WorldWideScience

Sample records for chromite coated fe-20cr

  1. High temperature oxidation resistance of rare earth chromite coated Fe-20Cr and Fe-20Cr-4Al alloys

    Directory of Open Access Journals (Sweden)

    Marina Fuser Pillis

    2007-09-01

    Full Text Available Doped lanthanum chromite has been used in solid oxide fuel cell (SOFC interconnects. The high costs involved in obtaining dense lanthanum chromite have increased efforts to find suitable metallic materials for interconnects. In this context, the oxidation behavior of lanthanum chromite coated Fe-20Cr and Fe-20Cr-4Al alloys at SOFC operation temperature was studied. Isothermal oxidation tests were carried out at 1000 °C for 20, 50 and 200 hours. Cyclic oxidation tests were also carried out and each oxidation cycle consisted of 7 hours at 1000/°C followed by cooling to room temperature. The oxidation measurements and the results of SEM/EDS as well as XRD analyses indicated that lanthanum chromite coated Fe-20Cr and Fe-20Cr-4Al alloys were significantly more resistant to oxidation compared with the uncoated alloys.

  2. Characterization of high-temperature oxide films on dysprosium-doped Fe-20Cr alloys by electrochemical techniques

    Institute of Scientific and Technical Information of China (English)

    GUO Pingyi; ZENG Chaoliu; SHAO Yong; QIN Zeshang

    2012-01-01

    The oxidation propegies of Fe-20Cr,Fe-20Cr-0.2Dy and Fe-20Cr-1Dy alloys were studied using gravimetric and electrochemical techniques.The high-temperature oxide films of Dy-doped Fe-20Cr alloys were prepared in air at 900 ℃ for 24,48 and 100 h,respectively.The electrochemical experiment was performed by a three-electrode electrochemical cell and in 0.1 mol/L Na2SO4 aqueous solution.Proper models were built for describing electrochemical impedance spectroscopy of the different oxide layers and the spectra were interpreted in terms of a two-layer model of the films.The results revealed that the oxide films of Dy-doped Fe-20Cr alloys became compacter than that of undoped alloys and retained their good protective ability for a relatively long time.With increasing content of Dy,the protection of the oxide films slightly decreased.Mott-Schottky curves indicated that all the oxides were n-type semi-conductors,and the Nd value of oxide film on Fe-20Cr was much larger than that of Dy-doped Fe-20Cr alloys.The results of kinetic curves and SEM were in agreement with electrochemical impedance spectroscopy and Mott-Schottky data.

  3. MODELING THE EFFECT OF WATER VAPOR ON THE INTERFACIAL BEHAVIOR OF HIGH-TEMPERATURE AIR IN CONTACT WITH Fe20Cr SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Chialvo, Ariel A [ORNL; Brady, Michael P [ORNL; Keiser, James R [ORNL; Cole, David R [ORNL

    2011-01-01

    The purpose of this communication is to provide an atomistic view, via molecular dynamic simulation, of the contrasting interfacial behavior between high temperature dry- and (10-40 vol%) wet-air in contact with stainless steels as represented by Fe20Cr. It was found that H2O preferentially adsorbs and displaces oxygen at the metal/fluid interface. Comparison of these findings with experimental studies reported in the literature is discussed. Keywords: Fe-Cr alloys, metal-fluid interfacial behavior, wet-air, molecular simulation

  4. Transmission Electron Microscopy Characterization of High-Temperatur Oxidation of Fe-20Cr-5Al Alloy Prepared by Focused Ion Beam Technique

    Directory of Open Access Journals (Sweden)

    Mohammad Dani

    2015-08-01

    Full Text Available The Focused Ion Beam (FIB technique was applied for cross section preparation of the oxidized alloy for Transmission Electron Microscopy (TEM study. Prior to preparation, the specimens of Fe-20Cr-5Al alloy sheet were oxidized in air at 1200 oC for 2 minutes, 10 minutes, 2 hours, and 100 hours. The microstructure and elemental composition of the samples were characterized using TEM equipped with an Energy Dispersive X-Ray Spectroscopy (EDX. The Electron Energy Loss Spectroscopy (EELS was used to determine of the light elements. The TEM investigation reveals remarkable microstructure evolution of the specimens during oxidation which generally exhibit a typical multi-layer structure. The TEM images, however, can provide detailed description about the phases occur after oxidation such as the Tungsten (W and the Gallium (Ga layers on top of the samples obviously formed during FIB preparation, the formation of Al2O3 and Cr2O3 layer, MgAl2O4 spinel, porosity, Zr/Hf/Mg phases or clusters inside the oxide scale. Hence, the FIB technique has been proven to be reliable preparation technique for microstructural and elemental studies of Fe-20Cr-5Al alloy using TEM.

  5. Effects of Strain Energy and Grain Size on Corrosion Resistance of Ultrafine Grained Fe-20%Cr Steels with Extremely low C and N Fabricated by ECAP

    Directory of Open Access Journals (Sweden)

    Muhammad Rifai

    2015-01-01

    Full Text Available Effect of strain energy and grain size on corrosion resistance of ultrafine grained (UFG Fe-20%Cr steels with extremely low C and N fabricated by equal channel angular pressing (ECAP was investigated. UFG structures of initial grain size of 144 nm exhibited the typical three-stage softening comprising recovery, recrystallization, and grain growth. Potentiodynamic polarization measurements were carried out with a conventional three-electrode cell to evaluate pitting potential. Pitting potential in 1000 mol·m−3 NaCl solution was nobler in UFG state, but pitting potential started to decrease monotonously at lower temperature compared to hardness. The degradation of corrosion resistance in the early stage of annealing is attributed to stability change of passivation by recovery of dislocation structures inside grains and in nonequilibrium grain boundaries. We therefore conclude that nobler potentials of UFG states were realized by not only grain size reduction but also defective deformation-induced UFG.

  6. Effect of surface deposited rare earth oxide gel characteristics on cyclic oxidation behavior of Fe20-Cr alloys

    Directory of Open Access Journals (Sweden)

    Stela Maria Cristina Fernandes

    2006-06-01

    Full Text Available Rare earths have been used to increase high temperature oxidation resistance of many chromium dioxide and alumina forming alloys. These rare earths can be added as elements (or as oxide dispersions to the alloys or applied as an oxide coating to the alloy surface. The sol-gel technique is considered to be very efficient to apply fine oxide particle coatings. Oxide gel coatings of various rare earths such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, dysprosium, yttrium, erbium and ytterbium have been applied to an iron-chromium alloy to determine their influence on the cyclic oxidation behavior (RT-900 °C of the alloy. The morphology and coverage of the rare earth oxide gels varied with the type of rare earth. The cyclic oxidation resistance of the alloy increased with increase in time at temperature required to reach a specific chromium dioxide layer thickness and this in turn was influenced by the rare earth ion radius and characteristics of the rare earth oxide coating such as morphology, stability, coverage, resistance to thermal stresses and consequently adhesion.

  7. Geophysical Hunt for Chromite in Ophiolite

    Directory of Open Access Journals (Sweden)

    Mubarik Ali

    2013-12-01

    Full Text Available Ophiolite of Oman are famous world over, and are favorite for exploring chromite, which is a source of chromium that is used widely in steel, nichrome, and plating and painting industries. The best known chromite deposits are found in the Bushveld complex of South africa, however countries like Pakistan and Oman are also contributing but less than 2% of the world production. Chromite is found in the mantle rocks such as peridotite and its altered products. Large economic deposits are generally found in stratiform structure and the smaller ones in pod-like or tabular lenses. In Oman the chromite deposits occur in Oman ophiolite (Semile, mainly in the mantle sequence comprising harzburgite and dunite. The mining efforts for chromite in Oman are in progress but not on scientific grounds. On a site called Izki (670 m asl the chromite was expected on the top of a hill in a small area (150x50 m of ophiolite, and mining through pitting procedure was tried over there but remained unsuccessful. Geophysical methods were applied in the same area to search out the possibility of the existence of the ore. Since chromite is denser, more conductive and magnetically less susceptible deposit as compared to the host rocks harzburgite and serpentinite, it is expected that the existence of a shallow sizable ore body would generate favorable gravity, magnetic, and resistivity signals. The integrated geophysical study (gravity, magnetic and resistivity reveals the probability of chromite within 30 m depth. For confirmation the drilling was recommended on a point upto a depth of 35 meters. The drilling could not be continued beyond 12 meters depth due to reasons known to the lease owner. The drilling showed harzburgite up to 8 meters depth, then a chromite layer of 0.7 meter thickness, after that harzburgite started for the next 3 meters depth. This state of affairs confirms not only the presence of chromite but also the revealing power of geophysics.

  8. THERMODYNAMIC STUDY OF CHROMITE CAUSTICFUSION PROCESS

    Institute of Scientific and Technical Information of China (English)

    S.L. Zheng; Y. Zhang

    2001-01-01

    A new method for chromate cleaning production named chromite caustic fusion pro-cess, is advanced by Institute of Chemical Metallurgy, the Chinese Academy of Sci-ences. With sodium hydroxide as reaction medium, the new process is composed ofthree procedures: liquid phase oxidation of chromite - metastable phase separation -carbonation ammonium transition. Generally illustrating the new process and its fea-tures, this paper mainly studies the thermodynamics of chromite oxidation. The newprocess has much better practical results than the conventional chromate productionprocess in which sodium carbonate is used as reaction medium. The superiority is alsoshown through thermodynamic studies.``

  9. Chromite Enrichment in the Recent Fluviatile Sediments, North Iraq

    OpenAIRE

    Al Juboury, Ali I. [علي الجبوري; Ismail, Sabah A.; Ghazal, Mohsin M.

    1999-01-01

    The Recent sediments from North Iraq are characterized by a higher content of chromite. This paper deals with the mineralogy and geochemistry of chromite in the heavy mineral assemblages from Recent fluvial sediments in an attempt to elucidate its distribution and source rock. The heavy fraction is composed of iron oxides and chromite forming about 50% of the total heavies. Chromite forms up to 80% of the opaque minerals at some areas in North Iraq. The non-opaque heavy minerals are composed ...

  10. Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys

    Directory of Open Access Journals (Sweden)

    Stela Maria de Carvalho Fernandes

    2004-03-01

    Full Text Available The addition of small quantities of reactive elements such as rare earths (RE to chromia or alumina forming alloys improves the high temperature oxidation resistance. Traditionally, these elements are alloying additions or are added as oxides to form a dispersion. The alloys can also be coated with RE oxides. Several methods can be used to coat alloy substrates with RE oxides and the sol-gel process is considered to be quite efficient, as it generates the very small oxide particles. This paper presents the influence of surface coatings of Ce, La, Pr, and Y oxide gels on the oxidation behavior of an Fe-20Cr alloy at 1000 °C. The morphology of the rare earth (RE oxide coatings varied with the nature of RE. The oxidation rate of RE oxide coated Fe-20Cr was significantly less than that of the uncoated alloy. The extent of influence the RE oxide coating exercised on the oxidation rate decreased in the following order: La, Ce, Pr, Y. The scale formed in the presence of RE oxide was very thin, fine grained and adherent chromia. A direct correlation between rare earth ion radius and the extent of influence on chromia growth rate at 1000 °C was observed.

  11. Podiform chromite deposits--database and grade and tonnage models

    Science.gov (United States)

    Mosier, Dan L.; Singer, Donald A.; Moring, Barry C.; Galloway, John P.

    2012-01-01

    Chromite ((Mg, Fe++)(Cr, Al, Fe+++)2O4) is the only source for the metallic element chromium, which is used in the metallurgical, chemical, and refractory industries. Podiform chromite deposits are small magmatic chromite bodies formed in the ultramafic section of an ophiolite complex in the oceanic crust. These deposits have been found in midoceanic ridge, off-ridge, and suprasubduction tectonic settings. Most podiform chromite deposits are found in dunite or peridotite near the contact of the cumulate and tectonite zones in ophiolites. We have identified 1,124 individual podiform chromite deposits, based on a 100-meter spatial rule, and have compiled them in a database. Of these, 619 deposits have been used to create three new grade and tonnage models for podiform chromite deposits. The major podiform chromite model has a median tonnage of 11,000 metric tons and a mean grade of 45 percent Cr2O3. The minor podiform chromite model has a median tonnage of 100 metric tons and a mean grade of 43 percent Cr2O3. The banded podiform chromite model has a median tonnage of 650 metric tons and a mean grade of 42 percent Cr2O3. Observed frequency distributions are also given for grades of rhodium, iridium, ruthenium, palladium, and platinum. In resource assessment applications, both major and minor podiform chromite models may be used for any ophiolite complex regardless of its tectonic setting or ophiolite zone. Expected sizes of undiscovered podiform chromite deposits, with respect to degree of deformation or ore-forming process, may determine which model is appropriate. The banded podiform chromite model may be applicable for ophiolites in both suprasubduction and midoceanic ridge settings.

  12. Mechanical properties of lanthanum and yttrium chromites

    Energy Technology Data Exchange (ETDEWEB)

    Paulik, S.W.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    In an operating high-temperature (1000{degrees}C) solid oxide fuel cell (SOFC), the interconnect separates the fuel (P(O{sub 2}){approx}10{sup -16} atm) and the oxidant (P(O2){approx}10{sup 0.2} atm), while being electrically conductive and connecting the cells in series. Such severe atmospheric and thermal demands greatly reduce the number of viable candidate materials. Only two materials, acceptor substituted lanthanum chromite and yttrium chromite, meet these severe requirements. In acceptor substituted chromites (Sr{sup 2+} or Ca{sup 2+} for La{sup 3+}), charge compensation is primarily electronic in oxidizing conditions (through the formation of Cr{sup 4+}). Under reducing conditions, ionic charge compensation becomes significant as the lattice becomes oxygen deficient. The formation of oxygen vacancies is accompanied by the reduction of Cr{sup 4+} ions to Cr{sup 3+} and a resultant lattice expansion. The lattice expansion observed in large chemical potential gradients is not desirable and has been found to result in greatly reduced mechanical strength.

  13. Borohydride electro-oxidation by Ag-doped lanthanum chromites

    Indian Academy of Sciences (India)

    S Suresh Balaji; A Usha; V V Giridhar

    2014-05-01

    The electrocatalytic activity of Ag-doped lanthanum chromites electrode materials viz., LaCr0.4Ag0.6O3 and LaCr0.7Ag0.3O3 prepared by decomposing the precursor complex is studied. Pure LaCrO3 is synthesized by combustion route using oxalic acid as a fuel. The decomposition behaviour of the assynthesized powder obtained in the latter method is characterized by TGA-DTA and XRD. Both the precursor complex and the as-synthesized powder are calcined at 900°C for 7 and 10 h, respectively. XRD of the final product after calcinations indicated the formation of perovskite phase with minor amounts of impurity phases of component oxides in the Ag-doped lanthanum chromites and pure perovskite phase in the undoped one. The surface morphology of the perovskites is studied by SEM. The electrocatalytic activity of the perovskite powders for borohydride oxidation is studied by using cyclic voltammetry (CV) at a catalyst loading of 0.7 mgcm−2 for both Ag-doped and undoped LaCrO3 coated on glassy carbon substrate. Calibration plots are obtained by plotting the anodic peak current versus concentration of borohydride in the range of 20-100 mM. The sensitivities of the three perovskites towards borohydride oxidation indicated that LaCr0.4Ag0.6O3 is the best among all the perovskites studied giving a value of 1.395 A/mM.

  14. Reduction Mechanism of Chromite Ore in Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    LI Yi-wei; DING Wei-zhong; LU Xiong-gang; XU Kuang-di

    2004-01-01

    The structural changes and reduction degree of chromite ore in blast furnace were studied by optical micrograph analysis, scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDXA). The smelting reduction mechanism of chromite in blast furnace was primarily discussed.

  15. Effective Laboratory Method of Chromite Content Estimation in Reclaimed Sands

    Directory of Open Access Journals (Sweden)

    Ignaszak Z.

    2016-09-01

    Full Text Available The paper presents an original method of measuring the actual chromite content in the circulating moulding sand of foundry. This type of material is applied for production of moulds. This is the case of foundry which most frequently perform heavy casting in which for the construction of chemical hardening mould is used, both the quartz sand and chromite sand. After the dry reclamation of used moulding sand, both types of sands are mixed in various ratios resulting that in reclaimed sand silos, the layers of varying content of chromite in mixture are observed. For chromite recuperation from the circulating moulding sand there are applied the appropriate installations equipped with separate elements generating locally strong magnetic field. The knowledge of the current ratio of chromite and quartz sand allows to optimize the settings of installation and control of the separation efficiency. The arduous and time-consuming method of determining the content of chromite using bromoform liquid requires operational powers and precautions during using this toxic liquid. It was developed and tested the new, uncomplicated gravimetric laboratory method using powerful permanent magnets (neodymium. The method is used in the production conditions of casting for current inspection of chromite quantity in used sand in reclamation plant.

  16. Carbothermal reduction kinetics of mechanically activated chromite with graphite

    OpenAIRE

    Kenan Yıldız

    2011-01-01

    The carbothermal reduction kinetics of mechanically activated chromite with graphite under an argon atmosphere was investigated at temperatures between 1100 and 1400°C. Zhuravlev-Lesokhin-Tempelman (ZLT) method was used in the reduction kinetics for non-activated chromite and the activation energy was calculated as 401.7 kJ/mol. Solid-state diffusion method was used in the reduction kinetics for 60 min-activated chromite and the activation energy was calculated as 283.3 kJ/mol. This decrease ...

  17. Controlled reactions between chromia and coating on alloy surface

    DEFF Research Database (Denmark)

    Linderoth, Søren

    1996-01-01

    An electrically conducting Sr-doped lanthanum chromite (LSC) coating has been produced by reacting a coating of fine particles of La oxide and Sr oxide with chromia formed as an external scale on a metallic alloy. In addition to the formation of LSC the coating also resulted in much reduced...... buckling of the underlying chromia layer compared with a non-coated alloy....

  18. Occupational health assessment of chromite toxicity among Indian miners

    Directory of Open Access Journals (Sweden)

    Alok Prasad Das

    2011-01-01

    Full Text Available Elevated concentration of hexavalent chromium pollution and contamination has contributed a major health hazard affecting more than 2 lakh mine workers and inhabitants residing in the Sukinda chromite mine of Odisha, India. Despite people suffering from several forms of ill health, physical and mental deformities, constant exposure to toxic wastes and chronic diseases as a result of chromite mining, there is a tragic gap in the availability of ′scientific′ studies and data on the health hazards of mining in India. Occupational Safety and Health Administration, Odisha State Pollution Control Board and the Odisha Voluntary Health Association data were used to compile the possible occupational health hazards, hexavalent chromium exposure and diseases among Sukinda chromite mines workers. Studies were reviewed to determine the routes of exposure and possible mechanism of chromium induced carcinogenicity among the workers. Our studies suggest all forms of hexavalent chromium are regarded as carcinogenic to workers however the most important routes of occupational exposure to Cr (VI are inhalation and dermal contact. This review article outlines the physical, chemical, biological and psychosocial occupational health hazards of chromite mining and associated metallurgical processes to monitor the mining environment as well as the miners exposed to these toxicants to foster a safe work environment. The authors anticipate that the outcome of this manuscript will have an impact on Indian chromite mining industry that will subsequently bring about improvements in work conditions, develop intervention experiments in occupational health and safety programs.

  19. Speciation and recovery of chromium from chromite ore processing residues.

    Science.gov (United States)

    Sreeram, K J; Ramasami, T

    2001-10-01

    The processing of chromite ore is associated with the generation of large quantities of solid wastes containing chromium, which have been disposed of as landfill for many years. The mobilization and operational speciation of chromium contained in soils contaminated with metal salts are important in terms of the environment. Several methods have been employed for the extraction and recovery of solid wastes. Chromium contained in contaminated soils and solid wastes can be categorized as exchangeable, oxidizable, carbonate-bound, reducible and residual. The results from this study indicate a need for efficient leaching methodologies in chromite ore processing plants to decrease the non-detrital fractions of chromium in the residue. Aggressive methodologies are required to recover chromium from the detrital fractions. The potential benefits of employing sodium peroxide for the complete recovery of chromium from chromite residue have been demonstrated, and the need to ensure the safety of the process has been emphasized.

  20. Sulfuric acid leaching kinetics of South African chromite

    Institute of Scientific and Technical Information of China (English)

    Qing Zhao; Cheng-jun Liu; Pei-yang Shi; Bo Zhang; Mao-fa Jiang; Qing-song Zhang; Ron Zevenhoven; Henrik Saxn

    2015-01-01

    The sulfuric acid leaching kinetics of South African chromite was investigated. The negative influence of a solid product layer constituted of a silicon-rich phase and chromium-rich sulfate was eliminated by crushing the chromite and by selecting proper leaching con-ditions. The dimensionless change in specific surface area and the conversion rate of the chromite were observed to exhibit a proportional re-lationship. A modified shrinking particle model was developed to account for the change in reactive surface area, and the model was fitted to experimental data. The resulting model was observed to describe experimental findings very well. Kinetics analysis revealed that the leach-ing process is controlled by a chemical reaction under the employed experimental conditions and the activation energy of the reaction is 48 kJ·mol–1.

  1. Melting of Pre-Reduced Chromite Pellet Bearing Carbon

    Institute of Scientific and Technical Information of China (English)

    ZHANG You-ping; XUE Zheng-liang; LI Zheng-bang; ZHANG Jia-wen; YANG Hai-sen; ZHOU Yu-sheng

    2005-01-01

    As the raw material for hot metal containing chromium from 20% to 40%, carbon-beared chromite pellets made from three kinds of typical chromite were reduced at 1 300 ℃ for 30 min and then kept at 1 550-1 600℃ for 10 min. The effect of Cr2 O3/FeO mass ratio in pellets on chromium content in hot metal and the yield of chromium were investigated. The results indicated that the highest chromium content is in hot metal produced from South African UG2 ore, but slag volume produced with Indian chromite is the smallest. The yield of chromium is only 60% to 75%, due to short melting time, high melting point and large surface tension of the slag with high Al2 O3 and MgO content, which influences the separation between metal and slag.

  2. Impact assessment of chromite mining on groundwater through simulation modeling study in Sukinda chromite mining area, Orissa, India.

    Science.gov (United States)

    Dhakate, Ratnakar; Singh, V S; Hodlur, G K

    2008-12-30

    The pre-Cambrian chromites ore deposits in Sukinda valley, Jajpur District, Orissa, India, are well known for chromite ore deposits. The exploitation of the ore is carried out through open cast mining method since the last few decades. In the process, the overburden and ore dumps are stored on ground surface, where leaching of chromite and other toxic element takes place particularly during monsoon seasons. This leachate may cause threat to groundwater in the vicinity. An integrated approach has been adopted to evaluate possibility of pollution due to mine seepage and leachate migration on groundwater regime. The approach involves geophysical, hydrogeological, hydro-chemical and aquifer modeling studies. The investigation has the significance as many habitats surround the mining area facing groundwater problems.

  3. Shocked chromites in fossil L chondrites: A Raman spectroscopy and transmission electron microscopy study

    Science.gov (United States)

    Rout, Surya S.; Heck, Philipp R.; Zaluzec, Nestor J.; Ishii, Takayuki; Wen, Jianguo; Miller, Dean J.; Schmitz, Birger

    2017-09-01

    Chromites from Middle Ordovician fossil L chondrites and from matrix and shock-melt veins in Catherwood, Tenham, and Coorara L chondrites were studied using Raman spectroscopy and TEM. Raman spectra of chromites from fossil L chondrites showed similarities with chromites from matrix and shock-melt veins in the studied L chondrite falls and finds. Chromites from shock-melt veins of L chondrites show polycrystallinity, while the chromite grains in fossil L chondrites are single crystals. In addition, chromites from shock-melt veins in the studied L chondrites have high densities of planar fractures within the subgrains and many subgrains show intergrowths of chromite and xieite. Matrix chromite of Tenham has similar dislocation densities and planar fractures as a chromite from the fossil meteorite Golvsten 001 and higher dislocation densities than in chromite from the fossil meteorite Sextummen 003. Using this observation and knowing that the matrix of Tenham experienced 20-22 GPa and shock stage S3-S6) and 20 GPa and 1000° C (S3-S5), respectively, and we conclude that the studied fossil meteorite chromites are from matrix.

  4. Stratiform chromite deposit model: Chapter E in Mineral deposit models for resource assessment

    Science.gov (United States)

    Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R., II

    2012-01-01

    A new descriptive stratiform chromite deposit model was prepared which will provide a framework for understanding the characteristics of stratiform chromite deposits worldwide. Previous stratiform chromite deposit models developed by the U.S. Geological Survey (USGS) have been referred to as Bushveld chromium, because the Bushveld Complex in South Africa is the only stratified, mafic-ultramafic intrusion presently mined for chromite and is the most intensely researched. As part of the on-going effort by the USGS Mineral Resources Program to update existing deposit models for the upcoming national mineral resource assessment, this revised stratiform chromite deposit model includes new data on the geological, mineralogical, geophysical, and geochemical attributes of stratiform chromite deposits worldwide. This model will be a valuable tool in future chromite resource and environmental assessments and supplement previously published models used for mineral resource evaluation.

  5. SEM, optical, and Moessbauer studies of submicrometer chromite in Allende

    Science.gov (United States)

    Housley, R. M.

    1982-01-01

    New scanning electron and optical microscope results are presented showing that sub-micrometer chromite is abundant along healed cracks and grain boundaries in Allende chondrule olivine. Some wider healed cracks also contain pentlandite and euhedral Ni3Fe grains. Also reported are Moessbauer measurements on Allende HF-HCl residues confirming a high Fe(+++)/Fe(++) ratio.

  6. Advances towards a Clean Hydrometallurgical Process for Chromite

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2016-01-01

    Full Text Available Because of the acute toxicity of Cr(VI-bearing substances, the pollution problem caused by chromite process residue has become a worldwide concern. In the view of relevant studies, the technologies based on the alkali treatment cannot fundamentally resolve the pollution problem, because the oxidation of Cr(III to Cr(VI is unavoidable during chromite decomposition. In contrast, the oxidation of Cr(III to Cr(VI can be controlled by the sulfuric acid treatment of chromite, and the Cr(VI pollution can be eliminated from the original source of production. Many research studies focusing on the resolutions of the key obstacles hindering the development of the sulfuric acid treatment process have been carried out, and significant progress has been achieved. In this study, a clean hydrometallurgical process without the generation of hexavalent chromium is demonstrated. First, the chromite was decomposed and leached by sulfuric acid solution in the presence of an oxidant. Then, iron was hydrothermally removed from the acid solution as the precipitate of jarosite. Finally, chromium salts were obtained by adjusting the basicity of the solution, separation and drying. With the aim of realizing industrialization, future research emphasis on the development of the sulfuric acid treatment process is proposed in this study.

  7. Applications and Preparation Methods of Copper Chromite Catalysts: A Review

    Directory of Open Access Journals (Sweden)

    Ram Prasad

    2011-11-01

    Full Text Available In this review article various applications and preparation methods of copper chromite catalysts have been discussed. While discussing it is concluded that copper chromite is a versatile catalyst which not only catalyses numerous processes of commercial importance and national program related to defence and space research but also finds applications in the most concerned problem worldwide i.e. environmental pollution control. Several other very useful applications of copper chromite catalysts are in production of clean energy, drugs and agro chemicals, etc. Various preparation methods about 15 have been discussed which depicts clear idea about the dependence of catalytic activity and selectivity on way of preparation of catalyst. In view of the globally increasing interest towards copper chromite catalysis, reexamination on the important applications of such catalysts and their useful preparation methods is thus the need of the time. This review paper encloses 369 references including a well-conceivable tabulation of the newer state of the art. Copyright © 2011 by BCREC UNDIP. All rights reserved.(Received: 19th March 2011, Revised: 03rd May 2011, Accepted: 23rd May 2011[How to Cite: R. Prasad, and P. Singh. (2011. Applications and Preparation Methods of Copper Chromite Catalysts: A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 63-113. doi:10.9767/bcrec.6.2.829.63-113][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.829.63-113 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/829 ] | View in 

  8. Geological and Mineralogical-technological features chromite ore from nickel-weathering crusts Average Bug

    Directory of Open Access Journals (Sweden)

    Perkov E.S.

    2013-09-01

    Full Text Available Conditions of occurrence and distribution features of chromites ore bodies in the ultra-basic nickel bearing weathering crusts of Middle Bug Area are considered. Main types of exogenous chromites ores in weathering crusts and beyond of them are identified as well as mineralogical, chemical and grain features of mineralization are given. Obtained data are substantiated in order to apply them while developing the efficient schemes of mining and processing of exogenous chromites ores.

  9. Effects of mechanical activation on the carbothermal reduction of chromite with metallurgical coke

    Directory of Open Access Journals (Sweden)

    Kenan Yıldız

    2010-06-01

    Full Text Available The carbothermal reduction of mechanically activated chromite with metallurgical coke under an argon atmosphere was investigated at temperatures between 1100 and 1400°C and the effects of the mechanical activation on chromite structure were analyzed by x-ray diffraction (XRD and scanning electron microscopy (SEM. An increase in specific surface area resulted in more contact points. The activation procedure led to amorphization and structural disordering in chromite and accelerated the degree of reduction and metalization in the mixture of chromite and metallurgical coke. Carbothermal reduction products were analzed by using scanning electron microscopy (SEM/EDS.

  10. Chromite deposits of the north-central Zambales Range, Luzon, Philippines

    Science.gov (United States)

    Rossman, D.L.

    1970-01-01

    Peridotite and gabbro form an intrusive complex which is exposed over an area about 35 km wide and 150 km long in the center of the Zambales Range of western Luzon. The Zambales Complex is remarkable for its total known resources, mined and still remaining, of about 15 million metric tons of chromite ore. Twenty percent of Free World production was obtained from this area between 1950 and the end of 1964; in 1960 production reached a high of 606,103 metric tons of refractory-grade ore, mostly from the Coto mine near Masinloc, and 128,426 metric tons of metallurgical ore from the Acoje mine. The United States imports 80 to 90 percent of its refractory-grade chromite from the Philippines, and its basic refractory technology has been designed upon the chemical and physical characteristics of Coto high-alumina chromite ore. Continuation of this pattern will depend upon discovery of additional ore reserves to replace those depleted by mining. The Zambales Ultramafic Complex is of the alpine type in which lenticular or podiform deposits of chromite lie in peridotite or dunite, mostly near Contacts with gabbroic rocks. Layered structures, foliation, and lineation commonly are well developed and transect boundaries between major rock units, including chromite deposits, at any angle. Accordingly, these structures cannot be used as guides in exploration and mining as they are used in stratiform complexes such as the Bushveld, where chromite layers extend for many miles. Probably 90 percent of the known deposits in the Zambales Complex are located in two belts in its northern part. One zone containing high-aluminua refractory-grade deposits extends northeast from the Coto mine and Chromite Reservation No. I along a peridotite contact with olivine gabbro, and another of high-chromium metallurgical grade chromite extends south through the Zambales and Acoje properties, and swings westward around the south side of Mount Lanai along a peridotite contact with norite. The textures

  11. Brief report on thermodynamics of chromium slags and kinetic modelling of chromite reduction (1995-96)

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yamping; Holappa, L. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1996-12-31

    This article summaries the research work on thermodynamics of chromium slags and kinetic modelling of chromite reduction. The thermodynamic properties of FeCr slag systems were calculated with the regular solution model. The effects of CaO/MgO ratio, Al{sub 2}0{sub 3} amount as well as the slag basicity on the activities of chromium oxides and the oxidation state of chromium were examined. The calculated results were compared to the experimental data in the literature. In the kinetic modelling of the chromite reduction, the reduction possibilities and tendencies of the chromite constitutes with CO were analysed based on the thermodynamic calculation. Two reaction models, a structural grain model and a multi-layers reaction model, were constructed and applied to simulate the chromite pellet reduction and chromite lumpy ore reduction, respectively. The calculated reduction rates were compared with the experimental measurements and the reaction mechanisms were discussed. (orig.) SULA 2 Research Programme; 4 refs.

  12. Electron microscopy of microwave-synthesized rare-earth chromites

    OpenAIRE

    Schmidt, Rainer; Prado-Gonjal, Jesus; Avila, David; Amador, Ulises; Moran, Emilio

    2014-01-01

    The perovskite rare-earth (RE) chromite series (RE)CrO3 (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, Ho, Er, Tm, Yb, Lu) has been synthesized in our laboratory using microwave techniques. In this work we will demonstrate how X-ray diffraction (XRD), Rietveld refinement of XRD pattern and complementary High Resolution Transmission Electron Microscopy (HRTEM) were used to confirm that the desired crystal structure had been formed. Field-emission scanning electron microscopy (FE-SEM) gave clear ...

  13. Optics of Chromites and Charge-Transfer Transitions

    Directory of Open Access Journals (Sweden)

    Andrei V. Zenkov

    2008-01-01

    Full Text Available Specific features of the charge-transfer (CT states and O2p→Cr3d transitions in the octahedral (CrO69− complex are considered in the cluster approach. The reduced matrix elements of the electric-dipole transition operator are calculated on many-electron wave functions of the complex corresponding to the initial and final states of a CT transition. Modeling the optic spectrum of chromites has yielded a complicated CT band. The model spectrum is in satisfactory agreement with experimental data which demonstrates the limited validity of the generally accepted concept of a simple structure of CT spectra.

  14. Synthesis and Characterization of Hydrophilic and Semiconductor Cadmium Chromite Nanostructures

    Science.gov (United States)

    Mousavi, Zahra; Salavati-Niasari, Masoud; Soofivand, Faezeh; Esmaeili-Zare, Mahdiyeh; Hamadanian, Masood

    2016-11-01

    Cadmium chromite nanostructures were synthesized in high yield by a simple co-precipitation method. CdCr2O4 nanostructures have been achieved using cadmium nitrate tetrahydrate and CrCl3·6H2O as precursors by a co-precipitation method. The effects of various parameters including alkaline agent, pH value, reaction temperature, and surfactant type were investigated to discover the optimum conditions, and it was found that the size and morphology of products can be affected by these parameters. The structure, morphology and surface chemistry of CdCr2O4 powder were investigated by x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy. X-ray diffraction patterns indicated the chromite spinel phase with good crystallinity and an average crystallite size of approximately 20 nm. The hydrophilicity of the calcined oxides was investigated by wetting experiments and the sessile drop technique which were carried out at room temperature in air to determine the surface and interfacial interactions.

  15. Influence of a niobium coating on sulfidation resistance of FeCr and FeCrY alloys; Influencia de um revestimento de niobio sobre a resistencia a sulfetacao das ligas FeCr e FeCrY

    Energy Technology Data Exchange (ETDEWEB)

    Geribola, Gulherme Altomari

    2014-07-01

    Niobium and niobium based alloys are currently used in many industrial applications because they offer excellent resistance to degradation in various corrosive environments. These media include gaseous atmospheres at high temperatures such as those found in existing coal gasifying plants in power plants for energy generation. These atmospheres are complex gas mixtures that contain sulfur and oxygen, among other compounds. Sulphides are thermodynamically less stable, have lower melting points and often have larger deviations from stoichiometry compared to the corresponding oxides. Although there are studies regarding the use of refractory metals in high temperature sulphidizing atmospheres, the use of niobium compounds has not been adequately evaluated and there is very little studies available in the literature about its use as a protective coating. The aim of this study was to evaluate the effect of a niobium film, deposited by magnetron sputtering on the isothermal sulphidation behavior of Fe-20Cr and Fe-20Cr-1Y alloys. The sulphidation tests were carried out at 500, 600 and 700 deg C for 2h in H{sub 2}/2% H2S atmosphere. The sulphidation resistance was determined by mass gain per unit area. The sulphidation behavior of the coated and uncoated alloys was similar at 500 deg C, and none of the alloys scaled. At 700 deg C FeCr alloy scaled in the form of a fine powder, while the reaction product formed on the alloy FeCrY scaled in the form of plates. The effect of niobium became pronounced at 700 deg C. The reaction product layer formed on the coated alloy was thinner and more plastic than that formed on the uncoated alloy. The mass gain per unit area of the coated alloys decreased significantly and they did not scaled. (author)

  16. Chemical and Thermal Expansion of Calcium-Doped Lanthanum Chromite

    Science.gov (United States)

    Williford, R. E.; Armstrong, T. R.; Gale, J. D.

    2000-02-01

    Atomistic free-energy minimization techniques were used to simulate three simultaneous volumetric shrinkage/expansion phenomena in calcium-doped lanthanum chromite solid oxide fuel cell (SOFC) interconnect materials. Four sets of interatomic potentials were developed and tested over the temperature range 0-1273 K. The predicted unit-cell volumes, elastic properties, volumetric shrinkage due to A-site doping of the ABO3 perovskite (La1-xCax)CrO3, defect-induced volumetric expansion due to reducing atmospheres, and thermal expansion were in reasonable agreement with experiment, though not all concurrently with a single set of potentials. Potentials based either on simple oxides or on partial charge models appeared to give the best overall predictions. Additional experimental data are needed to improve the potentials.

  17. PROMOTED ZINC CHROMITE CATALYSTS FOR HIGHER ALCOHOL SYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Ms. Xiaolei Sun; Professor George W. Roberts

    2000-06-21

    Work during the report period was concentrated on developing analytical techniques. Thin-layer chromatography (TLC) was used in an attempt to define the best mobile phase to separate the components of ''spent'' tetrahydroquinoline by liquid chromatography in a silica gel column. Conditions have been defined for separating the light gases produced by the reaction of carbon monoxide (CO) and hydrogen (H{sub 2}) over promoted ''zinc chromite'' catalysts. This will be done with a temperature-programmed Carboxen-1000 column, using a thermal conductivity detector for analysis. A Petrocol DM 150 capillary column will be purchased to separate the heavier products, which will be analyzed using a flame ionization detector.

  18. Lanthanum chromite colloidal processing; Processamento coloidal de cromito de lantanio

    Energy Technology Data Exchange (ETDEWEB)

    Setz, Luiz Fernando Grespan

    2009-07-01

    Lanthanum chromite (LaCrO{sub 3}) is currently the most studied material for applications such as solid oxide fuel cell inter connector (HTSOFC). The complexity of microstructures and geometries of HTSOFC devices, require a precise control of processing parameters to get the desired combination of properties and this, the use of techniques involving concentrated ceramic slips conformation are appropriate, therefore, is well controlled, assist in obtaining homogeneous parts, reproductive and complex geometries. Thus, studies involving the surface chemistry, the stability conditions and slips flow behaviour in the forming conditions, provide important elements for processes control in the inter connectors manufacture, where more applied settings have slots and channels for the gases passage. Thus, surface chemistry, stability and rheological behaviour of strontium and cobalt doped LaCrO{sub 3} (La{sub 0.80}Sr{sub 0.20}Cr{sub 0.92}Co{sub 0.08}O{sub 3}) slips prepared with ethanol and water, were studied. The doped lanthanum chromite was produced by combustion synthesis in the IPEN/SP labs. The influence of parameters: p H (water), dispersant concentration, homogenization times and conditions, solid concentration, different ratios binder:plasticizer in the stability and the flow behavior of ceramic suspensions prepared were evaluated. The La{sub 0.80}Sr{sub 0.20}Cr{sub 0.92}Co{sub 0.08}O{sub 3} products obtained by casting aqueous slips in a plaster mould, using alkaline p H and anionic polyelectrolyte and tapes obtained by using ethanol as a dispersant medium, after sintering at 1600 deg C/4h presented theoretical density > 94%, suitable for use as HTSOFC inter connector. (author)

  19. Lanthanum chromite colloidal processing; Processamento coloidal de cromito de lantanio

    Energy Technology Data Exchange (ETDEWEB)

    Setz, Luiz Fernando Grespan

    2009-07-01

    Lanthanum chromite (LaCrO{sub 3}) is currently the most studied material for applications such as solid oxide fuel cell inter connector (HTSOFC). The complexity of microstructures and geometries of HTSOFC devices, require a precise control of processing parameters to get the desired combination of properties and this, the use of techniques involving concentrated ceramic slips conformation are appropriate, therefore, is well controlled, assist in obtaining homogeneous parts, reproductive and complex geometries. Thus, studies involving the surface chemistry, the stability conditions and slips flow behaviour in the forming conditions, provide important elements for processes control in the inter connectors manufacture, where more applied settings have slots and channels for the gases passage. Thus, surface chemistry, stability and rheological behaviour of strontium and cobalt doped LaCrO{sub 3} (La){sub 0.80}Sr{sub 0.}2{sub 0}Cr{sub 0.92}Co{sub 0.08}O{sub 3}) slips prepared with ethanol and water, were studied. The doped lanthanum chromite was produced by combustion synthesis in the IPEN/SP labs. The influence of parameters: pH (water), dispersant concentration, homogenization times and conditions, solid concentration, different ratios binder:plasticizer in the stability and the flow behavior of ceramic suspensions prepared were evaluated. The La){sub 0.80}Sr{sub 0.}2{sub 0}Cr{sub 0.92}Co{sub 0.08}O{sub 3} products obtained by casting aqueous slips in a plaster mould, using alkaline pH and anionic polyelectrolyte and tapes obtained by using ethanol as a dispersant medium, after sintering at 1600 degree C/4 hours presented theoretical density > 94%, suitable for use as HTSOFC inter connector. (author)

  20. [Qualitative and quantitative analysis of various elements in chromite ore by ICP-AES].

    Science.gov (United States)

    Zhang, Yang; Zheng, Shi-li; Wang, Xiao-hui; Xu, Hong-bin; Zhang, Yi

    2010-01-01

    Kind of the elements in chromite ore was firstly determined by ICP-AES. Twenty nine elements, such as Cr, Fe, Al, Mg, Zn, Ca and Ni, were contained in the chromite sample based on the qualitative analysis. Then the contents of main elements Cr, Fe, Al, Mg, Ca, T, Si, Mn and V were measured. The chromite samples processing procedures have two steps, the first is decomposition by nitrate carbonate and sodium tetraborate at 950 degrees C for 30 min, then leaching by dilute hydrochloric acid at 80 degrees C for 10 min. The method showed satisfactory precision and accuracy with the RSDs between 0.48% and 2.05% and the recovery rates between 90.5% and 111.3%.

  1. Chromite Composition and Accessory Minerals in Chromitites from Sulawesi, Indonesia: Their Genetic Significance

    Directory of Open Access Journals (Sweden)

    Federica Zaccarini

    2016-05-01

    Full Text Available Several chromite deposits located in the in the South and Southeast Arms of Sulawesi, Indonesia, have been investigated by electron microprobe. According to the variation of the Cr# = Cr/(Cr + Fe3+, the chromite composition varies from Cr-rich to Al-rich. Small platinum-group minerals (PGM, 1–10 μm in size, occur in the chromitites. The most abundant PGM is laurite, which has been found included in fresh chromite or in contact with chlorite along cracks in the chromite. Laurite forms polygonal crystals, and it occurs as a single phase or in association with amphibole, chlorite, Co-pentlandite and apatite. Small blebs of irarsite (less than 2 μm across have been found associated with grains of awaruite and Co-pentlandite in the chlorite gangue of the chromitites. Grains of olivine, occurring in the silicate matrix or included in fresh chromite, have been analyzed. They show a composition typical of mantle-hosted olivine. The bimodal composition and the slight enrichment in TiO2 observed in some chromitites suggest a vertical zonation due to the fractionation of a single batch magma with an initial boninitic composition during its ascent, in a supra-subduction zone. This observation implies the accumulation of Cr-rich chromitites at deep mantle levels and the formation of the Al-rich chromitites close or above the Moho-transition zone. All of the laurites are considered to be magmatic in origin, i.e., entrapped as solid phases during the crystallization of chromite at temperature of around 1200 °C and a sulfur fugacity below the sulfur saturation. Irarsite possibly represents a low temperature, less than 400 °C, exsolution product.

  2. Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India)

    DEFF Research Database (Denmark)

    Mukherjee, Ria; Mondal, Sisir Kanti; Rosing, Minik Thorleif

    2010-01-01

    -98)) and pyroxene grains (Mg-numbers = 97-99). Compositional variability on the scale of a single chromite grain occurs in the form of zoning, and it is common in the accessory chromite grains in serpentinite and in the altered grains in chromitite. In the zoned grains, the composition of the core is modified...... has been used to compute the nature of the parental melt. The parental melt calculations indicate derivation from a high-Mg komatiitic basalt that is similar to the composition of the komatiitic rocks reported from the greenstone sequences of the Western Dharwar Craton. Tectonic discrimination...

  3. Beneficiation of Konya-Beyşehir Chromite for Producing Concentrates Suitable for Industry

    Science.gov (United States)

    Öztürk, Fatma Deniz; Abakay Temel, Halime

    2016-09-01

    Turkey has a 6% share of world chromite mining and possesses 25 million tons of reserves. Despite their economic importance, the most important Turkish chromite reserves have not been extensively studied with respect to their composition. In this study, the possibility of upgrading Konya-Beyşehir (Turkey) chromite to produce chromite concentrates suitable for industry is investigated. Two groups of enrichment experiments were made. The effects of some parameters that markedly influence the separation of a shaking table, such as the amplitude and slope of the shaking table and the frequency of strokes were investigated in the first group of experiments, The shaking table experiments were planned and carried out using the statistical methods of Design of Experiments (Yate's and ANOVA) in the second group of experiments. As a result, it was found that a concentrate containing 46.89% Cr2O3 content with a yield of 85.18% was obtained from a feed containing 3.98% Cr2O3 content in 0.2 + 0.1 mm size fraction.

  4. A MIXED CHEMICAL REDUCTANT FOR TREATING HEXAVALENT CHROMIUM IN A CHROMITE ORE PROCESSING SOLID WASTE

    Science.gov (United States)

    We evaluated a method for delivering ferrous iron into the subsurface to enhance chemical reduction of Cr(VI) in a chromite ore processing solid waste (COPSW). The COPSW is characterized by high pH (8.5 -11.5), high Cr(VI) concentrations in the solid phase (up to 550 mg kg-1) and...

  5. Occurrence and emplacement of chromite ores in Sindhudurg district, Maharashtra, India

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D; Babu, E.V.S.S.K.; Mislankar, P.G.; Gujar, A.R.; Ambre, N.V.; Loveson, V.J.

    and are associated with metamorphic and ultrabasic rocks, consist of octahedral grains of chromite, while clinochlore is present between the interstices of these grains. The Kankavali (janoli) and Wagda ores revealed a dominance of Cr sub(2) O sub(3) followed by Fe...

  6. Determining the Impactor of the Ordovician Lockne Crater: Oxygen Isotopes in Chromite Versus Sedimentary PGE Signatures

    Science.gov (United States)

    Schmitz, B.; Heck, P. R.; Alwmark, C.; Kita, N. T.; Peucker-Ehrenbrink, B.; Ushikubo, T.; Valley, J. W.

    2009-03-01

    Oxygen isotopic results for chromite from the Lockne cCater and new PGE results show that the claims by Tagle and Schmitt (2008, LPSC abstr. #1418) that the Lockne Crater was caused by a nonmagmatic iron meteorite lacks substance entirely.

  7. Performance evaluation of commercial copper chromites as burning rate catalyst for solid propellants

    Directory of Open Access Journals (Sweden)

    Milton Faria Diniz

    2010-09-01

    Full Text Available Copper chromites are well known as burning rate catalysts for the combustion of composite solid propellants, used as a source of energy for rocket propulsion. The propellant burning rate depends upon the catalyst characteristics such as chemical composition and specific surface area. In this work, copper chromite samples from different suppliers were characterized by chemical analysis, FT-IR spectroscopy and by surface area measurement (BET. The samples were then evaluated as burning rate catalyst in a typical composite propellant formulation based on HTPB binder, ammonium perchlorate and aluminum. The obtained surface area values are very close to those informed by the catalyst suppliers. The propellant processing as well as its mechanical properties were not substantially affected by the type of catalyst. Some copper chromite catalysts caused an increase in the propellant burning rate in comparison to the iron oxide catalyst. The results show that in addition to the surface area, other parameters like chemical composition, crystalline structure and the presence of impurities might be affecting the catalyst performance. All evaluated copper chromite samples may be used as burning rate catalyst in composite solid propellant formulations, with slight advantages for the SX14, Cu-0202P and Cu-1800P samples, which led to the highest burning rate propellants.

  8. Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells

    NARCIS (Netherlands)

    Pudmich, G.; Boukamp, B.A.; Gonzalez-Cuenca, M.; Jungen, W.; Zipprich, W.; Tietz, F.

    2000-01-01

    Perovskites containing lanthanides, partially substituted by alkaline-earth elements and transition metals like Cr, Ti, Fe or Co show a very broad range of physical properties. Therefore several perovskite materials, based on lanthanum chromite and strontium titanate were synthesised and investigate

  9. An Exercise in X-Ray Diffraction Using the Polymorphic Transition of Nickel Chromite.

    Science.gov (United States)

    Chipman, David W.

    1980-01-01

    Describes a laboratory experiment appropriate for a course in either x-ray crystallography or mineralogy. The experiment permits the direct observation of a polymorphic transition in nickel chromite without the use of a special heating stage or heating camera. (Author/GS)

  10. An Exercise in X-Ray Diffraction Using the Polymorphic Transition of Nickel Chromite.

    Science.gov (United States)

    Chipman, David W.

    1980-01-01

    Describes a laboratory experiment appropriate for a course in either x-ray crystallography or mineralogy. The experiment permits the direct observation of a polymorphic transition in nickel chromite without the use of a special heating stage or heating camera. (Author/GS)

  11. Study on mechanisms of different sulfuric acid leaching technologies of chromite

    Science.gov (United States)

    Shi, Pei-yang; Liu, Cheng-jun; Zhao, Qing; Shi, Hao-nan

    2017-09-01

    The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric acid leaching process using chromite as a raw material via either microwave irradiation or in the presence of an oxidizing agent. The results show that the main phases in Pakistan chromite are ferrichromspinel, chrompicotite, hortonolite, and silicate embedded around the spinel phases. Compared with the process with an oxidizing agent, the process involving microwaves has a higher leaching efficiency. When the mass fraction of sulfuric acid was 80% and the leaching time was 20 min, the efficiency could exceed 85%. In addition, the mechanisms of these two technologies fundamentally differ. When the leaching was processed in the presence of an oxidizing agent, the silicate was leached first and then expanded. By contrast, in the case of leaching under microwave irradiation, the chromite was dissolved layer by layer and numerous cracks appeared at the particle surface because of thermal shock. In addition, the silicate phase shrunk instead of expanding.

  12. Insight into the Consolidation Mechanism of Oxidized Pellets Made from the Mixture of Magnetite and Chromite Concentrates

    Science.gov (United States)

    Zhu, Deqing; Yang, Congcong; Pan, Jian; Zhang, Qiang; Shi, Benjing; Zhang, Feng

    2016-04-01

    To produce more competitive stainless steel products, the utilization of low-cost chromite concentrate is of great importance. In a previous study, a high-quality product pellet (CMP) for blast furnace smelting process made from a mixture of 40 wt pct chromite and 60 wt pct magnetite concentrates was manufactured by a high-pressure grinding rollers pretreatment. In this work, an insight into the consolidation mechanism of CMP is taken in comparison with the oxidized pellets (MP) made from 100 pct magnetite concentrate by adopting the scanning electron microscopy, energy-dispersive spectrometer, and X-ray diffractometer. The mineralogy of the pellets and the morphology of the preheated and roasted mineral particles are demonstrated. To gain better understanding of the consolidation mechanism of CMP, the thermodynamics of chromite-magnetite spinel system and hematite-sesquioxide corundum system in air are considered by using FactSage software. It can be found that the solid-state bonding is the dominant form in the consolidation of CMP, which mainly depends on the recrystallization of hematite, the solid solution bonding in adjacent areas of both magnetite-chromite particles and chromite-chromite particles. The latter two bonds rely on the formation of the miscible sesquioxide and spinel solid solution at the contact areas of particles, which is largely affected by the oxidizability of magnetite and chromite spinels. When more chromite concentrate is blended, the weak bonding among the chromite particles gradually becomes the dominant factor, which will lead to the decrease of the mechanical strength of fired pellets. The presence of a small quantity of siliceous liquid phase in CMP is believed to be beneficial to the hardening by accelerating the ion diffusion rate and forming slag bonds.

  13. Novel low temperature synthesis of spinel nano-magnesium chromites from secondary resources

    Energy Technology Data Exchange (ETDEWEB)

    El-Sheikh, S.M., E-mail: selsheikh2001@gmail.com [Nanostructured Materials Laboratory, Advanced Material Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt); Rabbah, M., E-mail: mahmoud.rabah@ymail.com [Electrochemical and Chemical Treatment Laboratory, Minerals Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt)

    2013-09-20

    Graphical abstract: FE-SEM micrograph and TEM image of magnesium chromite sample heated at 500 °C. - Highlights: • No study has been reported to prepare spinel magnesium chromite form waste resources. • Novel low synthesis temperature of magnesium chromite. • Selective removal of Ca ions from industrial waste tannery solution is rarely reported. • The method applied is simple and safe. - Abstract: A novel low temperature method for synthesis of nano-crystalline magnesium chromites from the tannery waste solution was investigated. Magnesium and chromium hydroxides gel was co-precipitated at pH 8.5 using ammonia solution. MgCr{sub 2}O{sub 4} was obtained by heating the gel formed at different temperatures 300–500 °C for to 8 h. FT-IR, TG-DTG-DTA, FE-SEM and TEM were used to investigate the produced materials. XRD patterns of the primary oxides revealed the formation of amorphous oxide phase by heating at 300 °C. Heating at 400 °C produces nano-crystallite magnesium chromites partly having the structure MgCrO{sub 4} and mainly MgCr{sub 2}O{sub 4} and traces of Cr{sub 2}O{sub 3}{sup +} 500 °C MgCrO{sub 4} mostly decomposed into MgCr{sub 2}O{sub 4} structure{sub .} After 8 h of heating at 500 °C, Cr{sub 2}O{sub 3} completely disappeared. A high surface area about 42.6 m{sup 2}/g and mesoporous structure was obtained for the produced sample at 500 °C for 8 h. A thermodynamic model has been suggested to explain the findings.

  14. Effect of Chromite-Silica Sands Characteristics on Performance of Ladle Filler Sands for Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Free opening rate is mainly determined by the performance of the ladle filler sand. High free opening rates of ladles are required in steel making to improve steel quality. Chromite ladle filler sands are one of the most widely used ladle filler sand. Several operative variables and materials characteristics affect the performance of the sands. Three sets of chromite ladle filler sands were selected and researches were focused on the sintering hehaviour and per- formance of the sands under operative conditions. The effect of particle size distribution on sintering, microstruc- ture, flowability, and permeability were presented. In all cases, the particle size varies from 0.1 to 1.5 mm corre- sponding to free flowing powders. One of the samples has higher permeability factor in comparison with others due to low particle size distribution. The other sample presents very good free opening due to its very good flowability and permeability factor.

  15. Peridotite hosted chromite, magnesite and olivine deposits of West Anatolia: A review

    Science.gov (United States)

    Zedef, Veysel

    2016-04-01

    Turkey has important chromite, magnesite and olivine deposits within peridotite host rocks. The peridotites (harzburgite, verlite, lherzolite and dunite) are mostly serpentinised as a result of metasomatic reaction of olivine and pyroxene minerals with percolating water. The serpentinites are generally an important part of ophiolitic complexes which displays a discontinuous belts all over the country. The chromite deposits are often related to cumulates and tectonites (as Alpine and/or podiform type deposits) and despite their small reserves, their grade can reach up to 58 %. In most deposits, a little enrichment efforts, the grade of chromite can easily be reached from 25 % to 40-45 %. The magnesite deposits of West Anatolia is especially concentrated in three provinces. These provinces are Konya, Kutahya and Eskisehir. The magnesites are of cryptocrystalline type and, like chromite deposits, their reserve are small but have high grade with low FeO-CaO and high MgO ratio. Once again, these deposits are found within serpentinised peridotites of ultramafic belts. The total (proven and inferred) magnesite reserves are approximately 200 million tons, and these are mostly cryptocrystalline character. A small amount of sedimentary magnesite deposits also present in Denizli (SW Anatolia) and Erzincan (Eastern Anatolia). The olivine deposits are found within peridotites of Western Anatolia. Especially, the Kızıldag olivine deposits (located between the border of Antalya and Konya provinces) are noteworthy with its huge (9 billion tons) reserves. The main olivine mineral is forsterite (Mg2SiO4) which has economically important when compared to other olivine mineral fayalite. The deposits have no quality problem but have a serious disadvantages since its location far from the ports and railway stations.

  16. Investigation of nanocrystalline zinc chromite obtained by two soft chemical routes

    Energy Technology Data Exchange (ETDEWEB)

    Gingasu, Dana [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021 (Romania); Mindru, Ioana, E-mail: imandru@yahoo.com [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021 (Romania); Culita, Daniela C.; Patron, Luminita; Calderon-Moreno, Jose Maria; Preda, Silviu [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021 (Romania); Oprea, Ovidiu [“Politehnica” University of Bucharest, Faculty of Chemistry, Polizu Street 1-7, Bucharest (Romania); Osiceanu, Petre [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021 (Romania); Morena Pineda, Eufemio [School of Chemistry, University of Manchester, Oxford Road, M 13 9PL Manchester (United Kingdom)

    2014-01-01

    Graphical abstract: - Highlights: • Two soft chemical routes to synthesize zinc chromites are described. • Glycine is used as chelating agent (precursor method) and fuel (solution combustion method). • The synthesized chromites have crystallite size in the range of 18–27 nm. • An antiferromagnetic (AFM) transition is observed at about T{sub N} ∼ 18 K. - Abstract: Zinc chromite (ZnCr{sub 2}O{sub 4}) nanocrystalline powders were obtained by two different chemical routes: the precursor method and the solution combustion method involving glycine-nitrates. The complex compound precursors, [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COO){sub 8}]·9H{sub 2}O and [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COOH){sub 4.5}]·(NO{sub 3}){sub 8}·6H{sub 2}O, were characterized by chemical analysis, infrared spectroscopy (IR), ultraviolet–visible spectroscopy (UV–vis) and thermal analysis. The structure, morphology, surface chemistry and magnetic properties of ZnCr{sub 2}O{sub 4} powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared and Raman spectroscopy (RS), ultraviolet–visible spectroscopy (UV–vis) and magnetic measurements. X-ray diffraction patterns indicated the chromite spinel phase with good crystallinity and an average crystallite size of approximately 18–27 nm. The band gap values ranged between 3.31 and 3.33 eV. The magnetic measurements indicated an antiferromagnetic transition at T{sub N} ∼ 17.5/18 K.

  17. Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites.

    Science.gov (United States)

    Matern, Katrin; Kletti, Holger; Mansfeldt, Tim

    2016-07-01

    Chromite ore processing residue (COPR) is a hazardous waste. Nevertheless, deposition of COPR in uncontrolled surface landfills is still common practice in some countries. Whereas old (between at least 40 and 180 years) COPR from the temperate zone has been intensively investigated, information on COPR in other regions is restricted. Relatively young (ore processing and preventing the migration of Cr(VI) into water bodies are the main challenges when dealing with these COPR.

  18. Flocculation of chromite ore fines suspension using polysaccharide based graft copolymers

    Indian Academy of Sciences (India)

    N C Karmakar; B S Sastry; R P Singh

    2002-11-01

    Graft copolymers are being experimented at the laboratory scale as flocculants. All the four graft copolymers, viz. starch--polyacrylamide, amylopectin--polyacrylamide, sodium alginate--polyacylamide and carboxymethyl cellulose--polyacrylamide performed well as flocculants on chromite ore fines suspension. Amylopectin--polyacrylamide, in particular, performed superior to the rest of the series from the point of view of settling velocity of flocs which is the most important aspect in solid–liquid separation.

  19. Optical constants of various chromites as determined by Kramers-Kronig analysis.

    Science.gov (United States)

    Anki, M M; Lefez, B

    1996-03-20

    The infrared optical constants of a few different powders of chromites, XCr(2)O(4) (where X is Fe, Ni, Mg, Zn, or Cu), have been determined by Kramers-Kronig analysis of their infrared transmission and reflection spectra. The knowledge of these constants allows one to predict the different thin-layer infrared reflection spectra and to compare them, when it is possible, with the reflection spectra calculated with n and k obtained by the use of the classical oscillator method.

  20. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite.

    Science.gov (United States)

    Spandler, C; O'Neill, H St C; Kamenetsky, V S

    2007-05-17

    The chemical composition of basaltic magma erupted at the Earth's surface is the end product of a complex series of processes, beginning with partial melting and melt extraction from a mantle source and ending with fractional crystallization and crustal assimilation at lower pressures. It has been proposed that studying inclusions of melt trapped in early crystallizing phenocrysts such as Mg-rich olivine and chromite may help petrologists to see beyond the later-stage processes and back to the origin of the partial melts in the mantle. Melt inclusion suites often span a much greater compositional range than associated erupted lavas, and a significant minority of inclusions carry distinct compositions that have been claimed to sample melts from earlier stages of melt production, preserving separate contributions from mantle heterogeneities. This hypothesis is underpinned by the assumption that melt inclusions, once trapped, remain chemically isolated from the external magma for all elements except those that are compatible in the host minerals. Here we show that the fluxes of rare-earth elements through olivine and chromite by lattice diffusion are sufficiently rapid at magmatic temperatures to re-equilibrate completely the rare-earth-element patterns of trapped melt inclusions in times that are short compared to those estimated for the production and ascent of mantle-derived magma or for magma residence in the crust. Phenocryst-hosted melt inclusions with anomalous trace-element signatures must therefore form shortly before magma eruption and cooling. We conclude that the assumption of chemical isolation of incompatible elements in olivine- and chromite-hosted melt inclusions is not valid, and we call for re-evaluation of the popular interpretation that anomalous melt inclusions represent preserved samples of unmodified mantle melts.

  1. Platinum-group element abundance and distribution in chromite deposits of the Acoje Block, Zambales Ophiolite Complex, Philippines

    Science.gov (United States)

    Bacuta, G.C.; Kay, R.W.; Gibbs, A.K.; Lipin, B.R.

    1990-01-01

    Platinum-group elements (PGE) occur in ore-grade concentration in some of the chromite deposits related to the ultramafic section of the Acoje Block of the Zambales Ophiolite Complex. The deposits are of three types: Type 1 - associated with cumulate peridotites at the base of the crust; Type 2 - in dunite pods from the top 1 km of mantle harzburgite; and Type 3 - like Type 2, but in deeper levels of the harzburgite. Most of the deposites have chromite compositions that are high in Cr with Cr/(Cr + Al) (expressed as chromium index, Cr#) > 0.6; high-Al (Cr# Pd, thought to be characteristic of PGE-barren deposits) and positive slope (Ir Platinum and Pd occur as alloy inclusions (and possibly as solid solution) in interstitial Ni-Cu sulfides and as tellurobismuthides in serpentine and altered sulfides. Variability of PGE distribution may be explained by alteration, crystal fractionation or partial melting processes. Alteration and metamorphism were ruled out, because PGE contents do not correlate with degree of serpentinization or the abundance and type (hydroxyl versus non-hydroxyl) of silicate inclusions in chromite. Preliminary Os isotopic data do not support crustal contamination as a source of the PGEs in the Acoje deposits. The anomalous PGE concentrations in Type 1 high-Cr chromite deposits are attributed to two stages of enrichment: an early enrichment of their mantle source from previous melting events and a later stage of sulfide segregation accompanying chromite crystallization. High-Al chromite deposits which crystallized from basalts derived from relatively low degrees of melting owe their low PGE content to partitioning of PGEs in sulfides and alloys that remain in the mantle. High-Cr deposits crystallized from melts that were previously enriched with PGEs during early melting events of their mantle source; Pt and Pd ore concentrations (ppm levels) are attained by segregation of magmatic sulfides. The Acoje deposits indicate that ophiolites are a

  2. Application of Full Factorial Experimental Design and Response Surface Methodology for Chromite Beneficiation by Knelson Concentrator

    Directory of Open Access Journals (Sweden)

    Gul Akar Sen

    2016-01-01

    Full Text Available The present work is undertaken to determine the effect of operational variables, namely: feed rate, centrifugal force and fluidization water flow rate on the efficiency of Knelson concentrator for chromite ore beneficiation. A full factorial design with three factors at three levels and response surface methodology (RSM were applied for this purpose. The quadratic models were developed to predict the concentrate Cr2O3 grade and recovery as the process responses. The results suggest that all the variables affect the grade and recovery of the Cr2O3 concentrate to some degree. However, the fluidization water rate was found as the most effective parameter.

  3. Preparation of Ca Doped Lanthanum Chromite by Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    Zang Bangqiang; Ao Qing; Li Dehui; Sun Liangcheng; Liu Ruwei

    2004-01-01

    Super fine particles of calcium-doped lanthanum chromites were prepared by the sol-gel process in which the chelating agent was citric acid and the dispersant agent was ethylene glycol. The phase of fine particles was analyzed by XRD and the size and shape of the particles were investigated by TEM. The result shows that the nano-particles of La1-xCaxCrO3 can be obtained by the way of Ca2+ complex singly with citric acid and being calcined at 700 ℃.

  4. Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger

    Science.gov (United States)

    Biswas, Supratim; Samanta, Saikat; Dey, Rajib; Mukherjee, Siddhartha; Banerjee, Pataki C.

    2013-08-01

    Leaching of nickel and cobalt from two physical grades (S1, 125-190 μm, coarser and S3, 53-75 μm, finer) of chromite overburden was achieved by treating the overburden (2% pulp density) with 21-d culture filtrate of an Aspergillus niger strain grown in sucrose medium. Metal dissolution increases with ore roasting at 600°C and decreasing particle size due to the alteration of microstructural properties involving the conversion of goethite to hematite and the increase in surface area and porosity as evident from X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (DT-TGA), and field emission scanning electron microscopy (FESEM). About 65% Ni and 59% Co were recovered from the roasted S3 ore employing bioleaching against 26.87% Ni and 31.3% Co using an equivalent amount of synthetic oxalic acid under identical conditions. The results suggest that other fungal metabolites in the culture filtrate played a positive role in the bioleaching process, making it an efficient green approach in Ni and Co recovery from lateritic chromite overburden.

  5. Magnetic properties of rare earth HoCrO3 chromites

    Institute of Scientific and Technical Information of China (English)

    SU Yuling; ZHANG Jincang; FENG Zhenjie; LI Zijiong; SHEN Yan; CAO Shixun

    2011-01-01

    The temperature dependence of the magnetic properties was systemically studied by dc/ac magnetization and specific heat measurement for heavy rare earth HoCrO3 chromites.The results revealed the existence of complex phase coexistence and competitive magnetic behavior in HoCrO3 chromites.It was found that,in the region of higher temperature above 141.0 K,HoCrO3 behaved as a typical Cufie-Weiss paramagnetic (PM).And in the region of low temperature,a novel magnetization behavior was observed with negative magnetization (diamagnetism-like) characteristics under an external field of 100 Oe and M-Tcurves exhibited two symmetrical branches for field cooling (FC) and zero field cooling (ZFC) modes.This behavior indicated the coexistence of canted antiferromagnetic (CAFM) and weak ferromagnetic (FM) phase.These also exhibited the existence of competition mechanism below characteristic temperature TN1=141.0 K and the magnetic order of Ho ion below 7.5 K.The current complex magnetization might be attributed to the interaction between paramagnetic Ho3+moments and canted Cr3+ moments.

  6. Characterizing toxic Cr(VI) contamination in chromite mine overburden dump and its bacterial remediation.

    Science.gov (United States)

    Dhal, B; Das, N N; Thatoi, H N; Pandey, B D

    2013-09-15

    Cr(VI) generated due to natural oxidation of chromite mineral present in chromite mine overburden (COB) dumps of Sukinda, India, has been characterized by different physico-chemical methods. The Cr(VI) was found to be associated with goethite matrix at a contamination level of 500 mg Cr(VI)kg(-1) of COB. Bacillus sp. isolated from the overburden sample exhibiting high tolerance to the hexavalent chromium, was used for the remediation of Cr(VI) in the overburden. The process was optimized while varying the parameters such as pH (2-9), pulp density (10-60%) and temperature (25-40 °C). Optimal reduction of more than 98% of Cr(VI) in the COB sample was achieved in 16 h at pH∼7.0 and 60% pulp density with the Bacillus sp. (4.05 × 10(7)cells mL(-1)) in absence of media. The exponential rate equation yielded rate constant value of 2.14 × 10(-1)h(-1) at 60% pulp density. The mode of bio-reduction of Cr(VI) in the overburden sample was established by FT-IR, XRD, EPMA and SEM-EDS studies.

  7. Petrogenesis of chromites from the Manipur ophiolite belt, NE India: evidence for a supra-subduction zone setting prior to Indo-Myanmar collision

    Science.gov (United States)

    Pal, Tapan; Bhattacharya, Anindya; Nagendran, G.; Yanthan, N. M.; Singh, R.; Raghumani, N.

    2014-10-01

    The Manipur ophiolite belt within the Western Ophiolite Belt of the Indo-Myanmar Ranges (IMR), consists of tectonised to massive serpentinised peridotite, dunite pods, chromitite pods/lenses, cumulates, dykes, volcanic rocks and pelagic sediments. Chromitite pods and lenses hosted in peridotitic mantle rocks show magmatic textures, post magmatic brecciation and ferritchromitisation. Electron microprobe analyses show two types of massive chromitite, with one group having high-Cr (Cr# 75-76), medium-Al (Al2O3 12.2-12.4 wt%) chromites (Sirohi-type) and the other group (Gamnom-type) having a wide range of compositions with generally lower Cr and higher Al (Cr# 65-71, Al2O3 15.7-19 wt%). Accessory chromites in peridotitic mantle rocks have consistently low Cr (Cr# 38-39) and high Al (Al2O3 34-35 wt%), whereas chromites in dunite pods have intermediate compositions (Cr# ~60; Al2O3 20.7-21.2 wt%). The chromite chemistry suggests moderate (20 %) partial melting of the tectonised mantle harzburgite. The estimated Al2O3melt, (FeO/MgO)melt and TiO2melt for the Sirohi-type chromites indicate boninitic parentage, whereas chromite compositions from the Gamnom area suggest mixed boninitic—island arc tholeiitic magmas. The compositions of magmatic chromites suggest that the Manipur ophiolite was formed in a supra-subduction zone (SSZ) setting.

  8. Geochemistry and mineralogy of platinum-group elements (PGE in chromites from Centralnoye I, Polar Urals, Russia

    Directory of Open Access Journals (Sweden)

    Jan Pašava

    2011-01-01

    Full Text Available The Polar Urals region of northern Russia is well known for large chromium (Cr-bearing massifs with major chromite orebodies, including the Centralnoye I deposit in the Ray-Iz ultramafic massif of the Ural ophiolite belt. New data on platinum (Pt-group elements (PGE, geochemistry and mineralogy of the host dunite shows that the deposit has anomalous iridium (Ir values. These values indicate the predominance of ruthenium–osmium–iridium (Ru–Os–Ir-bearing phases among the platinum-group mineral (PGM assemblage that is typical of mantle-hosted chromite ores. Low Pt values in chromites and increased Pt values in host dunites might reflect the presence of cumulus PGM grains. The most abundant PGM found in the chromite is erlichmanite (up to 15 μm. Less common are cuproiridsite (up to 5 μm, irarsite (up to 4–5 μm, and laurite (up to 4 μm. The predominant sulfide is heazlewoodite, in intergrowth with Ni–Fe alloys, sporadically with pentlandite, and rarely with pure nickel. Based on the average PGE values and estimated Cr-ore resources, the Centralnoye I deposit can be considered as an important resource of PGE.

  9. PGE distribution in the Chromite bearing mafic-ultramafic Kondapalli Layered Complex, Krishna district, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    Meshram Tushar M.

    2015-09-01

    Full Text Available The Kondapalli Layered Complex (KLC is a dismembered mafic-ultramafic layered intrusion, mainly composed of gabbroic and anorthositic rocks with subordinate ultramafics and chromitite. Chromitite occurs as lenses, pods, bands and disseminations. Platinum group of minerals (PGMs occur as inclusions within chromite and silicates. The study indicates an inhomogeneous distribution of PGMs and distinct dominance of IPGEs over the PPGEs. The average ΣPGE content of chromite of KLC varies from 64 ppb to 576 ppb with Pt ranging from 5 to 495 ppb, Pd 5 to 191 ppb, Ir 3 to 106 ppb, Ru 3 to 376 ppb and Rh 3 to 135 ppb. The PGMs identified in the KLC indicate primary deposition of the IPGE, preceding chromite, indicating its orthomagmatic nature. Most of the PGM grains are usually below 10 μm. The identified PGMs are Laurite (RuS2, irarsite (Ir, As, S, iridosmine (Os, Ir, undetermined Os-Ir sulphide and Ru-Os-Ir-Zn alloys. Chromite also contains inclusions of pentlandite, millerite, chalcopyrite and pyrite. Study indicating that the KLC have orthomagmatic origin for PGE which are dominated by IPGE group and formed under surpa-subduction zone peridotite setting.

  10. Hydrothermal synthesis of perovskite strontium doped lanthanum chromite fine powders and its sintering

    Energy Technology Data Exchange (ETDEWEB)

    Rendon-Angeles, J.C., E-mail: jcarlos.rendon@cinvestav.edu.m [Research Institute for Advanced Studies of the NPI, Campus-Saltillo, Ramos Arizpe 25900, Coah. (Mexico); Research Laboratory of Hydrothermal Chemistry, Kochi University, Kochi 780-8520 (Japan); Yanagisawa, K. [Research Laboratory of Hydrothermal Chemistry, Kochi University, Kochi 780-8520 (Japan); Matamoros-Veloza, Z. [Saltillo Institute of Technology, Dep. Metal-Mecanica, Saltillo 25820, Coah. (Mexico); Pech-Canul, M.I.; Mendez-Nonell, J. [Research Institute for Advanced Studies of the NPI, Campus-Saltillo, Ramos Arizpe 25900, Coah. (Mexico); Torre, S. Diaz-de la [Research Institute for Technology Innovation, CIITEC-IPN, Azcapotzalco 02250 (Mexico)

    2010-08-13

    Sr doped lanthanum chromite powders with two different compositions, La{sub 0.9}Sr{sub 0.1}CrO{sub 3} and La{sub 0.8}Sr{sub 0.2}CrO{sub 3}, were prepared from precursor lanthanum chromite gels obtained by the coprecipitation method, followed by hydrothermal treatments at temperatures from 400 to 450 {sup o}C, for various reaction times varying from 0.5 to 2 h. The reaction products were characterized by XRD, SEM and TEM techniques. The powder was cold isostatically pressed at 200 MPa, and then sintered in air at 1500 {sup o}C for several intervals (1-20 h). Relative density measurements were conducted by helium pycnometry and the microstructure was revealed by SEM after thermal etching. The X-ray diffraction patterns of the powders corresponding to La{sub 0.9}Sr{sub 0.1}CrO{sub 3} and La{sub 0.8}Sr{sub 0.2}CrO{sub 3} nominal compositions obtained at 400 and 425 {sup o}C for 1 h, respectively, were indexed with that of the orthorhombic single LaCrO{sub 3} phase. SEM and TEM micrographs showed that the particles had irregular peanut-like morphology, and the average particle size was 300 nm. Furthermore, the maximum relative density of the La{sub 0.8}Sr{sub 0.2}CrO{sub 3} sample obtained by the heat treatment in air at 1500 {sup o}C for 20 h was 97% of the theoretical density and the average grain size of the sintered pellet was of 5 {mu}m. The electric conductivity and activation energy determined for this pellet were 14477.3 S m{sup -1} and 0.13 eV, respectively.

  11. Experimental study on solid state reduction of chromite with rising temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kekkonen, M.; Syynimaa, A.; Holappa, L.

    1998-07-01

    The solid state reduction of preoxidized sintered chromite pellets, raw pellets, process pellets and lumpy ores have been studied with rising temperature 700-1520 deg C under CO-atmosphere in order to better simulate the conditions in the upper part of a real submerged arc furnace. According to the reduction degree curves the reduction behaviour of chromite pellets seems to be similar. The reduction rate was slow at the beginning but increased rapidly when the temperature reached about 1000 deg C. The final reduction degree was highest in the case of process pellets and lowest in the case of raw pellet. In the case of preoxidized pellets there was not much difference of the reduction rate and final reduction degree between different oxidation states. In the case of lumpy ores the reduction rate and the final reduction degree was much lower compared to the pellets. Optical photographs, phase and microanalysis show that the reduction has proceeded further in the surface of the samples and confirmed also that the reduction degree remained lower in the case of raw pellet and lumpy ores which was also seen from the reduction degree curves. According to the experiments in the case of preoxidized pellets the effect of oxidation state on the reduction rate was not observed due to small difference in the oxidation state of the samples. But when comparing the reduction of preoxidized pellets and unoxidised raw pellet we can say that preoxidation promotes the reduction. The final reduction degree of the raw pellet remained lower than in the case of preoxidized pellets. (orig.)

  12. Fabrication of Sr- and Co-doped lanthanum chromite interconnectors for SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Setz, L.F.G. [Departamento de Engenharia de Materiais, Universidade Federal de Sao Carlos - DEMa/UFSCar (Brazil); Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN (Brazil); Santacruz, I. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Universidad de Malaga, 29071 Malaga (Spain); Colomer, M.T., E-mail: tcolomer@icv.csic.es [Instituto de Ceramica y Vidrio, ICV (CSIC), 28049 Madrid (Spain); Mello-Castanho, S.R.H. [Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN (Brazil); Moreno, R. [Instituto de Ceramica y Vidrio, ICV (CSIC), 28049 Madrid (Spain)

    2011-07-15

    Graphical abstract: FESEM micrographs of the fresh fracture surfaces for the La{sub 0.80}Sr{sub 0.20}Cr{sub 0.92}Co{sub 0.08}O{sub 3} sintered specimens cast from optimised suspensions with 13.5, 15 and 17.5 vol.% solids loading. Aqueous suspensions were prepared using ammonium polyacrylate (PAA) as dispersant and tetramethylammonium hydroxide (TMAH) to assure a basic pH and providing stabilization. Sintering of the green discs was performed in air at 1600 {sup o}C for 4 h. Highlights: {yields} Optimum casting slips were achieved with 3 wt.% of ammonium polyacrylate and 1 wt.% of tetramethylammonium hydroxide. -- Abstract: Many studies have been performed dealing with the processing conditions of electrodes and electrolytes in solid oxide fuel cells (SOFCs). However, the processing of the interconnector material has received less attention. Lanthanum chromite (LaCrO{sub 3}) is probably the most studied material as SOFCs interconnector. This paper deals with the rheology and casting behaviour of lanthanum chromite based materials to produce interconnectors for SOFCs. A powder with the composition La{sub 0.80}Sr{sub 0.20}Cr{sub 0.92}Co{sub 0.08}O{sub 3} was obtained by combustion synthesis. Aqueous suspensions were prepared to solids loading ranging from 8 to 17.5 vol.%, using ammonium polyacrylate (PAA) as dispersant and tetramethylammonium hydroxide (TMAH) to assure a basic pH and providing stabilization. The influence of the additives concentrations and suspension ball milling time were studied. Suspensions prepared with 24 h ball milling, with 3 wt.% and 1 wt.% of PAA and TMAH, respectively, yielded the best conditions for successful slip casting. Sintering of the green discs was performed in air at 1600 {sup o}C for 4 h leading to relatively dense materials.

  13. Platinum-Group Minerals and Other Accessory Phases in Chromite Deposits of the Alapaevsk Ophiolite, Central Urals, Russia

    Directory of Open Access Journals (Sweden)

    Federica Zaccarini

    2016-10-01

    Full Text Available An electron microprobe study has been carried out on platinum-group minerals, accessory phases, and chromite in several chromite deposits of the Alapaevsk ophiolite (Central Urals, Russia namely the Bakanov Kluch, Kurmanovskoe, Lesnoe, 3-d Podyony Rudnik, Bol’shaya Kruglyshka, and Krest deposits. These deposits occur in partially to totally serpentinized peridotites. The microprobe data shows that the chromite composition varies from Cr-rich to Al-rich. Tiny platinum-group minerals (PGM, 1–10 µm in size, have been found in the chromitites. The most abundant PGM is laurite, accompanied by minor cuproiridsite and alloys in the system Os–Ir–Ru. A small grain (about 20 μm was found in the interstitial serpentine of the Bakanov Kluch chromitite, and its calculated stoichiometry corresponds to (Ni,Fe5P. Olivine, occurring in the silicate matrix or included in fresh chromite, has a mantle-compatible composition in terms of major and minor elements. Several inclusions of amphibole, Na-rich phlogopite, and clinopyroxene have been identified. The bimodal Cr–Al composition of chromite probably corresponds to a vertical distribution in the ophiolite sequence, implying formation of Cr-rich chromitites in the deep mantle, and Al-rich chromitites close to the Moho-transition zone, in a supra-subduction setting. The presence of abundant hydrous silicate inclusions, such as amphibole and phlogopite, suggests that the Alapaevsk chromitites crystallized as a result of the interaction between a melt enriched in fluids and peridotites. Laurite and cuproiridsite are considered to be magmatic in origin, i.e., entrapped as solid phases during the crystallization of chromite at high temperatures. The sulfur fugacity was relatively high to allow the precipitation of Ir-bearing sulfides, but below the Os–OsS2 buffer. The alloys in the system Os–Ir–Ru are classified as secondary PGM, i.e., formed at low temperature during the serpentinization process. The

  14. An Image Analysis-Based Methodology for Chromite Exploration through Opto-Geometric Parameters; a Case Study in Faryab Area, SE of Iran

    Directory of Open Access Journals (Sweden)

    Mansur Ziaii

    2017-06-01

    Full Text Available Traditional methods of chromite exploration are mostly based on geophysical techniques and drilling operations. They are expensive and time-consuming. Furthermore, they suffer from several shortcomings such as lack of sufficient geophysical density contrast. In order to overcome these drawbacks, the current research work is carried out to introduce a novel, automatic and opto-geometric image analysis (OGIA technique for extracting the structural properties of chromite minerals using polished thin sections prepared from outcrops. Several images are taken from polished thick sections through a reflected-light microscope equipped with a digital camera. The images are processed in filtering and segmentation steps to extract the worthwhile information of chromite minerals. The directional density of chromite minerals, as a textural property, is studied in different inclinations, and the main trend of chromite growth is identified. Microscopic inclination of chromite veins can be generalized for exploring the macroscopic layers of chromite buried under either the surface quaternary alluvium or overburden rocks. The performance of the OGIA methodology is tested in a real case study, where several exploratory boreholes are drilled. The results obtained show that the microscopic investigation outlines through image analysis are in good agreement with the results obtained from interpretation of boreholes. The OGIA method represents a reliable map of the absence or existence of chromite ore deposits in different horizontal surfaces. Directing the exploration investigations toward more susceptible zones (potentials and preventing from wasting time and money are the major contributions of the OGIA methodology. It leads to make an optimal managerial and economical decision.

  15. Absence of a polar phase in perovskite chromite RCrO{sub 3} (R=La and Pr)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Kenji, E-mail: yoshiike@spring8.or.jp [Japan Atomic Energy Agency (JAEA), Sayo, Hyogo 679-5148 (Japan); Ikeda, Naoshi [Okayama University, Okayama 700-8530 (Japan); Shimojo, Yutaka; Ishii, Yoshinobu [Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan)

    2017-04-01

    Magnetic and dielectric properties have been studied for LaCrO{sub 3}, PrCrO{sub 3}, and their solid solution La{sub 0.5}Pr{sub 0.5}CrO{sub 3}, which belong to a family of the ferroelectric orthochromite series RCrO{sub 3} (R: rare earths). The magnetic measurements confirm that the materials show canted antiferromagnetic ordering at 240–288 K. Neutron diffraction patterns could be fitted with the centrosymmetric Pnma, which is different from the non-centrosymmetric structure proposed for the ferroelectric phase of NdCrO{sub 3}. The large dielectric constants are likely due to the hopping of charge carriers as proposed previously for other chromites. - Highlights: • Magnetic and dielectric properties of the three perovskite chromites. • Neutron diffraction patterns fitted with centrosymmetric Pnma. • Large dielectric constants likely due to the hopping of charge carriers.

  16. The chromite deposits associated with ophiolite complexes, Southeastern Desert, Egypt: Petrological and geochemical characteristics and mineralization

    Institute of Scientific and Technical Information of China (English)

    Gehad M.Saleh

    2006-01-01

    The podiform chromitites occur in a well-preserved mantle sequence consisting of lherzolite-harzburgite with abundant lenses of olivine dunite. The podiform chromitite deposits are common as small and irregularly shaped masses in the Southeastern Desert (SED) of Egypt. The podiform chromitites exhibit a wide range of compositions from high Cr to high Al varieties. The Cr of chrome spinel ranges from 0.67 to 0.88 in olivine-dunite, quite similar to that of the high-Cr chromitite, whereas it is around 0.62 in lherzolite-harzburgite. Primary hydrous mineral inclusions, amphibole and phlogopite, in chrome spinel have been reported for the first time from the Pan-African Proterozoic podiform chromitites. On the other hand, petrographic and geochemical evidence suggests that podiform chromitites in the SED of Egypt were formed as a result of crystallization of mafic melts, probably of boninitic composition, the boninitic parental magmas were probably produced by a second stage of melting above a subduction zone. Three types of chromite ores can be distinguished within the SED of Egypt: (a) sulphide-poor podiform ores; (b) brecciated ores; and (c) sulphide-rich ores. Two textural types of inclusions in chromite are distinguished: (1) primary silicate inclusions generally have high Mg-number (>96), Cr and Ni, and are dominated by pargasitic amphibole, forsterite, diopside, enstatite and Na-phlogopite. A diversity of primary and secondary platinum group minerals (PGM) is described from the chromitites, including alloys, sulphides, sulpharsenides and arsenides of Ru, Os, Ir, Rh, Ni, Cu, Fe and Co; (2) in addition to primary PGM and hydrous silicates, the fluids are of low to moderate salinity, sodium-dominated aqueous solutions with complex gas contents. Variable amounts of water, hydrogen, hydrocarbons, carbon dioxides and nitrogen have been determined in inclusion-rich samples. The chondrite-normalized PGE patterns of lherzolite-harzburgite and olivine-dunite have

  17. A comparison of selected Precambrian Brazilian chromitites: Chromite, PGE-PGM, and Re/Os as parental source indicators

    Science.gov (United States)

    Girardi, V. A. V.; Ferrario, A.; Correia, C. T.; Diella, V.

    2006-03-01

    Mineralogical and geochemical studies were carried out in chromitites belonging to the mafic-ultramafic bodies of Niquelândia, Luanga, and Campo Formoso, which are, respectively, included in the Goiás Massif and the Amazon and São Francisco cratons. The main platinum-group minerals (PGM) included or associated with chromite grains are laurite in Niquelândia and Campo Formoso and sperrylite and braggite in Luanga. The most common primary base metal sulfides (BMS) are pentlandite, chalcopyrite, and minor pyrrhotite. Also present are base metal alloys (BMA), such as awaruite, and the BMS millerite, pyrite, and copper as secondary mineral phases linked to later alteration process. The Luanga chromites display the lowest Cr 2O 3/Al 2O 3 and Cr 2O 3/FeO t ratios. The chondrite-normalized profiles are strongly enriched in the platinum PGE subgroup (PPGE, Pt, Pd, Rh). The average Pd/Ir ratio (24.2) and 187Os/ 188Os values (0.17869-0.18584) are very high. Niquelândia chromites have higher Cr 2O 3/Al 2O 3 and Cr 2O 3/FeO t ratios than Luanga. Its PGE contents are low and chondrite-normalized profiles depleted, mainly in the PPGE subgroup. The average Pd/Ir ratio (0.45) and 187Os/ 188Os values (0.12598-0.12777) are low. Campo Formoso chromites have the highest Cr 2O 3/Al 2O 3 and Cr 2O 3/FeO t ratios; its average Pd/Ir ratio (0.72) and chondrite-normalized profiles (except the pronounced Ru spike) are closer to those of Niquelândia. The remarkable differences in terms of chromite bulk-composition, PGE contents and patterns, Pd/Ir ratios, and 187Os/ 188Os values associated with probable distinctions in the inferred geochemical compositions of the respective parental magmas indicate that the Luanga and Niquelândia complexes originated from distinct parental sources. Geochemical and isotopic features indicate that Luanga chromitites and associated rocks are consistent with a parental magma, either originated from an enriched mantle reservoir or strongly contaminated

  18. A search for H-chondritic chromite grains in sediments that formed immediately after the breakup of the L-chondrite parent body 470 Ma ago

    Science.gov (United States)

    Heck, Philipp R.; Schmitz, Birger; Rout, Surya S.; Tenner, Travis; Villalon, Krysten; Cronholm, Anders; Terfelt, Fredrik; Kita, Noriko T.

    2016-03-01

    A large abundance of L-chondritic material, mainly in the form of fossil meteorites and chromite grains from micrometeorites, has been found in mid-Ordovician 470 Ma old sediments globally. The material has been determined to be ejecta from the L chondrite parent body breakup event, a major collision in the asteroid belt 470 Ma ago. In this study we search the same sediments for H-chondritic chromite grains in order to improve our understanding of the extraterrestrial flux to Earth after the asteroid breakup event. We have used SIMS in conjunction with quantitative SEM/EDS to determine the three oxygen isotopic and elemental compositions, respectively, of a total of 120 randomly selected, sediment-dispersed extraterrestrial chromite grains mainly representing micrometeorites from 470 Ma old post-breakup limestone from the Thorsberg quarry in Sweden and the Lynna River site in Russia. We show that 99% or more of the grains are L-chondritic, whereas the H-chondritic fraction is 1% or less. The L-/H-chondrite ratio after the breakup thus was >99 compared to 1.1 in today's meteoritic flux. This represents independent evidence, in agreement with previous estimates based on sediment-dispersed extraterrestrial chromite grain abundances and sedimentation rates, of a two orders of magnitude higher post-breakup flux of L-chondritic material in the micrometeorite fraction. Finally, we confirm the usefulness of three oxygen isotopic SIMS analyses of individual extraterrestrial chromite grains for classification of equilibrated ordinary chondrites. The H- and L-chondritic chromites differ both in their three oxygen isotopic and elemental compositions, but there is some overlap between the groups. In chromite, TiO2 is the oxide most resistant to diagenesis, and the combined application of TiO2 and oxygen three-isotope analysis can resolve uncertainties arising from the compositional overlaps.

  19. Evaluation of the treatment of chromite ore processing residue by ferrous sulfate and asphalt.

    Science.gov (United States)

    Moon, Deok Hyun; Wazne, Mahmoud; Koutsospyros, Agamemnon; Christodoulatos, Christos; Gevgilili, Halil; Malik, Moinuddin; Kalyon, Dilhan M

    2009-07-15

    The effectiveness of the treatment of chromite ore processing residue (COPR) with ferrous sulfate and encapsulation into asphalt were explored separately and in combination. The asphalt treatment was conducted by mixing COPR or ferrous sulfate pretreated COPR with varying amounts of asphalt. To assess the efficacy of the treatment, the leachability of toxicity characteristic leaching procedure (TCLP) total chromium (Cr) from all treated samples was determined for curing periods up to 16 months. X-ray absorption near edge structure (XANES) analyses were also performed to evaluate the Cr(6+) concentration in the selected samples. The combination treatment of ferrous sulfate and the encapsulation of the treated COPR into asphalt reduced the TCLP total Cr concentration to lower than the regulatory limit of 5mg/L for Cr contaminated soils, after 16 months. However, the Cr concentrations were still higher than the universal treatment standards (UTS) of 0.6 mg/L for hazardous waste. On the other hand, treatment with ferrous sulfate alone or the encapsulation of the COPR in asphalt failed to meet the TCLP total Cr concentration of 5mg/L, after 16 months. XANES analyses results showed that more than 75% Cr(6+) reduction was achieved upon pretreatment with ferrous sulfate.

  20. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron.

    Science.gov (United States)

    Du, Jingjing; Lu, Jinsuo; Wu, Qiong; Jing, Chuanyong

    2012-05-15

    Chromite ore processing residue (COPR) poses a great environmental and health risk with persistent Cr(VI) leaching. To reduce Cr(VI) and subsequently immobilize in the solid matrix, COPR was incubated with nanoscale zero-valent iron (nZVI) and the Cr(VI) speciation and leachability were studied. Multiple complementary analysis methods including leaching tests, X-ray powder diffraction, X-ray absorption near edge structure (XANES) spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to investigate the immobilization mechanism. Geochemical PHREEQC model calculation agreed well with our acid neutralizing capacity experimental results and confirmed that when pH was lowered from 11.7 to 7.0, leachate Cr(VI) concentrations were in the range 358-445mgL(-1) which contributed over 90% of dissolved Cr from COPR. Results of alkaline digestion, XANES, and XPS demonstrated that incubation COPR with nZVI under water content higher than 27% could result in a nearly complete Cr(VI) reduction in solids and less than 0.1mgL(-1) Cr(VI) in the TCLP leachate. The results indicated that remediation approaches using nZVI to reduce Cr(VI) in COPR should be successful with sufficient water content to facilitate electron transfer from nZVI to COPR. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials.

    Science.gov (United States)

    Huang, Xiao; Zhuang, RanLiang; Muhammad, Faheem; Yu, Lin; Shiau, YanChyuan; Li, Dongwei

    2017-02-01

    Chromite Ore Processing Residue (COPR) produced in chromium salt production process causes a great health and environmental risk with Cr(VI) leaching. The solidification/stabilization (S/S) of COPR using alkali-activated blast furnace slag (BFS) and fly ash (FA) based cementitious material was investigated in this study. The optimum percentage of BFS and FA for preparing the alkali-activated BFS-FA binder had been studied. COPR was used to replace the amount of BFS-FA or ordinary Portland cement (OPC) for the preparation of the cementitious materials, respectively. The immobilization effect of the alkali-activated BFS-FA binder on COPR was much better than that of OPC based cementitious material. The potential for reusing the final treatment product as a readily available construction material was evaluated. X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR) and scanning electron microscope with energy dispersive spectrometer (SEM-EDS) analysis indicated that COPR had been effectively immobilized. The solidification mechanism is the combined effect of reduction, ion exchange, precipitation, adsorption and physical fixation in the alkali-activated composite cementitious material.

  2. Crystal Defects and Cation Redistribution Study on Nanocrystalline Cobalt-Ferri-Chromites by Positron Annihilation Spectroscopy

    Directory of Open Access Journals (Sweden)

    Kunal B. Modi

    2013-01-01

    Full Text Available Positron lifetime and Doppler broadening measurements were carried out on nanocrystalline (grain size ~60–65 nm samples of the Cr3+-substituted cobalt ferrite system with general chemical formula CoCrxFe2−xO4 (x=0.0−2.0 synthesized by the coprecipitation technique. The results indicated selective trapping of positrons in large vacancy clusters initially at the tetrahedral (A- sites and then with Cr3+-substitution up to concentration (x=0.7, at the octahedral (B- sites. The results are consistent with the cation distribution determined from X-ray diffraction line intensity calculations, which indicated partial inversion of the inverse spinel ferrite, subsequent stabilization over a range of substitution (x=0.7 to 1.7, and finally the full inversion to the normal spinel chromite (CoCr2O4, x=2.0. In the intermediate range of substitution, lattice contraction prevented a fraction of Co2+ ions released from the (B- sites from entering the tetrahedral sites, and these vacancies at the (A- sites trapped positrons. Although the samples were composed of nanocrystalline grains, only an insignificant fraction of positrons were diffused and annihilated at the grain surfaces, since the grain sizes and the thermal diffusion length of positrons nearly overlapped.

  3. Microstructural analyses of Cr(VI) speciation in chromite ore processing Residue (COPR)

    Energy Technology Data Exchange (ETDEWEB)

    CHRYSOCHOOU, MARIA; FAKRA, SIRINE C .; Marcus, Matthew A.; Moon, Deok Hyun; Dermatas, Dimitris

    2010-03-01

    The speciation and distribution of Cr(VI) in the solid phase was investigated for two types of chromite ore processing residue (COPR) found at two deposition sites in the United States: gray-black (GB) granular and hard brown (HB) cemented COPR. COPR chemistry and mineralogy were investigated using micro-X-ray absorption spectroscopy and micro-X-ray diffraction, complemented by laboratory analyses. GB COPR contained 30percent of its total Cr(VI) (6000 mg/kg) as large crystals(>20 ?m diameter) of a previously unreported Na-rich analog of calcium aluminum chromate hydrates. These Cr(VI)-rich phases are thought to be vulnerable to reductive and pH treatments. More than 50percent of the Cr(VI) was located within nodules, not easily accessible to dissolved reductants, and bound to Fe-rich hydrogarnet, hydrotalcite, and possibly brucite. These phases are stable over a large pH range, thus harder to dissolve. Brownmilleritewasalso likely associated with physical entrapment of Cr(VI) in the interior of nodules. HB COPR contained no Cr(VI)-rich phases; all Cr(VI) was diffuse within the nodules and absent from the cementing matrix, with hydrogarnet and hydrotalcite being the main Cr(VI) binding phases. Treatment ofHBCOPRis challenging in terms of dissolving the acidity-resistant, inaccessible Cr(VI) compounds; the same applies to ~;;50percent of Cr(VI) in GB COPR.

  4. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden

    Directory of Open Access Journals (Sweden)

    Dey Satarupa

    2013-01-01

    Full Text Available Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gramnegative (58% bacteria. The phenotypically distinguishable bacterial isolates (130 showed wide degree of tolerance to chromium (2-8 mM when tested in peptone yeast extract glucose agar medium. Isolates (92 tolerating 2 mM chromium exhibited different degrees of Cr+6 reducing activity in chemically defined Vogel Bonner (VB broth and complex KSC medium. Three potent isolates, two belonging to Arthrobacter spp. and one to Pseudomonas sp. were able to reduce more than 50 and 80% of 2 mM chromium in defined and complex media respectively. Along with Cr+6 (MIC 8.6-17.8 mM, the isolates showed tolerance to Ni+2, Fe+3, Cu+2 and Co+2 but were extremely sensitive to Hg+2 followed by Cd+2, Mn+2 and Zn+2. In addition, they were resistant to antibiotics like penicillin, methicillin, ampicillin, neomycin and polymyxin B. During growth under shake-flask conditions, Arthrobacter SUK 1201 and SUK 1205 showed 100% reduction of 2 mM Cr+6 in KSC medium with simultaneous formation of insoluble precipitates of chromium salts. Both the isolates were also equally capable of completely reducing the Cr+6 present in mine seepage when grown in mine seepage supplemented with VB concentrate.

  5. Structural, Optical, and Magnetic Characterization of Spinel Zinc Chromite Nanocrystallines Synthesised by Thermal Treatment Method

    Directory of Open Access Journals (Sweden)

    Salahudeen A. Gene

    2014-01-01

    Full Text Available The present study reports the structural and magnetic characterization of spinel zinc chromite (ZnCr2O4 nanocrystallines synthesized by thermal treatment method. The samples were calcined at different temperatures in the range of 773 to 973 K. Polyvinylpyrrolidone was used to control the agglomeration of the nanoparticles. The average particle size of the synthesized nanocrystals was determined by powder X-ray diffraction which shows that the crystallite size increases from 19 nm at 773 K to 24 nm at 973 K and the result was in good agreement with the transmission electron microscopy images. The elemental composition of the samples was determined by energy dispersed X-ray spectroscopy which confirmed the presence of Zn, Cr, and O in the final products. Fourier transform infrared spectroscopy also confirmed the presence of metal oxide bands for all the samples calcined at different temperature. The band gap energy was calculated from UV-vis reflectance spectra using the Kubelka-Munk function and the band gap energy of the samples was found to decrease from 4.03 eV at 773 K to 3.89 eV at 973 K. The magnetic properties were also demonstrated by electron spin resonance spectroscopy, the presence of unpaired electrons was confirmed, and the resonant magnetic field and the g-factor of the calcined samples were also studied.

  6. Comparison of the Oxidation Behaviors of High FeO Chromite and Magnetite Concentrates Relevant to the Induration of Ferrous Pellets

    Science.gov (United States)

    Zhu, Deqing; Yang, Congcong; Pan, Jian; Li, Xiaobo

    2016-10-01

    Oxidation process plays an important role in producing sufficiently strong ferrous pellets for blast furnace, and the oxidation behavior of pellet feed greatly affects the quality of pellets. As a supplementary research to earlier published work, the present study fixes its particular attention on the fundamental oxidation behavior of a high FeO South African chromite concentrate in comparison to that of typical magnetite concentrate using differential scanning calorimetry, X-ray diffraction analysis, and thermogravimetry at various temperatures ranging from 473 K to 1273 K (200 °C to 1000 °C). The reaction mechanism and phase transformation during the oxidation process of chromite spinel is further explained by thermodynamics calculation performed by FactSage software. Besides, routine laboratory preheating-roasting test of single ore pellets is also conducted to reveal the relevance of oxidizability to the consolidation of pellets. The results show that the chromite spinel possesses much poorer oxidizability than magnetite, usually accompanying complex phase transformations via a preferential nucleation of Fe-rich sesquioxide from the chromite spinel matrix at low temperatures and thereafter the formation of Cr-rich sesquioxide on the substrate of Fe-rich phase at high temperatures. The oxidation of chromite spinel is inferior to that of magnetite from the viewpoint of thermodynamics and dynamic kinetics. Good inherent oxidizability of raw materials is found to have a positive effect on the induration process of pellet.

  7. Trace-element fingerprints of chromite, magnetite and sulfides from the 3.1 Ga ultramafic-mafic rocks of the Nuggihalli greenstone belt, Western Dharwar craton (India)

    Science.gov (United States)

    Mukherjee, Ria; Mondal, Sisir K.; González-Jiménez, José M.; Griffin, William L.; Pearson, Norman J.; O'Reilly, Suzanne Y.

    2015-06-01

    The 3.1 Ga Nuggihalli greenstone belt in the Western Dharwar craton is comprised of chromitite-bearing sill-like ultramafic-mafic rocks that are surrounded by metavolcanic schists (compositionally komatiitic to komatiitic basalts) and a suite of tonalite-trondhjemite-granodiorite gneissic rocks. The sill-like plutonic unit consists of a succession of serpentinite (after dunite)-peridotite-pyroxenite and gabbro with bands of titaniferous magnetite ore. The chromitite ore-bodies (length ≈30-500 m; width ≈2-15 m) are hosted by the serpentinite-peridotite unit. Unaltered chromites from massive chromitites (>80 % modal chromite) of the Byrapur and Bhaktarhalli chromite mines in the greenstone belt are characterized by high Cr# (100Cr/(Cr + Al)) of 78-86 and moderate Mg# (100 Mg/(Mg + Fe2+)) of 45-55. In situ trace-element analysis (LA-ICPMS) of unaltered chromites indicates that the parental magma of the chromitite ore-bodies was a komatiite lacking nickel-sulfide mineralization. In the Ga/Fe3+# versus Ti/Fe3+# diagram, the Byrapur chromites plot in the field of suprasubduction zone (SSZ) chromites while those from Bhaktarhalli lie in the MOR field. The above results corroborate our previous results based on major-element characteristics of the chromites, where the calculated parental melt of the Byrapur chromites was komatiitic to komatiitic basalt, and the Bhaktarhalli chromite was derived from Archean high-Mg basalt. The major-element chromite data hinted at the possibility of a SSZ environment existing in the Archean. Altered and compositionally zoned chromite grains in our study show a decrease in Ga, V, Co, Zn, Mn and enrichments of Ni and Ti in the ferritchromit rims. Trace-element heterogeneity in the altered chromites is attributed to serpentinization. The trace-element patterns of magnetite from the massive magnetite bands in the greenstone belt are similar to those from magmatic Fe-Ti-V-rich magnetite bands in layered intrusions, and magnetites from

  8. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic.

    Science.gov (United States)

    Liao, Chang-Zhong; Tang, Yuanyuan; Lee, Po-Heng; Liu, Chengshuai; Shih, Kaimin; Li, Fangbai

    2017-01-05

    A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr1.32Fe0.19Al0.49O4. Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5wt.%), diopside (5.2wt.%), and some amorphous contents (91.2wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr2O3 and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the immobilization of Cr. The overall results suggest that the use of affordable additives has potential in more reliably immobilizing COPR with a spinel-based glass-ceramic for safer disposal of this hazardous waste.

  9. Heavy metal and nutrient concentration in soil and plants growing on a metalliferous chromite minespoil.

    Science.gov (United States)

    Samantaray, S; Rout, G R; Das, P

    2001-10-01

    Metal contamination in soil and plant samples from a chromite mine and its adjoining regions was determined. The metal concentration varied in stem, leaf and root of different tree species. In the case of shrubs, the highest concentration of iron (18.5 mg kg(-1) was detected in the stem of Combretum roxburghii. The concentration of aluminium varied from 1.8 - 5.3 mg kg(-1) dry weight, whereas the nickel content was found to be the highest in the stem of Calotropis gigantea. In the case of herbs, chromium concentration was highest (60.9 mg kg(-1) dry weight) in Evovulus alsenoides and the lowest (18.8 mg kg(-1) dry weight) in Andrographis paniculata. There was a significant correlation observed between chromium in soil with the root of tree species like Lagerstroemia parviflora, Madhuca longifolia, Anogeissus latifolia and Haldina cordyfolia. Nickel in soil was significantly correlated with the stem and leaf of all the tree species except Chlroxylon sweitenta. Iron in soil showed correlation with the stem and leaf of Chloroxylon sweitenia. Among the shrubs (Calotropis gigantea, Combretum roxburghii and Smilax zeylancia), chromium in soil showed a correlation with the root. Nickel in soil was positively correlated with the stem and leaf of Calotropis gigantea and Combretum roxburghii. Among the herbs, chromium in the whole plant of Evolvulus alsenoids, Solanum surattense and Phyllanthus fraternus showed significant positive correlation with soil; nickel in Solanum surattense showed significant positive correlation with soil. The positive correlation coefficient was observed between iron in the whole plant and soil on Phyllanthus virgatus, Phyllanthus fraternus and Andrographis paniculata. The above information would be useful for the establishment of a vegetation cover on the minewaste heaps.

  10. Lanthanum chromite materials as potential symmetrical electrodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ruiz-Morales, J. C.

    2007-08-01

    Full Text Available A commonly used interconnector material has been tested as electrode for a new concept of Solid Oxide Fuel Cell, where the same material could be used, simultaneously, as interconnector, anode and cathode. We have found that a typical substituted chromite, such as La0.7Ca0.3CrO3-δ (LCC can be considered a good candidate for such configuration, due to its high electronic conductivity in both reducing and oxidising conditions, and moderate catalytic properties for oxygen reduction and hydrogen oxidation. The symmetrical design renders performances of 100 mWcm-2 at 950ºC, using O2 and H2 as oxidant and fuel respectively. Performances exceeding 300 mWcm-2 can be predicted for a 100μm-thick YSZ electrolyte.

    Un material comúnmente utilizado como interconector ha sido probado como electrodo para un nuevo concepto de Pila de Combustible de Óxidos Sólido, en el cual el mismo material se utiliza, simultáneamente, como interconector, ánodo y cátodo. Hemos encontrado que una cromita típica como La0.7Ca0.3CrO3-δ (LCC puede ser considerada una buena candidata para dicha configuración, debido a sus altas conductividades eléctricas tanto en condiciones reductoras como oxidantes y una aceptable actividad catalítica para la reducción del oxígeno y la oxidación del hidrógeno. El diseño simétrico permite obtener rendimientos del orden de 100mWcm-2 a 950ºC, utilizando O2 e H2 como oxidante y combustible, respectivamente. Rendimientos que superan los 300mWcm-2 pueden predecirse para pilas con electrolitos de YSZ de 100 μm de grosor.

  11. Rapid synthesis of nanocrystalline magnesium chromite and ferrite ceramics with concentrated sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, Ronald, E-mail: michalskyr@ethz.ch; Peterson, Brian A.; Pfromm, Peter H.

    2014-04-01

    Highlights: • Refractory ceramics are produced via rapid solar-thermal processing. • The formed chromite and ferrite spinels have a high specific surface area. • The presence of transition metal oxides enables reduction of Mg cations. • Dinitrogen is reduced only by chromium. • The spinels are stable in reducing environments and in the presence of solar radiation. - Abstract: High-temperature refractory ceramics and catalysts such as MgM{sub 2}O{sub 4} (M = Cr, Fe) are produced conventionally via energy-intensive solid-state syntheses (using 0.44–10 GJ electricity for sintering per ton oxide, equivalent to combustion of 48–1088 kg coal per ton oxide). This article reports rapid production of 17 ± 2 mol% MgFe{sub 2}O{sub 4} and 8.6 ± 0.9 mol% MgCr{sub 2}O{sub 4} after 30 min at 1200 °C employing 0.82 kW m{sup −2} sunlight concentrated at a geometric ratio of about 900 m{sup 2} m{sup −2} using a Fresnel lens. Solar radiation promotes the diffusion-limited ferrite formation (42 ± 5 μmol MgFe{sub 2}O{sub 4} per mol Fe{sub 2}O{sub 3} s{sup −1} vs. 26 ± 3 μmol mol{sup −1} s{sup −1} in absence of sunlight) while the transition metals promote the reduction of Mg{sup 2+}. The nanocrystalline and macroporous spinel has a specific surface area of 9.7–11.9 m{sup 2} g{sup −1} (in the order of sol–gel synthesis methods) and is stable under extreme conditions, i.e., high temperature, solar radiation, and reducing agents.

  12. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.

    Science.gov (United States)

    Jagupilla, Santhi C; Wazne, Mahmoud; Moon, Deok Hyun

    2015-10-01

    Chromite Ore Processing Residue (COPR) is an industrial waste containing up to 7% chromium (Cr) including up to 5% hexavalent chromium [Cr(VI)]. The remediation of COPR has been challenging due to the slow release of Cr(VI) from a clinker like material and thereby the incomplete detoxification of Cr(VI) by chemical reagents. The use of sulfur based reagents such as ferrous sulfate and calcium polysulfide to detoxify Cr(VI) has exasperated the swell potential of COPR upon treatment. This study investigated the use of ferrous chloride alone and in combination with Portland cement to address the detoxification of Cr(VI) in COPR and the potential swell of COPR. Chromium regulatory tests, X-ray powder diffraction (XRPD) analyses and X-ray absorption near edge structure (XANES) analyses were used to assess the treatment results. The treatment results indicated that Cr(VI) concentrations for the acid pretreated micronized COPR as measured by XANES analyses were below the New Jersey Department of Environmental Protection (NJDEP) standard of 20 mg kg(-1). The Toxicity characteristic leaching procedure (TCLP) Cr concentrations for all acid pretreated samples also were reduced below the TCLP regulatory limit of 5 mg L(-1). Moreover, the TCLP Cr concentration for the acid pretreated COPR with particle size ⩽0.010 mm were less than the universal treatment standard (UTS) of 0.6 mg L(-1). The treatment appears to have destabilized all COPR potential swell causing minerals. The unconfined compressive strength (UCS) for the treated samples increased significantly upon treatment with Portland cement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The variability of ruthenium in chromite from chassignite and olivine-phyric shergottite meteorites: New insights into the behavior of PGE and sulfur in Martian magmatic systems

    Science.gov (United States)

    Baumgartner, Raphael J.; Fiorentini, Marco L.; Baratoux, David; Ferrière, Ludovic; Locmelis, Marek; Tomkins, Andrew; Sener, Kerim A.

    2017-02-01

    The Martian meteorites comprise mantle-derived mafic to ultramafic rocks that formed in shallow intrusions and/or lava flows. This study reports the first in situ platinum-group element data on chromite and ulvöspinel from a series of dunitic chassignites and olivine-phyric shergottites, determined using laser-ablation ICP-MS. As recent studies have shown that Ru has strongly contrasting affinities for coexisting sulfide and spinel phases, the precise in situ analysis of this element in spinel can provide important insights into the sulfide saturation history of Martian mantle-derived melts. The new data reveal distinctive differences between the two meteorite groups. Chromite from the chassignites Northwest Africa 2737 (NWA 2737) and Chassigny contained detectable concentrations of Ru (up to 160 ppb Ru) in solid solution, whereas chromite and ulvöspinel from the olivine-phyric shergottites Yamato-980459 (Y-980459), Tissint, and Dhofar 019 displayed Ru concentrations consistently below detection limit (<42 ppb). The relatively elevated Ru signatures of chromite from the chassignites suggest a Ru-rich ( 1-4 ppb) parental melt for this meteorite group, which presumably did not experience segregation of immiscible sulfide liquids over the interval of mantle melting, melt ascent, and chromite crystallization. The relatively Ru-depleted signature of chromite and ulvöspinel from the olivine-phyric shergottites may be the consequence of relatively lower Ru contents (<1 ppb) in the parental melts, and/or the presence of sulfides during the crystallization of the spinel phases. The results of this study illustrate the significance of platinum-group element in situ analysis on spinel phases to decipher the sulfide saturation history of magmatic systems.

  14. Environmental status of groundwater affected by chromite ore processing residue (COPR) dumpsites during pre-monsoon and monsoon seasons.

    Science.gov (United States)

    Matern, Katrin; Weigand, Harald; Singh, Abhas; Mansfeldt, Tim

    2017-02-01

    Chromite ore processing residue (COPR) is generated by the roasting of chromite ores for the extraction of chromium. Leaching of carcinogenic hexavalent chromium (Cr(VI)) from COPR dumpsites and contamination of groundwater is a key environmental risk. The objective of the study was to evaluate Cr(VI) contamination in groundwater in the vicinity of three COPR disposal sites in Uttar Pradesh, India, in the pre-monsoon and monsoon seasons. Groundwater samples (n = 57 pre-monsoon, n = 70 monsoon) were taken in 2014 and analyzed for Cr(VI) and relevant hydrochemical parameters. The site-specific ranges of Cr(VI) concentrations in groundwater were <0.005 to 34.8 mg L(-1) (Rania), <0.005 to 115 mg L(-1) (Chhiwali), and <0.005 to 2.0 mg L(-1) (Godhrauli). Maximum levels of Cr(VI) were found close to the COPR dumpsites and significantly exceeded safe drinking water limits (0.05 mg L(-1)). No significant dependence of Cr(VI) concentration on monsoons was observed.

  15. Health risk assessment from contaminated foodstuffs: a field study in chromite mining-affected areas northern Pakistan.

    Science.gov (United States)

    Nawab, Javed; Li, Gang; Khan, Sardar; Sher, Hassan; Aamir, Muhammad; Shamshad, Isha; Khan, Anwarzeb; Khan, Muhammad Amjad

    2016-06-01

    This study aimed to investigate the potential health risk associated with toxic metals in contaminated foodstuffs (fruits, vegetables, and cereals) collected from various agriculture fields present in chromite mining-affected areas of mafic and ultramafic terrains (northern Pakistan). The concentrations of Cr, Ni, Zn, Cd, and Pb were quantified in both soil and food samples. The soil samples were highly contaminated with Cr (320 mg/kg), Ni (108 mg/kg), and Cd (2.55 mg/kg), which exceeded their respective safe limits set by FAO/WHO. Heavy metal concentrations in soil were found in the order of Cr>Ni>Pb>Zn>Cd and showed significantly (p risk assessment revealed no potential risk for both adults and children for the majority of heavy metals, except Cd, which showed health risk index (HRI) >1 for children and can pose potential health threats for local inhabitants. Graphical Abstract Heavy metals released from chromite mining lead to soil and foodstuff contamination and human health risk.

  16. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    Science.gov (United States)

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  17. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    Science.gov (United States)

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  18. Separation of gold, palladium and platinum in chromite by anion exchange chromatography for inductively coupled plasma atomic emission spectrometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwang Soon; Lee, Chang Heon; Park, Yeong Jae; Joe, Kih Soo; Kim, Won Ho [KAERI, Taejon (Korea, Republic of)

    2001-08-01

    A study has been carried out on the separation of gold, iridium, palladium, rhodium, ruthenium and platinum in chromite samples and their quantitative determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution condition of the minerals by fusion with sodium peroxide was optimized and chromatographic elution behavior of the rare metals was investigated by anion exchange chromatography. Spectral interference of chromium, a matrix of the minerals, was investigated on determination of gold. Chromium interfered on determination of gold at the concentration of 500 mg/L and higher. Gold plus trace amounts of iridium, palladium, rhodium and ruthenium, which must be preconcentrated before ICP-AES was separated by anion exchange chromatography after reducing Cr(VI) to Cr(III) by H{sub 2}O{sub 2}. AuCl{sup -}{sub 4} retained on the resin column was selectively eluted with acetone- HNO{sub 3}-H{sub 2}O as an eluent. In addition, iridium, palladium, rhodium and ruthenium remaining on the resin column were eluted as a group with concentrated HCl. However, platinum was eluted with concentrated HNO{sub 3}. The recovery yield of gold with acetone-HNO{sub 3}-H{sub 2}O was 100.7 {+-} 2.0 % , and the yields of palladium and platinum with concentrated HCl and HNO{sub 3} were 96.1 {+-} 1.8% and 96.6 {+-} 1.3%, respectively. The contents of gold and platinum in a Mongolian chromite sample were 32.6 {+-} 2.2 {mu}g/g and 1.6 {+-} 0.14 {mu}g/g, respectively. Palladium was not detected.

  19. Application of potassium tetrafluorobromate to the rapid decomposition and determination of noble metals in chromites and related materials

    Science.gov (United States)

    Mitkin, V. N.; Zayakina, S. B.; Tsimbalist, V. G.; Galizky, A. A.

    2003-02-01

    Described is an effective new procedure for the preparation of chromites and other geological materials for the determination of the noble metals (NM). The procedure is based on the use of a mixture of KBrF 4 and KHF 2 obtained in situ by adding liquid BrF 3 to a mixture of KHF 2 and sample powder. South African Geostandards SARM-7 platinum ore from the Merensky Reef and SARM-65, a platinum-bearing chromite ore, were used for method development. Following fluorinative decomposition of samples, a homogeneous product is obtained which is suitable for instrumental analysis using either atomic absorption or emission spectrometry techniques. Sulfatization of fusion product using H 2SO 4 produces a non-hygroscopic material, which can be easily powdered and sampled directly into the argon plasma. Solution-based analytical techniques can be applied directly after fluorinative decomposition and conversion of resulting fluorides into chlorides by HCl treatment. The proposed new method, combined with spectrometric emission analysis of powders using a double-jet plasmatron dc plasma atomic emission spectrometry (AES) instrument achieved the following limits of detection (LOD) for the noble metals: Ag, Au and Pd: 1-2×10 -2 g/ton; Pt: 5×10 -2 g/ton; Ru, Rh, Ir and Os: 1-3×10 -3 g/ton. Graphic furnace atomic absorption spectrometry (GFAAS) with preliminary extraction, LODs for NMs were: Pt and Ru: 1×10 -2; Pd and Rh: 1×10 -3; Au and Ag: 1-2×10 -4 g/ton. The relative standard deviation of NM determinations was dependent on concentration and sample type but commonly was in the range of 3-15% dc plasma AES and 5-30% for extraction GFAAS.

  20. Investigations of Protective Coatings for Castings of High-manganese Cast Steels

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2013-01-01

    Full Text Available When cast steel castings are made in moulding sands on matrices of high-silica sand, which has a low fire resistance the problem of theso-called chemical penetration is distinctly visible. Whereas this effect appears to a small degree only when moulding sand matrices are of chromite, zircon or olivine sands. Therefore in case of making castings of high-manganese cast steel (e.g. Hadfield steel sands not containing free silica should be applied (e.g. olivine sand or in case of a high-silica matrix protective coatings for moulds and cores should be used. Two protective coatings, magnesite alcoholic (marked as coating 1 and coating 2 originated from different producers and intended for moulds for castings of the Hadfield steel, were selected for investigations. Examinations of the basic properties were performed for these coatings: viscosity, thermal analysis, sedimentation properties, wear resistance. In order to estimate the effectiveness of protective coatings the experimental castings were prepared. When applying coating 1, the surface quality of the casting was worse and traces of interaction between the casting material (cast steel and the coating were seen. When protective coating 2 was used none interactions were seen and the surface quality was better.

  1. Present situation and advances in the study of podiform chromite deposits%豆荚状铬铁矿床的研究现状及进展

    Institute of Scientific and Technical Information of China (English)

    周二斌

    2011-01-01

    The podiform chromite deposit constitutes the main source of metallurgical-grade chromite in industry, but its genesis remains one of the problems for which geologists all over the world show great concern.This paper outlined the status and latest progress in the study of podiform chromite deposits.The latest studies show that podiform deposits mainly occur in a certain layer of the mantle peridotite, which has been the lowest part of ophiolite (CMB, crust-mantle boundary) since Phanerozoic.The podiform chromite deposit-bearing mantle peridotites in the world usually exhibit vertical zoning of melting, with more basic material in the upper part and more acid material in the lower part.With the increasing of partial melting from the bottom upward, there appears lherzolite, harzburgite and dunite in turn.Alpine-type podiform chromite deposits generally have a fairly thick dunitic "envelop".After the mineralization of the podiform chromite deposit, the gravity of itself caused the sinking and dragging of some of the dunite around the ore body downward into the harzburegite fades side under the contact interface with the upside dunite facies, thus forming the typical dunitic "envelop" of the Alpine-type chromite deposit.The authors have thus reached the conclusion that the harzburgite facies under the contact interface is the best target area in search for large chromite deposits.Podiform deposits have a very close genetic relationship with harzburgite and dunite; however, it is really rare to find chromite deposits in lherzolite.The abundance of chromium in primitive mantle is much higher than that in the crust, the chromium element of chromitite was derived from primitive mantle itself, mainly coming from the alteration of associated spinel and the incongruent melting of the two pyroxene (chromium diopside and enstatite).With the increase of partial melting, the mantle peridotite gradually evolved in the magnesium-rich direction, and the mineralization of spinel

  2. The differential stress response of adapted chromite mine isolates Bacillus subtilis and Escherichia coli and its impact on bioremediation potential.

    Science.gov (United States)

    Samuel, Jastin; Paul, Madona Lien; Ravishankar, Harish; Mathur, Ankita; Saha, Dipti Priya; Natarajan, Chandrasekaran; Mukherjee, Amitava

    2013-11-01

    In the current study, indigenous bacterial isolates Bacillus subtilis VITSUKMW1 and Escherichia coli VITSUKMW3 from a chromite mine were adapted to 100 mg L(-1) of Cr(VI). The phase contrast and scanning electron microscopic images showed increase in the length of adapted E. coli cells and chain formation in case of adapted B. subtilis. The presence of chromium on the surface of the bacteria was confirmed by energy dispersive X-ray spectroscopy (EDX), which was also supported by the conspicuous Cr-O peaks in FTIR spectra. The transmission electron microscopic (TEM) images of adapted E. coli and B. subtilis showed the presence of intact cells with Cr accumulated inside the bacteria. The TEM-EDX confirmed the internalization of Cr(VI) in the adapted cells. The specific growth rate and Cr(VI) reduction capacity was significantly higher in adapted B. subtilis compared to that of adapted E. coli. To study the possible role of Cr(VI) toxicity affecting the Cr(VI) reduction capacity, the definite assays for the released reactive oxygen species (ROS) and ROS scavenging enzymes (SOD and GSH) were carried out. The decreased ROS production as well as SOD and GSH release observed in adapted B. subtilis compared to the adapted E. coli corroborated well with its higher specific growth rate and increased Cr(VI) reduction capacity.

  3. Morbus Coats

    Science.gov (United States)

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  4. Assessment of heavy metal tolerance and hexavalent chromium reducing potential of Corynebacterium paurometabolum SKPD 1204 isolated from chromite mine seepage

    Directory of Open Access Journals (Sweden)

    Amal Kanti Paul

    2016-07-01

    Full Text Available Corynebacterium paurometabolum SKPD 1204 (MTCC 8730, a heavy metal tolerant and chromate reducing bacterium isolated from chromite mine seepage of Odisha, India has been evaluated for chromate reduction under batch culture. The isolate was found to tolerate metals like Co(II, Cu(II, Ni(II, Mn(II, Zn(II, Fe(III and Hg(II along with Cr(VI and was resistant to different antibiotics as evaluated by disc-diffusion method. The isolate, SKPD 1204 was found to reduce 62.5% of 2 mM Cr(VI in Vogel Bonner broth within 8 days of incubation. Chromate reduction capability of SKPD 1204 decreased with increase in Cr(VI concentration, but increased with increase in cell density and attained its maximum at 1010 cells/mL. Chromate reducing efficiency of SKPD 1204 was promoted in the presence of glycerol and glucose, while the highest reduction was recorded at pH 7.0 and 35 °C. The reduction process was inhibited by divalent cations Zn(II, Cd(II, Cu(II, and Ni(II, but not by Mn(II. Anions like nitrate, phosphate, sulphate and sulphite was found to be inhibitory to the process of Cr(VI reduction. Similarly, sodium fluoride, carbonyl cyanide m-chlorophenylhydrazone, sodium azide and N, N,-Di cyclohexyl carboiimide were inhibitory to chromate reduction, while 2,4-dinitrophenol appeared to be neither promotive nor inhibitory to the process.

  5. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes.

    Science.gov (United States)

    Velasco, Antonio; Ramírez, Martha; Hernández, Sergio; Schmidt, Winfried; Revah, Sergio

    2012-03-15

    Single Cr(VI) reduction and coupled reduction/stabilization (R/S) processes were evaluated at pilot scale to determine their effectiveness to treat chromite ore processing residue (COPR). Sodium sulfide was used as the reducing agent and cement, gypsum and lime were tested as the stabilizing agents. The pilot experiments were performed in a helical ribbon blender mixer with batches of 250 kg of COPR and mixing time up to 30 min. Na2S/Cr(VI) mass ratios of 4.6, 5.7 and 6.8 were evaluated in the single reduction process to treat COPR with Cr(VI) concentration of ≈4.2 g/kg. The R/S process was tested with a Na2S/Cr(VI) mass ratio of 5.7 and including stabilizing agents not exceeding 5% (w/w(COPR)), to treat COPR with a Cr(VI) content of ≈5.1g/kg. The single reduction process with a ratio of 6.8, reached Cr(VI) reduction efficiencies up to 97.6% in the first days, however these values decreased to around 93% after 380 days of storage. At this point the total Cr level was around 12.5 mg/L. Cr(VI) removal efficiencies exceeding 96.5% were reached and maintained during 380 days when the coupled R/S process was evaluated. Total Cr levels lower than 5 mg/l were attained at the initials days in all R/S batch tested, however after 380 days, concentrations below the regulatory limit were only found with gypsum (2%) as single agent and with a blend of cement (4%) and lime (1%). These results indicated that the coupled R/S process is an excellent alternative to stabilize COPR. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites.

    Science.gov (United States)

    Farmer, John G; Thomas, Rhodri P; Graham, Margaret C; Geelhoed, Jeanine S; Lumsdon, David G; Paterson, Edward

    2002-04-01

    Chromium concentrations of up to 91 mg l(-1) were found by ICP-OES for ground water from nine boreholes at four landfill sites in an area of S.E. Glasgow/S. Lanarkshire where high-lime chromite ore processing residue (COPR) from a local chemical works had been deposited from 1830 to 1968. Surface water concentrations of up to 6.7 mg l(-1) in a local tributary stream fell to 0.11 mg l(-1) in the River Clyde. Two independent techniques of complexation/colorimetry and speciated isotope dilution mass spectrometry (SIDMS) showed that Cr was predominantly (>90%) in hexavalent form (CrVI) as CrO4(2-), as anticipated at the high pH (7.5-12.5) of the sites. Some differences between the implied and directly determined concentrations of dissolved CrIII, however, appeared related to the total organic carbon (TOC) content. This was most significant for the ground water from one borehole that had the highest TOC concentration of 300 mg l(-1) and at which ultrafiltration produced significant decreases in Cr concentration with decreasing size fractions, e.g. complex. This showed for the main Cr-containing fraction, 100 kDa-0.45 microm, that the Cr was associated with a dark brown band characteristic of organic (humic) matter. Comparison of gel electrophoresis and FTIR results for ultrafilter retentates of ground water from this borehole with those for a borehole at another site where CrVI predominated suggested the influence of carboxylate groups, both in reducing CrVI and in forming soluble CrIII-humic complexes. The implications of this for remediation strategies (especially those based on the addition of organic matter) designed to reduce highly mobile and carcinogenic Cr(VI)O4(2-) to the much less harmful CrIII as insoluble Cr(OH)3 are discussed.

  7. Magnetization reversal behavior and magnetocaloric effect in SmCr0.85Mn0.15O3 chromites

    Science.gov (United States)

    Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Patra, Ajit K.; Kholkin, Andrei L.; Panwar, Neeraj

    2017-01-01

    We have synthesized SmCr0.85Mn0.15O3 (SCMO) chromites through the ceramic route. The compound crystallized into a distorted orthorhombic structure with the Pnma space group, which was confirmed from the Rietveld refinement of x-ray powder diffraction patterns. Neel temperature, noticed at 168 K from the temperature variation of magnetisation, smaller than that reported for SmCrO3, indicated the influence of Mn3+ substitution on decreasing the antiferromagnetic ordering. A phenomenon of magnetization reversal was observed in the SCMO compound. At low magnetic fields, i.e., 500 Oe, a single compensation temperature (defined as the temperature where magnetization became zero) around 106 K was observed in the field cooled magnetization curve. However, with the application of higher magnetic fields, i.e., under an applied field of 1000 Oe, a second compensation temperature was noticed around 8 K. With a further increase in the magnetic field, the magnetization remained positive in both field cooled and zero field cooled protocols. A normal magnetocaloric effect was observed through an indirect method of field dependence of magnetisation measured in the temperature range of 2-152 K. The magnetic entropy change (-ΔS) of ˜11.36 J kg-1 K-1 along with the relative cooling power (RCP) of ˜175.89 J kg-1 was obtained in the temperature range of 10-20 K for an applied field of 90 kOe, and their values at 50 kOe applied field were, respectively, almost twenty and forty times larger in magnitude in comparison to those for the SmCrO3 compound. The relatively large values of ΔS and RCP make the studied compound a potential candidate for magnetic refrigeration applications at low temperatures.

  8. Crystal structure refinement of chromites from two achondrites, their T-f(O2) conditions, and implications

    Science.gov (United States)

    Lenaz, Davide; Schmitz, Birger

    2017-09-01

    Six Cr-spinel grains from NWA 6077 brachinite-like and NWA 725 winonaite achondrites have been studied by single-crystal X-ray diffraction and structural refinement. From a chemical point of view, spinels from NWA 6077 show Cr/(Cr + Al) (i.e., Cr#) and Mg/(Mg + Fe2+) (i.e., Mg#) values similar to other brachinites, while the Cr# of NWA 725 is lower than that of literature winonaites. Spinels from NWA 6077 and NWA 725 meteorites show similar cell edges, while the oxygen positional parameter is rather different being about 0.2629 for NWA 6077 and 0.2622 for NWA 725. Considering both parameters, NWA 725 shows structural features that are close to some terrestrial spinel occurrences as in komatiites, kimberlites, or included in diamonds; those from NWA 6077 show values that have no terrestrial analogs. Olivine-chromite closure temperature ranges from 737 to 765° C for NWA 725, being similar to that of literature winonaites and 846 to 884° C for NWA 6077. The logfO2 ranges from -19.8 to -20.5 and -17.0 to -17.9 for the two meteorites, respectively. The u values for terrestrial samples can give information about the cooling history of the samples. For the extraterrestrial samples, it seems that it can give information about the cooling only for spinels where it is lower than 0.2625. For higher values, it appears related only to the chemistry of the spinels.

  9. Effect of Organic Manures on the Growth of Cymbopogon citratus and Chrysopogon zizanioides for the Phytoremediation of Chromite-Asbestos Mine Waste: A Pot Scale Experiment.

    Science.gov (United States)

    Kumar, Adarsh; Maiti, Subodh Kumar

    2015-01-01

    The abandoned chromite-asbestos mines are located in the Roro hills, West Singhbhum, Jharkhand, India, where mining operation ceased in 1983, and since then these mines are causing environmental pollution. The present study was planned to phytoremediate these metalloid and metal contaminated mine waste by using two aromatic grasses, Cymbopogon citratus and Chrysopogon zizanioides by applying different proportions of amendments (chicken manure, farmyard manure and garden soil). Mine waste has neutral pH, low electrical conductivity and organic carbon with higher concentration of total metals (Cr and Ni) as compared to soil. Application of manures resulted significant improvements of mine waste characteristics and plant growth, reduction in the availability of total extractable toxic metals (Cr, Ni) and increase in Mn, Zn and Cu concentration in the substrate. The maximum growth and biomass production for C. citratus and C. zizanioides were found in T-IV combination comprising of mine waste (90%), chicken manure (2.5%), farmyard manure (2.5%) and garden soil (5%). Addition of T-IV combination also resulted in low Cr and Ni accumulation in roots and reduction in translocation to shoots. Study indicates that C. citratus and C. zizanioides can be used for phytostabilization of abandoned chromite-asbestos mine waste with amendments.

  10. Origins of chromite and magnetite in sedimentary rocks deposited in a shallow water environment in the 3.2 Ga Moodies Group, South Africa

    Science.gov (United States)

    Otake, T.; Sakamoto, Y.; Itoh, S.; Yurimoto, H.; Kakegawa, T.

    2012-12-01

    *Otake, T. totake@eng.hokudai.ac.jp Div. of Sustainable Resources Engineering, Hokkaido Univ., Sapporo, Japan Sakamoto, Y. yu.sakamoto12@gmail.com Dep. of Earth Science, Tohoku Univ., Sendai, Japan Itoh, S. sitoh@ep.sci.hokudai.ac.jp Dep. of Natural History Sciences, Hokkaido Univ., Sapporo, Japan Yurimoto. H. yuri@ep.sci.hokudai.ac.jp Dep. of Natural History Sciences, Hokkaido Univ., Sapporo, Japan Kakegawa, T. kakegawa@m.tohoku.ac.jp Dep. of Earth Science, Tohoku Univ., Sendai, Japan Geochemical data from ferruginous chemical sedimentary rocks (e.g., Banded Iron Formation: BIF) have been used to reconstruct the surface environments of early Earth. However, only a few studies have investigated the geochemical characteristics of BIFs deposited in a shallow water environment during the Archean, which may have differed from those deposited in a deep water environment. Therefore, we investigated geological, petrographic and geochemical characteristics of ferruginous rocks deposited in a shallow water environment in the Moodies group, in the Barberton Greenstone Belt, South Africa. We obtained ferruginous rock samples in the Moodies group from both an outcrop and underground gold mine, and compared the characteristics of these samples. The 70 sedimentary rock samples were divided into groups based on the dominant Fe minerals they contain: Hematite-rich jaspilite (HM group), Magnetite-rich iron formation/shale/sandstone (MT group), and Siderite-rich sandstone (SD group). Samples in the HM group are predominantly composed of fine-grained quartz (< 20 μm) and hematite (< 5 μm), which are interpreted to be chemical precipitates. Samples in the MT group contain quartz, magnetite, siderite, ankerite, chlorite, biotite and chromite. The grain size of magnetite is much larger (20-150 μm) than that of hematite in the HM group. The magnetite is interpreted as a secondary mineral transformed from hematite during early diagenesis. Results of in situ oxygen isotope analysis by

  11. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural with ALD overcoating (II) – Comparison between TiO2 and Al2O3 overcoatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongbo; Canlas, Christian; Kropf, A. Jeremy; Elam, Jeffrey W.; Dumesic, James A; Marshall, Christopher L.

    2015-01-01

    TiO2 atomic layer deposition (ALD) overcoatings were applied to copper chromite catalysts to increase the stability for 2-furfuraldehyde (“furfural”) hydrogenation. After overcoating, about 75% activity was preserved compared to neat copper chromite: much higher activity than an alumina ALD overcoated catalyst with a similar number of ALD cycles. The effects of ALD TiO2 on the active Cu nanoparticles were studied extensively using both in-situ TPR/isothermal-oxidation and in-situ furfural hydrogenation via Cu XAFS. The redox properties of Cu were modified only slightly by the TiO2 ALD overcoat. However, a subtle electronic interaction was observed between the TiO2 ALD layers and the Cu nanoparticles. With calcination at 500 °C the interaction between the TiO2 overcoat and the underlying catalyst is strong enough to inhibit migration and site blocking by chromite, but is sufficiently weaker than the interaction between the Al2O3 overcoat and copper chromite that it does not strongly inhibit the catalytic activity of the copper nanoparticles.

  12. Microstructural development and characterization of lanthanum chromite-based ceramics to application in solid oxide fuel cells; Desenvolvimento microestrutural e caracterizacao de ceramicas a base de cromita de lantanio para aplicacao em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R.N.; Furtado, J.G. de M.; Soares, C.M.; Serra, E.T. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], e-mail: rnunes@cepel.br

    2006-07-01

    This work has for objective to investigate and to characterize the microstructural development of lanthanum chromite-based ceramics (LaCrO{sub 3}) doped with earth alkaline metals, correlating the microstructural parameters (mainly the densification level) and processing parameters with the electrothermal properties reached. Lanthanum chromite-based ceramic systems doped with earth-alkaline metals (Ca, Mg and Sr) had been produced from respective metallic nitrates by solid state reactions process. The phase compositions were evaluated by X-ray diffraction and the densification level by Archimedes method. The microstructural characterization was effected by scanning electron microscopy, energy dispersive X-ray spectroscopy and thermal analysis techniques. Electrical tests were used to evaluate the electrical conductivity of the studied ceramics. The obtained results corroborate the literature comments concerning the difficulty of lanthanum chromite-based ceramics with high densification level and evidence the great influence of the nature of the dopants on the sintering mechanism and the microstructural and electric characteristics of the produced ceramics. The best ones results, in terms of densification and electrical conductivity, had been gotten through multiple doping with calcium and strontium, and in sintering temperature conditions lower that the normally considered to pure or monodoped lanthanum chromite-based ceramics. (author)

  13. Protective Coatings

    Science.gov (United States)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  14. LaCrO3 composite coatings for AISI 444 stainless steel solid oxide fuel cell interconnects

    Directory of Open Access Journals (Sweden)

    Wilson Acchar

    2012-12-01

    Full Text Available Doped lanthanum chromite-based ceramics are the most widely used interconnector material in solid fuel cells (SOFC since they exhibit significant electrical and thermal conductivity, substantial corrosion resistance and adequate mechanical strength at ambient and high temperatures. The disadvantage of this material is its high cost and poor ductility. The aim of this study is to determine the mechanical and oxidation behavior of a stainless steel (AISI 444 with a LaCrO3 deposition on its surface obtained through spray pyrolisis. Coated and pure AISI 444 materials were characterized by mechanical properties, oxidation behavior, X-ray diffraction and scanning electronic microscopy. Results indicated that the coated material displays better oxidation behavior in comparison to pure stainless steel, but no improvement in mechanical strength. Both materials indicate that deformation behavior depends on testing temperatures.

  15. Graphene Coatings

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter

    2014-01-01

    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... that graphene can still be a relevant candidate for thin coatings....

  16. Podiform chromite deposits

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Location and characteristics of 1,124 individual mineral deposits of this type, with grade and tonnage models for chromium as well as several related elements.

  17. Doped Yttrium Chromite-Ceria Composite as a Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kyung J.; Coyle, Christopher A.; Marina, Olga A.

    2011-12-11

    A Ca- and Co-doped yttrium chromite (YCCC) - samaria-doped ceria (SDC) composite was studied in relation to a potential use as a solid oxide fuel cell (SOFC) anode material. Tests performed using the yttria-stabilized zirconia (YSZ) electrolyte-supported cells revealed that the electrocatalytic activity of the YCCC-SDC anode towards hydrogen oxidation at 800 C was comparable to that of the Ni-YSZ anode. In addition, the YCCC-SDC anode exhibited superior sulfur tolerant characteristics showing less than 10% increase in a polarization resistance, fully reversible, upon exposure to 20 ppm H2S at 800 C. No performance degradation was observed during multiple reduction-oxidation (redox) cycles when the anode was intentionally exposed to the air environment followed by the reduction in hydrogen. The redox tolerance of the YCCC-SDC anode was attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal chemical expansion upon redox cycling.

  18. LEACHABILITY OF CHROME FROM MAGNESIA-CHROMITE REFRACTORY BRICKS CORRODED BY Cu/CuO- Na2O.2SiO2 SLAGS

    Directory of Open Access Journals (Sweden)

    David Medved

    2015-06-01

    Full Text Available The interactions of magnesia-chromite refractory brick with Cu-Na2O.2SiO2 and CuO-Na2O.2SiO2 melts are studied and the chemical durability of corrosion products in water is evaluated. The corrosion tests confirm intensive infiltration of the slag melts into the tested refractory bricks and formation of Cr(6+ compounds. The molten copper partially oxidizes during corrosion test by air and penetrates into bricks. Interactions among periclase (MgO and chromite (FeCr2O4 grains with the melt Na2O.2SiO2 and copper oxides makes possible to form several compounds (e.g. Cu2MgO3, CuCrO4, CaCrO4, Na2CrO4, MgCrO4. Just the marked yellow spots, which were observed on the corroded brick surface after 30 days of free storage, suggest hydration of the high-temperature corrosion products. The yellow color of spots points out to chromates as Na2CrO4 and MgCrO4, which are well soluble in water. The leaching of corroded bricks in water (batch leaching test of a ratio of S (solid : W (water = 0.1 taking up to 28 days confirmed the Cr, Na, Mg and Ca ions leach-out. The pH value of solution increased up to 9 during leaching mainly as a consequence of elevated Na+ ion concentration. The Cr ion concentration rises in the solution up to 1 mmol.l-1. The observed moderate decrease of Cr ion concentration in the solution with the length of leaching indicates super-saturation of the solution and precipitation of the products.

  19. Corrosion resistant coating

    Science.gov (United States)

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  20. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  1. [Solidification/Stabilization of Chromite Ore Processing Residue (COPR) Using Zero-Valent Iron and Lime-Activated Ground Granulated Blast Furnace Slag].

    Science.gov (United States)

    Chen, Zhong-lin; Li, Jin-chunzi; Wang, Bin-yuan; Fan, Lei-tao; Shen, Ji-min

    2015-08-01

    The solidification/stabilization (S/S) of chromite ore processing residue (COPR) was performed using zero-valent iron (ZVI) and lime-activated ground granulated blast furnace slag (GGBFS). The degree of Cr immobilization was evaluated using the leaching procedure, mineral composition analysis and morphology analysis. Semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The results showed that after reduction, all of the S/S treated COPR samples met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg x L(-1)), the compressive strength of all the S/S samples could meet the compressive strength standard (15 MPa) for producing clay bricks, and Cr existed as the specie that bound to Fe/Mn oxides in the S/S samples. At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels.

  2. The enhancement effect of pre-reduction using zero-valent iron on the solidification of chromite ore processing residue by blast furnace slag and calcium hydroxide.

    Science.gov (United States)

    Li, Jinchunzi; Chen, Zhonglin; Shen, Jimin; Wang, Binyuan; Fan, Leitao

    2015-09-01

    A bench scale study was performed to assess the effectiveness of the solidification of chromite ore processing residue (COPR) by blast furnace slag and calcium hydroxide, and investigate the enhancement effect of pre-reduction using zero-valent iron (ZVI) on the solidification treatment. The degree of Cr immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as the solid waste-extraction procedure for leaching toxicity-sulfuric acid & nitric acid method (Chinese standard HJ/T299-2007). Strength tests and semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The experimental results showed that the performance of pre-reduction/solidification (S/S) was superior to that of solidification alone. After pre-reduction, all of the S/S treated COPR samples met the TCLP limit for total Cr (5 mg L(-1)), whereas the samples with a COPR content below 40% met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg L(-1)). At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Multi-layer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze' ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  4. Coating of pumps; coating af pumper

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Hans; Moritzen, J.; Thoegersen, Jeanette

    2005-11-15

    Coating of pumps is a quite new activity. For many years pipes and containers have been coated inside in order to avoid corrosion, but the technology has only been used inside pumps for the last ten years. The technology comes from USA and is originally developed in the space technology industry as an exceptionally durable and corrosion constant coating. The project is a further development of results found in a previous R and D project in which measurements were performed before and after coating two different installations. Both installations showed large efficiency improvements. This project supplements the theory behind losses in pumps with measurements on more pumps. (BA)

  5. Comportamento reológico de suspensões aquosas de cromito de lantânio Rheological behaviour of lanthanum chromite aqueous suspension

    Directory of Open Access Journals (Sweden)

    L. F. G. Setz

    2011-06-01

    Full Text Available O cromito de lantânio (LaCrO3 é o material mais estudado para a produção de interconectores para células a combustível de ��xido sólido (SOFC. Devido a complexidade das microestruturas e geometrias das SOFCs, freqüentemente são necessárias, técnicas de processamento coloidal, os quais têm recebido maior atenção nos últimos anos por permitirem a obtenção de partes complexas com microestrutura controlada e reprodutíveis. Nos últimos anos, muito esforço tem sido direcionado ao processamento dos eletrólitos e eletrodos, mas aos componentes como o interconector, pouca atenção tem sido dada. Este artigo apresenta o estudo reológico e de conformação em moldes de gesso do cromito de lantânio para a produção de interconectores para SOFCs. A composição La0,80Sr0,20Cr0,92Co0,08O3, obtida por reação de combustão, foi utilizada. As suspensões aquosas foram preparadas com conteúdo de sólidos variando de 8 a 17,5% vol. utilizando-se, poliacrilato de amônia (PAA como polieletrólito/dispersante e hidróxido de tetrametilamônio (HTMA como provedor de alcalinidade. A influência da concentração dos aditivos e o tempo em moinho de bolas foram estudados. Os resultados indicam que o tempo 24 h de homogeneização em moinho de bolas, com 3% e 1%, em massa, de PAA e HTMA respectivamente, proporcionam as melhores condições para colagem em moldes de gesso, sendo possível obter peças após sinterização com densidades relativas elevadas.Lanthanum chromite (LaCrO3 is the most studied material for SOFC's interconnectors' production. The complexity of microstructures and geometries of SOFC devices often requires the use of colloidal processing techniques, which have received increased attention in the last years for obtaining complex parts with controlled microstructure and high reliability. Much effort has been devoted to the processing of electrodes and electrolytes but the other layers, such as that of interconnecting

  6. Neoproterozoic chromite-bearing high-Mg diorites in the western part of the Jiangnan orogen, southern China: Geochemistry, petrogenesis and tectonic implications

    Science.gov (United States)

    Chen, Xin; Wang, Di; Wang, Xiao-Lei; Gao, Jian-Feng; Shu, Xu-Jie; Zhou, Jin-Cheng; Qi, Liang

    2014-07-01

    High-Mg diorites were discovered in the southern part of the ca. 830 Ma Dongma Pluton, northern Guangxi Province of southern China. The diorites (SiO2 = 59-65 wt%) are characterized by high MgO (6.7-8.9 wt%) contents and Mg-number [Mg# = 100 × Mg/(Mg + Fe)] (69-73), in contrary to the associated medium-Mg (MgO = 3.4-3.8 wt%, Mg# = 59-63) granodiorites in the Dongma main body and the low-Mg (MgO = 1.4-1.9 wt%, Mg# = 46-51) granodiorites in the Bendong Pluton to the north. Moreover, the high-Mg diorites show surprisingly high Cr (595-640 ppm) and Ni (171-194 ppm) concentrations, which are beyond the ranges of most coeval mafic rocks in the study area. Correspondingly, chromite crystals were separated from the high-Mg diorites and some of the medium-Mg granodiorites, and they show high Cr# [100 × Cr/(Cr + Al)] (average of 75), but low Mg# (0.34-2.51) and low Fe3 +. The decoupling of Cr# and Mg# and the existence of quartz + apatite mineral inclusion in chromites suggest Mg-Fe exchange that may be facilitated by the disequilibrium resulted from magma mixing. The high-Mg diorites show low La/Yb (6.8-8.5) and Sr/Y (2.1-3.1) ratios, significant negative anomalies of Nb and Ti and positive anomaly of Pb, resembling the Setouchi high-Mg andesites, despite of their relatively low Sr (71-100 ppm). All of the studied diorites and granodiorites show enriched Nd isotope compositions, with εNd(t) values (- 3.2 to - 5.9) a bit higher than some of the associated mafic rocks. Some of the high-Mg diorites show whole-rock εHf(t) (- 6.0 to - 6.2) coupled with Nd isotopes, similar to the associated mafic-ultramafic rocks in northern Guangxi, suggesting the metasomatism by melts of subducting sediments in the mantle source. Whereas, others show decoupled Nd-Hf isotopes that are similar to the medium- and low-Mg granodiorites [εHf(t) = - 1.8 to + 0.05], probably indicating the late magma mixing with granitic magmas at a crustal level for the dioritic magmas. We propose a two

  7. Effect of heterovalent substitutions in yttrium chromite on the hyperfine interactions of {sup 119}Sn{sup 4+} studied by Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fabritchnyi, Pavel B., E-mail: pf_1404@yahoo.fr [Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Afanasov, Mikhail I.; Mezhuev, Evgeny M. [Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Wattiaux, Alain; Duttine, Mathieu [CNRS – Université de Bordeaux, Institut de Chimie de la Matière Condensée de Bordeaux, 33608 Pessac Cedex (France); Labrugère, Christine [CNRS – Université de Bordeaux, PLACAMAT UMS 3626, 33608 Pessac Cedex (France)

    2016-03-15

    In order to develop the {sup 119}Sn Mössbauer spectroscopic probe technique to study magnetically ordered materials, three Ca-substituted yttrium chromites, i.e. Y{sub 0.9}Ca{sub 0.1}CrO{sub 3}, Y{sub 0.9}Ca{sub 0.1}Cr{sub 0.9}Ti{sub 0.1}O{sub 3} and Y{sub 0.8}Ca{sub 0.2}Cr{sub 0.8}Ti{sub 0.2}O{sub 3}, doped with 0.3 atom-% Sn{sup 4+}, were for the first time investigated. {sup 119}Sn Mössbauer spectra, recorded at 4.2 K, have allowed, through analysis of the magnetic hyperfine field values, probed by {sup 119}Sn nuclei, to gain insight into the local magnetically active surrounding of different Sn{sup 4+} ions. In all of these compounds, partial segregation of Sn{sup 4+} ions is revealed. In the case of Y{sub 0.9}Ca{sub 0.1}CrO{sub 3}, neither highly oxidized Cr{sup 4+} nor Cr{sup 6+} species, expected to compensate for the Ca{sup 2+} positive charge deficit, is found in the vicinity of the {sup 119}Sn{sup 4+} probe. In the case of both studied Ti-containing chromites, {sup 119}Sn Mössbauer spectra have provided the original indirect evidence for the statistical distribution of Cr{sup 3+} and Ti{sup 4+} ions over the octahedral sites and permitted characterization of the occurring associates of Sn{sup 4+}. - Graphical abstract: Two kinds of Sn{sup 4+} associates allowing {sup 119}Sn Mössbauer spectra of tin-doped Y{sub 0.9}Ca{sub 0.1}Cr{sub 0.9}Ti{sub 0.1}O{sub 3} and Y{sub 0.8}Ca{sub 0.2}Cr{sub 0.8}Ti{sub 0.2}O{sub 3} to be accounted for. - Highlights: • {sup 119}Sn probe is tested as a source of information on the B-sublattice of AF perovskites. • Neither Cr{sup 3+} nor Cr{sup 6+} is detected nearby {sup 119}Sn{sup 4+} ions in Y{sub 0.9}Ca{sub 0.1}CrO{sub 3}. • Cr{sup 3+} and Ti{sup 4+} are found to be randomly distributed in Y{sub 1−x}Ca{sub x}Cr{sub 1−x}Ti{sub x}O{sub 3} (x=0.1 or 0.2). • Sn{sup 4+} dopant segregations are revealed in all of the studied materials.

  8. Meteorology drives ambient air quality in a valley: a case of Sukinda chromite mine, one among the ten most polluted areas in the world.

    Science.gov (United States)

    Mishra, Soumya Ranjan; Pradhan, Rudra Pratap; Prusty, B Anjan Kumar; Sahu, Sanjat Kumar

    2016-07-01

    The ambient air quality (AAQ) assessment was undertaken in Sukinda Valley, the chromite hub of India. The possible correlations of meteorological variables with different air quality parameters (PM10, PM2.5, SO2, NO2 and CO) were examined. Being the fourth most polluted area in the globe, Sukinda Valley has always been under attention of researchers, for hexavalent chromium contamination of water. The monitoring was carried out from December 2013 through May 2014 at six strategic locations in the residential and commercial areas around the mining cluster of Sukinda Valley considering the guidelines of Central Pollution Control Board (CPCB). In addition, meteorological parameters viz., temperature, relative humidity, wind speed, wind direction and rainfall, were also monitored. The air quality data were subjected to a general linear model (GLM) coupled with one-way analysis of variance (ANOVA) test for testing the significant difference in the concentration of various parameters among seasons and stations. Further, a two-tailed Pearson's correlation test helped in understanding the influence of meteorological parameters on dispersion of pollutants in the area. All the monitored air quality parameters varied significantly among the monitoring stations suggesting (i) the distance of sampling location to the mine site and other allied activities, (ii) landscape features and topography and (iii) meteorological parameters to be the forcing functions. The area was highly polluted with particulate matters, and in most of the cases, the PM level exceeded the National Ambient Air Quality Standards (NAAQS). The meteorological parameters seemed to play a major role in the dispersion of pollutants around the mine clusters. The role of wind direction, wind speed and temperature was apparent in dispersion of the particulate matters from their source of generation to the surrounding residential and commercial areas of the mine.

  9. Long-term stability of FeSO4 and H2SO4 treated chromite ore processing residue (COPR): Importance of H(+) and SO4(2).

    Science.gov (United States)

    Wang, Xin; Zhang, Jingdong; Wang, Linling; Chen, Jing; Hou, Huijie; Yang, Jiakuan; Lu, Xiaohua

    2017-01-05

    In this study, the long-term stability of Cr(VI) in the FeSO4 and H2SO4 (FeSO4-H2SO4) treated chromite ore processing residue (COPR) after 400 curing days and the stabilization mechanisms were investigated. FeSO4-H2SO4 treatment significantly reduced toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) Cr(VI) concentrations to lower than the regulatory limit of 1.5mgL(-1) (HJ/T 301-2007, China EPA) even for the samples curing 400days, achieving an outstanding long-term stability. Our independent leaching tests revealed that H(+) and SO4(2-) have synergistic effect on promoting the release of Cr(VI), which would make Cr(VI) easier accessed by Fe(II) during stabilization. The contributions of H(+) and SO4(2-) to Cr(VI) release ratio were 25%-44% and 19%-38%, respectively, as 5mol H2SO4 per kg COPR was used. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and alkaline digestion analyses were also employed to interpret the possible stabilization mechanism. Cr(VI) released from COPR solid was reduced to Cr(III) by Fe(II), and then formed stable FexCr(1-x)(OH)3 precipitate. This study provides a facile and reliable scheme for COPR stabilization, and verifies the excellent long-term stability of the FeSO4-H2SO4 treated COPR.

  10. Detrital magnetite and chromite in Jack Hills quartzite cobbles: Further evidence for the preservation of primary magnetizations and new insights into sediment provenance

    Science.gov (United States)

    Dare, Matthew S.; Tarduno, John A.; Bono, Richard K.; Cottrell, Rory D.; Beard, James S.; Kodama, Kenneth P.

    2016-10-01

    The magnetization of zircons from sedimentary rocks of the Jack Hills (Yilgarn Craton, Western Australia) provide evidence for a Hadean to Paleoarchean geodynamo, 4.0 to 4.2 billion years old. These magnetizations pass a microconglomerate test, attesting to the fidelity of Jack Hills zircons as recorders of these most ancient magnetic signals. The lack of pervasive remagnetization of the Jack Hills is also documented through a positive conglomerate test conducted on cobble-sized clasts. A key element of the latter test is the preservation of a high unblocking temperature magnetization that can survive peak metamorphic temperatures. Rock magnetic studies suggest the mineral carrier is magnetite. Herein, we investigate the magnetic mineral carriers in cobble samples through scanning electron microscope and microprobe analyses, conduct an inter-laboratory paleomagnetic study to evaluate sensitivities required to evaluate the weak magnetizations carried by the Jack Hills sediments, and assess provenance information constrained by the opaque minerals. These data confirm magnetite as a detrital phase and the presence of high unblocking temperature magnetizations, further supporting the posit that the Jack Hills sediments can preserve primary magnetic signatures. We note that some of these magnetizations are near the measurement resolution of standard cryogenic magnetometers and thus exacting laboratory procedures are required to uncover these signals. In addition to magnetite, the cobbles contain an assemblage of Mg poor Cr-Fe chromites, Ni-sulfides and pyrrhotite that suggest a source in a layered intrusion different from the granitoid source of the zircons. Any Hadean rock fragment in these sediments, if present, remains elusive.

  11. Surfaces, Coatings and Protection

    Science.gov (United States)

    Ferguson, I. F.

    1982-08-01

    Plasma sprayed ceramics, sputter ion plating, and sol-gel ceramic protective coatings for nuclear reactors are discussed. The influence of such coatings on the behavior of reactor fuel elements is noted. The investigation of such coatings by diffraction methods is described. Laser and nuclear microprobes, scanning transmission electron microscopes, neutron scattering, and image analysis are summarized.

  12. Commercial Fastener Coatings Doerken

    Science.gov (United States)

    2010-06-01

    Phosphating* *partly recommended Dip Spinning Dipping Spraying Spin coating Conveyor oven box oven Inductive drying Pretreatment Coating Preheating...Curing Cooling Application Techniques - Dip Spin Coating Gurtbnd Cross BarTranspo" Band beiCifteiE Vo12one Vent llated Pre .Zone Cros~ Bar T ransrt

  13. PIT Coating Requirements Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  14. Hard and superhard nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J. [Univ. of West Bohemia, Plzen (Czech Republic). Dept. of Phys.

    2000-03-01

    This article reviews the development of hard coatings from a titanium nitride film through superlattice coatings to nanocomposite coatings. Significant attention is devoted to hard and superhard single layer nanocomposite coatings. A strong correlation between the hardness and structure of nanocomposite coatings is discussed in detail. Trends in development of hard nanocomposite coatings are also outlined. (orig.)

  15. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  16. Vacuum plasma spray coating

    Science.gov (United States)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  17. Anticorrosive coatings: a review

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    The main objective of this review is to describe some of the important topics related to the use of marine and protective coatings for anticorrosive purposes. In this context, "protective" refers to coatings for containers, offshore constructions, wind turbines, storage tanks, bridges, rail cars......, and petrochemical plants while "marine" refers to coatings for ballast tanks, cargo holds and cargo tanks, decks, and engine rooms on ships. The review aims at providing a thorough picture of state-of-the-art in anticorrosive coatings systems. International and national legislation aiming at reducing the emission...... of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to convince consumers...

  18. Evaluation of HVOF coatings

    Directory of Open Access Journals (Sweden)

    Mariana Landová

    2016-07-01

    Full Text Available Attention in this paper is devoted to the evaluation of wear coatings deposited using HVOF technology (high velocity oxy-fuel. There were evaluated three types of coatings based on WC-Co (next only 1343, WC-Co-Cr (next only 1350 and Cr3C2-25NiCr (next only 1375. There was assessed adherence of coatings, micro hardness, porosity and the tribological properties of erosive, abrasive, adhesive and wear resistance of coatings in terms of cyclic thermal load. Thanks to wide variety of suitable materials and their combinations, the area of utilization thermally sprayed coatings is very broad. It is possible to deposit coatings of various materials from pure metals to special alloys. The best results in the evaluated properties were achieved at the coating with the label 1375.

  19. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  20. 阿富汗喀布尔超镁铁岩型铬铁矿成矿条件与找矿潜力探讨%Minerogenetic Conditions and Prospecting Potentials on Kabur Ultramafic-Type Chromite Deposit in Afghanistan

    Institute of Scientific and Technical Information of China (English)

    曹积飞; 孟广路; 张晶; 王斌; 李宝强; 计文化; 范堡城; 李慧英

    2015-01-01

    阿富汗喀布尔地块位于欧亚板块与印度板块碰撞交汇处,属特提斯喜马拉雅成矿域组成部分。伴随晚中生代、新生代以来新特提斯洋的拉张、闭合,喀布尔地块产生了大量与板块俯冲碰撞有关的超镁铁杂岩带,蛇纹石化普遍发育。该超镁铁岩带向东经巴基斯坦延伸至我国西藏境内,著名的罗布莎铬铁矿床可与之对比。洛加尔铬铁矿是喀布尔地块具代表性的、与始新世超镁铁岩有关的岩浆型矿床。典型矿床地质特征研究表明,洛加尔铬铁矿属与PPG型蛇绿岩有关的富铬型地幔橄榄岩熔融产物。通过典型矿床研究与区域成矿条件分析,认为喀布尔地区具良好的成矿地质背景,成矿条件优越,具寻找豆荚状铬铁矿床潜力。%Kabur block in Afghanistan,situating on intersection part between Eurasian plate and Indian plate, belong to component parts of Tethys-Himalaya metallogenic domain.Followed by tension,subduction and closure of Neo-Tethys ocean dating from late Mesozoic,Cenozoic era,a large number of ultrabasic complex belt related with plate subduction and collision generated in the Kabur block,and widespread developed serpentinization. This ultrabasic rock belt extend from Pakistan across eastern Tibet in China, Luo Busha chromite deposit can be comparative. Logar chromite deposit, one typical type of magmatic deposits on Afghanistan massif, is related with ultramafic rocks of Eocene. Ultramafic rock belt hosting ore deposit extends esteran toward to China Tibet through Pakistan, and can compared with ultramafic belt hosting Luo Busha chromite deposit. Analysis and researches about geological characteristics of typical deposit indicate that the Logar chromite deposit belongs to melting products of chromium-rich and mantle peridotite relating with PPG-type ophiolites. Throughing typical deposit studying and regional metallogenetic conditions analyzing, it is believed that Kabur

  1. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue.

    Science.gov (United States)

    Watts, Mathew P; Coker, Victoria S; Parry, Stephen A; Pattrick, Richard A D; Thomas, Russell A P; Kalin, Robert; Lloyd, Jonathan R

    2015-03-01

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ∼25% (BnM) and ∼50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ⩾5% w/w BnM or ⩾1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4-7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable capacity

  2. Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue

    Science.gov (United States)

    Geelhoed, Jeanine S.; Meeussen, Johannes C. L.; Hillier, Stephen; Lumsdon, David G.; Thomas, Rhodri P.; Farmer, John G.; Paterson, Edward

    2002-11-01

    Chromite ore processing residue (COPR) contains very high levels of chromium as Cr(III) and Cr(VI) and has a pH of ˜11.5 to 12. Millions of tonnes of COPR have in the past been deposited in urban areas. We have studied the factors that control leaching of Cr(VI), Ca, Al, Si, and Mg from COPR by means of batch experiments, mineralogical characterization of COPR via X-ray powder diffraction and scanning electron microscopy, and chemical equilibrium modeling. Batch experiments at a range of pH values and two liquid:solid ratios showed that mineral solubility control exists for aqueous concentrations of Cr(VI) above pH 10. Calculations indicate that the solid phases that control the solubility of Cr(VI) at pH values above 11 are Cr(VI)-substituted hydrogarnet (Ca 3Al 2(H 4O 4,CrO 4) 3) and Cr(VI)-hydrocalumite (Ca 4Al 2(OH) 12CrO 4·6 H 2O), a layered double-hydroxide clay with chromate anions held in the interlayers. In the pH range 9.5 to 11, the description of the Cr(VI) concentration in solution was strongly improved by the incorporation in the model of Cr(VI)-ettringite (Ca 6Al 2(OH) 12(CrO 4) 3·26 H 2O), which precipitates as a secondary phase when hydrocalumite dissolves. The proposed model for leaching of COPR at high pH includes Cr(VI)-bearing hydrogarnet, Cr(VI)-hydrocalumite, Cr(VI)-ettringite, brucite, calcite, Ca 2Al 2(OH) 10·3 H 2O, CaH 2SiO 4, and gehlenite hydrate (Ca 2Al 2(OH) 6SiO 8H 8·H 2O). The model accurately predicts the concentrations of Cr(VI), Ca, Al, Si, and Mg in solution in the pH range 10 to 12 as well as the pH-buffering behavior. Below pH 8, a decrease in the Cr(VI) concentration in solution is observed, which may be attributed to sorption of chromate onto freshly precipitated Al and Fe hydroxide surfaces. Sulfate and carbonate show the same type of behavior as chromate. The chemistry of COPR shows similarities with cement and high-pH municipal waste incinerator bottom ash.

  3. Experimental Observations of the Patterns of Fungi-Mineral Surfaces Interactions with Muscovite, Biotite, Bauxite, Chromite, Hematite, Galena, Malachite, Manganite and Carbonate Substrates.

    Science.gov (United States)

    Claeys, P.

    2006-12-01

    In an in vitro experimental work, mineral substrates of muscovite, biotite, bauxite, chromite, hematite, galena, malachite, manganite and carbonate were exposed to free fungal growth and interaction in Petri dishes under open conditions. All of the experimental minerals were examined by XRD for identity and purity. The 12-week experiment resulted in significant alteration of the mineral substrates. SEM, EDX, and XRD analysis showed secondary mineral biomineralization represented by different crystal morphologies of Ca- and Mg- oxalates (weddelite: CaC2O4·2H2O, whewellite CaC2O4·H2O and glushinskite: MgC2O4·2H2O), struvite: (NH4) MgPO4·6H2O, gypsum CaSO4.2H2O, and possible dolomite. Metals bioleached from the substrates included: Fe, Pb, S, Cu, Al as single crystals or aggregates, amorphous layers, amorphous aggregates, and linear forms influenced by the fungal filaments. Bauxite and manganite showed the strongest cases of bioleaching where Fe and Al were fungally extracted and deposited as separate mineral species from the Al-Fe oxides mixture, while Ca and S were extracted from the manganite substrate and deposited as gypsum. The bioleached metals were either deposited on the mineral substrates, attached to fungal filaments, embedded in the fungal mycelium or in the extracellular polysaccharide substance (EPS) layer. The EDX microanalysis of the fungal hyphae frequently revealed metal content adsorbed on the hyphae sheath surface. During the short period of the experiment, fungal interaction with the mineral surfaces produced significant biomechanical and biochemical bioweathering features: strong pitting of the mineral surfaces, exfoliation, tunnelling, dissolution, honeycomb-alveolar structures, perforations, fragmentation, and cementation. One important aspect of these interactions is the strong affinity of fungal hyphae to mineral surfaces. The fungi engulfed whole blocks of minerals in the hyphal network, irrespective of mineral surface topography with

  4. Electrospark deposition coatings

    Science.gov (United States)

    Sheely, W. F.

    1986-11-01

    Hard surfacing for wear resistant and low-friction coatings has been improved by means of advances in the computer controls in electronic circuitry of the electrospark deposition (ESD) process. coatings of nearly any electrically conductive metal alloy or cermet can be deposited on conductive materials. Thickness is usually two mils or less, but can be as high as 10 mils. ESD coatings can quadrupole cutting tool life.

  5. Advanced Multifunctional Coating

    Science.gov (United States)

    2011-08-17

    and UV durability of then current chrome free TT-P-2756 SPTC • Leverage APC technology into SPTC • Coating uses same fluoropolyurethane technology...as APC currently used on C-17 • Leverage recent advances in chrome free corrosion inhibitor technology • State of the art chrome free corrosion...coat exposed metal Aluminum Base Metal Original Finish System Aged APC Topcoat Conversion Coat Chromic Acid Anodize Aluminum Cladding Original Primer

  6. Oxide coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.

    1995-06-01

    Monolithic SiC heat exchangers and fiber-reinforced SiC-matrix composite heat exchangers and filters are susceptible to corrosion by alkali metals at elevated temperatures. Protective coatings are currently being developed to isolate the SiC materials from the corrodants. Unfortunately, these coatings typically crack and spall when applied to SiC substrates. The purpose of this task is to determine the feasibility of using a compliant material between the protective coating and the substrate. The low-modulus compliant layer could absorb stresses and eliminate cracking and spalling of the protective coatings.

  7. Superhard Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The recent development in the field of nanocomposite coatings with good mechanical properties is critically reviewed in this paper. The design principle and materials selection for the nanocomposite coatings are introduced. Different methods for the preparation of superhard nanocomposite coatings are described with emphasis on the magnetron sputtering. Based on recent theoretical and experimental results regarding the appearance of superhardness in nanocomposite coating, lattice parameter changes, crystallite size, microstructure and morphology are reviewed in detail. Also emphasized are the mechanical properties (especially on hardness) and the ways by which the properties are derived.

  8. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  9. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  10. Mechanically Invisible Polymer Coatings

    DEFF Research Database (Denmark)

    2014-01-01

    phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically...... invisible polymer coatings....

  11. Chinese Decorative Coatings Market

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Growth prospects The Chinese market for decorative coatings, excluding non-architectural products such as industrial varnishes,marine paint and other industrially applied coatings, has been growing byaround 10% annually and was estimated to be worth Eurol.3 billion a year, with an annual per capita consumption of just less than 1 liter ofpaint.

  12. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has sign

  13. Coating of graphene

    NARCIS (Netherlands)

    Schneider, G.F.; Dekker, C.

    2014-01-01

    The present invention is in the field of highly crystalline graphene and coating said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as

  14. Unobtrusive graphene coatings

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther

    2012-01-01

    The contact angle of water drops on substrates for which the wettability is dominated by van der Waals forces remains unchanged when the substrates are coated with a monolayer of graphene. Such 'wetting transparency' could lead to superior conducting and hydrophobic graphene-coated surfaces with tun

  15. Coated electroactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Abouimrane, Ali

    2016-08-30

    A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.

  16. Coating of graphene

    NARCIS (Netherlands)

    Schneider, G.F.; Dekker, C.

    2014-01-01

    The present invention is in the field of highly crystalline graphene and coating said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as

  17. Nanostructured Protective Coatings

    Science.gov (United States)

    2006-01-01

    stresses induce strain fatigue with subsequent formation of cracks. Cracking in coatings leads to materials failure observed physically as spallation or...elevated temperatures. In this test a hole is drilled into the substrate before coating it. This allows a fixed amount of air to be trapped at the

  18. Effect of synthesis method on the preparation of lanthanum chromite for using as ceramic pigment; Influencia do metodo de sintese na preparacao de cromita de lantanio para utilizacao como pigmento ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, G.C.B.; Ferreira, K.M.B.; Pimentel, P.M., E-mail: gerbeson_dantas@hotmail.com [Universidade Federal Rural do Semi-Arido (UFERSA), Mossoro, RN (Brazil); Melo, D.M.A.; Gomes, D.K.S.; Costa, A.F. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2016-07-01

    In this paper, LaCrO3 perovskites were synthesized by two synthesis methods, in order to compare these methods in function of microstructure and optical properties. The synthesis routes employed were a method that use gelatin as organic precursor and microwave assisted auto-combustion. The resulting powders were calcined at 800 ° C and 1000 ° C for obtaining the perovskite phase. Then, they were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM); UV-Visible spectroscopy and colorimetric analysis for color identification. No significant changes were observed in the powders synthesized by two routes. The oxides presented orthorhombic perovskite structure. The powders synthesized by the gelatin method were single phase. Chromite lanthanide presented grayish hue being darker in perovskites calcined at higher temperatures. (author)

  19. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  20. Phenol-formaldehyde intumescent coating composition and coating prepared therefrom

    Science.gov (United States)

    Salyer, Ival O. (Inventor); Fox, Bernard L. (Inventor)

    1986-01-01

    Intumescent coatings which form a thick, uniform, fine celled, low density foam upon exposure to a high intensity heat flux or flame are disclosed, the invention coatings comprise phenolic resin prepolymer containing a blowing agent and a nucleating agent; in the preferred embodiments the coatings also contains a silicone surfactant, the coatings are useful in thermal and fire protection systems.

  1. Coatings to prevent frost

    DEFF Research Database (Denmark)

    Lusada, Ricardo; Holberg, Stefan; Bennedsen, Jeanette Marianne Dalgaard

    2016-01-01

    The ability of hydrophobic, organic–inorganic hybrid coatings to decelerate frost propagation was investigated. Compared to a bare aluminum surface, the coatings do not significantly reduce the freezing probability of supercooled water drops. On both surfaces, the probability for ice nucleation...... at temperatures just below 0°C, for example at −4°C, is low. Freezing of a single drop on aluminum leads, however, to instant freezing of the complete surface. On hydrophobic coatings, such a freezing drop is isolated; the frozen area grows slowly. At −4°C surface temperature in a +12°C/90% relative humidity...

  2. Advanced thermal barrier coating systems

    Science.gov (United States)

    Dorfman, M. R.; Reardon, J. D.

    1985-01-01

    Current state-of-the-art thermal barrier coating (TBC) systems consist of partially stabilized zirconia coatings plasma sprayed over a MCrAlY bond coat. Although these systems have excellent thermal shock properties, they have shown themselves to be deficient for a number of diesel and aircraft applications. Two ternary ceramic plasma coatings are discussed with respect to their possible use in TBC systems. Zirconia-ceria-yttria (ZCY) coatings were developed with low thermal conductivities, good thermal shock resistance and improved resistance to vanadium containing environments, when compared to the baseline yttria stabilized zirconia (YSZ) coatings. In addition, dense zirconia-titania-yttria (ZTY) coatings were developed with particle erosion resistance exceeding conventional stabilized zirconia coatings. Both coatings were evaluated in conjunction with a NiCr-Al-Co-Y2O3 bond coat. Also, multilayer or hybrid coatings consisting of the bond coat with subsequent coatings of zirconia-ceria-yttria and zirconia-titania-yttria were evaluated. These coatings combine the enhanced performance characteristics of ZCY with the improved erosion resistance of ZTY coatings. Improvement in the erosion resistance of the TBC system should result in a more consistent delta T gradient during service. Economically, this may also translate into increased component life simply because the coating lasts longer.

  3. Aluminum phosphate coatings

    Science.gov (United States)

    Sambasivan, Sankar; Steiner, Kimberly A.; Rangan, Krishnaswamy K.

    2007-12-25

    Aluminophosphate compounds and compositions as can be used for substrate or composite films and coating to provide or enhance, without limitation, planarization, anti-biofouling and/or anti-microbial properties.

  4. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  5. Friction surfaced Stellite6 coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Prasad; Damodaram, R. [Department of Metallurgical and Materials Engineering - Indian Institute of Technology Madras, Chennai 600 036 (India); Rafi, H. Khalid, E-mail: khalidrafi@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Ram, G.D. Janaki [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Reddy, G. Madhusudhan [Metal Joining Group, Defence Metallurgical Research Laboratory (DMRL) Kanchanbagh, Hyderabad 500 058 (India); Nagalakshmi, R. [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirappalli 620 014 (India)

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  6. Nanostructured Superhydrophobic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    This factsheet describes a research project that deals with the nanostructured superhydrophobic (SH) powders developed at ORNL. This project seeks to (1) improve powder quality; (2) identify binders for plastics, fiberglass, metal (steel being the first priority), wood, and other products such as rubber and shingles; (3) test the coated product for coating quality and durability under operating conditions; and (4) application testing and production of powders in quantity.

  7. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  8. Coated 4340 Steel

    Science.gov (United States)

    2013-08-26

    alternative coatings qualified to MIL-PRE-23377 Class N and an electroplated zinc - nickel alloy passivated with a trivalent chromium solution which is...effect of a non-chromate primer and zinc - nickel plating with non-chromate passivation as alternatives to the chromate primer and cadmium plating with...NAWCADPAX/TR-2013/252 COATED 4340 STEEL by E. U. Lee C. Lei M. Stanley B. Pregger C. Matzdorf 26 August 2013

  9. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  10. Residual stresses within sprayed coatings

    Institute of Scientific and Technical Information of China (English)

    JIANG Yi; XU Bin-shi; WANG Hai-dou

    2005-01-01

    Some important developments of residual stress researches for coating-based systems were studied. The following topics were included the sources of residual stresses in coatings: error analysis of Stoney's equation in the curvature method used for the measurement of coating residual stress, the modeling of residual stress and some analytical models for predicting the residual stresses in coatings. These topics should provide some important insights for the fail-safe design of the coating-based systems.

  11. Biocompatibility of Niobium Coatings

    Directory of Open Access Journals (Sweden)

    René Olivares-Navarrete

    2011-09-01

    Full Text Available Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainless steel substrates and tissue culture plastic were also studied, in order to give comparative information. No toxic response was observed for any of the surfaces, indicating that the Nb coatings act as a biocompatible, bioinert material. Cell morphology was also studied by immune-fluorescence and the results confirmed the healthy state of the cells on the Nb surface. X-ray diffraction analysis of the coating shows that the film is polycrystalline with a body centered cubic structure. The surface composition and corrosion resistance of both the substrate and the Nb coating were also studied by X-ray photoelectron spectroscopy and potentiodynamic tests. Water contact angle measurements showed that the Nb surface is more hydrophobic than the SS substrate.

  12. Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    Science.gov (United States)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    1999-01-01

    A improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coating includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX, and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer, or a diameter of less than 5 microns. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention, the first bond coat layer is applied to the substrate, and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of die invention, a ceramic insulating layer covers the second bond coat layer.

  13. Effect of Coated PHB on Properties of Abradable Seal Coating

    Institute of Scientific and Technical Information of China (English)

    CHENG Xudong; XIANG Hongyu; YE Weiping; MENG Xiaoming; MIN Jie; LIU Minzhi; ZHANG Pu; LU Wei

    2014-01-01

    As pore-forming materials, the coated poly-p-hydroxybenzoate(short for PHB) and h-BN can be applied in the preparation of abradable seal coatings at high temperature. The characteristics of coating such as morphology, thermal stability and composition were studied by SEM, EDS and FTIR. The results show that the modified PHB will change the remained carbon amount, porosity and pore morphology of the coating, which can affect the properties of coatings. If the pore is small enough in uniform distribution, the coating with 5 MPa bond strength, 30-55 HR45Y superficial hardness and certain of carbon can be suitable to well abradability.

  14. Alternative RPC Coatings

    Science.gov (United States)

    Strack, Jason

    2009-10-01

    The nuclear physics group at the University of Illinois is currently developing techniques to further improve the performance of Bakelite Resistive Plate Chambers (RPCs) for use as muon trigger detectors in experiments at hadron colliders. Muon trigger RPCs at LHC and RHIC typically use Bakelite plates coated with linseed oil. Both Bakelite and linseed oil, however, have high bulk and surface resistivity thus limiting the detection efficiency of the RPC at high rates. Experiments which dope the linseed oil with either carbon or copper are carried out with the goal to select targeted lower surface resistivity values for the coating applied to the Bakelite plates. Two doping procedures have been studied. In the first method a thin layer of graphite is deposited between the Bakelite and the linseed oil. For the second method the graphite or copper powder are deposited on top of the drying linseed oil coating. In this presentation the coating methods will be discussed and the effects of the coating on the RPC position resolution, cluster size and efficiencies will be discussed.

  15. Coatings for directional eutectics

    Science.gov (United States)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  16. Based Adaptive Nanocomposite Coatings

    Science.gov (United States)

    Ramazani, M.; Ashrafizadeh, F.; Mozaffarinia, R.

    2014-08-01

    A promising Ni(Al)-Cr2O3-Ag-CNT-WS2 self-lubricating wear-resistant coating was deposited via atmospheric plasma spray of Ni(Al), nano Cr2O3, nano silver and nano WS2 powders, and CNTs. Feedstock powders with various compositions prepared by spray drying were plasma sprayed onto carbon steel substrates. The tribological properties of coatings were tested by a high temperature tribometer in a dry environment from room temperature to 400 °C, and in a natural humid environment at room temperature. It was found that all nanocomposite coatings have better frictional behavior compared with pure Ni(Al) and Ni(Al)-Cr2O3 coatings; the specimen containing aproximately 7 vol.% Ag, CNT, and WS2 had the best frictional performance. The average room temperature friction coefficient of this coating was 0.36 in humid atmosphere, 0.32 in dry atmosphere, and about 0.3 at high temperature.

  17. Preliminary coating design and coating developments for ATHENA

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Ferreira, Desiree Della Monica; Christensen, Finn Erland

    2011-01-01

    We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used for these des......We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used...

  18. 藏南罗布莎铬铁矿床铬尖晶石矿物学与矿床成因研究%Study on mineralogy of Cr-spinel and genesis of Luobusha chromite deposit in South Tibet

    Institute of Scientific and Technical Information of China (English)

    周二斌; 杨竹森; 江万; 侯增谦; 郭福生; 洪俊

    2011-01-01

    俯冲环境的转变过程,洋内俯冲带之上(SSZ)的弧间盆地环境是形成冶金级豆荚状铬铁矿的最为有利构造环境.研究提出了罗布莎铬铁矿的“三阶段”成矿模式,即,经历了大洋中眷预富集阶段,俯冲带之上主成矿阶段及之后的构造抬升改造阶段.纯橄岩与方辉橄榄岩接触带之下的方辉橄榄岩相带是寻找较大规模铬铁矿床的有利地带.%The Luobusha chromite deposit, which is the largest podiform deposit with maximum study in China, occurred in a fresh mantle peridotite in the east part of Yarlung Zangbo ophiolite belt in South Tibet The economic ore bodies of Luobusha chromite deposits are mainly hosted in a specific lithological horizon of harzburgite facies beneath the boundary of ophiolitic crust and mantle (beneath the Moho boundary) , and the ore type mainly includes massive, disseminated and nodular chromitite ores. Luobusha Cr-spinel have a large variety in composition, based on the chemical composition and the detailed mineralogical study of Cr-spinel, at least three crystalline epochs of the Cr-spinel in the Luobusha podiform chromite deposit can be recognized. (1) Pre-mineralization Cr-spinel : This kind of Cr-spinel is mainly as accessory mineral in the harzburgite, and occurred in the form of residual phenocryst, exsolution crystal and euhedral crystal with high A12O3 content, most of the Cr value of the Cr-spinel is less than 60, and has a negative correlation ship with Mg#. The overall evolution of this kind of Cr-spinel from exsolution crystal, residual phenocryst to euhedral crystal of Cr-spinel tends to be riched in Cr and Fe; (2) Main mineralization Cr-spinel can also be divided into two stages. The early stage of Cr-spinel, has a typical characteristic of Cr-riched, is a major mineral with anhedral crystal in a variety type of chromitite ores, and a minor mineral with euhedral crystal in dunite ' envelop' crust outside of the orebodies. Most of the Cr value of

  19. Bioceramics for implant coatings

    Directory of Open Access Journals (Sweden)

    Allison A Campbell

    2003-11-01

    Early research in this field focused on understanding the biomechanical properties of metal implants, but recent work has turned toward improving the biological properties of these devices. This has led to the introduction of calcium phosphate (CaP bioceramics as a bioactive interface between the bulk metal impart and the surrounding tissue. The first CaP coatings were produced via vapor phase processes, but more recently solution-based and biomimetic methods have emerged. While each approach has its own intrinsic materials and biological properties, in general CaP coatings promise to improve implant biocompatibility and ultimately implant longevity.

  20. Advanced Coating Removal Techniques

    Science.gov (United States)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  1. Active Packaging Coatings

    Directory of Open Access Journals (Sweden)

    Luis J. Bastarrachea

    2015-11-01

    Full Text Available Active food packaging involves the packaging of foods with materials that provide an enhanced functionality, such as antimicrobial, antioxidant or biocatalytic functions. This can be achieved through the incorporation of active compounds into the matrix of the commonly used packaging materials, or by the application of coatings with the corresponding functionality through surface modification. The latter option offers the advantage of preserving the packaging materials’ bulk properties nearly intact. Herein, different coating technologies like embedding for controlled release, immobilization, layer-by-layer deposition, and photografting are explained and their potential application for active food packaging is explored and discussed.

  2. HA-Coated Implant

    DEFF Research Database (Denmark)

    Daugaard, Henrik; Søballe, Kjeld; Bechtold, Joan E

    2014-01-01

    The goal of osseointegration of orthopedic and dental implants is the rapid achievement of a mechanically stable and long lasting fixation between living bone and the implant surface. In total joint replacements of cementless designs, coatings of calcium phosphates were introduced as a means...... of improving the fixation of implants. Of these, hydroxyapatite (HA) is the most widely used and most extensively investigated. HA is highly osseoconductive, and the positive effect is well documented in both basic and long-term clinical research [1–6]. This chapter describes experimental and clinical studies...... evaluating bone-implant fixation with HA coatings....

  3. Tribology and coatings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The future use of fuel-efficient, low-emission, advanced transportation systems (for example, those using low-heat-rejection diesel engines or advanced gas turbines) presents new challenges to tribologists and materials scientists. High service temperatures, corrosive environments, and extreme contact pressures are among the concerns that make necessary new tribological designs, novel materials, and effective lubrication concepts. Argonne is working on methods to reduce friction, wear and corrosion, such as soft metal coatings on ceramics, layered compounds, diamond coatings, and hard surfaces.

  4. Preparation of hydrophobic coatings

    Science.gov (United States)

    Branson, Eric D.; Shah, Pratik B.; Singh, Seema; Brinker, C. Jeffrey

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  5. Methods and means for coating paper by film coating

    NARCIS (Netherlands)

    van der Maarel, Marc; Ter Veer, Arend Berend Cornelis; Vrieling-Smit, Annet; Delnoye, Pierre

    2015-01-01

    This invention relates to the field of paper coating, more in particular to means and methods for providing paper with at least one layer of pigment using film coating to obtain a well printable surface. Provided is a method for preparing coated paper comprising the steps of: a) providing a pigmente

  6. Thermal barrier coating for alloy systems

    Science.gov (United States)

    Seals, Roland D.; White, Rickey L.; Dinwiddie, Ralph B.

    2000-01-01

    An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

  7. Optical coatings for fiber lasers

    Institute of Scientific and Technical Information of China (English)

    HONG Dong-mei; ZHU Zhen; YUE Wei

    2005-01-01

    Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fiber laser coatings lies in that coatings should separate two closely wavelength light including laser pump wavelength (980 nm) and laser irradiation wavelength(1 050~1 100 nm). At the same time, the coatings should have high laser damage threshold.

  8. Coatings and Tints of Spectacle Lenses

    OpenAIRE

    H. Zeki Büyükyıldız

    2012-01-01

    Spectacle lenses are made of mineral or organic (plastic) materials. Various coatings and tints are applied to the spectacle lenses according to the characteristic of the lens material, and for the personal needs and cosmetic purpose. The coatings may be classified in seven groups: 1) Anti-reflection coatings, 2) Hard coatings, 3) Clean coat, 4) Mirror coatings, 5) Color tint coating (one of coloring processes), 6) Photochromic coating (one of photochromic processes), and 7) Anti-fog...

  9. Tribological characterization of selected hard coatings

    OpenAIRE

    Karlsson, Patrik

    2009-01-01

    Hard coatings are often used for protection of tool surfaces due to coating properties like low friction and high wear resistance. Even though many of the hard coatings have been tested for wear, it is important to try new wear test setups to fully understand tribological mechanisms and the potential of hard coatings. Few experiments have been performed with dual-coated systems where the sliding contact surfaces are coated with the same, or different, hard coating. The dual-coated system coul...

  10. Rotatable fixture for spray coating

    Science.gov (United States)

    Katvala, V.; Porter, E.; Smith, M.

    1979-01-01

    Fixture that rotates about two axes ensures uniform coating and minimizes handling of coated workpiece. Each side of tile is coated in sequence by moving turntables until surface is perpendicular to spray. Process is repeated until desired thickness has built up.

  11. Coatings for transport industry

    Directory of Open Access Journals (Sweden)

    Krzysztof LUKASZKOWICZ

    2014-09-01

    Full Text Available The investigations concerned structural analysis, as well as mechanical properties and wear resistant of MeN/DLC double-layer coating deposited by hybrid PVD/PACVD method. In sliding dry friction conditions, after the break-in time, the friction coefficient for the investigated elements is set in the range between 0.03-0.06.

  12. Chitin-based coatings

    OpenAIRE

    1995-01-01

    A chitosan starting material is combined with a dilute organic acid to produce a chitosonium ion complex. The chitosonium ion complex is then cast, sprayed, extruded, or otherwise processed to produce filaments, coatings, fibers, or the like. Heat is then used to convert the chitosonium ion complex into a N-(C.sub.1-30)acyl glucose amine polymer.

  13. Metallography of Aluminide Coatings

    Science.gov (United States)

    1991-05-01

    Aero-Space Technologies Australia, Systems Division Librarian Ansett Airlines of Australia, Library Australian Airlines, Library Qantas Airways Limited...Fink, R, W. Heakel. " Analysis of Microstructural Change due to Cyclic Oxidation in Aluminilde-coated NI-Al. NI-Cr and NI-Cr-Al Alloys". High Temperature

  14. ATHENA optimized coating design

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen

    2012-01-01

    The optimization of coating design for the ATHENA mission si described and the possibility of increasing the telescope effective area in the range between 0.1 and 10 keV is investigated. An independent computation of the on-axis effective area based on the mirror design of ATHENA is performed in ...

  15. Studies on Effect of Impregnation with Sols on Pore Characteristic of Magnesia Chromite Brick Used in RH%浸溶胶对RH炉用镁铬砖气孔特性的影响研究

    Institute of Scientific and Technical Information of China (English)

    陈希来; 邹龙; 曹锟; 宋仪杰; 李亚伟; 徐国涛

    2012-01-01

    研究了浸铝溶胶、锆溶胶镁铬砖的气孔特性变化及对抗渣性能的影响.结果表明:浸溶胶后镁铬砖的气孔率减小、气孔孔径分布变好,确定合适的溶胶浸渍次数为3~4次;浸溶胶会提高镁铬砖的抗渣性能,铝溶胶更能提高材料的抗渣渗透性而锆溶胶则更能改善材料的抗渣侵蚀性.%Pore characteristic evolution and slag resistance of magnesia chromite brick impregnated with amumi-na sol and zirconia sol were studied. The results indicate that the porosity decreases and pore size distribution becomes better after the specimens impregnated with sols. The appropriate impregnation times is 3 or 4. The slag resistance characteristic is improved after the specimens impregnated with sols. Alumina sol can be beneficial to enhance the slag anti-penetration and zirconia sol is better to improve the slag anti-corrosion.

  16. Thermoplastic coating of carbon fibers

    Science.gov (United States)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  17. Infrared optical coatings in SITP

    Institute of Scientific and Technical Information of China (English)

    LIU Ding-quan; ZHANG Feng-shan

    2005-01-01

    Infrared optical coatings in SITP (Shanghai Institute of Technical Physics) mainly cover the spectrum range from 0.7 μm to 15 μm, and visible and near-UV range are also been included. The coatings are mainly used for metal-reflectance mirrors, Anti-reflection(AR) lens and windows, filters, and dichroic beam splitters. Coatings passed some dependability tests. These optical coated devices usually consist in a remote observing instrument. Most coating materials are commercial products. And one kind of special material PbTe is made by ourselves. Some main results of our research department are reported.

  18. Coatings for improved corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1992-05-01

    Several coating approaches are being developed to resist attack in coal-fired environments and thereby minimize corrosion of underlying substrate alloys and extend the time for onset of breakaway corrosion. In general, coating systems can be classified as either diffusion or overlay type, which are distinguished principally by the method of deposition and the structure of the resultant coating-substrate bond. The coating techniques examined are pack cementation, electrospark deposition, physical and chemical vapor deposition, plasma spray, and ion implantation. In addition, ceramic coatings are used in some applications.

  19. Thermoplastic coating of carbon fibers

    Science.gov (United States)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  20. Methods for Coating Particulate Material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  1. BIODEGRADABLE COATING FROM AGATHIS ALBA

    Directory of Open Access Journals (Sweden)

    NORYAWATI MULYONO

    2012-11-01

    Full Text Available The adhesive property of copal makes it as a potential coating onto aluminum foil to replace polyethylene. This research aimed to develop copal-based coating. The coating was prepared by extracting the copal in ethyl acetate and dipping the aluminium foil in ethyl acetate soluble extract of copal. The characterization of coating included its thickness, weight, thermal and chemical resistance, and biodegradation. The results showed that the coating thickness and weight increased as the copal concentration and dipping frequency increased. Thermal resistance test showed that the coating melted after being heated at 110°C for 30 min. Copal-based coating wasresistant to acidic solution (pH 4.0, water, and coconut oil, but was deteriorated in detergent 1% (w/v and basic solution (pH 10.0. Biodegradability test using Pseudomonas aeruginosa showed weight reduction of 76.82% in 30 days.

  2. Flow accelerated organic coating degradation

    Science.gov (United States)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  3. Design of optical coatings

    Science.gov (United States)

    Gunkel, Claus W.

    1990-08-01

    A highly sophisticated antireflection coating and a cut-on-filter - designed by the Leitz program "RDP" - will be pointed out. The program runs on a VAX 8530 and allows to calculate reflectance, transmittance and phase of randomly polarized light which interacts with marginal surfaces. The number of layers is not limited. Some or even all layers are allowed to be anistropic. Up to four layers may be inhomogeneous both in refractive indices and absorption constants. At a time two thicknesses, two refractive indices and absorption constants as well as the angles of incidence may be varied independently in each run. The calculated values will be compared with the results of measurements. The antireflection coating is evaporated in a Balzers high vacuum evaporation plant, controlled by the process unit BPU 420, whereas the cut-on filter is evaporated in a Leybold box coater with Leycom III and two electron-beam guns.

  4. Superelastic Orthopedic Implant Coatings

    Science.gov (United States)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  5. Permeability of edible coatings.

    Science.gov (United States)

    Mishra, B; Khatkar, B S; Garg, M K; Wilson, L A

    2010-01-01

    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m(2).day (6% beeswax) to 758.0 g/m(2).day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm(3)cm cm(-2)s(-1)Pa(-1), with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrophilic (whey protein concentrate and carboxymethyl cellulose).

  6. Permeability of edible coatings

    OpenAIRE

    B Mishra; Khatkar, B. S.; Garg, M. K.; Wilson, L.A.

    2010-01-01

    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m2.day (6% beeswax) to 758.0 g/m2.day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm3cm cm−2s−1Pa−1, with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrop...

  7. Photochromic mesoporous hybrid coatings

    Science.gov (United States)

    Raboin, L.; Matheron, M.; Gacoin, T.; Boilot, J.-P.

    2008-09-01

    Spirooxazine (SO) photochromic molecules were trapped in sol-gel matrices. In order to increase the colourability and improve mechanical properties of sol-gel photochromic films, we present an original strategy in which SO photochromic molecules were dispersed in mesoporous organized films using the impregnation technique. Well-ordered organosilicate mesoporous coatings with the 3D-hexagonal symmetry were prepared by the sol-gel technique. These robust mesoporous films, which contain high amounts of hydrophobic methyl groups at the pore surface, offer optimized environments for photochromic dyes dispersed by impregnation technique. After impregnation by a spirooxazine solution, the photochromic response is only slightly slower when compared with mesostructured or soft sol-gel matrices, showing that mesoporous organized hybrid matrix are good host for photochromic dyes. Moreover, the molecular loading in films is easily adjustable in a large range using multi-impregnation procedure and increasing the film thickness leading to coatings for optical switching devices.

  8. Self-Cleaning Coatings

    Science.gov (United States)

    2014-06-01

    vacuum suction flask was used to volatilize the extra thinner from the mixtures. 2.1.2.2 Procedures Removal of filler from PSX-700 The original PSX...employed in this research to activate and ensure proper dispersions of these functional particles into the coating system. It is anticipated that...clear part (the resin and solvent) of the tubes was poured into a vacuum flask, while the precipitate (filler) from the bottom of the tubes was

  9. Thermal barrier coating materials

    Directory of Open Access Journals (Sweden)

    David R. Clarke

    2005-06-01

    Full Text Available Improved thermal barrier coatings (TBCs will enable future gas turbines to operate at higher gas temperatures. Considerable effort is being invested, therefore, in identifying new materials with even better performance than the current industry standard, yttria-stabilized zirconia (YSZ. We review recent progress and suggest that an integrated strategy of experiment, intuitive arguments based on crystallography, and simulation may lead most rapidly to the development of new TBC materials.

  10. for zeolite coating

    Directory of Open Access Journals (Sweden)

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  11. Decoding white coat hypertension.

    Science.gov (United States)

    Bloomfield, Dennis A; Park, Alex

    2017-03-16

    There is arguably no less understood or more intriguing problem in hypertension that the "white coat" condition, the standard concept of which is significantly blood pressure reading obtained by medical personnel of authoritative standing than that obtained by more junior and less authoritative personnel and by the patients themselves. Using hospital-initiated ambulatory blood pressure monitoring, the while effect manifests as initial and ending pressure elevations, and, in treated patients, a low daytime profile. The effect is essentially systolic. Pure diastolic white coat hypertension appears to be exceedingly rare. On the basis of the studies, we believe that the white coat phenomenon is a common, periodic, neuro-endocrine reflex conditioned by anticipation of having the blood pressure taken and the fear of what this measurement may indicate concerning future illness. It does not change with time, or with prolonged association with the physician, particularly with advancing years, it may be superimposed upon essential hypertension, and in patients receiving hypertensive medication, blunting of the nighttime dip, which occurs in about half the patients, may be a compensatory mechanisms, rather than an indication of cardiovascular risk. Rather than the blunted dip, the morning surge or the widened pulse pressure, cardiovascular risk appears to be related to elevation of the average night time pressure.

  12. High-temperature protective coatings on superalloys

    Institute of Scientific and Technical Information of China (English)

    刘培生; 梁开明; 周宏余

    2002-01-01

    Protective coatings are essential for superalloys to serve as blades of gas turb ines at high temperatures, and they primarily include aluminide coating, MCrAlY overlay coating, thermal barrier coating and microcrystalline coating. In this paper, all these high-temperature coatings are reviewed as well as their preparing techniques. Based on the most application and the main failure way, the importance is then presented for further deepgoing study on the high-temperature oxidation law of aluminide coatings.

  13. Coating and curing apparatus and methods

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, Brenor L.; Gonsalves, Peter R.; Maghsoodi, Sina; Colson, Thomas E.; Yang, Yu S.; Abrams, Ze' ev R.

    2016-04-19

    Disclosed is a coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly, systems and methods for curing sol-gel coatings deposited onto the surface of glass substrates using high temperature air-knives, infrared emitters and direct heat applicators are disclosed.

  14. A New Coating Process for Production of Coated Magnesium Powders

    Science.gov (United States)

    2008-04-16

    TGA data for magnesium hydroxide content. TGA analysis of the as-coated powders is a reproducible and accurate method for the determination of... TGA analysis of the as-coated powder, there is approximately 3wt% magnesium hydroxide present in the material due to the process variation compared...11: Magnesium hydroxide content as measured by TGA analysis for the 1-lb batches of as-coated ground powder Figure 12: Nitrometer analysis of

  15. Dense protective coatings, methods for their preparation and coated articles

    Energy Technology Data Exchange (ETDEWEB)

    Tulyani, Sonia; Bhatia, Tania; Smeggil, John G.

    2015-12-29

    A method for depositing a protective coating on a complex shaped substrate includes the steps of: (1) dipping a complex shaped substrate into a slurry to form a base coat thereon, the slurry comprising an aqueous solution, at least one refractory metal oxide, and at least one transient fluid additive present in an amount of about 0.1 percent to 10 percent by weight of the slurry; (2) curing the dipped substrate; (3) dipping the substrate into a precursor solution to form a top barrier coat thereon; and (4) heat treating the dipped, cured substrate to form a protective coating.

  16. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    Science.gov (United States)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  17. Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dong-Ming

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.

  18. Pipeline integrity : control by coatings

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, A.S. [Indian Inst. of Technology, Bombay (India)

    2008-07-01

    This presentation provided background information on the history of cross-country pipelines in India. It discussed the major use of gas. The key users were described as being the power and fertilizer industries, followed by vehicles using compressed natural gas to replace liquid fuels and thereby reduce pollution. The presentation also addressed the integrity of pipelines in terms of high production, safety, and monitoring. Integrity issues of pipelines were discussed with reference to basic design, control of corrosion, and periodic health monitoring. Other topics that were outlined included integrity by corrosion control; integrity by health monitoring; coatings requirements; classification of UCC pipeline coatings; and how the pipeline integrity approach can help to achieve coatings which give design life without any failure. Surface cleanliness, coating conditions, and the relationship between temperature of Epoxy coating and the time of adhesive coating were also discussed. Last, the presentation provided the results of an audit of the HBJ pipeline conducted from 1999 to 2000. tabs., figs.

  19. Functional Coatings with Polymer Brushes

    OpenAIRE

    König, Meike

    2013-01-01

    The scope of this work is to fathom different possibilities to create functional coatings with polymer brushes. The immobilization of nanoparticles and enzymes is investigated, as well as the affection of their properties by the stimuli-responsiveness of the brushes. Another aspect is the coating of 3D-nanostructures by polymer brushes and the investigation of the resulting functional properties of the hybrid material. The polymer brush coatings are characterized by a variety of microscopic a...

  20. Role of SiO2 coating in multiferroic CoCr2O4 nanoparticles

    Science.gov (United States)

    Kamran, M.; Ullah, Asmat; Mehmood, Y.; Nadeem, K.; Krenn, H.

    2017-02-01

    Effect of silica (SiO2) coating concentration on structural and magnetic properties of multiferroic cobalt chromite (CoCr2O4) nanoparticles have been studied. The nanoparticles with average crystallite size in the range 19 to 28 nm were synthesised by sol-gel method. X-ray diffraction (XRD) analysis has verified the composition of single-phase cubic normal spinel structure of CoCr2O4 nanoparticles. The average crystallite size and cell parameter decreased with increasing SiO2 concentration. TEM image revealed that the shape of nanoparticles was non-spherical. Zero field cooled/field cooled (ZFC/FC) curves revealed that nanoparticles underwent a transition from paramagnetic (PM) state to collinear short-range ferrimagnetic (FiM) state, and this PM-FiM transition temperature decreased from 101 to 95 K with increasing SiO2 concentration or decreasing crystallite size. A conical spin state at Ts = 27 K was also observed for all the samples which decreased with decreasing average crystallite size. Low temperature lock-in transition was also observed in these nanoparticles at 12 K for uncoated nanoparticles which slightly shifted towards low temperature with decreasing average crystallite size. Saturation magnetization (Ms) showed decreasing trend with increasing SiO2 concentration, which was due to decrease in average crystallite size of nanoparticles and enhanced surface disorder in smaller nanoparticles. The temperature dependent AC-susceptibility also showed the decrease in the transition temperature (Tc), broadening of the Tc peak and decrease in magnetization with increasing SiO2 concentration or decreasing average crystallite size. In summary, the concentration of SiO2 has significantly affected the structural and magnetic properties of CoCr2O4 nanoparticles.

  1. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  2. Electrochemically switchable polypyrrole coated membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weidlich, Claudia, E-mail: weidlich@dechema.d [DECHEMA e.V., Karl-Winnacker-Institut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany); Mangold, Klaus-Michael [DECHEMA e.V., Karl-Winnacker-Institut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2011-04-01

    A method for coating membranes with polypyrrole (PPy) has been developed. Different membranes, such as microfiltration as well as ion exchanger membranes have been coated with PPy to yield electrical conductivity of the membranes. The coated membranes have been investigated by cyclic voltammetry and scanning electron microscopy and their permeability and permselectivity have been tested. The results show that PPy can be tailored as cation or anion exchanger and its porosity can be controlled to avoid any impairment of the membrane by the polymer layer. These PPy coated membranes can be applied as electrochemically switchable, functionalised membranes with controllabel and variable separation properties.

  3. Studies on Nanocomposite Conducting Coatings

    Directory of Open Access Journals (Sweden)

    Amitava Bhattacharyya

    2013-01-01

    Full Text Available Nanocomposite conducting coatings can impart stable surface electrical conductivity on the substrate. In this paper, carbon nanofiber (CNF and nanographite (NG are dispersed in thermoplastic polyurethane matrix and coated on the surface of glass and polyethylene terephthalate (PET film. The nanoparticles dispersion was studied under TEM. The coating thicknesses were estimated. Further, their resistance and impedance were measured. It has been observed that the 5 wt% CNF dispersed nanocomposite coatings show good conductivity. The use of NG can bring down the amount of CNF; however, NG alone has failed to show significant improvement in conductivity. The nanocomposite coating on PET film using 2.5 wt% of both CNF and NG gives frequency-independent impedance which indicates conducting network formation by the nanoparticles. The study was carried out at different test distances on nanocomposite coated PET films to observe the linearity and continuity of the conducting network, and the result shows reasonable linearity in impedance over total test length (from 0.5 cm to 4.5 cm. The impedance of nanocomposite coatings on glass is not frequency independent and also not following linear increase path with distance. This indicates that the dispersion uniformity is not maintained in the coating solution when it was coated on glass.

  4. Coatings Technology Integration Office (CTIO)

    Data.gov (United States)

    Federal Laboratory Consortium — CTIO serves as the Air Force's central resource for aircraft coating systems and their applications. CTIO's primary objectives are pollution prevention and improved...

  5. Corrosion behavior of duplex coatings

    Directory of Open Access Journals (Sweden)

    K. Raghu Ram Mohan Reddy

    2016-07-01

    Full Text Available The titanium alloys are used in defense, aerospace, automobile, chemical plants and biomedical applications due to their very high strength and lightweight properties. However, corrosion is a life-limiting factor when Ti alloys are exposed to different chemical environments at high temperatures. In the present paper, duplex NiCrAlY/WC–Co coating is coated onto Ti6Al4V substrate to investigate the corrosion behavior of both coated samples and the substrate. The duplex coating was performed with NiCrAlY as the intermediate coat of 200 μm thickness deposited by HVOF process and WC–Co ceramic top coat with varying thicknesses of 250 μm, 350 μm and 450 μm deposited by DS process. Potentiodynamic polarization tests were employed to investigate the corrosion performance of duplex coated samples and substrate in Ringer’s solution at 37 °C and pH value was set to 5.7. Finally the results reveal that 350 μm thick coated samples showed highest corrosion resistance compared to 250 μm thick samples as well as bare substrate. However, the 450 μm thick coated sample showed poor corrosion resistance compared to the substrate. The scale formed on the samples upon corrosion was characterized by using SEM analysis to understand the degree of corrosion behavior.

  6. Protective coatings on extensible biofibres

    Science.gov (United States)

    Holten-Andersen, Niels; Fantner, Georg E.; Hohlbauch, Sophia; Waite, J. Herbert; Zok, Frank W.

    2007-09-01

    Formulating effective coatings for use in nano- and biotechnology poses considerable technical challenges. If they are to provide abrasion resistance, coatings must be hard and adhere well to the underlying substrate. High hardness, however, comes at the expense of extensibility. This property trade-off makes the design of coatings for even moderately compliant substrates problematic, because substrate deformation easily exceeds the strain limit of the coating. Although the highest strain capacity of synthetic fibre coatings is less than 10%, deformable coatings are ubiquitous in biological systems. With an eye to heeding the lessons of nature, the cuticular coatings of byssal threads from two species of marine mussels, Mytilus galloprovincialis and Perna canaliculus, have been investigated. Consistent with their function to protect collagenous fibres in the byssal-thread core, these coatings show hardness and stiffness comparable to those of engineering plastics and yet are surprisingly extensible; the tensile failure strain of P. canaliculus cuticle is about 30% and that of M. galloprovincialis is a remarkable 70%. The difference in extensibility is attributable to the presence of deformable microphase-separated granules within the cuticle of M. galloprovincialis. The results have important implications in the design of bio-inspired extensible coatings.

  7. Microplasma sprayed hydroxyapatite coatings

    CERN Document Server

    Dey, Arjun

    2015-01-01

    ""This unique book on development of microplasma sprayed HAp coating has been organized in a very compact yet comprehensive manner. This book also highlights the horizons of future research that invites the attention of global community, particularly those in bio-medical materials and bio-medical engineering field. This book will surely act as a very useful reference material for both graduate/post-graduate students and researchers in the field of biomedical, orthopedic and manufacturing engineering and research. I truly believ that this is the first ever effort which covers almost all the

  8. Mold and Crucible Coatings

    Science.gov (United States)

    1986-04-28

    34;" -"""-"’" " " ""’’ "" "" ’"" ’ j * AD I. AT)-E 9 7 W CONTRACTOR REPORT ARCCD-CR-86007 MOLD AND CRUCIBLE COATINGS Sylvia J. Canino Arthur L. Geary Nuclear...IFnlRpr April 1984_-_December 198, .. AUTNORfo) S. CONTRACT on CRAM? # "I MWef(e)I Sylvia J. Canino and Arthur L. Geary DAAK1O-84-C-0056 PERFORMING

  9. Carbonaceous film coating

    Science.gov (United States)

    Maya, Leon

    1989-01-01

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris[1,3,2]diazaborine[1,2-a:1'2'-c:1"2"-e]borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  10. Thermal Protective Coatings

    Science.gov (United States)

    1976-03-31

    within 2 minutes for the No. 4. Sodiurn silicate was tested with alumnnunm hydroxide, nerlite, vermiculite and borax filler systems. None of the systems...1.27 cm) thick, 3/16 inch (0.48 cm) cell size, 5.5 lbs/ft 3 (88.1 kg/m 3 ) glass/phenolic honey - p comib set into the fire retardant maLerial. The sheets...COATING SPECIMEN PERCENT BY WEIGHT THICKNESS WEIGHT ANO. MATRIX FILLrR 1’fLS (CM) LBS/FT. (kg,’-), 26 50% Shell 828 Epoxy Resin Borax - 54 (.14) .39

  11. ATHENA optimized coating design

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen

    2012-01-01

    baseline including on- and off-axis effective area curves are presented. We find that the use of linear graded multilayers can increas by 37% the integraed effective area of ATHENA in the energy range between 0.1 keV and 15keV.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE......The optimization of coating design for the ATHENA mission si described and the possibility of increasing the telescope effective area in the range between 0.1 and 10 keV is investigated. An independent computation of the on-axis effective area based on the mirror design of ATHENA is performed...

  12. USAF Inorganic Coating Successes

    Science.gov (United States)

    2012-08-01

    in2 (Marginal Fail) 7 or more pits were seen in a total of 30 in2 (Fail) Aluminum CFCC Screening Test Results Conversion Coating Alloy OC-ALC... 6061 168+ Hours 7075 168+ Hours 2024 48 Hours 5052 48-72 Hours 72-168+ Hours (5 pits on one panel at 48 hours, but then no more ) 6061 72...Dichromate Sealer Test Results Sealer Substrate Quality Thickness Corrosion Primer Dry Tape Adhesion Wet Tape Adhesion Baseline 1 Al 2024-T3 PASS

  13. Low Temperature Powder Coating

    Science.gov (United States)

    2011-02-09

    of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) • Legacy primers contain hexavalent chrome • Conventional powder coatings...panels • Third panel exhibited a single filament extending slightly beyond allowable tolerance Filiform Corrosion Resistance LTCPC on 2024 T-3 Clad ...LTCPC on 2024 T-3 Clad O G D E N A I R L O G I S T I C S C E N T E R BE AMERICA’S BEST JTP Results • LTCPC performance similar or better than wet

  14. Characteristics Research on Chromite from the Poyi Cu-Ni Sulfide-bearing Mafic-ultramafic Intrusions in the Beishan Block,Xinjiang%新疆北山坡-含铜镍镁铁-超镁铁质岩体铬铁矿特征研究

    Institute of Scientific and Technical Information of China (English)

    柴凤梅; 夏芳; 陈斌; 卢鸿飞

    2011-01-01

    The Poyi maiic-ultramafic intrusion is one of the most important Cu-Ni bearing complexes in Beishan area. This intrusion is composed of peridotite, pyroxenite and gabbro. Chromites occurs in the peridotite as an enhedral, subhedral and anhedral accessory mineral. The characteristics of chromites suggested that the primary magma of the Poyi intrusions must have been mantle-derived S-undersaturated mafic magma derived from asthenosphere mantle source even related to mantle plume and have experienced two stages evolution to form this intrusion. Some chromites enclosed within olivine may be crystallized from the primary magma in the deep magma chamber, and others enclosed within pyroxene and being interstitial crystals may be formed from the olivine- and sulfide-laden crystal mush in the high-level magma chamber. The chromites formed in the early stage of magma evolution are very important for the Cu-Ni sulphide deposit.%坡-镁铁-超镁铁质岩体为新疆北山地区一重要的含铜镍硫化物的侵入体.该岩体主要由橄榄岩、辉石岩和辉长岩组成.铬铁矿主要以副矿物形式现于橄榄岩中.它们以自形-半自形以及它形存在于橄榄石颗粒间或其内,部分为辉石包裹,偶见其包裹橄榄石.结合电子探针研究,认为坡一岩体母岩浆是来源于软流圈地幔或者与地幔柱有关的基性岩浆,原生岩浆经过了两个阶段的演化形成了目前的坡一岩体.包裹于橄榄石中的铬铁矿为岩浆早期深部岩浆房中结晶的产物,其他形式存在的铬铁矿为富含橄榄石和铬铁矿“晶粥”的演化岩浆结晶的结果.铬铁矿的结晶对坡一铜镍矿床的形成具有重要的意义.

  15. Dry coating, a novel coating technology for solid pharmaceutical dosage forms.

    Science.gov (United States)

    Luo, Yanfeng; Zhu, Jesse; Ma, Yingliang; Zhang, Hui

    2008-06-24

    Dry coating is a coating technology for solid pharmaceutical dosage forms derived from powder coating of metals. In this technology, powdered coating materials are directly coated onto solid dosage forms without using any solvent, and then heated and cured to form a coat. As a result, this technology can overcome such disadvantages caused by solvents in conventional liquid coating as serious air pollution, high time- and energy-consumption and expensive operation cost encountered by liquid coating. Several dry coating technologies, including plasticizer-dry-coating, electrostatic-dry-coating, heat-dry-coating and plasticizer-electrostatic-heat-dry-coating have been developed and extensively reported. This mini-review summarized the fundamental principles and coating processes of various dry coating technologies, and thoroughly analyzed their advantages and disadvantages as well as commercialization potentials.

  16. Alternative HTS coated conductors

    Science.gov (United States)

    Blaugher, R. D.; Bhattacharya, R. N.; Chen, J.; Padmanabhan, R.

    2002-10-01

    The availability of Bi-2223 high-temperature-superconductor (HTS) powder-in-tube (PIT) tape, with acceptable performance for long lengths, has provided the ability to construct a wide range of HTS electric power components. As a result, there are major worldwide projects in developing HTS electric power components for demonstration in a utility environment. Utility acceptance for superconducting power equipment will depend on several key factors: improved system performance, lower life-cycle costs, higher efficiency versus conventional technology, reliability and maintenance comparable to conventional power equipment, and a competitive installed cost. The latter is impacted by the current high cost of HTS conductors, which must be lowered to costs comparable to conventional Nb-Ti wire, i.e., $2-5/kAm. The present performance and cost of state-of-the-art Bi-2223 HTS tape, although acceptable for prototype construction, is viewed as a major deterrent that may compromise eventual commercialization for most of these electric power devices. The so-called second-generation coated conductor development, with emphasis on conductors employing HTS YBCO films, is viewed as the solution to this performance and cost issue. The potential for the Tl, Hg, and Bi-oxide superconductors for producing an HTS tape as alternatives to Bi-2223 PIT (and YBCO) will be discussed with some recent results on Bi-2212 “coated conductor” development.

  17. Lignin based controlled release coatings

    NARCIS (Netherlands)

    Mulder, W.J.; Gosselink, R.J.A.; Vingerhoeds, M.H.; Harmsen, P.F.H.; Eastham, D.

    2011-01-01

    Urea is a commonly used fertilizer. Due to its high water-solubility, misuse easily leads to excess nitrogen levels in the soil. The aim of this research was to develop an economically feasible and biodegradable slow-release coating for urea. For this purpose, lignin was selected as coating material

  18. Westinghouse thermal barrier coatings development

    Energy Technology Data Exchange (ETDEWEB)

    Goedjen, J.G.; Wagner, G. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-01

    Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications. The program is directed at developing a state-of-the-art coating system with a minimum coating life of 25,000 hours at service temperatures required to meet increasing operating efficiency goals. Westinghouse has assembled a team of university and industry leaders to accomplish this goal. Westinghouse will coordinate the efforts of all program participants. Chromalloy Turbine Technologies, Inc. and Sermatech International, Inc. will be responsible for bond coat and TBC deposition technology. Praxair Specialty Powders, Inc. will be responsible for the fabrication of all bond coat and ceramic powders for the program. Southwest Research Institute will head the life prediction modelling effort; they will also be involved in coordinating nondestructive evaluation (NDE) efforts. Process modelling will be provided by the University of Arizona.

  19. Bright Prospects for Fluorine Coatings

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Fluorine coatings are a category of new coatings with fluorine-containing resins as the major film forming substances.They have excellent weather resistance,solvent resistance, acid/alkali resistance, no toxicity and no hazards,and they contribute to film stability.

  20. Intumescent coatings under fast heating

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere

    2012-01-01

    Intumescent coatings are widely used to delay or minimise the destructive effects of fire. They are usually tested under conditions that simulate the relatively slow build-up of heat in a normal fire. Here, the effects of damage during a fire causing sudden heating of the coating were studied....

  1. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  2. External coating of colonic anastomoses

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Achiam, Michael Patrick; Rosenberg, Jacob

    2012-01-01

    Colon anastomotic leakage remains both a frequent and serious complication in gastrointestinal surgery. External coating of colonic anastomoses has been proposed as a means to lower the rate of this complication. The aim of this review was to evaluate existing studies on external coating of colonic...

  3. Foundry Coating Technology: A Review

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2011-01-01

    is important. In this review, a detailed description of these topics and examples are provided where necessary. A potential area of research in foundry coating development, using sol-gel process is suggested. The application of sol-gel technology in the development of foundry coatings is a novel approach....

  4. POWDER COATINGS: A TECHNOLOGY REVIEW

    Science.gov (United States)

    In 1995, surface coatings accounted for nearly 2.55 million Mg of volatile organic compound (VOC) emissions nationally, which is more than 12% of VOC emissions from all sources. In recent years, powder coatings have been steadily gaining popularity as an alternative to solvent-bo...

  5. Lignin based controlled release coatings

    NARCIS (Netherlands)

    Mulder, W.J.; Gosselink, R.J.A.; Vingerhoeds, M.H.; Harmsen, P.F.H.; Eastham, D.

    2011-01-01

    Urea is a commonly used fertilizer. Due to its high water-solubility, misuse easily leads to excess nitrogen levels in the soil. The aim of this research was to develop an economically feasible and biodegradable slow-release coating for urea. For this purpose, lignin was selected as coating

  6. Lignin based controlled release coatings

    NARCIS (Netherlands)

    Mulder, W.J.; Gosselink, R.J.A.; Vingerhoeds, M.H.; Harmsen, P.F.H.; Eastham, D.

    2011-01-01

    Urea is a commonly used fertilizer. Due to its high water-solubility, misuse easily leads to excess nitrogen levels in the soil. The aim of this research was to develop an economically feasible and biodegradable slow-release coating for urea. For this purpose, lignin was selected as coating material

  7. Moisture transport in coated wood

    NARCIS (Netherlands)

    Meel, P.A. van; Erich, S.J.F.; Huinink, H.P.; Kopinga, K.; Jong, J. DE; Adan, O.C.G.

    2011-01-01

    Moisture accumulation inside wood causes favorable conditions for decay. Application of a coating alters the moisture sorption of wood and prevents accumulation of moisture. This paper presents the results of a nuclear magnetic resonance (NMR) study on the influence of a coating on the moisture abso

  8. Self-Healing anticorrosive coatings

    DEFF Research Database (Denmark)

    Nesterova, Tatyana

    to steel substrates, and subjected to salt spray exposure and reverse impact testing. Neither of the tests revealed any drawbacks from addition of microcapsules to an epoxy coating in a concentration up to 50 vol %. On the contrary, the results of the impact test has shown that addition of microcapsules......Self-healing anticorrosive coatings are multi-component so-called smart materials, which have been proposed as a way to long-lasting corrosion protection of steel structures. The presently most promising technology route is based on microcapsules, filled with active healing agents, and has been...... means of separation were investigated. Capsules with a mean diameter less than 150 µm were obtained using a steel sieve coated with a fluoropolymer coating. These smaller capsules were used in further investigation as model capsules. A range of microcapsule-containing coatings was formulated, applied...

  9. Dynamic residual stress in thermal sprayed coatings

    Institute of Scientific and Technical Information of China (English)

    Wang Zhiping; Yang Yuanyuan

    2005-01-01

    With the modified Almen method, the forming and development process of residual stress in a thermal sprayed coating has been obtained. The test results identify that the residual stress in a coating is depend on coating material properties, technique and coating thickness. The paper pays much attention to the hysteresis between the coating temperature and residual stress in the coating or between the applied stress and the strain of the coating, and confirms that the fact is resulted from the"Gas Fix" character of a thermal sprayed coating.

  10. Understanding particulate coating microstructure development

    Science.gov (United States)

    Roberts, Christine Cardinal

    How a dispersion of particulates suspended in a solvent dries into a solid coating often is more important to the final coating quality than even its composition. Essential properties like porosity, strength, gloss, particulate order, and concentration gradients are all determined by the way the particles come together as the coating dries. Cryogenic scanning electron microscopy (cryoSEM) is one of the most effective methods to directly visualize a drying coating during film formation. Using this method, the coating is frozen, arresting particulate motion and solidifying the sample so that it be imaged in an SEM. In this thesis, the microstructure development of particulate coatings was explored with several case studies. First, the effect of drying conditions was determined on the collapse of hollow latex particles, which are inexpensive whiteners for paint. Using cryoSEM, it was found that collapse occurs during the last stages of drying and is most likely to occur at high drying temperatures, humidity, and with low binder concentration. From these results, a theoretical model was proposed for the collapse of a hollow latex particle. CryoSEM was also used to verify a theoretical model for the particulate concentration gradients that may develop in a coating during drying for various evaporation, sedimentation and particulate diffusion rates. This work created a simple drying map that will allow others to predict the character of a drying coating based on easily calculable parameters. Finally, the effect of temperature on the coalescence and cracking of latex coatings was explored. A new drying regime for latex coatings was identified, where partial coalescence of particles does not prevent cracking. Silica was shown to be an environmentally friendly additive for preventing crack formation in this regime.

  11. Coating of silicon pore optics

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Ackermann, M.; Christensen, Finn Erland

    2009-01-01

    For the International X-ray observatory (IXO), a mirror module with an effective area of 3 m2 at 1.25 keV and at least 0.65 m2 at 6 keV has to be realized. To achieve this goal, coated silicon pore optics has been developed over the last years. One of the challenges is to coat the Si plates...... and still to realize Si-Si bonding. It has been demonstrated that ribbed silicon plates can be produced and assembled into stacks. All previously work has been done using uncoated Si plates. In this paper we describe how to coat the ribbed Si plates with an Ir coating and a top C coating through a mask so...... that there will be coating only between the ribs and not in the area where bonding takes place. The paper includes description of the mounting jig and how to align the mask on top of the plate. We will also present energy scans from Si plates coated through a mask....

  12. Tribological Performance of Coated Surfaces

    Institute of Scientific and Technical Information of China (English)

    Kenneth Holmberg; Anssi Laukkanen

    2004-01-01

    The fundamentals of coating tribology is presented in a generalised holistic approach to friction and wear mechanisms of coated surfaces in dry sliding contacts. It is based on a classification of the tribological contact process into macromechanical, micromechanical, tribochemical contact mechanisms and material transfer. The tribological contact process is dominated by the macromechanical mechanisms, which have been systematically analysed by using four main parameters: the coating-to-substrate hardness relationship, the film thickness, the surface roughness and the debris in the contact. In this paper special attention is given to the microlevel mechanisms, and in particular new techniques for modelling the elastic, plastic and brittle behaviour of the surface by finite element (FEM) computer simulations. The contact condition with a sphere sliding over a plate coated with a very thin hard coating is analysed. A three dimensional FEM model has been developed for calculating the first principal stress distribution in the scratch tester contact of a diamond spherical tip moving with increased load on a 2 μm thick titanium nitride (TiN) coated steel surface. The model is comprehensive in that sense that it considers elastic, plastic and fracture behaviour of the contact surfaces. By identifying from a scratch experiment the location of the first crack and using this as input data can the fracture toughness of the coating be determined.

  13. Laser-based coatings removal

    Energy Technology Data Exchange (ETDEWEB)

    Freiwald, J.G.; Freiwald, D.A. [F2 Associates, Inc., Albuquerque, NM (United States)

    1995-10-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D&D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings.

  14. Integrated Glass Coating Manufacturing Line

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, Brenor [Enki Technology Inc., San Jose, CA (United States)

    2015-09-30

    This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs and a detailed deployment plan for the equipment.

  15. Intumescent Coatings as Fire Retardants

    Science.gov (United States)

    Parker, J. A.; Fohlen, G. M.; Sawko, P. M.; Fish, R. H.

    1970-01-01

    The development of fire-retardant coatings to protect surfaces which may be exposed to fire or extreme heat is a subject of intense interest to many industries. A fire-retardant paint has been developed which represents a new chemical approach for preparing intumescent coatings, and potentially, is very important to fire-prevention authorities. The requirements for a superior coating include ease of application, suitability to a wide variety of surfaces and finishes, and stability over an extended period of time within a broad range of ambient temperature and humidity conditions. These innovative coatings, when activated by the heat of a fire, react to form a thick, low-density, polymeric coating or char layer. Water vapor and sulphur dioxide are released during the intumescent reaction. Two fire-protection mechanisms thus become available: (1) the char layer retards the flow of heat, due to the extremely low thermal conductivity; and (2) water vapor and sulfur dioxide are released, providing fire quenching properties. Still another mechanism functions in cases where the char, by virtue of its high oxidation resistance and low thermal conductivity, reaches a sufficiently high temperature to re-radiate much of the incident heat load. The coatings consist of dispersions of selective salts of a nitro-amino-arornatic compound. Specifically, para-nitroaniline bisulfate and the ammonium salt of para-nitroaniline-ortho sulphuric acid (2-amino-5-nitrobenzenesulphuric acid) are used. Suitable vehicles are cellulose nitrate of lacquer grade, a nitrite-phenolic modified rubber, or epoxy-polysulfide copolymer. Three separate formulations have been developed. A solvent is usually employed, such as methylethyl ketone, butyl acetate, or toluene, which renders the coatings suitably thin and which evaporates after the coatings are applied. Generally, the intumescent material is treated as insoluble in the vehicle, and is ground and dispersed in the vehicle and solvent like an

  16. Inhomogeneous interface laser mirror coatings.

    Science.gov (United States)

    Ledger, A M

    1979-09-01

    Methods of improving the durability of thin-film laser mirror coatings for 10.6 microm using thorium fluoride, zinc selenide, and zinc sulfide materials have been investigated. The largest improvement in film durability was obtained by using inhomogeneous interface fabrication for all the dielectric-dielectric interfaces and by incorporating cerium fluoride protective overcoating material into the film design. Experimental results are given for enhanced reflectors, polarization-selective coatings, and buried-grating aperture-sharing coatings designed for high-power laser applications.

  17. Ecosystem Health in Mineralized Terrane-Data from Podiform Chromite (Chinese Camp Mining District, California), Quartz Alunite (Castle Peak and Masonic Mining Districts, Nevada/California), and Mo/Cu Porphyry (Battle Mountain Mining District, Nevada) Deposits

    Science.gov (United States)

    Blecker, Steve W.; Stillings, Lisa L.; Amacher, Michael C.; Ippolito, James A.; DeCrappeo, Nicole M.

    2010-01-01

    various mineralized terranes. We were also interested in examining these relations in the context of determining appropriate reference conditions with which to compare reclamation efforts. The purpose of this report is to present the data used to develop indices of soil and ecosystem quality associated with mineralized terranes (areas enriched in metal-bearing minerals), specifically podiform chromite, quartz alunite, and Mo/Cu porphyry systems. Within each of these mineralized terranes, a nearby unmineralized counterpart was chosen for comparison. The data consist of soil biological, chemical, and physical parameters, along with vegetation measurements for each of the sites described below. Synthesis of these data and index development will be the subject of future publications.

  18. Long-term stability of FeSO{sub 4} and H{sub 2}SO{sub 4} treated chromite ore processing residue (COPR): Importance of H{sup +} and SO{sub 4}{sup 2−}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Jingdong [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Linling, E-mail: wanglinling@mail.hust.edu.cn [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jing, E-mail: chenjing@mail.hust.edu.cn [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Hou, Huijie; Yang, Jiakuan [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu, Xiaohua [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2017-01-05

    Highlights: • The long-term stability of the FeSO{sub 4}-H{sub 2}SO{sub 4} treated COPR was evaluated. • Reliable long-term stability for samples curing 400 days was achieved. • H{sub 2}SO{sub 4} significantly enhanced the stabilization efficiency of COPR using FeSO{sub 4}. • H{sup +} and SO{sub 4}{sup 2−} both reinforced Cr(VI) release from COPR core to react with Fe(II). - Abstract: In this study, the long-term stability of Cr(VI) in the FeSO{sub 4} and H{sub 2}SO{sub 4} (FeSO{sub 4}-H{sub 2}SO{sub 4}) treated chromite ore processing residue (COPR) after 400 curing days and the stabilization mechanisms were investigated. FeSO{sub 4}-H{sub 2}SO{sub 4} treatment significantly reduced toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) Cr(VI) concentrations to lower than the regulatory limit of 1.5 mg L{sup −1} (HJ/T 301-2007, China EPA) even for the samples curing 400 days, achieving an outstanding long-term stability. Our independent leaching tests revealed that H{sup +} and SO{sub 4}{sup 2−} have synergistic effect on promoting the release of Cr(VI), which would make Cr(VI) easier accessed by Fe(II) during stabilization. The contributions of H{sup +} and SO{sub 4}{sup 2−} to Cr(VI) release ratio were 25%–44% and 19%–38%, respectively, as 5 mol H{sub 2}SO{sub 4} per kg COPR was used. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and alkaline digestion analyses were also employed to interpret the possible stabilization mechanism. Cr(VI) released from COPR solid was reduced to Cr(III) by Fe(II), and then formed stable Fe{sub x}Cr{sub (1−x)}(OH){sub 3} precipitate. This study provides a facile and reliable scheme for COPR stabilization, and verifies the excellent long-term stability of the FeSO{sub 4}-H{sub 2}SO{sub 4} treated COPR.

  19. 在表面活性剂存在下铬铁矿表土中镍的微生物萃取%Microbial extraction of nickel from chromite overburdens in the presence of surfactant

    Institute of Scientific and Technical Information of China (English)

    Sunil Kumar BEHERA; Lala Behari SUKLA

    2012-01-01

    The effect of surfactant polyoxyethylenesorbitan monolaurate (Tween-20) on the nickel bioleaching from pre-treated chromite overburden (COB),Sukinda with fungal strain Aspergillus niger,was examined in shake flasks.Along with the nickel recovery from COB by the fungal bioleaching,the effect of surfactant on the growth of the A.niger was also investigated.Results show that the addition of surfactant in low concentration was favorable for the recovery of nickel from pre-treated COB.Normally,the carbon source (sucrose) in the culture medium was utilized by the A.niger for its cellular metabolism and organic metabolites (bio acids) were produced,which were responsible for the bioleaching of minerals.However,the addition of surfactant (Tween-20)accelerated the rate of sucrose consumption by the fungi,and thus enhancing the extraction of nickel from pre-treated COB.During the study,around 39% nickel extraction was achieved in A.niger mediated bioleaching performed at 2% pulp density of pre-treated COB at 30 ℃,in the presence of surfactant whereas only 24% nickel was extracted without surfactant.%加入表面活性剂吐温20,用Aspergillus niger对预处理过的印度Sukinda铬铁矿表土在摇瓶中生物浸取镍.考察添加表面活性剂吐温20对黑曲霉菌Aspergillus niger生长及浸镍效果的影响.结果表明,添加低浓度的表面活性剂吐温20对黑曲霉菌从预处理过的铬铁矿表土中提取镍是有利的.通常,Aspergillus niger利用培养基中的碳源来进行细胞代谢,产生有机代谢物,从而生物浸出矿.添加表面活性剂吐温20加速了黑曲霉菌对碳源的消耗,从而改善了镍浸出效果.在预处理矿浆浓度为2%和温度为30℃的条件下,添加表面活性剂吐温20的镍浸取率能达到39%,没有表面活性剂的镍浸取率只有24%.

  20. A novel trilayer antireflection coating using dip-coating technique

    Institute of Scientific and Technical Information of China (English)

    Jian Xu; Yi Yin; Haiming Ma; Hui Ye; Xu Liu

    2011-01-01

    We report a new structure for broadband antireflection coating by dip-coating technique,which has minimal cost and is compatible with large-scale manufacturing.The coatings are prepared by depositing SiO2 sol-gel film on a glass substrate,subsequently depositing SiO2 single-layer particle coating through electrostatic attraction,and depositing a final very thin Si02 sol-gel film to improve the mechanical strength of the whole coating structure.The refractive index of the structure changes gradually from the top to the substrate.The transmittance of a glass substrate has been experimentally found to be improved in the spectral range of 400-1400 nn and in the incidence angle range from 0° to at least 45°.The mechanical strength is immensely improved because of the additional thin Si02 sol-gel layer.The surface texture can be applied to the substrates of different materials and shapes as an add-on coating.

  1. Water permeability of pigmented waterborne coatings

    NARCIS (Netherlands)

    Donkers, P.A.J.; Huinink, H.P.; Erich, S.J.F.; Reuvers, N.J.W.; Adan, O.C.G.

    2013-01-01

    Coatings are used in a variety of applications. Last decades more and more coating systems are transforming from solvent to waterborne coating systems. In this study the influence of pigments on the water permeability of a waterborne coating system is studied, with special interest in the possible i

  2. Overlay metallic-cermet alloy coating systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  3. DLC coatings for hydraulic applications

    Institute of Scientific and Technical Information of China (English)

    Luca NOBILI; Luca MAGAGNIN

    2009-01-01

    Replacement of lubricating oils with water or low-viscosity fluids is highly desirable in many industrial fields, on account of the environmental and economical advantages. Low lubricity of water might be insufficient for proper operation of hydraulic components, and diamond-like carbon(DLC) coatings are very attractive as solid lubricant films. A remote-plasma PACVD process was utilized to deposit hydrogenated DLC coatings (a-C:H) on different substrates. Microindentation measurements show that the coating hardness is around 35 GPa. Tribological behavior was evaluated by block-on-ring tests performed in water and water with alumina. The wear rate was calculated after measuring the wear volume by a laser profilemeter. Morphological and compositional analysis of the wear tracks reveal that coating failure may occur by abrasive wear or delamination, depending on the substrate properties. Hard and smooth substrates give the best results and dispersed alumina particles increase the wear rate.

  4. Corrosion-resistant metallic coatings

    Directory of Open Access Journals (Sweden)

    F. Presuel-Moreno

    2008-10-01

    Full Text Available We describe recent computational and experimental studies on the corrosion properties of metallic coatings that can be tailored (tuned to deliver up to three corrosion-inhibiting functions to an underlying substrate. Attributes are tuned by a selection of alloy compositions and nanostructures, ideally in alloy systems that offer flexibility of choice to optimize the corrosion-resisting properties. An amorphous Al-based coating is tuned for corrosion protection by on-demand release of ionic inhibitors to protect defects in the coating, by formation of an optimized barrier to local corrosion in Cl− containing environments, as well as by sacrificial cathodic prevention. Further progress in this field could lead to the design of the next generation of adaptive or tunable coatings that inhibit corrosion of underlying substrates.

  5. Smart Coatings for Corrosion Protection

    Science.gov (United States)

    Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  6. Cementless Hydroxyapatite Coated Hip Prostheses

    Directory of Open Access Journals (Sweden)

    Antonio Herrera

    2015-01-01

    Full Text Available More than twenty years ago, hydroxyapatite (HA, calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality.

  7. Corrosion-resistant metallic coatings

    OpenAIRE

    F. Presuel-Moreno; M.A. Jakab; N. Tailleart; Goldman, M.; J. R. Scully

    2008-01-01

    We describe recent computational and experimental studies on the corrosion properties of metallic coatings that can be tailored (tuned) to deliver up to three corrosion-inhibiting functions to an underlying substrate. Attributes are tuned by a selection of alloy compositions and nanostructures, ideally in alloy systems that offer flexibility of choice to optimize the corrosion-resisting properties. An amorphous Al-based coating is tuned for corrosion protection by on-demand release of ionic i...

  8. Hermetic Coating of Optical Fibers

    Science.gov (United States)

    1987-11-01

    of 450A/min. A number of bulk samples were coated with a-C:H including microscope slides, NaCl plates, ZBLAN fluoride glass and sapphire blanks. IR...deposition were identified. Bulk NaCl, sapphire and glass samples coated with - 1 micron thick films were tested analytically. With the information gathered...1.0 INTRODUCTION: The surface of a freshly drawn glass fiber while seemingly smooth has many imperfections which when under stress, can grow and

  9. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  10. INNOVATIVE COATING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Asamatdinov Marat Orynbaevich

    2017-03-01

    Full Text Available Restoration of monuments of architecture is a sphere of activity which places particularly high demands on technical specialists and experts. It is necessary, depending on the objectives of restoration and finishing of a monument of architecture and its damages and defects, to select appropriate technologies and materials. Mineral substances as fillers, and inorganic (mineral colouring pigments, along with liquid potassium glass form an ultrastrong combination of materials. It gives to paints made of these mineral substances, an extremely high weather resistance and durability.The functional concept of silicate paints is the ability to silicify with other mineral construction materials. Silicate paints are the only colouring system which enters into chemical compound with the base due to the liquid potassium silicate properties. Also, bonds between quartzitic elements in its fillers are formed. As a result, it provides yet greater wear resistance and resistance to chalking. In ICA MGSU bachelors-technologists are given the "Facade Materials in the Modern Architecture of Buildings” course, in which special attention is paid to decorative coatings of various types; also, scientific research for improvement of paintwork material application technologies is performed. Cooperation of the higher school entities with technical assistance centres of construction firms makes it possible to enhance the quality of training and competence of graduates, as well as create favorable conditions for development of modern domestic technologies including those in the sphere of execution of architectural facades using innovative systems.

  11. Material Science Smart Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, A. I. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Sabirianov, R. F. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Namavar, Fereydoon [Univ. of Nebraska Medical Center, Omaha, NE (United States)

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materials (εC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  12. Coating, Titanium Dioxide and Solar Cell

    OpenAIRE

    Yang, Aohan

    2011-01-01

    The objective of this bachelor’s thesis is to get basic ideas about coating and a deep understanding of properties of titanium dioxide pigments as well as their application and performance in solar electricity energy technology. This thesis consists of three main parts, eight chapters. The first part is about basic knowledge of coating and tests of coated paper. Coating pigments are generally introduced in the part. In the second part, coating additives are introduced in details from ...

  13. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...... of structures which would otherwise be difficult to mold. The resistance of the coated aluminium mold is significantly improved by applying a silane-based coating layer....

  14. Composite hydrophilic coating for conditioner aluminum fins

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    To solve the so-called "white rust" and 'water bridge" problems of the aluminum fins for heat exchanger of automobile air conditioner, aimed at nationalizing the art of hydrophilic coating technology, the choice of coating forming and curing materials was investigated. By measuring the water contact angle, SEM surface scanning and ingredients analysis of the coating, optimal parameters and composition are acquired. The coating forming mechanisms of the composition was also expatiated. The coating obtained has good hydrophilic and other properties.

  15. Switchable antifouling coatings and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Michele L. Baca; Dirk, Shawn M.; Johnson, Ross Stefan

    2017-02-28

    The present invention relates to antifouling coatings capable of being switched by using heat or ultraviolet light. Prior to switching, the coating includes an onium cation component having antimicrobial and antibacterial properties. Upon switching, the coating is converted to a conjugated polymer state, and the cationic component is released with any adsorbed biofilm layer. Thus, the coatings herein have switchable and releasable properties. Methods of making and using such coatings are also described.

  16. Spray-Deposited Superconductor/Polymer Coatings

    Science.gov (United States)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  17. Graphene: corrosion-inhibiting coating.

    Science.gov (United States)

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  18. Synthesis of coloured ceramic pigments by using chromite and manganese ores mixtures Síntese de pigmentos cerâmicos coloridos usando misturas de cromita e de minérios de manganês

    Directory of Open Access Journals (Sweden)

    M. H Aly

    2010-06-01

    Full Text Available The aim of this work is not only the synthesis of black ceramic pigment with spinel structure using local and inexpensive minerals (chromite and manganese ores but also throw some light on the relations between the structure and the colour of obtained pigment. Ultimate utilization spinel solid solution in ceramic materials is mostly due to their structure characteristics, their thermal and chemical stability. In this study colour pigments were ned by calcinations at 1250 ºC starting from a mixture of chromite and manganese oxide. Different compositions were tested containing 30, 40 and 50 wt.% of manganese oxide (low and high content respectively. The phase composition and microstructure characterization of both raw material and obtained pigments were evaluated by X-ray diffraction, X-ray fluorescence, polarizing microscope and scanning electron microscope. Furthermore, the colour measurements of the obtained pigments and tiles were evaluated. Composition of all pigments reveal the spinel structure with Cr2FeO4; hematite was also recorded in the mixture of low manganese. The degree of lightness is relatively same in the pigments mixtures of both manganese types. However, tiles could be considered lightness compared with its pigments, especially of the high manganese type. The solid state calcinations reactions are indeed able to form intense brown pigments that can be used as a stain for industrial ceramic applications. The production of less expensive black ceramic pigments from low cost and less pure raw materials that can be utilized in Egypt to substitute for the imported pure oxides or salts is proved superior performance for producing painted pigments.O objetivo deste trabalho é não somente a síntese de pigmento cerâmico negro com estrutura espinélio usando minerais locais e de baixo custo (minérios de cromita e manganês mas também pesquisar as relações entre a estrutura e a cor dos pigmentos obtidos. O porquê da utiliza

  19. Polyester based hybrid organic coatings

    Science.gov (United States)

    Wang, Xiaojiang

    Polyesters are a class of polymers widely used in organic coatings applications. In this work, four types of organic coatings based on polyester polyols were prepared: UV-curable polyester/poly(meth)acrylate coatings, thermal curable polyester polyurethane-urea coatings, thermal curable non-isocyanate polyurethane coatings, and UV-curable non-isocyanate polyurethane coatings. Polyester/poly(meth)acrylate block copolymers are synthesized using a combination of polycondensation and Atom-Transfer Radical Polymerization (ATRP). All block copolymers are characterized by means of Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). In the case of unsaturated-polyester-based block copolymers the main chain double bond in the polyester backbone remains almost unaffected during ATRP. The unsaturated block copolymers are crosslinkable and can form networks upon photo-irradiation in the presence of a suitable photoinitiator. These copolymers might be interesting candidates for coatings with better overall properties than those based on neat polyesters. Thermal curable polyester polyol based Polyurethane-Urea (PUU) coatings were formulated using Partially Blocked HDI isocyanurate (PBH), Isophorone Diamine (IPDA), and polyester polyol. As a comparison, the polyurethane coatings (PU) without adding IPDA were also prepared. The mechanical and viscoelastic properties of the PUU and PU coating were investigated by using tensile test and Dynamic Mechanical Thermal Analyzer (DMTA). It was found that PUU coating exhibited higher crosslink density, Tg, tensile modulus and strength than the corresponding PU coating. Thermal curable non-isocyanate polyurethane coatings were prepared by using polyamine and cyclic carbonate terminated polyester. Cyclic carbonate terminated polyester was synthesized from the reaction of the carbon dioxide and epoxidized polyester which was prepared from the polyester polyol. The properties of the epoxidized and cyclic carbonate

  20. Coatings and Tints of Spectacle Lenses

    Directory of Open Access Journals (Sweden)

    H. Zeki Büyükyıldız

    2012-10-01

    Full Text Available Spectacle lenses are made of mineral or organic (plastic materials. Various coatings and tints are applied to the spectacle lenses according to the characteristic of the lens material, and for the personal needs and cosmetic purpose. The coatings may be classified in seven groups: 1 Anti-reflection coatings, 2 Hard coatings, 3 Clean coat, 4 Mirror coatings, 5 Color tint coating (one of coloring processes, 6 Photochromic coating (one of photochromic processes, and 7 Anti-fog coatings. Anti-reflection coatings reduce unwanted reflections from the lens surfaces and increase light transmission. Hard coatings are applied for preventing the plastic lens surface from scratches and abrasion. Hard coatings are not required for the mineral lenses due to their hardness. Clean coat makes the lens surface smooth and hydrophobic. Thus, it prevents the adherence of dust, tarnish, and dirt particles on the lens surface. Mirror coatings are applied onto the sunglasses for cosmetic purpose. Color tinted and photochromic lenses are used for sun protection and absorption of the harmful UV radiations. Anti-fog coatings make the lens surface hydrophilic and prevent the coalescence of tiny water droplets on the lens surface that reduces light transmission. (Turk J Ophthalmol 2012; 42: 359-69

  1. Coating Carbon Fibers With Platinum

    Science.gov (United States)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  2. Kinetic regulation of coated vesicle secretion

    CERN Document Server

    Foret, Lionel

    2008-01-01

    The secretion of vesicles for intracellular transport often rely on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles, and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the Endoplasmic Reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behaviour, also tri...

  3. Design of Polymer Coatings in Automotive Engines

    Institute of Scientific and Technical Information of China (English)

    LIAO Han-lin; ZHANG Ga; BORDES Jean-Michel; CHRISTIAN Coddet

    2004-01-01

    Driven by economical and ecological reasons, thermoplastics based coatings were more and more used in automotive engines. Two design concepts, flame spraying and serigraphy PEEK coatings on light metal substrate, were introduced in this paper. The friction and wear behavior of PEEK based coatings were investigated systematically. Coatings with different crystallinities can be obtained when cooling speed is controlled. Among three sprayed coatings considered with different crystallinities, the one with highest crystallinity exhibits best friction and wear behavior under dry sliding condition. Under lubricated sliding condition, however, the amorphous coating gives lower friction coefficient. The micron particles such as SiC,MoS2 and graphite in composite coatings can improve significantly the coating wear resistance and have a impact on coating friction behavior.

  4. Microstructure and Residual Stress of Shot Coating

    Science.gov (United States)

    Itoh, Yoshiyasu; Suyama, Shoko; Fuse, Toshiaki

    A shot coating process for metalizing at the surface of ceramics has been newly developed as the shot peening treatment. However, microstructure and residual stress of shot coatings, which have an important effect on the adherent strength of coatings and the strength of ceramic substrates, have not always been clarified. An experimental investigation on the microstructure and residual stress was carried out for the shot coating of aluminum on zinc-oxide substrate by comparison with the atmospheric plasma sprayed aluminum coatings. As a result, low porosity, low oxide content and flat surface could be obtained from the aluminum coatings formed by shot coating process in comparison with the atmospheric plasma sprayed aluminum coatings. Also, it was confirmed by the X-ray diffraction technique that the residual stress of shot coated aluminum over zinc-oxide substrate was high compressive in comparison with the atmospheric plasma spraying process.

  5. Coating Microstructure-Property-Performance Issues

    Energy Technology Data Exchange (ETDEWEB)

    Terry C. Totemeier; Richard N. Wright

    2005-05-01

    Results of studies on the relationships between spray parameters and performance of thermally-sprayed intermetallic coatings for high-temperature oxidation and corrosion resistance are presented. Coating performance is being assessed by corrosion testing of free-standing coatings, thermal cycling of coating substrates, and coating ductility measurement. Coating corrosion resistance was measured in a simulated coal combustion gas environment (N2-CO-CO2-H2O-H2S) at temperatures from 500 to 800°C using thermo-gravimetric analysis (TGA). TGA testing was also performed on a typical ferritic-martensitic steel, austenitic stainless steel, and a wrought Fe3Al-based alloy for direct comparison to coating behavior. FeAl and Fe3Al coatings showed corrosion rates slightly greater than that of wrought Fe3Al, but markedly lower than the steels at all temperatures. The corrosion rates of the coatings were relatively independent of temperature. Thermal cycling was performed on coated 316SS and nickel alloy 600 substrates from room temperature to 800°C to assess the relative effects of coating microstructure, residual stress, and thermal expansion mismatch on coating cracking by thermal fatigue. Measurement of coating ductility was made by acoustic emission monitoring of coated 316SS tensile specimens during loading.

  6. Sputtering process and apparatus for coating powders

    Science.gov (United States)

    Makowiecki, Daniel M.; Kerns, John A.; Alford, Craig S.; McKernan, Mark A.

    2002-01-01

    A process and apparatus for coating small particles and fibers. The process involves agitation by vibrating or tumbling the particles or fibers to promote coating uniformly, removing adsorbed gases and static charges from the particles or fibers by an initial plasma cleaning, and coating the particles or fibers with one or more coatings, a first coating being an adhesion coating, and with subsequent coatings being deposited in-situ to prevent contamination at layer interfaces. The first coating is of an adhesion forming element (i.e. W, Zr, Re, Cr, Ti) of a 100-10,000 .ANG. thickness and the second coating or final coating of a multiple (0.1-10 microns) being Cu or Ag, for example for brazing processes, or other desired materials that defines the new surface related properties of the particles. An essential feature of the coating process is the capability to deposit in-situ without interruption to prevent the formation of a contaminated interface that could adversely affect the coating adhesion. The process may include screening of the material to be coated and either continuous or intermittent vibration to prevent agglomeration of the material to be coated.

  7. Vertebrate extracellular preovulatory and postovulatory egg coats.

    Science.gov (United States)

    Menkhorst, Ellen; Selwood, Lynne

    2008-11-01

    Extracellular egg coats deposited by maternal or embryonic tissues surround all vertebrate conceptuses during early development. In oviparous species, the time of hatching from extracellular coats can be considered equivalent to the time of birth in viviparous species. Extracellular coats must be lost during gestation for implantation and placentation to occur in some viviparous species. In the most recent classification of vertebrate extracellular coats, Boyd and Hamilton (Cleavage, early development and implantation of the egg. In: Parkes AS (ed.), Marshall's Physiology of Reproduction, vol. 2, 3rd ed. London: Longmans, Green & Co; 1961:1-126) defined the coat synthesized by the oocyte during oogenesis as primary and the coat deposited by follicle cells surrounding the oocyte as secondary. Tertiary egg coats are those synthesized and deposited around the primary or secondary coat by the maternal reproductive tract. This classification is difficult to reconcile with recent data collected using modern molecular biological techniques that can accurately establish the site of coat precursor synthesis and secretion. We propose that a modification to the classification by Boyd and Hamilton is required. Vertebrate egg coats should be classed as belonging to the following two broad groups: the preovulatory coat, which is deposited during oogenesis by the oocyte or follicle cells, and the postovulatory coats, which are deposited after fertilization by the reproductive tract or conceptus. This review discusses the origin and classification of vertebrate extracellular preovulatory and postovulatory coats and illustrates what is known about coat homology between the vertebrate groups.

  8. Post mortem analysis of burned magnesia-chromite brick used in short rotary furnace of secondary lead smelting Análise post mortem de um refratário de magnésia-cromita usado em um forno rotativo de redução de chumbo secundário

    Directory of Open Access Journals (Sweden)

    E. Prestes

    2009-03-01

    Full Text Available Burned magnesia-chromite bricks are the standard product for the lining of furnaces in lead industry, where the short service life is a great problem. Used sintered magnesia-chromite brick sample from short rotary furnace lining, sent by a secondary lead manufacturer, showed parallel cracks to the hot face due to structural spalling damage. The refractory infiltrated region and slag interface were analyzed using a scanning electron microscope with an energy dispersive spectroscopy analyzer, and X-ray diffraction powder analysis. Crucible corrosion test was performed to evaluate the influence of slag attack. The results showed that the structural spalling was due to strong Pb-infiltration of the refractory microstructure by bath components of the furnace (metallic lead and lead sulphite during the reduction process and that the slag infiltration had little contribution due to the good resistance of the magnesia-chromite bricks to FeO rich slag attack.Os tijolos refratários queimados de magnésia-cromita são os produtos padrões para emprego no revestimento de fornos na indústria de chumbo, onde o curto tempo de vida desses refratários é um grande problema. Amostras de tijolos de magnésia-cromita sinterizados, utilizados em um forno rotativo de redução de chumbo secundário, mostraram fissuras paralelas à face quente indicando que o desgaste do revestimento ocorreu por termoclase estrutural. As regiões de interface refratário-escória e de infiltração foram analisadas por microscopia eletrônica de varredura e espectroscopia de energia dispersiva, e difração de raios X. O teste de corrosão pelo método estático foi feito para avaliar a influência do ataque por escória. Os resultados mostraram que a termoclase estrutural foi devido a forte infiltração do chumbo, proveniente dos componentes do forno (chumbo metálico e sulfeto de chumbo, na microestrutura do refratário durante o processo de redução, e que, a infiltração da

  9. Diffusion Barrier Coating System and Oxidation Behavior of Coated Alloys

    Institute of Scientific and Technical Information of China (English)

    T.NARITA

    2009-01-01

    @@ 1 Introduction Research into the formation of Re-based alloys is in progress in our laboratory to provide a diffusion barrier layer between heat-resistant alloys and Al reservoir layers, which assist in the formation and maintenance a protective Al2O3 scale for long periods. Coatings with a two-layered structure comprised of inner Re-based alloy layer and outer β-NiAl layer with or without Pt addition were successfully formed on various heat resistant alloys such as Ni-based singlecrystal superalloys, Ni-based heat resistant alloys, NiMo based alloy, Ni-Cr based alloy, and Fe-based alloys. The duplex layer coating proposed is generally termed a diffusion barrier coating system; DBC system.

  10. China’s Largest Chromite Mine

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    China'sLargestChromiteMine¥byNorbuCeringNorbusafrozenwinterworldfoundat4,500metersabovesealeveListhehomeofChina'slargestchrom...

  11. Testing and Evaluation of Multifunctional Smart Coatings

    Science.gov (United States)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    A smart coating system, based on pH sensitive microcontainers (microparticles and microcapsules) has been developed. Various corrosion inhibitors have been encapsulated and incorporated into commercial and formulated coatings to test the functionality imparted on the coating by the incorporation of the inhibitor microcontainers. Coated carbon steel and aluminum alloy panels were tested using salt immersion, salt fog, and coastal atmospheric exposure conditions. This paper provides the details on coating sample preparation, evaluation methods, as well as test results of the inhibiting function of smart coatings.

  12. Chromate conversion coatings and their current application

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-04-01

    Full Text Available This paper describes formation, composition and possible production technologies of application chromate coatings. Summation of common examples of applications of these coatings in corrosion protection of metals and alloys is provided. Individual chromate coatings are divided by their dominant anions either with CrVI or CrIII. Restrictions of chromate coatings with dominantly CrVI and related toxicity of hexavalent chromium is discussed in detail. In conclusion, examples of both chromium and other, alternative coatings are summed up. Application of these coatings as a protection for concrete hot-dip galvanized reinforcement is also reviewed.

  13. Dielectric Coatings for IACT Mirrors

    CERN Document Server

    Förster, A; Chadwick, P; Held, M

    2013-01-01

    Imaging Atmospheric Cherenkov Telescopes for very-high energy gamma-ray astronomy need mirror with high reflectance roughly in the wavelength between 300 and 550 nm. The current standard reflective layer of such mirrors is aluminum. Being permanently exposed to the environment they show a constant degradation over the years. New and improved dielectric coatings have been developed to enhance their resistance to environmental impact and to extend their possible lifetime. In addition, these customized coatings have an increased reflectance of over 95% and are designed to significantly lower the night-sky background contribution. The development of such coatings for mirrors with areas up to 2 m2 and low application temperatures to suite the composite materials used for the new mirror susbtrates of the Cherenkov Telescope Array (CTA) and the results of extensive durability tests are presented.

  14. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    Energy Technology Data Exchange (ETDEWEB)

    Pardun, Karoline [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Treccani, Laura, E-mail: treccani@uni-bremen.de [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Volkmann, Eike [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Streckbein, Philipp [University Hospital, Justus-Liebig-University Giessen, Department of Cranio-Maxillo-Facial Surgery, Klinikstrasse 33, 35385 Giessen (Germany); Heiss, Christian [University Hospital of Giessen-Marburg, Department of Trauma Surgery, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany, (Germany); Laboratory of Experimental Surgery, Kerkraderstrasse 9, 35392 Giessen (Germany); Destri, Giovanni Li; Marletta, Giovanni [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemistry, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany)

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic.

  15. Clean diffusion coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Warnes, B.M.; Punola, D.C. [Howmet Thermatech Coatings, Whitehall, MI (United States)

    1997-10-01

    An experimental program was undertaken to identify diffusion coating impurities introduced by standard aluminizing processes and to evaluate the impact of those impurities on oxidation resistance of the resultant Pt aluminide coating. IN-738 tabs and foils were platinum-electroplated, and then aluminized using three different processes: high-activity pack cementation, high-activity CVD and low-activity CVD. The results suggest that aluminizing processes which involve aluminum bearing alloys in the coating retort with H{sub 2} or H{sub 2}/HCl gas at high temperature can contaminate the diffusion coating during deposition. CVD low-activity aluminizing (coating gas generated at low temperature outside the coating chamber from 99.999% Al) did not introduce any coating impurities. In addition, the data indicates that harmful impurities from the IN-738 substrate (sulfur, boron and tungsten) and the electroplating process (phosphorus) were removed from the coating during deposition. The CVD low-activity Pt aluminide coating was the `cleanest` in the study, and it exhibited the best high-temperature oxidation resistance of the coatings considered. It can be concluded that trace elements in diffusion coatings from the superalloy substrate and/or the aluminizing process can adversely effect the oxidation resistance of those coatings, and that CVD low-activity aluminizing yields cleaner coatings than other commercially available aluminizing techniques. (orig.) 10 refs.

  16. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  17. Matching Performance among Visible and near Infrared Coating, Low Infrared Emitting Coating and Microwave Absorbing Coating

    Institute of Scientific and Technical Information of China (English)

    XIE Guohua; ZHANG Zuoguang; WU Ruibin

    2005-01-01

    The matching performance among the visible and near infrared conting, the low infrared emitting coating and the microwave absorbing coating was investigated. Experimental results shaw that the resulting material is characteristic of wideband effect ranging from the visible, near infrared and 3-5μm, 8- 14 μm infrared portion of the spectrum, as well as the radar region from 8 to 18 GHz when these three materials form a layerstructure material system. The microwave absorbing ability of material is hardly changed. The resonance peak moves towards lower frequency as the thickness of the visible, near infrared coating and the low infrared emitting coating increases. This problem can be resolved by controlling the thickness of the material. On the other hand,the infrared emissivity ε of the material system increases as the thickness of the visible, near infrared coating increases. This can be resolved by increasing infrared transparency of the visible and near infrared topcoating or controlling its thickness. The experimental resulting material system has spectral reflection characteristics in visible and near infrared regions that are similar to those of the natural bnckground.

  18. Corrosion-resistant coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  19. Thin Films for Coating Nanomaterials

    Institute of Scientific and Technical Information of China (English)

    S.M.Mukhopadhyay; P.Joshi; R.V.Pulikollu

    2005-01-01

    For nano-structured solids (those with one or more dimensions in the 1-100 nm range), attempts of surface modification can pose significant and new challenges. In traditional materials, the surface coating could be several hundreds nanometers in thickness, or even microns and millimeters. In a nano-structured material, such as particle or nanofibers, the coating thickness has to be substantially smaller than the bulk dimensions (100 nm or less), yet be durable and effective. In this paper, some aspects of effective nanometer scale coatings have been discussed. These films have been deposited by a non-line of sight (plasma)techniques; and therefore, they are capable of modifying nanofibers, near net shape cellular foams, and other high porosity materials. Two types of coatings will be focused upon: (a) those that make the surface inert and (b) those designed to enhance surface reactivity and bonding. The former has been achieved by forming 1-2 nm layer of -CF2- (and/or CF3) groups on the surface, and the latter by creating a nanolayer of SiO2-type compound. Nucleation and growth studies of the plasma-generated film indicate that they start forming as 2-3 nm high islands that grow laterally, and eventually completely cover the surface with 2-3nm film. Contact angle measurements indicate that these nano-coatings are fully functional even before they have achieved complete coverage of 2-3 nm. They should therefore be applicable to nano-structural solids.This is corroborated by application of these films on vapor grown nanofibers of carbon, and on graphitic foams. Coated and uncoated materials are infiltrated with epoxy matrix to form composites and their microstructure, as well as mechanical behaviors are compared. The results show that the nano-oxide coating can significantly enhance bond formation between carbon and organic phases, thereby enhancing wettability,dispersion, and composite behavior. The fluorocarbon coating, as expected, reduces bond formation, and

  20. Protective Coatings for Aluminum Torpedoes

    Science.gov (United States)

    1983-06-01

    dhesion test, the entire coating sys- tea was removed, leaving the substrate exposed. During the impact tests, the 37 coating debonded within the...M tree ot detects in mawnai or dccrqva~e Weyesi aoicti cr Wi15 ryafsX-_ oa ifani w Aobgaon -rlefl CrS~ t1 hi~~~~~~~~ cadsoie.xrn a gab on srd... Eczema , rash Eye contact: Fodwith stemof water Inhalation Fresh Air Ingestion Call Physician for advice. DO NOT induce vomiting Skin contact Wash

  1. RECENT TECHNIQUES OF PHARMACEUTICAL SOLVENTLESS COATING: A REVIEW

    Directory of Open Access Journals (Sweden)

    Shital Dhuppe , S.S. Mitkare*, D.M. Sakarkar

    2012-07-01

    Full Text Available The coating of solid pharmaceutical dosage forms began in the 9th century B. C., with the Egyptians. Conventional coating techniques are based on solvents or water. Solventless coatings are alternative technique of coating. In solventless coating, the coating material is directly spread on the core and then it is cured by special method to form coat. Solventless coating avoids the use of water or it reduces to very small amounts with respect to the coating material hence it overcomes the limitations of conventional coating such as need for time, energy consuming, drying steps and the most important drug stability issues. A variety of solventless coating approaches are described in this review as powder coating, hot melt coating, supercritical fluid coating, magnetically assisted impaction coating, Plasma enhanced chemical vapor deposition. This review summarizes basic principle and process of the coating techniques.

  2. Development of coatings for fusion power applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L. E-mail: dalesmith@anl.gov; Konys, J.; Muroga, T.; Evitkhin, V

    2002-12-01

    Coatings have been proposed as the solution to critical materials constraints for most of the blanket concepts under development for fusion power applications. However, the international programs on coating development are focused primarily on electrically insulating coatings to mitigate the magneto-hydrodynamic pressure drop in self-cooled lithium/vanadium blanket concepts, and on tritium permeation barriers to reduce tritium permeation from Pb-Li into the water coolant in water-cooled Pb-Li concepts. Emphasis of the insulator coating development is on CaO and AlN coatings formed on vanadium alloys either in situ in lithium or by vapor deposition processes. The tritium barrier coating development is focused on Al{sub 2}O{sub 3} formed on aluminized martensitic steels by several processes. This paper presents an overview of the fundamental materials issues associated with the various coatings and the status of coating development for the various applications.

  3. Durable Dust Repellent Coating for Metals Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Durable Dust Repellent Coating (DDRC) consists of nano-phase silica, titania, or other oxide coatings to repel dust in a vacuum environment over a wide range of...

  4. Genetics Home Reference: Coats plus syndrome

    Science.gov (United States)

    ... Coats disease plus abnormalities of the brain, bones, gastrointestinal system, and other parts of the body. Coats disease ... life-threatening complications including abnormal bleeding in the gastrointestinal tract, high blood pressure in the vein that supplies ...

  5. Novel alginate based coatings on Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, K.; Roy, Abhijit [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Singh, Satish [Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Lee, Boeun [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2011-12-15

    Coatings on yttrium doped magnesium (Mg4Y) alloy substrates were prepared using alginate hydrogels by dip coating method to improve the surface bioactive properties of the substrate. Furthermore, composite coatings containing nano-sized calcium phosphate corresponding to hydroxyapatite (HA) phase entrapped within alginate hydrogel were also synthesized on the Mg4Y substrates. Surface characteristics of these coated substrates have been investigated using FTIR-ATR, SEM and EDS. The results show that the coatings with alginate alone are not stable in vitro; however, incorporation of NanoCaPs slightly improves the stability of these coatings. In addition, these composite coatings showed cell attachments with fibronectin incorporation. These results indicate that alginate hydrogels have the potential to be used as bioactive coating materials for different biofunctional applications.

  6. STUDY ON VISCOELASTIC BEHAVIOR OF PAPER COATING

    Institute of Scientific and Technical Information of China (English)

    Heng Zhang; Kefu Chen; Rendang Yang

    2004-01-01

    The flow behavior of paper coating is critical to the coating operation. In this work, the influence of the added agents on the flow behavior and the viscoelastic behavior is investigated using rheometer in steady and dynamic oscillatory modes.

  7. Improving thermal barrier coatings by laser remelting.

    Science.gov (United States)

    Múnez, C J; Gómez-García, J; Sevillano, F; Poza, P; Utrilla, M V

    2011-10-01

    Thermal barrier coatings are extensively used to protect metallic components in applications where the operating conditions include aggressive environment at high temperatures. These coatings are usually processed by thermal spraying techniques and the resulting microstructure includes thin and large splats, associated with the deposition of individual droplets, with porosity between splats. This porosity reduces the oxidation and corrosion resistance favouring the entrance of aggressive species during service. To overcome this limitation, the top coat could be modified by laser glazing reducing surface roughness and sealing open porosity. ZrO2(Y2O3) top coat and NiCrAlY bond coating were air plasma sprayed onto an Inconel 600 Ni base alloy. The top coat was laser remelted and a densified ceramic layer was induced in the top surface of the ceramic coating. This layer inhibited the ingress of aggressive species and delayed bond coat oxidation.

  8. Stress and structure development in polymeric coatings

    Science.gov (United States)

    Vaessen, Diane Melissa

    2002-09-01

    The main goal of this research is to measure the stress evolution in various polymer coating systems to establish the mechanisms responsible for stress development, stress relaxation, and defect formation. Investigated systems include ultraviolet (UV)-curable coatings, dense and porous coatings from polymer solutions, and latex coatings. Coating stress was measured using a controlled environment stress apparatus based on a cantilever deflection principle. For acrylate coatings, it was found that by cycling a UV-lamp on and off, keeping the total dose constant, coating stress was lowered by 60% by decreasing the cycle period. A stress minimum was also found to exist for a given dose of radiation. The lower stress is attributed to stress relaxation and/or slower reaction during dark periods. A viscoelastic stress model of this process was formulated and predicted stress values close to those observed experimentally. During drying of cellulose acetate (CA) coatings cast in acetone, final stress increased from 10 to 45 MPa as coating thickness decreased from 60 to 10 mum. This thickness dependent coating stress for a solvent-cast polymer coating is a new finding and is attributed to (1) less shrinkage in thicker coatings due to more trapped solvent (from skinning) and (2) greater amounts of polymer stress relaxation in thicker coatings. For porous CA coatings prepared by dry-cast phase separation, final in-plane stresses ranged from 20 MPa for coatings containing small pores (˜1 mum) to 5 MPa for coatings containing small pores and macrovoids (˜200 mum). For these coatings, a small amount of stress relaxation occurs due to capillary pressure relief. A stress plateau for the macrovoid-containing coating is likely caused by stress-induced rupture of the polymer-rich phase. Measured stress in pigment-free latex coatings was much lower (˜0.3 MPa) than UV-curable and solvent-cast polymer coatings and was found to increase with increasing latex glass transition

  9. Microneedle Coating Techniques for Transdermal Drug Delivery

    OpenAIRE

    Rita Haj-Ahmad; Hashim Khan; Muhammad Sohail Arshad; Manoochehr Rasekh; Amjad Hussain; Susannah Walsh; Xiang Li; Ming-Wei Chang; Zeeshan Ahmad

    2015-01-01

    Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisat...

  10. Deposition and Coating Properties on CVD Tungsten

    Institute of Scientific and Technical Information of China (English)

    DU Ji-hong; LI Zheng-xiang; LIU Gao-jian; ZHOU Hui-Huang; CHUN liang

    2004-01-01

    Surface characterization and microstructure studies are performed on chemical vapor deposited (CVD) tungsten coating. There is about 2 μm thickness diffusion layer of tungsten in the molybdenum substrate. The thermal shock test shows tungsten coating has good adhesion with molybdenum substrate, but the elements of oxygen and carbon in the tungsten coating have the bad affection to the adhesion. The result of high-temperature diffusion experiment is the diffusion rate from molybdenum substrate to tungsten coating is faster.

  11. Sputter coating of microspherical substrates by levitation

    Science.gov (United States)

    Lowe, A.T.; Hosford, C.D.

    Microspheres are substantially uniformly coated with metals or nonmetals by simltaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure comprising a parallel array of upwardly projecting individual gas outlets is machined out to form a dimple. Glass microballoons,, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  12. Cirrus Dopant Nano-Composite Coatings

    Science.gov (United States)

    2014-11-01

    Inorganic Nano-particles • Ti • Zr • Al • Zn • Yr • Si Coatings • Au • Ag • Sn • Cu • Zn • Ni • NiB • NiCo • NiP cirrus Broadened...1000 1200 HARDNESS (HV) MICROHARDNESS - ELECTROLESS NIP STANDARD COATING TI DOPED COATING ZR DOPED COATING ↑74% Standard DC NiB Cirrus DC NiB 15

  13. RECENT TECHNIQUES OF PHARMACEUTICAL SOLVENTLESS COATING: A REVIEW

    OpenAIRE

    Shital Dhuppe , S.S. Mitkare*, D.M. Sakarkar

    2012-01-01

    The coating of solid pharmaceutical dosage forms began in the 9th century B. C., with the Egyptians. Conventional coating techniques are based on solvents or water. Solventless coatings are alternative technique of coating. In solventless coating, the coating material is directly spread on the core and then it is cured by special method to form coat. Solventless coating avoids the use of water or it reduces to very small amounts with respect t...

  14. Coating thickness control in continuously fabricating metallic glass-coated composite wires

    Science.gov (United States)

    Zhang, Bao-yu; Chen, Xiao-hua; Lu, Zhao-ping; Hui, Xi-dong

    2013-05-01

    A continuous production process was developed for coating bulk metallic glasses on the metallic wire surface. The effects of processing parameters, including the drawing velocity and coating temperature, on the coating thickness were investigated. It is found that the coating thickness increases with the increase in drawing velocity but decreases with the increase in coating temperature. A fluid mechanical model was developed to quantify the coating thickness under various processing conditions. By using this theoretical model, the coating thickness was calculated, and the calculated values are in good agreement with the experimental data.

  15. Pipeline coating comparison methods for northern pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Singh, P. [Shaw Pipe Protection, Calgary, AB (Canada); Purves, G.A. [Cimarron Engineering Ltd., Calgary, AB (Canada)

    2004-07-01

    Two high-quality pipe coatings designed for northern environments were compared for their relative costs and suitability for the conditions that will be encountered in the field. Coating selection should consider local conditions to achieve the optimum life-cycle costs for the system. Some of the key factors affecting the integrity of the protective coating on a pipe include the effects of cold temperature and soil types. In this study, both Fusion Bonded Epoxy (FBE) and High Performance Composite Coatings (HPCC) were evaluated for an entire pipeline installation in a northern environment, from the coating plant to the pipe trench. The evaluation focused on the advantages of better abrasion resistance of the HPCC coating. This was compared against the incremental cost of HPCC coating over FBE on large diameter NPS 30 to NPS 48 pipelines. The following parameters influenced the choice of coating: storage, transportation and handling; bending ability under cold weather conditions; pipe installation and backfilling; weld joint coatings; coating repair and cathodic protection and pipeline integrity. Some of the construction costs that are indirectly affected by the choice of pipe coating include right-of-way preparation and restoration; trenching; supervision, service and downtime and specialist crossings. It was concluded that HPCC has better resistance to abrasion than FBE and is more flexible in extremely cold temperatures. Standard FBE is about 10 per cent less expensive than HPCC. In general HPCC will require less coating protection than FBE, depending on site conditions. 3 refs., 18 tabs., 8 figs.

  16. Microstructure and properties of high emissivity coatings

    Institute of Scientific and Technical Information of China (English)

    Zhigang Dan; Daqiang Cang; Huimin Zhou; Hao Bai; Yanbin Zong

    2008-01-01

    A new coating on lining in industrial furnace for energy saving has been developed. Properties and microstructure of the coatings were revealed by emissivity instrument, X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The result indicates that the emissivity of coatings is higher than 0.90 and the thickness of coatings is about 200 μm. ZrO2, Cr2O3 and SiC in the coating benefit practical applications of coatings at high temperature with du-rable high emissivity and the continuous structure between the coatings and the substrate makes the coatings high cohesion and ex-cellent adhesion for both specimens with and without sintering at high temperature. Result fi'om laboratory experiment shows that the heating speed of specimen with coating is higher than that of controlled specimen and the temperature increases 30℃ during the heating. The average temperature drop of specimen with coatings has a 13.5% improvement in the cooling speed. The application of coatings on the checker brick in a blast furnace of 1750 m3 indicates that the coating causes the blast temperature to an average in-crease of 28℃, reduces the fluctuation of blast temperature before the blowing-in and leads to a fuel saving of 10% approximately.

  17. Applicability of coatings to control metal dusting

    NARCIS (Netherlands)

    Hermse, C.G.M.; Wortel, J.C. van

    2009-01-01

    We have performed a long term comparative study between five wrought and three centricast materials, both as-is, and in coated condition. Two commercially available coatings were applied to each different alloy. One coating was aluminum based with a chromium rich intermediate layer. The other coatin

  18. Moisture in organic coatings - a review

    NARCIS (Netherlands)

    Wel, G.K. van der; Adan, O.C.G.

    1999-01-01

    A review is given on transport and equilibrium sorption of moisture in polymer films and organic coatings. Polymeric material forms the continuous phase of a coating and is therefore important for transport properties. Besides polymer, coatings consist of pigments and fillers and various additives,

  19. Chemical vapor deposition of mullite coatings

    Science.gov (United States)

    Sarin, Vinod; Mulpuri, Rao

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  20. Latest Developments in PVD Coatings for Tooling

    Directory of Open Access Journals (Sweden)

    Gabriela Strnad

    2010-06-01

    Full Text Available The paper presents the recent developments in the field of PVD coating for manufacturing tools. A review of monoblock, multilayer, nanocomposite, DLC and oxinitride coatings is discussed, with the emphasis on coatings which enables the manufacturers to implement high productivity processes such as high speed cutting and dry speed machining.

  1. “m=1” coatings

    DEFF Research Database (Denmark)

    Cooper-Jensen, C.; Klinkby, Esben Bryndt; Beaucour, J.

    chemical hazard after manufacture is Be dust if the sample is destroyed. We have a sample of 276 nm Be coated on a Si wafer for these tests. Diamond Like Carbon (DLC) coatings with 99% sp3 bindings (meaning it is very close to diamond) are made commercially using CVD techniques. In the coating...

  2. Superhard nano-multilayers and nanocomposite coatings

    Institute of Scientific and Technical Information of China (English)

    BAI Xiaoming; ZHENG Weitao; AN Tao

    2005-01-01

    This paper reviews the recent development of nano-multilayers and nanocomposite coatings. The hardening mechanisms and design of hard coating are discussed in details. Recent research on Ti/TiN and nitride/nitride multilayer, Ti-Si-N and Ti-Al-Si-N nanocomposite coatings is described, and the perspectives of the related research are proposed.

  3. Moisture in organic coatings - a review

    NARCIS (Netherlands)

    Wel, G.K. van der; Adan, O.C.G.

    1999-01-01

    A review is given on transport and equilibrium sorption of moisture in polymer films and organic coatings. Polymeric material forms the continuous phase of a coating and is therefore important for transport properties. Besides polymer, coatings consist of pigments and fillers and various additives,

  4. Natural-oxide solar-collector coatings

    Science.gov (United States)

    Krupnick, A. C.; Roberts, M. L.; Sharpe, M. H.

    1979-01-01

    Optically selective coatings for solar collectors are produced by thermally treating stainless steel in furnace after series of cleaning and soaking operations. Coatings have withstood 18-month exposure tests at 100 percent relative humidity and temperatures of 95 F. Room temperature coatings are valuable as they are inexpensive to produce, highly production oriented, and environmentally stable.

  5. Microstructures, hardness and bioactivity of hydroxyapatite coatings

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-10-01

    Full Text Available spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little...

  6. Deposition and Investigation of Hydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Safonov Aleksey

    2015-01-01

    Full Text Available The fluoropolymer coatings of different morphologies are deposited by the HWCVD (Hot Wire CVD method. The effect of activator filament temperature on the structure of fluoropolymer coating is shown. The results of studying the hydrophobic fluoropolymer coatings with different structures, deposited by the HWCVD method, are presented.

  7. Supra-amphiphilic transparent mesoporous silica coating

    Institute of Scientific and Technical Information of China (English)

    MA Jin; YANG Zhenglong; QU Xiaozhong; YANG Zhenzhong

    2006-01-01

    Transparent mesoporous silica coatings were achieved by conventional sol-gel process. The obtained coatings display permanent supraamphiphilicity, transparent appearance and good wetting property with very fast spread rate. Incorporation of functional materials such as crystalline titania nanoparticles into the coatings was also carried out without affecting the transparency and supraamphiphilicity.

  8. Process and apparatus for producing coated particles

    NARCIS (Netherlands)

    Van Ommen, J.R.; Ellis, N.; Yurteri, C.; Marijnissen, J.C.M.

    2010-01-01

    The invention is directed to a process and apparatus for preparing coated particles, in particular a process for preparing particles that are coated with small particles using electrospraying. The coated particles produced according to the present invention find use for instance as catalysts or as

  9. Absorptive coating for aluminum solar panels

    Science.gov (United States)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  10. Moisture transport in coated plaster

    NARCIS (Netherlands)

    Goossens, E.L.J.; Van der Spoel, W.H.; Bancken, E.L.J.

    2001-01-01

    In the framework of the research project: 'Water balance of water-borne paint systems on plaster substrates in relation to fungal growth', a study is carried out to moisture transport mechanisms in coated gypsum plaster. In this contribution, the set-up of the study is described. Besides a descripti

  11. Heparin-Coated Coronary Stents.

    Science.gov (United States)

    van Der Giessen WJ; van Beusekom HM; Larsson; Serruys

    1999-09-01

    The development of the heparin-coated (HC)-stent should be viewed against the backdrop of the early unfavorable results with noncoated stents in the pre-intravascular ultrasound and pre-ticlopidine era. Notwithstanding, results of pilot and randomized trials show a surprisingly low incidence of (sub)acute stent thrombosis under challenging circumstances, such as acute coronary syndromes. Considering the quite low incidence of early complications with noncoated second-generation stents, it may require large trials to prove the clinical efficacy of the heparin- coating against noncoated devices. However, even if the "added value" of the heparin-coating will never be clinically proven, it has helped to enhance the penetration of stent therapy in interventional cardiology. Unlike the situation in 1992, very few cardiologists will now disagree with the statement that stents contribute to the state-of-the-art treatment of patients with angina pectoris or acute myocardial infarction. A preliminary comparison of available trials also suggests that the heparin-coated Palmaz-Schatz stent (Cordis Corp., Waterloo, Belgium) is as effective as the noncoated stent plus abciximab treatment.

  12. Protective coatings for commercial particulates

    DEFF Research Database (Denmark)

    Kindl, B.; Teng, Y.H.; Liu, Y.L.

    1994-01-01

    SiC/Al composites are in large-scale production with Al-Si alloy matrices. The same composites with pure Al or low Si matrices need diffusion barriers on the SiC reinforcement to control the interfacial reaction. The present paper describes various approaches taken to obtain protective coatings o...

  13. Moisture transport in coated plaster

    NARCIS (Netherlands)

    Goossens, E.L.J.; Van der Spoel, W.H.; Bancken, E.L.J.

    2001-01-01

    In the framework of the research project: 'Water balance of water-borne paint systems on plaster substrates in relation to fungal growth', a study is carried out to moisture transport mechanisms in coated gypsum plaster. In this contribution, the set-up of the study is described. Besides a descripti

  14. Mechanically reliable scales and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; Alexander, K.B. [Oak Ridge National Lab., TN (United States)

    1995-06-01

    In many high-temperature fossil energy systems, corrosion and deleterious environmental effects arising from reactions with reactive gases and condensible products often compromise materials performance and, as a consequence, degrade operating efficiencies. Protection of materials from such reactions is best afforded by the formation of stable surface oxides (either as deposited coatings or thermally grown scales) that are slowly reacting, continuous, dense, and adherent to the substrate. However, the ability of normally brittle ceramic films and coatings to provide such protection has long been problematical, particularly for applications involving numerous or severe high-temperature thermal cycles or very aggressive (for example, sulfidizing) environments. A satisfactory understanding of how scale and coating integrity and adherence are improved by compositional, microstructural, and processing modifications is lacking. Therefore, to address this issue, the present work is intended to define the relationships between substrate characteristics (composition, microstructure, and mechanical behavior) and the structure and protective properties of deposited oxide coatings and/or thermally grown scales. Such information is crucial to the optimization of the chemical, interfacial, and mechanical properties of the protective oxides on high-temperature materials through control of processing and composition and directly supports the development of corrosion-resistant, high-temperature materials for improved energy and environmental control systems.

  15. Polymer-coated quantum dots

    NARCIS (Netherlands)

    Tomczak, Nikodem; Liu, Rongrong; Vancso, Julius G.

    2013-01-01

    Quantum Dots (QDs) are semiconductor nanocrystals with distinct photophysical properties finding applications in biology, biosensing, and optoelectronics. Polymeric coatings of QDs are used primarily to provide long-term colloidal stability to QDs dispersed in solutions and also as a source of addit

  16. Optical trapping of coated microspheres

    NARCIS (Netherlands)

    Bormuth, V.; Jannasch, A.; Ander, M.; van Kats, C.M.; van Blaaderen, A.; Howard, J.; Schäffer, E.

    2008-01-01

    In an optical trap, micron-sized dielectric particles are held by a tightly focused laser beam. The optical force on the particle is composed of an attractive gradient force and a destabilizing scattering force. We hypothesized that using anti-reflection-coated microspheres would reduce scattering a

  17. Optical trapping of coated microspheres.

    Science.gov (United States)

    Bormuth, Volker; Jannasch, Anita; Ander, Marcel; van Kats, Carlos M; van Blaaderen, Alfons; Howard, Jonathon; Schäffer, Erik

    2008-09-01

    In an optical trap, micron-sized dielectric particles are held by a tightly focused laser beam. The optical force on the particle is composed of an attractive gradient force and a destabilizing scattering force. We hypothesized that using anti-reflection-coated microspheres would reduce scattering and lead to stronger trapping. We found that homogeneous silica and polystyrene microspheres had a sharp maximum trap stiffness at a diameter of around 800 nm--the trapping laser wavelength in water--and that a silica coating on a polystyrene microsphere was a substantial improvement for larger diameters. In addition, we noticed that homogeneous spheres of a correct size demonstrated anti-reflective properties. Our results quantitatively agreed with Mie scattering calculations and serve as a proof of principle. We used a DNA stretching experiment to confirm the large linear range in detection and force of the coated microspheres and performed a high-force motor protein assay. These measurements show that the surfaces of the coated microspheres are compatible with biophysical assays.

  18. Finite Element Analysis of Ceramic Coatings under Spherical Indentation with Metallic Interlayer: Part Ⅰ Uncracked Coatings

    Institute of Scientific and Technical Information of China (English)

    Minh-Quy LE; Seock-Sam KIM

    2006-01-01

    Spherical indentation of ceramic coatings with metallic interlayer was performed by means of axisymmetric finite element analysis (FEA). Two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel were considered. Various combinations of indenter radius-coating thickness ratios and interlayer thickness-coating thickness ratios were used in the modeling. The effects of the interlayer, the coating and the substrate on the indentation behavior, such as the radial stress distribution along the coating surface as well as the coating interface, and the plastic deformation zone evolution in the substrate were investigated in connection with the above mentioned ratios. The coating cracking dominant modes were also discussed within the context of the peak tensile stresses on the coating surface and on the coating interface.

  19. Atomically Bonded Transparent Superhydrophobic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, Tolga [ORNL

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  20. Direct Laser Synthesis of Functional Coatings

    Energy Technology Data Exchange (ETDEWEB)

    P. Schaaf; Michelle D. Shinn; E. Carpene; J. Kaspar

    2005-06-01

    The direct laser synthesis of functional coatings employs the irradiation of materials with short intensive laser pulses in a reactive atmosphere. The material is heated and plasma is ignited in the reactive atmosphere. This leads to an intensive interaction of the material with the reactive species and a coating is directly formed on the materials surface. By that functional coatings can be easily produced a fast way on steel, aluminium, and silicon by irradiation in nitrogen, methane, or even hydrogen. The influence of the processing parameters to the properties of the functional coatings will be presented for titanium nitride coating produced on titanium with the free electron laser.

  1. TABLET COATING TECHNIQUES: CONCEPTS AND RECENT TRENDS

    OpenAIRE

    Gupta Ankit; Bilandi Ajay; Kataria Mahesh Kumar; Khatri Neetu

    2012-01-01

    Tablet coating is a common pharmaceutical technique of applying a thin polymer-based film to a tablet or a granule containing active pharmaceutical ingredients (APIs). Solid dosage forms are coated for a number of reasons, the most important of which is controlling the release profiles. The amount of coating on the surface of a tablet is critical to the effectiveness of the oral dosage form. Tablets are usually coated in horizontal rotating pans with the coating solution sprayed onto the free ...

  2. Transparent nanocrystalline diamond coatings and devices

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  3. Development of the Fully Aulomated Coating Machine

    OpenAIRE

    伊藤, 信孝; 立岩, 博之; Ito, Nobutaka; Tateiwa, Hiroyuki

    1999-01-01

    Direct sowing by use of coated rice has been gradually accpetcd in recent 20 years. Coating is the necessary key process to promote and irnprove the germination and sprouting percentage for the coated seed when sowed into the soil.In this paper,the development of the automated coating machine and its functional concept were introduced.The purpose of this studyis to automntc thc proccss of coating the chemi-cals uniformly around the rice seed and to improve the working environment under the u...

  4. Coating metals on micropowders by magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Magnetron sputtering was used to coat various metals on micropowder surfaces. By using this method, the fine particles are better dispersed and can therefore be coated more homogeneously. The micro-powders used include cenospheres from fly ash of coal-burning electric power plants (diameter 40-200 μm and particle density 0.7±0.1 g/cm3), as well as carborundum particles of different sizes. Aluminum, silver, copper, cobalt and nickel were used as the coating metals. Tests showed that the coated metal film was compact adhering tightly on the base powders, and the coated powders possess adequate flow properties.

  5. Nanostructured zirconia layers as thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Radu Robert PITICESCU

    2011-09-01

    Full Text Available The coatings obtained by thermal spray are used both as antioxidant and connection materials (e.g. MCrAlY type alloys as well as thermal barrier coatings (e.g. partially stabilized zirconia oxide with yttria oxide. This paper studies the characteristics of the coatings obtained with nanostructured powders by thermal spraying and air plasma jet metallization. Testing of coatings is done against the most disturbing factor, thermal shock. Structural changes occurring after thermal shock tests are highlighted by investigations of optical and electronic microscopy. The results obtained after quick thermal shock show a good morphological and surface behavior of the developed coatings.

  6. Nanocrystalline Ni-W coatings on copper

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780, Athens (Greece); Plainakis, G.D.; Lagaris, D.A. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780, Athens (Greece)

    2011-04-15

    Nanocrystalline Ni-W coatings were produced on copper substrates with the aid of electrodeposition technique. The morphology, chemical composition and structure of the produced coatings were examined with the aid of scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The microhardness of alloy Ni-W coatings on copper substrate was also studied. The adhesion between the Ni-W coating, having W content 50 wt%, and the copper substrate, was also studied with a scratch testing apparatus. The scratch tests resulted in the coatings suffering an intensive brittle fracture and minor delamination.

  7. Method for making nanoporous hydrophobic coatings

    Science.gov (United States)

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  8. Polarization Aberrations of Optical Coatings

    Science.gov (United States)

    Jota, Thiago

    This work does not limit itself to its title and touches on a number of related topics beyond it. Starting with the title, Polarization Aberrations of Optical Coatings, the immediate question that comes to mind is: what coatings? All coatings? Not all coatings, but just enough that a third person could take this information and apply it anywhere: to all coatings. The computational work-flow required to break-down the aberrations caused by polarizing events (3D vector forms of reflection and refraction) in dielectric and absorbing materials and for thick and thin films is presented. Therefore, it is completely general and of interest to the wide optics community. The example system is a Ritchey-Chretien telescope. It looks very similar to a Cassegrain, but it is not. It has hyperbolic surfaces, which allows for more optical aberration corrections. A few modern systems that use this configuration are the Hubble Space Telescope and the Keck telescopes. This particular system is a follow-up on this publication, where an example Cassegrain with aluminum coatings is characterized, and I was asked to simply evaluate it at another wavelength. To my surprise, I found a number of issues which lead me to write a completely new, one-of-its-kind 3D polarization ray-tracing code. It can do purely geometrical ray-tracing with add-on the polarization analysis capability, and more importantly: it keeps your data at your fingertips while offering all the outstanding facilities of Mathematica. The ray-tracing code and its extensive library, which can do several advanced computations, is documented in the appendix. The coatings of the Ritchey-Chretien induce a number of aberrations, primarily, but not limited to: tilt, defocus, astigmatism, and coma. I found those forms to exist in both aluminum and with a reflectance-enhancing dielectric quarter-wave multilayer coating over aluminum. The thickness of the film stack varies as function of position to present a quarter-wave of optical

  9. Black Molecular Adsorber Coatings for Spaceflight Applications

    Science.gov (United States)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  10. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  11. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    comprising a chemically bonded monolayer of silane compounds on the at least one surface wherein the silane is a halogenated silane. The at least one surface coated with the anti-stiction coating may be configured to withstand an injection molding process at a pressure above 100 MPa. Furthermore, a mold......A method of preparing an aluminum mold for injection molding is provided, the method comprises the steps of providing an aluminum mold having a least one surface, subjecting the at least one surface to a gas or liquid phase silane to thereby form an anti-stiction coating, the anti-stiction coating...... having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...

  12. Methods and apparatus for coating particulate material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2012-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  13. Status of NEG Coating at ESRF

    CERN Document Server

    Hahn, Michael

    2005-01-01

    The ESRF non-evaporable getter (NEG) coating facility is in operation since two years now. A large part of the insertion device straight sections of the electron storage ring has been equipped with in-house coated 5m long aluminum vacuum chambers with an inner vertical aperture of 8 mm. Operational experience with different coating parameters leading to different film thicknesses will be given and compared to bremsstrahlung data. The paper deals also with improvements of the coating production and chamber preparation, and describes some aspects of NEG coating data acquisition, visualization, and remote control. The R&D program leading to a more powerful DC solenoidal coating tool to further improve the NEG coating production throughput and quality aspects is also discussed.

  14. Properties of Plasma and HVOF Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Wojciech Żórawski

    2012-11-01

    Full Text Available The work compares the properties of plasma and HVOF thermally sprayed coatings obtained by blending the NiCrBSi and Fe2O3 powders. The deposition was performed by means of the Plancer PN-120 and the Diamond Jet guns for plasma spraying and HVOF spraying respectively. The SEM (EDS method was employed to study the microstructure of the produced coatings. Although the blended powders differ in particle size, shape, and distribution, it is possible to obtain composite coatings with an NiCrBSi matrix containing iron oxides. Except for a different microstructure, plasma and HVOF coatings have a different phase composition, which was examined using the Bruker D-8 Advance diffractometer. Studies of the coatings wear and scuffing resistance showed that an optimal content of Fe2O3 is about 26 % for plasma sprayed coatings and 22.5 % for HVOF deposited coatings.

  15. ANTIREFLECTION MULTILAYER COATINGS WITH THIN METAL LAYERS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2016-03-01

    Full Text Available The design of anti-reflective coatings for metal surfaces of Al, Ti, N,i Cr is proposed. The coatings have the form of alternating layers of dielectric/metal/dielectric with the number of cells up to15. The method of calculation of such coatings is proposed. We have calculated the coatings of the type [HfO2/Cr/HfO2]15, [ZrO2/Ti/Al2O3]15, [ZrO2/Cr/ZrO2]15. It is shown that the proposed interference coatings provide reduction of the residual reflectance of the metal several times (from 3.5 to 6.0 in a wide spectral range (300-1000 nm. The proposed coatings can be recommended as anti-reflective coatings for energy saving solar systems and batteries, and photovoltaic cells.

  16. Thermal Residual Stresses in Multilayered Coatings

    Institute of Scientific and Technical Information of China (English)

    Xiancheng ZHANG; Binshi XU; Haidou WANG; Yixiong WU

    2005-01-01

    The mechanical integrity and reliability of coated devices are strongly affected by the residual stresses in thin films and coatings. However, due to the metallurgical complexity of materials, it is rather difficult to obtain a closed-form solution of residual stresses within multilayered coatings (e.g. functionally graded coatings, FGCs). In this paper,an analytical model is developed to predict the distribution of residual stresses within multilayered coatings. The advantage of this model is that the solution of residual stresses is independent of the number of layers. Specific results are obtained by calculating elastic thermal stresses in ZrO2/NiCoCrAIY FGCs, which consist of different material layers. Furthermore, the residual stress distribution near the edges and the stress-induced failure modes of coating are also analyzed. The topics discussed provide some insights into the development of a methodology for designing fail-safe coating systems.

  17. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  18. High efficiency turbine blade coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  19. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  20. Wrinkling of solidifying polymeric coatings

    Science.gov (United States)

    Basu, Soumendra Kumar

    2005-07-01

    In coatings, wrinkles are viewed as defects or as desired features for low gloss, and texture. In either case, discovering the origin of wrinkles and the conditions that lead to their formation is important. This research examines what wrinkling requires and proposes a mechanism to explain the observations. All curing wrinkling coatings contain multi-functional reactants. Upon curing, all develop a depth-wise gradient in solidification that result in a cross-linked elastic skin atop a viscous bottom layer. It is hypothesized that compressive stress develops in the skin when liquid below diffuses up into the skin. High enough compressive stress buckles the skin to produce wrinkles. The hypothesis is substantiated by experimental and theoretical evidences. Effects of various application and compositional parameters on wrinkle size in a liquid-applied acrylic coating and a powder-applied epoxy coating were examined. All three components, namely resin, cross-linker and catalyst blocked with at least equimolar volatile blocker, proved to be required for wrinkling. The wrinkling phenomenon was modeled with a theory that accounts for gradient generation, cross-linking reaction and skinning; predictions compared well with observations. Two-layer non-curing coatings that have a stiff elastic layer atop a complaint elastic bottom layer wrinkled when the top layer is compressed. The top layer was compressed by either moisture absorption or differential thermal expansion. Experimental observations compared well with predictions from a theory based on force balance in multilayer systems subjected to differential contraction or expansion. A model based on the Flory-Rehner free energy of a constrained cross-linked gel was constructed that predicts the compressive stress generated in a coating when it absorbs solvent. Linear stability analysis predicts that when a compressed elastic layer is attached atop a viscous layer, it is always unstable to buckles whose wavelength exceeds a

  1. Residual Stresses Modeled in Thermal Barrier Coatings

    Science.gov (United States)

    Freborg, A. M.; Ferguson, B. L.; Petrus, G. J.; Brindley, W. J.

    1998-01-01

    Thermal barrier coating (TBC) applications continue to increase as the need for greater engine efficiency in aircraft and land-based gas turbines increases. However, durability and reliability issues limit the benefits that can be derived from TBC's. A thorough understanding of the mechanisms that cause TBC failure is a key to increasing, as well as predicting, TBC durability. Oxidation of the bond coat has been repeatedly identified as one of the major factors affecting the durability of the ceramic top coat during service. However, the mechanisms by which oxidation facilitates TBC failure are poorly understood and require further characterization. In addition, researchers have suspected that other bond coat and top coat factors might influence TBC thermal fatigue life, both separately and through interactions with the mechanism of oxidation. These other factors include the bond coat coefficient of thermal expansion, the bond coat roughness, and the creep behavior of both the ceramic and bond coat layers. Although it is difficult to design an experiment to examine these factors unambiguously, it is possible to design a computer modeling "experiment" to examine the action and interaction of these factors, as well as to determine failure drivers for TBC's. Previous computer models have examined some of these factors separately to determine their effect on coating residual stresses, but none have examined all the factors concurrently. The purpose of this research, which was performed at DCT, Inc., in contract with the NASA Lewis Research Center, was to develop an inclusive finite element model to characterize the effects of oxidation on the residual stresses within the TBC system during thermal cycling as well as to examine the interaction of oxidation with the other factors affecting TBC life. The plasma sprayed, two-layer thermal barrier coating that was modeled incorporated a superalloy substrate, a NiCrAlY bond coat, and a ZrO2-8 wt % Y2O3 ceramic top coat. We

  2. Method of Producing Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    Science.gov (United States)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    2000-01-01

    An improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coatings includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer or a diameter of less than 5 micron. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention the first bond coat layer is applied to the substrate. and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of the invention a ceramic insulating layer covers the second bond coat layer.

  3. Coating Technologies for Insensitive Munitions

    Science.gov (United States)

    2006-09-01

    GM 9540P is an accelerated cyclic corrosion test that was developed by the automotive industry to more accurately replicate long-term outdoor...Impact resistance can be described as a paint property that 23 quantitatively characterizes the adhesion and flexibility of a coating with...will be tested as previous panels. 1. Polyurea over Pitt-Char XP, 2. Pitt-Char XP over Multiprime 97-680 primer, with Pitthane urethane TC, 3

  4. Multilayer coating for high gradients

    CERN Document Server

    Kubo, Takayuki

    2016-01-01

    The multilayer coating for high gradients is reviewed. Not only the S-I-S structure, but also the S-S bilayer structure are also treated. This is an incomplete manuscript of an invited article which will be submitted to a journal. I have uploaded this version in order to help the understanding on my talk at the TESLA Technology Collaboration meeting at Saclay, France.

  5. Beryllium coating on Inconel tiles

    Energy Technology Data Exchange (ETDEWEB)

    Bailescu, V.; Burcea, G.; Lungu, C.P.; Mustata, I.; Lungu, A.M. [Association EURATOM-MEC Romania, National Institute of Laser, Plasma and Radiation Physics, Bucharest (Romania); Rubel, M. [Alfven Laboratory, Royal Institute of Technology, Stockholm (Sweden); Coad, J.P. [Culham Science Centre, EURATOM-UKAEA Fusion Association, Abingdon, OX, Oxon (United Kingdom); Matthews, G.; Pedrick, L.; Handley, R. [UKAEA Fusion, Association Euratom-UKAEA, Culham Science and Engineering Centre, OX 3DB ABINGDON, Oxon (United Kingdom)

    2007-07-01

    Full text of publication follows: The Joint European Torus (JET) is a large experimental nuclear fusion device. Its aim is to confine and study the behaviour of plasma in conditions and dimensions approaching those required for a fusion reactor. The plasma is created in the toroidal shaped vacuum vessel of the machine in which it is confined by magnetic fields. In preparation for ITER a new ITER-like Wall (ILW) will be installed on Joint European Torus (JET), a wall not having any carbon facing the plasma [1]. In places Inconel tiles are to be installed, these tiles shall be coated with Beryllium. MEdC represented by the National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest and in direct cooperation with Nuclear Fuel Plant Pitesti started to coat Inconel tiles with 8 {mu}m of Beryllium in accordance with the requirements of technical specification and fit for installation in the JET machine. This contribution provides an overview of the principles of manufacturing processes using thermal evaporation method in vacuum and the properties of the prepared coatings. The optimization of the manufacturing process (layer thickness, structure and purity) has been carried out on Inconel substrates (polished and sand blasted) The results of the optimization process and analysis (SEM, TEM, XRD, Auger, RBS, AFM) of the coatings will be presented. Reference [1] Takeshi Hirai, H. Maier, M. Rubel, Ph. Mertens, R. Neu, O. Neubauer, E. Gauthier, J. Likonen, C. Lungu, G. Maddaluno, G. F. Matthews, R. Mitteau, G. Piazza, V. Philipps, B. Riccardi, C. Ruset, I. Uytdenhouwen, R and D on full tungsten divertor and beryllium wall for JET TIER-like Wall Project, 24. Symposium on Fusion Technology - 11-15 September 2006 -Warsaw, Poland. (authors)

  6. Low Temperature Cure Powder Coatings

    Science.gov (United States)

    2013-05-01

    Space Administration USN = United States Navy Test coupons were comprised of steel, aluminum, and magnesium alloys commonly utilized within...utilized a film gauge that was capable of handling both ferrous and non- ferrous metallic substrates for all film thickness measurements. 5.2.1.4 Surface...copper content aluminum alloys while the 2024-T3 specimens passed. From a comparative standpoint, the LTCPC-coated Al coupons for each group

  7. Standardization in optical coating characterisation

    Institute of Scientific and Technical Information of China (English)

    D.Ristau

    2005-01-01

    In the rapid development course of laser technology and modern optics, optical metrology continuously gains importance for the quality management in the industrial production environment and also for research in optical coatings. Besides absorption and scatter losses, the spectral characteristics and laser induced damage thresholds are considered as common quality factors for coated optical components and often define the optimization targets for new products and applications. Also, these quality parameters are the basis for the comparison of commercial optics and can be found in the product catalogues of most manufacturers of optical components. As a consequence, standardization of characterisation procedures for these fundamental properties evolved to a crucial point for the optics industry. During the last decade, adapted standard measurement techniques have been elaborated and discussed by representatives from many industrial companies and research institutes within working groups of the International Organisation for Standardization (ISO). In this contribution, the current state of standardized characterisation techniques for optical coatings is summarised. Selected standards for the measurement of absorption (ISO 11551), scattering (ISO 13696) and laser induced damage thresholds (ISO 11254, Parts 1 and 2) will be described and discussed in view of their applicability and reproducibility. The report will be concluded by an outlook on the current projects and future tasks of standardization in optics characterisation.

  8. Measurement of surface crystallinity of PAA and PAANa coatings and its effect on hydrophilicity of coatings

    Institute of Scientific and Technical Information of China (English)

    潘春跃; 刘清泉; 徐先华; 陈振华

    2003-01-01

    The solutions of poly(acrylic acid)(PAA), poly(acrylic acid sodium)(PAANa) were coated on aluminium fins by roll coating method. The coatings with different crystallinity were obtained by varying baking time and temperature. Their surface crystallinity and surface tension were measured, and their spreading speed constant and equilibrium contact angle were tested also. The correlation of surface crystallinity, surface tension, spreading speed constant and surface hydrophilicity was discussed. It is demonstrated that surface tension and spreading speed constant increase, while equilibrium contact angle declines with increasing surface crystallinity of coatings, that is to say, the hydrophilicity of coatings is improved with surface crystallinity of coatings increasing.

  9. A New Method to Prepare Hydroxylapatite Coating of Implants

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new method ( sintering method) to prepare hydroxylapatite coating of implants was developed. The coating was characterized by X- ray diffraction (XRD) and infrared spectroscopy with a Nicolet FTIR aparatus. The adhesion strength of coating to metal substrate were measured. The bone ingrowth of coated substrate was observed and clinical application of coated implants were reported in this paper. The comparison results of sintered coating and plasma sparied coating was discussed.

  10. Brush seal shaft wear resistant coatings

    Science.gov (United States)

    Howe, Harold

    1995-03-01

    Brush seals suffer from high wear, which reduces their effectiveness. This work sought to reduce brush seal wear by identifying and testing several industry standard coatings. One of the coatings was developed for this work. It was a co-sprayed PSZ with boron-nitride added for a high temperature dry lubricant. Other coatings tested were a PSZ, chrome carbide and a bare rotor. Testing of these coatings included thermal shocking, tensile testing and wear/coefficient of friction testing. Wear testing consisted of applying a coating to a rotor and then running a sample tuft of SiC ceramic fiber against the coating. Surface speeds at point of contact were slightly over 1000 ft/sec. Rotor wear was noted, as well as coefficient of friction data. Results from the testing indicates that the oxide ceramic coatings cannot withstand the given set of conditions. Carbide coatings will not work because of the need for a metallic binder, which oxidizes in the high heat produced by friction. All work indicated a need for a coating that has a lubricant contained within itself and the coating must be resistant to an oxidizing environment.

  11. Incorporation of proteins into biomimetic hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Groot, K. de [Leiden Univ. (Netherlands). Biomaterials Research Group; IsoTis, Bilthoven (Netherlands); Layrolle, P. [IsoTis, Bilthoven (Netherlands); Blitterswijk, C.A. van [IsoTis, Bilthoven (Netherlands); Twente Univ., Enschede (Netherlands)

    2001-07-01

    Hydroxyapatite coating was biomimetically deposited on titanium alloy (Ti6Al4V). Various concentrations (10 ng/ml - 1 {mu}g/ml) of bovine serum albumin (BSA) were added into a supersaturated calcium phosphate solution (CPS) at physiological temperature and pH of 7.4. Pre-treated Ti6Al4V plates were immersed into such solution for 48 hours at 37 C. BSA was co-precipitated with the crystals during the coating process. A white and thick (30 - 50 {mu}m) coating was uniformly deposited on titanium surfaces. The produced coatings were evaluated and protein release was measured. Results revealed: at higher BSA concentrations in the solution, the coating changed its microstructure; the crystal size of the coating and the coating thickness decreased indicating a crystal growth inhibition. Loading amounts of protein in the coating increased with higher concentration in the solution. Protein was incorporated into whole layer of coating and lead to a slow release. These results indicated that biomimetic hydroxyapatite coatings are suitable carriers for proteins. (orig.)

  12. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    Directory of Open Access Journals (Sweden)

    DU Ji-yu

    2017-09-01

    Full Text Available Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is prepared; the increase of bond coating thickness can lead to increase of functional coating porosity in the bottom and speed up the process of porosity attenuating in the vertical direction.SEM analysis found that the increase of bond coating thickness results in the droplet deposition morphology change in the bending interface with the functional coating. The defects of bond coating have genetic influence on composite functional coating. Bond tensile test results show that excessive bond coating thickness will cause fracture in the interface between bond coating and functional coating during the stretching process; in different grinding surfaces, Vickers hardness of test blocks with a certain bood coating thickness attenuates slowly in the vertical direction. NiCrBSi-Mo/Ni coating not only maintains high surface hardness, but also increases the coating thickness to repair surface damage.

  13. Development on Laser Cladding Ceramic Coating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The latest progress and research status of laser cladding ceramic coating was summarized. Technique characteristics and influence factors of laser cladding technique were introduced. Laser cladding technique includes the mixing method and laser irradiation. The mixing method can be classified as pre-coating method and synchronization method. The technique parameters include size of facula, scanning speed, cladding sector and times, adding quantity of powder, thickness of coating and quantity of joint coating. The results show that proper technique parameters can be controlled in order to acquire high quality laser cladding coating. Strengthened effect mechanism of rare earth additive is concluded, and the main effects of rare earth additive are micro-alloying, purifying boundary, fining crystal grains, improving crystal boundary, restraining columnar crystal growing. The development of laser cladding ceramic coating research was discussed.

  14. Microneedle Coating Techniques for Transdermal Drug Delivery.

    Science.gov (United States)

    Haj-Ahmad, Rita; Khan, Hashim; Arshad, Muhammad Sohail; Rasekh, Manoochehr; Hussain, Amjad; Walsh, Susannah; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan

    2015-11-05

    Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates.

  15. Crystallization of DNA-coated colloids.

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S; Weck, Marcus; Pine, David J

    2015-06-16

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids.

  16. Smart self-repairing protective coatings

    Directory of Open Access Journals (Sweden)

    Daria V. Andreeva

    2008-10-01

    Full Text Available Nanocontainers with a shell possessing controlled release properties can be used to fabricate a new family of active coatings that can respond quickly to changes in the coating environment or the coating's integrity. The release of corrosion inhibitors encapsulated within nanocontainers is triggered by the corrosion process, which prevents the spontaneous leakage of the corrosion inhibitor out of the coating. Moreover, if different types of nanocontainers loaded with the corresponding active agents are incorporated simultaneously into a coating matrix, the coating can act in several different ways (e.g. antibacterial, anticorrosion and antistatic. This review presents methods for the fabrication of such nanocontainers, how they can encapsulate active material, and their permeability properties.

  17. Use of nanofillers in wood coatings

    DEFF Research Database (Denmark)

    Nikolic, Miroslav; Lawther, John Mark; Sanadi, Anand Ramesh

    2015-01-01

    Wood has been used for thousands of years and remains an important material in the construction industry, most often protected with coatings. Development of nanotechnology allows further improvements or new performance properties to be achieved in wood coatings. Increased UV protection with nanom...... like a low level of loading, have already established nanoparticles in some areas of wood coatings. This article is a comprehensive scientific review of the published work in the use of nanofillers in wood coatings.......Wood has been used for thousands of years and remains an important material in the construction industry, most often protected with coatings. Development of nanotechnology allows further improvements or new performance properties to be achieved in wood coatings. Increased UV protection...

  18. Microneedle Coating Techniques for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Rita Haj-Ahmad

    2015-11-01

    Full Text Available Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates.

  19. Protection of aluminium by duplex coatings

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J. [Ceska Akademie Ved, Prague (Czech Republic). Fyzikalni Ustav; Vlcek, J. [West Bohemia Univ., Plzen (Czech Republic). Dept. of Phys.; Jezek, V. [West Bohemia Univ., Plzen (Czech Republic). Dept. of Phys.; Benda, M. [West Bohemia Univ., Plzen (Czech Republic). Dept. of Phys.

    1995-11-01

    The paper reports on a new way of producing duplex coatings consisting of two steps. First, the substrate is coated by a physically vapour-deposited coating. Then, this precoated substrate is plasma nitrided or vacuum heat treated. This method was tested in the protection of substrates made of aluminium with a sputtered Ti coating about 5 {mu}m thick. The as-deposited and then plasma-nitrided or vacuum-heat-treated (Ti coating)/(Al substrate) couple was characterized by elemental depth profiles measured by glow discharge optical spectroscopy. It was shown that both the plasma nitriding and vacuum heat treatment process can stimulate a strong interdiffusion between Ti and the substrate elements. It results not only in the formation of a very broad interfacial region with a dramatic redistribution of the substrate elements in the Ti film but also in a formation of intermetallic Ti-Al compounds. This new duplex coating technique is described in detail. (orig.)

  20. Thermal barrier coatings for heat engine components

    Science.gov (United States)

    Levine, S. R.; Miller, R. A.; Hodge, P. E.

    1980-01-01

    A comprehensive NASA-Lewis program of coating development for aircraft gas turbine blades and vanes is presented. Improved ceramic layer compositions are investigated, along the MCrAlY bond films and the methods of uniform deposition of the coatings; the thermomechanical and fuel impurity tolerance limits of the coatings are being studied. Materials include the ZrO2-Y2O3/NiCrAlY system; the effects of the bond coat and zirconia composition on coating life and Mach 1 burner rig test results are discussed. It is concluded that Diesel engines can also utilize thermal barrier coatings; they have been used successfully on piston crowns and exhaust valves of shipboard engines to combat lower grade fuel combustion corrosion.

  1. Localized plasmons in graphene-coated nanospheres

    DEFF Research Database (Denmark)

    Christensen, Thomas; Jauho, Antti-Pekka; Wubs, Martijn;

    2015-01-01

    We present an analytical derivation of the electromagnetic response of a spherical object coated by a conductive film, here exemplified by a graphene coating. Applying the framework of Mie-Lorenz theory augmented to account for a conductive boundary condition, we derive the multipole scattering c...... cross section and local density of states. Recent demonstrations of fabricated spherical graphene nanostructures make our study directly relevant to experiments.......We present an analytical derivation of the electromagnetic response of a spherical object coated by a conductive film, here exemplified by a graphene coating. Applying the framework of Mie-Lorenz theory augmented to account for a conductive boundary condition, we derive the multipole scattering...... for the localized plasmons. We consider graphene coatings of both dielectric and conducting spheres, where the graphene coating in the former case introduces the plasmons and in the latter case modifies in interesting ways the existing ones. Finally, we discuss our analytical results in the context of extinction...

  2. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. In situ polymerization coating and characteristics of coated NPK compound fertilizer

    Institute of Scientific and Technical Information of China (English)

    WANG Zhenghui; ZHU Homing

    2007-01-01

    Controlled release NPK compound fertilizers were prepared by means of in situ polymerization of monomers on the surface of fertilizer granules at room temperature. Methacrylate, α-methyl acrylic acid, and ethylene dimethylacrylate were used as monomers, Dibenzoyl peroxide as initiator, and cobalt naphthenate, and triethyl amine as promoters. The structures of coating materials were characterized by IR spectra. The thermogravimetric analysis result indicated that the coating materials were of good thermal stability. The mean thickness of single coating measured with screw gauge was ca. 140 μm. The morphologies of uncoated and coated fertilizer granules analyzed by using scanning electron microscopy were changed from porosities and gullies to hills and plain. The release rate of coated compound fertilizers in water could be controlled by the hydrophicity and thickness of coating. The increase in coating hydrophicity caused the increase in release rate of fertilizer. The increase in thickness of coating slowed the release rate.

  4. Standard practice for characterization of coatings using conformable Eddy-Current sensors without coating reference standards

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers the use of conformable eddy-current sensors for nondestructive characterization of coatings without standardization on coated reference parts. It includes the following: (1) thickness measurement of a conductive coating on a conductive substrate, (2) detection and characterization of local regions of increased porosity of a conductive coating, and (3) measurement of thickness for nonconductive coatings on a conductive substrate or on a conductive coating. This practice includes only nonmagnetic coatings on either magnetic (μ ≠ μ0) or nonmagnetic (μ = μ0) substrates. This practice can also be used to measure the effective thickness of a process-affected zone (for example, shot peened layer for aluminum alloys, alpha case for titanium alloys). For specific types of coated parts, the user may need a more specific procedure tailored to a specific application.

  5. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    Science.gov (United States)

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  6. Press-coating of immediate release powders onto coated controlled release tablets with adhesives.

    Science.gov (United States)

    Waterman, Kenneth C; Fergione, Michael B

    2003-05-20

    A novel adhesive coating was developed that allows even small quantities of immediate-release (IR) powders to be press-coated onto controlled-release (CR), coated dosage forms without damaging the CR coating. The process was exemplified using a pseudoephedrine osmotic tablet (asymmetric membrane technology, AMT) where a powder weighing less than 25% of the core was pressed onto the osmotic tablet providing a final combination tablet with low friability. The dosage form with the adhesive plus the press-coated powder showed comparable sustained drug release rates to the untreated dosage form after an initial 2-h lag. The adhesive layer consisted of an approximately 100- microm coating of Eudragit RL, polyethylene glycol (PEG) and triethyl citrate (TEC) at a ratio of 5:3:1.2. This coating provides a practical balance between handleability before press-coating and good adhesion.

  7. Protection of alodine coatings from thermal aging by removable polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wagstaff, Brett R. (.); Bradshaw, Robert W.; Whinnery, LeRoy L., Jr. (.,; .)

    2006-12-01

    Removable polymer coatings were evaluated as a means to suppress dehydration of Alodine chromate conversion coatings during thermal aging and thereby retain the corrosion protection afforded by Alodine. Two types of polymer coatings were applied to Alodine-treated panels of aluminum alloys 7075-T73 and 6061-T6 that were subsequently aged for 15 to 50 hours at temperatures between 135 F to 200 F. The corrosion resistance of the thermally aged panels was evaluated, after stripping the polymer coatings, by exposure to a standard salt-fog corrosion test and the extent of pitting of the polymer-coated and untreated panels compared. Removable polymer coatings mitigated the loss of corrosion resistance due to thermal aging experienced by the untreated alloys. An epoxide coating was more effective than a fluorosilicone coating as a dehydration barrier.

  8. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    Science.gov (United States)

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  9. Powder coating now available for battery manufacturing

    OpenAIRE

    Landwehr, Inga; Cudazzo, Markus

    2015-01-01

    A space-saving, cost-efficient and eco-friendly new electrostatic powder coatings for electrode manufacturing: Manufacturing electrodes for electrochemical energy storage is an important and costly process. The disadvantages of so far used liquid-coatings are the high energy and floor space demand of drying-process as well as the application of harmful solvents. A new powder-based coating process eliminates potential hazards and offers numerous advantages.

  10. Method to produce catalytically active nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  11. Cr-Free Metallic-Ceramic Coatings

    Science.gov (United States)

    2014-11-01

    Cr -FREE METALLIC-CERAMIC COATINGS ASETS Defense 2014 Fort Myer, VA, November 18-20, 2014 Bruce McMordie Coatings for Industry 319...SNECMA Alseal® 5K Aluminum-Silicate Al-Silicate Coating System Now Available That Can Eliminate Hazards of Carcinogenic Cr +6 in Al...OMB control number. 1. REPORT DATE NOV 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Cr -Free Metallic

  12. Durable Hybrid Coatings Annual Performance Report (2009)

    Science.gov (United States)

    2009-10-01

    York, 2002. 13. F. Massines, N. Gherardi, A. Fornelli, S. Martin , “Atmospheric pressure plasma deposition of thin films by Townsend dielectric...evaluating protective merit of coatings on metals,” Ind. Eng. Chem., vol. 40, p. 161, Jan. 1948. [7] B. L. Grisso, L. A. Martin , and D. J. Inman, “A...ASTM D5894 and the Development of Corrosion Resistant Coatings,” Paint & Coatings Industry, May, 1997, 76. 8. N. D. Cremer , Polymers Paint Colour

  13. Advanced optical coatings for astronomical instrumentation

    Science.gov (United States)

    Pradal, Fabien; Leplan, Hervé; Vayssade, Hervé; Geyl, Roland

    2016-07-01

    Recently Safran Reosc worked and progressed on various thin film technology for: Large mirrors with low stress and stable coatings. Large lens elements with strong curvature and precise layer specifications. Large filters with high spectral response uniformity specifications. IR coatings with low stress and excellent resistance to cryogenic environment for NIR to LWIR domains. Pixelated coatings. Results will be presented and discussed on the basis of several examples.

  14. Improving YBCO Coated Conductors for Applications (Postprint)

    Science.gov (United States)

    2012-02-01

    AFRL-RZ-WP-TP-2012-0123 IMPROVING YBCO COATED CONDUCTORS FOR APPLICATIONS (POSTPRINT) P.N. Barnes, B.C. Harrison, J.W. Kell, and G.A...SUBTITLE IMPROVING YBCO COATED CONDUCTORS FOR APPLICATIONS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...are lighter in weight and smaller in size than their conventional counterparts. The YBCO coated conductor is expected to be the premiere HTS conductor

  15. Surface and Mechanical studies of Bismaleimide coatings

    OpenAIRE

    Bhattacharyya, A. S.; Paul, D; Dutta, P. P.; Bhattacharjee, G.

    2015-01-01

    Bismaleimide (BMI) resins are a new breed of thermosetting resins used mainly for high temperature applications and have major usage in aerospace. BMI polymer coatings were deposited on aluminum and mild steel substrates. The effect of corrosion on mild steel and aluminum by Ringers Solution and there protection using BMI coatings were observed. X-ray diffraction studies showed crystalline nature of the BMI coatings. Surface contact angle measurements were carried out using goniometer.

  16. Effects of High Temperature on Collector Coatings

    Science.gov (United States)

    Lowery, J. R.

    1982-01-01

    Report reveals electroplated black chrome is good coating for concentrating collectors in which temperatures are in the 650 degrees-800 degrees F (340 degrees - 430 degrees C) range. Black chrome thermal emittance is low and solar-absorption properties are not seriously degraded at high temperatures. Black coatings are used to increase absorption of solar energy by base metal while decreasing emission of infrared energy. Coatings are intended to improve efficiency of solar collectors.

  17. Effects of coating spherical iron oxide nanoparticles

    OpenAIRE

    2016-01-01

    International audience; We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed – TEM, DLS, VSM, SAXS and EXAFS – show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower pro...

  18. Loss/gain-induced ultrathin antireflection coatings

    OpenAIRE

    Jie Luo; Sucheng Li; Bo Hou; Yun Lai

    2016-01-01

    Tradional antireflection coatings composed of dielectric layers usually require the thickness to be larger than quarter wavelength. Here, we demonstrate that materials with permittivity or permeability dominated by imaginary parts, i.e. lossy or gain media, can realize non-resonant antireflection coatings in deep sub-wavelength scale. Interestingly, while the reflected waves are eliminated as in traditional dielectric antireflection coatings, the transmitted waves can be enhanced or reduced, ...

  19. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  20. Advancements in application of thermoplastic powder coatings for railcar linings

    Energy Technology Data Exchange (ETDEWEB)

    Horton, D.; Loustaunau, P.J. [PFS Thermoplastic Powder Coatings and Equipment, Big Spring, TX (United States)

    1996-10-01

    Powder coatings offer many benefits for coating applications. These products offer zero VOC emissions and improved performance. Railcars have been largely excluded from these applications due to their physical size. With innovative coating materials and coating techniques, these parts may be economically lined with high performance polymer coatings.

  1. Introduction: Edible Coatings and Films to Improve Food Quality

    Science.gov (United States)

    This book gives a history of the development and uses of edible coatings, detailed chapters on coating caracteristics, determination of coating properties, methods for making coatings, and discription of coating film formers (polysaccharieds, lipids, resins, proteins). The book also disucsses coatin...

  2. Biological coating of paper using silver nanoparticles.

    Science.gov (United States)

    Ghorbani, Hamid Reza

    2014-12-01

    The capacity of Ag nanoparticles to destroy various micro-organisms makes it one of the most powerful antimicrobial agents, an attractive feature against antibiotic resistant bacteria. Here, a simple method to develop coating of colloidal silver on paper using a biological method is presented. The coated paper was studied by scanning electron microscopy, X-ray diffraction technique and atomic absorption spectroscopy. The antibacterial activity of the coated paper against Escherichia coli and Staphylococcus aureus was measured by agar diffusion method. This study shows the potential use of the coated paper as a food antimicrobial packing material for longer shelf life.

  3. Method of identifying defective particle coatings

    Science.gov (United States)

    Cohen, Mark E.; Whiting, Carlton D.

    1986-01-01

    A method for identifying coated particles having defective coatings desig to retain therewithin a build-up of gaseous materials including: (a) Pulling a vacuum on the particles; (b) Backfilling the particles at atmospheric pressure with a liquid capable of wetting the exterior surface of the coated particles, said liquid being a compound which includes an element having an atomic number higher than the highest atomic number of any element in the composition which forms the exterior surface of the particle coating; (c) Drying the particles; and (d) Radiographing the particles. By television monitoring, examination of the radiographs is substantially enhanced.

  4. Method for partially coating laser diode facets

    Science.gov (United States)

    Dholakia, Anil R. (Inventor)

    1990-01-01

    Bars of integral laser diode devices cleaved from a wafer are placed with their p regions abutting and n regions abutting. A thin BeCu mask having alternate openings and strips of the same width as the end facets is used to mask the n region interfaces so that multiple bars can be partially coated over their exposed p regions with a reflective or partial reflective coating. The partial coating permits identification of the emitting facet from the fully coated back facet during a later device mounting procedure.

  5. Heat Generation by Polypyrrole Coated Glass Fabric

    Directory of Open Access Journals (Sweden)

    A. M. Rehan Abbasi

    2013-01-01

    Full Text Available Vapor deposition technique was employed to coat polypyrrole (PPy on glass substrate using FeCl3 as oxidant and p-toluenesulfonic acid (−OTs as doping agent. The Joule heating effect of PPy coated E-glass fabric was studied by supplying various DC electric fields. The coated fabric exhibited reasonable electrical stability, possessed medium electrical conductivity and was effective in heat generation. An increase in temperature of conductive fabric subjected to constant voltage was observed whereas decrease in power consumption was recorded. Thickness of PPy coating on glass fibers was analyzed by Laser confocal microscope and scanning electron microscope.

  6. Electroless alloy/composite coatings: A review

    Indian Academy of Sciences (India)

    R C Agarwala; Vijaya Agarwala

    2003-06-01

    Since the inception of electroless coating by Brenner & Riddell in 1946, it has been the subject of research interest and, in the past two decades, emphasis has shifted to the studies of its properties and applications. The co-deposition of particulate matter or substance within the growing film has led to a new generation of electroless composite coatings, many of which possess excellent wear and corrosion resistance. This valuable process can coat not only electrically conductive materials including graphite but also fabrics, insulators like plastics, rubber etc. The low coating rates with these can provide better reflectivity of plated surfaces and many more applications. Coatings can be tailored for desired properties by selecting the composition of the coating alloy/composite/metallic to suit specific requirements. The market for these coatings is expanding fast as the potential applications are on the rise. In the present article, an attempt has been made to review different electroless alloy/composite coatings with respect to bath types and their composition, properties and applications. Different characterisation studies have been conducted on various electroless nickel-based coatings with emphasis on wear and corrosion properties.

  7. Nanostructured diamond coatings for orthopaedic applications.

    Science.gov (United States)

    Catledge, S A; Thomas, V; Vohra, Y K

    2013-01-01

    With increasing numbers of orthopaedic devices being implanted, greater emphasis is being placed on ceramic coating technology to reduce friction and wear in mating total joint replacement components, in order to improve implant function and increase device lifespan. In this chapter, we consider ultra-hard carbon coatings, with emphasis on nanostructured diamond, as alternative bearing surfaces for metallic components. Such coatings have great potential for use in biomedical implants as a result of their extreme hardness, wear resistance, low friction and biocompatibility. These ultra-hard carbon coatings can be deposited by several techniques resulting in a wide variety of structures and properties.

  8. Optical coatings for laser fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, W.H.; Milam, D.; Rainer, F.

    1980-04-24

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting, antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation.

  9. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    Science.gov (United States)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  10. HIGH TEMPERATURE OXIDATION PERFORMANCE OF ALUMINIDE COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Pint, B.A.; Zhang, Y.; Haynes, J.A.; Wright, I.G.

    2003-04-22

    In order to determine the potential benefits and limitations of aluminide coatings, coatings made by chemical vapor deposition (CVD) on Fe- and Ni-base alloy substrates are being evaluated in various high-temperature environments. Testing of coatings on representative ferritic (Fe-9Cr-1Mo) and austenitic (type 304L stainless steel) alloys has found that high frequency thermal cycling (1h cycle time) can significantly degrade the coating. Based on comparison with similar specimens with no thermal cycling or a longer cycle time (100h), this degradation was not due to Al loss from the coating but most likely because of the thermal expansion mismatch between the coating and the substrate. Several coated Ni-base alloys were tested in a high pressure (20atm) steam-CO2 environment for the ZEST (zero-emission steam turbine) program. Coated specimens showed less mass loss than the uncoated specimens after 1000h at 900 C and preliminary characterization examined the post-test coating structure and extent of attack.

  11. Coated particles for lithium battery cathodes

    Science.gov (United States)

    Singh, Mohit; Eitouni, Hany Basam; Pratt, Russell Clayton; Mullin, Scott Allen; Wang, Xiao-Liang

    2017-07-18

    Particles of cathodic materials are coated with polymer to prevent direct contact between the particles and the surrounding electrolyte. The polymers are held in place either by a) growing the polymers from initiators covalently bound to the particle, b) attachment of the already-formed polymers by covalently linking to functional groups attached to the particle, or c) electrostatic interactions resulting from incorporation of cationic or anionic groups in the polymer chain. Carbon or ceramic coatings may first be formed on the surfaces of the particles before the particles are coated with polymer. The polymer coating is both electronically and ionically conductive.

  12. An overview on novel thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Thermal barrier coatings (TBCs) offer the potential to significantly improve efficiencies of aero engines as well as stationary gas turbines for power generation. On internally cooled turbine parts, temperature gradients of the order of 100-150℃ can be achieved. TBCs, typically consisting of an yttrium stabilized zirconia top coat and a metallic bond coat deposited onto a superalloy substrate, are mainly used to extend lifetime. Further efficiency improvements require TBCs being an integral part of the component which requires reliable and predictable TBC performance. TBCs produced by electron beam physical vapor deposition (EbPVD) or plasma spray (PS) deposition are favored for high performance applications. The paper highlights critical R&D needs for advanced TBC systems with a special focus on reduced thermal conductivity and life prediction needs. To further enhance the efficiency of gas turbines, higher temperature and a longer lifetime of the coating are needed for the next generation of TBCs. This paper presents the development of new materials, new deposition technologies, and new concept for application as novel TBCs. This paper summarizes the basic properties of conventional thermal barrier coatings. Based on our own investigation, we reviewed the progress on materials and technologies of novel thermal barrier coatings. Except yttria stabilized zirconia, other materials such as lanthanum zirconate and rare earth oxides are also promising materials for thermal barrier coatings. Nanostructure thermal barrier coating is presented as a new concept. This paper also summarizes the technologies for depositing the thermal barrier coatings.

  13. Stresses and Cracks in Surface Coatings

    DEFF Research Database (Denmark)

    Horsewell, Andy

    2000-01-01

    This extended abstract of the talk to be given at the Danish Metallurgical Society, Winter Meeting 1999, gives an outline of the areas of interest in current projects in wear and corrosion resistant coatings at Materials Technology, Technical University of Denmark (IPT, Materialeteknologi, DTU......). It also briefly describes our method of approach in analysing new coating / substrate combinations or new materials processing techniques for producing a given coating. We strive to combine, often in collaboration with others, a fundamental understanding of microstructure, mechanical properties...... and fracture mechanics in order to determine the mechanical stability of engineering coatings for various critical applications....

  14. UV curable hard coatings on polyesters

    Science.gov (United States)

    Datashvili, Tea; Brostow, Witold; Kao, David

    2006-10-01

    UV curable, hard and transparent hybrid inorganic-organic coatings with covalent links between the inorganic and the organic networks were prepared using organically crosslinked heteropolysiloxanes based on the sol-gel process. The materials were applied onto polyester sheets and UV cured. The deposition was followed by a thermal treatment to improve mechanical properties of the coatings. High light transmission and the resulting thermophysical properties indicate the presence of a nanoscale hybrid composition. The coatings show excellent adhesion to polyesters even without using primers. Further mechanical characterization shows that the coatings provide high hardness and good abrasion resistance.

  15. Very High Temperature Sound Absorption Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase I demonstrated experimentally a very high temperature acoustically absorbing coating for ducted acoustics applications. High temperature survivability at 3500...

  16. Hybrid Calcium Phosphate Coatings for Titanium Implants

    Science.gov (United States)

    Kharapudchenko, E.; Ignatov, V.; Ivanov, V.; Tverdokhlebov, S.

    2017-01-01

    Hybrid multilayer coatings were obtained on titanium substrates by the combination of two methods: the micro-arc oxidation in phosphoric acid solution with the addition of calcium compounds to high supersaturated state and RF magnetron sputtering of the target made of synthetic hydroxyapatite. 16 different groups of coatings were formed on titanium substrates and in vitro studies were conducted in accordance with ISO 23317 in the solution simulating body fluid. The studies using SEM, XRD of the coatings of the samples before and after exposure to SBF were performed. The features of morphology, chemical and phase composition of the studied coatings are shown.

  17. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  18. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    2009-01-01

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken w

  19. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    Science.gov (United States)

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.

  20. Topology optimization for coated structures

    DEFF Research Database (Denmark)

    Clausen, Anders; Andreassen, Erik; Sigmund, Ole

    2015-01-01

    This paper presents new results within the design of three-dimensional (3D) coated structures using topology optimization.The work is an extension of a recently published two-dimensional (2D) method for including coatedstructures into the minimum compliance topology optimization problem. The high...... level of control over key parameters demonstrated for the 2D model can likewise be achieved in 3D. The effectiveness of the approach isdemonstrated with numerical examples, which for the 3D problems have been solved using a parallel topology optimization implementation based on the PETSc toolkit....

  1. Crop protection by seed coating.

    Science.gov (United States)

    Ehsanfar, S; Modarres-Sanavy, S A M

    2005-01-01

    Providence of sufficient and healthy food for increasing human population clears the importance of notice to increasing crop production in company with environmental loss reduction. Growth and yield of every plant with sexual reproduction, depends on germination & emergence of sown seeds. Seed is a small alive plant that its biological function is protection and nutrition of embryo. Biological, chemical and physiological characteristics of seed, affect on plant performance & its resistance to undesirable environmental conditions, and even on its total yield. So attention to seed and try to increase its performance is so important. One of the factors that cause reduction in germination percentage and seedling establishment, is seed disease. It's possible to control these diseases by treating the seed before planting it. Coating the seed with pesticides, is one of the ways to gain this goal. Seed coating is a technique in which several material as fertilizers, nutritional elements, moisture attractive or repulsive agents, plant growth regulators, rhizobium inocolum, chemical & pesticide etc, add to seed by adhesive agents and cause to increase seed performance and germination. Seed coating, leads to increase benefits in seed industry, because seeds can use all of their genetic vigor. This technique is used for seeds of many garden plants, valuable crops (such as corn, sunflower, canola, alfalfa,...) and some of the grasses. In this technique that was first used in coating cereal seeds in 1930, a thin and permeable layer of pesticide is stuck on seed surface and prevent damage of seedborn pathogens. This layer is melted or splited after absorption of moisture and suitable temperature by seed, and let the radical to exit the seed. In this approach materials are used accurately with seed, evaporation & leakage of pesticide and also adverse effects of some pesticides on seeds are diminished, and these factors cause to increase the accuracy and performance of pesticide

  2. COATING

    Directory of Open Access Journals (Sweden)

    JORGE ANDRÉS CALDERÓN-GUTIERREZ

    2014-01-01

    Full Text Available El desempeño anticorrosivo de un recubrimiento orgánico tipo Epoxy-Mastic fue evaluado en condiciones de inmersión continua en solución salina usando espectroscopía de impedancia electroquímica (EIS. Se determinaron los parámetros típicos como la resistencia de poro y resistencia a la transferencia de carga usando un circuito eléctrico equivalente. Se usaron elementos de fase constante (CPE para determinar la fracción de agua absorbida, coeficientes de difusión de masa, solubilidad y coeficientes de hinchamiento, así como también para predecir los tiempos de falla de dicho recubrimiento. Los resultados hallados por medio de medidas EIS concuerdan con la alta resistencia al deterioro que exhibe el recubrimiento. El excelente desempeño protector es debido principalmente a la baja solubilidad y permeabilidad de agua.

  3. Organic/inorganic hybrid coatings for anticorrosion

    Science.gov (United States)

    He, Zhouying

    Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The

  4. Antibacterial coating on polymer for space application

    Energy Technology Data Exchange (ETDEWEB)

    Balagna, Cristina, E-mail: cristina.balagna@polito.it [Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Perero, Sergio; Ferraris, Sara; Miola, Marta [Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Fucale, Giacomo [Chemical, Clinical and Microbiological Analyses Department C.T.O., Via G. Zuretti 29, 10126 Torino (Italy); Manfredotti, Chiara; Battiato, Alfio [Physics Department, Centre of Excellence ' Nanostructured Interfaces and Surfaces' and CNISM, University of Torino, Via P. Giuria 1, 10125 Torino (Italy); Santella, Daniela [Thales Alenia Space - Italia, Space Infrastructures and Transportation, Engineering - Advanced Projects Unit, Strada Antica di Collegno 253, 10146 Torino (Italy); Verne, Enrica [Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Vittone, Ettore [Physics Department, Centre of Excellence ' Nanostructured Interfaces and Surfaces' and CNISM, University of Torino, Via P. Giuria 1, 10125 Torino (Italy); Ferraris, Monica [Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2012-08-15

    The microbiological contamination on board of spacecraft and orbital stations is a relevant problem in prolonged space exploration. For this purpose, an antibacterial silver nanocluster silica composite coating was deposited on a commercial polymer Combitherm{sup Registered-Sign }, suitable for aerospace application, using the radio frequency (RF) co-sputtering technique. The presence of metallic silver nanoclusters and silica was confirmed by energy dispersion spectrometry (EDS), x-ray photoelectron spectroscopy (XPS) and localized surface plasmon resonance (LSPR) detected through UV-visible absorption spectrophotometry (UV-Vis). The atomic force microscope (AFM) evidenced the coating morphology. The slight hydrophobicity of both coated and uncoated samples was revealed through the contact angle measurement. The antimicrobial behavior was verified through evaluation of the inhibition halo against several bacterial and fungal species. The coating enhanced the Combitherm{sup Registered-Sign} nano-hardness and its resistance to tensile and perforation tests; the coating wear resistance was measured by abrasion test against Kevlar. A folding procedure on the coated Combitherm{sup Registered-Sign} and storage in air for three months was also carried out without deterioration of the measured properties. The coating deposition did not influence the air permeability of Combitherm{sup Registered-Sign }. -- Highlights: Black-Right-Pointing-Pointer A silver nanocluster silica composite coating was deposited on a polymeric film. Black-Right-Pointing-Pointer A co-sputtering technique was used for the coating deposition. Black-Right-Pointing-Pointer The coating induced an antibacterial effect on the polymer film. Black-Right-Pointing-Pointer The coating improved the nano-hardness and the resistance to tensile and perforation.

  5. Functionally graded mullite coatings for gas turbines

    Science.gov (United States)

    Kulkarni, Tushar

    The next generation of heat exchangers and gas turbines require high performance materials as they need to operate at higher temperatures for higher efficiency. SiC and Si3N4 are promising candidates as they have excellent high temperature properties. However, when used in complex combustion environments found in gas-turbine applications, these materials have two major concerns; namely hot-corrosion and recession. It is well established that environmental barrier coatings (EBC) can be utilized to overcome these limitations. Although chemical vapor deposited (CVD) mullite (3Al2O 3.2SiO2) coatings developed before this study have shown promise in protecting Si-based substrates, there is concern that the silica content within the mullite coating itself might be susceptible to hot-corrosion and recession during long term exposure to corrosive atmospheres containing Na/V salts and water vapor. There is thus strong motivation to substantially reduce or even virtually eliminate the silica component from the surfaces of mullite coatings that are in direct contact with atmospheres containing corrosive oxides and steam. In this study, CVD has been used to deposit mullite coatings with potential promise to protect Si-based ceramics for high temperature applications. The composition of these functionally graded mullite coatings was varied from silica-rich close to the coating/substrate (SiC) interface for coefficient of thermal expansion match to alumina-rich towards the outer surface of the coating. In the process, the highest alumina-rich mullite ever reported has been deposited. The phase transformation and hot-corrosion behavior of the coatings was also investigated in this work. The coatings show immense potential to protect Si-based ceramics. It is expected that these coatings will have very broad impact by enabling gas turbines to operate at higher temperatures leading to improved fuel efficiency and reduced emissions.

  6. Microstructural aspects of zirconia thermal barrier coatings

    Science.gov (United States)

    Mitchell, T. E.; Suhr, D. S.; Keller, R. J.; Lanteri, V.; Heuer, A. H.

    1985-01-01

    Various combination of plasma-sprayed bond coatings and zirconia ceramic coatings on a nickel-based superalloy substrate were tested by static thermal exposure at 1200 C and cyclic thermal exposure to 1000 C. The bond coats were based on Ni-Cr-Al alloys with additions of rare earth elements and Si. The ceramic coats were various ZrO2-Y2O3 compositions, of which the optimum was found to be ZrO2-8.9 wt percent Y2O3. Microstructural analysis showed that resistance to cracking during thermal exposure is strongly related to deleterious phase changes. Zones depleted of Al formed at the bond coat/ceramic coat interface due to oxidation and at the bond coat/substrate interface due to interdiffusion, leading eventually to breakdown of the bond coat. The 8.9 percent Y2O3 coating performed best because the as-sprayed metastable tetragonal phase converted slowly into the low-Y2O3 tetragonal plus high-Y2O3 cubic-phase mixture, so that the deleterious monoclinic phase was inhibited from forming. Failure appeared to start with the formation of circumferential cracks in the zirconia, probably due to compressive stresses during cooling, followed by the formation of radial cracks due to tensile stresses during heating. Cracks appeared to initiate at the Al2O3 scale/bond coat interface and propagate through the zirconia coating. Comparisons were made with the behavior of bulk ZrO2-Y2O3 and the relationship between the microstructure of the tetragonal phase and the phase diagram. A separate investigation was also made of the ZrO2-Al2O3 interface.

  7. Investigation of metallurgical coatings for automotive applications

    Science.gov (United States)

    Su, Jun Feng

    Metallurgical coatings have been widely used in the automotive industry from component machining, engine daily running to body decoration due to their high hardness, wear resistance, corrosion resistance and low friction coefficient. With high demands in energy saving, weight reduction and limiting environmental impact, the use of new materials such as light Aluminum/magnesium alloys with high strength-weight ratio for engine block and advanced high-strength steel (AHSS) with better performance in crash energy management for die stamping, are increasing. However, challenges are emerging when these new materials are applied such as the wear of the relative soft light alloys and machining tools for hard AHSS. The protective metallurgical coatings are the best option to profit from these new materials' advantages without altering largely in mass production equipments, machinery, tools and human labor. In this dissertation, a plasma electrolytic oxidation (PEO) coating processing on aluminum alloys was introduced in engine cylinder bores to resist wear and corrosion. The tribological behavior of the PEO coatings under boundary and starve lubrication conditions was studied experimentally and numerically for the first time. Experimental results of the PEO coating demonstrated prominent wear resistance and low friction, taking into account the extreme working conditions. The numerical elastohydrodynamic lubrication (EHL) and asperity contact based tribological study also showed a promising approach on designing low friction and high wear resistant PEO coatings. Other than the fabrication of the new coatings, a novel coating evaluation methodology, namely, inclined impact sliding tester was presented in the second part of this dissertation. This methodology has been developed and applied in testing and analyzing physical vapor deposition (PVD)/ chemical vapor deposition (CVD)/PEO coatings. Failure mechanisms of these common metallurgical hard coatings were systematically

  8. Bioceramic Coatings for Orthopaedic Implants

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Allison A.

    2003-11-02

    During the past century, man-made materials and devices have been developed to the point at which they have been used successfully to replace and/or restore function to diseased or damaged tissues. In the field of orthopaedics, the use of metal implants has significantly improved the quality of life for countless individuals. Critical factors for implant success include proper design, material selection, and biocompatibility. While early research focused on the understanding biomechanical properties of the metal device, recent work has turned toward improving the biological properties of these devices. This has lead to the introduction of calcium phosphate (CaP) bioceramics as a bioactive interface between the bulk metal impart and the surrounding tissue. The first calcium phosphate coatings where produced via vapor phase routes but more recently, there has been the emergence of solution based and biomimetic methods. While each approach has its own intrinsic materials and biological properties, in general CaP coatings have the promise to improve implant biocompatibility and ultimately implant longevity.

  9. Nanocapsules: coating for living cells.

    Science.gov (United States)

    Krol, Silke; Diaspro, Alberto; Magrassi, Raffaella; Ballario, Paola; Grimaldi, Benedetto; Filetici, Patrizia; Ornaghi, Prisca; Ramoino, Paola; Gliozzi, Alessandra

    2004-03-01

    One of the most promising tools for future applications in science and medicine is the use of nanotechnologies. Especially self-assembly systems, e.g., polyelectrolyte (PE) capsules prepared by means of the layer-by-layer technique with tailored properties, fulfill the requirements for nano-organized systems in a satisfactory manner. The nano-organized shells are suitable as coating for living cells or artificial tissue to prevent immune response. With these shells, material can be delivered to predefined organs. In this paper, some preliminary results are presented, giving a broad overview over the possibilities to use nano-organized capsules. Based on the observations that the cells while duplicating break the capsule a mutant yeast strain (Saccharomyces cerevisiae), which express GFP-tubulin under galactose promotion, was investigated by means of confocal laser scanning microscopy. The measurements reveal an increased surface charge in the region of buds developed prior encapsulation. In order to test the used PE pair for cytotoxicity, germinating conidia of the fungi Neurospora crassa were coated. The investigation with fluorescence microscopy shows a variation in the surface charge for the growing region and the conidium poles. The capsules exhibit interesting properties as valuable tool in science and a promising candidate for application in the field of medicine.

  10. NANOCOMPOSITE COATINGS WITH ENHANCED HARDNESS

    Institute of Scientific and Technical Information of China (English)

    J. Musil

    2005-01-01

    The article reviews the present state of the art in the magnetron sputtering of hart and superhard nanocomposite coatings. It is shown that there are (1) two groups of hard and superhard nanocomposites: (i) nc-MN/hard phase and (ii) nc-MN/soft phase, (2) three possible origins of the enhanced hardness: (i) dislocation-dominated plastic deformation, (ii) cohesive forces between atoms and (iii) nanostructure of materials, and (3) huge differences in the microstructure of single- and two-phase films. A main attention is devoted to the formation of nanocrystalline and/or X-ray amorphous films. Such films are created in a vicinity of transitions between (i)crystalline and amorphous phases, (ii) two crystalline phases of different chemical composition or (iii) two different preferred orientations of grains of the sane material from which the coating is composed. The existence of the last transition makes it possible to explain the enhanced hardness in single-phase films. The thermal stability and oxidation resistance of hard nanocomposite films is also shortly discussed.

  11. Method for non-destructive evaluation of ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Kristen A.; Rosen, Elias P.; Jordan, Eric H.; Shahbazmohamadi, Sina; Vakhtin, Andrei B.

    2016-11-08

    A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.

  12. Method for non-destructive evaluation of ceramic coatings

    Science.gov (United States)

    Peterson, Kristen A.; Rosen, Elias P.; Jordan, Eric H.; Shahbazmohamadi, Sina; Vakhtin, Andrei B.

    2016-11-08

    A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.

  13. An update on pharmaceutical film coating for drug delivery.

    Science.gov (United States)

    Felton, Linda A; Porter, Stuart C

    2013-04-01

    Pharmaceutical coating processes have generally been transformed from what was essentially an art form in the mid-twentieth century to a much more technology-driven process. This review article provides a basic overview of current film coating processes, including a discussion on polymer selection, coating formulation additives and processing equipment. Substrate considerations for pharmaceutical coating processes are also presented. While polymeric coating operations are commonplace in the pharmaceutical industry, film coating processes are still not fully understood, which presents serious challenges with current regulatory requirements. Novel analytical technologies and various modeling techniques that are being used to better understand film coating processes are discussed. This review article also examines the challenges of implementing process analytical technologies in coating operations, active pharmaceutical ingredients in polymer film coatings, the use of high-solids coating systems and continuous coating and other novel coating application methods.

  14. Broadband Reflective Coating Process for Large FUVOIR Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZeCoat Corporation will develop and demonstrate a set of revolutionary coating processes for making broadband reflective coatings suitable for very large mirrors (4+...

  15. Measure Guideline. Transitioning From Three-Coat Stucco to One-Coat Stucco With EPS

    Energy Technology Data Exchange (ETDEWEB)

    Brozyna, K. [IBACOS, Inc., Pittsburgh, PA (United States); Davis, G. [IBACOS, Inc., Pittsburgh, PA (United States); Rapport, A. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-04-01

    This measure guideline has been developed to help builders transition from using a traditional three-coat stucco wall-cladding system to a one-coat stucco wall-cladding system with expanded polystyrene (EPS) insulated sheathing. The one-coat system maintains the look of a traditional stucco system but uses only a base layer and a finish coat over EPS insulation that achieves higher levels of energy efficiency. Potential risks associated with the installation of a one-coat stucco system are addressed in terms of design, installation, and warranty concerns such as cracking and delamination, along with mitigation strategies to reduce these risks.

  16. Electrosprayed calcium phosphate coatings for biomedical purposes

    NARCIS (Netherlands)

    Leeuwenburgh, Sander Cornelis Gerardus

    2006-01-01

    In this thesis, the suitability of the Electrostatic Spray Deposition (ESD) technique was studied for biomedical purposes, i.e., deposition of calcium phosphate (CaP) coatings onto titanium substrates. Using ESD, which is a simple and cheap deposition method for inorganic and organic coatings, it wa

  17. Micro-thermal analysis of polyester coatings

    NARCIS (Netherlands)

    Fischer, H.R.

    2010-01-01

    The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure

  18. Transport processes in pea seed coats

    NARCIS (Netherlands)

    Dongen, Joost Thomas van

    2002-01-01

    The research described in this thesis concerns transport processes in coats of developing pea seeds. The scope of the investigation ranges from seed coat anatomy, via transport studies to the cloning of cDNA encoding proteinaceous membrane pores, and the heterologous expression of these protei

  19. Functional polysaccharides as edible coatings for cheese.

    Science.gov (United States)

    Cerqueira, Miguel A; Lima, Alvaro M; Souza, Bartolomeu W S; Teixeira, José A; Moreira, Renato A; Vicente, António A

    2009-02-25

    The objective of the present study was to apply the polysaccharides from different nontraditional sources for cheese coatings. Chitosan, galactomannan from Gleditsia triacanthos, and agar from Glacilaria birdiae were tested, with different formulations and with the addition of plasticizer and corn oil. The surface properties of the cheese and the wetting capacity of the coatings on the cheese were determined. The three best solutions for each polysaccharide were chosen, further films were cast, and permeability to water vapor, oxygen, and carbon dioxide was determined, along with opacity. The solutions of G. triacanthos (formulation: 1.5% of galactomannan, 2.0% of glycerol, and 0.5% of oil) presented the best properties to coat the cheese: -38.76 mN x m(-1) for wettability; 3.24 x 10(-11) (g x (m x s x Pa)(-1)) for water vapor permeability; 0.94 x 10(-15) and 15.35 x 10(-15) (g x m(Pa x s x m(2))(-1)) for oxygen and carbon dioxide permeabilities, respectively; and opacity values of 5.27%. The O(2) consumption and CO(2) production rates of the cheese with and without coating were evaluated, showing a decrease of the respiration rates when the coating was applied. The uncoated cheese had an extensive mold growth at the surface when compared with the coated cheese. The results show that these coatings can be applied as an alternative to synthetic coatings.

  20. Coatings Preserve Metal, Stone, Tile, and Concrete

    Science.gov (United States)

    2014-01-01

    John B. Schutt, a chemist at Goddard Space Flight Center, created a coating for spacecraft that could resist corrosion and withstand high heat. After retiring from NASA, Schutt used his expertise to create new formulations for Daytona Beach, Florida-based Adsil Corporation, which now manufactures a family of coatings to preserve various surfaces. Adsil has created 150 jobs due to the products.

  1. Sol-Gel Derived Hafnia Coatings

    Science.gov (United States)

    Feldman, Jay D.; Stackpoole, Mairead; Blum, Yigal; Sacks, Michael; Ellerby, Don; Johnson, Sylvia M.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    Sol-gel derived hafnia coatings are being developed to provide an oxidation protection layer on ultra-high temperature ceramics for potential use in turbine engines (ultra-efficient engine technology being developed by NASA). Coatings using hafnia sol hafnia filler particles will be discussed along with sol synthesis and characterization.

  2. Evaluation of abradable seal coating mechanical properties

    NARCIS (Netherlands)

    Ma, Xiao; Matthews, Allan

    2009-01-01

    Three proprietary plasma-sprayed coatings, based on Ni–graphite, Al–Si–graphite and Al–Si–polyester, were chosen for evaluation by the use of a (low speed) scratch tester, as a means of assessing the performance of abradable coatings. The scratch test behaviour was also correlated with the mechanica

  3. Optical enhancing durable anti-reflective coating

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Varadarajan, Aravamuthan; Movassat, Meisam

    2016-07-05

    Disclosed herein are polysilsesquioxane based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In embodiments, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in the polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, Si--OH condensation catalyst and/or nanofillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes including flow coating and roll coating, and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  4. Inexpensive, removable coating for plaster tooling

    Science.gov (United States)

    Dimino, J. M.; Martin, R. R.

    1970-01-01

    Procedure for thinning and spaying a vinyl material provides strippable film for plaster surfaces. Coating is low-cost, effective seal against moisture and other sources of damage. Coating consists of a mixture of hot-spray vinyl material and 30 to 50 percent by volume of methyl ethyl ketone.

  5. Micro-thermal analysis of polyester coatings

    NARCIS (Netherlands)

    Fischer, H.R.

    2010-01-01

    The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure

  6. Quantification of coating aging using impedance measurements

    NARCIS (Netherlands)

    Westing, E.P.M. van; Weijde, D.H. van der; Vreijling, M.P.W.; Ferrari, G.M.; Wit, J.H.W. de

    1998-01-01

    This chapter shows the application results of a novel approach to quantify the ageing of organic coatings using impedance measurements. The ageing quantification is based on the typical impedance behaviour of barrier coatings in immersion. This immersion behaviour is used to determine the limiting c

  7. Selective optical coatings for solar collectors

    Science.gov (United States)

    Lowery, J. R.

    1980-01-01

    For best performance, energy-absorbing surface of solar collector should be characterized by high ratio of solar absorptance to thermal emitance. Report on optical characteristics of several chemical treatments and electrodeposited coatings for metal solar-absorbing surfaces should interest designers and users of solar-energy systems. Moisture resistance of some coatings is also reported.

  8. Low absorptance porcelain-on-aluminum coating

    Science.gov (United States)

    Leggett, H.

    1979-01-01

    Porcelain thermal-control coating for aluminum sheet and foil has solar absorptance of 0.22. Specially formulated coating absorptance is highly stable, changing only 0.03 after 1,000 hours of exposure to simulated sunlight and can be applied by standard commercial methods.

  9. Improved metallic and thermal barrier coatings

    Science.gov (United States)

    Stecura, S.

    1981-01-01

    Low thermal conductivity two layer ceramic coatings are efficient thermal barriers between cooled matallic components and high temperature combustion gases. Potential components are combustors, blades, and vanes in aircraft engines of power-generating turbines. Presence of two layer coatings greatly reduces temperature and coolant requirements.

  10. Fracture mechanism of a thermal barrier coating

    Science.gov (United States)

    Samoilenko, V. M.; Ravilov, R. G.; Drevnyak, V. V.; Petrova, M. A.

    2016-06-01

    The fracture mechanism of the thermal barrier coating of gas turbine blades is studied. The causes of the fracture of the ceramic layer are discussed and the possible ways to increase the fatigue life of the thermal barrier coating are considered.

  11. Innovative Coatings Potentially Lower Facility Maintenance Costs

    Science.gov (United States)

    2013-01-01

    Through extensive testing at Stennis Space Center, Nanocepts Inc. of Lexington, Kentucky, received key validation of the effectiveness of its photocatalytic coatings. Now a NASA Dual Use Technology partner, the company s commercial coatings offer unique environmental and medical benefits, and their self-cleaning properties help limit grime buildup on buildings.

  12. Electrospraying for efficient coating of foods

    NARCIS (Netherlands)

    Khan, M.K.I.

    2013-01-01

    There is a continuous need for thinner edible coatings with excellent barrier properties, and this requires new application methods. Electrospraying is known to yield fine droplets of size down to 20 μm, giving the potential of very thin and even coatings. The droplets size was influenced by flow

  13. Thick tool steel coatings with laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; de Oliveira, U.; De Hosson, J. Th. M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2007-01-01

    This paper concentrates on thick and crack-free laser clad coatings (up to 3 mm). The coating material is a chromium-molybdenum-tungsten-vanadium alloyed high-speed steel that shows high wear resistance, high compressive strength, good toughness, very good dimensional stability on heat treatment and

  14. Thick tool steel coatings with laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; de Oliveira, U.; De Hosson, J. Th. M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2007-01-01

    This paper concentrates on thick and crack-free laser clad coatings (up to 3 mm). The coating material is a chromium-molybdenum-tungsten-vanadium alloyed high-speed steel that shows high wear resistance, high compressive strength, good toughness, very good dimensional stability on heat treatment and

  15. Uniform spray coating for large tanks

    Science.gov (United States)

    Carter, J. M.

    1977-01-01

    System employs spray facility located within ventilated plastic booth to uniformly coat exterior of large cylindrical tanks with polyurethane foam insulation. Coating target is rotated on turntable while movable spray guns apply overlapping spirals of foam. Entire operation may be controlled by single operator from remote station.

  16. Copper coating specification for the RHIC arcs

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2010-12-01

    Copper coating specifications for the RHIC arcs are given. Various upgrade scenarios are considered and calculations of resistive wall losses in the arcs are used to constrain the necessary quality and surface thickness of a copper coating. We find that 10 {mu}m of high purity copper will suffice.

  17. Thin Film Heater for Removable Volatile Protecting Coatings

    OpenAIRE

    Abid Karim

    2013-01-01

    Freshly coated aluminum mirrors have excellent reflectivity at far ultraviolet wavelengths. However, reflectivity rapidly degrades when the mirror surfaces are exposed to atmosphere. In order to avoid this problem, freshly coated aluminum surface can be protected by over-coating of a removable volatile protecting coating. This protecting coating can be re-evaporated by controlled heating or by some other methods when required. This type of removable coating has immediate application in UV spa...

  18. Improved gas distributor for coating HTGR fuel particles

    Energy Technology Data Exchange (ETDEWEB)

    Lackey, W. J.; Stinton, D. P.; Sease, J. D.

    1977-01-01

    A new and improved gas distributor was developed for use in coating fuel particles for the HTGR. The coating gas enters the coating furnace through multiple thin regions of a porous plate. This more uniformly disperses the gas and leads to improved coating properties. High-quality carbon and SiC coatings have been deposited with the new distributor in both 13- and 24-cm-diam coating furnaces.

  19. Overlay coating degradation by simultaneous oxidation and coating/substrate interdiffusion. Ph.D. Thesis

    Science.gov (United States)

    Nesbitt, J. A.

    1983-01-01

    Degradation of NiCrAlZr overlay coatings on various NiCrAl substrates was examined after cyclic oxidation. Concentration/distance profiles were measured in the coating and substrate after various oxidation exposures at 1150 C. For each stubstrate, the Al content in the coating decreased rapidly. The concentration/distance profiles, and particularly that for Al, reflected the oxide spalling resistance of each coated substrate. A numerical model was developed to simulate diffusion associated with overlay-coating degradation by oxidation and coating/substrate interdiffusion. Input to the numerical model consisted of the Cr and Al content of the coating and substrate, ternary diffusivities, and various oxide spalling parameters. The model predicts the Cr and Al concentrations in the coating and substrate after any number of oxidation/thermal cycles. The numerical model also predicts coating failure based on the ability of the coating to supply sufficient Al to the oxide scale. The validity of the model was confirmed by comparison of the predicted and measured concentration/distance profiles. The model was subsequently used to identify the most critical system parameters affecting coating life.

  20. Droplet transfer behavior of the stainless steel coated electrode with double-layer coating

    Institute of Scientific and Technical Information of China (English)

    孙咸; 马成勇; 王宝; 张汉谦

    2002-01-01

    In this paper, the droplet transfer behavior of the stainless steel coated electrode with double-layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in water, surfacing on the steel plate et al. The results show that the droplet transfer indexes of coated electrode are mainly controlled by the size of droplet, which affects the transfer behavior of droplet. The distribution characteristic of the droplet size of the electrode affects the numerical relationship among droplet transfer indexes. The metallurgical process of the coated electrode with double-layer coating is carried out continuously in different zones. The main reason for the coated electrode with double-layer coating gaining excellent usability quality is that the droplets realize the "quasi flux wall guided transfer pattern".

  1. Laser Treatment of HVOF Coating: Modeling and Measurement of Residual Stress in Coating

    Science.gov (United States)

    Arif, A. F. M.; Yilbas, B. S.

    2008-10-01

    High-velocity oxy-fuel (HVOF) coating of diamalloy 1005 (similar to Inconel 625 alloy) onto the Ti-6Al-4V alloy is considered and laser-controlled melting of the coating is examined. The residual stress developed after the laser treatment process is modeled using the finite element method (FEM). The experiment is conducted to melt the coating using a laser beam. The residual stress measurement in the coating after the laser treatment process is realized using the XRD technique. The morphological and metallurgical changes in the coating are examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It is found that the residual stress reduces at the coating-base material interface and the residual stress predicted agrees with the XRD measurements. A compact and crack-free coating is resulted after the laser treatment process.

  2. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  3. ANTIREFLECTION MULTILAYER COATINGS WITH THIN METAL LAYERS

    OpenAIRE

    L. A. Gubanova

    2016-01-01

    The design of anti-reflective coatings for metal surfaces of Al, Ti, N,i Cr is proposed. The coatings have the form of alternating layers of dielectric/metal/dielectric with the number of cells up to15. The method of calculation of such coatings is proposed. We have calculated the coatings of the type [HfO2/Cr/HfO2]15, [ZrO2/Ti/Al2O3]15, [ZrO2/Cr/ZrO2]15. It is shown that the proposed interference coatings provide reduction of the residual reflectance of the metal several times (from 3.5 to 6...

  4. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  5. Simulation of magnetic coatings on textile fibers

    Science.gov (United States)

    Blachowicz, T.; Ehrmann, A.

    2016-08-01

    While the properties of conductive fibres and coatings on textiles can easily be measured and calculated, magnetic coatings of fibres, yarns and fabrics still lack descriptions of their physical properties. Since magnetic textiles can be used for a variety of applications, from magnetic filters to invisible water-marks to magnetic coils and sensors, simulations would be supportive to understand and utilize their properties. The article gives an overview of different coatings on textile fibres, varying the magnetic materials as well as the fibre composition, giving rise to the interactions between neighbouring coated fibres. In this way, it is possible to understand the strong shape anisotropy which must be taken into account when the magnetic properties of textiles are to be tailored. Additionally, the differences between several possible magnetic coating materials become visible. This study can help adjusting the magnetic properties of textile fabrics to a desired application.

  6. Photocathode device that replenishes photoemissive coating

    Energy Technology Data Exchange (ETDEWEB)

    Moody, Nathan A.; Lizon, David C.

    2016-06-14

    A photocathode device may replenish its photoemissive coating to replace coating material that desorbs/evaporates during photoemission. A linear actuator system may regulate the release of a replenishment material vapor, such as an alkali metal, from a chamber inside the photocathode device to a porous cathode substrate. The replenishment material deposits on the inner surface of a porous membrane and effuses through the membrane to the outer surface, where it replenishes the photoemissive coating. The rate of replenishment of the photoemissive coating may be adjusted using the linear actuator system to regulate performance of the photocathode device during photoemission. Alternatively, the linear actuator system may adjust a plasma discharge gap between a cartridge containing replenishment material and a metal grid. A potential is applied between the cartridge and the grid, resulting in ejection of metal ions from the cartridge that similarly replenish the photoemissive coating.

  7. Low Energy Atomic Photodesorption from Organic Coatings

    Directory of Open Access Journals (Sweden)

    Alessandro Lucchesini

    2016-10-01

    Full Text Available Organic coatings have been widely used in atomic physics during the last 50 years because of their mechanical properties, allowing preservation of atomic spins after collisions. Nevertheless, this did not produce detailed insight into the characteristics of the coatings and their dynamical interaction with atomic vapors. This has changed since the 1990s, when their adsorption and desorption properties triggered a renewed interest in organic coatings. In particular, a novel class of phenomena produced by non-destructive light-induced desorption of atoms embedded in the coating surface was observed and later applied in different fields. Nowadays, low energy non-resonant atomic photodesorption from organic coatings can be considered an almost standard technique whenever large densities of atomic vapors or fast modulation of their concentration are required. In this paper, we review the steps that led to this widespread diffusion, from the preliminary observations to some of the most recent applications in fundamental and applied physics.

  8. Coating of fertilizers by degradable polymers.

    Science.gov (United States)

    Devassine, M; Henry, F; Guerin, P; Briand, X

    2002-08-21

    The conventional agriculture leads to some important pollution of ground water (particularly, by nitrates). The solution is the coating of fertilizers by degradable polymers. In this work, we have studied the water vapour and liquid diffusion through polymer films detached from their support. Therefore, we may classify polymers as a function of their properties like water vapour and liquid barrier. We may choose the best polymer(s) for coating.coated fertilizers by chosen polymer(s) with mechanical techniques such as fluidised bed and pan coating. Moreover, the electron microscopy used to see the quality of the wall has showed the presence of pores due to the rapid evaporation of solvent. A drying in air current and an annealing could be done to avoid this problem.followed the ions release of fertilizers immersed in distilled water by conductimetry. The more interesting result was obtained with fertilizers coated by polylactic acid. In effect, the total release reached three weeks.

  9. Coatings on Atacama Desert Basalt: A Possible Analog for Coatings on Gusev Plains Basalt

    Science.gov (United States)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    Surface coatings on Gusev Plains basalt have been observed and may contain hematite and nanophase Fe-oxides along with enrichments in P, S, Cl, and K relative to the underlying rock. The Gusev coatings may be derived from the dissolution of adhering soil and/or parent rock along with the addition of S and Cl from outside sources. Transient water for dissolution could be sourced from melting snow during periods of high obliquity, acid fog, and/or ground water (Haskin et al., 2005). Coatings on basalt in the hyper-arid (less than 2mm y(sup -1)) Atacama Desert may assist in understanding the chemistry, mineralogy and formation mechanisms of the Gusev basalt coatings. The Atacama Desert climate is proposed to be analogous to a paleo-Mars climate that was characterized by limited aqueous activity when the Gusev coatings could have formed. The objectives of this work are to (i) determine the chemical nature and extent of surface coatings on Atacama Desert basalt, and (ii) assess coating formation mechanisms in the Atacama Desert. Preliminary backscattered electron imaging of Atacama basalt thin-sections indicated that the coatings are as thick as 20 m. The boundary between the coating and the basalt labradorite, ilmenite, and augite grains was abrupt indicating that the basalt minerals underwent no chemical dissolution. The Atacama coatings have been added to the basalt instead of being derived from basalt chemical weathering. Semi-quantitative energy dispersive spectroscopy shows the coatings to be chemically homogeneous. The coating is depleted in Ca (0.9 wt% CaO) and enriched in K (1.3 wt.% K2O) and Si (69.1 wt.% SiO2) relative to the augite and labradorite grains. A dust source enriched in Si (e.g., poorly crystalline silica) and K and depleted in Ca appears to have been added to the basalt surface. Unlike the Gusev coatings, no P, S, and Cl enrichment was observed. However, Fe (3.2 wt.% FeO) was present in the Atacama coatings suggesting the present of Fe

  10. Characterization of multilayer anti-fog coatings.

    Science.gov (United States)

    Chevallier, Pascale; Turgeon, Stéphane; Sarra-Bournet, Christian; Turcotte, Raphaël; Laroche, Gaétan

    2011-03-01

    Fog formation on transparent substrates constitutes a major challenge in several optical applications requiring excellent light transmission characteristics. Anti-fog coatings are hydrophilic, enabling water to spread uniformly on the surface rather than form dispersed droplets. Despite the development of several anti-fog coating strategies, the long-term stability, adherence to the underlying substrate, and resistance to cleaning procedures are not yet optimal. We report on a polymer-based anti-fog coating covalently grafted onto glass surfaces by means of a multistep process. Glass substrates were first activated by plasma functionalization to provide amino groups on the surface, resulting in the subsequent covalent bonding of the polymeric layers. The anti-fog coating was then created by the successive spin coating of (poly(ethylene-maleic anhydride) (PEMA) and poly(vinyl alcohol) (PVA) layers. PEMA acted as an interface by covalently reacting with both the glass surface amino functionalities and the PVA hydroxyl groups, while PVA added the necessary surface hydrophilicity to provide anti-fog properties. Each step of the procedure was monitored by XPS, which confirmed the successful grafting of the coating. Coating thickness was evaluated by profilometry, nanoindentation, and UV visible light transmission. The hydrophilic nature of the anti-fog coating was assessed by water contact angle (CA), and its anti-fog efficiency was determined visually and tested quantitatively for the first time using an ASTM standard protocol. Results show that the PEMA/PVA coating not only delayed the initial period required for fog formation but also decreased the rate of light transmission decay. Finally, following a 24 hour immersion in water, these PEMA/PVA coatings remained stable and preserved their anti-fog properties.

  11. Nanosilica coating for bonding improvements to zirconia

    Directory of Open Access Journals (Sweden)

    Chen C

    2013-10-01

    Full Text Available Chen Chen, Gang Chen, Haifeng Xie, Wenyong Dai, Feimin Zhang Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China Abstract: Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution–gelatin (sol–gel process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water–mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol–gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test, cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol–gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol–gel technique represents a promising method for producing silica coatings on zirconia. Keywords: zirconia, bond, silica coating, tribochemical silica coating, biocompatibility

  12. Cellulose nanofibers use in coated paper

    Science.gov (United States)

    Richmond, Finley

    Cellulose Nanofibers (CNF) are materials that can be obtained by the mechanical breakdown of natural fibers. CNF have the potential to be produced at low cost in a paper mill and may provide novel properties to paper, paper coatings, paints, or other products. However, suspensions have a complex rheology even at low solid contents. To be able to coat, pump, or mix CNF at moderate solids, it is critical to understand the rheology of these suspensions and how they flow in process equipment; current papers only report the rheology up to 6% solids. Few publications are available that describe the coating of CNF onto paper or the use of CNF as an additive into a paper coating. The rheology of CNF suspensions and coatings that contain CNF were characterized with parallel-disk geometry in a controlled stress rheometer. The steady shear viscosity, the complex viscosity, the storage modulus, and the yield stress were determined for the range of solids or concentrations (2.5-10.5%). CNF were coated onto paper with a laboratory rod coater, a size press and a high speed cylindrical laboratory coater (CLC). For each case, the coat weights were measures and the properties of the papers were characterized. CNF water base suspension was found to be a shear thinning with a power law index of around 0.1. Oscillatory tests showed a linear viscoelastic region at low strains and significant storage and loss moduli even at low solids. The Cox Merz rule does not hold for CNF suspensions or coating formulations that contain CNF with complex viscosities that are about 100 times larger than the steady shear viscosities. Paper coating formulations that contain CNF were found to have viscosities and storage and loss moduli that are over ten times larger than coatings that contain starch at similar solids. CNF suspensions were coated on papers with low amount transferred on paper either at high solids or high nip loadings. The amount transferred appears to be controlled by an interaction of

  13. Pratt & Whitney thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bornstein, N. [United Technologies Research Center, East Hartford, CT (United States); Marcin, J. [Pratt & Whitney Aircraft Co., East Hartford, CT (United States)

    1995-10-01

    The objective of the Advanced Turbine Systems (ATS) Program is to develop ultra-high efficient, environmentally superior, and cost competitive gas turbine systems. The operating profiles of these industrial gas turbines are long, less cyclic with fewer transients-compared with those for aircraft gas turbine engines. Therefore, creep rather than thermal fatigue, becomes primary life-limiting for hot section components. Thermal barrier coatings (TBCs) will be used to achieve the objectives of the program. TBCs allow surface temperatures to increase without compromising the structural properties of the alloy. TBCs typically consist of a ceramic insulating layer, deposited onto the substrate with an intervening metallic layer, which imparts oxidation protection to the substrate and provides a surface to which the ceramic layer can adhere.

  14. Studies on nanocrystalline zinc coating

    Indian Academy of Sciences (India)

    H B Muralidhara; Y Arthoba Naik

    2008-08-01

    Nano zinc coatings were deposited on mild steel by electrodeposition. The effect of additive on the morphology of crystal size on zinc deposit surface and corrosion properties were investigated. Corrosion tests were performed for dull zinc deposits and bright zinc deposits in aqueous NaCl solution (3.5 wt.%) using electrochemical measurements. The results showed that addition of additive in the deposition process of zinc significantly increased the corrosion resistance. The surface morphology of the zinc deposits was studied by scanning electron microscopy (SEM). The preferred orientation and average size of the zinc electrodeposited particles were obtained by X-ray diffraction analysis. The particles size was also characterized by TEM analysis.

  15. Anticorrosive organic/inorganic hybrid coatings

    Science.gov (United States)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were

  16. Structure and corrosion properties of PVD Cr-N coatings

    CERN Document Server

    Liu, C; Ziegele, H; Leyland, A; Matthews, A

    2002-01-01

    PVD Cr-N coatings produced by physical vapor deposition (PVD) are increasingly used for mechanical and tribological applications in various industrial sectors. These coatings are particularly attractive for their excellent corrosion resistance, which further enhances the lifetime and service quality of coated components. PVD Cr-N coated steels in an aqueous solution are usually corroded by galvanic attack via through-coating 'permeable' defects (e.g., pores). Therefore, the corrosion performance of Cr-N coated steel is determined by a number of variables of the coating properties and corrosive environment. These variables include: (i) surface continuity and uniformity; (ii) through-coating porosity; (iii) film density and chemical stability; (iv) growth stresses; (v) interfacial and intermediate layers; (vi) coating thickness; (vii) coating composition; and (viii) substrate properties. In this article, PVD Cr-N coatings were prepared, by electron-beam PVD and sputter deposition, with different compositions, t...

  17. A novel electrostatic dry powder coating process for pharmaceutical dosage forms: immediate release coatings for tablets.

    Science.gov (United States)

    Qiao, Mingxi; Zhang, Liqiang; Ma, Yingliang; Zhu, Jesse; Chow, Kwok

    2010-10-01

    An electrostatic dry powder coating process for pharmaceutical solid dosage forms was developed for the first time by electrostatic dry powder coating in a pan coater system. Two immediate release coating compositions with Opadry® AMB and Eudragit® EPO were successfully applied using this process. A liquid plasticizer was sprayed onto the surface of the tablet cores to increase the conductivity of tablet cores to enhance particle deposition, electrical resistivity reduced from greater than 1×10(13)Ωm to less than 1×10(9)Ωm, and to lower the glass transition temperature (T(g)) of the coating polymer for film forming in the pan coater. The application of liquid plasticizer was followed by spraying charged coating particles using an electrostatic charging gun to enhance the uniform deposition on tablet surface. The coating particles were coalesced into a thin film by curing at an acceptable processing temperature as formation was confirmed by SEM micrographs. The results also show that the optimized dry powder coating process produces tablets with smooth surface, good coating uniformity and release profile that are comparable to that of the tablet cores. The data also suggest that this novel electrostatic dry powder coating technique is an alternative to aqueous- or solvent-based coating process for pharmaceutical products. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  18. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.

  19. Residual stress characteristics of gradation coating components. Keisha sosei coating buzai no zanryu oryoku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y.; Takahashi, M.; Miyazaki, M.; Kashiwaya, H. (Toshiba Corp. (Japan). Heavy Apparatus Engineering Lab.)

    1992-10-15

    Effect of the material characteristics and the coating layer thickness on residual stress was studied by using nondimensional thermal stress parameters. As for two layer composites, stress singularities at the edge of the interface of the direct bonding composites has decreased with the gradation composition. It is revealed that a residual stress, with bigger absolute value than two layer composites, has been working along the inner direction of the disk in gradation coating composite's layer surface. Dimensionless residual stress [delta], which works on the coating layer surface of the central part of gradation coating composite, has decreased with the increase of coating thickness ratio t/T(t; coating thickness, T; substrate thickness), and has been significant with the increase of Young's modulus ratio. The maximum residual stress that works on the coating surface in the central part of the gradation coating composite has been higher than the residual stress that works on the direct bonding surface of two layer composite. The dimensionless residual stress deformation in case of gradation coating composites has increased with the increase of coating thickness ratio and Young's modulus ratio. 7 refs., 12 figs.

  20. Optical coatings for metamaterials (Conference Presentation)

    Science.gov (United States)

    Jen, Yi-Jun

    2016-09-01

    Optical coatings have been referred as thin films that create interference effect to change optical properties of substrates. The most common applications of optical thin films are anti-reflection coatings, high reflective coatings, beamsplitter coatings, and bandpass filter coatings. In the recent development of metamaterials, the optical coatings also play a critical role in design, fabrication and measurement. In fabrication, glancing angle deposition has been applied to grow slanted metal nanorod arrays. The associated longitudinal plasmon and transverse plasmon modes under linear polarized illuminations are induced and generate anisotropic refractive index and extinction coefficient. Strong birefringence of a silver nanorod array reveals positive and negative real refractive indices exist for two orthogonal linear polarization states. Recently, negative index materials and hyperbolic metamaterials are realized as multilayers comprising subwavelength-scale metal and dielectric films alternatively. From the view of optical coatings, the design of optical edge filters can be applied to arrange the metal-dielectric multilayer as a symmetrical film sack to perform equivalent complex admittance and refractive index. On the other hand, the traditional admittance diagram used in design of antireflection and bandpass filters can be applied to induce the transmission of a negative index multilayer. The admittance loci of metal films are designed to be huge contours in the admittance diagram to reduce the energy loss in metal films. Five-layered symmetrical film stack and seven-layered symmetrical film stack are shown here to present as new bandpass filters with negative real refractive indices.

  1. Polysaccharide based edible coating on sapota fruit

    Science.gov (United States)

    Menezes, Joslin; Athmaselvi, K. A.

    2016-10-01

    Sapota fruits are highly perishable and have short shelf life at the ambient conditions. The edible coatings have been used on different agricultural products in order to extend their post harvest life. In the present study, the polysaccharide based edible coating made up of sodium alginate and pectin (2%) was studied on the shelf life of sapota fruits. The coating of the fruits is done by dipping method with two dipping time (2 and 4 min). The both control and coated sapota fruits were stored at refrigerated temperature (4±1°C). The physico-chemical analysis including acidity, total soluble solids, ascorbic acid, pH, weight loss, colour and firmness were measured on 1, 8, 15, 23 and 30th day of storage. There was significant difference (p≤0.05) in these physico-chemical parameters between control and coated sapota fruits with 2 and 4 min dipping time. The sensory analysis of control and coated sapota fruits showed that, the polysaccharide coating with 2 minutes dipping time was effective in maintaining the organoleptic properties of the fruits.

  2. Electrodeposited silk coatings for bone implants.

    Science.gov (United States)

    Elia, Roberto; Michelson, Courtney D; Perera, Austin L; Brunner, Teresa F; Harsono, Masly; Leisk, Gray G; Kugel, Gerard; Kaplan, David L

    2015-11-01

    The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1% to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible, and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment.

  3. On the symbolism of the white coat.

    Science.gov (United States)

    Nash, David A

    2014-12-01

    The white coat ceremony has become an academic ritual in the health professions: a ceremony that signals a transformation of status from ordinary student to that of one studying to become a health professional. While donning the white coat is a sign of a changed role, the white coat is also a powerful symbol of transformation. White is a symbol of purity, and the white coat symbolizes the purity of purpose being affirmed in becoming a health professional. Dentistry is afforded the status of a learned profession as a result of the power dentists possess over patients seeking care; this power is based in sophisticated knowledge. Patients must trust that the dentist's knowledge and skills will be used in their best interest-always to benefit, never to exploit. The white coat symbolizes an affirmation on the part of aspiring dentists that their purpose will be pure and that they can be trusted to honor the tradition of the learned professions in placing the interest of patients above self. Absent an emphasis on the symbolic nature of the white coat ceremony, it can simply become an opportunity to publicly congratulate individuals for their success in gaining entrance to the study of dentistry. By understanding its significance, however, the white coat ceremony can serve as a powerful, meaningful ritual emphasizing the transformation occurring within an individual who is entering the profession of dentistry.

  4. Tribological performance of DLC coatings on UHMWPE

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Nogues, V; Medel, F J; Mariscal, M D; Endrino, J L; Krzanowski, J; Yubero, F; Puertolas, J A, E-mail: enav@unizar.es

    2010-11-01

    Diamond like carbon (DLC) coatings were deposited by several methods (ion beam assisted evaporation, magnetron sputtering, filter cathodic arc, and plasma enhanced chemical vapor deposition) onto medical grade ultra-high-molecular weight polyethylene (UHMWPE) discs. The chemical characteristics and mechanical properties of the deposited DLC coatings were studied by Raman spectroscopy and nanoindentation, respectively. In addition, a set of tribological tests was conducted at human body temperature and under bovine serum lubrication against alumina balls. After testing, wear tracks were both visually inspected and documented using confocal microscopy. Visual inspection of the wear tracks confirmed that the DLC coatings were completely removed in all cases, the only exception being the DLC coating prepared by magnetron sputtering with thickness about 0.5 microns. Although this type of DLC coating exhibited the highest friction coefficient, and therefore it suggested a somewhat lower resistance to abrasive/adhesive wear conditions, no evidence of cracking or delamination was observed after the high contact pressure wear testing. This fact points out a good substrate-coating adhesion, and confirms magnetron sputtered DLC as a potential coating for orthopaedic applications.

  5. Loss/gain-induced ultrathin antireflection coatings.

    Science.gov (United States)

    Luo, Jie; Li, Sucheng; Hou, Bo; Lai, Yun

    2016-06-28

    Tradional antireflection coatings composed of dielectric layers usually require the thickness to be larger than quarter wavelength. Here, we demonstrate that materials with permittivity or permeability dominated by imaginary parts, i.e. lossy or gain media, can realize non-resonant antireflection coatings in deep sub-wavelength scale. Interestingly, while the reflected waves are eliminated as in traditional dielectric antireflection coatings, the transmitted waves can be enhanced or reduced, depending on whether gain or lossy media are applied, respectively. We provide a unified theory for the design of such ultrathin antireflection coatings, showing that under different polarizations and incident angles, different types of ultrathin coatings should be applied. Especially, under transverse magnetic polarization, the requirement shows a switch between gain and lossy media at Brewster angle. As a proof of principle, by using conductive films as a special type of lossy antireflection coatings, we experimentally demonstrate the suppression of Fabry-Pérot resonances in a broad frequency range for microwaves. This valuable functionality can be applied to remove undesired resonant effects, such as the frequency-dependent side lobes induced by resonances in dielectric coverings of antennas. Our work provides a guide for the design of ultrathin antireflection coatings as well as their applications in broadband reflectionless devices.

  6. Electrodeposited silk coatings for functionalized implant applications

    Science.gov (United States)

    Elia, Roberto

    The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was

  7. Interfacial Characterization of Rigid Polymer Coatings

    Science.gov (United States)

    DeNolf, Garret C.

    In order to enhance the performance and durability of today's polymer coatings it is pivotal to be able to characterize their mechanical and chemical properties, with emphasized importance on coating-substrate interfaces which are common points of material failure. The purpose of this thesis was to develop and demonstrate novel characterization methods to measure the interfacial and bulk properties of these polymer films and improve the overall understanding of these materials. The first portion of this thesis explores a new peel test technique to measure the adhesion between substrates and coatings. The employed method examines the effect of processing conditions and substrate treatment on the adhesion of polyurethane coatings. This technique successfully quantifies the adhesion of polyurethane coatings to a variety of treated substrates and at multiple curing temperatures. The second thrust of this thesis involves the utilization of a quartz crystal microbalance instrument to characterize the bulk rheological properties of polymer films and coatings in situ. This novel method enables the examination of the effect of temperature and mixing stoichiometry on the rheological properties of curing polyurethane coatings and polymer films. This analysis is extended to measure the curing and aging of paint systems relevant to the art conservation scientific community. The final portion of this thesis focuses on understanding the effect of pH on the interfacial swelling of polymer films in aqueous environments. The quartz crystal microbalance is used to characterize the swelling of interfacial polymer films as water reaches the interface, and the corresponding permeability and osmotic pressure provides insight into the mechanisms of delamination and adhesive failure of coatings attached to metal surfaces. The novel methods and calculations established in this thesis enable precise measurements of coating interfaces and rheological properties and have considerable potential

  8. Coatings for gear wheels; Beschichtungen fuer Zahnraeder

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, M.; Wittorf, R.; Thomsen, H. [Fraunhofer-Institut fuer Schicht- und Oberflaechentechnik, IST, Braunschweig (Germany). Transferzentrum Tribologie; Kaestner, P. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik; Kropp, J.P. [Technische Univ. Braunschweig (Germany). Inst. fuer Konstruktionstechnik

    2008-08-15

    In order to optimize the goal, steel gear wheels regarding load-carrying capacity and wear, thin film coatings were tested. Different coating systems were examined numerically with the software ELASTICA {sup registered} for their suitability. The characteristics of the coating systems were determined dependent on the material, its surface treatment as well as the diameters of relevant rolling partners. Differences were made between macroscopic rolling contacts between the teeth profiles and microscopic contacts with surface roughness and abrasion particles. First the four best suitable coating systems were deposited on simplified rollers and examined under different conditions. Two coating systems were determined, which show special suitability for the coating of the gear wheels. The first system is an a:C-H coating with an CrN interlayer. The second system is an a:C-H coating with an CrN interlayer on a plasma-nitrided substrat (Duplex-process). In order to protect the coatings on the teeth, their involute profile was provided with a tip relief. As gear wheel materials 16MnCr5, 42CrMo4 as well as the special steel ETG {sup registered} 88 were used. Two kinds of flow fats were used as lubricants and additional the unlubricated operation was examined. The gear wheels were tested at three different speeds on a test machine especially built for it. The testing routine was carried out in so-called power-stages. Each stage means a defined number of contacts and a certain Hertzian stress on the teeth profiles. With each stage the Hertzian stress was increased. The end of operation time is the beginning of cavitation pitting. The test results showed that in particular with the steel 16MnCr5 and 42CrMo4 the used Duplex-systems leads to considerable increases of the load-carrying capacity of the tooth flanks and the wear resistance. (orig.)

  9. The Durability of Epoxy Resin Coating

    Institute of Scientific and Technical Information of China (English)

    ZHAO Fujun; BA Hengjing; GAO Xiaojian

    2008-01-01

    The durability of epoxy resin coating was studied under environments with relative humidity(RH) of 98%-100%, at 55 ℃ for 900 h, at 65℃ for 700 h and at 75 ℃ for 400 h, respectively. Peel strength test, dynamical mechanical thermal analysis (DMTA), infrared spectroscopy (IR) and energy dispersive X-ray spectroscopy (EDX) were employed for measurements. Peel strength indicated the development of adhesive property of the coating, DMTA indicated the development of physical property, IR revealed the development of chemical structure, and EDX showed surface element change of the coating. All these results show a good time-temperature equivalence characteristic between humidity aging time and temperature.

  10. Polyurethane coating for ductile iron pipes

    Directory of Open Access Journals (Sweden)

    WANG En-qing

    2006-05-01

    Full Text Available A special polyurethane coating designed for ductile iron pipe was developed. The effects of the ingredients on properties, such as viscosity, flow leveling, solidification-rate, adhesion and hardness, were researched. It was then analyzed in what ways the technical parameters, such as temperature and pressure, influence the coat quality. The results showed that the molar ratio and synthesizing conditions must be strictly controlled to obtain suitable pre-polymer viscosity by adjusting the formula ratio of the B component, satisfactory mechanical properties and cure rate can be obtained and bubbles in the coat can be avoided.

  11. Self-assembled nanolaminate coatings (SV)

    Energy Technology Data Exchange (ETDEWEB)

    Fan, H.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflective coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber

  12. "m=1" coatings for neutron guides

    OpenAIRE

    Cooper-Jensen, C.P.; Vorobiev, A.; Klinkby, Esben Bryndt; Kapaklis, V.; Wilkens, H.; Rats, D.; Hjörvarsson, B.; Kirstein, O.; Bentley, Philip

    2014-01-01

    A substantial part of the price for a neutron guide is the shielding needed because of the gamma ray produced when neutrons are absorbed. This absorption occurs in the coating and the substrate of the neutron guides. Traditional m=1 coatings have been made of Ni and if reflectivity over the critical angle of Ni is needed one has used Ni58 or Ni/Ti multilayer coatings. Ni has one of the highest neutron scattering density but it also has a fairly high absorption cross section for cold and therm...

  13. Antimicrobial food equipment coatings: applications and challenges.

    Science.gov (United States)

    Bastarrachea, Luis J; Denis-Rohr, Anna; Goddard, Julie M

    2015-01-01

    Emerging technologies in antimicrobial coatings can help improve the quality and safety of our food supply. The goal of this review is to survey the major classes of antimicrobial agents explored for use in coatings and to describe the principles behind coating processes. Technologies from a range of fields, including biomedical and textiles research, as well as current applications in food contact materials, are addressed, and the technical hurdles that must be overcome to enable commercial adaptation to food processing equipment are critically evaluated.

  14. VALIDATION OF FILM COATED MULTIVITAMIN TABLETS

    Directory of Open Access Journals (Sweden)

    Vipin Kumar

    2013-06-01

    Full Text Available The validation is fundamental segment that supports to a commitment of company towards quality assurance. It also assures that product meets its predetermined quality specification and quality. Validation of each steps of manufacturing during multivitamin tablet formulation is called process validation of multivitamin tablets. During past film coating is not much favorable but now for multivitamin tablets film coating is used. The objective is to present a review and to discuss aspects of validation of film coated multivitamin tablets in terms of unit operations; that is, those individual technical operations that comprise the various steps involved in product design and evaluation.

  15. Applications of sol gel ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, D. [Datec Coating Corp., Kingston, Ont. (Canada)

    1996-12-31

    The sol gel method is a chemical technique in which polycrystalline ceramic films are fabricated from a solution of organometallic precursors. The technique is attractive for many industrial applications because it is a simple (films are processed in air), flexible (can be used to coat complex geometries) and cost effective (does not require expensive equipment) process. In addition, dense, high quality coatings can be achieved at much lower temperatures than is generally required for sintering bulk ceramics. In this paper the conventional sol gel method and the new datec process are reviewed and potential applications of sol gel coatings in automotive, aerospace, petrochemical, nuclear and electronic industries are discussed. (orig.)

  16. High vacuum tribology of polycrystalline diamond coatings

    Indian Academy of Sciences (India)

    Awadesh K Mallik; S A Shivashankar; S K Biswas

    2009-10-01

    Polycrystalline diamond coatings have been grown on unpolished side of Si(100) wafers by hot filament chemical vapour deposition process. The morphology of the grown coatings has been varied from cauliflower morphology to faceted morphology by manipulation of the growth temperature from 700°C to 900°C and methane gas concentration from 3% to 1·5%. It is found that the coefficient of friction of the coatings under high vacuum of 133·32 × 10-7 Pa (10-7 torr) with nanocrystalline grains can be manipulated to 0·35 to enhance tribological behaviour of bare Si substrates.

  17. Antimicrobial coatings — obtaining and characterization

    Indian Academy of Sciences (India)

    Cornelia Guran; Alexandra Pica; Denisa Ficai; Anton Ficai; Cezar Comanescu

    2013-04-01

    In this paper, we present inorganic–organic hybrid coatings with polymer matrix (water soluble) that contain silver nanoparticles (AgNPs). The structure and morphology of coating materials were determined by infrared spectroscopy (FT–IR) and scanning electron microscopy (SEM). Therefore, the antimicrobial activities and mechanisms of coatings for several pathogenic bacteria (Bacilius cereus and Staphylococcus aureus) were investigated. It was demonstrated that the obtained material with silver nanoparticles keep their antimicrobial effect even if they are subjected to several cycles of washing with water and detergent.

  18. Coating for gasifiable carbon-graphite fibers

    Science.gov (United States)

    Harper-Tervet, Jan (Inventor); Dowler, Warren L. (Inventor); Yen, Shiao-Ping S. (Inventor); Mueller, William A. (Inventor)

    1982-01-01

    A thin, uniform, firmly adherent coating of metal gasification catalyst is applied to a carbon-graphite fiber by first coating the fiber with a film-forming polymer containing functional moieties capable of reaction with the catalytic metal ions. Multivalent metal cations such as calcium cross-link the polymer such as a polyacrylic acid to insolubilize the film by forming catalytic metal macro-salt links between adjacent polymer chains. The coated fibers are used as reinforcement for resin composites and will gasify upon combustion without evolving conductive airborne fragments.

  19. Aluminide Coatings for Power-Generation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y

    2003-11-17

    Aluminide coatings are of interest for many high temperature applications because of the possibility of improving the oxidation of structural alloys by forming a protective external alumina scale. In order to develop a comprehensive lifetime evaluation approach for aluminide coatings used in fossil energy systems, some of the important issues have been addressed in this report for aluminide coatings on Fe-based alloys (Task I) and on Ni-based alloys (Task II). In Task I, the oxidation behavior of iron aluminide coatings synthesized by chemical vapor deposition (CVD) was studied in air + 10vol.% H{sub 2}O in the temperature range of 700-800 C and the interdiffusion behavior between the coating and substrate was investigated in air at 500-800 C. Commercial ferritic (Fe-9Cr-1Mo) and type 304L (Fe-18Cr-9Ni, nominally) austenitic stainless steels were used as the substrates. For the oxidation study, the as-deposited coating consisted of a thin (<5 {micro}m), Al-rich outer layer above a thicker (30-50 {micro}m), lower Al inner layer. The specimens were cycled to 1000 1-h cycles at 700 C and 500 1-h cycles at 800 C, respectively. The CVD coating specimens showed excellent performance in the water vapor environment at both temperatures, while the uncoated alloys were severely attacked. These results suggest that an aluminide coating can substantially improve resistance to water vapor attack under these conditions. For the interdiffusion study, the ferritic and austenitic steels were coated with relatively thicker aluminide coatings consisting of a 20-25 {micro}m outer layer and a 150-250 {micro}m inner layer. The composition profiles before and after interdiffusion testing (up to 5,000h) were measured by electron probe microanalysis (EPMA). The decrease of the Al content at the coating surface was not significant after extended diffusion times ({le} 5,000h) at temperatures {le} 700 C. More interdiffusion occurred at 800 C in coatings on both Fe- 9Cr-1Mo and 304L alloys; a

  20. Multispectral Image Analysis for Astaxanthin Coating Classification

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2012-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. The pellets were divided into two groups: one with pellets coated using synthetic astaxanthin in fish oil and the other with pellets coated...... images were pixel spectral values as well as using summary statistics such as the mean or median value of each pellet. Classification using LDA on pellet mean or median values showed overall good results. Multispectral imaging is a promising technique for noninvasive on-line quality food and feed...... products with optimal use of pigment and minimum amount of waste....