM钴铬合金具有较为理想的表面形貌和表面硬度,能适合临床应用需求。%Objective To investigate the effects of several processing parameters on surface morphol-ogy and surface hardness of cobalt-chromium(Co-Cr) alloy fabricated by selective laser melting (SLM). Methods Nine groups of selective laser melting Co-Cr alloy were fabricated by different processing parameters (laser power:2500W, 2750W, 3000W;scanning speed:5mm/s, 10mm/s, 15mm/s;power feeding rate:3r/min, 4.5r/min, 6r/min) by orthogonal experiment design, each group has five specimens (10mm diameter and 3mm thickness). The speci-mens’ surface morphology was observed by a scanning electron microscope and their Vickers hardness was mea-sured by micro-hardness tester. The data was analyzed with SPSS16.0 software package. Results The SEM im-ages showed all selective laser melting Co-Cr alloy had a homogeneous and regular cellular structure and the mean surface Vickers hardness were all above 345HV. Conclusion When laser power is set at 2500-3000W, scanning speed is set by 5-15mm/s and power feeding rate is set by 3-6r/min, SLM Co-Cr alloy has both ideal surface prop-erty and surface

  8. Low-chromium reduced-activation chromium-tungsten steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J.; Maziasz, P.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Bainitic microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of non-classical bainite were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was found to be considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2 1/4Cr-2W and 2 1/4Cr-2WV steel compositions to increase their hardenability, and the microstructures and mechanical properties were examined.

  9. Standard practice for determining the susceptibility of stainless steels and related Nickel-Chromium-Iron Alloys to stress-corrosion cracking in polythionic acids

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for preparing and conducting the polythionic acid test at room temperature, 22 to 25°C (72 to 77°F), to determine the relative susceptibility of stainless steels or other related materials (nickel-chromiumiron alloys) to intergranular stress corrosion cracking. 1.2 This practice can be used to evaluate stainless steels or other materials in the “as received” condition or after being subjected to high-temperature service, 482 to 815°C (900 to 1500°F), for prolonged periods of time. 1.3 This practice can be applied to wrought products, castings, and weld metal of stainless steels or other related materials to be used in environments containing sulfur or sulfides. Other materials capable of being sensitized can also be tested in accordance with this test. 1.4 This practice may be used with a variety of stress corrosion test specimens, surface finishes, and methods of applying stress. 1.5 This standard does not purport to address all of the safety concerns, if any, ...

  10. The corrosion resistance of two non-noble alloys

    OpenAIRE

    Capelo, Sofia; Fernandes, JCS; Proença, L.; Fonseca, ITE

    2013-01-01

    Nickel-chromium and cobalt-chromium alloys are commonly used for crown and bridge castings. These non-noble dental alloys are much cheaper than noble dental alloys but on the other hand they have disadvantages related to their lower corrosion resistance and corrosion products (released ions), some of them recognized as toxic ions that may cause allergies and other oral pathologies. Therefore it is important to evaluate the corrosion behaviour of such alloys. This study aims to evaluate the...

  11. Influence of nitrogen on the structure and properties of chromium, chromium-molybdenum and chromium-manganese steels

    International Nuclear Information System (INIS)

    Phase transformations, precipitation processes and properties of the chromium, chromium-molybdenum and chromium-manganese steels with a high content of nitrogen as the dependence on thermal treatment were investigated. In case of Fe-0.08C-18Cr-18Mn-N and Fe-0.08C-18Cr-18Mn-2Mo-N steels the samples in the state after solution at temperature 1050oC and 1150oC and 1250oC and after subsequent annealing in 600oC and 800oC were investigated. heat treatment of the Fe-0.5C-10Cr-N and Fe-0.5C-10Cr-1Mo-N steels included austenitizment from 1000oC with air cooling and hardening from 1000oC with oil cooling and tempering in 650oC and 750oC in two hours with cooling in the air. These investigations show that the influence of nitrogen as an alloy element on the phase transformations, precipitation processes, mechanical and corrosion properties is connected with the presence of molybdenum and chromium in the steel. Nitrogen with these elements creates complex ions with the coordinate number 6. This statement is formed on the base of both calculations and investigation results. (author)

  12. Hair chromium concentration and chromium excretion in tannery workers.

    OpenAIRE

    Saner, G; Yüzbasiyan, V; Cigdem, S

    1984-01-01

    Hair and urine samples were collected from 34 male tannery workers and from 12 normal adults. Eighteen of the workers dealt directly with chromium and the remaining 16 (controls) worked in the offices and kitchen of the same factory. All were found to be clinically healthy. Chromium was determined by flameless atomic absorption spectroscopy. When compared with normal adult values, urinary chromium concentration, Cr/Creatinine ratio, daily chromium excretion, and hair chromium, concentrations ...

  13. Nickel-base alloys combat corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, D.C. [VDM Technologies Corp., Houston, TX (United States); Herda, W. [Krupp-VDM GmbH, Werdohl (Germany)

    1995-06-01

    The modern chemical process industry must increase production efficiency to remain competitive. Manufacturers typically meet this challenge by utilizing higher temperatures and pressures, and more-corrosive catalysts. At the same time, the industry has to solve the technical and commercial problems resulting from rigid environmental regulations. To overcome these obstacles, new alloys having higher levels of corrosion resistance have been developed. These materials are based on increased understanding of the physical metallurgy of nickel-base alloys, especially the role of alloying elements. Results of many studies have led to innovations in nickel-chromium-molybdenum alloys containing both high and low amounts of nickel. Higher molybdenum and chromium contents, together with nitrogen additions, have opened up an entirely new class of alloys having unique properties. In addition, a new chromium-base, fully wrought super stainless steel shows excellent promise in solving many corrosion problems. These newer alloys have the ability to combat uniform corrosion, localized corrosion, and stress-corrosion cracking in the harsh halogenic environment of the chemical process industry. This article briefly lists some of the major highlights and corrosion data on recent nickel-chromium-molybdenum and nickel-molybdenum alloys, and the development of a chromium-base, wrought super-austenitic alloy known as Nicrofer 3033 (Alloy 33). Some comparisons with existing alloys are presented, along with a few commercial applications.

  14. Contingency plans for chromium utilization. Publication NMAB-335

    International Nuclear Information System (INIS)

    The United States depends entirely on foreign sources for the critical material, chromium, making it very vulnerable to supply disruptions. This vulnerability results because chromium is essential for the fabrication of corrosion-resisting steels and high-temperature, oxidation-resisting alloys in applications that are vital to the nation's technological well-being; because no substitutes are known for these materials in those applications; and because the known, substantial deposits of chromite ore are only in a few geographical locations that could become inaccessible to the United States as a result of political actions. The effectiveness of programs such as stockpiling, conservation, and research and development for substitutes to reduce the impact of disruption of imports of chromite and ferrochromium are discussed. Alternatives for decreasing chromium consumption also are identified for chromium-containing materials in the areas of design, processing, and substitution

  15. Research Progress on Process of Stainless Steelmaking by Chromium Ore Smelting Reduction and Direct Alloying in a Converter%转炉铬矿熔融还原法不锈钢直接合金化的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘岩; 许力贤; 王德永

    2012-01-01

    The study status of chromium ore smelting reduction process was summarized, based on the introduction of process technologies used for refining stainless steel with hot metal in converter. The existence problems of the study used for refining stainless steel by chromium ore smelting reduction and direct alloying in converter are also discussed. The main problems include that the behavior of chromium ore dissolution in the slag has rarely been reported, the consistent view about the mechanism of smelting reduction has not been achieved, the application of research results is limited and little work about the reaction kinetic model for the production of stainless steel by chromium ore smelting reduction and direct alloying has been done. Consequently, it is of very important strategic significance for the rapid development of stainless steel industry in our country and in the world to strengthen the study and generalization of chromium ore smelting reduction process for stainless steel in China and realize the industrialized production as soon as possible.%在介绍了转炉用铁水冶炼不锈钢工艺技术的基础上,论述了铬矿熔融还原工艺的研究现状,指出目前在转炉铬矿熔融还原法不锈钢直接合金化工艺的研究工作中存在的主要问题包括:对铬矿在渣中溶解行为的研究报道较少,目前为止,尚未对熔融还原机理达成一致观点,研究成果的应用具有局限性以及对于铬矿熔融还原过程反应动力学模型的研究很少.因此,加强铬矿熔融还原工艺的研究和推广工作,使我国早日实现转炉熔融还原直接冶炼不锈钢的工业化生产,将对推动我国和世界不锈钢产业快速发展具有十分重要的战略意义.

  16. Substoichiometric extraction of chromium

    International Nuclear Information System (INIS)

    Substoichiometric extraction of chromium with tetraphenylarsonium chloride (TPACl), tri-n-octylamine (TNOA), diethylammonium diethyldithiocarbamate (DDDC) and ammonium pyrrolidinedithiocarbamate (APDC) was examined in detail. Chromium can be extracted substoichiometrically in a pH range, which is 1.1-2.6 for the TPACl compound, 0.6-2.3 for the TNOA compound, 5.1-6.4 for the DDDC chelate and 3.9-4.9 for the APDC chelate. Chromium in high-purity calcium carbonate, Orchard Leaves (NBS SRM-1571) and Brewers Yeast (NBS SRM-1569) was determined by neutron activation analysis combined with substoichiometric extraction by DDDC and APDC. The values of 2.0+-0.02 ppm and 2.6+-0.2 ppm were obtained for Brewers Yeast and Orchard Leaves, respectively. These values were in good agreement with those reported by NBS. The reaction mechanism and the reaction ratio between hexavalent chromium and dithiocarbamate are also discussed. (author)

  17. Chromium in diet

    Science.gov (United States)

    ... Chromium deficiency may be seen as impaired glucose tolerance. It occurs in older people with type 2 ... PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics Minerals Browse the Encyclopedia ...

  18. The carcinogenicity of chromium

    OpenAIRE

    Norseth, Tor

    1981-01-01

    The carcinogenicity of chromium compounds is reviewed with specific attention to the gaps in knowledge for risk estimation and research needs. The most important problems at present are whether trivalent chromium compounds cause cancer, and whether there is a difference in cancer causing effects between the soluble and the slightly soluble hexavalent compounds in the practical exposure situation. Dose estimates for risk estimation based on epidemiological investigations are also lacking. Pres...

  19. Steam generated conversion coating on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    into functional conversion coatings in order to enhance corrosion resistance and adhesion to paint systems. Chromium based conversion coatings have been extensively used on aluminium alloys to improve adhesion of subsequent paint layers and corrosion resistance. However, the use of hexavalent chromium...

  20. High hardness of alloyed ferrite after nitriding

    International Nuclear Information System (INIS)

    Detailed layer-by layer structure and phase analyses of the diffusion layer of nitrided binary alloys of iron with aluminium, chromium, vanadium and titanium have been carried out by means of a complex technique. Transition d-metals (chromium, vanadium and titanium) raise to a greater degree the solubility of nitrogen in the α solid solution, sharply increases the hardness of ferrite and decrease the depth of the layer. Nitrided binary alloys of iron with chromium, vanadium and titanium are strengthened through precipitation from the nitrogen-saturated α-solid solution of nitrides of alloying elements TiN, VN and CrN of a structure B1. A maximum hardness of ferrite alloyed by chromium, vanadium and titanium is observed after nitriding at 550 deg C when the precipitated special nitrides are fully coherent with the α matrix

  1. Bainitic chromium-tungsten steels with 3 pct chromium

    International Nuclear Information System (INIS)

    Previous work on 3Cr-1.5MoV (nominally Fe-3Cr-2.5Mo-0.25V-0.1C), 2.25Cr-2W (Fe-2.25Cr-2W-0.1C), and 2.25Cr-2WV (Fe-2.25Cr-2W-0.25V-0.1C) steels indicated that the impact toughness of these steels depended on the microstructure of the bainite formed during continuous cooling from the austenization temperature. Microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of nonclassical microstructures were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2.25Cr-2W and 2.25Cr-2WV steel compositions to increase their hardenability. Charpy testing indicated that the new 3Cr-W and 3Cr-WV steels had improved impact toughness, as demonstrated by lower ductile-brittle transition temperatures and higher upper-shelf energies. This improvement occurred with less tempering than was necessary to achieve similar toughness for the 2.25Cr steels and for high-chromium (9 to 12 pct Cr) Cr-W and Cr-Mo steels

  2. High strength ferritic alloy

    International Nuclear Information System (INIS)

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  3. Obtaining decorative chromium plating from trivalent chromium solutions

    OpenAIRE

    Óscar Javier Suárez García

    2010-01-01

    The present work was aimed at a qualitative evaluation, in the laboratory, of different alternatives for assembling and operating a trivalent chromium bath for decorative chromium plating. Different chromium concentration solutions and different complexing agents were used. The initial result of this analysis was that chloride, formate and acetate solutions produced the best results. Solution preparation conditions were evaluated: temperature, chromium III complex formation time and also ...

  4. Characterisation of exposure to total and hexavalent chromium of welders using biological monitoring.

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Heussen, G.A.; Peer, P.G.M.; Verbist, K.; Anzion, R.; Willems, J.

    2008-01-01

    Inhalation exposure to total and hexavalent chromium (TCr and HCr) was assessed by personal air sampling and biological monitoring in 53 welders and 20 references. Median inhalation exposure levels of TCr were 1.3, 6.0, and 5.4 microg/m(3) for welders of mild steel (MS, <5% alloys), high alloy st

  5. Chromium-Makes stainless steel stainless

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  6. Wear resistance of chromium cast iron – research and application

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2006-04-01

    Full Text Available Purpose: A short characteristic of wear resistance chromium cast iron has been presented as well as possibilities of this material researches realization in Foundry Department have been discussed.Design/methodology/approach: Main attention was given on research process of crystallization and analysis of chromium cast iron microstructure and its resistance on erosion wears. Separate part of paper was devoted to discuss the bimetallic castings with chromium cast iron layer as well as typical applications of chromium cast iron castings in minig, proccesing, metallurgical and power industry.Findings: The new method of crystallization process research with three testers (DTA-K3 was found in the work. The method makes possible to characterize sensitivity of chromium cast iron on cooling kinetic.Research limitations/implications: DTA-K3 method can be used for research of crystallization proccess of cast materials particularly for abrasion-resisting alloy.Practical implications: Wide scope researches of chromium cast iron in Foundry Department enable extending applications its material in many industries.Originality/value: Value of the paper is the presentation of researches possibilities which undertaken in Foundry Department within the range of wear resistant materials.

  7. The analytical biochemistry of chromium.

    OpenAIRE

    Katz, S A

    1991-01-01

    The essentiality and carcinogenicity of chromium depend on its chemical form. Oxidation state and solubility are particularly important in determining the biological effects of chromium compounds. For this reason, total chromium measurements are of little value in assessing its nutritional benefits or its toxicological hazards. Aqueous sodium carbonate-sodium hydroxide solutions have been successfully used for extracting hexavalent chromium from a variety of environmental and biological matri...

  8. Electrodeposited tungsten-nickel-boron: A replacement for hexavalent chromium

    International Nuclear Information System (INIS)

    Chromium, deposited from acidic solutions of its hexavalent ion, has been the rule for wear resistant, corrosion resistant coatings for many years. Although chromium coatings are durable, the plating process generates air emissions, effluent rinse waters, and process solutions that are toxic, suspected carcinogens, and a risk to human health and the environment. Tungsten-nickel-boron (W-Ni-B) alloy deposition is a potential substitute for hexavalent chrome. It has excellent wear, corrosion, and mechanical properties and also may be less of an environmental risk. This study examines the electroplating process and deposit properties of W-Ni-B and compares them with those of hexavalent chrome

  9. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    that, above a certain concentration, the oscillatory magnetization becomes commensurate with the lattice. The resistivity and thermoelectric power have also been studied as a function of temperature between 4.2°K and 450°K. Pronounced anomalies were observed in the transport properties just below the...... Néel temperatute, and these are interpreted in terms of the magnitude and position of the magnetic superzone energy gaps and the change in magnetic disorder scattering....

  10. Influence of multi element micro alloying on solidification microstructure and impact wear properties of high chromium cast iron%多元微合金化对高铬铸铁凝固组织及冲击磨损性能的影响

    Institute of Scientific and Technical Information of China (English)

    李秀兰; 周新军; 谢文玲; 马幼平

    2015-01-01

    Titanium,vanadium,niobium and molybdenum were added into 2.85C⁃31Cr high chromium cast iron to prepare multicomponent chromium alloys. The influence of titanium,vanadium,niobium and molybdenum on microsturcture evolvement and impact wear properties was investigated. The results show that carbon in iron liquid together with strong carbides formation elements form the corresponding carbides or alloy carbides. With the increase of addition amount of alloy elements,the microstructure of high chromium cast iron changes from hypereutectic into eutectic and hypoeutectic alloy. The weight losses of the alloy with the same component increase first and then decrease with the increase of impact load(2.0,2.5,3.0,3.5 J),which is related with the hardening behavior of the wearing surface during the impact wear. The more the amount of austenite,the higher the wear weight loss rate. The microstructure with fine size and even distribution can decrease the wear weight loss rate. The wear weight loss for eutectic alloy is the minimum and that for hypoeutectic alloy is the maximum under the same impact load.%通过在2.85C-31Cr合金中加入多元微量合金元素V、Ti、Nb、Mo制备多元铬系合金,研究多元微合金化对高铬铸铁的凝固组织和冲击磨损性能的影响。结果表明:铁液中部分C与强碳化物形成元素结合生成碳化物或合金碳化物;随合金元素加入量的增加,高铬铸铁凝固组织从稍微过共晶转变成共晶、亚共晶组织;相同成分的合金质量损失率随冲击磨损载荷(2.0、2.5、3.0、3.5 J)的增加呈先增加后减小、再增大的变化规律,这与材料在冲击磨损过程中的硬化行为有关;凝固组织中奥氏体数量越多,磨损质量损失率越大,尺寸细小和分布均匀的凝固组织能减小磨损质量损失率;在同一冲击载荷下,共晶成分的合金质量损失率最小,亚共晶成分的质量损失率最大。

  11. Phase equilibria in the uranium-chromium-carbon system

    International Nuclear Information System (INIS)

    The alloys for this study (40 different compositions) were prepared by melting a charge comprising appropriate amounts of the various components and a 'master' alloy under an argon atmosphere on a water-cooled copper tray in an arc furnace equipped with a tungsten electrode. The starting components were uranium of 99.7% purity, graphite with an 0.004% ash content and electrolytically prepared chromium. The alloys were analysed by X-ray spectroscopy, X-ray diffraction analysis and microstructural methods, and a selective chemical analysis was made. As a result of these studies, a new compound of composition 45 at.%Cr - 10 at.%U - 45 at.%C was found; it was subjected to X-ray diffraction analysis. The composition of the compound x(UCr2C3) was refined. The crystallization characteristics of the alloys were established over the entire composition range, a diagram of the non- and monovariant equilibria was drawn and the section for the sub-solidus temperature was constructed over the entire range of concentrations. The isothermal section at 1500-16000C was constructed for the UC2-UC-UCrC2 region; this is characterized by a broad region consisting of a homogeneous solid solution of chromium in the high-temperature (UC-β-UC2) solid solution, which the chromium stabilizes down to a lower temperature. The observed increase of the carbon content in the solid solution with increase in the content of iron can apparently explain the improvement of chromium-modified monocarbide nuclear fuel reported in the literature. The carbon content in uranium-based monocarbide fuel can be increased to approximately 55 at.% by the addition of approximately 7 at.% chromium without change in the crystal structure. The parameters of the tetragonal (UC-β-UC2) lattice were determined to be a=5.041 A and c=5.128 A

  12. Chromium in potatoes

    International Nuclear Information System (INIS)

    Chromium concentration in potatoes was determined, and tubes were labeled either intrinsically or extrinsically with radioactive chromate (51Cr). A labeled chromium complex was isolated from preparations of raw, baked, or fried potatoes and chromatographed on gel permeation media. Potato pulp and peel contained 1.63 and 2.70 μg of Cr/g tissue, respectively. There was no correlation between the two, nor did they respond similarly to changes of variety or locations. No significant differences were apparent in relative migration of the isolated complexes except between raw and cooked extrinsically labeled preparations

  13. Performance of high-velocity oxy-fuel-sprayed chromium carbide-nickel chromium coating in an actual boiler environment of a thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, T.S.; Prakash, S.; Agrawal, R.D. [Industrial Technology Institute, Roorkee (India)

    2007-09-15

    The present study aims to evaluate the performance of a high-velocity oxy-fuel (HVOF)-sprayed Cr{sub 3}C{sub 2}-NiCr (chromium carbide-nickel chromium) coating on a nickel-based super-alloy in an actual industrial environment of a coal-fired boiler, with the objective to protect the boiler super-heater and reheater tubes from hot corrosion. The tests were performed in the platen super heater zone of a coal-fired boiler for 1,000 h at 900 degrees C under cyclic conditions. The Cr{sub 3}C{sub 2}-NiCr coating imparted the necessary protection to the nickel-based super alloy in the given environment. The dense and flat splat structure of the coating, and the formation of oxides of chromium and nickel and their spinels, might have protected the substrate super alloy from the inward permeation of corrosive species.

  14. Chromium--a material for fusion technology

    International Nuclear Information System (INIS)

    Due to their low neutron-induced radioactivity chromium based materials are considered to be candidates for structure materials in fusion technology. In this paper investigations are presented of unirradiated chromium with a purity of 99.96% (DUCROPUR) and a dispersion strengthened chromium alloy Cr5Fe1Y2O3 (DUCROLLOY). Both materials have been produced in a powder metallurgical route. Mechanical tests of smooth and pre-cracked specimens have been performed in a wide temperature range. Below 280 deg. C the fracture toughness values of DUCROPUR are very low (1/2), above the transition temperature they exceed 500 MPa m1/2. Large plastic deformations have been observed. DUCROLLOY does not indicate such a significant increase of fracture toughness in the tested temperature range. But above 400 deg. C large plastic deformations can be obtained in bending samples, too. The fatigue crack propagation behaviour of DUCROPUR at 300 deg. C is similar to that of a ductile metal

  15. Niobium additions in white cast irons alloyed with chromium, for applications at high load abrasive wear; Niobio em ferros fundidos brancos ligados ao cromo, para aplicacoes em desgaste abrasivo

    Energy Technology Data Exchange (ETDEWEB)

    Guesser, Wilson Luiz; Costa, Pedro Henrique Carpinetti; Pieske, Adolar [Fundicao Tupy Ltda. (Brazil)

    1989-12-31

    The influence of niobium additions to chromium white cast irons, submitted to high load abrasive wear, is discussed. In this case, where simultaneous mechanisms of cutting and crack propagation are involved, the recommended niobium contents showed to be related to the intensity of each mechanism action. (author) 22 refs., 17 figs., 2 tabs.

  16. Chromium and aging

    Science.gov (United States)

    Aging is associated with increased blood glucose, insulin, blood lipids, and fat mass, and decreased lean body mass leading to increased incidences of diabetes and cardiovascular diseases. Improved chromium nutrition is associated with improvements in all of these variables. Insulin sensitivity de...

  17. An universal formula for the calculation of nitrogen solubility in liquid nitrogen-alloyed steels

    Directory of Open Access Journals (Sweden)

    J. Siwka

    2009-01-01

    Full Text Available The results of the authors’ own experimental studies on the Fe - N system, its standard state, binary alloys of iron with chromium, molybdenum, manganese, nickel, vanadium, silicon and carbon, as well as ternary alloys with chromium, have made it possible to work out the whole required complex of parameters of nitrogen interaction in liquid iron alloys, including the self-interaction parameters of nitrogen-nitrogen and nitrogen-alloying elements.

  18. An universal formula for the calculation of nitrogen solubility in liquid nitrogen-alloyed steels

    OpenAIRE

    J. Siwka; A. Hutny

    2009-01-01

    The results of the authors’ own experimental studies on the Fe - N system, its standard state, binary alloys of iron with chromium, molybdenum, manganese, nickel, vanadium, silicon and carbon, as well as ternary alloys with chromium, have made it possible to work out the whole required complex of parameters of nitrogen interaction in liquid iron alloys, including the self-interaction parameters of nitrogen-nitrogen and nitrogen-alloying elements.

  19. RESEARCH AND APPLICATION OF AS-CAST WEAR RESISTANCE HIGH CHROMIUM CAST IRON

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The influence of alloy elements, such as boron and silicon, on the microstructure and properties of as-cast high chromium cast iron is studied. The results show that boron and silicon have a great effect on the mechanical properties and the wear resistance. Through proper addition of boron and silicon, the properties of as-cast high chromium cast iron can be improved effectively. Through analyzing the distribution of elements by scanning electron microscope, it has been shown that the addition of boron and silicon lowers the mass fraction of chromium saturated in as-cast austenite, and makes it unstable and liable to be transformed into martensite. The as-cast high chromium cast iron with proper content of boron and silicon is suitable for the manufacture of lining for asphalt concrete mixer and its wear resistance is 14 times that of lining made of low alloy white cast iron.

  20. Chromium(VI) release from leather and metals can be detected with a diphenylcarbazide spot test

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten Stendahl;

    2015-01-01

    exposures. To evaluate the use of diphenylcarbazide (DPC) as a spot test reagent for the identification of chromium(VI) release. A colorimetric chromium(VI) spot test based on DPC was prepared and used on different items from small market surveys. The DPC spot test was able to identify chromium(VI) release...... at 0.5 ppm without interference from other pure metals, alloys, or leather. A market survey using the test showed no chromium(VI) release from work tools (0/100). However, chromium(VI) release from metal screws (7/60), one earring (1/50), leather shoes (4/100) and leather gloves (6/11) was observed...

  1. Special features of joint chromium and molybdenum electrocrystallization surface morphology of physicomechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Vashchenko, S.V.; Adzhiev, B.U.; Solov' eva, Z.A.

    1987-10-01

    The authors studied the effect of molybdenum on the surface structure and certain physicomechanical properties of the electrolytic chromium produced by Cr-Mo electrodeposition from CrO/sub 3/ solutions with added SO/sub 4//sup 2 -/ and SiF/sub 6//sup 2 -/ ions. The results indicate that the changes in hardness, hydrogenation, and internal stresses of the chromium coatings which occur upon alloying with molybdenum are chiefly due to structural changes, while the incorporation of Mo into chromium by itself does not markedly affect these characteristics. The structural changes of chromium which occur following the codeposition of molybdenum evidently are due, not only to a change in the relative concentration of anions in the cathodic film, particularly a decrease in the content of catalytic anions in the film, but also to special features in chromium electrocrystallization, an aspect which requires special consideration involving methods of investigating fine structure and surface composition.

  2. Corrosion resistance enhancement of SAE 1020 steel after Chromium implantation by nitrogen ion recoil

    OpenAIRE

    Geraldo Francisco Gomes; Mario Ueda; Antonio Fernando Beloto; Roberto Zenhei Nakazato; Helfried Reuther

    2005-01-01

    SAE 1020 construction steel is widely used as mortar reinforcement and small machine parts, but aside good surface properties as high ductility, hardness and wear resistance, its surface is prone to severe corrosion. As it is known, Chromium in amount over 12%-13% in the Fe alloys renders them resistance to several corrosive attacks. SAE 1020 samples were recovered with Chromium film and then bombarded either by nitrogen Ion Beam (IB) or Plasma Immersion Ion Implantation (PIII) to recoil impl...

  3. 21 CFR 872.3710 - Base metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  4. Studies of chromium gettering

    International Nuclear Information System (INIS)

    Preliminary results have shown that hydrogen pumping by chromium is a surface effect. Unlike with titanium, the getter material used in many present day tokamaks, there is no significant diffusion into the bulk. Additional experiments have been carried out to measure the basic characteristics of chromium films for gases of interest in tokamak research. These gases include deuterium, oxygen and nitrogen. A vacuum system is described which allowed precise control of the test gas, a constant wall temperature and determination of the projected getter surface area. A quadrupole mass spectrometer, rather than simply a total pressure gauge, was utilized to measure the partial pressure of the test gas as well as the residual gas composition in the system. A quartz crystal monitor was used to measure film thickness. Pumping speeds and sticking coefficients are given as a function of surface coverage for each test gas. A comparison will be made with titanium films deposited in the same vacuum system and under similar conditions

  5. Catalytic Spectrophotometric Determination of Chromium

    OpenAIRE

    STOYANOVA, Angelina Miltcheva

    2005-01-01

    The catalytic effect of chromium(III) and chromium(VI) on the oxidation of sulfanilic acid by hydrogen peroxide was studied. The reaction was followed spectrophotometrically by measuring the absorbance of the reaction product at 360 nm. Under the optimum conditions 2 calibration graphs (for chromium(III) up to 100 ng mL-1, and for chromium(VI) up to 200 ng mL-1) were obtained, using the ``fixed time'' method with detection limits of 4.9 ng mL-1 and 3.8 ng mL-1, respectively...

  6. Microbial Diversity of Chromium-Contaminated Soils and Characterization of Six Chromium-Removing Bacteria

    Science.gov (United States)

    He, Zhiguo; Hu, Yuting; Yin, Zhen; Hu, Yuehua; Zhong, Hui

    2016-06-01

    Three soil samples obtained from different sites adjacent to a chromium slag heap in a steel alloy factory were taken to examine the effect of chromium contamination on soil bacterial diversity as determined by construction of 16S rDNA clone libraries and sequencing of selected clones based on restriction fragment length polymorphism (RFLP) analysis. Results revealed that Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Alphaproteobacteria occurred in all three soil samples, although the three samples differed in their total diversity. Sample 1 had the highest microbial diversity covering 12 different classes, while Sample 3 had the lowest microbial diversity. Strains of six different species were successfully isolated, one of which was identified as Zobellella denitrificans. To our knowledge, this is the first report of a strain belonging to the genus Zobellella able to resist and reduce chromium. Among all isolates studied, Bacillus odysseyi YH2 exhibited the highest Cr(VI)-reducing capability, with a total removal of 23.5 % of an initial Cr(VI) concentration of 350 mg L-1.

  7. Potential resistance of Alloy 82 dissimilar metal welds to primary water stress corrosion cracking

    International Nuclear Information System (INIS)

    Joints between carbon steel and Alloy 600, containing Alloy 82 weld metal, were exposed to a steam-hydrogen environment considered to simulate exposure to primary water conditions in nuclear power plants. A potentially protective external iron oxide film formed on the inner surface of the component. However, the chromium content throughout the weld is below that which would form an external chromium oxide. The results indicate that low chromium content could allow for internal oxidation below the external iron oxide which could increase susceptibility to primary water stress corrosion cracking (PWSCC) compared with an otherwise similar alloy, such as Alloy 800. (author)

  8. Spontaneously Passivating Amorphous Fe-Cr-Mo-Metalloid Alloys in 6 N HCl at Room Temperature and 80℃

    OpenAIRE

    Kobayashi, Ken-ichi; Hashimoto, Koji; MASUMOTO, Tsuyoshi

    1980-01-01

    Amorphous iron-base alloys capable of passivating spontaneously in 6 N HCl at 80℃ were prepared by rapid quenching of molten alloys. The corrosion resistance and passivating ability of the alloys increased with increasing chromium and molybdenum contents. The critical concentrations of chromium and molybdenum in the alloys necessary for spontaneous passivation in 6 N HCl at room temperature and 80℃ were established. These concentrations were greatly affected by coexisting metalloids. The pass...

  9. Influence of chrome on the intergranular corrosion of iron-nickel-chrome alloys of high nickel concentration

    International Nuclear Information System (INIS)

    Integranular corrosion of iron-nickel-chromium alloys has been studied by means of potentiostatic attacks and observations in scanning electron microscopy. The alloys with high contents in chromium and nickel present stronger integranular corrosion. The thermal etching of the same alloys and the analysis of bibliographic data allow to conclude that an increase of chromium and nickel contents involve a decrease of the intergranular (γsub(J)) and superficial (γsub(S)) free energies. The results are interpreted on the basis of chromium segregation. The intergranular enrichment of chromium should be the more important as nickel and chromium contents are high. The influence of minor components, like carbon, is also considered specially on the chromium activity near the grain boundaries. (Auth.)

  10. Corrosion behavior of a high-chromium duplex stainless steel with minor additions of ruthenium in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Potgieter, J.H. [Pretoria Portland Cement, Johannesburg (South Africa). Technical Services Dept.; Brookes, H.C. [Univ. of Natal, Durban (South Africa). Dept. of Chemistry

    1995-04-01

    The influence of small ruthenium additions on the corrosion behavior of high-chromium duplex stainless steels (DSS) was studied. Ruthenium additions ({le} 0.28%) increased the corrosion resistance of the base alloy by simultaneously improving hydrogen evolution efficiency and inhibiting anodic dissolution. The corrosion behavior of the high-chromium DSS with small ruthenium additions differed somewhat from behavior of similar duplex alloys of the 22%-Cr type. The lowering of hydrogen overpotential, which promotes an elevated corrosion potential leading to passivity, was much more significant in the 29%-Cr duplex alloys than in the 22%-Cr types.

  11. CHROMIUM, METABOLIC SYNDROME AND DIABESITY

    Science.gov (United States)

    Suboptimal intakes of the essential nutrient, chromium, are characterized by elevated blood glucose, insulin resistance, obesity, hypertriglyceridemia, and low HDL. These are also signs and symptoms of the metabolic syndrome. Improvements due to increased intake of chromium are related to the degr...

  12. Groundwater contaminant by hexavalent chromium

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, C. [Univ. of Texas, Austin, TX (United States)

    1995-11-01

    Oxidation of trivalent chromium to hexavalent chromium has been investigated as a function of total manganese in soils as well as various incubation conditions. Chromium and manganese contents were analyzed by atomic absorption (graphite furnace and flame emission respectively) following acid digestion. Total hexavalent chromium generation capacity was determined by addition of 0.001 M CrCL3, incubation, and analysis by s-diphenyl carbazide. Samples were then leached with CaSO{sub 4} and MgSO{sub 4} and incubated in various environments (oven, freeze-drier, field moist, ultrafreeze) to test for geogenic generation of Cr(IV). The degree of geogenic generation of hexavalent chromium was compared with total Mn and Cr content as well as hexavalent generational capacity.

  13. Bacterial adhesion of zirconia ceramics versus nickel chromium alloy as oral materials%氧化锆陶瓷与镍铬合金口腔材料的细菌黏附性对比

    Institute of Scientific and Technical Information of China (English)

    韩月红; 成之远; 王明德

    2016-01-01

    BACKGROUND: Experimental and clinical experiences show that the surface roughness of dental restoration materials directly affects bacterial adhesion; in addition, the material composition and physicochemical properties are also important influencing factors. OBJECTIVE: To compare the bacterial adhesion of zirconia ceramics and nickel chromium al oy as oral materials. METHODS: Zirconia ceramics and nickel chromium al oy were respectively cut into 10 pieces of 3. 0 cm ×3.0 cm×0. 2 cm plate specimens. For each material, five pieces were subjected to surface polishing treatment, and the other five pieces were glazed. Surface roughness value of specimens was detected. Experimental strains of Streptococcus mutans was cultured on the specimen surface at 37 ℃ for 48 hours, and the amount of bacteria adhering to the specimen surface was detected. RESULTS AND CONCLUSION: Surface roughness of four groups of specimens showed no difference. The amount of bacteria that adhered to the polishing specimens of zirconia ceramics was significantly lower than that of nickel chromium al oy (P < 0.05), but no difference was found in the amount of bacteria adhering to the glazing specimens of nickel-chromium al oy and zirconia ceramics. These findings indicate that zirconia ceramics has better ability to inhibit bacterial adhesion than nickel-chromium al oy, especial y after glazing.%背景:实验及临床经验表明,修复材料表面的粗糙度直接影响细菌的黏附性,除此之外,材料组成及本身理化性质也是重要影响因素。目的:对比氧化锆陶瓷与镍铬合金口腔材料的细菌黏附性。方法:将氧化锆陶瓷、镍铬合金分别制成3.0 cm ×3.0 cm ×0.2 cm 的板片,每种材料各10片。两种材料各选取其中5片进行抛光处理,另5片进行上釉处理,检测4组试件的粗糙度。将变形链球菌浮液滴加于4组材料表面,37℃厌氧培养48 h,检测各组细菌黏附数量。结果与结论:4

  14. Chromium related degradation of solid oxide fuel cells; Chrom-bezogene Degradation von Festoxid-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Anita

    2011-05-04

    Solid Oxide Fuel Cells (SOFCs) offer a high potential for application as an auxiliary power unit (APU) for heavy goods vehicles as well as combined heat and power (CHP) systems. SOFCs are especially attractive due to their high efficiencies and the use of different fuel types. However, optimization in terms of long term stability and costs are still necessary. This work characterized the degradation of SOFCs with lanthanum strontium manganite (LSM) cathodes under chromium influence. Galvanostatic cell tests were carried out at 800 C with operation times from 250 - 3000 h and variation of the chromium source and current density. The current densities of j = 0 (A)/(cm{sup 2}), j = 0,3 (A)/(cm{sup 2}) and j = 0,5 (A)/(cm{sup 2}) were applied. The high temperature ferritic alloy Crofer22APU was used as a chromium source. Variation of the chromium source was realized by coating the Crofer22APU insert with the chromium retention layer Mn{sub 3}O{sub 4} and the cathode contact layer LCC10. Cell degradation was analyzed with regard to cell voltage, current density and area specific resistance (ASR). Microstructural alterations of the cathode as well as chromium content and distribution across the cell were investigated after completion of the cell tests. For cells with a chromium source present and operation with a nonzero current density, the course of cell degradation was divided into three phases: a run-in, weak linear degradation and strong linear degradation. A decrease of the chromium release rate by means of different coatings stretched the course of degradation along the timescale. Strong degradation, which is characterized by a significant increase in ASR as well as a decrease of current density at the operating point, was only observed when a chromium source in the setup was comb ined with operation of the cell with a non-zero current density. Operation of the cell with a chromium source but no current density caused a degradation of current density at the

  15. Role of paramagnetic chromium in chromium(VI)-induced damage in cultured mammalian cells.

    OpenAIRE

    Sugiyama, M

    1994-01-01

    Chromium(VI) compounds are known to be potent toxic and carcinogenic agents. Because chromium(VI) is easily taken up by cells and is subsequently reduced to chromium(III), the formation of paramagnetic chromium such as chromium(V) and chromium(III) is believed to play a role in the adverse biological effects of chromium(VI) compounds. The present report, uses electron spin resonance (ESR) spectroscopy; the importance of the role of paramagnetic chromium in chromium(VI)-induced damage in intac...

  16. Microstructure and properties of laser surface alloyed PM austenitic stainless steel

    OpenAIRE

    Z. Brytan; M. Bonek; L.A. Dobrzański

    2010-01-01

    Purpose: The purpose of this paper is to analyse the effect of laser surface alloying with chromium on the microstructural changes and properties of vacuum sintered austenitic stainless steel type AISI 316L (EN 1.4404).Design/methodology/approach: Surface modification of AISI 316L sintered austenitic stainless steel was carried out by laser surface alloying with chromium powder using high power diode laser (HPDL). The influence of laser alloying conditions, both laser beam power (between 0.7 ...

  17. Oxidation resistant alloys, method for producing oxidation resistant alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  18. Friction and wear behavior of chromium carbide coatings

    International Nuclear Information System (INIS)

    Chromium carbides, tungsten carbide, and chromium oxide have been tested and evaluated as coatings to protect high-temperature gas-cooled reactor (HTGR) steam generator and other HTGR components from adhesion, galling associated with sliding wear or from fretting. Tests were performed in commercially-pure helium and in helium doped with various gaseous impurities (H2, H2O, CH4, CO) to simulate the primary coolant of an HTGR. Several types of chromium carbide coatings including Cr3C2, Cr7C3, and Cr23C6, were tested for wear resistance and resistance to long-term spalling. Tungsten carbide and chromium oxide coatings were tested in sliding wear tests. Cr23C6-NiCr coatings showed the best performance (from 400 to 8160C) whether they were applied by detonation gun or plasma gun spraying methods. The presence of the Cr23C6-NiCr coatings did not affect the creep rupture properties of Alloy 800H substrates at temperatures up to 7600C. Low-cycle fatigue life of similar specimens at 5930C was reduced to 10 to 20% when tested in the 1 to 0.6% strain range

  19. Fate and transport of chromium through soil

    International Nuclear Information System (INIS)

    Chromium chemistry relevant to the problem facing state of New Jersey (Usa) was examined. Transport of chromium through soil depends on its chemical forms. Transformation of chromium within bulk of soil depends on soil constituents, soil condition, such as pH, Eh and organic compounds applied onto soil or present in soil. Total chromium in soil can be determined. Speciation of chromium based on ionization, hydrolysis, complex formation, redox reactions and adsorption is predicted using MINIQ program

  20. Chromium isotope variations

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary

    Chromium (Cr) stable isotopes are a useful tracer of changes in redox conditions because changes in its oxidation state are accompanied by an isotopic fractionation. For this reason the Cr isotope system is being developed as a potential tool for paleo-redox reconstruction. Dissolved Cr in seawater...... is incorporated into carbonates. Hence, ancient carbonates can potentially record the Cr isotopic composition (δ53Cr ‰) of seawater in the geological past. Reliable application and interpretation of this proxy requires a detailed knowledge about processes that fractionate Cr on the Earth’s surface......, and the quantification the Cr isotope composition of major Cr fluxes into and out of ocean. This thesis adds to the current knowledge of the Cr isotope system and is divided into two studies. The focus of the first study was to determine what processes control the Cr isotopic compositionof river...

  1. Chromium reduction in Pseudomonas putida.

    OpenAIRE

    Ishibashi, Y.; Cervantes, C; Silver, S

    1990-01-01

    Reduction of hexavalent chromium (chromate) to less-toxic trivalent chromium was studied by using cell suspensions and cell-free supernatant fluids from Pseudomonas putida PRS2000. Chromate reductase activity was associated with soluble protein and not with the membrane fraction. The crude enzyme activity was heat labile and showed a Km of 40 microM CrO4(2-). Neither sulfate nor nitrate affected chromate reduction either in vitro or with intact cells.

  2. Chromium reduction in Pseudomonas putida.

    Science.gov (United States)

    Ishibashi, Y; Cervantes, C; Silver, S

    1990-01-01

    Reduction of hexavalent chromium (chromate) to less-toxic trivalent chromium was studied by using cell suspensions and cell-free supernatant fluids from Pseudomonas putida PRS2000. Chromate reductase activity was associated with soluble protein and not with the membrane fraction. The crude enzyme activity was heat labile and showed a Km of 40 microM CrO4(2-). Neither sulfate nor nitrate affected chromate reduction either in vitro or with intact cells. PMID:2389940

  3. Preparation and corrosion resistance studies of nanometric sol-gel-based CeO{sub 2} film with a chromium-free pretreatment on AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shiyan [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li Qing, E-mail: liqingswu@yeah.ne [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chen Bo [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China)

    2010-01-01

    Magnesium alloy, although valuable, is reactive and requires protection before it can be applied in many fields. In this study, a novel protective environmental-friendly gradient coating was performed on AZ91D magnesium alloy by non-chromate surface treatments, which consisted of phytic acid chemical conversion coating and the sol-gel-based CeO{sub 2} thin film. The surface morphologies, microstructure and composition of the coatings were investigated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. The effects of the concentration, layers, temperature of heat treatment of CeO{sub 2} sol on the anti-corrosion properties of the gradient coating for magnesium were also investigated. The results showed that the gradient coating was mainly composed of crystalline CeO{sub 2}. According to the results of electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environmental-friendly surface treatment.

  4. In Vitro Analyses of the Toxicity, Immunological, and Gene Expression Effects of Cobalt-Chromium Alloy Wear Debris and Co Ions Derived from Metal-on-Metal Hip Implants

    Directory of Open Access Journals (Sweden)

    Olga M. Posada

    2015-07-01

    Full Text Available Joint replacement has proven to be an extremely successful and cost-effective means of relieving arthritic pain and improving quality of life for recipients. Wear debris-induced osteolysis is, however, a major limitation and causes orthopaedic implant aseptic loosening, and various cell types including macrophages, monocytes, osteoblasts, and osteoclasts, are involved. During the last few years, there has been increasing concern about metal-on-metal (MoM hip replacements regarding adverse reactions to metal debris associated with the MoM articulation. Even though MoM-bearing technology was initially aimed to extend the durability of hip replacements and to reduce the requirement for revision, they have been reported to release at least three times more cobalt and chromium ions than metal-on-polyethylene (MoP hip replacements. As a result, the toxicity of metal particles and ions produced by bearing surfaces, both locally in the periprosthetic space and systemically, became a concern. Several investigations have been carried out to understand the mechanisms responsible for the adverse response to metal wear debris. This   review aims at summarising in vitro analyses of the toxicity, immunological, and gene expression effects of cobalt ions and wear debris derived from MoM hip implants.

  5. Determination of chromium content in ferrochromium alloy by automatic potentiometric titration%自动电位滴定法测定铬铁合金中的铬含量

    Institute of Scientific and Technical Information of China (English)

    赵晶晶; 宁海龙; 常健辉

    2011-01-01

    A new method based on automatic potentiometric titration was established for the determination of chromium content in ferrochromium. The precision, recovery and accuracy of the method were investigated. The RSD was 0. 07%~0. 09%, and the recovery was 100. 38%~100. 45%. The method is simple and rapid* and the results are satisfactory.%利用自动电位滴定仪,建立了铬铁合金铬含量检测的一种新方法,对方法的准确度、回收率、精密度进行了全面的分析,该方法相对标准偏差为0.07%~0.09%,回收率为100.38~100.45%,该方法操作简便、测定快速,结果令人满意,是一种简便易行的测定铬铁合金中铬含量的新方法.

  6. Hydrogen permeation through chromium

    International Nuclear Information System (INIS)

    Steady state and non-steady state measurements of hydrogen permeation through metallic chromium are reported. The experiments have been conducted by use of hydrogen and deuterium within a pressure range of 10-8 - 1 bar and temperatures between 600 - 8000C. Numerical values for the physical quantities permeability, diffusion constant and solubility could be derived. At an upstream pressure above around 10-3 bar classical Sieverts-low was found (permeation rate proportional √p) with activation energies Qsub(perm) = 65 kJoule/mole, Qsub(Diff) = 4-8 kJoule/mole, Qsub(Sol) = 57-61 kJoule/mole for the respective processes involved. The isotopic effect between H and D of the permeabilities could be represented by a factor of 1,5 independence on temperature. All non steady-state measurements could be approximated reasonably well by classical diffusion kinetics. Below up-stream pressures of approx.= 10-7 bar the kinetics was no longer diffusion controlled, the dependence on up-stream pressure changed from √p -> p, the activation energy for permetation increased to 127 kJoule/mole and the isotopic factor resulted in about 2-3. (orig.)

  7. Effects of Cr and Nb contents on the susceptibility of Alloy 600 type Ni-base alloys to stress-corrosion cracking in a simulated BWR environment

    International Nuclear Information System (INIS)

    In order to discuss the effects of chromium and niobium contents on the susceptibility of Alloy 600 type nickel-base alloys to stress-corrosion cracking in the BWR primary coolant environment, a series of creviced bent-beam (CBB) tests were conducted in a high-temperature, high-purity water environment. Chromium, niobium, and titanium as alloying elements improved the resistivity to stress-corrosion cracking, whereas carbon enhanced the susceptibility to it. Alloy-chemistry-based correlations have been defined to predict the relative resistances of alloys to stress-corrosion cracking. A strong correlation was found, for several heats of alloys, between grain-boundary chromium depletion and the susceptibility to stress-corrosion cracking

  8. Radiation enhanced diffusion in fcc alloys

    International Nuclear Information System (INIS)

    Diffusion mechanisms in fcc materials during irradiation with high energy particles due to vacancies, interstitials, di-interstitials, and dynamic crowdions are discussed. It is shown that in most alloys an increase in the degree of order is obtained by migration vacancies and interstitials, and only in α-copper-zinc alloys mainly interstitials and in nickel-chromium alloy mainly vacancies are able to increase the degree of order during irradiation. the migration activation energies of interstitials and of vacancies for these two alloys are derived. Mass transport also by channeling and by dynamic crowdions is shown for Ni63 in nickel irradiated with 1.85 MeV electrons

  9. A study of lubrication, processing conditions, and material combinations that affect the wear of micro-textured-carbide coated cobalt-chromium-molybdenum alloy surfaces used for artificial joints implants

    Science.gov (United States)

    Ettienne-Modeste, Geriel A.

    Total joint replacement remains one of the most successful treatments for arthritis. The most common materials used for artificial joints are metals (e.g., cobalt-chrome alloys or titanium alloys), which articulate against ultra-high molecular weight polyethylene. Wear related failures of artificial joints may be reduced with the use of novel micro-textured carbide surfaces. The micro-textured carbide surfaces were deposited on a CoCrMo alloy using microwave plasma-assisted chemical vapor deposition. Wear tests were conducted to determine wear mechanisms and properties of the micro-textured surfaces. The research presented in this thesis addresses: (1) rheolgoical behavior of bovine calf serum with and without antibacterial agents to determine whether they can be used as appropriate models for synovial fluid, (2) the wear behavior of the micro-textured CoCrMo surface system, and (3) the mechanical and material properties of the micro-textured CoCrMo alloy surface relevant to wear performance. The rheological studies showed that the apparent viscosity of bovine calf serum increased with an increase in concentration before and after the serum was used for wear testing. The wear analysis showed that the processing conditions (2hr deposition vs. 4hr deposition times) affected the wear properties. The 2hr carbide-on-carbide lubricated in 50% BCS produced the lowest wear factor and rate for the five wear couple systems containing the carbide disk or plate material. Greater wear was produced in serum without penicillin/streptomycin (P/S) compared to the serum containing P/S. A greater carbide coating thickness 10 (micrometers) was produced during the 4hr deposition time than for the 2hr deposition (˜3mum). The nano-hardness value was higher than the micro-hardness for both the 4hr and 2hr carbide surfaces. The micro-hardness results of the worn carbide surfaces showed that an increase in BCS concentration from 0% to 100% increased the micro-hardness (HV) for carbide

  10. Texture in low-alloyed uranium alloys

    International Nuclear Information System (INIS)

    The dependence of the preferred orientation of cast and heat-treated polycrystalline adjusted uranium and uranium -0.1 w/o chromium alloys on the production process was studied. The importance of obtaining material free of preferred orientation is explained, and a survey of the regular methods to determine preferred orientation is given. Dilatometry, tensile testing and x-ray diffraction were used to determine the extent of the directionality of these alloys. Data processing showed that these methods are insufficient in a case of a material without any plastic forming, because of unreproducibility of results. Two parameters are defined from the results of Schlz's method diffraction test. These parameters are shown theoretically and experimentally (by extreme-case samples) to give the deviation from isotropy. Application of these parameters to the examined samples showes that cast material has preferred orientation, though it is not systematic. This preferred orientation was reduced by adequate heat treatments

  11. Heat resistance of multicomponent coatings on the niobium alloys

    International Nuclear Information System (INIS)

    Increase in heat resistance of niobium and its alloys by means of diffusion saturation with aluminium together with the elements reducing its mobility, i.e. chromium and silicon is studied. It is shown that the Cr-Al coating can be used for protection of niobium alloys at the temperatures below 1000 deg C or as a sublayer for silicide coatings. Simultaneous saturation with chromium, aluminium and silicon results in formation of a coating consisting of three layers, heat resistance of which increases considerably as compared to the one observed in the case of two-component saturation with chromium and aluminium. The study of the samples with the Cr-Al-Si coating has also shown that oxidation of alloys in this case proceeds less intensely. Possibility of the coating application for practical purposes for niobium alloys protection from oxidation in the air at high temperatures is shown

  12. Environmentally Assisted Cracking of Nickel Alloys - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  13. Trivalent chromium sorption on alginate beads

    OpenAIRE

    Araújo, M. Manuela; Teixeira, J.A.

    1997-01-01

    The applicability of trivalent chromium removal from aqueous solutions using calcium alginate beads was studied. The equilibrium isotherms were plotted at two temperatures. The relationship between the chromium sorbed and the calcium released was determined as well as the effect of alginate amount and initial pH on the equilibrium results. Chromium sorption kinetics were evaluated as a function of chromium initial concentration and temperature. Transport properties of trival...

  14. On texture formation of chromium electrodeposits

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Leisner, Peter; Horsewell, Andy

    1998-01-01

    The microstructure, texture and hardness of electrodeposited hard, direct current (DC) chromium and pulsed reversed chromium has been investigated. These investigations suggest that the growth and texture of hard chromium is controlled by inhibition processes and reactions. Further, it has been...

  15. Corrosion testing of INCONEL alloy 690 for PWR steam generators

    International Nuclear Information System (INIS)

    INCONEL alloy 690, an austenitic, high-chromium modification of INCONEL alloy 600, was developed to resist stress-corrosion cracking and general corrosion in hightemperature aqueous environments associated with nuclear steam generators. Tests in nitric acid and nitric-hydrofluoric acid show that the high chromium content provides alloy 690 with good resistance to highly oxidizing environments over a wide range of high temperatures and oxygen concentrations, in the presence of crevices and lead or chloride contamination. Alloy 690 releases a negligible amount of material when exposed to high-velocity water at elevated temperatures. In constant extension rate tests, alloy 690 resists crack propagation in a deaerated 10 pct solution of sodium hydroxide better than alloy 600. Long-time tests also suggest greater resistance to intergranular attack in deaerated caustic solutions and to the oxidation of radioactive waste disposal involving nitric-hydrofluoric acid dissolution and vitrification

  16. Chromium Salen Mediated Alkene Epoxidation

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Norrby, Per-Ola; Daly, Adrian M.; Gilheany, Declan G.

    2002-01-01

    The mechanism of alkene epoxidation by chromium(v) oxo salen complexes has been studied by DFT and experimental methods. The reaction is compared to the closely related Mn-catalyzed process in an attempt to understand the dramatic difference in selectivity between the two systems. Overall, the......-spin surface. The low-spin addition of metal oxo species to an alkene leads to an intermediate which forms epoxide either with a barrier on the low-spin surface or without a barrier after spin inversion. Supporting evidence for this intermediate was obtained by using vinylcyclopropane traps. The chromium...

  17. Chromium content of selected Greek foods.

    Science.gov (United States)

    Bratakos, Michael S; Lazos, Evangelos S; Bratakos, Sotirios M

    2002-05-01

    The total chromium content of a wide variety of Greek foods was determined by graphite furnace atomic absorption spectroscopy (GFAAS). Meat, fish and seafood, cereals and pulses were rich sources of chromium (>0.100 microg/g). Fruits, milk, oils and fats and sugar were poor sources. Differences in chromium content were found between different food classes from Greece and those from some other countries. Based on available food consumption data and chromium levels in this study, it was estimated that the chromium intake of Greeks is 143 microg/day, with vegetables, cereals and meat being the main contributors. PMID:12083715

  18. Alloy selection for sulfidation: oxidation resistance in coal gasification environments

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, R.W.; Stoltz, R.E.

    1980-01-01

    A series of iron-nickel-chromium and nickel-chromium alloys were studied for their combined sulfidation-oxidation resistance in simulated coal gasification environments. All alloys contained a minimum of 20 w/o chromium, and titanium and aluminum in the range 0 to 4 w/o. Corrosion resistance was evaluated at 1255/sup 0/K (1800/sup 0/F) in both high BTU and low BTU coal gasification atmospheres with 1 v/o H/sub 2/S. Titanium at levels greater than 1 w/o imparted significant sulfidation resistance due to an adherent, solid solution chromium-titanium oxide layer which prevented sulfur penetration. Aluminum was less effective in preventing sulfidation since surface scales were not adherent. Of the commercial alloys tested, Nimomic 81, Pyromet 31, IN801, and IN825 exhibited the best overall corrosion resistance. However, futher alloy development, tailored to produce solid solution chromium-titanium oxide scales, may lead to alloys with greater sulfidation-oxidation resistance than those investigated here.

  19. Aluminium effect on steel with 12%-chromium and various manganese contents

    International Nuclear Information System (INIS)

    To increase heat resistance, aluminium has been added to medium-carbon chromium-manganese steels, and its effect on the phase composition and microstructure has been studied. The investigation of alloys has been carried out over polythermal sections of the five-component Fe-C-Cr- Mn system at the constant carbon, chromium and aluminium content and cariable concentrations of manganese in the range of 1150 - 650 deg C. To study phase and structure transformations of alloys at high temperatures, the structure-hardening method has been used. The hardness of alloys containing to 12.6% of manganese appreciably depends on the quenching temperature. It is substantially higher in the original alloy quenched at high temperatures compared to the quenching at lower temperatures. It is due to the transition of its base from martensite-ferrite to ferrite state at 1000 deg C. The results obtained and the data of x-ray diffraction analysis allow a polythermal section of the Fe-C-Cr-Mn-Al system to be constructed at the constant 12%-chromium content, 2.4%-aluminium, 0.37%-carbon and variable manganese contents

  20. Nitriding of iron-based alloys : residual stresses and internal strain fields

    OpenAIRE

    Vives Díaz, Nicolás

    2007-01-01

    Different iron-chromium alloys (4, 8, 13 and 20 wt.% Cr) were nitrided in NH3/H2 gas mixtures at 580 ºC. The nitrided microstructure was investigated by X-ray diffraction, light microscopy, hardness measurements and scanning electron microscopy. Composition depth-profiles of the nitrided zone were determined by electron probe microanalysis. Various microstructures develop, depending on the nitriding conditions and the alloy composition (chromium content). The initial development of coherent, ...

  1. LASER SURFACE ALLOYING OF A MILD STEEL FOR CORROSION RESISTANCE IMPROVEMENT

    OpenAIRE

    Fouquet, F.; Renaud, L.; Millet, J.; Mazille, H.

    1991-01-01

    Surface alloys were produced by laser melting of different predeposits into the outer part of a mild steel substrate. Three types of coatings were used : electroless nickel (containing phosphorous), electroless nickel in which chromium carbide particles were introduced during deposition and duplex coatings made of, first, a nickel layer (electroless or electrodeposited) and then, a chromium layer. The surface alloying treatments were performed using a cw high power CO2 laser and the multiple ...

  2. The effect of carbon on the metallography of a nickel base removable partial denture casting alloy.

    Science.gov (United States)

    Lewis, A J

    1979-04-01

    This study has demonstrated the pattern of carbide development associated with progressive increases in carbon content in a series of six nickel chromium alloys. The carbon content is critical since it influences the production and distribution of carbides, which have been shown to alter the mechanical properties, of the nickel chromium alloys, that are dependent upon the development of gamma prime. Furthermore, it has been shown that the attainment of suitable strength is invariably associated with an unacceptable level of ductility. PMID:288385

  3. Corrosion of high temperature alloys in solar salt at 400, 500, and 680%C2%B0C.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-09-01

    Corrosion tests at 400, 500, and 680%C2%B0C were performed using four high temperature alloys; 347SS, 321SS In625, and HA230. Molten salt chemistry was monitored over time through analysis of nitrite, carbonate, and dissolved metals. Metallography was performed on alloys at 500 and 680%C2%B0C, due to the relatively thin oxide scale observed at 400%C2%B0C. At 500%C2%B0C, corrosion of iron based alloys took the form of chromium depletion and iron oxides, while nickel based alloys also had chromium depletion and formation of NiO. Chromium was detected in relatively low concentrations at this temperature. At 680%C2%B0C, significant surface corrosion occurred with metal losses greater than 450microns/year after 1025hours of exposure. Iron based alloys formed complex iron, sodium, and chromium oxides. Some data suggests grain boundary chromium depletion of 321SS. Nickel alloys formed NiO and metallic nickel corrosion morphologies, with HA230 displaying significant internal oxidation in the form of chromia. Nickel alloys both exhibited worse corrosion than iron based alloys likely due to preferential dissolution of chromium, molybdenum, and tungsten.

  4. Transmission electron microscope studies of the chromium cast iron modified at use of B4C addition

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2010-10-01

    Full Text Available Results of studies of the high alloy chromium cast iron with boron addition in form of the B4C phase powder are presented in this paper.The main field of interest is the identification of phases based on the transmission electron microscope study, occurred in this alloy aftersolidification process. The structure mainly consists of the austenite matrix and M7C3 carbide identified as the Cr7C3 phase.

  5. Determination of chromium combined with DNA, RNA and protein in chromium-rich brewer's yeast

    International Nuclear Information System (INIS)

    The contents of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast were determined with the neutron activation analysis in order to study the combination of Cr with DNA, RNA and protein in chromium-rich brewer's yeast. The results showed that the extracting rats and concentrations of DNA, RNA and protein had no significant difference in two types of yeast, but the chromium contents of DNA, RNA and protein in the chromium-rich yeast were significantly higher than those in the normal. In addition, the content of chromium in DNA was much higher than that in RNA and protein, which indicated that the inorganic chromium compounds entered into the yeast cell, during the yeast cultivation in the culture medium containing chromium were converted into organic chromium compounds combined with DNA, RNA and protein

  6. The behaviour of chromium in aquatic and terrestrial food chains

    International Nuclear Information System (INIS)

    Chromium has been considered both as potential radioactive and conventional pollutant. Chromium-51 is produced by the activation of 50Cr, which may be present either as a component of steel alloys used in reactors, or in Na2CrO4 added as an anticorrosion agent to the cooling water. Only small amounts of 51Cr are normally found in the liquid waste of nuclear power plants before discharge into rivers. In exceptional situations, however, as a result of the direct release of cooling waters, the aquatic environments may receive relatively large quantities of 51Cr. Part of this 51Cr is adsorbed e.g. to the sediments, but a fraction remains in solution in the river water. Somme accumulation of the radionuclide is observed in fresh water and marine organisms. Therefore, although 51Cr has a relatively short physical half life (27.8d), it is of interest to acquire better information on its accumulation by different species of fresh water organisms and plants, as well as on its behaviour in soils, in order to evaluate the relative importance of this nuclide in the radioactive contamination of the aquatic and terrestrial food chains. As a related and sometimes associated pollutant, stable chromium is also taken into consideration. This element occurs fairly frequently as an environmental pollutant in many countries, either because of its abundance in soils derived from serpentine or because of its release to the environment from industrial wastes. The sequence of presentation of the experiment data is based on the consecutive steps of the contamination process: aquatic environment, soils, plant link of the food chain. Special attention is paid, in the different chapters, to the behaviour of various chemical forms of chromium and to their distribution in different fractions: soluble in water, adsorbed, precipitated on particles or complexed with organic material

  7. Corrosion behavior of tantalum-coated cobalt-chromium modular necks compared to titanium modular necks in a simulator test.

    Science.gov (United States)

    Dorn, Ulrich; Neumann, Daniel; Frank, Mario

    2014-04-01

    This study compared the corrosion behavior of tantalum-coated cobalt-chromium modular necks with that of titanium alloy modular necks at their junction to titanium-alloy femoral stem. Tests were performed in a dry assembly and two wet assemblies, one contaminated with calf serum and the other contaminated with calf serum and bone particles. Whereas the titanium modular neck tested in the dry assembly showed no signs of corrosion, the titanium modular necks tested in both wet assemblies showed marked depositions and corrosive attacks. By contrast, the tantalum-coated cobalt-chromium modular necks showed no traces of corrosion or chemical attack in any of the three assemblies. This study confirms the protective effect of tantalum coating the taper region of cobalt-chromium modular neck components, suggesting that the use of tantalum may reduce the risk of implant failure due to corrosion. PMID:24099841

  8. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  9. Corrosion behavior of HVOF-sprayed and Nd-YAG laser-remelted high-chromium, nickel-chromium coatings

    Science.gov (United States)

    Tuominen, J.; Vuoristo, P.; Mäntylä, T.; Ahmaniemi, S.; Vihinen, J.; Andersson, P. H.

    2002-06-01

    Thermal spray processes are widely used to deposit high-chromium, nickel-chromium coatings to improve high temperature oxidation and corrosion behavior. However, despite the efforts made to improve the present spraying techniques, such as high-velocity oxyfuel (HVOF) and plasma spraying, these coatings may still exhibit certain defects, such as unmelted particles, oxide layers at splat boundaries, porosity, and cracks, which are detrimental to corrosion performance in severe operating conditions. Because of the process temperature, only mechanical bonding is obtained between the coating and substrate. Laser remelting of the sprayed coatings was studied in order to overcome the drawbacks of sprayed structures and to markedly improve the coating properties. The coating material was high-chromium, nickel-chromium alloy, which contains small amounts of molybdenum and boron (53.3% Cr, 42.5% Ni, 2.5% Mo, 0.5% B). The coatings were prepared by HVOF spraying onto mild steel substrates. A high-power, fiber-coupled, continuous-wave Nd:YAG laser equipped with large beam optics was used to remelt the HVOF-sprayed coating using different levels of scanning speed and beam width (10 or 20 mm). Coating that was remelted with the highest traverse speed suffered from cracking because of the rapid solidification inherent to laser processing. However, after the appropriate laser parameters were chosen, nonporous, crack-free coatings with minimal dilution between coating and substrate were produced. Laser remelting resulted in the formation of a dense oxide layer on top of the coatings and full homogenization of the sprayed structure. The coatings as sprayed and after laser remelting were characterized by optical and electron microscopy (OM, SEM, respectively). Dilution between coating and substrate was studied with energy dispersive spectrometry (EDS). The properties of the laser-remelted coatings were directly compared with properties of as-sprayed HVOF coatings.

  10. Tissues and urinary chromium concentrations in rats fed high-chromium diets

    International Nuclear Information System (INIS)

    Complete text of publication follows. Chromium is an essential trace elements and enhances the function of insulin as a form of chromodulin. In the subjects with a certain type of diabetics, 200 to 1,000 μg/d of chromium is administered to reduced the symptoms of diabetics. However, although there are not any health-promotive effects of chromium-administration in healthy subjects, various types of chromium supplements are commercially available in many countries; the adverse effects caused by an excessive chromium intake are feared. In the present study, to clarify the tolerable upper limit of chromium, tissue and urinary chromium concentrations, liver function and iron status were examined in rats fed high-chromium diets. Thirty-six male 4-weeks Wistar rats were divided into six groups and fed casein-based diets containing 1, 10 or 100 μg/g of chromium as chromium chloride (CrCl3) or chromium picolinate (CrPic) for 4 weeks. After the feeding, chromium concentrations in liver, kidney, small intestine and tibia were determined by inductively coupled plasma-mass spectrometry. In addition, urine samples were collected on 3rd to 4th week and their chromium concentrations were also determined. Chromium concentrations in liver, kidney, small intestine and tibia were elevated with increase of dietary chromium concentration. Urinary chromium excretion was also elevated with the increase of dietary chromium and the rate of urinary chromium excretion was less than 2% to dietary chromium intake in all the experimental groups. In the administration of 100 μg/g of chromium, rats given CrCl3 showed significantly higher tibia chromium concentration and lower urinary chromium excretion than those given CrPic. There were not any differences in iron status among the experimental groups. Activities of serum aspartate aminotransferase and alanine aminotransferase in rats fed diet containing 100 μg/g of chromium as CrPic were significantly higher than those in rats fed other diets.

  11. Postirradiation deformation behavior in ferritic Fe-Cr alloys

    International Nuclear Information System (INIS)

    It has been demonstrated that fast-neutron irradiation produces significant hardening in simple Fe-(3-18)Cr binary alloys irradiated to about 35 dpa in the temperature range 365 to 420 degrees C, whereas irradiation at 574 degrees C produces hardening only for 15% or more chromium. The irradiation-induced changes in tensile properties are discussed in terms of changes in the power law work-hardening exponent. The work-hardening exponent of the lower chromium alloys decreased significantly after low-temperature irradiation (≤ 420 degrees C) but increased after irradiation at 574 degrees C. The higher chromium alloys failed either in cleavage or in a mixed ductile/brittle fashion. Deformation microstructures are presented to support the tensile behavior

  12. Hot corrosion of TD nickel and TD nickel chromium in a high velocity gas stream.

    Science.gov (United States)

    Sanders, W. A.; Probst, H. B.

    1971-01-01

    Results of cyclical tests of TD nickel (2% thoria-dispersed nickel) and TD nickel chromium (2% thoria-dispersed nickel-20% chromium alloy) 1.5 mm (60 mil) sheet specimens for susceptibility to hot corrosion in a Mach 0.5 gas stream of Jet A-1 fuel combustion products containing 2 ppm sea salt. Tests as long as 500 one-hour cycles between room temperature and specimen hot zone temperatures of 899 C (1650 F), 982 C (1800 F), and 1149 C (2100 F) were performed. Evidence of hot corrosion was found for both materials in the 899 C (1650 F) and 982 C (1800 F) tests, but not at 1149 C (2100 F). It was concluded that because of high metal thickness losses neither alloy in sheet form is suitable for long-time engine application in a hot corrosion environment at temperatures of 982 C (1800 F) or above.

  13. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag

    International Nuclear Information System (INIS)

    Hexavalent chromium (Cr) is a toxic element causing serious environmental threat. Recently, more and more attention is paid to the bio-remediation of Cr (VI) in the contaminated soils. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag at a steel-alloy factory in Hunan Province, China, was investigated in the present study. The results showed that when sufficient nutrients were amended into the contaminated soils, total Cr (VI) concentration declined from the initial value of 462.8 to 10 mg kg-1 at 10 days and the removal rate was 97.8%. Water soluble Cr (VI) decreased from the initial concentration of 383.8 to 1.7 mg kg-1. Exchangeable Cr (VI) and carbonates-bound Cr (VI) were removed by 92.6% and 82.4%, respectively. Meanwhile, four Cr (VI) resistant bacterial strains were isolated from the soil under the chromium-containing slag. Only one strain showed a high ability for Cr (VI) reduction in liquid culture. This strain was identified as Pannonibacter phragmitetus sp. by gene sequencing of 16S rRNA. X-ray photoelectron spectroscope (XPS) analysis indicated that Cr (VI) was reduced into trivalent chromium. The results suggest that indigenous bacterial strains have potential application for Cr (VI) remediation in the soils contaminated by chromium-containing slag.

  14. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag.

    Science.gov (United States)

    Chai, Liyuan; Huang, Shunhong; Yang, Zhihui; Peng, Bing; Huang, Yan; Chen, Yuehui

    2009-08-15

    Hexavalent chromium (Cr) is a toxic element causing serious environmental threat. Recently, more and more attention is paid to the bio-remediation of Cr (VI) in the contaminated soils. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag at a steel-alloy factory in Hunan Province, China, was investigated in the present study. The results showed that when sufficient nutrients were amended into the contaminated soils, total Cr (VI) concentration declined from the initial value of 462.8 to 10 mg kg(-1) at 10 days and the removal rate was 97.8%. Water soluble Cr (VI) decreased from the initial concentration of 383.8 to 1.7 mg kg(-1). Exchangeable Cr (VI) and carbonates-bound Cr (VI) were removed by 92.6% and 82.4%, respectively. Meanwhile, four Cr (VI) resistant bacterial strains were isolated from the soil under the chromium-containing slag. Only one strain showed a high ability for Cr (VI) reduction in liquid culture. This strain was identified as Pannonibacter phragmitetus sp. by gene sequencing of 16S rRNA. X-ray photoelectron spectroscope (XPS) analysis indicated that Cr (VI) was reduced into trivalent chromium. The results suggest that indigenous bacterial strains have potential application for Cr (VI) remediation in the soils contaminated by chromium-containing slag. PMID:19246154

  15. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag

    Energy Technology Data Exchange (ETDEWEB)

    Chai Liyuan; Huang Shunhong [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Yang Zhihui, E-mail: yangzh@mail.csu.edu.cn [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Peng Bing; Huang Yan; Chen Yuehui [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2009-08-15

    Hexavalent chromium (Cr) is a toxic element causing serious environmental threat. Recently, more and more attention is paid to the bio-remediation of Cr (VI) in the contaminated soils. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag at a steel-alloy factory in Hunan Province, China, was investigated in the present study. The results showed that when sufficient nutrients were amended into the contaminated soils, total Cr (VI) concentration declined from the initial value of 462.8 to 10 mg kg{sup -1} at 10 days and the removal rate was 97.8%. Water soluble Cr (VI) decreased from the initial concentration of 383.8 to 1.7 mg kg{sup -1}. Exchangeable Cr (VI) and carbonates-bound Cr (VI) were removed by 92.6% and 82.4%, respectively. Meanwhile, four Cr (VI) resistant bacterial strains were isolated from the soil under the chromium-containing slag. Only one strain showed a high ability for Cr (VI) reduction in liquid culture. This strain was identified as Pannonibacter phragmitetus sp. by gene sequencing of 16S rRNA. X-ray photoelectron spectroscope (XPS) analysis indicated that Cr (VI) was reduced into trivalent chromium. The results suggest that indigenous bacterial strains have potential application for Cr (VI) remediation in the soils contaminated by chromium-containing slag.

  16. Food Chromium Contents, Chromium Dietary Intakes And Related Biological Variables In French Free-Living Elderly

    Science.gov (United States)

    Chromium (Cr III), an essential trace element, functions in potentiating insulin sensitivity, regulating glucose homeostasis, improving lipid profile, and maintaining lean body mass. Glucose intolerance and chromium deficiency increase with age, and could be aggravating factors of the metabolic synd...

  17. Study of structural transformations occuring in low carbon chromium-molybdenum ferritic steels: influence of small additions of vanadium and niobium

    International Nuclear Information System (INIS)

    This study has been carried out on several low carbon chromium-molybdenum ferritic steels: 2,25%0C to 13000C. In the case of alloys with high chromium concentration and additions of vanadium and niobium, the austenitic transformation is partial, and heat treating at higher temperatures results in increased delta transformation, a phenomenon which is accentuated by an important sensitivity to decarburization. Austenitic transformation during cooling leads to two types of CCT curves according to chromium content. Variations in chemical composition and austenitizing temperature significantly modify these diagrams, in particular those of the niobium stabilized steels. The morphology of the structures produced are very diverse, without important presence of residual austenite. The tempering behaviour in anisothermal and isothermal conditions was followed, and the temperature range limits within which precipitation reactions occur were determined in view of characterizing for each alloy the different types of precipitates formed and their influence on the mechanical resistance of the alloy after tempering

  18. Soils contaminated with hexavalent chromium

    OpenAIRE

    Fonseca, Bruna Catarina da Silva

    2011-01-01

    Tese de doutoramento em Engenharia Química e Biológica The interest in environmental soil science has been growing in the last years due to the continuous degradation of this major natural resource. With this in mind, and because chromium and lead are two of the most toxic heavy metals frequently detected as soil contaminants in the Portuguese territory, the study and development of few remediation techniques and the indissociable description of the sorption and migration of...

  19. Carbon, chromium and molybdenum contents

    International Nuclear Information System (INIS)

    This work describes solidification experiments on white cast iron, with 15 and 20% of chromium, 2.3, 3.0 and 3.6 % of carbon and 0.0, 1.5 and 2.5 % of molybdenum in test de samples with 30 mm diameter. Measurements were performed on the austenite and eutectic formation arrests, the number of the eutectic carbide particles relative to the total and the eutectic volumes, and the volume fraction of the primary austenite

  20. Exposure to cobalt chromium dust and lung disorders in dental technicians.

    OpenAIRE

    Seldén, A. I.; Persson, B; Bornberger-Dankvardt, S. I.; Winström, L. E.; Bodin, L S

    1995-01-01

    BACKGROUND--Dental technician's pneumoconiosis is a dust-induced fibrotic lung disease of fairly recent origin. This study was carried out to estimate its occurrence in Sweden. METHODS--Thirty seven dental technicians in central and south eastern Sweden with at least five years of exposure to dust from cobalt chromium molybdenum (CoCrMo) alloys, identified by postal survey, agreed to undergo chest radiography and assessment of lung function and exposure to inorganic dust. RESULTS--Six subject...

  1. Preparation and Characterization of Nanocrystalline Hard Chromium Coatings Using Eco-Friendly Trivalent Chromium Bath

    OpenAIRE

    V. S. Protsenko; V. O Gordiienko; Danilov, F. I.; Kwon, S.C.

    2011-01-01

    A new aqueous sulfate trivalent chromium bath is described. The chromium bath contains formic acid and carbamide as complexing agents. Chromium was deposited at a temperature of 30÷40 oC and a cathode current density of 10÷25 A dm-2. The bath allows obtaining thick (up to several hundred micrometers) hard chromium coatings with nanocrystalline structure. The electrodeposition rate reaches 0.8÷0.9 µm min-1.

  2. Density of liquid NiCoAlCr quarternary alloys measured by modified sessile drop method

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; ZHANG Shu-fang; XIAO Feng; YANG Ling-chuan; DONG Jian-xin; CAO Chun-lan; TAO Zai-nan; K. MUKAI

    2006-01-01

    The densities of liquid NiCoAlCr quaternary alloys with a fixed molar ratio of Ni to Co to Al (x(Ni)-x(Co)-x(Al)≈73-12-15) which is close to the average value of the commercial Ni-based superalloys TMS75, INCO713, CM247LC and CMSX-4, and the mass fraction of chromium changes from 0 to 9% were measured by a modified sessile drop method. It is found that with increasing temperature and chromium concentration in the alloys, the densities of the liquid NiCoAlCr quaternary alloys decrease, whereas the molar volume of the liquid NiCoAlCr quaternary alloys increases. And the liquid densities of NiCoAlCr quaternary alloys calculated from the partial molar volumes of nickel, cobalt, aluminum and chromium in the corresponding Ni-bases binary alloys are in good agreement with the experimental ones, i.e. within the error tolerance range the densities of the liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state. The molar volume of liquid NiCoAlCr binary alloy shows a negative deviation from the ideal linear mixing and the deviation changes small with the increase of chromium concentration at the same temperature.

  3. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600%C2%B0C with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  4. REMOVAL OF HEXAVALENT CHROMIUM FROM DRINKING WATER

    OpenAIRE

    A. R. Asgari ، F. Vaezi ، S. Nasseri ، O. Dördelmann ، A. H. Mahvi ، E. Dehghani Fard

    2008-01-01

    Removal of chromium can be accomplished by various methods but none of them is cost-effective in meeting drinking water standards. For this study, granular ferric hydroxide was used as adsorbent for removal of hexavalent chromium. Besides, the effects of changing contact time, pH and concentrations of competitive anions were determined for different amounts of granular ferric hydroxide. It was found that granular ferric hydroxide has a high capacity for adsorption of hexavalent chromium from ...

  5. Inoculation of chromium white cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-01-01

    Full Text Available It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  6. Inoculation of chromium white cast iron

    OpenAIRE

    D. Kopyciński

    2009-01-01

    It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  7. Problems of phase identification in high-nitrogen chromium-manganese cast steel

    OpenAIRE

    Z. Pirowski

    2008-01-01

    An atzcrnpt has been madc to offcr an intcrprctation of ihc rnicrostructurc of chromium-mangancx cast stccl aftcr adding to 1his stccla targc amount of nitrogcn as an alloying clcrncnr. Nitropcn was addcd 10 rhc cast stccl by two mcthods: rhc first mcthod consistcrl inadding a nitridcd fcrrornangancsc, the second method in rcmclting thc nitrogen-rscc alloy undcr rhc atrnosphcrc of nitrogen maintaininghigh N1 prcssurc abovc the mctal meSt (33 MPa).Somc imponant diffcrcnces in the microstructur...

  8. RECENT TRENDS IN HOT STRIP ROUGHING MILLS: HIGH CHROMIUM STEEL VERSUS SEMI-HSS

    OpenAIRE

    Lecomte-Beckers, Jacqueline; Tchuindjang, Jérôme Tchoufack; Sinnaeve, Mario; Ernst, Roger

    2010-01-01

    compared. The first grade known as High Chromium Steel (HCS) is presently the most widely used alloy for such an application, while the second one known as semi-High Speed Steel (semi-HSS) is the new grade developed to improve the overall performance of the work roll in the roughing stands of the HSM. In the present paper, the new semi-HSS grade is studied starting from three chemical compositions closed one to another, the variation in the alloying elements is intended to asse...

  9. Comparison between High Chromium Steel and Semi HSS used in Hot Strip Mill Roughing Stands

    OpenAIRE

    Lecomte-Beckers, Jacqueline; Sinnaeve, Mario; Tchuindjang, Jérôme Tchoufack

    2011-01-01

    Two alloys grades for work rolls used in the roughing stand of Hot Strip Mill (HSM) are compared. The first grade known as High Chromium Steel (HCS) is presently the most widely used alloy for such an application, while the second one known as semi-High Speed Steel (semi-HSS) is the new grade developed to improve the overall performance of the work roll in the roughing stands of the HSM. In the present paper, the new semi-HSS grade is studied starting from three chemical compositions closed o...

  10. Microstructure and wear resistance of high chromium cast iron containing niobium

    OpenAIRE

    Zhang Zhiguo; Yang Chengkai; Zhang Peng

    2014-01-01

    In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, ...

  11. High gas velocity oxidation and hot corrosion testing of oxide dispersion-strengthened nickel-base alloys

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1975-01-01

    Several oxide dispersion strengthened (ODS) nickel-base alloys were tested in high velocity gases for cyclic oxidation resistance at temperatures to 1200 C and times to 500 hours and for hot corrosion resistance at 900 C for 200 hours. Nickel-chromium-aluminum ODS alloys were found to have superior resistance to oxidation and hot corrosion when compared to bare and coated nickel-chromium ODS alloys. The best of the alloys tested had compositions of nickel - 15.5 to 16 weight percent chromium with aluminum weight percents between 4.5 and 5.0. All of the nickel-chromium-aluminum ODS materials experienced small weight losses (less than 16 mg/sq cm).

  12. New structural high strength rationally alloyed steels

    International Nuclear Information System (INIS)

    New developments in high strength structural steels are reported. Properties and perspective fields of application are described for the following materials: austenitic chromium steels with ultra equilibrium nitrogen content, steels with nitrogen martensite structure, microalloyed ferritic-pearlitic steels with decreased concentrations of Mn and Ni, high ductility heat resisting steels, nonmagnetic chromium free Mn-Ni-Cu-V-C steels and iron powder alloys with superhard carbon phases. Steel 02Kh12G14N4YuM is recommended to be used for parts and assemblies of nuclear power plants

  13. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    International Nuclear Information System (INIS)

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values

  14. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G., E-mail: gcao@wisc.edu; Weber, S.J.; Martin, S.O.; Sridharan, K.; Anderson, M.H.; Allen, T.R.

    2013-10-15

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  15. Permeation of chromium salts through human skin in vitro

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Fullerton, A; Avnstorp, C;

    1992-01-01

    of the dichromate solution. Chromium skin levels increased with increasing concentrations of applied chromium salts up to 0.034 M Cr. The amount of chromium in recipient phase and skin layers increased with increasing pH when the applied solution contained potassium dichromate. This was ascribed to a decreased skin...... barrier function of the skin. The amount of chromium found in all skin layers after application of chromium chloride decreased with increasing pH due to lower solubility of the salt. The % of chromium found in the recipient phase as chromium(VI) increased with increasing total chromium concentration...... indicating a limited reduction ability of the skin in vitro....

  16. Underwater laser beam welding of Alloy 690

    International Nuclear Information System (INIS)

    Stress Corrosion Clacking (SCC) has been reported at Alloy 600 welds between nozzles and safe-end in Pressurized Water Reactor (PWR) plant. Alloy 690, which has higher chromium content than Alloy 600, has been applied for cladding on Alloy 600 welds for repairing damaged SCC area. Toshiba has developed Underwater Laser Beam Welding technique. This method can be conducted without draining, so that the repairing period and the radiation exposure during the repair can be dramatically decreased. In some old PWRs, high-sulfur stainless steel is used as the materials for this section. It has a high susceptibility of weld cracks. Therefore, the optimum welding condition of Alloy 690 on the high-sulfur stainless steel was investigated with our Underwater Laser Beam Welding unit. Good cladding layer, without any crack, porosity or lack of fusion, could be obtained. (author)

  17. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    This study was undertaken to determine if chromium(+6) could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium(+3) to chromium(+6) by nitric acid; and the reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium(+3) to chromium(+6) was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the (+6) oxidation state and would not exist in the (+6) state in the final process waste solutions

  18. Stress corrosion crack tip microstructure in nickel-based alloys

    International Nuclear Information System (INIS)

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content

  19. Study of phase transformations in Fe-Mn-Cr Alloys

    International Nuclear Information System (INIS)

    Nickel free alloys for fusion reactor applications are examined. Phase changes in fifteen, mainly austenitic iron-manganese-chromium-alloys of different compositions were investigated in the temperature range between -1960C and 10000C after different thermo-mechanical treatments. A range of different physical measuring techniques was employed to investigate the structural changes occurring during heating and cooling and after cold-work: electrical resistivity techniques, differential thermal analysis, magnetic response, Vickers hardness and XRD measurement. The phase boundary between the α Fe-phase and the γ-phase of the iron manganese alloy is approximately maintained if chromium is added to the two component materials. Consequently all the alloy materials for contents of manganese smaller than about 30% Mn are not stable below 5000C. This concerns also the AMCR alloys. However the α Fe-phase is not formed during slow cooling from 10000C to ambient temperature and is only obtained if nucleation sites are provided and after very long anneals. A cubic α Mn-type-phase is found for alloys with 18% Cr and 15% Mn, with 13% Cr and 25% Mn, with 10% Cr and 30% Mn, and with 10% Cr and 40% Mn. For these reasons the γ-phase field of the iron-chromium-manganese alloys is very small below 6000C and much narrower than reported in the literature. 95 figs. 22 refs

  20. Microstructure of Cast Ni-Cr-Al-C Alloy

    Directory of Open Access Journals (Sweden)

    Cios G.

    2015-04-01

    Full Text Available Nickel based alloys, especially nickel based superalloys have gained the advantage over other alloys in the field of high temperature applications, and thus become irreplaceable at high temperature creep and aggressive corrosion environments, such as jet engines and steam turbines. However, the wear resistance of these alloys is insufficient at high temperatures. This work describes a microstructure of a new cast alloy. The microstructure consists of γ matrix strengthened by γ’ fine precipitates (dendrites improving the high temperature strength and of Chromium Cr7C3 primary carbides (in interdendritic eutectics which are designed to improve wear resistance as well as the high temperature strength.

  1. Alkane dehydrogenation over supported chromium oxide catalysts

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    1999-01-01

    The dehydrogenation of alkanes over supported chromium oxide catalysts in the absence of oxygen is of high interest for the industrial production of propene and isobutene. In this review, a critical overview is given of the current knowledge nowadays available about chromium-based dehydrogenation ca

  2. High-strength alloy with resistance to hydrogen-environment embrittlement

    Science.gov (United States)

    Mcnamara, T. G.

    1975-01-01

    Alloy is precipitation-hardened, high-strength, and low-thermal-expansion materials. It is iron-based and contains nickel and chromium at lower levels than high-strength alloys. It is readily welded and brazed and has good oxidation resistance. Tests indicated there was no reduction of notched or smooth strength.

  3. Crystallization of Low-alloyed Construction Cast Steel Modified with V and Ti

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2013-07-01

    Full Text Available In this paper crystallization studies of low-alloyed construction cast steel were presented for different additions of chromium, nickel and molybdenum modified with vanadium and titanium. Studies were conducted using developed TDA stand, which additionally enabled evaluation of cooling rate influence on crystallization process of investigated alloys.

  4. Straining electrode behavior and corrosion resistance of nickel base alloys in high temperature acidic solution

    International Nuclear Information System (INIS)

    Repassivation behavior and IGA resistance of nickel base alloys containing 0∼30 wt% chromium was investigated in high temperature acid sulfate solution. (1) The repassivation rate was increased with increasing chromium content. And so the amounts of charge caused by the metal dissolution were decreased with increasing chromium content. (2) Mill-annealed Alloy 600 suffered IGA at low pH environment below about 3.5 at the fixed potentials above the corrosion potential in 10%Na2SO4+H2SO4 solution at 598K. On the other hand, thermally-treated Alloy 690 was hard to occur IGA at low pH environments which mill-annealed Alloy 600 occurred IGA. (3) It was considered that the reason, why nickel base alloys containing high chromium content such as Alloy 690 (60%Ni-30%Cr-10%Fe) had high IGA/SCC resistance in high temperature acidic solution containing sulfate ion, is due to both the promotion of the repassivation and the suppression of the film dissolution by the formation of the dense chromium oxide film

  5. Study of the sensitisation of a highly alloyed austenitic stainless steel, Alloy 926 (UNS N08926), by means of scanning electrochemical microscopy

    OpenAIRE

    Leiva García, Rafael; Akid, R.; Greenfield, D.; Gittens, J.; Muñoz Portero, María José; García Antón, José

    2012-01-01

    The feedback mode of a scanning electrochemical microscope (SECM) was applied to study differences in the reactivity of a highly alloyed austenitic stainless steel, Alloy 926 (UNS N08926), in its unsensitised and sensitised state. Alloy 926 was heated at 825 °C for 1 h in an inert atmosphere in order to produce a sensitised metallurgical condition. Sensitisation was due to chromium carbide formation at the grain boundaries. The oxygen reduction reaction was used as an indicator to monitor the...

  6. Spin-wave and critical neutron scattering from chromium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Axe, J.D.; Shirane, G.

    1971-01-01

    Chromium and its dilute alloys are unique examples of magnetism caused by itinerant electrons. The magnetic excitations have been studied by inelastic neutron scattering using a high-resolution triple-axis spectrometer. Spin-wave peaks in q scans at constant energy transfer ℏω could, in general......, not be clearly resolved at any temperature below TN but it is still possible to deduce the slope ω/q of the dispersion curve and also to estimate the spin-wave lifetimes. The scattering displays a divergence as q→0, ω→0, T→TN characteristic of critical fluctuations. The critical scattering is confined...... to small values of q, but the ω range is very wide compared to critical scattering from systems with localized magnetic moments...

  7. Neutron scattering and models: Chromium

    International Nuclear Information System (INIS)

    Differential neutron elastic-scattering cross sections of elemental chromium are measured from 4.5 ∼ 10 MeV in steps of ∼ 0.5 MeV and at ≥ 40 scattering angles distributed between ∼ 17 degree--160 degree. Concurrently differential cross sections for the inelastic neutron excitation of the yrast 2+ (1.434 MeV) level in d52Cr are determined. In addition, broad inelastically-scattered neutron groups are observed corresponding to composite excitation of levels up to ∼ 5.5 MeV in the various chromium isotopes. These experimental results are combined with low-energy values previously reported from this laboratory, with recent ∼ 8 → 15 MeV data measured at the Physikalisch-Technische Bundesanstalt and with a 21.6 MeV result from the literature to form an extensive neutron-scattering data base which is interpreted in the context of spherical-optical and coupled-channels (rotational and vibrational) models. These models reasonably describe the observables but indicate rather large energy-dependent parameter trends at low energies similar to those previously reported near the peak of the So strength function in studies at this laboratory. The physical implications of the measurements and models are discussed including deformation, coupling, dispersive and asymmetry effects

  8. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P. [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J. [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  9. Chemical Stability of Chromium Carbide and Chromium Nitride Powders Compared with Chromium Metal in Synthetic Biological Solutions

    OpenAIRE

    Tao Jiang; Inger Odnevall Wallinder; Gunilla Herting

    2012-01-01

    Chromium carbide (Cr-C) and chromium nitride (Cr-N) powders were compared with a chromium metal powder (Cr-metal) to evaluate their chemical stability in solution. All three powders were exposed in five different synthetic biological solutions of varying pH and chemical composition simulating selected human exposure conditions. Characterisation of the powders, using GI-XRD, revealed that the predominant bulk crystalline phases were Cr7C3 and Cr2N for Cr-C and Cr-N respectively. The outermost ...

  10. Reproductive toxicological aspects of chromium in males

    International Nuclear Information System (INIS)

    To expand our present understanding of the effects of chromium on male fertility a number of studies were designed to achieve this through the use of chromium intoxicated experimental animals and through investigation of sexual hormones and sperm quality in welders. Also in view of the lack of an experimental model for effects of noxious substance on the epididymal spermatozoa the main objectives of the series of studies reviewed here were: A. To establish a model for evaluation of epididymal sperm count and motility in the rat. B. To investigate and compare the effects of tri- and hexavalent chromium on epididymal spermatozoa. Further to describe the effects of low-dose long-time exposure of rats to the most toxicological interesting chromium oxidative state - hexavalent chromium. C. By the use of autoradiography and γ-countinuing to expand the present knowledge on the distribution of chromium in the body with special reference to the male reproductive organs. D. To describe the effects of exposure to hexavalent chromium in welding fume on levels of sexual hormones and semen parameters in welders. (EG)

  11. Synthesis of Chromium (Ⅲ) 5-aminosalicylate

    Institute of Scientific and Technical Information of China (English)

    LI Wei; HAO Er-jun; JIANG Yu-qin

    2004-01-01

    As we all known that diabetes is a chronic disease with major health consequences.Research has revealed that the occurrence of diabetes have great thing to do with the chromium deficient. Almost 40 years after the first report of glucose tolerance factor(GTF) [1], no conclusive evidence for an isolable ,biologically active form of chromium exited. Three materials have been proposed to be the biologically active form of chromium: "glucose tolerance factor", chromium Picolinate and low-molecular-weight chromium-binding substance (LWMCr) [2] . So there is potential for the design of new chromium drugs .5-Aminosalicylic acid (5-ASA) is identified as an active component in the therapy of inflammatory bowel disease (IBD) such as Crohn's disease and ulcerative colitis . The therapeutic action of 5-ASA is believed to be coupled to its ability to act as a free radical scavenger [3-4],acting locally on the inflamed colonic mucosa [5-7]. However, the clinical use of 5-ASA is limited, since orally administered 5-ASA is rapidly and completely absorbed from the upper gastrointestinal tract and therefore the local therapeutic effects of 5-ASA in the colon is hardly expected.In this paper, we report the synthesis of chromium(Ⅲ)5-aminosalicylate from 5-ASA and CrCl3. 6H2O.The synthesis route is as follow:The complex has been characterized by elemental analysis, IR spectra, X-ray powder diffractionand TG-DTA . They indicate that the structure is tris(5-ASA) Chromium . Experiments show that thecomplex has a good activity for supplement tiny dietary chromium, lowering blood glucose levels,lowering serum lipid levels and in creasing lean body mass .

  12. Dry Sliding Wear Behaviours of Valve Seat Inserts Produced from High Chromium White Iron

    Science.gov (United States)

    Kalyon, Ali; Özyürek, Dursun; Günay, Mustafa; Aztekin, Hasan

    2015-11-01

    In this present study, wear behaviours of high chromium white iron valve seat inserts and tappets used in the automotive sector were investigated. Wear behaviours of three different rates of high chromium white cast irons (containing 10, 12 and 14% chromium) were examined under heavy service conditions. For that purpose, the produced valve seat inserts were characterized through Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray diffraction (XRD) and hardness measurements. They were tested at a sliding speed of 1 ms-1, under 120 N load and for six different sliding distances (500, 1000, 1500, 2000, 2500, 3000 m) by using a standard wear apparatus (pin-on-disk type). The result showed that as the amount of Cr increased in the alloys, their hardness decreased. The decrease in the hardness were considered to be as the result of transformation of M7C3 carbides into M23C6 carbides in the structure. This decrease in hardness with increasing chromium content also increased the weight loss. Thus, it was determined that the white iron with 14% Cr (which had a greater amount of M23C6 carbides) was subjected to the highest wear.

  13. Influences of copper on solidification structure and hardening behavior of high chromium cast irons

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; XIONG Ji; FAN Hong-yuan; SHEN Bao-luo; GAO Sheng-ji

    2008-01-01

    The influences of copper on microstructure and the hardening behavior of high chromium cast irons subjected to sub-critical treatment were investigated.The results show that the mierostructure of the as-cast high chromium cast irons consists of retained austenite,martensite and M7 C3 type eutectic carbide.When copper is added into high chromium cast irons,austenite and carbide contents are increased.The increased addition of copper content from 0%to 1.84%leads to the increase of austenite and carbide from 15.9%and 20.0% to 61.0%and 35.5%,respectively.In the process of sub-critical treatment,the retained austenite in the matrix can be precipitated into secondary carbides and then transforms into martensite in cooling process,which causes the secondary hardening of the alloy under sub-critical treatment.High chromium cast irons containing copper in sub-critical treatment appear the second hardening curve peak due to the precipitation of copper from supersaturated matrix.

  14. Chromium in leather footwear-risk assessment of chromium allergy and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Strandesen, Maria; Poulsen, Pia B;

    2012-01-01

    Background. Chromium-tanned leather footwear, which releases >3 ppm hexavalent Cr(VI), may pose a risk of sensitizing and eliciting allergic dermatitis. Objectives. To determine the content and potential release of chromium in leather footwear and to discuss the prevention of chromium contact...... allergy and dermatitis. Methods. Sixty pairs of leather shoes, sandals and boots (20 children's, 20 men's, and 20 women's) were purchased in Copenhagen and examined with X-ray fluorescence spectroscopy. Chromium was extracted according to the International Standard, ISO 17075. The detection level for Cr......(VI) was 3 ppm. Results. Chromium was identified in 95% of leather footwear products, the median content being 1.7% (range 0-3.3%). No association with store category or footwear category was found. A tendency for there to be a higher chromium content in footwear with high prices was shown (p(trend) = 0...

  15. Characteristics of chromium-allergic dermatitis patients prior to regulatory intervention for chromium in leather

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P; Zachariae, Claus;

    2014-01-01

    BACKGROUND: Chromium-tanned leather articles currently constitute the most important cause of contact allergy to chromium in Denmark. A regulation on the content of hexavalent chromium in leather was adopted in November 2013 by the EU member states. OBJECTIVES: To characterize patients with...... chromium allergy and their disease, to serve as a baseline for future studies on the potential effect of the new regulation on chromium in leather. METHODS: A questionnaire case-control study was performed on 155 dermatitis patients with positive patch test reactions to potassium dichromate and a matched...... control group of 621 dermatitis patients. Comparisons were made by use of a χ(2) -test and the Mann-Whitney U-test. Logistic regression analyses were used to test for associations. RESULTS: Sixty-six per cent of chromium-allergic patients had a positive history of contact dermatitis caused by leather...

  16. Chromium intensification of a processed dental radiograph

    International Nuclear Information System (INIS)

    This study was undertaken to determine (1) the usefulness of chromium intensifier to improve the diagnostic quality of light radiograph; (2) the effect of chromium intensifier on density contrast; and (3) the effect of various chemical concentrations on density. The following results obtained: 1. CHROMIUM INTENSIFIER is useful for intensifying and improving the diagnostic quality of a light dental radiograph. 2. The degree of intensification can be controlled by varying bleaching time, repeating the processing, varying the proportions of the potassium bicarbonate and hydrochloric acid solutions. 3. The image produced is black and permanent. 4. The intensifier increases density and contrast

  17. An in vitro comparison of nickel and chromium release from brackets

    Directory of Open Access Journals (Sweden)

    Ana Cristina Soares Santos Haddad

    2009-12-01

    Full Text Available This study aimed at comparing amounts of nickel (Ni and chromium (Cr released from brackets from different manufacturers in simulated oral environments. 280 brackets were equally divided into 7 groups according to manufacturer. 6 groups of brackets were stainless steel, and 1 group of brackets was made of a cobalt-chromium alloy with low Ni content (0.5%. International standard ISO 10271/2001 was applied to provide test methods. Each bracket was immersed in 0.5 ml of synthetic saliva (SS or artificial plaque fluid (PF over a period of 28 days at 37ºC. Solutions were replaced every 7 days, and were analyzed by spectrometry. The Kruskal-Wallis test was applied. Amounts of Ni release in SS (µg L-1 per week varied between groups from "bellow detection limits" to 694, and from 49 to 5,948.5 in PF. The group of brackets made of cobalt-chromium alloy, with the least nickel content, did not release the least amounts of Ni. Amounts of Cr detected in SS and in PF (µg L-1 per week were from 1 to 10.4 and from 50.5 to 8,225, respectively. It was therefore concluded that brackets from different manufacturers present different corrosion behavior. Further studies are necessary to determine clinical implications of the findings.

  18. Determination of chromium and molybdenum with 2-(5-bromopyridylazo)-5-diethylaminophenol by reversed-phase liquid chromatography

    International Nuclear Information System (INIS)

    The reversed-phase liquid chromatographic determination of chromium(III) and molybdenum(VI) chelates with 2-(5-bromopyridylazo)-5-diethylaminophenol was investigated. The metal chelates in 50% ethanol solution were separated within 12 min by using methanol -tetrahydrofuran - water (10 + 15 + 75) containing 0.01 M lithium sulphate and 5 x 10-3M Tris buffer (pH 7.7) as the mobile phase at a flow-rate of 1.0 ml min-1, and were detected at 600 nm. The detection limits for chromium and molybdenum are 0.066 and 0.12 ng, respectively. The method has been applied to the determination of chromium and molybdenum in alloy steel and waste water samples. (author)

  19. Effect of titanium on the as-cast microstructure and impact toughness of hypereutectic high-chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhifu; Xing, Jiandong; Gao, Yimin; Zhi, Xiaohui [Xi' an Jiaotong Univ., Xi' an (China). State Key Lab. for Mechanical Behavior of Materials

    2012-05-15

    The effect of titanium on the as-cast microstructure of a hypereutectic high-chromium cast iron was investigated by means of optical microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The results indicate that the primary M{sub 7}C{sub 3} carbides are refined and spheroidized with the addition of a suitable amount of titanium. TiC is found in the primary carbide by energy dispersive spectroscopy analysis. The mechanism of titanium modification on the microstructure of the alloy is also discussed. In addition, the impact test result indicates that, compared with the hypereutectic high-chromium cast iron without titanium addition, the impact toughness value of hypereutectic high-chromium cast iron with titanium additions is improved and approximately reaches 6.4 J . cm{sup -2}. (orig.)

  20. Oxide-layer formation and stability on a nickel-base alloy in impure helium at high temperature

    International Nuclear Information System (INIS)

    The corrosion behavior in impure helium of Haynes 230, a nickel base alloy candidate for heat exchangers in Very High Temperature Reactors (VHTR), has been investigated. The study focused on the formation and the subsequent destruction of the surface oxide layer at 900 C and 980 C. In-situ gas-phase analysis coupled to post-exposure surface analyses showed that a chromium-rich surface oxide formed on Haynes 230 at 900 C but was unstable above a critical temperature TA: the chromium-rich oxide reacted with carbon in solution in the alloy to produce chromium and CO(g). The effect of carbon monoxide partial pressure in the gas phase as well as the influence of chromium and carbon activities in the alloy on TA are discussed taking thermodynamics and kinetics aspects into account. (authors)

  1. High-temperature nitridation of Ni-Cr alloys

    Science.gov (United States)

    Kodentsov, A. A.; Gülpen, J. H.; Cserháti, C.; Kivilahti, J. K.; van Loo, F. J. J.

    1996-01-01

    The nitriding behavior of nickel-chromium alloys was investigated at 1398 K over the range 1 to 6000 bar of external nitrogen pressure. The morphology of the nitrided zone depends on the concentration of chromium in the initial alloy and the N2 pressure (fugacity) applied upon the system. The transition from CrN to Cr2N precipitation was observed within the reaction zone after nitriding at 100 to 6000 bar of N2 when the chromium content in the initial alloys was 28.0 at. pct or higher. It is shown that the ternary phase π (Cr10Ni7N3) is formed in this system at 1273 K. through a peritectoid reaction between Cr2N and nickel solid solution and becomes unstable above 1373 K. The thermodynamic evaluation of the Ni-Cr-N system was performed and phase equilibria calculated. Evidence for “up hill” diffusion of nitrogen near the reaction front during the internal nitridation of Ni-Cr alloys at 1398 K was found. It was attributed to the relative instability of chromium nitrides and strong Cr-N interaction in the matrix of the Ni-based solid solution within the nitrided zone.

  2. Chromium (VI) adsorption on boehmite

    Energy Technology Data Exchange (ETDEWEB)

    Granados-Correa, F. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)], E-mail: fgc@nuclear.inin.mx; Jimenez-Becerril, J. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)

    2009-03-15

    Boehmite was synthesized and characterized in order to study the adsorption behavior and the removal of Cr(VI) ions from aqueous solutions as a function of contact time, initial pH solution, amount of adsorbent and initial metal ion concentration, using batch technique. Adsorption data of Cr(VI) on the boehmite were analyzed according to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption models. Thermodynamic parameters for the adsorption system were determinated at 293, 303, 313 and 323 K temperatures. The kinetic values and thermodynamic parameters from the adsorption process show that the Cr(VI) ions adsorption on boehmite is an endothermic and spontaneous process. These results show that the boehmite could be considered as a potential adsorbent for chromium ions in aqueous solutions.

  3. Chromium – An essential mineral

    Directory of Open Access Journals (Sweden)

    Merlin D Lindemann

    2009-09-01

    Full Text Available The status of chromium (Cr is not a new question. Cr is clearly an essential nutrient; this is a position that has been held for over three decades by individual scientists, groups of scientists, and governmental committees. The most uniform response across species with regard to Cr deficiency symptoms that are responsive to Cr supplementation are alterations in glucose metabolism with special reference to peripheral tissue sensitivity to insulin. Because the body’s ability to control blood glucose is critical to many life functions, and loss of ability to adequately control blood glucose can lead to many health debilitations, a consequence of Cr supplementation can be improved health and reproductive outcomes as well as improved survival rate or life span.

  4. Occupational asthma due to chromium.

    Science.gov (United States)

    Leroyer, C; Dewitte, J D; Bassanets, A; Boutoux, M; Daniel, C; Clavier, J

    1998-01-01

    We describe a 28-year-old subject employed as a roofer in a construction company since the age of 19, who developed work-related symptoms of a cough, shortness of breath, wheezing, rhinitis and headaches. A description of a usual day at work suggested that the symptoms worsened while he was sawing corrugated fiber cement. Baseline spirometry was normal, and there was a mild bronchial hyperresponsiveness to carbachol. A skin patch test to chromium was negative. A specific inhalation challenge showed a boderline fall in forced expiratory volume in 1 s (FEV1) after exposure to fiber cement dust. Exposure to nebulization of potassium dichromate (K2Cr2O7), at 0.1 mg.ml-1 for 30 min, was followed by an immediate fall by 20% FEV1. Simultaneously, a significant increase in bronchial hyperresponsiveness was demonstrated. PMID:9782225

  5. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    Chromium (Cr) is a redox sensitive element potentially capable of tracing fine-scale fluctuations of the oxygenation of Earth’s early surface environments and seawater. The Cr isotope composition of carbonates could perhaps be used as paleo-redox proxy to elucidate changes in the geological past....... Processes that potentially fractionate Cr isotopes, perhaps during deposition, burial and alteration need to be constrained.Previous studies have shown that Cr isotopes are fractionated during oxidative weathering on land, where heavy Cr isotopes are preferentially removed with Cr(VI) while residual soils...... retain an isotopically light Cr signature. Cr(VI) enriched in heavy Cr isotopes is then transported via river waters to the oceans and sequestered into marine sediments. Marine chemical sediments such asbanded iron formations and modern marine carbonates have proven useful in recording the Cr isotope...

  6. Microstructure and wear resistance of high chromium cast iron containing niobium

    Directory of Open Access Journals (Sweden)

    Zhang Zhiguo

    2014-05-01

    Full Text Available In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  7. Microstructure and properties of laser surface alloyed PM austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Z. Brytan

    2010-05-01

    Full Text Available Purpose: The purpose of this paper is to analyse the effect of laser surface alloying with chromium on the microstructural changes and properties of vacuum sintered austenitic stainless steel type AISI 316L (EN 1.4404.Design/methodology/approach: Surface modification of AISI 316L sintered austenitic stainless steel was carried out by laser surface alloying with chromium powder using high power diode laser (HPDL. The influence of laser alloying conditions, both laser beam power (between 0.7 and 2.0 kW and powder feed rate (1.0-4.5 g/min at constant scanning rate of 0.5m/min on the width of alloyed surface layer, penetration depth, microstructure evaluated by LOM, SEM x-ray analysis, surface roughness and microhardness were presented.Findings: The microstructures of Cr laser alloyed surface consist of different zones, starting from the superficial zone rich in alloying powder particles embedded in the surface; these particles protrude from the surface and thus considerably increase the surface roughness. Next is alloyed zone enriched in alloying element where ferrite and austenite coexists. The following transient zone is located between properly alloyed material and the base metal and can be considered as a very narrow HAZ zone. The optimal microstructure homogeneity of Cr alloyed austenitic stainless steel was obtained for powder feed rate of 2.0 and 4.5 g/min and laser beam power of 1.4 kW and 2 kW.Practical implications: Laser surface alloying can be an efficient method of surface layer modification of sintered stainless steel and by this way the surface chromium enrichment can produce microstructural changes affecting mechanical properties.Originality/value: Application of high power diode laser can guarantee uniform heating of treated surface, thus uniform thermal cycle across treated area and uniform penetration depth of chromium alloyed surface layer.

  8. Surface segregation in HAYNES 230 alloy

    International Nuclear Information System (INIS)

    The surface segregation in the Ni-based alloy HAYNES 230 was studied by Auger Electron Spectroscopy and X-ray Photoelectron Spectroscopy between 400 and 1100 deg. C. The qualitative variations of the surface contents of S, P, W, Mo, N, Si, and Mn were determined as a function of annealing temperature and time. It was found that at 925 deg. C the maximum coverage of sulphur at the alloy surface is in the range 0.06-0.15 monolayers. Chromium evaporation from the HAYNES 230 surface under UHV conditions is clearly evidenced for annealing at 1100 deg. C

  9. Surface segregation in HAYNES 230 alloy

    Science.gov (United States)

    Pop, D.; Wolski, K.

    2006-12-01

    The surface segregation in the Ni-based alloy HAYNES 230 was studied by Auger Electron Spectroscopy and X-ray Photoelectron Spectroscopy between 400 and 1100 °C. The qualitative variations of the surface contents of S, P, W, Mo, N, Si, and Mn were determined as a function of annealing temperature and time. It was found that at 925 °C the maximum coverage of sulphur at the alloy surface is in the range 0.06-0.15 monolayers. Chromium evaporation from the HAYNES 230 surface under UHV conditions is clearly evidenced for annealing at 1100 °C.

  10. Simultaneous determination of chromium(III) and chromium(VI) in aqueous solutions by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jøns, O; Nielsen, B

    1992-01-01

    A method for the simultaneous determination of chromium(iii) and chromium(vi) in a flow system based on chemiluminescence was developed. A Dionex cation-exchange guard column was used to separate chromium(iii) from chromium(vi), and chromium(vi) was reduced by potassium sulfite, whereupon both sp....... The detection limit was 0.5 micrograms l-1 for both species. Data were in agreement with Zeeman-effect background corrected atomic absorption spectrometry measurements....

  11. AEROSOL BEHAVIOR IN CHROMIUM WASTE INCINERATION

    Institute of Scientific and Technical Information of China (English)

    Suyuan Yu

    2003-01-01

    Cr2O3 is considered as the dominant incineration product during the combustion disposal of chromium waste. A hydrogen/air diffusion flame was employed to simulate the industrial process of incineration. Cr2O3 aerosols were generated inside the flame by the gas phase reaction of chromium and oxygen. Chromium came from the rapid decomposition of chromium hexacarbonyl (Cr(CO)6) at room temperature and was carried into the combustion chamber by hydrogen. Aerosol and clusters can then be easily formed in the flame by nucleation and coagulation. A two dimensional Discrete-Sectional Model (DSM) was adopted to calculate the Cr2O3 aerosol behavior. The experimental measurement method was Dynamic Light Scattering. The numerically predicted results agreed well with those of the experimental measurement. Both results show that the Cr2O3 aerosol size reached about 70 nanometers at the flame top.

  12. Potentiometry: A Chromium (III) -- EDTA Complex

    Science.gov (United States)

    Hoppe, J. I.; Howell, P. J.

    1975-01-01

    Describes an experiment that involves the preparation of a chromium (III)-EDTA compound, a study of its infrared spectrum, and the potentiometric determination of two successive acid dissociation constants. (Author/GS)

  13. Mechanical and tribological characterization of the Al 6061-T651 and the Al 6061-T651 with chromium phosphate coating

    International Nuclear Information System (INIS)

    This work consist of two parts. The first one, related with theoretic concepts of tribology, condensed the friction and wear phenomena, considering aspects to bring something relevant into a process. In this conditions, to add lubricant cause a significant performance change during the phenomena mentioned above. The second part of this work, described experimental aspects as how we do a chromium phosphate coating in immersion cell, using 6061-T651 aluminum as substrate. In the process, we consider values of parameters in optimum conditions, obtained by commercial aluminum during previous investigations made in National Institute of Nuclear Research. Here, we characterized chromium phosphate coating and, 6061-T651 aluminum alloy using Sem and X-Ray Diffraction techniques. The measurement of some chromium phosphate characteristic as thickness, weight for area unit, density, roughness, microhardness, adhesion and corrosion resistant were made with appropriately equipment and, in accordance with international standards procedures. In tribological aspect, we determinate adhesive wear resistance and abrasive wear resistance for 6061-T651 aluminum alloy and chromium phosphate coating. Adhesive wear resistance was made for dry condition while abrasive wear resistance were made for dry and wet conditions. Tests are to guide by ASTM G99, G65 and G105 designations respectively. (Author)

  14. Characterization of microstructure, local deformation and microchemistry in Alloy 690 heat-affected zone and stress corrosion cracking in high temperature water

    Science.gov (United States)

    Lu, Zhanpeng; Chen, Junjie; Shoji, Tetsuo; Takeda, Yoichi; Yamazaki, Seiya

    2015-10-01

    With increasing the distance from the weld fusion line in an Alloy 690 heat-affected zone, micro-hardness decreases, kernel average misorientation decreases and the fraction of Σ3 boundaries increases. Chromium depletion at grain boundaries in the Alloy 690 heat-affected zone is less significant than that in an Alloy 600 heat-affected zone. Alloy 690 heat-affected zone exhibits much higher IGSCC resistance than Alloy 600 heat-affected zone in simulated pressurized water reactor primary water. Heavily cold worked Alloy 690 exhibits localized intergranular stress corrosion cracking. The effects of metallurgical and mechanical properties on stress corrosion cracking in Alloy 690 are discussed.

  15. KCl-induced high temperature corrosion of selected commercial alloys. Part II: alumina and silica-formers

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Dahl, Kristian Vinter; Montgomery, Melanie;

    2016-01-01

    potassium-chromium-silicon-oxygen containing layer forms as the innermost corrosion product. The layer was uniformly distributed over the surface and appears to render some protection as this alloy exhibited the best performance among the investigated alloys. To reveal further aspects of the corrosion...

  16. Spectrophotometric determination of zirconium in nickel-base alloys with Arsenazo III after separation by froth flotation

    International Nuclear Information System (INIS)

    0.02-0.1% of zirconium can be determined in nickel alloys by spectrophotometry with Arsenazo III after its separation from the sample solution by means of froth flotation using Arsenazo III and Zephiramine. Nickel, chromium and iron do not interfere. Analysis of standard alloys yielded a standard deviation of 2.2%. (orig.)

  17. Passivation of alloys on titanium base

    International Nuclear Information System (INIS)

    Results of passivation studies on Ti-base alloys show that the inhibition of anodic processes on these alloys is determined not by the total thickness of passive film, but by its barrier layer. The protective properties of the barrier layer increase if the passive film is formed at anodic potentials more positive than +1.4V. They were determined not by chemical stability of barrier layer, but by an inhibition which is produced by this layer for ionic current along the anodic direction. The protective properties are related to character defectiveness and semiconductor properties of the barrier layer. Additions of Al, V, Mo, Zr, and Nb to titanium increase the anodic current in the passive state. Additions of Cr and Mn decrease this current, and Sn does not influence it. The direct electrochemical transition of titanium ions into solution (as TiO2+) is a main anodic process of titanium dissolution and its low alloyed alloys in the passive state. Double phase titanium alloys (after tempering) have a lower corrosion resistance than those in the homogeneous single phase state (after hardening). The less passive phase of double phase alloys dissolves perferentially. The less passive phases are: in the active state, α-phase; in transpassive state for Ti--Mo alloys, β-phase, containing in a high Mo percentage; and for Ti--Cr alloys, γ-phase, having more chromium. (U.S.)

  18. Bioremediation of chromium solutions and chromium containing wastewaters.

    Science.gov (United States)

    Malaviya, Piyush; Singh, Asha

    2016-08-01

    Cr(VI) represents a serious threat to human health, living resources and ecological system as it is persistent, carcinogenic and toxic, whereas, Cr(III), another stable oxidation state of Cr, is less toxic and can be readily precipitated out of solution. The conventional methods of Cr(VI) removal from wastewaters comprise of chemical reduction followed by chemical precipitation. However, these methods utilize large amounts of chemicals and generate toxic sludge. This necessitates the need for devising an eco-technological strategy that would use the untapped potential of the biological world for remediation of Cr(VI) containing wastewaters. Among several viable approaches, biotransformation of Cr(VI) to relatively non-toxic Cr(III) by chromium resistant bacteria offers an economical- and environment-friendly option for its detoxification. Various studies on use of Cr(VI) tolerant viable bacterial isolates for treatment of Cr(VI) containing solutions and wastewater have been reported. Therefore, a detailed account of mechanisms and processes involved in bioreduction of Cr(VI) from solutions and wastewaters by bacterial isolates are the focus of this review article in addition to a discussion on toxicity of Cr(VI) on bacterial strains and various factors affecting Cr(VI) bioreduction. PMID:25358056

  19. Deoxidation Equilibria of Manganese, Silicon, and Aluminum in Iron-Nickel-Chromium Melts

    Science.gov (United States)

    Dashevskii, Viktor; Aleksandrov, Aleksandr; Kanevskii, Akim; Leont'ev, Leopold

    2016-06-01

    Oxygen solution in Fe-Ni-Cr melts containing manganese, silicon, and aluminum has been thermodynamically analyzed and experimentally studied at 1873 K (1600 °C). The Fe-10 pctNi-20 pctCr and Fe-40 pctNi-15 pctCr compositions were studied as examples of the most frequently used alloys. Manganese is not a deoxidizer in these alloys, since manganese and chromium have similar affinities for oxygen. At low contents, silicon is also not a deoxidizer. However, above 0.358 pct for the Fe-10 pctNi-20 pctCr alloy and 0.261 pct for the Fe-40 pctNi-15 pctCr alloy, silicon decreases the oxygen concentration in the melts. Aluminum is an effective deoxidizer in the Fe-Ni-Cr melts. It decreases the oxygen concentration when its content is higher than 2.914 × 10-4 pct in the Fe-10 pctNi-20 pctCr alloy and 2.109 × 10-3 pct in the Fe-40 pctNi-15 pctCr alloy. Minimum oxygen concentrations are observed at aluminum contents of about 0.24 pct in the Fe-10 pctNi-20 pctCr alloy and at about 0.23 pct in the Fe-40 pctNi-15 pctCr alloy. The combined deoxidation of Fe-10 pctNi-20 pctCr and Fe-40 pctNi-15 pctCr alloys with silicon and manganese and also with aluminum and silicon was studied. The lower oxygen concentrations were reached as a result of complex deoxidation in comparison with the cases when deoxidized separately by each element at the same concentration levels.

  20. Diminishing Chromium Use on Combined Chromium-Gambier Tanning Process Upon the Characteristics of Tanned Leather

    Directory of Open Access Journals (Sweden)

    A. Kasim

    2014-04-01

    Full Text Available The research was aimed to investigate the influence of minimizing chromium use on combined chromium-gambier process upon the characteristics of tanned leather. At the first stage of tanning process, chromium was used and in the second stage it was replaced by gambier. The raw material used was dried saline-preserved goat skin. The treatments applied on the tanning process were the different concentrations of chromium ranging from the highest level of 6% to the lowest level of 1% which was then re-tanned by using 8% concentration of gambier. The examination parameters included chemical and physical properties as well as visual investigation on the tanned leather in accordance with SNI-06-0463-1989-A. The result showed that the tanning process by using 2% chromium in the first step and 8% gambier in the second step was a treatment combination producing tanned leather that met the standard. The examination on tanned leather resulted from such treatment showed 56.33% rawhide, 17.45% of bound tannin, 31.22% of tanning level, tensile strength 386.30 kg/cm2, flexibility 31.91%, leather width 1.3 mm, density 0.75 g/cm3, the leather was quite elastic with light brownish color. In conclusion, minimizing the use of chromium in the combined tanning process of chromium and gambier can be implemented to the lowest of 2% chromium concentration and 8% gambier in the first and second step, respectively.

  1. Skin deposition of nickel, cobalt, and chromium in production of gas turbines and space propulsion components.

    Science.gov (United States)

    Julander, Anneli; Skare, Lizbet; Mulder, Marie; Grandér, Margaretha; Vahter, Marie; Lidén, Carola

    2010-04-01

    Skin exposure to nickel, cobalt, and chromium may cause sensitization and allergic contact dermatitis and it is known that many alloys and platings may release significant amounts of the metals upon contact with skin. Occupational exposure to these sensitizing metals has been studied in different settings with regards to airborne dust and different biological end points, but little is known about deposition on skin from airborne dust and direct contact with materials containing the metals. In this study, skin deposition was studied in 24 workers in an industry for development and manufacturing of gas turbines and space propulsion components. The workers were employed in three departments, representing different exposure scenarios: tools sharpening of hard metal items, production of space propulsion structures, and thermal application of different metal-containing powders. A novel acid wipe sampling technique was used to sample metals from specific skin surfaces on the hands and the forehead of the workers. Total amounts of nickel, cobalt, and chromium were measured by inductively coupled plasma mass spectrometry. The result showed that nickel, cobalt, and chromium could be detected on all skin surfaces sampled. The highest level of nickel was 15 microg cm(-2) h(-1), the highest for cobalt was 4.5 microg cm(-2) h(-1), and for chromium 0.6 microg cm(-2) h(-1). The three departments had different exposures regarding the metals. The highest levels of nickel on the skin of the workers were found in the thermal applications department, cobalt in the tools sharpening department, and chromium in the space propulsion components department. In conclusion, the workers' exposure to the metals was more likely to come from direct skin contact with items, rather than from airborne dust, based on the fact that the levels of metals were much higher on the fingers than on the back side of the hands and the forehead. The skin exposure levels of nickel and cobalt detected are judged

  2. Adsorption and protein-induced metal release from chromium metal and stainless steel.

    Science.gov (United States)

    Lundin, M; Hedberg, Y; Jiang, T; Herting, G; Wang, X; Thormann, E; Blomberg, E; Wallinder, I Odnevall

    2012-01-15

    A research effort is undertaken to understand the mechanism of metal release from, e.g., inhaled metal particles or metal implants in the presence of proteins. The effect of protein adsorption on the metal release process from oxidized chromium metal surfaces and stainless steel surfaces was therefore examined by quartz crystal microbalance with energy dissipation monitoring (QCM-D) and graphite furnace atomic absorption spectroscopy (GFAAS). Differently charged and sized proteins, relevant for the inhalation and dermal exposure route were chosen including human and bovine serum albumin (HSA, BSA), mucin (BSM), and lysozyme (LYS). The results show that all proteins have high affinities for chromium and stainless steel (AISI 316) when deposited from solutions at pH 4 and at pH 7.4 where the protein adsorbed amount was very similar. Adsorption of albumin and mucin was substantially higher at pH 4 compared to pH 7.4 with approximately monolayer coverage at pH 7.4, whereas lysozyme adsorbed in multilayers at both investigated pH. The protein-surface interaction was strong since proteins were irreversibly adsorbed with respect to rinsing. Due to the passive nature of chromium and stainless steel (AISI 316) surfaces, very low metal release concentrations from the QCM metal surfaces in the presence of proteins were obtained on the time scale of the adsorption experiment. Therefore, metal release studies from massive metal sheets in contact with protein solutions were carried out in parallel. The presence of proteins increased the extent of metals released for chromium metal and stainless steel grades of different microstructure and alloy content, all with passive chromium(III)-rich surface oxides, such as QCM (AISI 316), ferritic (AISI 430), austentic (AISI 304, 316L), and duplex (LDX 2205). PMID:22014396

  3. Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

    OpenAIRE

    Lee, Jung-Jin; Song, Kwang-Yeob; Ahn, Seung-Geun; Choi, Jung-Yun; Seo, Jae-Min; Park, Ju-Mi

    2015-01-01

    PURPOSE The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens (10×10×1.5 mm) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3...

  4. New Trends in Hot Strip Mill Roughing Mills: Characterization of High Chromium Steel and Semi-HSS Grades

    OpenAIRE

    Lecomte-Beckers, Jacqueline; Sinnaeve, Mario; Tchuindjang, Jérôme Tchoufack

    2011-01-01

    Two alloys grades for work rolls used in the roughing stand of Hot Strip Mill (HSM) are compared. The first grade known as High Chromium Steel (HCS) is presently the most widely used alloy for such an application, while the second one known as semi-High-speed Steel (semi-HSS) is the new grade developed to improve the overall performance of the work roll in the roughing stands of the HSM. In the present paper, the new semi-HSS grade is studied starting from three chemical compositions close...

  5. Lateral stress evolution in chromium sulfide cermets with varying excess chromium

    Science.gov (United States)

    Petel, O. E.; Appleby-Thomas, G. J.; Wood, D. C.; Capozzi, A.; Nabavi, A.; Goroshin, S.; Frost, D. L.; Hazell, P. J.

    2016-04-01

    The shock response of chromium sulfide-chromium, a cermet of potential interest as a matrix material for ballistic applications, has been investigated at two molar ratios. Using a combustion synthesis technique allowed for control of the molar ratio of the material, which was investigated under near-stoichiometric (cermet) and excess chromium (interpenetrating composite) conditions, representing chromium:sulfur molar ratios of 1.15:1 and 4:1, respectively. The compacts were investigated via the plate-impact technique, which allowed the material to be loaded under a one-dimensional state of strain. Embedded manganin stress gauges were employed to monitor the temporal evolution of longitudinal and lateral components of stress in both materials. Comparison of these two components has allowed assessment of the variation of material shear strength both with impact pressure/strain-rate and time for the two molar ratio conditions. The two materials exhibited identical material strength despite variations in their excess chromium contents.

  6. Corrosion of alloy steels in oil field fluids

    International Nuclear Information System (INIS)

    Laboratory and field tests have been conducted on two low alloy and two higher alloy steels at a range of brine salinities and sulfide contents typical of oil well production fluids. AISI types 4130 and 4340 show the same behavior in these fluids as mild steel. AISI type 410 stainless steel and 9% chromium - 1% molybdenum steel corrode at rates as great as that of mild steel at higher chloride or sulfide concentrations. Special corrosion inhibitors are required for higher alloy steels when they are exposed to these conditions

  7. Laser Alloyed Coatings of TiB2/Graphite on 9Cr18 Stainless Steel Surface

    Institute of Scientific and Technical Information of China (English)

    YING Li-xia; WANG Li-qin; JIA Xiao-mei; GU Le

    2007-01-01

    Modified coatings including carbide of iron, nickel, chromium, silicon, and titanium are obtained on 9Cr18 stainless steel surface by laser alloying. The processing method, the microstructure, the interface, the tribological properties, and the forming mechanisms of the coatings are analyzed. The results show that the microstructure of the alloyed coatings is mainly irregular FeC crystals. Carbides of chromium and iron are around the FeC crystals. Small granular TiC disperses in the alloyed coatings. The microhardness of the alloyed coatings is greatly improved because of the occurrence of carbide with high hardness. At the same time, the wear resistance of the alloyed coatings are higher than that of 9Cr18 stainless steel.

  8. Alloy 31 - a high alloyed Ni-Cr-Mo-steel - properties and applications for the process industry: Alloy 31 - visoko legirano Ni-Cr-Mo jeklo - lastnosti in aplikacije za procesno industrijo:

    OpenAIRE

    Brill, U.; Mast, Ralph; Rommerskirchen, I.; Schambach, L.

    1998-01-01

    Alloy 31 (Nicrofer 3127 hMo) is an austentic nickel-chromium-molybdenum steel comprising about 0.2 wt-% nitrogen to stabilize the austenitic structure. The alloy was developed to fill the gap between the commercial stainless steels and the nickel-base alloys. It is a material for many high-severity applications where conventional stainless steels have proven unadequate. On the other hand, Alloy 31 shows a high resistance to pitting and crevice corrosion in neutral and acid aqueous solutions, ...

  9. Study of the polarization for Incoloy 800 and for the stainless stell AISI 304 in mixtures of Iron, Nickel and Chromium Chlorides

    International Nuclear Information System (INIS)

    Polarization curves for the Incoloy 800 and for the stainless stell AISI 304 were obtained with static and rotational electrodes. The electrolytes employed showed growing concentrations of mixtures as Iron, Nickel and Chromium Chlorides their proportion being the same as the content of these elements in the respective alloys. The alloys under investigation exhibited a continuous transition behaviour from the passive to the active-passive and to the active conditions. Also, the pH was found the main parameter controlling the anodic behaviour of the alloy. (Author)

  10. Hemocompatibility Improvement of Chromium-Bearing Bare-Metal Stent Platform After Magnetoelectropolishing

    Science.gov (United States)

    Rokicki, Ryszard; Haider, Waseem; Maffi, Shivani Kaushal

    2015-01-01

    Research was undertaken to determine the influence of the increased content of chromium in the outermost passive layer of magneto-electrochemically refined Co-Cr alloy L-605 surface on its hemocompatibility. The chemistry, roughness, surface energy, and wettability of conventionally electropolished (EP) and magnetoelectropolished (MEP) samples were studied with x-ray photoelectron spectroscopy (XPS), open circuit potential, atomic force microscopy, and contact angle meter. In vitro hemocompatibility of tested material surfaces was assessed using two important indicators of vascular responses to biomaterial, namely endothelialization and platelets adhesion. The endothelialization was assessed by seeding and incubating samples with human umbilical vein endothelial cells (HUVEC) for 3 days before counting and observing them under a fluorescent microscope. The platelet (rich plasma blood) adhesion and activation test on EP and MEP L-605 alloy surfaces was assessed using a laser scanning confocal microscope. The XPS analysis of MEP samples showed significant enrichment of the passive layer with Cr and O when compared with the EP one. The amount of other elements in the passive layer did not show a significant difference between EP and MEP treatments. The adhesion of HUVEC cells shows remarkable affinity to surfaces enriched in Cr (MEP) with almost 100% confluency. In addition, the number of platelets that adhered to standard EP surfaces was higher compared to the MEP surface. The present study shows that the chromium-enriched surface of cobalt-chromium alloy L-605 by the magnetoelectropolishing process tremendously improves surface hemocompatibility with regard to stent functionality by enhanced endothelialization and lower platelet adhesion and should be taken under consideration as an alternative surface of biodegradable polymer drug-eluting stents, polymer-free drug-eluting stents as well as bare-metal stents.

  11. Nickel-based gadolinium alloy for neutron adsorption application in ram packages

    International Nuclear Information System (INIS)

    This paper will outline the results of a metallurgical development program that is investigating the alloying of gadolinium into a nickel-chromium-molybdenum alloy matrix. Gadolinium has been chosen as the neutron absorption alloying element due to its high thermal neutron absorption cross section and low solubility in the expected U.S. repository environment. The nickel-chromium-molybdenum alloy family was chosen for its known corrosion performance, mechanical properties, and weldability. The workflow of this program includes chemical composition definition, primary and secondary melting studies, ingot conversion processes, properties testing, and national consensus codes and standards work. The microstructural investigation of these alloys shows that the gadolinium addition is not soluble in the primary austenite metallurgical phase and is present in the alloy as gadolinium-rich second phase. This is similar to what is observed in a stainless steel alloyed with boron. The mechanical strength values are similar to those expected for commercial Ni-Cr-Mo alloys. The alloys have been corrosion tested in simulated Yucca Mountain aqueous chemistries with acceptable results. The initial results of weldability tests have also been acceptable. Neutronic testing in a moderated critical array has generated favorable results. An American Society for Testing and Materials material specification has been issued for the alloy and a Code Case has been submitted to the American Society of Mechanical Engineers for code qualification. The ultimate goal is acceptance of the alloy for use at the Yucca Mountain repository

  12. Chromium martensitic hot-work tool steels : damage, performance and microstructure

    OpenAIRE

    Sjöström, Johnny

    2004-01-01

    Chromium martensitic hot-work tool steel (AISI H13) is commonly used as die material in hot forming techniques such as die casting, hot rolling, extrusion and hot forging. They are developed to endure the severe conditions by high mechanical properties attained by a complex microstructure. Even though the hot-work tool steel has been improved over the years by alloying and heat treatment, damages still occur. Thermal fatigue is believed to be one of the most common failure mechanisms in hot f...

  13. Investigation of strength of austenitic nitrogen-containing chromium-nicel-manganese steels at cryogenic temperature

    International Nuclear Information System (INIS)

    The mathematical method of experiment planning based on experimental data, analysis of regressive dependences with application of computerized graphics is used to optimize composition of the chromium-nickel-manganese high-strength steel with nitrogen and molybdenum to work under cryogenic temperatures. N, Ni, Mn, Mo and Cr are determined for their effect on the strength characteristics (σB and σ0.2) at the test temperatures of 293, 77, 20 K. Alloying elements are also studied for their effect on low-temperature steel hardening. Experimental and calculated data are verified by results from testing steels of chemical composition

  14. Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces

    DEFF Research Database (Denmark)

    Stiehler, Maik; Lind, M.; Mygind, Tina;

    2007-01-01

    interactions between human mesenchymal stem cells (MSCs) and smooth surfaces of titanium (Ti), tantalum (Ta), and chromium (Cr). Mean cellular area was quantified using fluorescence microscopy (4 h). Cellular proliferation was assessed by (3)H-thymidine incorporation and methylene blue cell counting assays (4...... other surfaces tested. Cells cultured on Cr demonstrated reduced spreading and proliferation. In conclusion, Ta metal, as an alternative for Ti, can be considered as a promising biocompatible material, whereas further studies are needed to fully understand the role of Cr and its alloys in bone implants...

  15. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  16. The enriched chromium neutrino source for GALLEX

    International Nuclear Information System (INIS)

    The preparation and study of an intense source of neutrinos in the form of neutron irradiated materials which are enriched in Cr-50 for use in the GALLEX solar neutrino experiment are discussed. Chromyl fluoride gas is enriched in the Cr-50 isotope by gas centrifugation and subsequently converted to a very stable form of chromium oxide. The results of neutron activation analyses of such chromium samples indicate low levels of any long-lived activities, but show that short-lived activities, in particular Na-24, may be of concern. These results show that irradiating chromium oxide enriched in Cr-50 is preferable to irradiating either natural chromium or argon gas as a means of producing a neutrino source to calibrate the GALLEX detector. These results of the impurity level analysis of the enriched chromyl fluoride gas and its conversion to the oxide are also of interest to work in progress by other members of the Collaboration investigating an alternative conversion of the enriched gas to chromium metal. 35 refs., 12 figs., 5 tabs

  17. Serum chromium levels in gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    P G Sundararaman

    2012-01-01

    Full Text Available Objective: To measure serum chromium level in women with gestational diabetes mellitus (GDM from Chennai, South India. Materials and Methods: Thirty women with gestational diabetes, 60 age matched controls. Inclusion criteria: Gestational age 22-28 weeks, age group 20-35 years. Exclusion Criteria: Gestational age beyond 28 weeks, malnutrition or presence of infection. Serum chromium was measured using inductive couple plasma emission spectrometer. Results: Serum chromium levels of women with GDM, 1.59+/-0.02 ng/ml (range: 0.16-4.0 ng/ml were lower than in controls (4.58+/-0.62 ng/ml; range 0.82-5.33 ng/ml (P < 0.001. However, there were no significant differences among cases and controls when subdivided by parity. Conclusions: Women with GDM from a South Indian city had lower levels of serum chromium compared to pregnant women without GDM. Studies may be done whether chromium supplementation is useful in this group of women.

  18. Occupational exposure to chromium(VI compounds

    Directory of Open Access Journals (Sweden)

    Jolanta Skowroń

    2015-07-01

    Full Text Available This article discusses the effect of chromium(VI (Cr(VI on human health under conditions of acute and chronic exposure in the workplace. Chromium(VI compounds as carcinogens and/or mutagens pose a direct danger to people exposed to them. If carcinogens cannot be eliminated from the work and living environments, their exposure should be reduced to a minimum. In the European Union the proposed binding occupational exposure limit value (BOELV for chromium(VI of 0.025 mg/m³ is still associated with high cancer risk. Based on the Scientific Commitee of Occupational Exposure Limits (SCOEL document chromium(VI concentrations at 0.025 mg/m³ increases the risk of lung cancer in 2–14 cases per 1000 exposed workers. Exposure to chromium(VI compounds expressed in Cr(VI of 0.01 mg Cr(VI/m3 is responsible for the increased number of lung cancer cases in 1–6 per 1000 people employed in this condition for the whole period of professional activity. Med Pr 2015;66(3:407–427

  19. [Occupational exposure to chromium(VI) compounds].

    Science.gov (United States)

    Skowroń, Jolanta; Konieczko, Katarzyna

    2015-01-01

    This article discusses the effect of chromium(VI) (Cr(VI)) on human health under conditions of acute and chronic exposure in the workplace. Chromium(VI) compounds as carcinogens and/or mutagens pose a direct danger to people exposed to them. If carcinogens cannot be eliminated from the work and living environments, their exposure should be reduced to a minimum. In the European Union the proposed binding occupational exposure limit value (BOELV) for chromium(VI) of 0.025 mg/m³ is still associated with high cancer risk. Based on the Scientific Commitee of Occupational Exposure Limits (SCOEL) document chromium(VI) concentrations at 0.025 mg/m³ increases the risk of lung cancer in 2-14 cases per 1000 exposed workers. Exposure to chromium(VI) compounds expressed in Cr(VI) of 0.01 mg Cr(VI)/m3; is responsible for the increased number of lung cancer cases in 1-6 per 1000 people employed in this condition for the whole period of professional activity. PMID:26325053

  20. Effect of alloying elements on the hydrogen embrittlement of medium-alloy deposited metal

    International Nuclear Information System (INIS)

    The effect was investigated of the main alloying elements in the metal of electrodes for welding steels upon the tendency to hydrogen embrittlement of medium-alloy built-up metal which was evaluated by the work of inception of cracks and by the work of crack propagation. Specimens from blanks were tested for static bending and rupture. It was established that when developing welding electrodes in was expedient to choose the alloying range of the built-up metal with due regard for the effect of alloying elements upon the hydrogen embrittlement. For a low content of diffusion hydrogen in the built-up metal, the work of inception of a crack diminishes with the increase in carbon, silicon, nickel and molybdenum contents. The work of crack propagation increases with the content of nickel ans varies according to a curve with a maxium as the contents of carbon, silicon, manganese and chromium rise

  1. Galvanic corrosion behavior of titanium implants coupled to dental alloys.

    Science.gov (United States)

    Cortada, M; Giner, L; Costa, S; Gil, F J; Rodríguez, D; Planell, J A

    2000-05-01

    The corrosion of five materials for implant suprastructures (cast-titanium, machined-titanium, gold alloy, silver-palladium alloy and chromium-nickel alloy), was investigated in vitro, the materials being galvanically coupled to a titanium implant. Various electrochemical parameters E(CORR), i(CORR) Evans diagrams, polarization resistance and Tafel slopes) were analyzed. The microstructure of the different dental materials was observed before and after corrosion processes by optical and electron microscopy. Besides, the metallic ions released in the saliva environment were quantified during the corrosion process by means of inductively coupled plasma-mass spectrometry technique (ICP-MS). The cast and machined titanium had the most passive current density at a given potential and chromium-nickel alloy had the most active critical current density values. The high gold content alloys have excellent resistance corrosion, although this decreases when the gold content is lower in the alloy. The palladium alloy had a low critical current density due to the presence of gallium in this composition but a selective dissolution of copper-rich phases was observed through energy dispersive X-ray analysis. PMID:15348025

  2. Flashlamp-pumped lasing of chromium-doped GSG garnet

    International Nuclear Information System (INIS)

    The implications for the practical use of chromium:GSGG in lamp-pumped tunable lasers are discussed in this paper. The authors report here some major improvements in the performance of the flashlamp-pumped chromium:GSGG laser

  3. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides

    OpenAIRE

    Weckhuysen, B. M.; Wachs, I.E.; Schoonheydt, R. A.

    1996-01-01

    Focuses on the surface chemistry and spectroscopy of chromium in inorganic oxides. Characterization of the molecular structures of chromium; Mechanics of hydrogenation-dehydrogenation reactions; Mobility and reactivity on oxidic surfaces.

  4. Studies of Some Novel Chromium Pyridine Dicarboxylate Complexes

    OpenAIRE

    Chauhan Jayprakash S; Patel Rameshchandra P; Pandya Ajit V

    2014-01-01

    Chromium pyridine di-carboxylate complexes are synthesized from Chromium (III) with pyridine 2, 6- dicarboxylic acid, pyridine 2, 3 and 2, 5- dicarboxylic acids. Chromium forms colored complexes. Chromium (III) forms a violate complex with pyridine 2, 6- dicarboxylic acid and purple violate complex with pyridine 2, 3 and 2, 5- dicarboxylic acids. The job’s method indicates metal ligand ratio to be 1:2. The interpretation of UV-VIS spectra indicates octahedral geometry and IR spectra give clue...

  5. Technology of the multifunctional protective coating production with the superficial alloying in a casting form

    Directory of Open Access Journals (Sweden)

    Abacharaev Ibrahim Musaevitch

    2010-04-01

    Full Text Available The investigations of production of thick chromium-carbide coatings are made on steel 40L and grey cast iron SCH25 with application of alloying pastes on the working surfaces of the casting forms. It is determined that alloying in a casting form of steel 40L and cast-iron SCH25 become effective in the pro-duction of chromium-carbide layers with thickness 120–240 mkm and increase their cavitation resistance by 10–12 and 20–25 times accordingly.

  6. Evaluation of Shear Bond Strength of Composite Resin Bonded to Alloy Treated With Sandblasting and Electrolytic Etching

    OpenAIRE

    M.M. Goswami; Gupta, S. H.; Sandhu, H.S.

    2013-01-01

    Conservation of natural tooth structure precipitated the emergence of resin-retained fixed partial dentures. The weakest link in this modality is the bond between resin cement and alloy of the retainer. Various alloy surface treatment have been recommended to improve alloy–resin bond. This in vitro study was carried out to observe changes in the Nickel–Chromium alloy (Wiron 99, Bego) surface following sandblasting or electrolytic etching treatment by scanning electron microscope (SEM) and to ...

  7. Determination of chromium combined with DNA, RNA and proteins in chromium-rich brewer's yeast by NAA

    International Nuclear Information System (INIS)

    The content of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast was determined by neutron activation analysis (NAA). Our results show that the extracted relative amounts and concentrations of DNA, RNA and proteins have no significant difference for two types of yeast, but the chromium content in DNA, RNA and proteins fractions extracted from the chromium-rich yeast are substantially higher than those from the normal. In addition, the concentration of chromium in DNA is much higher than that in RNA and proteins. It is evident that the inorganic chromium compounds can enter the yeast cell during the yeast cultivation in the chromium-containing culture medium and are converted into organic chromium species, which are combined with DNA, RNA and proteins. (author)

  8. Chromium allergy and dermatitis: prevalence and main findings

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten Stendahl;

    2015-01-01

    The history of chromium as an allergen goes back more than a century, and includesan interventional success with national legislation that led to significant changes inthe epidemiology of chromium allergy in construction workers. The 2015 EU Leather Regulation once again put a focus on chromium...

  9. 21 CFR 73.1326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide...

  10. 21 CFR 73.2326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.2326 Section 73.2326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2326 Chromium hydroxide green. (a) Identity and specifications.The color additive chromium hydroxide green shall conform in identity and specifications to...

  11. Thermodynamic properties of chromium bearing slags and minerals. A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yanping; Holappa, L.

    1996-12-31

    In this report, the thermodynamic properties of chromium bearing slags and minerals were reviewed based on the available information in the literature. It includes the analysing methods for oxidation state of chromium in slags, oxidation state of chromium and activities of chromium oxides in slags and minerals. The phase diagrams of chromium oxide systems and chromium distributions between slag and metal phases are also covered ill this review. Concerning the analysing methods, it was found that most of the available approaches are limited to iron free slag systems and the sample preparation is very sensitive to the analysing results. In silicate slags under reducing atmosphere, divalent and trivalent chromium co-exist in the slags. It is agreed that the fraction of divalent chromium to total chromium increases with higher temperature, lower slag basicity and oxygen potential. For the slags under oxidising atmosphere, trivalent, pentavalent and hexavalent states were reported to be stable. The activities of CrO and CrO{sub 1.5} were concluded to have positive deviation from ideal solution. Slag basicity has a positive effect and temperature has a negative effect on the activities of chromium oxides. The phase diagrams of the Cr-O, binary, and ternary chromium containing oxide systems have been examined systematically. The analysis shows that the data on the quaternary and quinary systems are insufficient, and require further investigation. The most important features of the chromium containing silicate slags are the large miscibility gaps and the stability of the chromite spinel. (orig.) (76 refs.)

  12. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  13. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions. PMID:26361854

  14. SAFETY OF TRIVALENT CHROMIUM COMPLEXES USED IN NUTRIENT SUPPLEMENTS

    Science.gov (United States)

    Toxicity studies regarding trivalent chromium have often been completed under conditions that are not designed to reflect conditions that would be encountered under normal physiological conditions. We have shown that the incorporation of chromium into tissues of rats from chromium chloride and chro...

  15. Strategies for chromium bioremediation of tannery effluent.

    Science.gov (United States)

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  16. Collisional properties of trapped cold chromium atoms

    CERN Document Server

    Pavlovich, Z; Côté, R; Sadeghpour, H R; Pavlovic, Zoran; Roos, Bjoern O.; Côté, Robin

    2004-01-01

    We report on calculations of the elastic cross section and thermalization rate for collision between two maximally spin-polarized chromium atoms in the cold and ultracold regimes, relevant to buffer-gas and magneto-optical cooling of chromium atoms. We calculate ab initio potential energy curves for Cr2 and the van der Waals coefficient C6, and construct interaction potentials between two colliding Cr atoms. We explore the effect of shape resonances on elastic cross section, and find that they dramatically affect the thermalization rate. Our calculated value for the s-wave scattering length is compared in magnitude with a recent measurement at ultracold temperatures.

  17. Synthesis Of NiCrAlC alloys by mechanical alloying; Sintese de ligas NiCrAlC por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M., E-mail: alissonkws@gmail.co [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil)

    2010-07-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni{sub 3}Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  18. Hot ductility and high temperature microstructure of high purity iron alloys

    International Nuclear Information System (INIS)

    The inherent properties of metals are affected by impurity elements, sometimes strongly. There are many brittle phenomena in iron and its alloys due to the harmful effect of trace impurities such as sulphur, phosphorus, hydrogen and so on. On the other hand, a large number of alloying elements also embrittle iron due to the transformation and precipitation of secondary phase. For example, the ductility of Fe-Cr alloy decreases with the increase in chromium content, although the strength and the corrosion resistance increase with chromium content. In Fe-Cr alloy containing high chromium, 475 C embrittlement and σ-phase embrittlement are well known. An Fe-50mass%Cr alloy of conventional purity is extremely brittle due to the formation of σ-phase. However, we found the highly purified alloy is essentially ductile. In the workshop of UHPM-94, the experimental results on the ductility of Fe-50mass%Cr alloy were presented and discussed. In this research, the effect of purification on the hot ductility of high purity Fe-18mass%Cr and Fe-50mass%Cr alloys was investigated by tensile testing at high temperature. It was found that the ductility of Fe-18mass%Cr alloy is remarkably improved by purification, especially by the reduction of interstitial impurities such as carbon and nitrogen. The highly-purified Fe-50mass%Cr alloy has astonishing ductility at the temperature range between room temperature and 1073K. Also in a high purity Fe-50mass%Cr alloy, the formation of the σ-phase was not observed during ageing for 1000h at 973K. These results are also very important for the development of high-performance Fe-Cr alloys and of the manufacturing process. Consequently, purification technology is very useful for progress in metal science. (orig.)

  19. A Novel Surface Treatment for Titanium Alloys

    Science.gov (United States)

    Lowther, S. E.; Park, C.; SaintClair, T. L.

    2004-01-01

    High-speed commercial aircraft require a surface treatment for titanium (Ti) alloy that is both environmentally safe and durable under the conditions of supersonic flight. A number of pretreatment procedures for Ti alloy requiring multi-stages have been developed to produce a stable surface. Among the stages are, degreasing, mechanical abrasion, chemical etching, and electrochemical anodizing. These treatments exhibit significant variations in their long-term stability, and the benefits of each step in these processes still remain unclear. In addition, chromium compounds are often used in many chemical treatments and these materials are detrimental to the environment. Recently, a chromium-free surface treatment for Ti alloy has been reported, though not designed for high temperature applications. In the present study, a simple surface treatment process developed at NASA/LaRC is reported, offering a high performance surface for a variety of applications. This novel surface treatment for Ti alloy is conventionally achieved by forming oxides on the surface with a two-step chemical process without mechanical abrasion. This acid-followed-by-base treatment was designed to be cost effective and relatively safe to use in a commercial application. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond after exposure to hot-wet environments. Phenylethynyl containing adhesives were used to evaluate this surface treatment with sol-gel solutions made of novel imide silanes developed at NASA/LaRC. Oxide layers developed by this process were controlled by immersion time and temperature and solution concentration. The morphology and chemical composition of the oxide layers were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Bond strengths made with this new treatment were evaluated using single lap shear tests.

  20. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  1. Alloys having improved resistance to hydrogen embrittlement

    International Nuclear Information System (INIS)

    The invention involves a process of improving the hydrogen embrittlement resistance of a cold-worked high yield strength nickel/cobalt base alloy containing chromium, and molybdenum and/or tungsten and having individual elemental impurity concentrations as measured by Auger spectroscopy at the crystallographic boundaries of up to about 1 Atomic percent. These elemental impurities are capable of becoming active and mobile at a temperature less than the recrystallization temperature of the alloy. The process involves heat treating the alloy at a temperature above 1300 degrees F but below the temperature of recrystallization for a time of from 1/4 to 100 hours. This is sufficient to effect a reduction in the level of the elemental impurities at the crystallographic boundaries to the range of less than 0.5 Atomic percent without causing an appreciable decrease in yield strength

  2. Calorimetry studies on U-Cr alloys

    International Nuclear Information System (INIS)

    A calorimetric study of Uranium-Chromium system is of interest on both basic and applied fronts. With the advent of U-Pu-Zr alloy as the fuel, in combination with ferritic-martensitic steel as the cladding material, the metal fuelled fast reactors constitute the second major step in Indian nuclear power program. In such a context, a fundamental investigation on the high temperature phase stability of U-Cr alloys is of particular relevance in getting further insight in to the complex issue of the metallurgical compatibility of ferritic steels with metallic Uranium-Zirconium fuel. It may be added that following U-Fe, and U-Zr binaries, the U-Cr constitutes one of the important subsystems of the complex U-Zr-Pu-Fe- Cr-Mn-Si-V-Nb-C-N multinary system. In the current study, the results of calorimetry investigations on U, U-2, 3, 7, 15wt. % Cr alloys are presented

  3. TO SELECTION OF TECHNOLOGICAL SCHEME OF SOFTENING HEAT TREATMENT FOR HIGH CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. G. Efremenko

    2014-03-01

    Full Text Available Purpose. High chromium cast irons with austenitic matrix have low machinability. The aim of work is search of new energy-saving modes of preliminary softening heat treatment enhancing the machinability of castings by forming an optimum microstructure. Methodology. Metallographic analysis, hardness testing and machinability testing are applied. Findings. It was found out that high temperature annealing with continuous cooling yields to martensite-austenite matrix in cast iron 270Х15Г2Н1MPhT, which abruptly affects the machinability of cast iron. Significant improvement of machinability is achieved by forming of structure "ferrite + granular carbides" and by decline of hardness to 37-39 HRC in the case of two-stage isothermal annealing in the subcritical temperature range or by the use of quenching and tempering (two-step or cyclic. Originality. It was found that the formation of the optimal structure of the matrix and achievement of desired hardness level needed for improving machinability of high chromium cast iron containing 3 % austenite-forming elements, can be obtained: 1 due to pearlite original austenite followed by spherodization eutectoid carbides, and 2 by getting predominantly martensite structure followed by the decay of martensite and carbides coagulation at high-temperature tempering. Practical value. The new energy-saving schemes of softening heat treatment to ensure the growth of machinability of high chromium cast iron, alloyed by higher quantity of austenite forming elements, are proposed.

  4. Abrasive Performance of Chromium Carbide Reinforced Ni3Al Matrix Composite Cladding

    Institute of Scientific and Technical Information of China (English)

    LI Shang-ping; LUO He-li; FENG Di; CAO Xu; ZHANG Xi-e

    2009-01-01

    The Microstructure and room temperature abrasive wear resistance of chromium carbide reinforced NiM3Al matrix composite cladding at different depth on nickel base alloy were investigated. The results showed that there is a great difference in microstructure and wear resistance of the Ni3 Al matrix composite at different depth. Three kinds of tests, designed for different load and abrasive size, were used to understand the wear behaviour of this material. Under all three wear conditions, the abrasion resistance of the composite cladding at the depth of 6 mm, namely NC-M2, was much higher than that of the composite cladding at the depth of 2 mm, namely NC-M1. In addition, the wear-resistant advantage of NC-M2 was more obvious when the size of the abrasive was small. The relative wear resistance of NC-M2 increased from 1.63 times to 2.05 times when the size of the abrasive decreased from 180 μm to 50μm. The mierostructure of the composite cladding showed that the size of chromium carbide particles, which was mainly influenced by cooling rate of melting pool, was a function of distance from the interface between the coating and substrate varied gradually. The chromium carbide particles near the interface were finer than that far from inter-face, which was the main reason for the different wear resistance of the composite cladding at different depth.

  5. Stress corrosion cracking of nickel-base alloy weldments

    International Nuclear Information System (INIS)

    Stress corrosion cracking (SCC) of weldments occurs in media such as chloride, hydrofluoric acid, polythionic acid, caustic soda and molten metals. Nickel-base alloys on account of their low SCC are preferred for weldments in the above media. However, the choice of a particular nickel-base alloy depends upon the condition in which they are used. Studies on this aspect are reviewed. In reprocessing plants, Ni-Cr-Mo alloy No6625 and No6455 are found suitable. The Ni-Cr alloy No6600 failed in BWR type reactor due intergranular SCC. The alloy No6690 which has a higher chromium content is immune to intergranular SCC. Reduction of free carbon in the matrix of the weld metal makes it resistant to intergranular SCC. (M.G.B.)

  6. High-temperature oxidation of EhP648-VI alloy

    International Nuclear Information System (INIS)

    Investigations were carried out in 1000-1200 deg C temperature range on 20x15x(2.45-01) mm sheets of EhP 648-VI alloy melted of pure-charge materials. Oxidation kinetics was studied by thermogravimetric method in continuous heating. It is shown that oxidation of EhP648-VI alloy in 1000-1200 deg C temperature range includes chromium diffusion in oxide crystal lattice, opposing oxygen diffusion along the grain boundaries and oxide microcracks, and chromium, tungsten, molybdenum oxide evaporation. Scale on EhP648-VI alloy, consisting basically of α-Cr2O3, is subjected to a compression stress resulting in crack formation. It's protective properties are due to cracks and a thin surface layer of NiCr2O4 spinel. Chromium, tungsten and molybdenum diffusion from the base to scale proceeds along the alloy grain boundaries and volume, couses changes in alloy chemical composition and structure depletion of chromium, tungsten and molybdenum, and filling the grain boundary vacancies with α-Cr or σ-phase particles, that are substituted for (Ti, Nb) (C, N) carbonitride particles by increase of temperature and oxidation time

  7. Metallurgical and mechanical tests on the low activating martensitic chromium steel OPTIFER-IV

    International Nuclear Information System (INIS)

    Derived from a martensitic chromium-steel (1.4914) with high strength at elevated temperatures, a new low activating steel OPTIFER-IV, Chg. 986489, had been developed for an application as 'First Wall' - and as structural material for fusion devices. The alloying elements with high activation like Mo, Ni and Nb had been substituted by similar acting, but low activating elements like W and Ta. Some metallurgical and mechanical properties had been tested in order to decide the kind of alloying. The new steel is fully martensitic without δ-ferrite, fine-grained and well hardenable. The tensile properties satisfy the requirements, and the notch impact bending properties are excellent. (orig.)

  8. Interaction of screw and edge dislocations with chromium precipitates in ferritic iron: An atomistic study

    International Nuclear Information System (INIS)

    Binary (Fe, Cr) alloys and high-chromium ferritic-martensitic steels undergo α-α' phase separation under thermal ageing or irradiation. The resulting Cr-rich precipitates (α' phase) are well known to cause hardening and embrittlement in such alloys and steels. In this work molecular statics (MS) and molecular dynamics (MD) simulations were applied to study the interaction between both a 1/2 screw and 1/2{1 1 0} edge dislocation with pure Cr precipitates in a bcc Fe matrix at various temperatures. After summarizing the interaction mechanisms for both types of dislocations, an analytical assessment of the interaction energy between a dislocation and precipitate is presented. The critical stress derived from the interaction energy is compared with MD data to reveal a possible correlation. For the edge dislocation and a precipitate of diameter less than 4 nm correlation with MD data is good, while for the screw dislocation no correlation was found.

  9. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lapena, J.; Blazquez, F. [Ciemat, Madrid (Spain)

    2000-07-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigree. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs.

  10. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    International Nuclear Information System (INIS)

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigrade. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs

  11. Problems of phase identification in high-nitrogen chromium-manganese cast steel

    Directory of Open Access Journals (Sweden)

    Z. Pirowski

    2008-03-01

    Full Text Available An atzcrnpt has been madc to offcr an intcrprctation of ihc rnicrostructurc of chromium-mangancx cast stccl aftcr adding to 1his stccla targc amount of nitrogcn as an alloying clcrncnr. Nitropcn was addcd 10 rhc cast stccl by two mcthods: rhc first mcthod consistcrl inadding a nitridcd fcrrornangancsc, the second method in rcmclting thc nitrogen-rscc alloy undcr rhc atrnosphcrc of nitrogen maintaininghigh N1 prcssurc abovc the mctal meSt (33 MPa.Somc imponant diffcrcnces in the microstructurc of rhc cxamincd cast sleet havc bccn observed. dcpcnding on how the nitrogcn wasintroduced to Ihc alloy. Whcn melting was carried out undcr thc armosphcric prcssurc adding thc nitridcd fcrroaIloys. the matrix was composedof nitridcd nustcnitc, and numerous nitrides (carboni~rides wcrc forming a wcll-dcvclopcd ncrwork along tbc grain boundaries.Mcl t ing of alloy iindcr thc high prcsairc or nirrogcn enabPcs oblaining much highcr concentrarion of this clclncnt in lncral. Thc network ofprccipilarcs along lhc grain houndwics is obscrvcd to cxist no longcr. and thc Pamellar stmcturc occupics now practically ihc cnrirc mctalvolumc. Whcn :illoys arc mcltctt in rhc air, only small fragments oh the lamellar structurc, forming thc. so ca!lcd. "Chincse script" and localclusters arc! prcscnt.At this stagc of thc rcscarch. an artcmpa has bcen mad& to identify thc phascs in chromium-~nnngn~icsc cnst stccl u s i n ~a transmissionclectron rnicroscopc. Thc conducrcd slzldics pnnly confirrncd rhc conclusions resulting from ~ h ccx nminntions cnrricd out prcvioi~slyu ndcrthc optical rnicroscopc. So far. howcvcr, no consistcna answer has bccn found to thc qucstion of what typc arc Z ~ pCrc cipi~alcsp rcscnt inthe structurc of thc cxamincrh alloy.Attcmpts at furthcr intcrprcintion of thc obtained tcsults will hc taken at the next stage of thc work with n~tcntionfo ci~sscdo n thc prccipitatcsformed during rhc proccss of wlidilicat ion of thc cxnmincd chromium-manganese cast

  12. Role of alloyed molybdenum on corrosion resistance of austenitic Ni–Cr–Mo–Fe alloys in H2S–Cl– environments

    International Nuclear Information System (INIS)

    Highlights: • The alloyed molybdenum improves corrosion resistance in the H2S–Cl– environment. • The formed surface film comprises sulfide including molybdenum and chromium oxide. • The Ni–Mo–Fe alloy shows good corrosion resistance in the H2S–Cl– environment. • It is revealed that molybdenum sulfide is stable and cation selective. • A possible role of alloyed molybdenum is proposed. - Abstract: Corrosion test and surface analysis were conducted in the H2S–Cl– environments to elucidate the role of alloyed molybdenum on the corrosion resistance of Ni–Cr–Mo–Fe alloys. The alloyed molybdenum improves the localized corrosion resistance. The surface film is of double layers which comprise sulfide including molybdenum and chromium oxide. However, the Ni–Mo–Fe alloy also shows good corrosion resistance in the H2S–Cl– environment. This good corrosion resistance is considered to be due to the cation selectivity of molybdenum sulfide, which can form in such environments. The role of alloyed molybdenum on the corrosion resistance of Ni–Cr–Mo–Fe alloys in H2S–Cl– environments is proposed

  13. Electrodeposition of black chromium thin films from trivalent chromium-ionic liquid solution

    OpenAIRE

    Eugénio, S.; Vilar, Rui; C. M. Rangel; Baskaran, I.

    2009-01-01

    In the present study, black chromium thin films were electrodeposited from a solution of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIm][BF4] ionic liquid containing trivalent chromium (Cr(III)). Homogeneous and well adherent coatings have been obtained on nickel, copper and stainless steel substrates. The nucleation and growth of the films were investigated by cyclic voltammetry and current-density/time transient techniques. SEM/EDS, XPS and XRD were used to study the morphology, chem...

  14. Reduction of Hexavalent Chromium by Viable Cells of Chromium Resistant Bacteria Isolated from Chromite Mining Environment

    OpenAIRE

    Satarupa Dey; Baishali Pandit; A. K. Paul

    2014-01-01

    Environmental contamination of hexavalent chromium [Cr(VI)] is of serious concern for its toxicity as well as mutagenic and carcinogenic effects. Bacterial chromate reduction is a cost-effective technology for detoxification as well as removal of Cr(VI) from polluted environment. Chromium resistant and reducing bacteria, belonging to Arthrobacter, Pseudomonas, and Corynebacterium isolated from chromite mine overburden and seepage samples of Orissa, India, were found to tolerate 12–18 mM Cr(VI...

  15. Reduction of Chromium-VI by Chromium Resistant Lactobacilli: A Prospective Bacterium for Bioremediation

    OpenAIRE

    Mishra, Ritesh; Sinha, Vartika; Kannan, Ambrose; Upreti, Raj K.

    2012-01-01

    Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr (VI) and Cr (III). Highly soluble hexavalent chromium is carcinogenic due to its oxidizing nature. It is well established that the intestinal bacteria including Lactobacilli have regulatory effect on intestinal homeostasis and a breakdown in the relationship between intestinal cells and bacteria results in the manifestation of gastrointestinal (GI) disorders. In this study Cr (VI) resistance was developed in La...

  16. Defect structure of electrodeposited chromium layers

    International Nuclear Information System (INIS)

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  17. Defect structure of electrodeposited chromium layers

    CERN Document Server

    Marek, T; Vertes, A; El-Sharif, M; McDougall, J; Chisolm, C U

    2000-01-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  18. Flashlamp-pumped lasing of chromium: GSGG

    International Nuclear Information System (INIS)

    Lasing action in chromium-doped gadolinium scandium gallium garnet (Cr:GSGG) is well established for both CW/sup (1)/ and flashlamp/sup (2)/ pumping. This paper describes an investigation of flashlamp-pumped Cr:GSGG lasers and indicates some of the factors which limit performance

  19. Trace Elements Excluding Iron - Chromium and Zinc

    Science.gov (United States)

    The percentage of middle-aged US adults who are participating in leisure-time physical activities is growing. These adults also seek credible information about specific supplements that the public press routinely describes as necessary to enable increases in physical performance. Chromium and zinc a...

  20. HEALTH ASSESSMENT DOCUMENT FOR CHROMIUM. FINAL REPORT

    Science.gov (United States)

    The full document represents a comprehensive data base that considers all sources of chromium in the environment, the likelihood for its exposure to humans, and the possible consequences to man and lower organisms from its absorption. This information is integrated into a format ...

  1. 29 CFR 1926.1126 - Chromium (VI).

    Science.gov (United States)

    2010-07-01

    ... CFR 1926.51 Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1926.51. Eating and drinking areas provided by the employer shall also... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i)...

  2. 29 CFR 1910.1026 - Chromium (VI).

    Science.gov (United States)

    2010-07-01

    ... CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1910.141. Eating and drinking areas provided by the employer shall also... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i)...

  3. 29 CFR 1915.1026 - Chromium (VI).

    Science.gov (United States)

    2010-07-01

    ... CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide washing facilities in conformance with 29 CFR 1915.97. Eating and drinking areas provided by the employer shall also... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i)...

  4. Chromium(III) and chromium(VI) surface treated galvanized steel for outdoor constructions: environmental aspects.

    Science.gov (United States)

    Lindström, David; Hedberg, Yolanda; Odnevall Wallinder, Inger

    2010-06-01

    The long-term degradation of chromium(III) (Zn-Cr(III)) and chromium(VI)-based (Zn-Cr(VI)) surface treatments on galvanized steel and their capacities to hinder the release of zinc induced by atmospheric corrosion at nonsheltered urban and marine exposure conditions for 2 years are investigated. Compared to bare zinc sheet, both surface treatments revealed high corrosion protection abilities and capacities to hinder the release of zinc, still evident after 2 years of exposure. The zinc barrier properties of the thinner Zn-Cr(VI) (10 nm) treatment were during the first 100 days of urban exposure slightly improved compared with Zn-Cr(III) (35 nm). However, their long-term protection capacities were inverse. Released concentrations of total chromium correspond to annual release rates less than 0.000032 (Zn-Cr(III)) and 0.00014 g Cr m(-2) yr(-1) (Zn-Cr(VI)) after 1 year of urban exposure. Aging by indoor storage of the surface treatments prior to outdoor exposure reduced the released Cr concentrations from the surface treatments. No Cr(VI) was released from the aged surfaces but from the freshly exposed Zn-Cr(VI). Marine exposure conditions resulted in a faster reduction of chromate to chromium(III)oxide compared with urban conditions, and a significantly lower amount of both chromium(III) and chromium(VI) released from Zn-Cr(VI) at the marine site compared with the urban site. PMID:20462267

  5. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    Science.gov (United States)

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively. PMID:26971177

  6. Nephrotoxic and hepatotoxic effects of chromium compounds in rats

    Energy Technology Data Exchange (ETDEWEB)

    Laborda, R.; Diaz-Mayans, J.; Nunez, A.

    1986-03-01

    The nephrotoxic, hepatotoxic and cardiotoxic actions of hexavalent chromium compounds, as well as their effects on lung, blood and circulation may contribute to the fatal outcome of chromium intoxication. Although trivalent chromium have been regarded as relatively biologically inert, there are a few salts of chromium III that have been found to be carcinogenic when inhaled, ingested or brought in contact with the tissues. Sensitive persons and industry workers have been subjects of dermatitis, respiratory tract injuries and digestive ulcers due to chromium compounds. In this work, the authors have studied the effect of trivalent and hexavalent chromium compounds on rats measuring the transaminases (GOT and GPT), urea and creatinine levels in serum of chromium poisoned animals at different times.

  7. A Kinetic Model of Chromium in a Flame

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chromium has been identified as a carcinogenic metal.Incineration is the useful method for disposal of toxic chromium hazard waste and a chromium kinetic model in a flame is very important to study chromium oxidation.Chromium chemical kinetics over a range of temperatures of a hydrogen/air flame is proposed.Nine chromium compounds and fifty-eight reversible chemical reactions were considered The forward reaction rates are calculated based on the molecular collision approach for unknown ones and Arrhenius's Law for known ones.The backward reaction rates were calculated according to forward reaction rates, the equilibrium constants and chemical thermodynamics.It is verified by several equilibrium cases and is tested by a hydrogen/air diffusion flame.The results show that the kinetic model could be used in cases in which the chromium kinetics play an important role in a flame

  8. The Chromium is an essential element in the human

    International Nuclear Information System (INIS)

    The Chromium is an essential element for human and animals, because it a preponderant function in the insulin metabolism as a glucose tolerance factor (GTF). The deficiency of chromium engenders a deterioration in the glucose metabolism due to bad efficiency of insulin. Because the importance of this element an exhaustive reference review was made and this presents some studies realized in laboratory animals and in human beings where it is prove with resuits the effect of chromium over the improvement of patients with non-insulin dependant diabetes. Three substances are presented as chromium active biological forms: a material rich in chromium known as glucose tolerance factor, chromium picolinate and a substance of low molecular weight LMWCr in its forms of apo and holo that contains chromium and it links the insulin receptor and improves its activity. Also this paper presents information about the condition of diabetes in Costa Rica. (Author)

  9. Reaction of chromium(VI) with glutathione or with hydrogen peroxide: identification of reactive intermediates and their role in chromium(VI)-induced DNA damage.

    OpenAIRE

    Aiyar, J; Berkovits, H J; Floyd, R A; Wetterhahn, K E

    1991-01-01

    The types of reactive intermediates generated upon reduction of chromium(VI) by glutathione or hydrogen peroxide and the resulting DNA damage have been determined. In vitro, reaction of chromium(VI) with glutathione led to formation of two chromium(V) complexes and the glutathione thiyl radical. When chromium(VI) was reacted with DNA in the presence of glutathione, chromium-DNA adducts were obtained, with no DNA strand breakage. The level of chromium-DNA adduct formation correlated with chrom...

  10. Concentration profiles and electrochemical properties of chromium and nickel implanted iron

    International Nuclear Information System (INIS)

    The concentration profiles of chromium and nickel implanted in pure iron were measured with a secondary ion mass analyzer. The electrochemical properties of implanted iron were investigated by means of a cyclic voltammetry in 0.5 M acetate buffer solution (pH = 5.0 +- 0.1). Chromium, nickel and argon ion implantations have been carried out with doses of 1 x 1016 -- 1 x 1017 ions/cm2 at an energy of 150 keV. The target temperature during ion implantation rised to --1800C from room temperature by the heating effect of ion beam itself. The profile of Cr implanted in pure iron has two peaks; the first peak near the surface and the second peak near the depth predicted by the range theory. However, the first peak was not found in the specimen 1 st-implanted with Ni. The electrochemical properties of Cr implanted iron approach to that of Fe-18% Cr bulk alloy (SUS 430), as the dose increases. The polarization curve of Cr implanted iron with 1 x 1017 ions/cm2 is almost the same as that of SUS 430. The polarization curve of Ni and Cr implanted iron is similar to that of Fe-18%Cr-8%Ni bulk alloy (SUS 304) after annealing at --3000C for 20 min. These results show that Cr and Ni implanted surface layer is useful for the improvement of corrosion resistance of iron. (author)

  11. Decrease in electrical resistance of surface oxide of iron-chromium-aluminium alloy by La0.6Sr0.4Co0.2Fe0.8O3 coating and heat treatment for the application of metal-supported solid oxide fuel cells

    Science.gov (United States)

    Pham, Hung-Cuong; Taniguchi, Shunsuke; Inoue, Yuko; Chou, Jyh-Tyng; Izumi, Toru; Matsuoka, Koji; Sasaki, Kazunari

    2015-11-01

    We have investigated the property of a Fe-Cr-Al-type stainless steel as a porous alloy substrate for metal-supported solid oxide fuel cells (SOFCs) especially on the cathode side. We found that the microstructure and electrical resistance of the surface oxide layer of the alloy changes depending on the heat-treatment conditions. A relatively low electrical resistance was obtained when the porous alloy substrate was coated with La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) and heat treated at 700-800 °C in air. The morphology of the surface oxide layer observed by high-resolution transmission electron microscopy was a columnar structure of γ-Al2O3 polycrystal and Sr3Al2O6 growing outward in the same direction. In contrast, the surface oxide layer of the alloy showed a high electrical resistance when the uncoated porous alloy substrate was heat treated. The morphology of the surface oxide layer in that case was a columnar structure consisting of only γ-Al2O3 growing outward in various directions.

  12. Design and performance of chromium mist generator

    Directory of Open Access Journals (Sweden)

    Tirgar Aram

    2006-01-01

    Full Text Available Chromium mist generator is an essential tool for conducting researches and making science-based recommendations to evaluate air pollution and its control systems. The purpose of this research was to design and construct a homogenous chromium mist generator and the study of some effective factors including sampling height and distances between samplers in side-by-side sampling on chromium mist sampling method. A mist generator was constructed, using a chromium electroplating bath in pilot scale. Concentration of CrO3 and sulfuric acid in plating solution was 125 g L-1 and 1.25 g L-1, respectively. In order to create permanent air sampling locations, a Plexiglas cylindrical chamber (75 cm height, 55 cm i.d was installed the bath overhead. Sixty holes were produced on the chamber in 3 rows (each 20. The distance between rows and holes was 15 and 7.5 cm, respectively. Homogeneity and effective factors were studied via side-by-side air sampling method. So, 48 clusters of samples were collected on polyvinyl chloride (PVC filters housed in sampling cassettes. Cassettes were located in 35, 50, and 65 cm above the solution surface with less than 7.5 and/or 7.5-15 cm distance between heads. All samples were analyzed according to the NIOSH method 7600. According to the ANOVA test, no significant differences were observed between different sampling locations in side-by-side sampling (P=0.82 and between sampling heights and different samplers distances (P=0.86 and 0.86, respectively. However, there were notable differences between means of coefficient of variations (CV in various heights and distances. It is concluded that the most chromium mist homogeneity could be obtained at height 50 cm from the bath solution surface and samplers distance of < 7.5 cm.

  13. Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steel with Chromium and Carbon

    Science.gov (United States)

    Wu, Ming-Wei; Fan, Yu-Chi; Huang, Her-Yueh; Cai, Wen-Zhang

    2015-11-01

    Liquid phase sintering is an effective method to improve the densification of powder metallurgy materials. Boron is an excellent alloying element for liquid phase sintering of Fe-based materials. However, the roles of chromium and carbon, and particularly that of the former, on liquid phase sintering are still undetermined. This study demonstrated the effects of chromium and carbon on the microstructure, elemental distribution, boride structure, liquid formation, and densification of Fe-B-Cr and Fe-B-Cr-C steels during liquid phase sintering. The results showed that steels with 0.5 wt pct C densify faster than those without 0.5 wt pct C. Moreover, although only one liquid phase forms in Fe-B-Cr steel, adding 0.5 wt pct C reduces the formation temperature of the liquid phase by about 50 K (°C) and facilitates the formation of an additional liquid, resulting in better densification at 1473 K (1200 °C). In both Fe-B-Cr and Fe-B-Cr-C steels, increasing the chromium content from 1.5 to 3 wt pct raises the temperature of liquid formation by about 10 K (°C). Thermodynamic simulations and experimental results demonstrated that carbon atoms dissolved in austenite facilitate the eutectic reaction and reduce the formation temperature of the liquid phase. In contrast, both chromium and molybdenum atoms dissolved in austenite delay the eutectic reaction. Furthermore, the 3Cr-0.5Mo additive in the Fe-0.4B steel does not change the typical boride structure of M2B. With the addition of 0.5 wt pct C, the crystal structure is completely transformed from M2B boride to M3(B,C) boro-carbide.

  14. Microstructural, mechanical characterisation and fractography of As-cast Ti-Al alloy

    International Nuclear Information System (INIS)

    The effect of alloying element, namely chromium (Cr) on the microstructures, mechanical characterization and fracture surface of gamma titanium aluminide (Ti Al) has been studied. Micro-hardness and fatigue crack growth tests were performed on as-cast samples with composition of Ti-48at%Al and Ti-48%Al-2at%Cr. Prior to the micro-hardness tests; samples were metallurgically prepared for microstructural and structural analysis using optical microscope and scanning electron microscope. Field emission scanning electron microscope (FESEM) technique was employed to investigate the fracture surface of sample after fatigue crack growth test. Micro-hardness tests results showed increasing hardness value of Ti-48Al alloys when chromium is added. Both titanium aluminide alloys exhibited a nearly lamellae microstructure. However, finer laths of plates in lamellar structure have been observed in Ti-48at%Al-2at%Cr. FESEM micrograph of surface fracture indicates a mixed mode of failure for both alloys. (author)

  15. Stability of oxide film formed at different temperatures on Alloy 600 in lithiated environment

    International Nuclear Information System (INIS)

    The nickel base alloys are susceptible to localized corrosion attack and the major contributing factor in these corrosion mechanisms is the oxide film formed on the alloy. The chromium content in the oxide film determines its stability against localized attack that act as precursors for the initiation of stress corrosion cracking (SCC) in the material. The present study aimed at optimizing the hot conditioning parameter by varying the temperature of oxide formation for minimum ion release rate during reactor operation. The surface and in-depth compositional characterization of oxide film formed on Alloy 600 was carried out using micro-laser Raman spectroscopy (MLRS) and glow discharge quadrapole mass spectroscopy (GDQMS) respectively. The relative defect density of oxide films were studied using electrochemical impedance spectroscopy (EIS). The oxide film stability of Alloy 600 in chloride containing environment was correlated to chromium concentration in the film as well as relative defect density

  16. Remanent life assessment of creep resistant modified 12% chromium steels: microstructural analysis and microstructural development models

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, L.; Andren, H.O. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Physics; Norell, M.; Nyborg, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Engineering Metals

    1996-09-01

    In this report, an overview of the current status of the development work, physical metallurgy and creep properties of 9-12% chromium steels is given. These steels find their application mainly in the power generating industry, at high temperatures. In Sweden, a co-operation between research groups specialized at microanalysis and modelling of 9-12% chromium steels has been initiated. This co-operation is outlined in this report, as well as the most important results achieved so far. The microstructure of four different alloys have been studied in detail with different analytical methods including atom-probe field-ion microscopy, electron microscopy and Auger electron spectroscopy. The role of different elements on precipitation processes and the composition of all relevant phases have been studied. Furthermore, segregation of impurity elements to creep cavities and creep fracture surfaces have been studied for two of the alloys. Models for the microstructural development of 9-12% chromium steels during heat treatment and creep testing are currently being produced. The work has been focused on modelling the nucleation and growth of MN and M{sub 23}C{sub 6} precipitates during tempering, and the first results from these studies are currently being compared to microscopy observation. In addition, equilibrium phase calculations have been made and been found to predict existing phases to a high degree. A complete description of the creep properties of these steels must also include a model of the relationship between microstructure and creep behaviour. However, the microstructural development models will form an important basis for complete models of this kind. 57 refs

  17. Effects of carbon, chromium and molybdenum contents on solidification and microstructure of 15 or 20% Cr white cast irons

    International Nuclear Information System (INIS)

    Solidification experiments were performed on 30 mm diameter test pieces of while irons containing 15 or 20% chromium and 2,3 3,0 and 3,6% carbon, with additions of zero, 1,5 or 2,5% molybdenum for each carbon content. Measurements were made of: austenite and eutectic temperature arrest; number of eutectic carbide particles relative to total volume and to eutectic volume; volume fraction of primary austenite. It was observed that increasing carbon contents caused lower austenite and eutectic formation temperature arrest, reduced number of carbide p;articles in eutectic volume and smaller volume fraction of primary austenite. The addition of molybdenum led to lower austenite and eutectic formation temperature arrests, less carbide particles in total and in eutectic volume, and larger volume fraction of primary austenite. As compared to 15% chromium alloys, the 20% chromium alloys showed higher eutectic temperature arrests, more carbide particles both in the total volume and in the eutectic volume, and smaller volume fraction of primary austenite. (author)

  18. In situ synchrotron X-ray diffraction study of the effect of chromium additions to the steel and solution on CO2 corrosion of pipeline steels

    International Nuclear Information System (INIS)

    Highlights: •We studied the effect of chromium on CO2 corrosion processes. •Chromium addition accelerates the onset of siderite and chukanovite precipitation. •One of the key effects is to decrease the critical supersaturation for siderite nucleation. -- Abstract: We demonstrate the important effects of chromium in the steel composition and of Cr3+ ions in solution on the nucleation and growth of corrosion layers in a CO2 environment. We propose that high-valent metal cations in solution (within the boundary layer) catalyse the nucleation of siderite, which otherwise has a high critical supersaturation for precipitation. One of the key effects of small alloy additions to the steel is to put into the local solution species that decrease the critical supersaturation for siderite and modify the growth rate of the scale, thereby promoting the formation of an adherent and protective scale

  19. Study on comprehensive properties of duplex austenitic surfacing alloys for impacting abrasion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, comprehensive property crack resistance, work hardening and abrasion resistance of a series of double-phases austenitic alloys(FAW) has been studied by means of SEM, TEM and type MD-10 impacting wear test machine. FAW alloys are of middle chromium and low manganese, including Fe-Cr-Mo-C alloy,Fe-Cr-Mn-C alloy and Fe-Cr-Mn-Ni-C alloy, that are designed for working in condition of impacting abrasion resistance hardfacing.Study results show that the work hardening mechanism of FAW alloys are mainly deformation high dislocation density and dynamic carbide aging, the form of wearing is plastic chisel cutting. Adjusting the amount of carbon, nickel, manganese and other elements in austenitic phase area, the FAW alloy could fit different engineering conditions of high impacting, high temperature and so on.

  20. Corrosion Behavior of Alloy 22 in Chloride Solutions Containing Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Rebak, R B

    2005-11-04

    Alloy 22 (N06022) is a nickel based alloy containing alloying elements such as chromium, molybdenum and tungsten. It is highly corrosion resistant both under reducing and under oxidizing conditions. Electrochemical studies such as electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. Tests were also carried out in NaCl solutions containing oxalic acid or acetic acid. It is shown that the corrosion rate of Alloy 22 was higher in a solution containing oxalic acid than in a solution of the same pH acidified with HCl. Acetic acid was not corrosive to Alloy 22. The corrosivity of oxalic acid was attributed to its capacity to form stable complex species with metallic cations from Alloy 22.

  1. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties; Alliages ferritiques 14/20% de chrome renforces par dispersion d`oxydes. Effets des procedes de mise en forme sur les textures de deformation, la recristallisation et les proprietes de traction

    Energy Technology Data Exchange (ETDEWEB)

    Regle, H.

    1994-12-31

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. (Abstract Truncated)

  2. Effects of Ni and Mo on the microstructure and some other properties of Co-Cr dental alloys

    International Nuclear Information System (INIS)

    Influences of adding Ni and Mo on the microstructure and properties of as-cast Co-Cr base alloys have been investigated in order to determine the region of their optimal characteristics for biomedical application. The alloys were produced by arc-melting technique under argon atmosphere. Using optical metallography and scanning electron micro analyser it has been established that among 10 samples of Co-Cr-Ni alloys only samples 5 and 9 with the composition Co55Cr40Ni5 and Co60Cr30Ni10 have appropriate dendritic solidification microstructure. This microstructure, typical for commercial dental alloys, appears and beside greater number of as-cast Co-Cr-Mo alloys. The results of hardness and corrosion resistance measurements revealed the strong influence of different alloy chemistry and of as-cast microstructure. Hardness of alloys decreases with nickel content, but increases with chromium content. Therefore all Co-Cr-Ni alloys have significantly lower hardness than Co-Cr-Mo alloys. Corrosion resistance of alloys in artificial saliva was evaluated on the base of pitting potential. Superior corrosion characteristics have the samples with typical dendritic microstructure and higher chromium content, until nickel content have not significant effect. According to this, in ternary Co-Cr-Ni phase diagram was located the small concentration region (about samples 5 and 9) in them alloy properties can satisfied the high requirements for biomedical applications. This region is considerably larger in Co-Cr-Mo phase diagram

  3. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  4. Chromium supplementation improved post-stroke brain infarction and hyperglycemia.

    Science.gov (United States)

    Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung

    2016-04-01

    Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia. PMID:26477944

  5. Description Of Alloy Layer Formation On A Cast Steel Substrate

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2015-09-01

    Full Text Available A description of alloy layer formation on a steel substrate is presented. Two types of formation are considered: diffusion of carbon and chromium into the solid from the pad in the direction of the cast steel within the FeCrC (grains and diffusion in a layer of liquid chromium cast iron formed in a preceding step. The influence of silicon in the pad on the pad’s transformation into the liquid is also examined. Solidus and liquidus temperatures of high carbon ferrochromium are determined. The larger the content of Si is used in the experiment, the lower the solidus temperature of the FeCrC alloy is observed. This results from the higher intensity of the elements’ diffusion and faster formation of the liquid.

  6. Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection

    International Nuclear Information System (INIS)

    Highlights: → A regular solution model for solute segregation is capable of estimating the effect of solutes on the stability of nanocrystalline Fe. → Stability increases for solutes having larger heats of segregation. → Zr and Ta had an effect on stabilizing the nanocrystalline microstructure of Fe, while Cr and Ni did not. - Abstract: Using a modified regular solution model for grain boundary solute segregation, the relative thermal stability of a number of Fe-based nanocrystalline binary alloys was predicted with considerable accuracy. It was found that nanocrystalline iron was strongly stabilized by zirconium, moderately stabilized by tantalum, and not significantly stabilized by nickel or chromium. These findings are fully in line with the aforementioned predictions. This success with iron based alloys highlights the utility of this practical approach to selecting stabilizing solutes for nanocrystalline alloys.

  7. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    Science.gov (United States)

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; Yamamoto, Yukinori; Snead, Lance L.

    2015-10-01

    The Fe-Cr-Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe-Cr-Al alloys has not been fully established. In this study, a series of Fe-Cr-Al alloys with 10-18 wt % Cr and 2.9-4.9 wt % Al were neutron irradiated at 382 °C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition. Dislocation loops with Burgers vector of a/2 and a were detected and quantified. Results indicate precipitation of Cr-rich α‧ is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. A structure-property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α‧ precipitates at sufficiently high chromium contents after irradiation.

  8. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Mthunzi, P. [National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria (South Africa); Muller, T.F.G. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Julies, B. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Ramponi, R. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa)

    2014-12-01

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr{sub 2}O{sub 3} layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr{sub 2}O{sub 3} layer. The α-Cr{sub 2}O{sub 3} layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

  9. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    International Nuclear Information System (INIS)

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr2O3 layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr2O3 layer. The α-Cr2O3 layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%

  10. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    Science.gov (United States)

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept. PMID:20031309

  11. Phase equilibria in alloys of Cr-Hf-N system

    International Nuclear Information System (INIS)

    Metallographic, X-ray phase and differential thermal analyses are used to study phase equilibria in alloys of the Cr-Hf-N system with nitrogen concentration less than 15% (at.). Isothermal section at 1150 deg C is plotted. The polythermal Cr-HfN section is stated to be quasibinary eutectic one. Maximal solubility of HfN in chromium is estimated by thermodynamic calculation

  12. Effect the addition of 10% (volume fraction) chromium on the mechanical properties of NiAlCr processed by powder metallurgy; Efecto de la adicion de un 10% en volumen de cromo en el comportamiento a traccion de aleaciones pulvimetalurgicas NiAlCr

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Barriocanal, J.; Garces, G.; Perez, P.; Adeva, P.

    2005-07-01

    The mechanical properties of Ni{sub 3}Al-Cr reinforced with 10% in volume fraction of chromium particles produced by powder metallurgy have been studied. For this purpose, milled powders with composition of Ni-20.9Al-8Cr-0.49B (% st.) with and without the addition of 10% in volume fraction of chromium particles have been produced. Both alloys were consolidated by hot isostatic pressing (HIP). After HIP, heat treatment was applied to homogenize the microstructure. The chromium reinforcement has an important effect in the yield strength and ultimate strength increase. The reinforced alloy presents a yield strength of 1300 MPa at room temperature with respect to 800 MPa for the un-reinforced material. After heat treatment, the yield strength of both alloys does not change significantly. However, a decrease in ductility and ultimate tensile strength have been observed. (Author) 4 refs.

  13. Inelastic Scattering of Neutrons in Chromium

    International Nuclear Information System (INIS)

    The phonon spectrum of chromium has been studied by neutron inelastic scattering. The dispersion curves are very similar, in form to those of tungsten and molybdenum, indicating similar interionic force constants. The neutron groups broaden but do not shift appreciably when the temperature is raised. No effect has been observed which can be attributed to the interaction between the phonons and the crystal magnetization in the antiferromagnetic phase. (author)

  14. Observational Approach to Chromium Site Remediation - 13266

    International Nuclear Information System (INIS)

    Production reactors at the U.S. Department of Energy's (DOE) Hanford Site in Richland, Washington, required massive quantities of water for reactor cooling and material processing. To reduce corrosion and the build-up of scale in pipelines and cooling systems, sodium dichromate was added to the water feedstock. Spills and other releases at the makeup facilities, as well as leaks from miles of pipelines, have led to numerous areas with chromium-contaminated soil and groundwater, threatening fish populations in the nearby Columbia River. Pump-and-treat systems have been installed to remove chromium from the groundwater, but significant contamination remain in the soil column and poses a continuing threat to groundwater and the Columbia River. Washington Closure Hanford, DOE, and regulators are working on a team approach that implements the observational approach, a strategy for effectively dealing with the uncertainties inherent in subsurface conditions. Remediation of large, complex waste sites at a federal facility is a daunting effort. It is particularly difficult to perform the work in an environment of rapid response to changing field and contamination conditions. The observational approach, developed by geotechnical engineers to accommodate the inherent uncertainties in subsurface conditions, is a powerful and appropriate method for site remediation. It offers a structured means of quickly moving into full remediation and responding to the variations and changing conditions inherent in waste site cleanups. A number of significant factors, however, complicate the application of the observational approach for chromium site remediation. Conceptual models of contamination and site conditions are difficult to establish and get consensus on. Mid-stream revisions to the design of large excavations are time-consuming and costly. And regulatory constraints and contract performance incentives can be impediments to the flexible responses required under the observational

  15. Loading chromium atoms in a magnetic guide

    OpenAIRE

    Greiner, A; Sebastian, J.; Rehme, P.; Aghajani-Talesh, A.; Griesmaier, A.; Pfau, T.

    2007-01-01

    We have realized a magnetic guide for ultracold chromium atoms by continuously loading atoms directly from a Zeeman slower into a horizontal guide. We observe an atomic flux of $2 \\cdot 10^7$ atoms/s and are able to control the mean velocity of the guided atoms between 0 m/s and 3 m/s. We present our experimental results on loading and controlling the mean velocity of the guided atoms and discuss the experimental techniques that are used.

  16. Oxidation and corrosion behaviour of Fe-Cr and Fe-Cr-Al alloys with minor alloying additions

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, I.M.; Iorio, L.E.; Rumpf, T.; Scheers, P.V.T. [MINTEK, Randburg (South Africa). Phys. Metall. Div.; Potgieter, J.H. [PPC, P.O. Box 40073, Cleveland 2022 (South Africa)

    1998-01-30

    The oxidation and corrosion properties of alloys based on Fe-40Cr and Fe-35Cr-5Al were studied using gravimetric and potentiodynamic techniques. The properties were modified by microalloying with ruthenium and rare-earth metals (REM). A high resistance to breakaway oxidation was characteristic of all the high chromium alloys assessed. Good oxidation resistance in the Fe-35Cr-5Al alloys was found to be contingent on (i) the rapid establishment of a stable protective aluminium oxide layer in the early stages, and (ii) the development of a secondary chromium oxide layer for long-term stability. Microalloying with 0.2 wt.% Ru promoted the formation of a chromium-rich layer at the substrate interface. The consequence of this differed in each case. In the Fe-35Cr-5Al alloy, the result was improved oxidation resistance, accompanied by segregation of the Ru to the aluminium oxide layer. In the Fe-40Cr alloy, the Ru addition was associated with an initially higher oxidation rate and an increased tendency to spalling. REMs, added as 0.05 wt.% mischmetal to the Fe-35Cr-5Al alloy, also lowered the oxidation rate, as expected. Relative to the Fe-40Cr composition, the substitution of 5 wt.% Al for 5 wt.% Cr had a negligible effect on the aqueous corrosion resistance in 10% H{sub 2}SO{sub 4}, but led to inferior pitting resistance in a 3.5% NaCl solution. As previously shown with stainless steels based on Fe-40Cr, small additions of ruthenium can also enhance the corrosion and pitting resistance of Fe-35Cr-5Al. (orig.) 29 refs.

  17. X-616 Chromium Sludge Lagoons pictorial overview, Piketon, Ohio

    International Nuclear Information System (INIS)

    The Portsmouth Gaseous Diffusion Plant uses large quantities of water for process cooling. The X-616 Liquid Effluent Control Facility was placed in operation in December 1976 to treat recirculation cooling water blowdown from the process cooling system. A chromium-based corrosion inhibitor was used in the cooling water system. A chromium sludge was produced in a clarifier to control chromium levels in the water. Chromium sludge produced by this process was stored in two surface impoundments called the X-616 Chromium Sludge Lagoons. The sludge was toxic due to its chromium concentration and therefore required treatment. The sludge was treated, turning it into a sanitary waste, and buried in an Ohio EPA approved landfill. The plant's process cooling water system has changed to a more environmentally acceptable phosphate-based inhibitor. Closure activities at X-616 began in August 1990, with all construction activities completed in June 1991, at a total cost of $8.0 million

  18. Chromium oxidation state mapping in human cells

    Science.gov (United States)

    Ortega, R.; Fayard, B.; Salomé, M.; Devès, G.; Susini, J.

    2003-03-01

    The widespread use of chromium in industrial applications such as chemical production of pigments, refractory brick production, tanning, metallurgy, electroplating, and combustion of fuels has lead to human occupational exposure and to its increased introduction into the environment. Hexavalent chromium compounds are established carcinogens but their mechanism of cell transformation is not known. Up to now, no microanalytical technique was sensitive enough to allow the observation of chromium distribution, and oxidation state identification, within isolated cells at carcinogenic concentrations. In this experiment, we used successfully the ID-21 X-ray microscope to map Cr(VI) and total Cr distributions in cells exposed in vitro to soluble, and insoluble, Cr(VI) compounds. Exposure to soluble compounds, weak carcinogens, resulted in a homogeneous intracellular distribution of Cr, confirming by in situ measurement that Cr is present in the cell nucleus. Cr(VI) was never detected in cells which suggests a mechanism of rapid intracellular reducticn. On the other hand, exposure to insoluble compounds, strong carcinogens, also resulted in a homogeneous distribution of reduced forms of Cr in cells, and their nucleus. However, in this case, Cr(VI)-rich structures were observed into the cells suggesting that carcinogenicity is enhanced when oxidation reactions due to Cr(VI) chronic exposure are associated to Cr-DNA alterations.

  19. Dimensionally Controlled Lithiation of Chromium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fister, Tim T. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, Xianyi [Northwestern Univ., Evanston, IL (United States); Esbenshade, Jennifer [Univ. of Illinois, Urbana-Champaign, IL (United States); Chen, Xiao [Northwestern Univ., Evanston, IL (United States); Wu, Jinsong [Northwestern Univ., Evanston, IL (United States); Dravid, Vinayak [Northwestern Univ., Evanston, IL (United States); Bedzyk, Michael [Northwestern Univ., Evanston, IL (United States); Long, Brandon [Argonne National Lab. (ANL), Argonne, IL (United States); Gewirth, Andrew A. [Univ. of Illinois, Urbana-Champaign, IL (United States); Shi, Bing [Argonne National Lab. (ANL), Argonne, IL (United States); Schlepütz, Christian M. [Argonne National Lab. (ANL), Argonne, IL (United States); Fenter, Paul [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-12

    Oxide conversion reactions are an alternative approach for high capacity lithium ion batteries but are known to suffer from structural irreversibility associated with the phase separation and reconstitution of reduced metal species and Li2O. In particular, the morphology of the reduced metal species is thought to play a critical role in the electrochemical properties of a conversion material. Here we use a model electrode with alternating layers of chromium and chromium oxide to better understand and control these phase changes in real-time and at molecular length scales. Despite lacking crystallinity at the atomic scale, this superstructure is observed (with X-ray reflectivity, XR) to lithiate and delithiate in a purely one-dimensional manner, preserving the layered structure. The XR data show that the metal layers act as nucleation sites for the reduction of chromium in the conversion reaction. Irreversibility during delithiation is due to the formation of a ternary phase, LiCrO2, which can be further delithiated at higher potentials. The results reveal that the combination of confining lithiation to nanoscale sheets of Li2O and the availability of reaction sites in the metal layers in the layered structure is a strategy for improving the reversibility and mass transport properties that can be used in a wide range of conversion materials.

  20. Microstructure and abrasive wear properties of M(Cr,Fe)7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW) process

    OpenAIRE

    Buytoz, Soner; M.Mustafa YILDIRIM

    2010-01-01

    In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW) process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray energy-dispersive spectroscopy (EDS). Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were c...

  1. A REVIEW OF BIOSORPTION OF CHROMIUM IONS BY MICROORGANISMS

    OpenAIRE

    Inga Zinicovscaia

    2012-01-01

    Due to its widespread industrial use, chromium has become a serious pollutant in diverse environmental settings. The main source of chromium pollution including the Republic o Moldova is industry. It is a great need to develop new eco-friendly methods of chromium removal. Biosorption of heavy metals is a most promising technology involved in the removal of toxic metals from industrial waste streams and natural waters. This article is an extended abstract of a communication presented at the...

  2. CHROMIUM INDUCED CYTOTOXICITY IN BLACKGRAM (VIGNA MUNGO L.)

    OpenAIRE

    A. Chidambaram ، P. Sundaramoorthy ، A. Murugan ، K. Sankar Ganesh ، L. Baskaran

    2009-01-01

    Chromium is known to be highly toxic to biological systems. This study was designed to determine the mutagenic effects of different concentrations (0, 10, 25, 50, 100 and 200 mg/L) of hexavalent chromium on root tip cells of blackgram (Vigna mungo L. Hepper). The blackgram seeds were equi-spacially arranged in sterilized petriplates lined with filter paper and they were treated with different concentrations of chromium solution. In germination studies, the morphological growth parameters such...

  3. Processes affecting the remediation of chromium-contaminated sites.

    OpenAIRE

    Palmer, C.D.; Wittbrodt, P R

    1991-01-01

    The remediation of chromium-contaminated sites requires knowledge of the processes that control the migration and transformation of chromium. Advection, dispersion, and diffusion are physical processes affecting the rate at which contaminants can migrate in the subsurface. Heterogeneity is an important factor that affects the contribution of each of these mechanisms to the migration of chromium-laden waters. Redox reactions, chemical speciation, adsorption/desorption phenomena, and precipitat...

  4. Analysis of molybdenum, chromium, vanadium and iron by polarographic techniques

    International Nuclear Information System (INIS)

    The application of direct current Tast polarograph, differential pulse polarography and phase-selective alternative current Tast polarography to the problem of determining molybdenum, chromium, vanadium and iron in various supporting electrolytes is reported. The effect of the supporting electrolyte on the wave/peak potential and sensitivity of the metal ion have been examined. The polarographic methods were applied for simultaneous determination of chromium (3)/chromium (6), vanadium (4), vanadium (5) and iron (2)/iron (3) in different supporting electrolytes

  5. Production of a chromium Bose-Einstein condensate

    OpenAIRE

    Griesmaier, Axel; Stuhler, Jürgen; Pfau, Tilman

    2005-01-01

    The recent achievement of Bose-Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 {$\\mu$}B, in contrast to other Bose- Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have been predicted in ...

  6. Removal of chromium(VI) from saline wastewaters by

    OpenAIRE

    AKSU, Zümriye

    2002-01-01

    Some industrial wastewaters contain higher quantities of salts besides chromium(VI) ions so the effect of these salts on the biosorption of chromium(VI) should be investigated. The biosorption of chromium (VI) from saline solutions on two strains of living Dunaliella algae were tested under laboratory conditions as a function of pH, initial metal ion and salt (NaCl) concentrations in a batch system. The biosorption capacity of both Dunaliella strains strongly de...

  7. Increase of chromium utilization in stainless steel melting

    International Nuclear Information System (INIS)

    The processes of deoxidizing when melting stainless 18-10 steels in electric are furnaces by the method of remelting with wastes are investigated. The dependences of amount of reduced chromium on silicon consumption are made more precise. It is shown that it is useful to apply aluminium for deoxidation of acid high-chromium slags. Based on the data on pilot melts the extent to which aluminium can be used as a reducing agent for chromium is estimated. 3 refs., 2 figs

  8. Scientific Opinion on ChromoPrecise® cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source

    OpenAIRE

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS)

    2012-01-01

    The Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re-evaluating the safety of ChromoPrecise® cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source. ChromoPrecise® is a yeast preparation with an enriched trivalent chromium content, obtained by culture of Saccharomyces cerevisiae in the presence of chromium chloride. A daily intake of 100 µg ch...

  9. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  10. MODULATED STRUCTURES AND ORDERING STRUCTURES IN ALLOYING AUSTENITIC MANGANESE STEEL

    Institute of Scientific and Technical Information of China (English)

    L. He; Z.H. Jin; J.D. Lu

    2001-01-01

    The microstructure of Fe-10Mn-2Cr-1.5C alloy has been investigated with transmission electron microscopy and X-ray diffractometer. The superlattice diffraction spots and satellite reflection pattrens have been observed in the present alloy, which means the appearence of the ordering structure and modulated structure in the alloy. It is also proved by X-ray diffraction analysis that the austenite in the alloy is more stable than that in traditional austenitic manganese steel. On the basis of this investigation,it is suggested that the C-Mn ordering clusters exist in austenitic manganese steel and the chromium can strengthen this effect by linking the weaker C-Mn couples together,which may play an important role in work hardening of austenitic manganese steel.

  11. Comparison between a high chromium steel and a semi HSS grades used as work rolls in the roughing stands of a hot strip mill

    OpenAIRE

    Tchuindjang, Jérôme Tchoufack; Lecomte-Beckers, Jacqueline

    2010-01-01

    Two alloys grades for work rolls used in the roughing stand of Hot Strip Mill (HSM) were compared. The first grade known as High Chromium Steel (HCS) is actually the alloy widely used for such an application, while the second one known as semi-High Speed Steel (semi-HSS) is the new grade developed to improve overall properties of the work roll in the roughing stands of the HSM. In the present work, the new semi-HSS grade is studied starting from 3 chemical compositions closed one to anoth...

  12. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  13. From nanotechnology to nanogenotoxicology: genotoxic effect of cobalt-chromium nanoparticles

    Directory of Open Access Journals (Sweden)

    Zülal Atlı Şekeroğlu

    2013-03-01

    Full Text Available Nanotechnology is a multi-disciplinary technology that processes the materials that can be measured with nanometer-level and combines many research field or discipline. Nanomaterials (NMs are widely used in the fields of science, technology, communication, electronics, industry, pharmacy, medicine, environment, consumer products and military. Until recently little has been known about whether or not nanomaterials have the toxic or hazardous effects on human health and the environment. However, several studies have indicated that exposure to some nanomaterials, e.g. nanoparticles, can cause some adverse effects in humans and animals. Over the last years the number of publications focusing on nanotoxicology has gained momentum, but, there is still a gap about the genotoxicity of nanomaterials.Metal nanoparticles and their alloys with excellent mechanical properties are the materials which can be easily adapted to the mechanical conditions of the musculoskeletal system. Cobalt-chromium alloys are widely used in orthopedic applications as joint prosthesis and bone regeneration material, fillings and dental implants in jaw surgery, and in cardiovascular surgery, especially stent applications. Studies about cytotoxicity and genotoxicity of metal nanoparticles on human indicate that some metal nanoparticles have cytotoxic and genotoxic effects and they may be hazardous for humans. However, a few studies have been reported concerning the genotoxic effects of cobalt-chromium nanoparticles. The data from these studies indicate that cobalt-chromium nanoparticles have cytotoxic and genotoxic effects. It has been stated that the wear debris from implants cause DNA and chromosome damage in patients with cobalt-chromium replacements. It was also found that the risk of urinary cancers such as bladder, ureter, kidney and prostate in patients after hip replacement than among the wider population.Because there are very little biocompatibility and toxicity tests on

  14. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  15. Method of trivalent chromium concentration determination by atomic spectrometry

    Science.gov (United States)

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  16. Tribological Characteristics of Chromium-active Carbon Electroplated Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    GUKa-fi; HUAMeng; Yi-min

    2004-01-01

    A process of chromium electroplating using a standard bath with additives and active carbon particles was reported, and the tribological behaviors of the composite coatings using the pin-on-disk tester and the table wear tester were i nvestig(aed. Experimental results indicate that the electroplated chromium-active carbon composite coatings exhibited the low friction coefficient anti excellent anti-wear properties whets coffered with the normal chromium electroplated ones. The formation of active carbon particles within the chromium matrices can be explained by SEM analysis and the mechanis of wear resistance of the composite coatings were studied.

  17. Defect transformation in GSGG crystals during chromium ion activation

    International Nuclear Information System (INIS)

    Absorption and induced absorption spectra, dose dependence of induced absorption, thermoluminescence of GSGG crystals, nominally pure and activated with chromium and neodymium ions in different concentrations, are investigated. It is shown that it is chromium ion presence in large concentration that decreases the induced coloration in GSGG crystals after γ-irradiation at 300 K. Optimum concentration of chromium ions for the minimum of induced coloration are found. The mechanism of decrease of induced coloration consisting in Fermi level displacement by chromium ion activation is established. Defect concentration and localization and recombination possibilities of electrons and holes in GSGG crystals are estimated by computer simulation

  18. Oral bioavailability of chromium from a specific site.

    OpenAIRE

    Witmer, C M; Harris, R.; Shupack, S I

    1991-01-01

    Analysis of soil from a specific site in New Jersey indicated a low level of sodium and chromium present as a calcium compound. Chromium was then administered orally to young, mature male rats at a level of 240 micrograms/kg for 14 days as chromium-contaminated soil, as CaCrO4, and as an equimolar mixture of the soil and calcium salts for 14 days. The rats were sacrificed 24 hr after the last dosing, and tissues were taken immediately for chromium analysis. Blood, muscle, and liver contained ...

  19. Influence of Chelating Agents on Chromium Fate in Sediment

    Institute of Scientific and Technical Information of China (English)

    WANGXIAOCHANG; SUNJINHE; 等

    1996-01-01

    A laboratory investigation on reaction between chelating agents and chromium was conducted to evaluate the effect of chelating agents on the adsorption and desorption of chromium in sediment.The amount of adsorbed chromium(VI) in sediment decreased slightly by 5%-10% because of addition of chelating agents.Chelating agents inhibited the removal of Cr(Ⅲ)by sediment from solutions and the inhibiting effect was in the order:citric acid>tartaric acid>EDTA,Salicylic acid.No effect of chelating agents on desorption of chromium in sediment was observed.

  20. Technical basis for reexamination interval for alloy 690 PWR reactor vessel top head penetration nozzles

    International Nuclear Information System (INIS)

    Of the 65 currently operating PWRs in the U.S., reactor vessel (RV) heads at 40 of these units have been replaced with heads having Alloy 690 nozzles. This study combines Alloy 600/82/182 and Alloy 690/52/152 plant experience and laboratory data for the development and application of deterministic and probabilistic models used in predicting risks associated with PWSCC degradation in RV heads having Alloy 600 or Alloy 690 nozzles. The objective is to propose an inspection regime for RV heads with Alloy 690 nozzles based on absolute and relative risk assessment, the latter in comparison to risks in RV heads having Alloy 600 nozzles with inspection internals simulated in accordance with current requirements in the U.S. Because of its chromium content of approximately 30%, Alloy 690 has greatly improved resistance to PWSCC in comparison to that for Alloy 600. The PWSCC resistance of Alloy 690 has been demonstrated through no observed plant PWSCC despite over 24 calendar years of service in steam generator tube and thick-walled component applications. To incorporate this resistance, the model for RV heads with Alloy 690 nozzles is founded on a factor of improvement approximation, which relates well-established initiation and growth prediction for Alloy 600 materials to Alloy 690 materials through a simple scaling transformation. To support this approximation, the authors applied existing laboratory data and operating experience with Alloy 690 and its weld metals Alloys 52 and 152, and compared them to that of Alloy 600 and Alloys 82 and 182. Application of factors of improvement on a conservative basis shows that it is appropriate that the current interval for volumetric or surface examination of the Alloy 690 RV head nozzles in U.S. PWRs be extended to a nominal 20 calendar years. (authors)

  1. Analysing the chromium-chromium multiple bond using multiconfigurational quantum chemistry

    OpenAIRE

    Brynda, Marcin; Gagliardi, Laura; Roos, Björn O.

    2009-01-01

    This Letter discusses the nature of the chemical bond between two chromium atoms in different di-chromium complexes with the metal atoms in different oxidation states. Starting with the Cr diatom, with its formally sextuple bond and oxidation number zero, we proceed to analyse the bonding in some Cr(I)–Cr(I) XCrCrX complexes with X varying from F, to Phenyl, and Aryl. The bond distance in these complexes varies over a large range: 1.65–1.83 Å and we suggest explanations for these variations. ...

  2. Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys

    Science.gov (United States)

    Lavrentiev, M. Yu.; Wróbel, J. S.; Nguyen-Manh, D.; Dudarev, S. L.; Ganchenkova, M. G.

    2016-07-01

    A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rather than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.

  3. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bingtao Li

    2003-08-05

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  4. The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects.

    OpenAIRE

    Press, R. I.; Geller, J.; Evans, G. W.

    1990-01-01

    Chromium has been implicated as a cofactor in the maintenance of normal lipid and carbohydrate metabolism. A deficiency of chromium results from diets low in biologically available chromium. Picolinic acid, a metabolite of tryptophan, forms stable complexes with transitional metal ions, which results in an improved bioavailability of the metal ion chromium. To determine whether or not chromium picolinate is effective in humans, 28 volunteer subjects were given either chromium tripicolinate (3...

  5. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  6. The Effect of Chromium Added into Basal Diet on Serum Total Protein, Urea, Triglyceride, Cholesterol and Serum and Tissue Chromium, Zinc, Copper Levels in Rabbits

    OpenAIRE

    *, Kâzim ŞAHİN; *, Talat GÜLER; +, N. ŞAHİN; *, O. N. ERTAS; +, N. ERKAL

    1999-01-01

    This study was conducted to determine the effect of supplemantal dietary chromium on serum total protein, urea, triglycerides, cholesterol, and serum and tissue chromium, zinc, and copper contents of pregnant rabbits, their offspring and their young rabbits. Treatment groups consisted of chromium level as follows: Control Group no supplementation chromium into basal diet, Treatment I (200 ppb Group) contained 200 ppb of supplemental chromium into basal diet, and Treatment II (400 ppb Group...

  7. STABILITY AND ABSORPTION OF CHROMIUM AND ABSORPTION OF CHROMIUM HISTIDINE BY HUMANS

    Science.gov (United States)

    Increased intake of chromium has been shown to lead to improvements in glucose, insulin, lipids, and related variables in studies involving humans, experimental and farm animals. However, the results are often variable depending not only upon the selection of subjects, but also dietary conditions a...

  8. Relationship between Microstructure and Ductility Dip Cracking resistance of Alloy 600/690 weld metals

    International Nuclear Information System (INIS)

    Ni-Cr-Fe alloys are used extensively in nuclear power systems for their resistance to general corrosion, localized corrosion, and environmentally assisted cracking. However, concerns with stress corrosion cracking of moderate chromium (14.22 wt-%) alloys such as Alloy 600 and its filler metals(FMs) (E-182 and EN82) have driven the application of higher chromium (28.30 wt-%) alloys like Alloy 690. While Alloy 690 and its FMs show outstanding resistance to environmentally assisted cracking in most water-reactor environments, these alloys are prone to welding defects, most notably to ductility dip cracking(DDC). The DDC occurs at temperatures between 0.5 and 0.8 of their melting temperature. This ductility drop may result in intergranular elevated temperature cracking often referred to as DDC. The DDC may occur during the high temperature processing of these alloys or during welding if the imposed strain exhausts the available ductility within this temperature range. Several alloy systems including Ni-base alloys, Ni.Cu alloys, Cu alloys, stainless steels and steels, have been reported to be susceptible to DDC. A complete understanding of the DDC mechanism does not exist, which makes DDC control in actual production conditions a very difficult task. In this study, the DDC resistance was evaluated with different FMs which have different chemical composition. The microstructural features of FMs such as precipitation behavior and grain boundaries morphology were observed, and it were correlated with the DDC susceptibility. The hot ductility test and strainto- fracture test was used to evaluate the DDC susceptibility at high temperature

  9. Selective internal oxidation in Ni-Cr-Fe alloys during exposure in hydrogenated steam

    International Nuclear Information System (INIS)

    Selective internal oxidation (SIO) in hydrogenated steam was observed to occur in high-purity Ni-Cr-Fe alloys. Five alloys (Ni-9Fe, Ni-5Cr, Ni-5Cr-9Fe, Ni-16Cr-9Fe and Ni-30Cr-9Fe) were exposed to hydrogen-to-water vapor partial pressure ratios (PPR) of 0.09 and 0.5 at 400oC. The Ni-9Fe, Ni-5Cr and Ni-5Cr-9Fe alloys formed a uniform Ni(OH)2 film at a PPR up to 0.09 and the higher chromium alloys formed chromium-rich oxide films over the entire PPR range studied. Intergranular oxides formed by oxygen diffusion down the grain boundary. The formation of grain boundary chromium oxides is correlated with cracked grain boundary fraction and crack growth rate at 400oC. The observation of grain boundary oxides in stressed and unstressed samples as well as the influence of alloy content on intergranular (IG) cracking and oxidation support SIO as a mechanism for intergranular stress corrosion cracking (IGSCC). (author)

  10. Compaction study of particulate iron-chromium matrix composite reinforced with alumina

    International Nuclear Information System (INIS)

    Recently, a sharper focus on cost reduction in producing advanced composites systems has increased and leads to an interest in ferrous matrix composite which is cheaper compared to Cobalt, Nickel and their alloys that are scarce, expensive and their dust is especially harmful. In the present investigation, Fe-Cr-Al2O3 composite was prepared using conventional powder metallurgy technique; mixing, compaction and sintering. Consolidation of particulate materials is dependent on the compaction process. As load is increased, the number of contacting asperities increases and they flatten and grow to form a planar contact surface. These asperities eventually merge to form bonding surfaces between particles. This paper focused on finding the optimum compaction parameter in a uniaxial pressing. Six different pressure were studied; (250, 375, 500, 625, 750 and 875)MPa. experimental results show that the optimum compaction parameter is 750 MPa that produced highest linear shrinkage, highest bulk density, lowest porosity and highest hardness value. Every sample has formed binary alloy of Fe-Cr alloy, confirmed by XRD and alumina are homogeneously distributed in the Fe-Cr matrix revealed by optical micrograph and SEM. from EDX, the composites consist of iron, chromium and alumina. (author)

  11. Hyperfine field on Fe, Rh, Cd and Sn nucleus probes in chromium host

    Directory of Open Access Journals (Sweden)

    S. Sirousi

    2005-03-01

    Full Text Available   The incommensurate spin -density –wave magnetism of Cr has attracted great interest since its discovery via neutron scattering. Although the existence of spin- density –wave has been confirmed by experiment but the calculations which have been carried out have not been able to predict the correct ground state magnetic phase for chromium yet. To predict the magnetic hyperfine field at nucleus of different impurities in Cr host, we calculated the hyperfine field on Cd, Sn, Rh and Fe probes in the first step. Our calculations were performed within the framework of density functional theory, using the full-potential-linearized augmented plane-wave method. We used a supercell constructed from 8 bcc unit cells with impurity concentratin of 6.25 % and to analysise the supercell size effect on different magnetic quantities we repeated our calculation using a supercell with 54 atoms. The result of this effort showed that the magnetic hyperfine field and magnetic moment of nearesrt Cr is very little influenced by the size of supercell, so we can calculate the magnetic hyperfine field if it’s quantity is known in different alloys. we showed that the local properties such as hyperfine field, are calculated with acceptable accuracy by using small supercells. Meanwhile, we studied the structural and magnetic properties of different alloys and showed that the Fe alloy has two defferent magnetic phase.

  12. Synthesis of chromium-nickel nanoparticles prepared by a microemulsion method and mechanical milling.

    Science.gov (United States)

    Ban, Irena; Stergar, Janja; Drofenik, Miha; Ferk, Gregor; Makovec, Darko

    2013-01-01

    A chemical and a physical method have been applied for the preparation of chromium-nickel alloy nanoparticles. These particles were designed to be used for controlled magnetic hyperthermia applications. Microemulsions with Ni2+ and Cr3+ and/or NaBH4 as precursors were prepared using the isooctane/CTAB, n-butanol/H2O system. The samples of CrxNi1-x nanoparticles with the desired composition were obtained after the reduction of their salts with NaBH4 and afterwards heat treated in a TGA in a N2 atmosphere at various temperatures. The CrxNi1-x materials were also prepared by mechanical milling. Utilizing a ball-to-powder mass ratio of 20 : 1 and selecting the proper alloy compositions we were able to obtain nanocrystalline CrxNi1-x particles. Thermal demagnetization in the vicinity of the Curie temperature of the nanoparticles was studied using a modified TGA-SDTA method. The alloy's phase composition, size and morphology were determined with XRD measurements and TEM analyses. PMID:24362977

  13. Radiochemical reprocessing of V-Cr-Ti alloy and its feasibility study

    Science.gov (United States)

    Bartenev, S. A.; Kvasnitskij, I. B.; Kolbasov, B. N.; Romanov, P. V.; Romanovskij, V. N.

    2004-08-01

    An extraction scheme for radiochemical reprocessing of an activated vanadium-chromium-titanium alloy after a fusion reactor decommissioning was developed and checked experimentally. It is based on extraction of V, Cr and Ti freed of activation products from the alloy dissolved in nitric acid. The solution of di-2-ethyl-hexyl-phosphoric acid (D2EHPA) in a hydrocarbon solvent (dodecane) serves as an extractant. It takes 50 extraction steps to recover V, Cr and Ti down to an effective dose rate Technical and economic analysis suggests that the reprocessing alternative is more attractive economically than the burial of spent V-Cr-Ti alloy components.

  14. Palladium-chromium static strain gages for high temperatures

    Science.gov (United States)

    Lei, Jih-Fen

    1992-01-01

    An electrical resistance strain gage that can provide accurate static strain measurement to a temperature of 1500 F or above is being developed both in fine wire and thin film forms. The gage is designed to be temperature compensated on any substrate material. It has a dual element: the gage element is a special alloy, palladium-13wt percent chromium (PdCr), and the compensator element is platinum (Pt). Earlier results of a PdCr based wire gage indicated that the apparent strain of this gage can be minimized and the repeatability of the apparent strain can be improved by prestabilizing the gage on the substrate for a long period of time. However, this kind of prestabilization is not practical in many applications and therefore the development of a wire gage which is prestabilized before installation on the substrate is desirable. This paper will present our recent progress in the development of a prestabilized wire gage which can provide meaningful strain data for the first thermal cycle. A weldable PdCr gage is also being developed for field testing where conventional flame-spraying installation can not be applied. This weldable gage is narrower than a previously reported gage, thereby allowing the gage to be more resistant to buckling under compressive loads. Some preliminary results of a prestabilized wire gage flame-sprayed directly on IN100, an engine material, and a weldable gage spot-welded on IN100 and SCS-6/(beta)21-S Titanium Matrix Composite (TMC), a National Aero-Space Plane (NASP) structure material, will be reported. Progress on the development of a weldable thin film gage will also be addressed. The measurement technique and procedures and the lead wire effect will be discussed.

  15. Selective dissolution and surface enrichment of alloy components of passivated Fe 18Cr and Fe 18Cr3Mo single crystals

    International Nuclear Information System (INIS)

    The possible surface enrichment of chromium and molybdenum during dissolution of Fe18Cr (110) and Fe18Cr3Mo (110) alloys at constant potentials in the passive region is elucidated by taking into account quantitative information on partial dissolution rates of alloy components as measured by γ-spectrometry and on chemical composition of passivating films as measured by ESCA and AES. When combining results from all methods it is found that chromium under all conditions is enriched in the passivating films. An accumulation of chromium in the alloy is also indicated. For molybdenum, an enrichment in the passive film is observed at -0.2 V (SCE), whereas in the potential interval 0.1 - 0.9 V, the molybdenum enrichment as determined by ESCA and AES is hardly significant. On the other hand, γ-spectrometry gives a clear indication of molybdenum enrichment in both potential. (author)

  16. Chromium and Polyphenols From Cinnamon Improve Insulin Sensitivity

    Science.gov (United States)

    Naturally occurring compounds that have been shown to improve insulin sensitivity include chromium and polyphenols found in cinnamon. These compounds also have similar effects on insulin signaling and glucose control. The signs of chromium deficiency are similar to those for the metabolic syndrome ...

  17. IRIS Toxicological Review of Hexavalent Chromium (2010 External Review Draft)

    Science.gov (United States)

    [UPDATE] New Schedule for IRIS Hexavalent Chromium Assessment In Feb 2012, EPA developed a new schedule for completing the IRIS hexavalent chromium assessment. Based on the recommendations of the external peer review panel, which met in May 2011 to review the dra...

  18. Composition and structure of plasma sprayed chromium steel powders

    Czech Academy of Sciences Publication Activity Database

    Schneeweiss, O.; Voleník, Karel; Kolman, Blahoslav Jan

    Praha, 2005, s. 105-111. ISBN 1899072 18 7. [EURO Powder Metallurgy Congress & Exhibition. Prague (CZ), 02.10.2005-05.10.2005] Institutional research plan: CEZ:AV0Z20430508 Keywords : chromium steel * plasma spraying * chromium depletion * Mössbauer spectroscopy Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  19. Safety, absorption, and antioxidant effects of chromium histidine

    Science.gov (United States)

    Supplemental chromium has been shown to be involved in the alleviation of the metabolic syndrome, glucose intolerance, polycystic ovary syndrome, depression, excess body fat, and gestational, steroid-induced, and type 2 diabetes. Chromium amino acid complexes that contained histidine displayed cons...

  20. Toxicity and adaptation of Dictyosphaerium chlorelloides to extreme chromium contamination.

    Science.gov (United States)

    Sánchez-Fortún, Sebastián; López-Rodas, Victoria; Navarro, Macarena; Marvá, Fernando; D'ors, Ana; Rouco, Mónica; Haigh-Florez, David; Costas, Eduardo

    2009-09-01

    Metals are often spilled by industries into inland water environments, with adverse consequences. Numerous papers have reported that heavy metals produce massive destruction of algae. Nevertheless, algal populations seem to become tolerant when they have had previous exposures to heavy metals. Because the mechanisms allowing heavy metal tolerance of algae are not yet known, the present study analyzed the effect of hexavalent chromium on growth and photosynthetic performance of Dictyosphaerium chlorelloides, stressing on the adaptation mechanisms to chromium contamination. Growth and photosynthetic performance of algal cells were inhibited by Cr(VI) at 10 mg/L, and the 72-h median inhibition concentration was established as 1.64 and 1.54 mg/L, respectively. However, after further incubation for a three month period in an environment with 25 mg/L of chromium, some rare, chromium-resistant cells occasionally were found. A Luria-Delbrück fluctuation analysis was performed to distinguish between resistant algae arising from rare, spontaneous mutations and resistant algae arising from physiological adaptation and other adaptive mechanisms. Resistant cells arose only by spontaneous mutations before the addition of chromium, with a rate of 1.77 x 10(-6) mutants per cell division. From a practical point of view, the use of both chromium-sensitive and chromium-resistant genotypes could make possible a specific algal biosensor for chromium. PMID:19323601