WorldWideScience

Sample records for chromatography-ion trap tandem

  1. Quantification of urinary 0,0'-dityrosine, a biomarker for oxidative damage to proteins, by high performance liquid chromatography with triple quadrupole tandem mas spectrometry. A comparison with ion-trap tandem mass spectrometry.

    NARCIS (Netherlands)

    Orhan, H.; Coolen, S.; Meerman, J.H.N.

    2005-01-01

    We recently described an isotope dilution reversed-phase liquid chromatography-atmospheric pressure chemical ionization-ion-trap-tandem mass spectrometry (HPLC-APCI-MS/MS) method for the quantitative determination of oxidized amino acids in human urine, including o,o′-dityrosine, a specific marker

  2. Detection of lysergic acid diethylamide (LSD) in urine by gas chromatography-ion trap tandem mass spectrometry.

    Science.gov (United States)

    Sklerov, J H; Kalasinsky, K S; Ehorn, C A

    1999-10-01

    A confirmatory method for the detection and quantitation of lysergic acid diethylamide (LSD) is presented. The method employs gas chromatography-tandem mass spectrometry (GC-MS-MS) using an internal ionization ion trap detector for sensitive MS-MS-in-time measurements of LSD extracted from urine. Following a single-step solid-phase extraction of 5 mL of urine, underivatized LSD can be measured with limits of quantitation and detection of 80 and 20 pg/mL, respectively. Temperature-programmed on-column injections of urine extracts were linear over the concentration range 20-2000 pg/mL (r2 = 0.999). Intraday and interday coefficients of variation were LSD-positive samples in this laboratory. Comparisons with alternate GC-MS methods and extraction procedures are discussed.

  3. Mass Spectrometry Parameters Optimization for the 46 Multiclass Pesticides Determination in Strawberries with Gas Chromatography Ion-Trap Tandem Mass Spectrometry

    Science.gov (United States)

    Fernandes, Virgínia C.; Vera, Jose L.; Domingues, Valentina F.; Silva, Luís M. S.; Mateus, Nuno; Delerue-Matos, Cristina

    2012-12-01

    Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET), maximum excitation energy or " q" value (q), and isolation mass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit. Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.

  4. A selective and sensitive method for quantitation of lysergic acid diethylamide (LSD) in whole blood by gas chromatography-ion trap tandem mass spectrometry.

    Science.gov (United States)

    Libong, Danielle; Bouchonnet, Stéphane; Ricordel, Ivan

    2003-01-01

    A gas chromatography-ion trap tandem mass spectrometry (GC-ion trap MS-MS) method for detection and quantitation of LSD in whole blood is presented. The sample preparation process, including a solid-phase extraction step with Bond Elut cartridges, was performed with 2 mL of whole blood. Eight microliters of the purified extract was injected with a cold on-column injection method. Positive chemical ionization was performed using acetonitrile as reagent gas; LSD was detected in the MS-MS mode. The chromatograms obtained from blood extracts showed the great selectivity of the method. GC-MS quantitation was performed using lysergic acid methylpropylamide as the internal standard. The response of the MS was linear for concentrations ranging from 0.02 ng/mL (detection threshold) to 10.0 ng/mL. Several parameters such as the choice of the capillary column, the choice of the internal standard and that of the ionization mode (positive CI vs. EI) were rationalized. Decomposition pathways under both ionization modes were studied. Within-day and between-day stability were evaluated.

  5. Isocratic Solid Phase Extraction-Liquid Chromatography (SPE-LC) Interfaced to High-Performance Tandem Mass Spectrometry for Rapid Protein Identification

    DEFF Research Database (Denmark)

    Hørning, Ole B; Kjeldsen, Frank; Theodorsen, Søren

    2008-01-01

    the isocratic solid phase extraction-liquid chromatography (SPE-LC) technology for rapid separation ( approximately 8 min) of simple peptide samples. We now extend these studies to demonstrate the potential of SPE-LC separation in combination with a hybrid linear ion trap-Orbitrap tandem mass spectrometer...

  6. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography-tandem mass spectrometry (GC/MS/MS) following microwave assisted derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Haixiang [College of Science, China Agricultural University, Beijing 100094 (China); Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Department of Basic Agricultural Science, Hebei North College, Zhangjiakou Hebei 075131 (China); Wang Liping [College of Science, China Agricultural University, Beijing 100094 (China); Qiu Yueming [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Zhou Zhiqiang [College of Science, China Agricultural University, Beijing 100094 (China)]. E-mail: zqzhou@cau.edu.cn; Zhong Weike [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Li Xiang [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China)

    2007-03-14

    A new method was developed for the rapid screening and confirmation analysis of barbital, amobarbital and phenobarbital residues in pork by gas chromatography-tandem mass spectrometry (GC/MS/MS) with ion trap MSD. The residual barbiturates in pork were extracted by ultrasonic extraction, cleaned up on a multiwalled carbon nanotubes (MWCNTs) packed solid phase extraction (SPE) cartridge and applied acetone-ethyl acetate (3:7, v/v) mixture as eluting solvent and derivatized with CH{sub 3}I under microwave irradiation. The methylated barbiturates were separated on a TR-5MS capillary column and detected with an ion trap mass detector. Electron impact ion source (EI) operating MS/MS mode was adopted for identification and external standard method was employed for quantification. One precursor ion m/z 169 was selected for analysis of barbital and amobarbital and m/z 232 was selected for phenobarbital. The product ions were obtained under 1.0 V excitation voltage. Good linearities (linear coefficient R > 0.99) were obtained at the range of 0.5-50 {mu}g kg{sup -1}. Limit of detection (LOD) of barbital was 0.2 {mu}g kg{sup -1} and that of amobarbital and phenobarbital were both 0.1 {mu}g kg{sup -1} (S/N {>=} 3). Limit of quatification (LOQ) was 0.5 {mu}g kg{sup -1} for three barbiturates (S/N {>=} 10). Satisfying recoveries ranging from 75% to 96% of the three barbiturates spiked in pork were obtained, with relative standard deviations (R.S.D.) in the range of 2.1-7.8%.

  7. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography-tandem mass spectrometry (GC/MS/MS) following microwave assisted derivatization

    International Nuclear Information System (INIS)

    Zhao Haixiang; Wang Liping; Qiu Yueming; Zhou Zhiqiang; Zhong Weike; Li Xiang

    2007-01-01

    A new method was developed for the rapid screening and confirmation analysis of barbital, amobarbital and phenobarbital residues in pork by gas chromatography-tandem mass spectrometry (GC/MS/MS) with ion trap MSD. The residual barbiturates in pork were extracted by ultrasonic extraction, cleaned up on a multiwalled carbon nanotubes (MWCNTs) packed solid phase extraction (SPE) cartridge and applied acetone-ethyl acetate (3:7, v/v) mixture as eluting solvent and derivatized with CH 3 I under microwave irradiation. The methylated barbiturates were separated on a TR-5MS capillary column and detected with an ion trap mass detector. Electron impact ion source (EI) operating MS/MS mode was adopted for identification and external standard method was employed for quantification. One precursor ion m/z 169 was selected for analysis of barbital and amobarbital and m/z 232 was selected for phenobarbital. The product ions were obtained under 1.0 V excitation voltage. Good linearities (linear coefficient R > 0.99) were obtained at the range of 0.5-50 μg kg -1 . Limit of detection (LOD) of barbital was 0.2 μg kg -1 and that of amobarbital and phenobarbital were both 0.1 μg kg -1 (S/N ≥ 3). Limit of quatification (LOQ) was 0.5 μg kg -1 for three barbiturates (S/N ≥ 10). Satisfying recoveries ranging from 75% to 96% of the three barbiturates spiked in pork were obtained, with relative standard deviations (R.S.D.) in the range of 2.1-7.8%

  8. Rapid identification and quantitation of compounds with forensic interest using fast liquid chromatography-ion trap mass spectrometry and library searching.

    Science.gov (United States)

    Pihlainen, Katja; Sippola, Erkki; Kostiainen, Risto

    2003-04-25

    A fast liquid chromatography-electrospray tandem mass spectrometric (LC-ESI-MS-MS) method by using a monolithic column, gradient elution and ion trap mass spectrometer was developed for 14 forensically interesting and chemically different compounds. All compounds were eluted within 2.5 min and the total analysis time was 5 min including stabilisation time required for the next injection. All the compounds, basics, neutrals and acids were efficiently ionised by positive ion ESI. A laboratory library including MS-MS spectra and retention times was developed and tested. Results with 476 standard samples and 50 authentic samples showed that the compounds studied can be unambiguously identified with the library. A quantitative method was developed for the compounds using external calibration. The evaluation process showed good linearity of the method and reasonable repeatability. Limits of detection ranged from 10.0 to 50.0 ng/ml.

  9. Ion-trap tandem mass spectrometry. A reliable technique for the analysis of PCDD/Fs and dioxin-like PCBs in food and feed samples

    Energy Technology Data Exchange (ETDEWEB)

    Santos, F J; Malavia, J; Galceran, M T [Barcelona Univ. (Spain). Dept. of Analytical Chemistry; Abalos, M; Abad, E; Rivera, J [Mass Spectrometry Laboratory, Dept. of Ecotechnologies, IIQAB-CSIC, Barcelona (Spain)

    2004-09-15

    The recent establishment of maximum residue limits for polychlorodibenzo-pdioxins (PCDDs) and dibenzofurans (PCDFs) in food and feed samples by the European Community and the future inclusion of dioxin-like polychlorinated biphenyls (dl-PCBs) in these values at the end of 2006, has led to an important increase on the routine analysis of these compounds. Therefore, there is a clear need to have powerful sensitive and selective methods for the analysis of these compounds at low concentration levels. Actually, gas chromatography coupled with high resolution mass spectrometry (GC-HRMS) is the technique of reference for the determination of these analytes in environmental and food samples due to its high sensitivity and selectivity. Nevertheless, this technique is relatively expensive and requires qualifier personnel. Therefore, the development of more economical but reliable methods that can deliver results comparable to GC-HRMS is required. During the last years, gas chromatography coupled with ion trap mass spectrometry (GC-ITMS) working in MS/MS mode has become an interesting alternative technique to GC-HRMS for the analysis of PCDD/Fs and dl-PCBs. The aim of the present work is to demonstrate the ability of the gas chromatography coupled with ion-trap tandem mass spectrometry (GC-ITMS/MS) for the analysis of PCDD/Fs and dl-PCBs in food and feed samples. This work was performed on the framework of the European research project called DIFFERENCE (Dioxins in Food and Feed - Reference methods and New Certified Reference Materials) with the objective to validate the GC-ITMS/MS method as alternative to HRMS in order to reduce the cost of dioxin analysis. The results and conclusions of the evaluation study are presented here.

  10. Determination of glufosinate ammonium and its metabolite (AE F064619 and AE F061517) residues in water by gas chromatography with tandem mass spectrometry after ion exchange cleanup and derivatization.

    Science.gov (United States)

    Royer, A; Beguin, S; Sochor, H; Communal, P Y

    2000-11-01

    An analytical method for the determination of glufosinate ammonium and its principal metabolites, AE F064619 and AE F061517, in water of two different hardnesses (5 and 30 DH, French hardness) has been developed and validated. Samples were spiked at different levels (0. 05 and 0.5 microgram/L) and were purified by column chromatography on ion-exchange resins. After derivatization with glacial acetic acid and trimethylarthoacetate mixture, the derivatives were quantified by using capillary gas chromatography with an ion-trap tandem mass spectrometric detector. Analytical conditions for MS/MS detection were optimized, and the quantification was carried out on the areas of the most representative ions. The limit of quantification was validated at 0.05 microgram/L for each compound. The mean recovery value and the relative standard deviation (n = 20) were 92.0% and 17. 8% for glufosinate ammonium, 90.2% and 15.8% for AE F064619, and 89. 7% and 12.7% for AE F061517.

  11. Application of high-performance liquid chromatography-tandem mass spectrometry with a quadrupole/linear ion trap instrument for the analysis of pesticide residues in olive oil.

    Science.gov (United States)

    Hernando, M D; Ferrer, C; Ulaszewska, M; García-Reyes, J F; Molina-Díaz, A; Fernández-Alba, A R

    2007-11-01

    This article describes the development of an enhanced liquid chromatography-mass spectrometry (LC-MS) method for the analysis of pesticides in olive oil. One hundred pesticides belonging to different classes and that are currently used in agriculture have been included in this method. The LC-MS method was developed using a hybrid quadrupole/linear ion trap (QqQ(LIT)) analyzer. Key features of this technique are the rapid scan acquisition times, high specificity and high sensitivity it enables when the multiple reaction monitoring (MRM) mode or the linear ion-trap operational mode is employed. The application of 5 ms dwell times using a linearly accelerating (LINAC) high-pressure collision cell enabled the analysis of a high number of pesticides, with enough data points acquired for optimal peak definition in MRM operation mode and for satisfactory quantitative determinations to be made. The method quantifies over a linear dynamic range of LOQs (0.03-10 microg kg(-1)) up to 500 microg kg(-1). Matrix effects were evaluated by comparing the slopes of matrix-matched and solvent-based calibration curves. Weak suppression or enhancement of signals was observed (ion (EPI) and MS3 were developed.

  12. Advanced Quadrupole Ion Trap Instrumentation for Low Level Vehicle Emissions Measurements

    International Nuclear Information System (INIS)

    McLuckey, S.A.

    1997-01-01

    Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amendable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methy-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. All of the ions with potential to serve as parent ions in a tandem mass spectrometry experiment were found to yield parent-to-product conversion efficiencies greater than 75%. The flexibility afforded to the ion trap by use of tailored wave-forms applied to the end-caps allows parallel monitoring schemes to be devised that provide many of the advantages of tandem mass spectrometry without major loss in measurement rate. A large loss in measurement rate would ordinarily result from the use of conventional tandem mass spectrometry experiments carried out in series for a large number of targeted components. These results have demonstrated that the ion trap has an excellent combination of

  13. Approach to the study of flavone di-C-glycosides by high performance liquid chromatography-tandem ion trap mass spectrometry and its application to characterization of flavonoid composition in Viola yedoensis.

    Science.gov (United States)

    Cao, Jie; Yin, Chengle; Qin, Yan; Cheng, Zhihong; Chen, Daofeng

    2014-10-01

    The mass spectrometric (MS) analysis of flavone di-C-glycosides has been a difficult task due to pure standards being unavailable commercially and to that the reported relative intensities of some diagnostic ions varied with MS instruments. In this study, five flavone di-C-glycoside standards from Viola yedoensis have been systematically studied by high performance liquid chromatography-electrospray ionization-tandem ion trap mass spectrometry (HPLC-ESI-IT-MS(n)) in the negative ion mode to analyze their fragmentation patterns. A new MS(2) and MS(3) hierarchical fragmentation for the identification of the sugar nature (hexoses or pentoses) at C-6 and C-8 is presented based on previously established rules of fragmentation. Here, for the first time, we report that the MS(2) and MS(3) structure-diagnostic fragments about the glycosylation types and positions are highly dependent on the configuration of the sugars at C-6 and C-8. The base peak ((0,2) X1 (0,2) X(2)(-) ion) in MS(3) spectra of di-C-glycosides could be used as a diagnostic ion for flavone aglycones. These newly proposed fragmentation behaviors have been successfully applied to the characterization of flavone di-C-glycosides found in V. yedoensis. A total of 35 flavonoid glycosides, including 1 flavone mono-C-hexoside, 2 flavone 6,8-di-C-hexosides, 11 flavone 6,8-di-C-pentosides, 13 flavone 6,8-C-hexosyl-C-pentosides, 5 acetylated flavone C-glycosides and 3 flavonol O-glycosides, were identified or tentatively identified on the base of their UV profiles, MS and MS(n) (n = 5) data, or by comparing with reference substances. Among these, the acetylated flavone C-glycosides were reported from V. yedoensis for the first time. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.

    Science.gov (United States)

    Baglai, Anna; Gargano, Andrea F G; Jordens, Jan; Mengerink, Ynze; Honing, Maarten; van der Wal, Sjoerd; Schoenmakers, Peter J

    2017-12-29

    Recent advancements in separation science have resulted in the commercialization of multidimensional separation systems that provide higher peak capacities and, hence, enable a more-detailed characterization of complex mixtures. In particular, two powerful analytical tools are increasingly used by analytical scientists, namely online comprehensive two-dimensional liquid chromatography (LC×LC, having a second-dimension separation in the liquid phase) and liquid chromatography-ion mobility-spectrometry (LC-IMS, second dimension separation in the gas phase). The goal of the current study was a general assessment of the liquid-chromatography-trapped-ion-mobility-mass spectrometry (LC-TIMS-MS) and comprehensive two-dimensional liquid chromatography-mass spectrometry (LC×LC-MS) platforms for untargeted lipid mapping in human plasma. For the first time trapped-ion-mobility spectrometry (TIMS) was employed for the separation of the major lipid classes and ion-mobility-derived collision-cross-section values were determined for a number of lipid standards. The general effects of a number of influencing parameters have been inspected and possible directions for improvements are discussed. We aimed to provide a general indication and practical guidelines for the analyst to choose an efficient multidimensional separation platform according to the particular requirements of the application. Analysis time, orthogonality, peak capacity, and an indicative measure for the resolving power are discussed as main characteristics for multidimensional separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. New Methodologies for Qualitative and Semi-Quantitative Determination of Carbon-Centered Free Radicals in Cigarette Smoke Using Liquid ChromatographyTandem Mass Spectrometry and Gas Chromatography-Mass Selective Detection

    Directory of Open Access Journals (Sweden)

    Gerardi AR

    2014-12-01

    Full Text Available Several approaches were explored to develop a high throughput procedure for relative determination of 14 different carbon-centered free radicals, both acyl and alkylaminocarbonyl type, in cigarette smoke. Two trapping procedures using 3-cyano-2,2,5,5-tetramethyl-1-pyrrolidinyloxy, or 3-cyanoproxyl radical (3-CNP were designed for this study: a trapping in solution and b trapping on a solid support which was a Cambridge filter pad. Fresh whole smoke and vapor phase smoke from mainstream cigarette smoke from Kentucky Reference Cigarettes 2R4F, as partitioned via an unadulterated Cambridge filter pad, were transferred into each trapping system in separate experiments. The 3-CNP coated Cambridge filter pad approach was shown to be superior to the impinger procedure as described in this study. Gas chromatography coupled with mass selective detection (GC-MS was employed for the first time as an alternate means of detecting several relatively highly concentrated radical adducts. Liquid chromatography tandem mass spectrometry (LC-MS/MS with precursor ion monitoring and selected ion monitoring (SIM was used for detecting the large array of radicals, including several not previously reported: formyl, crotonyl, acrolein, aminocarbonyl, and anilinocarbonyl radicals. Relative quantitation was achieved using as external calibration standards of 4-(1-pyrrolidinobenzaldehyde and nicotine. It was determined that the yield of carbon-centered free radicals by reference cigarette 2R4F was approximately 265 nmoles/cigarette at 35 mL puff/60 sec interval/2 sec duration smoking conditions.

  16. Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry.

    Science.gov (United States)

    Shen, Yan; Han, Chao; Liu, Bin; Lin, Zhengfeng; Zhou, Xiujin; Wang, Chengjun; Zhu, Zhenou

    2014-02-01

    A simple, precise, accurate, and validated liquid chromatography-quadrupole linear ion trap mass spectrometry method was developed for the determination of vanillin, ethyl vanillin, and coumarin in infant formula samples. Following ultrasonic extraction with methanol/water (1:1, vol/vol), and clean-up on an HLB solid-phase extraction cartridge (Waters Corp., Milford, MA), samples were separated on a Waters XSelect HSS T3 column (150 × 2.1-mm i.d., 5-μm film thickness; Waters Corp.), with 0.1% formic acid solution-acetonitrile as mobile phase at a flow rate of 0.25 mL/min. Quantification of the target was performed by the internal standard approach, using isotopically labeled compounds for each chemical group, to correct matrix effects. Data acquisition was carried out in multiple reaction monitoring transitions mode, monitoring 2 multiple reaction monitoring transitions to ensure an accurate identification of target compounds in the samples. Additional identification and confirmation of target compounds were performed using the enhanced product ion modus of the linear ion trap. The novel liquid chromatography-quadrupole linear ion trap mass spectrometry platform offers the best sensitivity and specificity for characterization and quantitative determination of vanillin, ethyl vanillin, and coumarin in infant formula and fulfills the quality criteria for routine laboratory application. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Dispersive solid phase extraction combined with ion-pair ultra high-performance liquid chromatography tandem mass spectrometry for quantification of nucleotides in Lactococcus lactis

    DEFF Research Database (Denmark)

    Magdenoska, Olivera; Martinussen, Jan; Thykær, Jette

    2013-01-01

    solid phase extraction with charcoal and subsequent analysis with ion-pair liquid chromatography coupled with electrospray ionization tandem mass spectrometry was established for quantification of intracellular pools of the 28 most important nucleotides. The method can handle extracts where cells leak...

  18. Novel product ions of 2-aminoanilide and benzimidazole Ag(I) complexes using electrospray ionization with multi-stage tandem mass spectrometry.

    Science.gov (United States)

    Johnson, Byron S; Burinsky, David J; Burova, Svetlana A; Davis, Roman; Fitzgerald, Russ N; Matsuoka, Richard T

    2012-05-15

    The 2-aminoaniline scaffold is of significant value to the pharmaceutical industry and is embedded in a number of pharmacophores including 2-aminoanilides and benzimidazoles. A novel application of coordination ion spray mass spectrometry (CIS-MS) for interrogating the silver ion (Ag(+)) complexes of a homologous series of these compounds using multi-stage tandem mass spectrometry is described. Unlike the ubiquitous alkali metal ion complexes, Ag(+) complexes of 2-aminoanilides and benzimidazoles were found to yield [M - H](+) ions in significant abundance via gas-phase elimination of the metal hydride (AgH) resulting in unique product ion cascades. Sample introduction was by liquid chromatography with mass spectrometry analysis performed on a hybrid linear ion trap/orbitrap instrument capable of high-resolution measurements. Rigorous structural characterization by multi-stage tandem mass spectrometry using [M +  H](+), [M - H](-) and [M - H](+) precursor ions derived from ESI and CIS experiments was performed for the homologous series of 2-aminoanilide and benzimidazole compounds. A full tabular comparison of structural information resulting from these product ion cascades was produced. Multi-stage tandem mass spectrometry of [M - H](+) ions resulting from Ag(+) complexes of 2-aminoanilides and benzimidazoles in CIS-MS experiments produced unique product ion cascades that exhibited complementary structural information to that obtained from tandem mass spectrometry of [M  +  H](+) and [M - H](-) ions by electrospray ionization (ESI). These observations may be broadly applicable to other compounds that are observed to form Ag(+) complexes and eliminate AgH. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Recent advances of liquid chromatography-(tandem) mass spectrometry in clinical and forensic toxicology.

    Science.gov (United States)

    Peters, Frank T

    2011-01-01

    Liquid chromatography (LC) coupled to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) has become increasingly important in clinical and forensic toxicology as well as doping control and is now a robust and reliable technique for routine analysis in these fields. In recent years, methods for LC-MS(/MS)-based systematic toxicological analysis using triple quadrupole or ion trap instruments have been considerably improved and a new screening approach based on high-resolution MS analysis using benchtop time-of-flight MS instruments has been developed. Moreover, many applications for so-called multi-target screening and/or quantification of drugs, poisons, and or their metabolites in various biomatrices have been published. The present paper will provide an overview and discuss these recent developments focusing on the literature published after 2006. Copyright © 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. ICRF heating of passing ions in a thermal barrier tandem mirror

    International Nuclear Information System (INIS)

    Molvik, A.W.; Dimonte, G.; Campbell, R.; Barter, J.; Cummins, W.F.; Falabella, S.; Poulsen, P.

    1985-05-01

    Ion heating is used in the central cells of tandem mirrors to reduce the collisional trapping of passing ions in the end cell thermal barriers. In this paper, we reevaluate ICRF heating of the TMX-U central cell in two limits. The first we term isotropic, because we impose the condition that ions heated in the perpendicular direction be confined for at least one 90 0 scattering time, thereby heating the passing ions. The second we call anisotropic heating. It uses higher ICRF power to mirror trap a majority of the ions near the midplane, thereby reducing the density and collisionality of passing ions. Anisotropic heating has the advantage of increasing with ICRF power, whereas isotropic heating is limited by ion collisionality. Both techniques require gas fueling near the central cell midplane, with an ion cyclotron resonance toward each end cell to heat the cold ions

  1. Liquid chromatography/negative electrospray ionization ion trap MS(2) mass spectrometry application for the determination of microcystins occurrence in Southern Portugal water reservoirs.

    Science.gov (United States)

    Rodrigues, M A; Reis, M P; Mateus, M C

    2013-11-01

    Microcystins (MCs) are toxins produced by cyanobacteria which are common organisms in the phytoplankton of eutrophic lakes, rivers and freshwater reservoirs. In the present work, a novel method of liquid chromatography-electrospray ion trap tandem mass spectrometry (LC/ESI/Ion trap-MS/MS), operated in the negative ionization mode, was developed for the analysis of these cyanotoxins. The method was applied to determine the amounts of total microcystins-LR, -YR and -RR in two water reservoirs in Southern Portugal, namely Alqueva and Beliche. A total of 30 water samples were analysed along 2011. Solid phase extraction (SPE) was used for sample cleaning-up and analyte enrichment. The extracted toxins were separated on a C18 column with a gradient of acetonitrile/water with 0.1% formic acid. Detection of microcystins was carried out using multiple reaction monitoring (MRM) in the negative polarity mode, as this method gave a higher selectivity. The MC-RR, YR and LR quantification limits were 17.9, 31.7 and 15.8 ng/L, respectively; quite below the limits recommended by WHO guidelines for drinking water (1 μg/L). Total MC highest concentrations were found in the warm months of June, July and September in Alqueva sampling sites, with concentrations of MC LR and RR ranging 17-344 and 25-212 ng/L, respectively, showing comparable results for MC-RR and LR and slightly lower concentration of MC-YR. Detected values for Beliche reservoir were below quantification limits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Linear Ion Traps in Space: The Mars Organic Molecule Analyzer (MOMA) Instrument and Beyond

    Science.gov (United States)

    Arevalo, Ricardo; Brinckerhoff, William; Mahaffy, Paul; van Amerom, Friso; Danell, Ryan; Pinnick, Veronica; Li, Xiang; Hovmand, Lars; Getty, Stephanie; Grubisic, Andrej; Goesmann, Fred; Cottin, Hervé

    2015-11-01

    Historically, quadrupole mass spectrometer (QMS) instruments have been used to explore a wide survey of planetary targets in our solar system, from Venus (Pioneer Venus) to Saturn (Cassini-Huygens). However, linear ion trap (LIT) mass spectrometers have found a niche as smaller, versatile alternatives to traditional quadrupole analyzers.The core astrobiological experiment of ESA’s ExoMars Program is the Mars Organic Molecule Analyzer (MOMA) onboard the ExoMars 2018 rover. The MOMA instrument is centered on a linear (or 2-D) ion trap mass spectrometer. As opposed to 3-D traps, LIT-based instruments accommodate two symmetrical ion injection pathways, enabling two complementary ion sources to be used. In the case of MOMA, these two analytical approaches are laser desorption mass spectrometry (LDMS) at Mars ambient pressures, and traditional gas chromatography mass spectrometry (GCMS). The LIT analyzer employed by MOMA also offers: higher ion capacity compared to a 3-D trap of the same volume; redundant detection subassemblies for extended lifetime; and, a link to heritage QMS designs and assembly logistics. The MOMA engineering test unit (ETU) has demonstrated the detection of organics in the presence of wt.%-levels of perchlorate, effective ion enhancement via stored waveform inverse Fourier transform (SWIFT), and derivation of structural information through tandem mass spectrometry (MS/MS).A more progressive linear ion trap mass spectrometer (LITMS), funded by the NASA ROSES MatISSE Program, is being developed at NASA GSFC and promises to augment the capabilities of the MOMA instrument by way of: an expanded mass range (i.e., 20 - 2000 Da); detection of both positive and negative ions; spatially resolved (<1 mm) characterization of individual rock core layers; and, evolved gas analysis and GCMS with pyrolysis up to 1300° C (enabling breakdown of refractory phases). The Advanced Resolution Organic Molecule Analyzer (AROMA) instrument, being developed through NASA

  3. Screening and identification of steroidal saponins from Anemarrhena asphodeloides employing UPLC tandem triple quadrupole linear ion trap mass spectrometry.

    Science.gov (United States)

    Xia, Yong-Gang; Guo, Xin-Dong; Liang, Jun; Yang, Bing-You; Kuang, Hai-Xue

    2017-09-01

    This study presents a practical and valid strategy for the screening and structural characterization of Anemarrhena asphodeloides Bge steroidal saponins (SSs) using ultra-high performance liquid chromatography coupled with triple quadrupole linear ion trap mass spectrometry. The whole analytical protocols integrate four-step procedures in the positive mode: (1) rational deduction of mass fragmentation pathways of A. asphodeloides SSs; (2) untargeted screening of potential A. asphodeloides SSs by multiple-ion monitoring-information-dependent-acquiring-enhanced product ion (MIM-IDA-EPI) scan through reverse phase liquid chromatography; (3) comprehensive construction of an ammoniated precursor ion database by combining untargeted MIM-IDA-EPI scans and data literature; and (4) structural interpretation of targeted A. asphodeloides SSs using MIM-IDA-EPI and multiple reaction monitoring (MRM)-IDA-EPI with an energy-resolved technique. The protocols were used to analyze SSs in A. asphodeloides; of the 87 detected SSs that were unambiguously characterized or tentatively identified, 19 compounds were the first to be reported from A. asphodeloides and 13 ones were characterized as potential new compounds. Accuracy of the analytical procedure was demonstrated by structural identification of three SSs by NMR spectroscopy. The proposed schemes hold an excellent promise in the structural prediction and interpretation of complex SSs from plant medicines by mass spectrometry. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. POLAR ORGANIC CHEMICAL INTEGRATIVE SAMPLING AND LIQUID CHROMATOGRAPHY-ELECTROSPRAY/ION-TRAP MASS SPECTROMETRY FOR ASSESSING SELECTED PRESCRIPTION AND ILLICIT DRUGS IN TREATED SEWAGE EFFLUENTS

    Science.gov (United States)

    The purpose of the research presented in this paper is two-fold: (1) to demonstrate the 4 coupling of two state-of-the-art techniques: a time-weighted polar organic integrative sampler (POCIS) and micro-liquid chromatography-electrospray/ion trap mass spectrometry (u-LC-6 ES/ITMS...

  5. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  6. Rapid Quantification of Four Anthocyanins in Red Grape Wine by Hydrophilic Interaction Liquid Chromatography/Triple Quadrupole Linear Ion Trap Mass Spectrometry.

    Science.gov (United States)

    Sun, Yongming; Xia, Biqi; Chen, Xiangzhun; Duanmu, Chuansong; Li, Denghao; Han, Chao

    2015-01-01

    The identification and quantification of four anthocyanins (cyanidin-3-O-glucoside, peonidin-3-O-glucoside, delphinidin-3-O-glucoside, and malvidin-3-O-glucoside) in red grape wine were carried out by hydrophilic interaction liquid chromatography/triple quadrupole linear ion trap MS (HILIC/QTrap-MS/MS). Samples were diluted directly and separated on a Merck ZIC HILIC column with 20 mM ammonium acetate solution-acetonitrile mobile phase. Quantitative data acquisition was carried out in the multiple reaction monitoring mode. Additional identification and confirmation of target compounds were performed using the enhanced product ion mode of the linear ion trap. The LOQs were in the range 0.05-1.0 ng/mL. The average recoveries were in the range 94.6 to 104.5%. The HILIC/QTrap-MS/MS platform offers the best sensitivity and specificity for characterization and quantitative determination of the four anthocyanins in red grape wines and fulfills the quality criteria for routine laboratory application.

  7. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  8. Trapping radioactive ions

    International Nuclear Information System (INIS)

    Kluge, H.-J.; Blaum, K.

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning

  9. Simultaneous identification and quantification of tetrodotoxin in fresh pufferfish and pufferfish-based products using immunoaffinity columns and liquid chromatography/quadrupole-linear ion trap mass spectrometry

    Science.gov (United States)

    Guo, Mengmeng; Wu, Haiyan; Jiang, Tao; Tan, Zhijun; Zhao, Chunxia; Zheng, Guanchao; Li, Zhaoxin; Zhai, Yuxiu

    2017-07-01

    In this study, we established a comprehensive method for simultaneous identification and quantification of tetrodotoxin (TTX) in fresh pufferfish tissues and pufferfish-based products using liquid chromatography/quadrupole-linear ion trap mass spectrometry (LC-QqLIT-MS). TTX was extracted by 1% acetic acid-methanol, and most of the lipids were then removed by freezing lipid precipitation, followed by purification and concentration using immunoaffinity columns (IACs). Matrix effects were substantially reduced due to the high specificity of the IACs, and thus, background interference was avoided. Quantitation analysis was therefore performed using an external calibration curve with standards prepared in mobile phase. The method was evaluated by fortifying samples at 1, 10, and 100 ng/g, respectively, and the recoveries ranged from 75.8%-107%, with a relative standard deviation of less than 15%. The TTX calibration curves were linear over the range of 1-1 000 μg/L, with a detection limit of 0.3 ng/g and a quantification limit of 1 ng/g. Using this method, samples can be further analyzed using an information-dependent acquisition (IDA) experiment, in the positive mode, from a single liquid chromatography-tandem mass spectrometry injection, which can provide an extra level of confirmation by matching the full product ion spectra acquired for a standard sample with those from an enhanced product ion (EPI) library. The scheduled multiple reaction monitoring method enabled TTX to be screened for, and TTX was positively identified using the IDA and EPI spectra. This method was successfully applied to analyze a total of 206 samples of fresh pufferfish tissues and pufferfish-based products. The results from this study show that the proposed method can be used to quantify and identify TTX in a single run with excellent sensitivity and reproducibility, and is suitable for the analysis of complex matrix pufferfish samples.

  10. Separation and analysis of phenolic acids from Salvia miltiorrhiza and its related preparations by off-line two-dimensional hydrophilic interaction chromatography×reversed-phase liquid chromatography coupled with ion trap time-of-flight mass spectrometry.

    Science.gov (United States)

    Sun, Wanyang; Tong, Ling; Miao, Jingzhuo; Huang, Jingyi; Li, Dongxiang; Li, Yunfei; Xiao, Hongting; Sun, Henry; Bi, Kaishun

    2016-01-29

    Salvia miltiorrhiza (SM) is one of the most widely used Traditional Chinese Medicine. Active constituents of SM mainly contain hydrophilic phenolic acids (PAs) and lipophilic tanshinones. However, due to the existing of multiple ester bonds and unsaturated bonds in the structures, PAs have numerous chemical conversion products. Many of them are so low-abundant that hard to be separated using conventional methods. In this study, an off-line two-dimensional liquid chromatography (2D-LC) method was developed to separate PAs in SM and its related preparations. In the first dimension, samples were fractionated by hydrophilic interaction chromatography (HILIC) (Acchrom×Amide, 4.6×250mm, 5μm) mainly based on the hydrogen bonding effects. The fractions were then separated on reversed-phase liquid chromatography (RP-LC) (Acquity HSS T3, 2.1×50mm, 1.7μm) according to hydrophobicity. For the selective identification of PAs, diode array detector (DAD) and electrospray ionization tandem ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) were employed. Practical and effective peak capacities of all the samples were greater than 2046 and 1130, respectively, with the orthogonalities ranged from 69.7% to 92.8%, which indicated the high efficiency and versatility of this method. By utilizing the data post-processing techniques, including mass defect filter, neutral loss filter and product ion filter, a total of 265 compounds comprising 196 potentially new PAs were tentatively characterized. Twelve kinds of derivatives, mainly including glycosylated compounds, O-alkylated compounds, condensed compounds and hydrolyzed compounds, constituted the novelty of the newly identified PAs. The HILIC×RP-LC/TOF-MS system expanded our understanding on PAs of S. miltiorrhiza and its related preparations, which could also benefit the separation and characterization of polar constituents in complicated herbal extracts. Copyright © 2016. Published by Elsevier B.V.

  11. Single-run determination of polybrominated diphenyl ethers (PBDEs) di- to deca-brominated in fish meal, fish oil and fish feed by isotope dilution: Application of automated sample purification and gas chromatography/ion trap tandem mass spectrometry (GC/ITMS)

    International Nuclear Information System (INIS)

    Blanco, Sonia Lucia; Vieites, Juan M.

    2010-01-01

    The present paper describes the application of automated cleanup and fractionation procedures of the Power Prep system (Fluid Management Systems) for the determination of polybrominated diphenyl ethers (PBDEs) in feeding stuffs and fish meal and oil. Gas chromatography (GC) separation followed by ion trap tandem mass spectrometry detection in EI mode (ITMS) allowed the analysis of di- to deca-BDEs in the samples matrices used in fish aquaculture. The method developed enabled the determination of 26 native PBDE congeners and 11 13 C 12 -labelled congeners, including deca-BDE 209, in a single-run analysis, using isotope dilution. The automated cleanup, consisting of a succession of multilayer silica and basic alumina columns previously applied by Wyrzykowska et al. (2009) in combustion flue gas, was succesfully applied in our complex matrices. The method allowed an increase in productivity, i.e. lower time was required to process samples, and simultaneous purification of several samples was achieved at a time, reducing analyst dedication and human error input. Average recoveries of 43-96% were obtained. GC/ITMS can overcome the complexity originating from the sample matrix, eliminating matrix effects by tandem MS, to enable the detection of congeners penta- to nona-BDEs where interferent masses were present. The provisional detection limits, estimated in the samples, were 5-30 pg for di-, tri-, tetra-, and penta-BDEs, 20-65 pg for hexa-, hepta-, octa- and nona-BDEs, and 105 pg for deca-BDE. Reduction of deca-BDE 209 blank values is of concern to ongoing research. Good accuracy was obtained by application of the whole procedure, representing an efficient, low-cost and fast alternative for routine analyses.

  12. Integrating qualitative and quantitative characterization of traditional Chinese medicine injection by high-performance liquid chromatography with diode array detection and tandem mass spectrometry.

    Science.gov (United States)

    Xie, Yuan-yuan; Xiao, Xue; Luo, Juan-min; Fu, Chan; Wang, Qiao-wei; Wang, Yi-ming; Liang, Qiong-lin; Luo, Guo-an

    2014-06-01

    The present study aims to describe and exemplify an integrated strategy of the combination of qualitative and quantitative characterization of a multicomponent mixture for the quality control of traditional Chinese medicine injections with the example of Danhong injection (DHI). The standardized chemical profile of DHI has been established based on liquid chromatography with diode array detection. High-performance liquid chromatography coupled with time-of-flight mass spectrometry and high-performance liquid chromatography with electrospray multistage tandem ion-trap mass spectrometry have been developed to identify the major constituents in DHI. The structures of 26 compounds including nucleotides, phenolic acids, and flavonoid glycosides were identified or tentatively characterized. Meanwhile, the simultaneous determination of seven marker constituents, including uridine, adenosine, danshensu, protocatechuic aldehyde, p-coumaric acid, rosmarinic acid, and salvianolic acid B, in DHI was performed by multiwavelength detection based on high-performance liquid chromatography with diode array detection. The integrated qualitative and quantitative characterization strategy provided an effective and reliable pattern for the comprehensive and systematic characterization of the complex traditional Chinese medicine system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Matrix effect on the determination of synthetic corticosteroids and diuretics by liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Dikunets, M. A.; Appolonova, S. A.; Rodchenkov, G. M.

    2009-04-01

    This work presents a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) procedure for selective and reliable screening of corticosteroids and diuretics in human urine. Sample preparation included the extraction, evaporation of the organic extract under nitrogen, and solution of the dry residue. The extract was analyzed by HPLC combined with tandem mass spectrometry using electro-spraying ionization at atmospheric pressure with negative ion recording. The mass spectra of all compounds were recorded, and the characteristic ions, retention times, and detection limits were determined. The procedure was validated by evaluating the degree of the matrix suppression of ionization, extraction of analytes from human biological liquid, and the selectivity and specificity of determination.

  14. Analysis of perchlorate, thiocyanate, nitrate and iodide in human amniotic fluid using ion chromatography and electrospray tandem mass spectrometry

    International Nuclear Information System (INIS)

    Blount, Benjamin C.; Valentin-Blasini, Liza

    2006-01-01

    Because of health concerns surrounding in utero exposure to perchlorate, we developed a sensitive and selective method for quantifying iodide, as well as perchlorate and other sodium-iodide symporter (NIS) inhibitors in human amniotic fluid using ion chromatography coupled with electrospray ionization tandem mass spectrometry. Iodide and NIS inhibitors were quantified using a stable isotope-labeled internal standards (Cl 18 O 4 - , S 13 CN - and 15 NO 3 - with excellent assay accuracy of 100%, 98%, 99%, 95% for perchlorate, thiocyanate, nitrate and iodide, respectively, in triplicate analysis of spiked amniotic fluid sample). Excellent analytical precision (<5.2% RSD for all analytes) was found when amniotic fluid quality control pools were repetitively analyzed for iodide and NIS-inhibitors. Selective chromatography and tandem mass spectrometry reduced the need for sample cleanup, resulting in a rugged and rapid method capable of routinely analyzing 75 samples/day. Analytical response was linear across the physiologically relevant concentration range for the analytes. Analysis of a set of 48 amniotic fluid samples identified the range and median levels for perchlorate (0.057-0.71, 0.18 μg/L), thiocyanate (<10-5860, 89 μg/L), nitrate (650-8900, 1620 μg/L) and iodide (1.7-170, 8.1 μg/L). This selective, sensitive, and rapid method will help assess exposure of the developing fetus to low levels of NIS-inhibitors and their potential to inhibit thyroid function

  15. High-Performance Liquid Chromatography with Diode Array Detector and Electrospray Ionization Ion Trap Time-of-Flight Tandem Mass Spectrometry to Evaluate Ginseng Roots and Rhizomes from Different Regions.

    Science.gov (United States)

    Wang, Hong-Ping; Zhang, You-Bo; Yang, Xiu-Wei; Yang, Xin-Bao; Xu, Wei; Xu, Feng; Cai, Shao-Qing; Wang, Ying-Ping; Xu, Yong-Hua; Zhang, Lian-Xue

    2016-05-09

    Ginseng, Panax ginseng C. A. Meyer, is an industrial crop in China and Korea. The functional components in ginseng roots and rhizomes are characteristic ginsenosides. This work developed a new high-performance liquid chromatography coupled with electrospray ionization ion trap time-of-flight multistage mass spectrometry (LC-ESI-IT-TOF-MS(n)) method to identify the triterpenoids. Sixty compounds (1-60) including 58 triterpenoids were identified from the ginseng cultivated in China. Substances 1, 2, 7, 15-20, 35, 39, 45-47, 49, 55-57, 59, and 60 were identified for the first time. To evaluate the quality of ginseng cultivated in Northeast China, this paper developed a practical liquid chromatography-diode array detection (LC-DAD) method to simultaneously quantify 14 interesting ginsenosides in ginseng collected from 66 different producing areas for the first time. The results showed the quality of ginseng roots and rhizomes from different sources was different due to growing environment, cultivation technology, and so on. The developed LC-ESI-IT-TOF-MS(n) method can be used to identify many more ginsenosides and the LC-DAD method can be used not only to assess the quality of ginseng, but also to optimize the cultivation conditions for the production of ginsenosides.

  16. Single-run determination of polybrominated diphenyl ethers (PBDEs) di- to deca-brominated in fish meal, fish oil and fish feed by isotope dilution: application of automated sample purification and gas chromatography/ion trap tandem mass spectrometry (GC/ITMS).

    Science.gov (United States)

    Blanco, Sonia Lucía; Vieites, Juan M

    2010-07-05

    The present paper describes the application of automated cleanup and fractionation procedures of the Power Prep system (Fluid Management Systems) for the determination of polybrominated diphenyl ethers (PBDEs) in feeding stuffs and fish meal and oil. Gas chromatography (GC) separation followed by ion trap tandem mass spectrometry detection in EI mode (ITMS) allowed the analysis of di- to deca-BDEs in the samples matrices used in fish aquaculture. The method developed enabled the determination of 26 native PBDE congeners and 11 (13)C(12)-labelled congeners, including deca-BDE 209, in a single-run analysis, using isotope dilution. The automated cleanup, consisting of a succession of multilayer silica and basic alumina columns previously applied by Wyrzykowska et al. (2009) [28] in combustion flue gas, was successfully applied in our complex matrices. The method allowed an increase in productivity, i.e. lower time was required to process samples, and simultaneous purification of several samples was achieved at a time, reducing analyst dedication and human error input. Average recoveries of 43-96% were obtained. GC/ITMS can overcome the complexity originating from the sample matrix, eliminating matrix effects by tandem MS, to enable the detection of congeners penta- to nona-BDEs where interferent masses were present. The provisional detection limits, estimated in the samples, were 5-30 pg for di-, tri-, tetra-, and penta-BDEs, 20-65 pg for hexa-, hepta-, octa- and nona-BDEs, and 105 pg for deca-BDE. Reduction of deca-BDE 209 blank values is of concern to ongoing research. Good accuracy was obtained by application of the whole procedure, representing an efficient, low-cost and fast alternative for routine analyses. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Microfabricated linear Paul-Straubel ion trap

    Science.gov (United States)

    Mangan, Michael A [Albuquerque, NM; Blain, Matthew G [Albuquerque, NM; Tigges, Chris P [Albuquerque, NM; Linker, Kevin L [Albuquerque, NM

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  18. Quantification of citalopram or escitalopram and their demethylated metabolites in neonatal hair samples by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Frison, Giampietro; Favretto, Donata; Vogliardi, Susanna; Terranova, Claudio; Ferrara, Santo Davide

    2008-08-01

    Citalopram and escitalopram are highly selective serotonin reuptake inhibitors widely used in the treatment of depression. They exhibit adverse drug reactions and side effects, however, and the development of specific methods for their determination is of great interest in clinical and forensic toxicology. A liquid chromatography-tandem mass spectrometry method has been developed and validated for the assay of citalopram, escitalopram, and their demethylated metabolites in 10-mg hair samples. The analytes were extracted by incubation in methanol and liquid/liquid extraction with diethyl ether/dichloromethane. Gradient elution on a narrow bore C18 column was realized using clomipramine-d3 as an internal standard. Positive ion electrospray ionization and tandem mass spectrometry determination by collision-induced dissociation were performed in an ion trap mass spectrometer. The method exhibited a linear range of 25 to 2000 pg/mg, a quantification limit of 25 pg/mg for all analytes, relative standard deviations in the range of 12.10 to 9.80 (intraassay), and 13.80 to 11.78 (interassay), and accuracies (as percent recovery of the spiked standards) in the range of 90% to 110%; it was applied to the determination of citalopram and escitalopram and their metabolites in hair samples of two newborns to document their in utero exposure to the drugs. The method proved suitable for neonatal hair analysis of citalopram or escitalopram and was applied to two real cases of gestational exposure.

  19. Ion trap architectures and new directions

    Science.gov (United States)

    Siverns, James D.; Quraishi, Qudsia

    2017-12-01

    Trapped ion technology has seen advances in performance, robustness and versatility over the last decade. With increasing numbers of trapped ion groups worldwide, a myriad of trap architectures are currently in use. Applications of trapped ions include: quantum simulation, computing and networking, time standards and fundamental studies in quantum dynamics. Design of such traps is driven by these various research aims, but some universally desirable properties have lead to the development of ion trap foundries. Additionally, the excellent control achievable with trapped ions and the ability to do photonic readout has allowed progress on quantum networking using entanglement between remotely situated ion-based nodes. Here, we present a selection of trap architectures currently in use by the community and present their most salient characteristics, identifying features particularly suited for quantum networking. We also discuss our own in-house research efforts aimed at long-distance trapped ion networking.

  20. Ions kinematics in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2004-06-01

    In this study, I have tried to provide a better understanding of the dynamics of ions inside an electrostatic ion beam trap. The electrostatic ion trap allows to store ions moving between two electrostatic mirrors. Although the trap has been developed already seven years ago, no direct measurement of the transversal velocity distribution of the ions has been performed. Such quantity is central for understanding the conditions under which a beam should be produced (mainly emittance) in order to be trapped by such a device. The data I have obtained during the course of this work are based on an experimental technique which relies on the direct imaging of the particles exiting the trap, as well as on numerical simulations of the ion trajectories inside the trap. I have personally been involved in the hardware development of the imaging system, the data acquisition and analysis of the data as well as il all numerical calculations presented here. These results allow us to obtain, for the first time, experimental information on the transverse phase space of the trap, and contribute to the overall understanding of the ion motion in this system. (author)

  1. Investigation of Symphytum cordatum alkaloids by liquid-liquid partitioning, thin-layer chromatography and liquid chromatography-ion-trap mass spectrometry

    International Nuclear Information System (INIS)

    Mroczek, Tomasz; Ndjoko-Ioset, Karine; Glowniak, Kazimierz; Mietkiewicz-Capala, Agnieszka; Hostettmann, Kurt

    2006-01-01

    From the alkalised crude extract of Symphytum cordatum (L.) W.K. roots, pyrrolizidine alkaloids (PAs) were extracted as free tertiary bases and polar N-oxides in a merely one-step liquid-liquid partitioning (LLP) in separation funnel and subsequently pre-fractionated by preparative multiple-development (MD) thin-layer chromatography (TLC) on silica gel plates. In this way three alkaloid fractions of different polarities and retention on silica gel plates were obtained as: the most polar N-oxides of the highest retention, the tertiary bases of medium retention, and diesterified N-oxides of the lowest retention. The former fraction was reduced into free bases by sodium hydrosulfite and purified by LLP on Extrelut-NT3 cartridge. It was further analysed together with the two other fractions by high-performance liquid chromatography (HPLC)-ion-trap mass spectrometry with atmospheric pressure chemical ionization (APCI) interface on XTerra C 18 column using a gradient elution. Based on MS n spectra, 18 various alkaloids have been tentatively determined for the first time in this plant as the following types of structure: echimidine-N-oxide (three diasteroisomers), 7-sarracinyl-9-viridiflorylretronecine (two diasteroisomers), echimidine (two diasteroisomers), lycopsamine (two diasteroisomers), dihydroechinatine-N-oxide, dihydroheliospathuline-N-oxide, lycopsamine-N-oxide (three diasteroisomers), 7-acetyllycopsamine-N-oxide, symphytine-N-oxide (two diasteroisomers) and 2'',3''-epoxyechiumine-N-oxide

  2. Investigation of Symphytum cordatum alkaloids by liquid-liquid partitioning, thin-layer chromatography and liquid chromatography-ion-trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mroczek, Tomasz [Department of Pharmacognosy with Medicinal Plants Laboratory, Medical University, 1 Chodzki St., 20-093 Lublin (Poland)]. E-mail: tmroczek@pharmacognosy.org; Ndjoko-Ioset, Karine [Laboratoire de Pharmacognosie et Phytochimie, Ecole de Pharmacie Geneve-Lausanne, Universite de Geneve, Quai Ernest-Ansermet 30, CH-1211 Geneva 4 (Switzerland); Glowniak, Kazimierz [Department of Pharmacognosy with Medicinal Plants Laboratory, Medical University, 1 Chodzki St., 20-093 Lublin (Poland); Mietkiewicz-Capala, Agnieszka [Department of Pharmacognosy with Medicinal Plants Laboratory, Medical University, 1 Chodzki St., 20-093 Lublin (Poland); Hostettmann, Kurt [Laboratoire de Pharmacognosie et Phytochimie, Ecole de Pharmacie Geneve-Lausanne, Universite de Geneve, Quai Ernest-Ansermet 30, CH-1211 Geneva 4 (Switzerland)

    2006-05-04

    From the alkalised crude extract of Symphytum cordatum (L.) W.K. roots, pyrrolizidine alkaloids (PAs) were extracted as free tertiary bases and polar N-oxides in a merely one-step liquid-liquid partitioning (LLP) in separation funnel and subsequently pre-fractionated by preparative multiple-development (MD) thin-layer chromatography (TLC) on silica gel plates. In this way three alkaloid fractions of different polarities and retention on silica gel plates were obtained as: the most polar N-oxides of the highest retention, the tertiary bases of medium retention, and diesterified N-oxides of the lowest retention. The former fraction was reduced into free bases by sodium hydrosulfite and purified by LLP on Extrelut-NT3 cartridge. It was further analysed together with the two other fractions by high-performance liquid chromatography (HPLC)-ion-trap mass spectrometry with atmospheric pressure chemical ionization (APCI) interface on XTerra C{sub 18} column using a gradient elution. Based on MS {sup n} spectra, 18 various alkaloids have been tentatively determined for the first time in this plant as the following types of structure: echimidine-N-oxide (three diasteroisomers), 7-sarracinyl-9-viridiflorylretronecine (two diasteroisomers), echimidine (two diasteroisomers), lycopsamine (two diasteroisomers), dihydroechinatine-N-oxide, dihydroheliospathuline-N-oxide, lycopsamine-N-oxide (three diasteroisomers), 7-acetyllycopsamine-N-oxide, symphytine-N-oxide (two diasteroisomers) and 2'',3''-epoxyechiumine-N-oxide.

  3. Confirmatory analysis method for zeranol, its metabolites and related mycotoxins in urine by liquid chromatography-negative ion electrospray tandem mass spectrometry

    International Nuclear Information System (INIS)

    Bennekom, E.O. van; Brouwer, L.; Laurant, E.H.M.; Hooijerink, H.; Nielen, M.W.F.

    2002-01-01

    The determination of the banned anabolic substance zeranol and the metabolites taleranol and zearalanone in bovine urine is complicated by the occurrence of the structurally-related mycotoxin zearalenone and the corresponding α- and β-zearalenol metabolites which possess similar estrogenic properties. A liquid chromatography-negative ion electrospray tandem mass spectrometric method is presented for the confirmatory analysis of all six resorcylic acid lactones ('zeranols') in urine samples using deuterium-labelled internal standards. The method was validated as a confirmatory method for bovine urine samples according to new draft EU guidelines and showed good precision and linearity, and CCα and CCβ values of 0.02-0.30 and -1 , respectively. The applicability was demonstrated by comparing the results of an incurred sample with previous results on the same sample obtained by gas chromatography high resolution mass spectrometry. Preliminary data show that following a simple matrix solid phase dispersion clean-up, liver samples from poultry will be amenable to this method as well

  4. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Gerssen, A.; McElhinney, M.; Mulder, P.P.J.; Bire, R.; Hess, P.; Boer, de J.

    2009-01-01

    The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC¿MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function

  5. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Gerssen, A.; McElhinney, A. M.; Mulder, P.P.J.; Bire, L.; Hess, P.; de Boer, J.

    2009-01-01

    The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function

  6. Ion trap device

    Science.gov (United States)

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  7. Application of High-Performance Liquid Chromatography Coupled with Linear Ion Trap Quadrupole Orbitrap Mass Spectrometry for Qualitative and Quantitative Assessment of Shejin-Liyan Granule Supplements

    OpenAIRE

    Jifeng Gu; Weijun Wu; Mengwei Huang; Fen Long; Xinhua Liu; Yizhun Zhu

    2018-01-01

    A method for high-performance liquid chromatography coupled with linear ion trap quadrupole Orbitrap high-resolution mass spectrometry (HPLC-LTQ-Orbitrap MS) was developed and validated for the qualitative and quantitative assessment of Shejin-liyan Granule. According to the fragmentation mechanism and high-resolution MS data, 54 compounds, including fourteen isoflavones, eleven ligands, eight flavonoids, six physalins, six organic acids, four triterpenoid saponins, two xanthones, two alkaloi...

  8. Analysis of small carbohydrates in several bioactive botanicals by gas chromatography with mass spectrometry and liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Moldoveanu, Serban; Scott, Wayne; Zhu, Jeff

    2015-11-01

    Bioactive botanicals contain natural compounds with specific biological activity, such as antibacterial, antioxidant, immune stimulating, and taste improving. A full characterization of the chemical composition of these botanicals is frequently necessary. A study of small carbohydrates from the plant materials of 18 bioactive botanicals is further described. The study presents the identification of the carbohydrate using a gas chromatographic-mass spectrometric analysis that allows detection of molecules as large as maltotetraose, after changing them into trimethylsilyl derivatives. A number of carbohydrates in the plant (fructose, glucose, mannose, sucrose, maltose, xylose, sorbitol, and myo-, chiro-, and scyllo-inositols) were quantitated using a novel liquid chromatography with tandem mass spectrometric technique. Both techniques involved new method developments. The gas chromatography with mass spectrometric analysis involved derivatization and separation on a Rxi(®)-5Sil MS column with H2 as a carrier gas. The liquid chromatographic separation was obtained using a hydrophilic interaction type column, YMC-PAC Polyamine II. The tandem mass spectrometer used an electrospray ionization source in multiple reaction monitoring positive ion mode with the detection of the adducts of the carbohydrates with Cs(+) ions. The validated quantitative procedure showed excellent precision and accuracy allowing the analysis in a wide range of concentrations of the analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multi-detection of preservatives in cheeses by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Fuselli, Fabio; Guarino, Chiara; La Mantia, Alessandro; Longo, Lucia; Faberi, Angelo; Marianella, Rosa Maria

    2012-10-01

    The incorrect use of preservatives in cheeses may compromise food safety and damage consumers. According to the law, more than one preservative may be contemporarily used in cheeses. So a method for their contemporary detection may be useful for both manufacturers and control agencies quality control. In this research a liquid chromatography-tandem mass spectrometric with electrospray ionization method for the multi-determination of seven preservatives (benzoic acid, citric acid, hexamethylenetetramine, lysozyme, natamycin, nisin and sorbic acid) in cheese was developed. The preservatives were contemporarily extracted from cheese by a single procedure, and analyzed by RP-LC/ESI-MS/MS (Ion Trap) in positive ionization mode, with single reaction monitoring (SRM) acquisition. Three sample types (hard, pasta filata and fresh cheese) were used for method evaluation. Recoveries were mostly higher than 90%; MDLs ranged from 0.02 to 0.26 mgkg(-1), and MQLs were included between 0.07 and 0.88 mgkg(-1). Due to matrix effect, quantitation was performed by referring to a matrix matched calibration curve, for each cheese typology. This method was also applied to commercial cheese samples, with good results. It appears fast, reliable and suitable for both screening and confirmation of the presence and quantitation of the preservatives in a single, multi-detection analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Determination of thromboxanes, leukotrienes and lipoxins using high-temperature capillary liquid chromatography-tandem mass spectrometry and on-line sample preparation

    DEFF Research Database (Denmark)

    Dahl, Sandra Rinne; Kleiveland, Charlotte Ramstad; Kassem, Moustapha

    2009-01-01

    An on-line strong cation-exchange (SCX)-reversed-phase (RP) capillary liquid chromatographic (cLC) method with ion-trap tandem mass spectrometric (IT-MS/MS) detection for the simultaneous determination of thromboxane (TX) B(2), TXB(3), leukotriene (LT) B(4), LTD(4) and lipoxin (LX) A(4) in cell...

  11. Assessment of strobilurin fungicides' content in soya-based drinks by liquid micro-extraction and liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Campillo, Natalia; Iniesta, María Jesús; Viñas, Pilar; Hernández-Córdoba, Manuel

    2015-01-01

    Seven strobilurin fungicides were pre-concentrated from soya-based drinks using dispersive liquid-liquid micro-extraction (DLLME) with a prior protein precipitation step in acid medium. The enriched phase was analysed by liquid chromatography (LC) with dual detection, using diode array detection (DAD) and electrospray-ion trap tandem mass spectrometry (ESI-IT-MS/MS). After selecting 1-undecanol and methanol as the extractant and disperser solvents, respectively, for DLLME, the Taguchi experimental method, an orthogonal array design, was applied to select the optimal solvent volumes and salt concentration in the aqueous phase. The matrix effect was evaluated and quantification was carried out using external aqueous calibration for DAD and matrix-matched calibration method for MS/MS. Detection limits in the 4-130 and 0.8-4.5 ng g(-1) ranges were obtained for DAD and MS/MS, respectively. The DLLME-LC-DAD-MS method was applied to the analysis of 10 different samples, none of which was found to contain residues of the studied fungicides.

  12. Liquid chromatography tandem mass spectrometry determination of chemical markers and principal component analysis of Vitex agnus-castus L. fruits (Verbenaceae) and derived food supplements.

    Science.gov (United States)

    Mari, Angela; Montoro, Paola; Pizza, Cosimo; Piacente, Sonia

    2012-11-01

    A validated analytical method for the quantitative determination of seven chemical markers occurring in a hydroalcoholic extract of Vitex agnus-castus fruits by liquid chromatography electrospray triple quadrupole tandem mass spectrometry (LC/ESI/(QqQ)MSMS) is reported. To carry out a comparative study, five commercial food supplements corresponding to hydroalcoholic extracts of V. agnus-castus fruits were analysed under the same chromatographic conditions of the crude extract. Principal component analysis (PCA), based only on the variation of the amount of the seven chemical markers, was applied in order to find similarities between the hydroalcoholic extract and the food supplements. A second PCA analysis was carried out considering the whole spectroscopic data deriving from liquid chromatography electrospray linear ion trap mass spectrometry (LC/ESI/(LIT)MS) analysis. High similarity between the two PCA was observed, showing the possibility to select one of these two approaches for future applications in the field of comparative analysis of food supplements and quality control procedures. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Optical Trapping of Ion Coulomb Crystals

    Science.gov (United States)

    Schmidt, Julian; Lambrecht, Alexander; Weckesser, Pascal; Debatin, Markus; Karpa, Leon; Schaetz, Tobias

    2018-04-01

    The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.

  14. Development and evaluation of a liquid chromatography tandem mass spectrometry method for simultaneous determination of salivary melatonin, cortisol and testosterone

    DEFF Research Database (Denmark)

    Jensen, Marie Aarrebo; Hansen, Åse Marie; Abrahamsson, Peter

    2011-01-01

    saliva. We used liquid-liquid extraction (LLE) followed by liquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS) recorded in positive ion mode. Saliva samples were collected by spitting directly into tubes and 250 µL were used for analysis. The limits of detection were 4...

  15. Confirmatory analysis method for zeranol, its metabolites and related mycotoxins in urine by liquid chromatography-negative ion electrospray tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bennekom, E.O. van; Brouwer, L.; Laurant, E.H.M.; Hooijerink, H.; Nielen, M.W.F

    2002-11-25

    The determination of the banned anabolic substance zeranol and the metabolites taleranol and zearalanone in bovine urine is complicated by the occurrence of the structurally-related mycotoxin zearalenone and the corresponding {alpha}- and {beta}-zearalenol metabolites which possess similar estrogenic properties. A liquid chromatography-negative ion electrospray tandem mass spectrometric method is presented for the confirmatory analysis of all six resorcylic acid lactones ('zeranols') in urine samples using deuterium-labelled internal standards. The method was validated as a confirmatory method for bovine urine samples according to new draft EU guidelines and showed good precision and linearity, and CC{alpha} and CC{beta} values of 0.02-0.30 and <1.0 ng ml{sup -1}, respectively. The applicability was demonstrated by comparing the results of an incurred sample with previous results on the same sample obtained by gas chromatography high resolution mass spectrometry. Preliminary data show that following a simple matrix solid phase dispersion clean-up, liver samples from poultry will be amenable to this method as well.

  16. Optical Trapping of Ion Coulomb Crystals

    Directory of Open Access Journals (Sweden)

    Julian Schmidt

    2018-05-01

    Full Text Available The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.

  17. Spin resonance with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E [Institut fuer Laser-Physik, Universitaet Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany)

    2003-03-14

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped {sup 171}Yb{sup +}, we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states.

  18. Spin resonance with trapped ions

    International Nuclear Information System (INIS)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E

    2003-01-01

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped 171 Yb + , we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states

  19. Urinary free cortisol assessment by liquid chromatography tandem mass spectrometry: a case study of ion suppression due to unacquainted administration of piperacillin

    Science.gov (United States)

    Danese, Elisa; Salvagno, Gian Luca; Guzzo, Alessandra; Scurati, Samuele; Fava, Cristiano; Lippi, Giuseppe

    2017-01-01

    Introduction Liquid chromatography coupled to atmospheric pressure ionization tandem mass spectrometry (LC-ESI-MS/MS) is currently considered the reference method for quantitative determination of urinary free cortisol (UFC). One of the major drawbacks of this measurement is a particular form of matrix effect, conventionally known as ion suppression. Materials and methods We describe here the case of a 66-year-old-patient referred to the daily service of general medicine for intravenous antibiotic administration due to a generalized Staphylococcus aureus infection and for routine 24 hours UFC monitoring in the setting of glucocorticoid replacement therapy. Results The observation of 10-fold decrease of internal standard of cortisol signal led us to hypothesize the presence of an ion suppression effect due to a co-eluting endogenous compound. Screening analysis of tandem mass spectrometry (MS/MS) spectra of the interfering molecule, along with in vitro confirmation analyses, were suggestive of the presence of high concentration of piperacillin. The problem was then easily solved with minor modifications of the chromatographic technique. Conclusions According to our findings, antibiotic therapy with piperacillin/tazobactam should be regarded as an important interference in UFC assessment, which may potentially affect detection capability, precision and accuracy of this measurement. This case report emphasizes that accurate anamnesis and standardization of all phases of urine collection are essential aspects for preventing potential interference in laboratory testing. PMID:29180920

  20. Gas chromatography/ion trap mass spectrometry applied for the analysis of triazine herbicides in environmental waters by an isotope dilution technique

    International Nuclear Information System (INIS)

    Cai Zongwei; Wang Dongli; Ma, W.T.

    2004-01-01

    A gas chromatography/ion trap mass spectrometry method was developed for the analysis of simazine, atrazine, cyanazine, as well as the degradation products of atrazine, such as deethylatrazine and deisopropylatrazine in environmental water samples. Isotope dilution technique was applied for the quantitative analysis of atrazine in water at low ng/l levels. One liter of water sample spiked with stable isotope internal standard atrazine-d 5 was extracted with a C 18 solid-phase extraction cartridge. The analysis was performed on an ion trap mass spectrometer operated in MS/MS method. The extraction recoveries were in the range of 83-94% for the triazine herbicides in water at the concentrations of 24, 200, and 1000 ng/l, while poor recoveries were obtained for the degradation products of atrazine. The relative standard deviation (R.S.D.) were within the range of 3.2-16.1%. The detection limits of the method were between 0.75 and 12 ng/l when 1 l of water was analyzed. The method was successfully applied to analyze environmental water samples collected from a reservoir and a river in Hong Kong for atrazine detected at concentrations between 3.4 and 26 ng/l

  1. Enhanced signal generation for use in the analysis of synthetic pyrethroids using chemical ionization tandem quadrupole ion trap mass spectrometry.

    Science.gov (United States)

    Sichilongo, Kwenga

    2004-12-01

    Synthetic pyrethroids fragment extensively under electron ionization (EI) conditions to give low mass ions, most of them with the same m/z ratios. This fragmentation is primarily due to the labile ester linkage found in these compounds. In this research we established the best gas chromatography (GC) conditions in the EI mode that served as a benchmark in the development of a chemical ionization (CI) protocol for ten selected synthetic pyrethroids. Based on proton affinity data, several reagent gases were evaluated in the positive CI ionization mode. Methanol was found to produce higher average ion counts relative to the other gases evaluated, which led to the development of an optimized method consisting of selective ejection chemical ionization (SECI) and MS/MS. Standard stainless steel ion trap electrodes produced significant degradation of chromatographic performance on late eluting compounds, which was attributed to electrode surface chemistry. A dramatic improvement in signal-to-noise (S/N) ratios was observed when the chromatographically inert Silcosteel coated electrodes were used. The resulting method, that has significant S/N ratio improvements resulting from a combination of septum programmable injections (SPI), optimized CI and inert Silcosteel-coated electrodes, was used to determine instrument detection limits.

  2. Mini ion trap mass spectrometer

    Science.gov (United States)

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  3. Laser induced fluorescence of trapped molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references.

  4. Laser induced fluorescence of trapped molecular ions

    International Nuclear Information System (INIS)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references

  5. Comparison of Gas Chromatography-Mass Spectrometry and Gas Chromatography-Tandem Mass Spectrometry with Electron Ionization and Negative-Ion Chemical Ionization for Analyses of Pesticides at Trace Levels in Atmospheric Samples

    Directory of Open Access Journals (Sweden)

    Renata Raina

    2008-01-01

    Full Text Available A comparison of detection limits of gas chromatography-mass spectrometry (GC-MS in selected ion monitoring (SIM with gas chromatography-tandem mass spectrometry (GC-MS/MS in selected reaction monitoring (SRM mode with both electron ionization (EI and negative-ion chemical ionization (NCI are presented for over 50 pesticides ranging from organochlorines (OCs, organophosphorus pesticides (OPs and pre-emergent herbicides used in the Canadian prairies (triallate, trifluralin, ethalfluralin. The developed GC-EI/SIM, GC-NCI/SIM, and GC-NCI/SRM are suitable for the determination of pesticides in air sample extracts at concentrations <100 pg µL -1 (< 100 pg m -3 in air. No one method could be used to analyze the range of pre-emergent herbicides, OPs, and OCs investigated. In general GC-NCI/SIM provided the lowest method detection limits (MDLs commonly 2.5-10 pg µL -1 along with best confirmation (<25% RSD of ion ratio, while GC-NCI/SRM is recommended for use where added selectivity or confirmation is required (such as parathion-ethyl, tokuthion, carbofenothion. GC-EI/SRM at concentration < 100 pg µL -1 was not suitable for most pesticides. GC-EI/SIM was more prone to interference issues than NCI methods, but gave good sensitivity (MDLs 1-10 pg µL -1 for pesticides with poor NCI response (OPs: sulfotep, phorate, aspon, ethion, and OCs: alachlor, aldrin, perthane, and DDE, DDD, DDT.

  6. Optimization and simulation of MEMS rectilinear ion trap

    Directory of Open Access Journals (Sweden)

    Huang Gang

    2015-04-01

    Full Text Available In this paper, the design of a MEMS rectilinear ion trap was optimized under simulated conditions. The size range of the MEMS rectilinear ion trap’s electrodes studied in this paper is measured at micron scale. SIMION software was used to simulate the MEMS rectilinear ion trap with different sizes and different radio-frequency signals. The ion-trapping efficiencies of the ion trap under these different simulation conditions were obtained. The ion-trapping efficiencies were compared to determine the performance of the MEMS rectilinear ion trap in different conditions and to find the optimum conditions. The simulation results show that for the ion trap at micron scale or smaller, the optimized length–width ratio was 0.8, and a higher frequency of radio-frequency signal is necessary to obtain a higher ion-trapping efficiency. These results have a guiding role in the process of developing MEMS rectilinear ion traps, and great application prospects in the research fields of the MEMS rectilinear ion trap and the MEMS mass spectrometer.

  7. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  8. Systems and Methods for Ejection of Ions from an Ion Trap

    Science.gov (United States)

    Cooks, Robert Graham (Inventor); Snyder, Dalton (Inventor)

    2018-01-01

    The invention generally relates to systems and methods for ejection of ions from an ion trap. In certain embodiments, systems and methods of the invention sum two different frequency signals into a single summed signal that is applied to an ion trap. In other embodiments, an amplitude of a single frequency signal is modulated as the single frequency signal is being applied to the ion trap. In other embodiments, a first alternating current (AC) signal is applied to an ion trap that varies as a function of time, while a constant radio frequency (RF) signal is applied to the ion trap.

  9. Quantized motion of trapped ions

    International Nuclear Information System (INIS)

    Steinbach, J.

    1999-01-01

    This thesis is concerned with a theoretical and numerical study of the preparation and coherent manipulation of quantum states in the external and internal degrees of freedom of trapped ions. In its first part, this thesis proposes and investigates schemes for generating several nonclassical states for the quantized vibrational motion of a trapped ion. Based on dark state preparation specific laser excitation configurations are presented which, given appropriately chosen initial states, realize the desired motional states in the steady-state, indicated by the cessation of the fluorescence emitted by the ion. The focus is on the SU(1,1) intelligent states in both their single- and two-mode realization, corresponding to one- and two-dimensional motion of the ion. The presented schemes are also studied numerically using a Monte-Carlo state-vector method. The second part of the thesis describes how two vibrational degrees of freedom of a single trapped ion can be coupled through the action of suitably chosen laser excitation. Concentrating on a two-dimensional ion trap with dissimilar vibrational frequencies a variety of quantized two-mode couplings are derived. The focus is on a linear coupling that takes excitations from one mode to another. It is demonstrated how this can result in a state rotation, in which it is possible to coherently transfer the motional state of the ion between orthogonal directions without prior knowledge of that motional state. The third part of this thesis presents a new efficient method for generating maximally entangled internal states of a collection of trapped ions. The method is deterministic and independent of the number of ions in the trap. As the essential element of the scheme a mechanism for the realization of a controlled NOT operation that can operate on multiple ions is proposed. The potential application of the scheme for high-precision frequency standards is explored. (author)

  10. Novel Ion Trap Design for Strong Ion-Cavity Coupling

    Directory of Open Access Journals (Sweden)

    Alejandro Márquez Seco

    2016-04-01

    Full Text Available We present a novel ion trap design which facilitates the integration of an optical fiber cavity into the trap structure. The optical fibers are confined inside hollow electrodes in such a way that tight shielding and free movement of the fibers are simultaneously achievable. The latter enables in situ optimization of the overlap between the trapped ions and the cavity field. Through numerical simulations, we systematically analyze the effects of the electrode geometry on the trapping characteristics such as trap depths, secular frequencies and the optical access angle. Additionally, we simulate the effects of the presence of the fibers and confirm the robustness of the trapping potential. Based on these simulations and other technical considerations, we devise a practical trap configuration that isviable to achieve strong coupling of a single ion.

  11. The Aarhus Ion Micro-Trap Project

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Poulsen, Gregers

    As part of our involvement in the EU MICROTRAP project, we have designed, manufactured and assembled a micro-scale ion trap with integrated optical fibers. These prealigned fibers will allow delivering cooling laser light to single ions. Therefore, such a trap will not require any direct optical...... and installed in an ultra high vacuum chamber, which includes an ablation oven for all-optical loading of the trap [2]. The next steps on the project are to demonstrate the operation of the micro-trap and the cooling of ions using fiber delivered light. [1] D. Grant, Development of Micro-Scale Ion traps, Master...... Thesis (2008). [2] R.J. Hendricks, D.M. Grant, P.F. Herskind, A. Dantan and M. Drewsen, An all-optical ion-loading technique for scalable microtrap architectures, Applied Physics B, 88, 507 (2007)....

  12. Improved sensitivity of ochratoxin A analysis in coffee using high-performance liquid chromatography with hybrid triple quadrupole-linear ion trap mass spectrometry (LC-QqQLIT-MS/MS).

    Science.gov (United States)

    Kokina, Aija; Pugajeva, Iveta; Bartkevics, Vadims

    2016-01-01

    A novel and sensitive method utilising high-performance liquid chromatography coupled to triple quadrupole-linear ion trap mass spectrometry (LC-QqQLIT-MS/MS) was developed in order to analyse the content of ochratoxin A (OTA) in coffee samples. The introduction of the triple-stage MS scanning mode (MS(3)) has been shown to increase greatly sensitivity and selectivity by eliminating the high chromatographic baseline caused by interference of complex coffee matrices. The analysis included the sample preparation procedure involving extraction of OTA using a methanol-water mixture and clean-up by immunoaffinity columns and detection using the MS(3) scanning mode of LC-QqQLIT-MS/MS. The proposed method offered a good linear correlation (r(2) > 0.998), excellent precision (RSD coffee beans and espresso beverages was 0.010 and 0.003 µg kg(-1), respectively. The developed procedure was compared with traditional methods employing liquid chromatography coupled to fluorescent and tandem quadrupole detectors in conjunction with QuEChERS and solid-phase extraction. The proposed method was successfully applied to the determination of OTA in 15 samples of coffee beans and in 15 samples of espresso coffee beverages obtained from the Latvian market. OTA was found in 10 samples of coffee beans and in two samples of espresso in the ranges of 0.018-1.80 µg kg(-1) and 0.020-0.440 µg l(-1), respectively. No samples exceeded the maximum permitted level of OTA in the European Union (5.0 µg kg(-1)).

  13. [Qualitative and quantitative analysis of amygdalin and its metabolite prunasin in plasma by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry].

    Science.gov (United States)

    Gao, Meng; Wang, Yuesheng; Wei, Huizhen; Ouyang, Hui; He, Mingzhen; Zeng, Lianqing; Shen, Fengyun; Guo, Qiang; Rao, Yi

    2014-06-01

    A method was developed for the determination of amygdalin and its metabolite prunasin in rat plasma after intragastric administration of Maxing shigan decoction. The analytes were identified by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and quantitatively determined by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry. After purified by liquid-liquid extraction, the qualitative analysis of amygdalin and prunasin in the plasma sample was performed on a Shim-pack XR-ODS III HPLC column (75 mm x 2.0 mm, 1.6 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on a Triple TOF 5600 quadrupole time of flight mass spectrometer. The quantitative analysis of amygdalin and prunasin in the plasma sample was performed by separation on an Agilent C18 HPLC column (50 mm x 2.1 mm, 1.7 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on an AB Q-TRAP 4500 triple quadrupole mass spectrometer utilizing electrospray ionization (ESI) interface operated in negative ion mode and multiple-reaction monitoring (MRM) mode. The qualitative analysis results showed that amygdalin and its metabolite prunasin were detected in the plasma sample. The quantitative analysis results showed that the linear range of amygdalin was 1.05-4 200 ng/mL with the correlation coefficient of 0.999 0 and the linear range of prunasin was 1.25-2 490 ng/mL with the correlation coefficient of 0.997 0. The method had a good precision with the relative standard deviations (RSDs) lower than 9.20% and the overall recoveries varied from 82.33% to 95.25%. The limits of detection (LODs) of amygdalin and prunasin were 0.50 ng/mL. With good reproducibility, the method is simple, fast and effective for the qualitative and quantitative analysis of the amygdalin and prunasin in plasma sample of rats which were administered by Maxing shigan decoction.

  14. Spectroscopy with trapped highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, Peter

    2009-01-01

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  15. Asymmetric ion trap

    Science.gov (United States)

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  16. Sympathetic cooling of ions in a hybrid atom ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoeltkemeier, Bastian

    2016-10-27

    In this thesis the dynamics of a trapped ion immersed in a spatially localized buffer gas is investigated. For a homogeneous buffer gas, the ion's energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in combination and/or a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer gas atoms, the ion's energy distribution is numerically determined for arbitrary buffer gas distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion's equilibrium energy distribution are found. One of these is a novel regime at large atom-to-ion mass ratios where the final ion temperature can tuned by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth (forced sympathetic cooling). The second part of the thesis presents a hybrid atom ion trap designed for sympathetic cooling of hydroxide anions. In this hybrid trap the anions are immersed in a cloud of laser cooled rubidium atoms. The translational and rovibrational temperatures of the anions is probed by photodetachment tomography and spectroscopy which shows the first ever indication of sympathetic cooling of anions by laser cooled atoms.

  17. Validation of a confirmatory method for the determination of melamine in egg by gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Xia Xi; Ding Shuangyang; Li Xiaowei; Gong Xiao; Zhang Suxia; Jiang Haiyang; Li Jiancheng; Shen Jianzhong

    2009-01-01

    A sensitive and reliable method was developed and validated for detection and confirmation of melamine in egg based on gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Trichloroacetic acid solution was used for sample extraction and precipitation of proteins. The aqueous extracts were subjected to solid-phase extraction by mixed-mode reversed-phase/strong cation-exchange cartridges. Using ultra-performance liquid chromatography and electrospray ionization in the positive ion mode, melamine was determined by LC-MS/MS, which was completed in 5 min for each injection. For the GC-MS analysis, extracted melamine was derivatized with N,O-bis(trimethylsilyl)trifluoracetamide prior to selected ion monitoring detection in electron impact mode. The average recovery of melamine from fortified samples ranged from 85.2% to 103.2%, with coefficients of variation lower than 12%. The limit of detection obtained by GC-MS and UPLC-MS/MS was 10 and 5 μg kg -1 , respectively. This validated method was successfully applied to the determination of melamine in real samples from market.

  18. Analysis of bromate in drinking water using liquid chromatography-tandem mass spectrometry without sample pretreatment.

    Science.gov (United States)

    Kosaka, Koji; Asami, Mari; Takei, Kanako; Akiba, Michihiro

    2011-01-01

    An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 µg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were water without sample pretreatment.

  19. Application of liquid chromatography/electrospray ionization ion trap tandem mass spectrometry for the evaluation of global nucleic acids: methylation in garden cress under exposure to CuO nanoparticles.

    Science.gov (United States)

    Alcazar Magana, Armando; Wrobel, Kazimierz; Corrales Escobosa, Alma Rosa; Wrobel, Katarzyna

    2016-01-15

    A full understanding of the biological impact of nanomaterials demands analytical procedures suitable for the detection/quantification of epigenetic changes that occur in the exposed organisms. Here, the effect of CuO nanoparticles (NPs) on global methylation of nucleic acids in Lepidium sativum was evaluated by liquid chromatography/ion trap mass spectrometry. Enhanced selectivity toward cytosine-containing nucleosides was achieved by using their proton-bound dimers formed in positive electrospray ionization (ESI(+)) as precursor ions for multiple reaction monitoring (MRM) quantification based on one or two ion transitions. Plants were exposed to CuO NPs (0-1000 mg L(-1)); nucleic acid extracts were washed with bathocuproine disulfate; nucleosides were separated on a Luna C18 column coupled via ESI(+) to an AmaZon SL mass spectrometer (Bruker Daltonics). Cytidine, 2´-deoxycytidine, 5-methylcytidine, 5-methyl-2´-deoxycytidine and 5-hydroxymethyl-2´-deoxycytidine were quantified by MRM based on MS(3) ([2M+H](+)/[M+H](+)/[M+H-132](+) or [M+H-116](+)) and MS(2) ([2M+H](+)/[M+H](+) ). Bathocuproine disulfate, added as Cu(I) complexing agent, allowed for elimination of [2M+Cu](+) adducts from the mass spectra. Poorer instrumental detection limits were obtained for MS(3) (20-120 fmol) as compared to MS(2) (9.0-41 fmol); however, two ion transitions helped to eliminate matrix effects in plant extracts. The procedure was tested by analyzing salmon sperm DNA (Sigma) and applied for the evaluation of DNA and RNA methylation in plants; in the absence of NPs, 13.03% and 0.92% methylated cytosines were found in DNA and RNA, respectively; for NPs concentration >50 mg L(-1), DNA hypomethylation was observed with respect to unexposed plants. RNA methylation did not present significant changes upon plant exposure; 5-hydroxymethyl-2´-deoxycytidine was not detected in any sample. The MRM quantification proposed here of cytosine-containing nucleosides using their proton-bound homo

  20. Storage ion trap of an 'In-Flight Capture' type for precise mass measurement of radioactive nuclear reaction products and fission fragments

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    2001-01-01

    Data on nuclear masses provide a basis for creating and testing various nuclear models. A tandem system of FLNR comprised of the U-400M cyclotron, the COMBAS magnetic separator and the mass-spectrometric ion trap of an 'in-flight capture' type is considered as a possible complex for producing of the short-lived nuclei in fragmentation reactions by heavy ions and for precise mass measurement of these nuclei. The plan of scientific and technical FLNR research includes a project DRIBs for producing beams of accelerated radioactive nuclear reaction products and photofission fragments. This project proposes also precise mass measurements of the fission fragment with the help of the ion trap. The in-flight entrance of the ions and their capture in the mass-spectrometric ion trap using the monochromatizing degrader, the static electric and magnetic fields and a new invention, a magnetic unidirectional transporting ventil, is considered

  1. Quantum information processing with trapped ions

    International Nuclear Information System (INIS)

    Haeffner, H.; Haensel, W.; Rapol, U.; Koerber, T.; Benhelm, J.; Riebe, M.; Chek-al-Kar, D.; Schmidt-Kaler, F.; Becher, C.; Roos, C.; Blatt, R.

    2005-01-01

    Single Ca + ions and crystals of Ca + ions are confined in a linear Paul trap and are investigated for quantum information processing. Here we report on recent experimental advancements towards a quantum computer with such a system. Laser-cooled trapped ions are ideally suited systems for the investigation and implementation of quantum information processing as one can gain almost complete control over their internal and external degrees of freedom. The combination of a Paul type ion trap with laser cooling leads to unique properties of trapped cold ions, such as control of the motional state down to the zero-point of the trapping potential, a high degree of isolation from the environment and thus a very long time available for manipulations and interactions at the quantum level. The very same properties make single trapped atoms and ions well suited for storing quantum information in long lived internal states, e.g. by encoding a quantum bit (qubit) of information within the coherent superposition of the S 1/2 ground state and the metastable D 5/2 excited state of Ca + . Recently we have achieved the implementation of simple algorithms with up to 3 qubits on an ion-trap quantum computer. We will report on methods to implement single qubit rotations, the realization of a two-qubit universal quantum gate (Cirac-Zoller CNOT-gate), the deterministic generation of multi-particle entangled states (GHZ- and W-states), their full tomographic reconstruction, the realization of deterministic quantum teleportation, its quantum process tomography and the encoding of quantum information in decoherence-free subspaces with coherence times exceeding 20 seconds. (author)

  2. Application of Liquid Chromatography/Ion Trap Mass Spectrometry Technique to Determine Ergot Alkaloids in Grain Products.

    Science.gov (United States)

    Bryła, Marcin; Szymczyk, Krystyna; Jędrzejczak, Renata; Roszko, Marek

    2015-03-01

    A liquid chromatography/ion trap mass spectrometry-based method to determine six ergot alkaloids and their isomers is presented. The samples were cleaned on neutral alumina-based solid-phase extraction cartridges. The following method parameters were obtained (depending on the analyte and spiking level): method recovery from 63.0 to 104.6%, relative standard deviation below 18%, linear range from 1 to 325 µg/kg, linear correlation coefficient not less than 0.98. The developed analytical procedure was applied to determine the levels of ergot alkaloids in 65 samples of selected rye-based food products (flour - 34 samples, bran - 12 samples, rye - 18 samples, flakes - 1 sample). Measurable levels of alkaloids were found in majority of the analysed samples, particularly in rye flour. Additionally, alkaloids were determined in ergot sclerotia isolated from rye grains. Total content was nearly 0.01% (97.9 mg/kg). However, the alkaloid profile was dominated by ergocristine at 45.6% (44.7 mg/kg), an alkaloid not commonly found in the tested food products. Ergocorninine at 0.2% (0.2 mg/kg) was the least abundant alkaloid.

  3. Sawtooth activity of the ion cloud in an electron-beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.

    2003-01-01

    The dynamics of an ensemble of highly charged Ar and Ba ions in an electron-beam ion trap (EBIT) was studied by recording time-resolved x-ray spectra emitted from trapped ions. Sawtoothlike signatures manifest in the spectra for a variety of EBIT operating conditions indicating a sudden collapse of the ion inventory in the trap. The collapse occurs on a time scale of approximately 100 ms and the evolution of the sawteeth is very sensitive to parameters such as electron-beam current and axial trap depth. Analysis of the measurements is based on a time-dependent calculation of the trapping process showing that sawtooth activity is caused by the feedback between the low-Z argon and high-Z barium ions. This unexpected behavior demonstrates the importance of nonlinear effects in electron-beam traps containing more than a single ion species

  4. Liquid chromatography/tandem mass spectrometry method for quantitative estimation of solutol HS15 and its applications

    OpenAIRE

    Bhaskar, V. Vijaya; Middha, Anil; Srivastava, Pratima; Rajagopal, Sriram

    2015-01-01

    A rapid, sensitive and selective pseudoMRM (pMRM)-based method for the determination of solutol HS15 (SHS15) in rat plasma was developed using liquid chromatography/tandem mass spectrometry (LCâMS/MS). The most abundant ions corresponding to SHS15 free polyethyleneglycol (PEG) oligomers at m/z 481, 525, 569, 613, 657, 701, 745, 789, 833, 877, 921 and 965 were selected for pMRM in electrospray mode of ionization. Purity of the lipophilic and hydrophilic components of SHS15 was estimated using ...

  5. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides

    International Nuclear Information System (INIS)

    Yang, Xu; Lazar, Iulia M

    2009-01-01

    The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing ~1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Preliminary experiments have

  6. Status report on the folded tandem ion accelerator at BARC

    Indian Academy of Sciences (India)

    Folded tandem ion accelerator; charged particle beams; voltage stability; Rutherford backscattering; ion optics; beam lines. Abstract. The folded tandem ion accelerator (FOTIA) facility set up at BARC has become operational. At present, it is used for elemental analysis studies using the Rutherford backscattering technique.

  7. Ball-grid array architecture for microfabricated ion traps

    Science.gov (United States)

    Guise, Nicholas D.; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M.; Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W.

    2015-05-01

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40Ca+ ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171Yb+ ions in a second BGA trap.

  8. Ball-grid array architecture for microfabricated ion traps

    International Nuclear Information System (INIS)

    Guise, Nicholas D.; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M.; Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W.

    2015-01-01

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40 Ca + ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171 Yb + ions in a second BGA trap

  9. Quantum computing with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  10. Scaling ion traps for quantum computing

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available The design, fabrication and preliminary testing of a chipscale, multi-zone, surface electrode ion trap is reported. The modular design and fabrication techniques used are anticipated to advance scalability of ion trap quantum computing architectures...

  11. Trapped ion depletion by anomalous diffusion due to the dissipative trapped ion instability

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1975-07-01

    At high temperatures the KADOMTSEV-POGUTSE diffusion in tokamaks can become so large as to cause depletion of trapped ions if these are replaced with free ions by means of collisions rather than being directly recycled or injected. Modified KADOMTSEV-POGUTSE diffusion formulas are employed in order to estimate this effect in the cases of classical and anomalous collisions. The maximum trapped-ion depletion is estimated from the PENROSE stability condition. For anomalous collisions a BOHM-type diffusion is derived. Numerical examples are given for JET-like parameters (JET = Joint European Torus). Depletion is found to reduce diffusion by factors of up to 10 and more. (orig.) [de

  12. Trapped Ion Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm

    2017-04-01

    Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systems of 5 to 15 qubits [6–8].

  13. Accelerated solvent extraction followed by on-line solid-phase extraction coupled to ion trap LC/MS/MS for analysis of benzalkonium chlorides in sediment samples

    Science.gov (United States)

    Ferrer, I.; Furlong, E.T.

    2002-01-01

    Benzalkonium chlorides (BACs) were successfully extracted from sediment samples using a new methodology based on accelerated solvent extraction (ASE) followed by an on-line cleanup step. The BACs were detected by liquid chromatography/ion trap mass spectrometry (LC/MS) or tandem mass spectrometry (MS/MS) using an electrospray interface operated in the positive ion mode. This methodology combines the high efficiency of extraction provided by a pressurized fluid and the high sensitivity offered by the ion trap MS/MS. The effects of solvent type and ASE operational variables, such as temperature and pressure, were evaluated. After optimization, a mixture of acetonitrile/water (6:4 or 7:3) was found to be most efficient for extracting BACs from the sediment samples. Extraction recoveries ranged from 95 to 105% for C12 and C14 homologues, respectively. Total method recoveries from fortified sediment samples, using a cleanup step followed by ASE, were 85% for C12BAC and 79% for C14-BAC. The methodology developed in this work provides detection limits in the subnanogram per gram range. Concentrations of BAC homologues ranged from 22 to 206 ??g/kg in sediment samples from different river sites downstream from wastewater treatment plants. The high affinity of BACs for soil suggests that BACs preferentially concentrate in sediment rather than in water.

  14. Ion Motion Stability in Asymmetric Surface Electrode Ion Traps

    Science.gov (United States)

    Shaikh, Fayaz; Ozakin, Arkadas

    2010-03-01

    Many recently developed designs of the surface electrode ion traps for quantum information processing have asymmetry built into their geometries. The asymmetry helps rotate the trap axes to angles with respect to electrode surface that facilitate laser cooling of ions but introduces a relative angle between the RF and DC fields and invalidates the classical stability analysis of the symmetric case for which the equations of motion are decoupled. For asymmetric case the classical motion of a single ion is given by a coupled, multi-dimensional version of Mathieu's equation. In this poster we discuss the stability diagram of asymmetric surface traps by performing an approximate multiple scale perturbation analysis of the coupled Mathieu equations, and validate the results with numerical simulations. After obtaining the stability diagram for the linear fields, we simulate the motion of an ion in a given asymmetric surface trap, utilizing a method-of-moments calculation of the electrode fields. We obtain the stability diagram and compare it with the ideal case to find the region of validity. Finally, we compare the results of our stability analysis to experiments conducted on a microfabricated asymmetric surface trap.

  15. Microfabricated Microwave-Integrated Surface Ion Trap

    Science.gov (United States)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  16. Active stabilization of ion trap radiofrequency potentials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. G.; Wong-Campos, J. D.; Restelli, A.; Landsman, K. A.; Neyenhuis, B.; Mizrahi, J.; Monroe, C. [Joint Quantum Institute and University of Maryland Department of Physics, College Park, Maryland 20742 (United States)

    2016-05-15

    We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a radiofrequency (rf) Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to be better than 10 Hz or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.

  17. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    variations of ion traps, including (1) the cylindrically symmetric 3D ring trap; (2) the linear trap with a combination of cavity QED; (#) the symmetric...concepts of quantum information. The major demonstration has been the test of a Bell inequality as demonstrated by Rowe et al. [50] and a decoherence...famous physics experiment [62]. Wolfgang Paul demonstrated a similar apparatus during his Nobel Prize speech [63]. This device is hyperbolic- parabolic

  18. Towards a wire-mediated coupling of trapped ions

    Science.gov (United States)

    Clark, Robert; Lee, Tony; Daniilidis, Nikos; Sankaranarayanan, S.; Häffner, Hartmut

    2008-03-01

    Most schemes for ion trap quantum computation rely upon the exchange of information between ion-qubits in the same trap region, mediated by their shared vibrational mode. An alternative way to achieve this coupling is via the image charges induced in a conducting wire that connects different traps. This was shown to be theoretically possible by Heinzen and Wineland in 1990, but some important practical questions have remained unaddressed. Among these are how the presence of such a wire modifies the motional frequencies and heating rates of trapped ions. We thus have realized this system as a 1 mm-scale planar segmented rf ion trap combined with an electrically floating gold wire of 25 microns diameter and length 1 cm. This wire is placed close to trapped ions using a set of piezoelectric nanopositioners. We present here experimental measurements of the motional frequencies and heating rates of a single trapped calcium ion as the wire is moved from 3.0 mm to 0.2 mm away from the ion. We discuss the implications of these results for achieving wire-mediated coupling in the present apparatus, as well as in future improved setups.

  19. Ion traps fabricated in a CMOS foundry

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, K. K.; Ram, R. J. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Eltony, A. M.; Chuang, I. L. [Center for Ultracold Atoms, Research Laboratory of Electronics and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bruzewicz, C. D.; Sage, J. M., E-mail: jsage@ll.mit.edu; Chiaverini, J., E-mail: john.chiaverini@ll.mit.edu [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States)

    2014-07-28

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  20. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations.

    Science.gov (United States)

    Zhang, Xinyu; Garimella, Sandilya V B; Prost, Spencer A; Webb, Ian K; Chen, Tsung-Chi; Tang, Keqi; Tolmachev, Aleksey V; Norheim, Randolph V; Baker, Erin S; Anderson, Gordon A; Ibrahim, Yehia M; Smith, Richard D

    2015-06-16

    A new Structures for Lossless Ion Manipulations (SLIM) module, having electrode arrays patterned on a pair of parallel printed circuit boards (PCB), was constructed and utilized to investigate capabilities for ion trapping at a pressure of 4 Torr. Positive ions were confined by application of RF voltages to a series of inner rung electrodes with alternating phase on adjacent electrodes, in conjunction with positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potentials applied to the inner rung electrodes to control the ion transport and accumulation inside the ion trapping region. We show that ions can be trapped and accumulated with up to 100% efficiency, stored for at least 5 h with no significant losses, and then could be rapidly ejected from the SLIM trap. The present results provide a foundation for the development of much more complex SLIM devices that facilitate extended ion manipulations.

  1. Analysis of Disperse Dyes Using Liquid Chromatography/Linear Ion Trap Mass Spectrometry (LC/LIT-MSn) and Database Construction.

    Science.gov (United States)

    Kato, Takao; Ikeue, Takahisa; Suzuki, Yasuhiro; Handa, Makoto

    2016-01-01

    Liquid chromatography/linear ion trap mass spectrometry (LC/LIT-MS(n)) was used to construct a database of disperse dyes. Fifty-three standard dyes were subjected to LC/LIT-MS(n) and characterized based on their mass spectra (MS, MS(2), and MS(3)), values of λmax (maximum absorption wavelength in the UV-visible spectrum), and retention times. The results demonstrate that it is possible to reliably identify coexisting dyes that cannot be separated by LC or detected by diode array detection due to their low molecular absorption coefficients. In addition, the by-products included in the standard dyes were found to provide important information for the identification and discrimination of dyestuffs synthesized using different processes. The confirmation of the effectiveness of LC/LIT-MS(n) analysis in detecting small amounts of disperse dyes in this study shows its potential for use in the discrimination of dyed fibers obtained at crime scenes.

  2. High-fidelity operations in microfabricated surface ion traps

    Science.gov (United States)

    Maunz, Peter

    2017-04-01

    Trapped ion systems can be used to implement quantum computation as well as quantum simulation. To scale these systems to the number of qubits required to solve interesting problems in quantum chemistry or solid state physics, the use of large multi-zone ion traps has been proposed. Microfabrication enables the realization of surface electrode ion traps with complex electrode structures. While these traps may enable the scaling of trapped ion quantum information processing (QIP), microfabricated ion traps also pose several technical challenges. Here, we present Sandia's trap fabrication capabilities and characterize trap properties and shuttling operations in our most recent high optical access trap (HOA-2). To demonstrate the viability of Sandia's microfabricated ion traps for QIP we realize robust single and two-qubit gates and characterize them using gate set tomography (GST). In this way we are able to demonstrate the first single qubit gates with a diamond norm of less than 1 . 7 ×10-4 , below a rigorous fault tolerance threshold for general noise of 6 . 7 ×10-4. Furthermore, we realize Mølmer-Sørensen two qubit gates with a process fidelity of 99 . 58(6) % also characterized by GST. These results demonstrate the viability of microfabricated surface traps for state of the art quantum information processing demonstrations. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  3. Achieving Translationally Invariant Trapped Ion Rings

    Science.gov (United States)

    Urban, Erik; Li, Hao-Kun; Noel, Crystal; Hemmerling, Boerge; Zhang, Xiang; Haeffner, Hartmut

    2017-04-01

    We present the design and implementation of a novel surface ion trap design in a ring configuration. By eliminating the need for wire bonds through the use of electrical vias and using a rotationally invariant electrode configuration, we have realized a trap that is able to trap up to 20 ions in a ring geometry 45um in diameter, 400um above the trap surface. This large trapping height to ring diameter ratio allows for global addressing of the ring with both lasers and electric fields in the chamber, thereby increasing our ability to control the ring as a whole. Applying compensating electric fields, we measure very low tangential trap frequencies (less than 20kHz) corresponding to rotational barriers down to 4mK. This measurement is currently limited by the temperature of the ions but extrapolation indicates the barrier can be reduced much further with more advanced cooling techniques. Finally, we show that we are able to reduce this energy barrier sufficiently such that the ions are able to overcome it either through thermal motion or rotational motion and delocalize over the full extent of the ring. This work was funded by the Keck Foundation and the NSF.

  4. Analysis of wax esters by silver-ion high-performance liquid chromatography-tandem mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vrkoslav, Vladimír; Urbanová, Klára; Háková, Martina; Cvačka, Josef

    2013-01-01

    Roč. 1302, Aug 9 (2013), s. 105-110 ISSN 0021-9673 R&D Projects: GA ČR GA203/09/0139 Institutional support: RVO:61388963 Keywords : jojoba * human hair * wax esters * mass spectrometry * silver-ion liquid chromatography * long-chain esters Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.258, year: 2013

  5. Negative ion sources for tandem accelerator

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    1980-08-01

    Four kinds of negative ion sources (direct extraction Duoplasmatron ion source, radial extraction Penniing ion source, lithium charge exchange ion source and Middleton-type sputter ion source) have been installed in the JAERI tandem accelerator. The ion sources can generate many negative ions ranging from Hydrogen to Uranium with the exception of Ne, Ar, Kr, Xe and Rn. Discussions presented in this report include mechanisms of negative ion formation, electron affinity and stability of negative ions, performance of the ion sources and materials used for negative ion production. Finally, the author will discuss difficult problems to be overcome in order to get any negative ion sufficiently. (author)

  6. Characterization of Proanthocyanidins from Parkia biglobosa (Jacq. G. Don. (Fabaceae by Flow Injection Analysis — Electrospray Ionization Ion Trap Tandem Mass Spectrometry and Liquid Chromatography/Electrospray Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Wagner Vilegas

    2013-03-01

    Full Text Available The present study investigates the chemical composition of the African plant Parkia biglobosa (Fabaceae roots and barks by Liquid Chromatography - Electrospray Ionization and Direct Injection Tandem Mass Spectrometry analysis. Mass spectral data indicated that B-type oligomers are present, namely procyanidins and prodelphinidins, with their gallate and glucuronide derivatives, some of them in different isomeric forms. The analysis evidenced the presence of up to 40 proanthocyanidins, some of which are reported for the first time. In this study, the antiradical activity of extracts of roots and barks from Parkia biglobosa was evaluated using DPPH method and they showed satisfactory activities.

  7. Highly charged ion trapping and cooling

    International Nuclear Information System (INIS)

    Beck, B. R.; Church, D. A.; Gruber, L.; Holder, J. P.; Schneider, D.; Steiger, J.

    1998-01-01

    In the past few years a cryogenic Penning trap (RETRAP) has been operational at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory. The combination of RETRAP and EBIT provides a unique possibility of producing and re-trapping highly charged ions and cooling them to very low temperatures. Due to the high Coulomb potentials in such an ensemble of cold highly charged ions the Coulomb coupling parameter (the ratio of Coulomb potential to the thermal energy) can easily reach values of 172 and more. To study such systems is not only of interest in astrophysics to simulate White Dwarf star interiors but opens up new possibilities in a variety of areas (e.g. laser spectroscopy), cold highly charged ion beams

  8. Application of a trap-free two-dimensional liquid chromatography combined with ion trap/time-of-flight mass spectrometry for separation and characterization of impurities and isomers in cefpiramide.

    Science.gov (United States)

    Wang, Jian; Xu, Yu; Wen, Chunmei; Wang, Zhijian

    2017-11-01

    High-resolution mass spectrometry had been routinely used for structure identification of impurity. However, all LC-MS methods were based on a volatile mobile phase, and a non-volatile system is used in the official analytical method of United States Pharmacopoeia for cefpiramide which limited the use of mass spectrometry for structure characterization of the impurities. Here we presented the utilization of a trap-free two-dimensional liquid chromatography coupled to high resolution ion trap/time-of-flight mass spectrometry (2D LC-IT-TOF MS) with positive and negative modes of electrospray ionization for characterization of eight impurities in cefpiramide. Trap-free two-dimensional liquid chromatography and online desalting technique made it possible to characterize the impurity in cefpiramide in the condition of official standard, and the TIC chromatogram of LC-MS was in conformity with the LC chromatogram of the official analytical method in the peak sequence of impurities, which could further improve the method of official monographs in pharmacopoeias. Each peak separated by the non-volatile mobile phase was trapped by a 20 μL quantitative loop then transferred into a system with a volatile mobile phase connected to a MS detector. In the first dimension, the column was Kromasil C 8 analytical column (250 mm × 4.6 mm, 5 μm) with a non-volatile salt mobile phase at the flow rate of 0.8 mL min -1 . In the second dimension, the column was Shimadzu Shim-pack GISS C 18 (50 mm × 2.1 mm, 1.9 μm) with a volatile salt mobile phase at the flow rate of 0.3 mL min -1 . Through the multiple heart-cutting 2D-LC approach and online desalting technique, the problem of incompatibility between non-volatile salt mobile phase and mass spectrometry was solved completely. The fragmentation behavior of cefpiramide and its eight impurities were studied. The structures of eight impurities in cefpiramide drug substance were deduced based on the HPLC-MS n data, in

  9. Application of Liquid Chromatography/Ion Trap Mass Spectrometry Technique to Determine Ergot Alkaloids in Grain Products

    Directory of Open Access Journals (Sweden)

    Krystyna Szymczyk

    2015-01-01

    Full Text Available A liquid chromatography/ion trap mass spectrometry-based method to determine six ergot alkaloids and their isomers is presented. The samples were cleaned on neutral alumina-based solid-phase extraction cartridges. The following method parameters were obtained (depending on the analyte and spiking level: method recovery from 63.0 to 104.6 %, relative standard deviation below 18 %, linear range from 1 to 325 μg/kg, linear correlation coefficient not less than 0.98. The developed analytical procedure was applied to determine the levels of ergot alkaloids in 65 samples of selected rye-based food products (flour– 34 samples, bran – 12 samples, rye – 18 samples, flakes – 1 sample. Measurable levels of alkaloids were found in majority of the analysed samples, particularly in rye flour. Additionally, alkaloids were determined in ergot sclerotia isolated from rye grains. Total content was nearly 0.01 % (97.9 mg/kg. However, the alkaloid profi le was dominated by ergocristine at 45.6 % (44.7 mg/kg, an alkaloid not commonly found in the tested food products. Ergocorninine at 0.2 % (0.2 mg/kg was the least abundant alkaloid.

  10. Trace analysis of selected hormones and sterols in river sediments by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Matić, Ivana; Grujić, Svetlana; Jauković, Zorica; Laušević, Mila

    2014-10-17

    In this paper, development and optimization of new LC-MS method for determination of twenty selected hormones, human/animal and plant sterols in river sediments were described. Sediment samples were prepared using ultrasonic extraction and clean up with silica gel/anhydrous sodium sulphate cartridge. Extracts were analyzed by liquid chromatography-linear ion trap-tandem mass spectrometry, with atmospheric pressure chemical ionization. The optimized extraction parameters were extraction solvent (methanol), weight of the sediment (2 g) and time of ultrasonic extraction (3× 10 min). Successful chromatographic separation of hormones (estriol and estrone, 17α- and 17β-estradiol) and four human/animal sterols (epicoprostanol, coprostanol, α-cholestanol and β-cholestanol) that have identical fragmentation reactions was achieved. The developed and optimized method provided high recoveries (73-118%), low limits of detection (0.8-18 ng g(-1)) and quantification (2.5-60 ng g(-1)) with the RSDs generally lower than 20%. Applicability of the developed method was confirmed by analysis of six river sediment samples. A widespread occurrence of human/animal and plant sterols was found. The only detected hormone was mestranol in just one sediment sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Space-charge effects in Penning ion traps

    Science.gov (United States)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  12. Implementation schemes for unsharp measurements with trapped ions

    CSIR Research Space (South Africa)

    Choudhary, SK

    2013-01-01

    Full Text Available trapped ion. The schemes rely on introducing weak entanglement between the state of a target ion and that of an auxiliary ion, using standard ion-trap quantum logic operations, and then realizing an unsharp measurement through projective measurement...

  13. Application of characteristic ion filtering with ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry for rapid detection and identification of chemical profiling in Eucommia ulmoides Oliv.

    Science.gov (United States)

    He, Mingzhen; Jia, Jia; Li, Junmao; Wu, Bei; Huang, Wenping; Liu, Mi; Li, Yan; Yang, Shilin; Ouyang, Hui; Feng, Yulin

    2018-06-15

    Efficient targeted identification of chemical constituents from traditional Chinese medicine is still a major challenge. In this study, we used a characteristic ion filtering strategy to characterize compounds of Eucommia ulmoides Oliv. by ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS). By using the ion filtering approach, target constituents of Eucommia ulmoides Oliv. were easily tentatively identified from the enormous LC/MS data set. The strategy consisted of the following three steps: 1) To establishing a characteristic ion database by diagnostic product ions or neutral loss fragments; 2) To evaluate the structural information of the compounds by high-resolution diagnostic characteristic ion filtering; 3) To confirm the different classes by chemical profiling according to their MS/MS spectra. In this study, characteristic ions are summarized as five major groups of compounds in Eucommia ulmoides Oliv. In total, 113 compounds were tentatively identified, including 23 potentially novel compounds. The results form a foundation for the quality control and chemical basis of Eucommia ulmoides Oliv. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Ion trapping in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hinterberger, Frank [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik

    2011-10-15

    The problem of ion trapping in the high-energy storage ring HESR is studied in the present report. Positive ions are trapped in the negative potential well of the antiproton beam. The ions are produced by the interaction between the antiproton beam and the residual gas. The adverse effects of ion trapping like tune shifts, tune spreads and coherent instabilities are reviewed. The ion production rate by ionization of the residual gas molecules is estimated. The negative potential well and the corresponding electric fields of the antiproton beam are evaluated in order to study the transverse and longitudinal motion of the ions and the accumulation in trapping pockets. The removal of ions can be achieved using clearing electrodes and under certain conditions resonant transverse beam shaking. Diagnostic tools and measurements of trapped ion effects are sketched. (orig.)

  15. Ion Chromatography Applications in Wastewater Analysis

    Directory of Open Access Journals (Sweden)

    Rajmund Michalski

    2018-02-01

    Full Text Available Wastewater analysis is an important area in analytical and environmental chemistry. It can be performed with both the classic wet methods and instrumental techniques. The development of new methods, and modification of the existing ones, constitute a major task for researchers. Ion chromatography plays a predominant role in ion determinations with the instrumental methods. It offers several advantages over the conventional methods, such as simultaneous determinations of alkali and alkaline earth cations and ammonia. Ammonium ions cannot be determined by spectroscopic methods. Ion chromatography has been accepted world-wide as a reference method for analyzing anions and cations in water and wastewater due to the fact that it enables the replacement of several individual wet chemistry methods for common ions with one instrumental technique. The following article describes the principles of ion chromatography, such as stationary phases, eluents, detectors, and sample preparation methods. Moreover, the applications of ion chromatography in wastewater analyses and international standards are presented.

  16. Ion bunch stacking in a Penning trap after purification in an electrostatic mirror trap

    CERN Document Server

    Rosenbusch, M; Blaum, K; Borgmann, Ch; Kreim, S; Lunney, D; Manea, V; Schweikhard, L; Wienholtz, F; Wolf, R N

    2014-01-01

    The success of many measurements in analytical mass spectrometry as well as in precision mass determinations for atomic and nuclear physics is handicapped when the ion sources deliver ``contaminations'', i.e., unwanted ions of masses similar to those of the ions of interest. In particular, in ion-trapping devices, large amounts of contaminant ions result in significant systematic errors-if the measurements are possible at all. We present a solution for such cases: The ions from a quasi-continuous source are bunched in a linear radio-frequency-quadrupole ion trap, separated by a multi-reflection time-of-flight section followed by a Bradbury-Nielsen gate, and then captured in a Penning trap. Buffer-gas cooling is used to damp the ion motion in the latter, which allows a repeated opening of the Penning trap for a stacking of mass-selected ion bunches. Proof-of-principle demonstrations have been performed with the ISOLTRAP setup at ISOLDE/CERN, both with Cs-133(+) ions from an off-line ion source and by applicati...

  17. Utilization of the ion traps by SPIRAL

    International Nuclear Information System (INIS)

    Le Brun, C.; Lienard, E.; Mauger, F.; Tamain, B.

    1997-01-01

    An ion trap is a device capable of confine particles, ions or atoms in a well-controlled environment isolated from any exterior perturbations. There are different traps. They are utilized to collect or stock ions, to cool them after in order to subject them to high precision measurement of masses, magnetic moments, hyperfine properties, beta decay properties, etc. Some dozen of traps are currently used all over the world to study stable or radioactive ions.. SPIRAL has been designed and built to produce radioactive ions starting from various heavy ion beams. SPIRAL has the advantage that the projectile parameters, the target and the energy can be chosen to optimize the production in various regions of the nuclear chart. Also, in SPIRAL it is possible to extract more rapidly the radioactive ions formed in the targets. In addition, in SPIRAL the multicharged ion production in a ECR source is possible. The utilization of multicharged ions is indeed very useful for fast mass measurements or for the study of the interaction between the nucleus and the electronic cloud. Finally, utilization of a ion trap on SPIRAL can be designed first at the level of production target by installing a low energy output line. Than, the trap system could be up-graded and brought to its full utilization behind of the recoil spectrometer. It must be capable of selecting and slowing down the ions produced in the reactions (fusion transfer, very inelastic collisions, etc.) induced by the radioactive ions accelerated in CIME. At present, the collaboration is debating on the most favored subject to study and the most suited experimental setups. The following subjects were selected: ion capture, purification and manipulation; isomers (separation and utilization); mass measurements; hyperfine interactions; lifetimes, nuclear electric cloud; β decays; study of the N = Z nuclei close to the proton drip line; physical and chemical properties of transuranium systems

  18. Cryptography, quantum computation and trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard J.

    1998-03-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  19. A simple liquid extraction protocol for overcoming the ion suppression of triacylglycerols by phospholipids in liquid chromatography mass spectrometry studies.

    Science.gov (United States)

    Araujo, Pedro; Tilahun, Ephrem; Breivik, Joar Fjørtoft; Abdulkader, Bashir M; Frøyland, Livar; Zeng, Yingxu

    2016-02-01

    It is well-known that triacylglycerol (TAG) ions are suppressed by phospholipid (PL) ions in regiospecific analysis of TAG by mass spectrometry (MS). Hence, it is essential to remove the PL during sample preparation prior to MS analysis. The present article proposes a cost-effective liquid-liquid extraction (LLE) method to remove PL from TAG in different kinds of biological samples by using methanol, hexane and water. High performance thin layer chromatography confirmed the lack of PL in krill oil and salmon liver samples, submitted to the proposed LLE protocol, and liquid chromatography tandem MS confirmed that the identified TAG ions were highly enhanced after implementing the LLE procedure. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Evaporative cooling of highly charged ions in EBIT [Electron Beam Ion Trap]: An experimental realization

    International Nuclear Information System (INIS)

    Schneider, M.B.; Levine, M.A.; Bennett, C.L.; Henderson, J.R.; Knapp, D.A.; Marrs, R.E.

    1988-01-01

    Both the total number and trapping lifetime of near-neon-like gold ions held in an electron beam ion trap have been greatly increased by a process of 'evaporative cooling'. A continuous flow of low-charge-state ions into the trap cools the high-charge-state ions in the trap. Preliminary experimental results using titanium ions as a coolant are presented. 8 refs., 6 figs., 2 tabs

  1. Bulk derivatization and direct injection of human cerebrospinal fluid for trace-level quantification of endogenous estrogens using trap-and-elute liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Fan, Hui; Papouskova, Barbora; Lemr, Karel; Wigginton, Jane G; Schug, Kevin A

    2014-08-01

    Although there are existing methods for determining estrogen in human bodily fluids including blood plasma and serum, very little information is available regarding estrogen levels in human cerebrospinal fluid (CSF), which is critical to assess in studies of neuroprotective functions and diffusion of neuroprotective estrogens across the blood-brain barrier. To address this problem, a liquid chromatography with tandem mass spectrometry method for the simultaneous quantification of four endogenous estrogens (estrone, 17α-estradiol, 17β-estradiol, and estriol) in human CSF was developed. An aliquot (300 μL) of human CSF was bulk derivatized using dansyl chloride in the sample and 10 μL was directly injected onto a restricted-access media trap column for protein removal. No off-line sample extraction or cleanup was needed. The limits of detection of estrone, 17α-estradiol, 17β-estradiol, and estriol were 17, 28, 13, and 30 pg/mL, respectively, which is in the parts-per-trillion regime. The method was then applied to human CSF collected from ischemic trauma patients. Endogenous estrogens were detected and quantified, demonstrating the effectiveness of this method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The quantitation of 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) in human urine specimens, a metabolite of LSD: comparative analysis using liquid chromatography-selected ion monitoring mass spectrometry and liquid chromatography-ion trap mass spectrometry.

    Science.gov (United States)

    Poch, G K; Klette, K L; Anderson, C

    2000-04-01

    This paper compares the potential forensic application of two sensitive and rapid procedures (liquid chromatography-mass spectrometry and liquid chromatography-ion trap mass spectrometry) for the detection and quantitation of 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) a major LSD metabolite. O-H-LSD calibration curves for both procedures were linear over the concentration range 0-8,000 pg/mL with correlation coefficients (r2) greater than 0.99. The observed limit of detection (LOD) and limit of quantitation (LOQ) for O-H-LSD in both procedures was 400 pg/mL. Sixty-eight human urine specimens that had previously been found to contain LSD by gas chromatography-mass spectrometry were reanalyzed by both procedures for LSD and O-H-LSD. These specimens contained a mean concentration of O-H-LSD approximately 16 times higher than the LSD concentration. Because both LC methods produce similar results, either procedure can be readily adapted to O-H-LSD analysis for use in high-volume drug-testing laboratories. In addition, the possibility of significantly increasing the LSD detection time window by targeting this major LSD metabolite for analysis may influence other drug-free workplace programs to test for LSD.

  3. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  4. Rapid Characterization and Identification of Flavonoids in Radix Astragali by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Mass Spectrometry.

    Science.gov (United States)

    Zhang, Jing; Xu, Xiao-Jie; Xu, Wen; Huang, Juan; Zhu, Da-yuan; Qiu, Xiao-Hui

    2015-07-01

    A simple and effective method was established for separation and characterization of flavonoid constituents in Radix Astragali (RA) by combination of ultra-high-pressure liquid chromatography with LTQ-Orbitrap tandem mass spectrometry (u-HPLC-LTQ-Orbitrap-MS(n)). For three major structural types of flavonoids, the proposed fragmentation pathways and major diagnostic fragment ions of isoflavones, pterocarpans and isoflavans were investigated to trace isoflavonoid derivatives in crude plant extracts. Based on the systematic identification strategy, 48 constituents were rapidly detected and characterized or tentatively identified, many of which were first reported in RA. The u-PHLC-LTQ-Orbitrap MS(n) platform was proved as an effective tool for rapid qualitative analysis of secondary metabolite productions from natural resources. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Ion trapping within the dust grain plasma sheath

    International Nuclear Information System (INIS)

    Jovanovic, D.; Shukla, P.K.

    2002-01-01

    One of the most important and still unresolved problems in the physics of dusty plasmas is the determination of the dust charge. The grains are not directly accessible to measurements and it is necessary to have a reliable theoretical model of the electron and ion dynamics inside the Debye sphere for the interpretation of the relevant experimental data, which include also the effects of the surrounding electron and ion clouds. Recent computer simulations [6] and laboratory experiments [9] indicate that the plasma sheath is dominated by trapped ions, orbiting the grain on closed trajectories at distances smaller than the Debye radius, that cannot be accounted for by the classical theories. We present the first analytical, fully self-consistent, calculations of the electrostatic shielding of a charged dust grain in a collisional plasma. In the regime when the mean free path for the ion-dust collisions is larger than that for the ion-neutral collisions, we solve the kinetic equation for the ions, coupled with Boltzmann distributed electrons and Poisson's equation. The ion velocity distribution function, in the form of a spherically symmetric ion hole, is found to be anisotropic in the presence of charge-exchange collisions. The number of trapped ions and their spatial distribution are determined from the interplay between the collective plasma interaction and the collisional trapping/de-trapping. The stationary state results from the self-tuning of the trapped ion density by the feedback based on the nonlocality of the collisional integral, and on the ion mixing in the radial direction along elongated orbits. Our results confirm the existence of a strong Debye shielding of the dust charge, allowing also the over-population of the trapped ion distribution (ion hump)

  6. [Determination of 21 fragrance allergens in toys by gas chromatography-ion trap mass spectrometry].

    Science.gov (United States)

    Lü, Qing; Zang, Qing; Bai, Hua; Li, Haiyu; Kang, Suyuan; Wang, Chao

    2012-05-01

    A method of gas chromatography-ion trap mass spectrometry (GC-IT-MS) was developed for the determination of 21 fragrance allergens in sticker toys, plush toys and plastic toys. The experimental conditions, such as sample pretreatment conditions, and the analytical conditions of GC-IT-MS, were optimized. The sticker toy samples and plush toy samples were extracted with acetone by ultrasonic wave, and the extracts were separated on an Agilent HP-1 MS column (50 m x 0.2 mm x 0.5 microm), then determined by IT-MS and quantified by external standard method. The plastic toy samples were extracted by the dissolution-precipitation approach, cleaned up with an Envi-carb solid phase extraction column and concentrated by rotary evaporation and nitrogen blowing, then determined by GC-IT-MS and quantified by external standard method. The calibration curves showed good linearity in the range of 0.002-50 mg/L with the correlation coefficients greater than 0.996 8. The limits of quantification (LOQ, S/N > 10) were 0.02-40 mg/kg. The average recoveries of the target compounds spiked in the sample at three concentration levels were in the range of 82.2%-110.8% with the relative standard deviations (RSDs) of 0.6%-10.5%. These results show that this method is accurate and sensitive for the qualitative and quantitative determination of the 21 fragrance allergens in the 3 types of toys.

  7. A small trapped-ion quantum register

    International Nuclear Information System (INIS)

    Kielpinski, D

    2003-01-01

    We review experiments performed at the National Institute of Standards and Technology on entanglement, Bell's inequality and decoherence-free subspaces (DFSs) in a quantum register of trapped 9 Be + ions. The group of Dr David Wineland has demonstrated entanglement of up to four ions using the technique of Molmer and Sorensen. This method produces the state (|↓↓> + |↑↑>)/√2 for two ions and the state (|↓↓↓↓> + |↑↑↑↑>)/√2 for four ions. The entanglement was generated deterministically in each shot of the experiment. Measurements on the two-ion entangled state violate Bell's inequality at the 8σ level. Because of the high detector efficiency of the apparatus, this experiment closes the detector loophole for Bell's inequality measurements for the first time. This measurement is also the first violation of Bell's inequality by massive particles that does not implicitly assume results from quantum mechanics. The group also demonstrated measurement of an interferometric phase with precision better than the shot-noise limit using a two-ion entangled state. A large-scale version of this scheme could improve the signal-to-noise ratio of atomic clocks by orders of magnitude. Further experiments demonstrated reversible encoding of an arbitrary qubit, originally contained in one ion, into a DFS of two ions. The DFS-encoded qubit resists applied collective dephasing noise and retains coherence under ambient conditions 3.6 times longer than does an unencoded qubit. The encoding method, which uses single-ion gates and the two-ion entangling gate, demonstrates all the elements required for two-qubit universal quantum logic. Finally, we describe an architecture for a large-scale ion trap quantum computer. By performing logic gates on small numbers of ions trapped in separate regions of the array, we take advantage of existing techniques for manipulating small trapped-ion quantum registers while enabling massively parallel gate operation. Encoding the

  8. Quantum Information Experiments with Trapped Ions at NIST

    Science.gov (United States)

    Wilson, Andrew

    2015-03-01

    We present an overview of recent trapped-ion quantum information experiments at NIST. Advancing beyond few-qubit ``proof-of-principle'' experiments to the many-qubit systems needed for practical quantum simulation and information processing, without compromising on the performance demonstrated with small systems, remains a major challenge. One approach to scalable hardware development is surface-electrode traps. Micro-fabricated planar traps can have a number of useful features, including flexible electrode geometries, integrated microwave delivery, and spatio-temporal tuning of potentials for ion transport and spin-spin interactions. In this talk we report on a number of on-going investigations with surface traps. Experiments feature a multi-zone trap with closely spaced ions in a triangular arrangement (a first step towards 2D arrays of ions with tunable spin-spin interactions), a scheme for smooth transport through a junction in a 2D structure based on switchable RF potentials, and a micro-fabricated photo-detector integrated into a trap. We also give a progress report on our latest efforts to improve the fidelity of both optical and microwave 2-qubit gates. This work was supported by IARPA, ONR and the NIST Quantum Information Program. The 3-ion and switchable-RF-junction traps were developed in collaboration with Sandia National Laboratory.

  9. Integrated fiber-mirror ion trap for strong ion-cavity coupling

    International Nuclear Information System (INIS)

    Brandstätter, B.; Schüppert, K.; Casabone, B.; Friebe, K.; Stute, A.; Northup, T. E.; McClung, A.; Schmidt, P. O.; Deutsch, C.; Reichel, J.; Blatt, R.

    2013-01-01

    We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvature and ellipticities of the fiber mirrors. From finesse measurements, we infer a single-atom cooperativity of up to 12 for FFPCs longer than 200 μm in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We characterize the birefringence of our fiber mirrors, finding that careful fiber-mirror selection enables us to construct FFPCs with degenerate polarization modes. As FFPCs are novel devices, we describe procedures developed for handling, aligning, and cleaning them. We discuss experiments to anneal fiber mirrors and explore the influence of the atmosphere under which annealing occurs on coating losses, finding that annealing under vacuum increases the losses for our reference substrate mirrors. X-ray photoelectron spectroscopy measurements indicate that these losses may be attributable to oxygen depletion in the mirror coating. Special design considerations enable us to introduce a FFPC into a trapped ion setup. Our unique linear Paul trap design provides clearance for such a cavity and is miniaturized to shield trapped ions from the dielectric fiber mirrors. We numerically calculate the trap potential in the absence of fibers. In the experiment additional electrodes can be used to compensate

  10. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  11. Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    International Nuclear Information System (INIS)

    Charles Doret, S; Amini, Jason M; Wright, Kenneth; Volin, Curtis; Killian, Tyler; Ozakin, Arkadas; Denison, Douglas; Hayden, Harley; Pai, C-S; Slusher, Richart E; Harter, Alexa W

    2012-01-01

    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled dc electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on dc electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains. (paper)

  12. Sensitive measurement of vinorelbine in dog plasma by liquid chromatography-electrospray ionization tandem mass spectrometry utilizing transitions from double-charged precursor ions.

    Science.gov (United States)

    Niwa, Makoto; Kawashiro, Takashi

    2011-04-01

    A sensitive high-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for measuring vinorelbine was developed. A 100 µL aliquot of plasma was spiked with deuterium-labeled internal standard and subjected to solid-phase extraction using an Oasis HLB μ-elution plate. Two microliters of the extracted samples was directly injected into LC/MS/MS. Chromatographic separation was achieved on a Capcell Pak C18 UG column (2 × 75 mm) with a gradient elution of methanol (mobile phase B) against 0.05% formic acid in aqueous 10 mm ammonium formate (mobile phase A). The LC flow rate was set to 0.28 mL/min and the gradient (solvent B concentration) was processed from 40 to 90%. In mass spectrometric detection, observation of the reaction from a double-charged precursor ion [M + 2H](2+) (m/z 390) to product ion m/z 122 provided very high sensitivity. The method was validated with a lower limit of detection of 0.2 ng/mL with 0.1 mL of plasma, and the method was used to determine the plasma pharmacokinetics of vinorelbine in dogs. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Glucose and glycerol concentrations and their tracer enrichment measurements using liquid chromatography tandem mass spectrometry

    DEFF Research Database (Denmark)

    Bornø, Andreas; Foged, Lene; van Hall, Gerrit

    2014-01-01

    The present study describes a new liquid chromatography tandem mass spectrometry method for high-throughput quantification of glucose and glycerol in human plasma using stable isotopically labeled internal standards and is suitable for simultaneous measurements of glucose and glycerol enrichments...... of variation were 2.0% and 9.7%, respectively. After derivatization, plasma samples were stable for at least 14 days. In conclusion, we have developed and validated a novel, accurate, and sensitive high-throughput liquid chromatography tandem mass spectrometry method for simultaneous determination of glucose...

  14. Modular Universal Scalable Ion-trap Quantum Computer

    Science.gov (United States)

    2016-06-02

    SECURITY CLASSIFICATION OF: The main goal of the original MUSIQC proposal was to construct and demonstrate a modular and universally- expandable ion...Distribution Unlimited UU UU UU UU 02-06-2016 1-Aug-2010 31-Jan-2016 Final Report: Modular Universal Scalable Ion-trap Quantum Computer The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Ion trap quantum computation, scalable modular architectures REPORT DOCUMENTATION PAGE 11

  15. Quantitative Analysis of Tetramethylenedisulfotetramine ("Tetramine") Spiked into Beverages by Liquid Chromatography Tandem Mass Spectrometry with Validation by Gas Chromatography Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Owens, J; Hok, S; Alcaraz, A; Koester, C

    2008-11-13

    Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD{sub 50} = 0.1 mg/kg) used in hundreds of deliberate food poisoning events in China. Here we describe a method for quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water and cleaned up by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography mass spectrometry (GC/MS) operated in SIM mode for ions m/z 212, 240, and 360. The limit of quantitation was 0.10 {micro}g/mL by LC/MS/MS versus 0.15 {micro}g/mL for GC/MS. Fortifications of the beverages at 2.5 {micro}g/mL and 0.25 {micro}g/mL were recovered ranging from 73-128% by liquid-liquid extraction for GC/MS analysis, 13-96% by SPE and 10-101% by liquid-liquid extraction for LC/MS/MS analysis.

  16. Quantitative Analysis of Tetramethylenedisulfotetramine ('Tetramine') Spiked into Beverages by Liquid Chromatography Tandem Mass Spectrometry with Validation by Gas Chromatography Mass Spectrometry

    International Nuclear Information System (INIS)

    Owens, J.; Hok, S.; Alcaraz, A.; Koester, C.

    2008-01-01

    Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD 50 = 0.1 mg/kg) used in hundreds of deliberate food poisoning events in China. Here we describe a method for quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water and cleaned up by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography mass spectrometry (GC/MS) operated in SIM mode for ions m/z 212, 240, and 360. The limit of quantitation was 0.10 (micro)g/mL by LC/MS/MS versus 0.15 (micro)g/mL for GC/MS. Fortifications of the beverages at 2.5 (micro)g/mL and 0.25 (micro)g/mL were recovered ranging from 73-128% by liquid-liquid extraction for GC/MS analysis, 13-96% by SPE and 10-101% by liquid-liquid extraction for LC/MS/MS analysis.

  17. Quantification of Lansoprazole in Oral Suspension by Ultra-High-Performance Liquid Chromatography Hybrid Ion-Trap Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Stacy D. Brown

    2011-01-01

    Full Text Available An LC-MS/MS method was developed and validated to be used as a stability indicating assay for the study of a 3 mg/mL lansoprazole oral suspension. The method utilizes a UPLC (ultra-performance liquid chromatography column and unique mass spectrometric detection (ion-trap time-of-flight (IT-TOF to achieve a sensitive (LOD 2 ng/mL, accurate, and reproducible quantification of lansoprazole. This method reports an intraday and interday coefficient of variation of 2.98 ± 2.17% (n=5 for each concentration for each day and 3.07 ± 0.89% (n=20 for each concentration, respectively. Calibration curves (5–25 μg/mL were found to be linear with an R2 value ranging from 0.9972 to 0.9991 on 4 different days. Accuracy of the assay, expressed as % error, ranged from 0.30 to 5.22%. This method is useful for monitoring the stability of lansoprazole in oral suspension.

  18. Preliminary Tests of a Paul ion Trap as an Ion Source

    Science.gov (United States)

    Sadat Kiai, S. M.; Zirak, A. R.; Elahi, M.; Adlparvar, S.; Mortazavi, B. N.; Safarien, A.; Farhangi, S.; Sheibani, S.; Alhooie, S.; Khalaj, M. M. A.; Dabirzadeh, A. A.; Ruzbehani, M.; Zahedi, F.

    2010-10-01

    The paper reports on the design and construction of a Paul ion trap as an ion source by using an impact electron ionization technique. Ions are produced in the trap and confined for the specific time which is then extracted and detected by a Faraday cup. Especial electronic configurations are employed between the end caps, ring electrodes, electron gun and a negative voltage for the detector. This configuration allows a constant low level of pure ion source between the pulsed confined ion sources. The present experimental results are based on the production and confinement of Argon ions with good stability and repeatability, but in principle, the technique can be used for various Argon like ions.

  19. Analysis of haloacetic acids, bromate, and dalapon in natural waters by ion chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Wu, Shimin; Anumol, Tarun; Gandhi, Jay; Snyder, Shane A

    2017-03-03

    The addition of oxidants for disinfecting water can lead to the formation of potentially carcinogenic compounds referred to as disinfection byproducts (DBPs). Haloacetic acids (HAAs) are one of the most widely detected DBPs in US water utilities and some of them are regulated by the US Environmental Protection Agency (USEPA). The present study developed a method to analyze all the compounds in the USEPA method 557 (nine HAAs, bromate and dalapon) plus four potentially more toxic iodinated HAAs in water by coupling ion chromatography with tandem mass spectrometry (IC-MS/MS). This aqueous direct injection method has significant advantages over traditional GC methods, which require a derivatization and sample extraction that are laborious, time-consuming, and can negatively impact reproducibility. The method developed in this study requires half the time of the current USEPA method 557 on IC-MS/MS while including more compounds and achieving sub-μg/L level method detection limits (MDLs) for all 15 target analytes. The single laboratory lowest concentration minimum reporting level (LCMRL) has also been determined in reagent water, which ranged from 0.011 to 0.62μg/L for the analytes. The mean recoveries of the analytes during matrix spike recovery tests were 77-125% in finished drinking water and 81-112% in surface water. This method was then applied to untreated, chlorinated, and chloraminated groundwater and surface water samples. Bromate and 9 HAAs were detected at different levels in some of these samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Screening and confirmation of 24 hormones in cosmetics by ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry].

    Science.gov (United States)

    Li, Zhaoyong; Wang, Fengmei; Niu, Zengyuan; Luo, Xin; Zhang, Gang; Chen, Junhui

    2014-05-01

    A method of ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry (UPLC-LTQ/Orbitrap MS) was established to screen and confirm 24 hormones in cosmetics. Various cosmetic samples were extracted with methanol. The extract was loaded onto a Waters ACQUITY UPLC BEH C18 column (50 mm x 2.1 mm, 1.7 microm) using a gradient elution of acetonitrile/water containing 0.1% (v/v) formic acid for the separation. The accurate mass of quasi-molecular ion was acquired by full scanning of electrostatic field orbitrap. The rapid screening was carried out by the accurate mass of quasi-molecular ion. The confirmation analysis for targeted compounds was performed with the retention time and qualitative fragments obtained by data dependent scan mode. Under the optimal conditions, the 24 hormones were routinely detected with mass accuracy error below 3 x 10(-6) (3 ppm), and good linearities were obtained in their respective linear ranges with correlation coefficients higher than 0.99. The LODs (S/N = 3) of the 24 compounds were hormones in 50 cosmetic samples. The results demonstrate that the method is a useful tool for the rapid screening and identification of the hormones in cosmetics.

  1. Quantification of steroid hormones in human serum by liquid chromatography-high resolution tandem mass spectrometry.

    Science.gov (United States)

    Matysik, Silke; Liebisch, Gerhard

    2017-12-01

    A limited specificity is inherent to immunoassays for steroid hormone analysis. To improve selectivity mass spectrometric analysis of steroid hormones by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been introduced in the clinical laboratory over the past years usually with low mass resolution triple-quadrupole instruments or more recently by high resolution mass spectrometry (HR-MS). Here we introduce liquid chromatography-high resolution tandem mass spectrometry (LC-MS/HR-MS) to further increase selectivity of steroid hormone quantification. Application of HR-MS demonstrates an enhanced selectivity compared to low mass resolution. Separation of isobaric interferences reduces background noise and avoids overestimation. Samples were prepared by automated liquid-liquid extraction with MTBE. The LC-MS/HR-MS method using a quadrupole-Orbitrap analyzer includes eight steroid hormones i.e. androstenedione, corticosterone, cortisol, cortisone, 11-deoxycortisol, 17-hydroxyprogesterone, progesterone, and testosterone. It has a run-time of 5.3min and was validated according to the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) guidelines. For most of the analytes coefficient of variation were 10% or lower and LOQs were determined significantly below 1ng/ml. Full product ion spectra including accurate masses substantiate compound identification by matching their masses and ratios with authentic standards. In summary, quantification of steroid hormones by LC-MS/HR-MS is applicable for clinical diagnostics and holds also promise for highly selective quantification of other small molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Space-charge effects in Penning ion traps

    Czech Academy of Sciences Publication Activity Database

    Porobic, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Flechard, X.; Lienard, E.; Ban, G.; Zákoucký, Dalibor; Soti, G.; Van Gorp, S.; Weinheimer, C.; Wursten, E.; Severijns, N.

    2015-01-01

    Roč. 785, JUN (2015), s. 153-162 ISSN 0168-9002 R&D Projects: GA MŠk LA08015; GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Penning trap * space-charge * magnetron motion * ion trapping * buffer gas cooling * ion cyclotron resonance Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.200, year: 2015

  3. Ion mobility: its role in plasma chromatography

    International Nuclear Information System (INIS)

    Mason, E.A.

    1984-01-01

    This paper is a review of the basic physical theory underlying plasma chromatography. Essentially, plasma chromatography simply measures ion mobility. The new feature of plasma chromatography, as compared to aqueous electrophoresis, is the existence of a highly-developed and accurate body of theory that connects gaseous ion mobility and diffusion to the ion molecule interactions in the drift tube. Attention is restricted to phenomena occurring in the drift tube portion of the apparatus

  4. Application of ultra-high pressure liquid chromatography linear ion-trap orbitrap to qualitative and quantitative assessment of pesticide residues.

    Science.gov (United States)

    Farré, M; Picó, Y; Barceló, D

    2014-02-07

    The analysis of pesticides residues using a last generation high resolution and high mass accuracy hybrid linear ion trap-Orbitrap mass spectrometer (LTQ-Orbitrap-MS) was explored. Pesticides were extracted from fruits, fish, bees and sediments by QuEChERS and from water by solid-phase with Oasis HLB cartridges. Ultra-high pressure liquid chromatography (UHPLC)-LTQ-Orbitrap mass spectrometer acquired full scan MS data for quantification, and data dependent (dd) MS(2) and MS(3) product ion spectra for identification and/or confirmation. The regression coefficients (r(2)) for the calibration curves (two order of magnitude up to the lowest calibration level) in the study were ≥0.99. The LODs for 54 validated compounds were ≤2ngmL(-1) (analytical standards). The relative standard deviation (RSD), which was used to estimate precision, was always lower than 22%. The recovery of extraction and matrix effects ranged from 58 to 120% and from -92 to 52%, respectively. Mass accuracy was always ≤4ppm, corresponding to a maximum mass error of 1.6millimass units (mmu). This procedure was then successfully applied to pesticide residues in a set of the above-mentioned food and environmental samples. In addition to target analytes, this method enables the simultaneous detection/identification of non-target pesticides, pharmaceuticals, drugs of abuse, mycotoxins, and their metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Determination of Oxidized Phosphatidylcholines by Hydrophilic Interaction Liquid Chromatography Coupled to Fourier Transform Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Pia Sala

    2015-04-01

    Full Text Available A novel liquid chromatography-mass spectrometry (LC-MS approach for analysis of oxidized phosphatidylcholines by an Orbitrap Fourier Transform mass spectrometer in positive electrospray ionization (ESI coupled to hydrophilic interaction liquid chromatography (HILIC was developed. This method depends on three selectivity criteria for separation and identification: retention time, exact mass at a resolution of 100,000 and collision induced dissociation (CID fragment spectra in a linear ion trap. The process of chromatography development showed the best separation properties with a silica-based Kinetex column. This type of chromatography was able to separate all major lipid classes expected in mammalian samples, yielding increased sensitivity of oxidized phosphatidylcholines over reversed phase chromatography. Identification of molecular species was achieved by exact mass on intact molecular ions and CID tandem mass spectra containing characteristic fragments. Due to a lack of commercially available standards, method development was performed with copper induced oxidation products of palmitoyl-arachidonoyl-phosphatidylcholine, which resulted in a plethora of lipid species oxidized at the arachidonoyl moiety. Validation of the method was done with copper oxidized human low-density lipoprotein (LDL prepared by ultracentrifugation. In these LDL samples we could identify 46 oxidized molecular phosphatidylcholine species out of 99 possible candidates.

  6. Multiple analyte adduct formation in liquid chromatography-tandem mass spectrometry - Advantages and limitations in the analysis of biologically-related samples.

    Science.gov (United States)

    Dziadosz, Marek

    2018-05-01

    Multiple analyte adduct formation was examined and discussed in the context of reproducible signal detection in liquid chromatography-tandem mass spectrometry applied in the analysis of biologically-related samples. Appropriate infusion solutions were prepared in H 2 O/methanol (3/97, v/v) with 1 mM sodium acetate and 10 mM acetic acid. An API 4000 QTrap tandem mass spectrometer was used for experiments performed in the negative scan mode (-Q1 MS) and the negative enhanced product ion mode (-EPI). γ‑Hydroxybutyrate and its deuterated form were used as model compounds to highlight both the complexity of adduct formation in popular mobile phases used and the effective signal compensation by the application of isotope-labelled analytes as internal standards. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Design of tandem mirror reactors with thermal barriers

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1980-01-01

    End-plug technologies for tandem mirror reactors include high-field superconducting magnets, neutral beam injectors, and gyrotrons for electron cyclotron resonant heating (ECRH). In addition to their normal use for sustenance of the end-plug plasmas, neutral beam injectors are used for ''pumping'' trapped ions from the thermal barrier regions by charge exchange. An extra function of the axially directed pump beams is the removal of thermalized alpha particles from the reactor. The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror fusion Test Facility (MFTF-B) in 1984

  8. Electrodynamically trapped Yb+ ions for quantum information processing

    International Nuclear Information System (INIS)

    Balzer, Chr.; Braun, A.; Hannemann, T.; Wunderlich, Chr.; Paape, Chr.; Ettler, M.; Neuhauser, W.

    2006-01-01

    Highly efficient, nearly deterministic, and isotope selective generation of Yb + ions by one- and two-color photoionization is demonstrated. State preparation and state selective detection of hyperfine states in 171 Yb + is investigated in order to optimize the purity of the prepared state and to time-optimize the detection process. Linear laser-cooled Yb + ion crystals confined in a Paul trap are demonstrated. Advantageous features of different previous ion trap experiments are combined, while at the same time the number of possible error sources is reduced by using a comparatively simple experimental apparatus. This opens a new path toward quantum state manipulation of individual trapped ions, and in particular, to scalable quantum computing

  9. Simple extraction method using syringe filter for detection of ethephon in tomatoes by negative-ion mode liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Cho, Soon-Kil; Cho, Ji-Mi; Abd El-Aty, A M; Rahman, Md Musfiqur; Choi, Jeong-Heui; Seo, Young-Jun; Shin, Ho-Chul; Shim, Jae-Han

    2015-10-01

    In this study, a simple, rapid, and sensitive method was developed for the extraction of ethephon from homogenized tomatoes that does not require a cleanup procedure. In a syringe filter, three distinct layers - aqueous, acetonitrile, and n-hexane - are clearly separated after storage at -80 °C for 5-10 min. A Dionex IonPac column was used to separate the analyte before detection using negative-ion mode liquid chromatography with tandem mass spectrometry (LC/MS/MS). The matrix effect of the tested analyte was negligibly small and the matched calibration showed a good linearity over a concentration range of 0.01-1.0 mg/kg with a correlation coefficient (R(2) ) of 0.9998. The recovery at three fortification levels (0.1, 0.5 and 1.0 mg/kg) was between 82.9 and 108.6% with relative standard deviations (RSDs) <5.0%. The limit of quantification (0.03 mg/kg) was lower than the maximum residue limit (3 mg/kg) set by the Ministry of Food and Drug Safety, Republic of Korea. From a field trial, the method developed herein was applied to calculate the decline pattern and predict the pre-harvest residue limits of ethephon in tomatoes. In conclusion, the proposed sample preparation is feasible for the detection of hydrophilic analytes in tomatoes. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Trapped-ion quantum logic gates based on oscillating magnetic fields

    Science.gov (United States)

    Ospelkaus, Christian; Langer, Christopher E.; Amini, Jason M.; Brown, Kenton R.; Leibfried, Dietrich; Wineland, David J.

    2009-05-01

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing. With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ions and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering decoherence, a fundamental source of decoherence in laser-mediated gates. A potentially beneficial environment for the implementation of such schemes is a cryogenic ion trap, because small length scale traps with low motional heating rates can be realized. A cryogenic ion trap experiment is currently under construction at NIST.

  11. The β-decay Paul trap: A radiofrequency-quadrupole ion trap for precision β-decay studies

    International Nuclear Information System (INIS)

    Scielzo, N.D.; Li, G.; Sternberg, M.G.; Savard, G.; Bertone, P.F.; Buchinger, F.; Caldwell, S.; Clark, J.A.; Crawford, J.; Deibel, C.M.; Fallis, J.; Greene, J.P.

    2012-01-01

    The β-decay Paul trap is a linear radiofrequency-quadrupole ion trap that has been developed for precision β-decay studies. The design of the trap electrodes allows a variety of radiation detectors to surround the cloud of trapped ions. The momentum of the low-energy recoiling daughter nuclei following β decay is negligibly perturbed by scattering and is available for study. This advantageous property of traps allows the kinematics of particles that are difficult or even impossible to directly detect to be precisely reconstructed using conservation of energy and momentum. An ion-trap system offers several advantages over atom traps, such as higher trapping efficiencies and element-independent capabilities. The first precision experiment using this system is a measurement of β-decay angular correlations in the decay of 8 Li performed by inferring the momentum of the neutrino from the kinematic shifts imparted to the breakup α particles. Many other β-decay studies that would benefit from a determination of the nuclear recoil can be performed with this system.

  12. The {beta}-decay Paul trap: A radiofrequency-quadrupole ion trap for precision {beta}-decay studies

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, N.D., E-mail: scielzo1@llnl.gov [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Li, G. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Sternberg, M.G.; Savard, G. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Bertone, P.F. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Buchinger, F. [Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Caldwell, S. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Clark, J.A. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Crawford, J. [Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Deibel, C.M. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824 (United States); Fallis, J. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (Canada); Greene, J.P. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); and others

    2012-07-21

    The {beta}-decay Paul trap is a linear radiofrequency-quadrupole ion trap that has been developed for precision {beta}-decay studies. The design of the trap electrodes allows a variety of radiation detectors to surround the cloud of trapped ions. The momentum of the low-energy recoiling daughter nuclei following {beta} decay is negligibly perturbed by scattering and is available for study. This advantageous property of traps allows the kinematics of particles that are difficult or even impossible to directly detect to be precisely reconstructed using conservation of energy and momentum. An ion-trap system offers several advantages over atom traps, such as higher trapping efficiencies and element-independent capabilities. The first precision experiment using this system is a measurement of {beta}-decay angular correlations in the decay of {sup 8}Li performed by inferring the momentum of the neutrino from the kinematic shifts imparted to the breakup {alpha} particles. Many other {beta}-decay studies that would benefit from a determination of the nuclear recoil can be performed with this system.

  13. Scalable error correction in distributed ion trap computers

    International Nuclear Information System (INIS)

    Oi, Daniel K. L.; Devitt, Simon J.; Hollenberg, Lloyd C. L.

    2006-01-01

    A major challenge for quantum computation in ion trap systems is scalable integration of error correction and fault tolerance. We analyze a distributed architecture with rapid high-fidelity local control within nodes and entangled links between nodes alleviating long-distance transport. We demonstrate fault-tolerant operator measurements which are used for error correction and nonlocal gates. This scheme is readily applied to linear ion traps which cannot be scaled up beyond a few ions per individual trap but which have access to a probabilistic entanglement mechanism. A proof-of-concept system is presented which is within the reach of current experiment

  14. Frequency-scanning MALDI linear ion trap mass spectrometer for large biomolecular ion detection.

    Science.gov (United States)

    Lu, I-Chung; Lin, Jung Lee; Lai, Szu-Hsueh; Chen, Chung-Hsuan

    2011-11-01

    This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.

  15. Scaling Trapped Ion Quantum Computers Using Fast Gates and Microtraps

    Science.gov (United States)

    Ratcliffe, Alexander K.; Taylor, Richard L.; Hope, Joseph J.; Carvalho, André R. R.

    2018-06-01

    Most attempts to produce a scalable quantum information processing platform based on ion traps have focused on the shuttling of ions in segmented traps. We show that an architecture based on an array of microtraps with fast gates will outperform architectures based on ion shuttling. This system requires higher power lasers but does not require the manipulation of potentials or shuttling of ions. This improves optical access, reduces the complexity of the trap, and reduces the number of conductive surfaces close to the ions. The use of fast gates also removes limitations on the gate time. Error rates of 10-5 are shown to be possible with 250 mW laser power and a trap separation of 100 μ m . The performance of the gates is shown to be robust to the limitations in the laser repetition rate and the presence of many ions in the trap array.

  16. Detecting yocto (10-24) newton forces with trapped ions

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available This article reports on a calibrated measurement of 174 Yoctonewton using a cloud of 60 9 Be+ ion confined in a Penning ion trap. These measurements suggest that ion traps may form the basis of a new class of ultrasensitive deployable force sensors....

  17. Two-dimensional analysis of trapped-ion eigenmodes

    International Nuclear Information System (INIS)

    Marchand, R.; Tang, W.M.; Rewoldt, G.

    1979-11-01

    A fully two-dimensional eigenmode analysis of the trapped-ion instability in axisymmetric toroidal geometry is presented. The calculations also takes into account the basic dynamics associated with other low frequency modes such as the trapped-electron instability and the ion-temperature-gradient instability. The poloidal structure of the mode is taken into account by Fourier expanding the perturbed electrostatic potential, PHI, in theta

  18. Cavity QED with single trapped Ca+-ions

    International Nuclear Information System (INIS)

    Mundt, A.B.

    2003-02-01

    This thesis reports on the design and setup of a vacuum apparatus allowing the investigation of cavity QED effects with single trapped 40 Ca + ions. The weak coupling of ion and cavity in the 'bad cavity limit' may serve to inter--convert stationary and flying qubits. The ion is confined in a miniaturized Paul trap and cooled via the Doppler effect to the Lamb--Dicke regime. The extent of the atomic wave function is less than 30 nm. The ion is enclosed by a high finesse optical cavity. The technically--involved apparatus allows movement of the trap relative to the cavity and the trapped ion can be placed at any position in the standing wave. By means of a transfer lock the cavity can be resonantly stabilized with the S 1/2 ↔ D 5/2 quadrupole transition at 729 nm (suitable as a qubit) without light at that wavelength being present in the cavity. The coupling of the cavity field to the S 1/2 ↔ D 5/2 quadrupole transition is investigated with various techniques in order to determine the spatial dependence as well as the temporal dynamics. The orthogonal coupling of carrier and first--order sideband transitions at field nodes and antinodes is explored. The coherent interaction of the ion and the cavity field is confirmed by exciting Rabi oscillations with short resonant pulses injected into the cavity. Finally, first experimental steps towards the observation of cavity enhanced spontaneous emission have been taken. (author)

  19. Sympathetic Wigner-function tomography of a dark trapped ion

    DEFF Research Database (Denmark)

    Mirkhalaf, Safoura; Mølmer, Klaus

    2012-01-01

    A protocol is provided to reconstruct the Wigner function for the motional state of a trapped ion via fluorescence detection on another ion in the same trap. This “sympathetic tomography” of a dark ion without optical transitions suitable for state measurements is based on the mapping of its...

  20. Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography.

    Science.gov (United States)

    Bergmann, Marianne L; Sadjadi, Seyed; Schmedes, Anne

    2017-07-01

    The catecholamines, epinephrine (E) and norepinephrine (NE) are small polar, hydrophilic molecules, posing significant challenges to liquid chromatography - tandem mass spectrometry (LC-MS/MS) method development. Specifically, these compounds show little retention on conventional reversed-phase liquid chromatography columns. This work presents development and validation of an LC-MS/MS method for determining catecholamines in urine, based on a new approach to ion-pairing chromatography (IPC), in which the ion-pairing reagent (IPR), 1-Heptane Sulfonic Acid (HSA), is added to the extracted samples instead of the mobile phases. A Hamilton STARlet workstation carried out the solid phase extraction of urine samples. The extracted samples were diluted with 60mmol/L HSA and injected on a Kinetex core-shell biphenyl column with conventional LC-MS/MS suitable mobile phases. Chromatographic separation of E and NE was achieved successfully with very stable retention times (RT). In 484 injections, the RTs were steady with a CV of less than ±4%. Furthermore, HSA was separated from E and NE, allowing HSA to be diverted to waste instead of entering the mass spectrometer ion chamber. The method was validated with good analytical performance, and even though the analysis for urinary catecholamines is increasingly being replaced by plasma free metanephrines in diagnosing pheochromocytomas, this work represents the application of a new analytical technique that can be transferred to other small polar molecules, that are difficult to chromatograph on traditional reversed phase columns. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Atomic physics of highly charged ions in an electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.

    1990-07-01

    Two electron beam ion traps are in use at LLNL for the purpose of studying the properties of very highly charged ions and their interactions with electrons. This paper reviews the operation of the traps and discusses recent experiments in three areas: precision transition energy measurements in the limit of very high ion charge, dielectronic recombination measurements for the He-like isoelectronic sequence, and measurements of x-ray polarization. 22 refs., 11 figs., 1 tab

  2. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    International Nuclear Information System (INIS)

    Quint, W.; Dilling, J.; Djekic, S.; Haeffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schoenfelder, J.; Sikler, G.; Valenzuela, T.; Verdu, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy

  3. Continued development of an atmospheric monitoring mass spectrometry system - task 2.2. Topical report, January 1, 1995 - December 31, 1995

    International Nuclear Information System (INIS)

    King, F.L.

    1998-01-01

    The objective of this project was the development of a mass spectrometric methodology applicable to the field determination of Volatile Organic Compounds (VOC's), such as BTEX components (Benzene, Toluene, Ethylbenzene, and Xylenes). A combination of chemical ionization, selective ion storage, and tandem mass spectrometry was planned to be employed with an ion trap mass spectrometry system. The Gas Chromatography Mass Spectrometry (GC-MS) interface on the ion trap system was modified to permit direct atmospheric monitoring. Through the use of tandem mass spectrometry methods the need for chromatographic separation would be eliminated reducing the overall size and complexity of the system

  4. Use of molecular ion beams from a tandem accelerator

    International Nuclear Information System (INIS)

    Faibis, A.; Goldring, G.; Hass, M.; Kaim, R.; Plesser, I.; Vager, Z.

    1981-01-01

    A large variety of positive molecular ion beams can be produced by gaseous charge exchange in the terminal of a tandem accelerator. After acceleration the molecules are usually dissociated by passage through a thin foil. Measurements of the break-up products provide a way to study both the structure of incident ions and the effects of electronic potentials on the internuclear interaction inside the foil. Beam intensities of a few picoamperes are quite adequate for these measurements, and the relatively high energy obtained by use of a tandem accelerator has the advantage of minimizing multiple scattering effects in the foil. The main difficulty in using the molecular beams lies in the large magnetic rigidity of singly-charged heavy molecular ions

  5. Note: Ion source design for ion trap systems

    Science.gov (United States)

    Noriega, J. R.; Quevedo, M.; Gnade, B.; Vasselli, J.

    2013-06-01

    A small plasma (glow discharge) based ion source and circuit are described in this work. The ion source works by producing a high voltage pulsed discharge between two electrodes in a pressure range of 50-100 mTorr. A third mesh electrode is used for ion extraction. The electrodes are small stainless steel screws mounted in a MACOR ionization chamber in a linear arrangement. The electrode arrangement is driven by a circuit, design for low power operation. This design is a proof of concept intended for applications on small cylindrical ion traps.

  6. Analysis of lignans in Magnoliae Flos by turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai

    2016-04-01

    In this study, a method coupling turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry was developed for analyzing the lignans in Magnoliae Flos. By the online pretreatment of turbulent flow chromatography solid-phase extraction, the impurities removal and analytes concentration were automatically processed, and the lignans were separated rapidly and well. Seven lignans of Magnoliae Flos including epieudesmin, magnolin, 1-irioresinol-B-dimethyl ether, epi-magnolin, fargesin aschantin, and demethoxyaschantin were identified by comparing their retention behavior, UV spectra, and mass spectra with those of reference substances or literature data. The developed method was validated, and the good results showed that the method was not only automatic and rapid, but also accurate and reliable. The turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry method holds a high potential to become an effective method for the quality control of lignans in Magnoliae Flos and a useful tool for the analysis of other complex mixtures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. METHOD AND APPARATUS FOR TRAPPING IONS IN A MAGNETIC FIELD

    Science.gov (United States)

    Luce, J.S.

    1962-04-17

    A method and apparatus are described for trapping ions within an evacuated container and within a magnetic field utilizing dissociation and/or ionization of molecular ions to form atomic ions and energetic neutral particles. The atomic ions are magnetically trapped as a result of a change of charge-to- mass ratio. The molecular ions are injected into the container and into the path of an energetic carbon arc discharge which dissociates and/or ionizes a portion of the molecular ions into atomic ions and energetic neutrals. The resulting atomic ions are trapped by the magnetic field to form a circulating beam of atomic ions, and the energetic neutrals pass out of the system and may be utilized in a particle accelerator. (AEC)

  8. Determination of tylosins A, B, C and D in bee larvae by liquid chromatography coupled to ion trap-tandem mass spectrometry.

    Science.gov (United States)

    Bernal, J; Martín, Ma T; Toribio, L; Martín-Hernández, R; Higes, M; Bernal, J L; Nozal, M J

    2011-06-01

    A LC-MS/MS method has been developed to simultaneously quantify tylosins A, B, C and D in bee larvae, compounds currently used to treat one of the most lethal diseases affecting honey bees around the world, American Foulbrood (AFB). The influence of different aqueous media, temperature and light exposure on the stability of these four compounds was studied. The analytes were extracted from bee larvae with methanol and chromatographic separation was achieved on a Luna C(18) (150 × 4.6 mm i.d.) using a ternary gradient composed of a diluted formic acid, methanol and acetonitrile mobile phase. To facilitate sampling, bee larvae were initially dried at 60°C for 4h and afterwards, they were diluted to avoid problems of pressure. MSD-Ion Trap detection was employed with electrospray ionization (ESI). The calibration curves were linear over a wide range of concentrations and the method was validated as sensitive, precise and accurate within the limits of quantification (LOQ, 1.4-4.0 ng/g). The validated method was successfully employed to study bee larvae in field tests of bee hives treated with two formulations containing tylosin. In both cases it was evident that the minimal inhibitory concentration (MIC) had been reached. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Ion Chromatography-on-a-chip for Water Quality Analysis

    Science.gov (United States)

    Kidd, R. D.; Noell, A.; Kazarians, G.; Aubrey, A. D.; Scianmarello, N.; Tai, Y.-C.

    2015-01-01

    We report progress towards developing a Micro-Electro-Mechanical Systems (MEMS)- based ion chromatograph (IC) for crewed spacecraft water analysis. This IC-chip is an offshoot of a NASA-funded effort to produce a high performance liquid chromatograph (HPLC)-chip. This HPLC-chip system would require a desalting (i.e. ion chromatography) step. The complete HPLC instrument consists of the Jet Propulsion Labortory's (JPL's) quadrupole ion trap mass spectrometer integrated with a state-of-the-art MEMS liquid chromatograph (LC) system developed by the California Institute of Technology's (Caltech's) Micromachining Laboratory. The IC version of the chip consist of an electrolysis-based injector, a separation column, two electrolysis pumps for gradient generation, mixer, and a built-in conductivity detector. The HPLC version of the chip also includes a nanospray tip. The low instrument mass, coupled with its high analytical capabilities, makes the LC chip ideally suitable for wide range of applications such as trace contaminant, inorganic analytical science and, when coupled to a mass spectrometer, a macromolecular detection system for either crewed space exploration vehicles or robotic planetary missions.

  10. Trapping behaviour of deuterium ions implanted into tungsten simultaneously with carbon ions

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Suzuki, Sachiko; Wang, Wanjing; Kurata, Rie; Kida, Katsuya; Oya, Yasuhisa; Okuno, Kenji; Ashikawa, Naoko; Sagara, Akio; Yoshida, Naoaki

    2009-01-01

    The trapping behaviour of deuterium ions implanted into tungsten simultaneously with carbon ions was investigated by thermal desorption spectroscopy (TDS) and x-ray photoelectron spectroscopy (XPS). The D 2 TDS spectrum consisted of three desorption stages, namely desorption of deuterium trapped by intrinsic defects, ion-induced defects and carbon with the formation of the C-D bond. Although the deuterium retention trapped by intrinsic defects was almost constant, that by ion-induced defects increased as the ion fluence increased. The retention of deuterium with the formation of the C-D bond was saturated at an ion fluence of 0.5x10 22 D + m -2 , where the major process was changed from the sputtering of tungsten with the formation of a W-C mixture to the formation of a C-C layer, and deuterium retention as the C-D bond decreased. It was concluded that the C-C layer would enhance the chemical sputtering of carbon with deuterium with the formation of CD x and the chemical state of carbon would control the deuterium retention in tungsten under C + -D 2 + implantation.

  11. Demonstration of Cold 40Ca+ Ions Confined in a Microscopic Surface-Electrode Ion Trap

    International Nuclear Information System (INIS)

    Chen Liang; Wan Wei; Xie Yi; Wu Hao-Yu; Zhou Fei; Feng Mang

    2013-01-01

    40 Ca + ions are successfully confined, under the cooling of a red-detuned laser, in a home-built microscopic surface-electrode (MSE) trap. With all electrodes deposited on a low-rf-loss substrate, our 500-μm-scale MSE trap is designed involving three potential wells and manufactured by the standard technique of the printed circuit board. Both linear and two-dimensional crystals of 40 Ca + are observed in the trap after preliminary micromotion compensation is carried out. The development of the MSE trap aims at large-scale trapped-ion quantum information processing

  12. Rapid and accurate liquid chromatography and tandem mass spectrometry method for the simultaneous quantification of ten metabolic reactions catalyzed by hepatic cytochrome P450 enzymes.

    Science.gov (United States)

    Shi, Rong; Ma, Bingliang; Wu, Jiasheng; Wang, Tianming; Ma, Yueming

    2015-10-01

    The hepatic cytochrome P450 enzymes play a central role in the biotransformation of endogenous and exogenous substances. A sensitive high-throughput liquid chromatography with tandem mass spectrometry assay was developed and validated for the simultaneous quantification of the products of ten metabolic reactions catalyzed by hepatic cytochrome P450 enzymes. After the substrates were incubated separately, the samples were pooled and analyzed by liquid chromatography with tandem mass spectrometry using an electrospray ionization source in the positive and negative ion modes. The method exhibited linearity over a broad concentration range, insensitivity to matrix effects, and high accuracy, precision, and stability. The novel method was successfully applied to study the kinetics of phenacetin-O deethylation, coumarin-7 hydroxylation, bupropion hydroxylation, taxol-6 hydroxylation, omeprazole-5 hydroxylation, dextromethorphan-O demethylation, tolbutamide-4 hydroxylation, chlorzoxazone-6 hydroxylation, testosterone-6β hydroxylation, and midazolam-1 hydroxylation in rat liver microsomes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. CrossRef Space-charge effects in Penning ion traps

    CERN Document Server

    Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N

    2015-01-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  14. Identification of alkyl dimethylbenzylammonium surfactants in water samples by solid-phase extraction followed by ion trap LC/MS and LC/MS/MS

    Science.gov (United States)

    Ferrer, I.; Furlong, E.T.

    2001-01-01

    A novel methodology was developed for the determination of alkyl (C12, C14, and C16) dimethylbenzylammonium chloride (benzalkonium chloride or BAC, Chemical Abstract Service number: 8001-54-5) in water samples. This method is based on solid-phase extraction (SPE) using polymeric cartridges, followed by high-performance liquid chromatography/ion trap mass spectrometry (LC/MS) and tandem mass spectrometry(MS/MS) detection, equipped with an electrospray interface in positive ion mode. Chromatographic separation was achieved for three BAC homologues by using a C18 column and a gradient of acetonitrile/10 millimolar aqueous ammonium formate. Total method recoveries were higher than 71% in different water matrices. The main ions observed by LC/MS were at mass-to-charge ratios (m/z) of 304, 332, and 360, which correspond to the molecular ions of the C12, C14, and C16 alkyl BAC, respectively. The unequivocal structural identification of these compounds in water samples was performed by LC/MS/MS after isolation and subsequent fragmentation of each molecular ion. The main fragmentation observed for the three different homologues corresponded to the loss of the toluyl group in the chemical structure, which leads to the fragment ions at m/z 212, 240, and 268 and a tropylium ion, characteristic of all homologues, at m/z 91. Detection limits for the methodology developed in this work were in the low nanogram-per-liter range. Concentration levels of BAC - ranging from 1.2 to 36.6 micrograms per liter - were found in surface-water samples collected downstream from different wastewater-treatment discharges, thus indicating its input and persistence through the wastewater-treatment process.

  15. Screening and confirmation criteria for hormone residue analysis using liquid chromatography accurate mass time-of-flight, Fourier transform ion cyclotron resonance and orbitrap mass spectrometry techniques

    NARCIS (Netherlands)

    Nielen, M.W.F.; Engelen, M.C. van; Zuiderent, R.; Ramaker, R.

    2007-01-01

    An emerging trend is recognised in hormone and veterinary drug residue analysis from liquid chromatography tandem mass spectrometry (LC/MS/MS) based screening and confirmation towards accurate mass alternatives such as LC coupled with time-of-flight (TOF), Fourier transform ion cyclotron resonance

  16. Study of ion exchange equilibrium and determination of heat of ion exchange by ion chromatography

    International Nuclear Information System (INIS)

    Liu Kailu; Yang Wenying

    1996-01-01

    Ion chromatography using pellicularia ion exchange resins and dilute solution can be devoted to the study of ion exchange thermodynamics and kinetics. Ion exchange equilibrium equation was obtained, and examined by the experiments. Based on ion exchange equilibrium, the influence of eluent concentration and resin capacity on adjusted retention volumes was examined. The effect of temperature on adjusted retention volumes was investigated and heats of ion exchange of seven anions were determined by ion chromatography. The interaction between anions and skeleton structure of resins were observed

  17. Molecular ion acceleration using tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuichi; Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    In TIARA compound beam radiation system, cluster beams have been produced using 3 MV tandem accelerator (9SDH-2) to supply them to various radiation on injection experiments. Till now, productions of C{sub 2-8}, Si{sub 2-4} and O{sub 2} and their accelerations up to 6 MeV have been succeeded. This study aimed at production and acceleration of B{sub 2-4} and LiF. Anion clusters were produced using the conventional ion source of cesium sputter type. The proportions of atoms, molecules and clusters elicited from the ion source were varied depending on the material`s properties and the operating conditions of ion source such as sample temperature, sputter voltage and the shape of sample. The anion clusters were accelerated toward the high voltage terminal in the center of tandem accelerator, leading to cations through losing their electrons by the collision to N{sub 2} gas in a charge conversion cell at the terminal. Positively charged cluster ions could be obtained by modulating the pressure of N{sub 2} gas. Thus, B{sub 2} (64 nA), B{sub 3} (4.4 nA) and B{sub 4} (2.7 nA) have been produced and their maximum survival probabilities were higher than those of carbon or silicon clusters. In addition, the relationship between beam current and gas pressure was investigated for Bn (n = 2-4) and LiF. (M.N.)

  18. Atomic and nuclear physics with stored particles in ion traps

    CERN Document Server

    Kluge, H J; Herfurth, F; Quint, W

    2002-01-01

    Trapping and cooling techniques play an increasingly important role in many areas of science. This review concentrates on recent applications of ion traps installed at accelerator facilities to atomic and nuclear physics such as mass spectrometry of radioactive isotopes, weak interaction studies, symmetry tests, determination of fundamental constants, laser spectroscopy, and spectroscopy of highly-charged ions. In addition, ion traps are proven to be extremely efficient devices for (radioactive) ion beam manipulation as, for example, retardation, accumulation, cooling, beam cleaning, charge-breeding, and bunching.

  19. Reducing Motional Decoherence in Ion Traps with Surface Science Methods

    Science.gov (United States)

    Haeffner, Hartmut

    2014-03-01

    Many trapped ions experiments ask for low motional heating rates while trapping the ions close to trapping electrodes. However, in practice small ion-electrode distances lead to unexpected high heating rates. While the mechanisms for the heating is still unclear, it is now evident that surface contamination of the metallic electrodes is at least partially responsible for the elevated heating rates. I will discuss heating rate measurements in a microfabricated surface trap complemented with basic surface science studies. We monitor the elemental surface composition of the Cu-Al alloy trap with an Auger spectrometer. After bake-out, we find a strong Carbon and Oxygen contamination and heating rates of 200 quanta/s at 1 MHz trap frequency. After removing most of the Carbon and Oxygen with Ar-Ion sputtering, the heating rates drop to 4 quanta/s. Interestingly, we still measure the decreased heating rate even after the surface oxidized from the background gas throughout a 40-day waiting time in UHV.

  20. Quantification of 2-acetyl-1-pyrroline in rice by stable isotope dilution assay through headspace solid-phase microextraction coupled to gas chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Maraval, Isabelle [UMR Qualisud, CIRAD, 73 Rue J. F. Breton, 34398 Montpellier Cedex 5 (France); UMR Qualisud, Universite Montpellier 2, place E. Bataillon, 34095 Montpellier Cedex 5 (France); Sen, Kemal [Department of Food Engineering, Faculty of Agriculture, University of Cukurova, 01330 Adana (Turkey); Agrebi, Abdelhamid; Menut, Chantal; Morere, Alain [UMR 5247, Institut des Biomolecules Max Mousseron (IBMM), CNRS, Universites Montpellier 2 et 1, Ecole Nationale Superieure de Chimie de Montpellier, 8 Rue de l' Ecole Normale, 34296 Montpellier Cedex 5 (France); Boulanger, Renaud [UMR Qualisud, CIRAD, 73 Rue J. F. Breton, 34398 Montpellier Cedex 5 (France); Gay, Frederic [CIRAD, DORAS Centre, Research and Development Building, Kasetsart University, Bangkok 10900 (Thailand); Mestres, Christian [UMR Qualisud, CIRAD, 73 Rue J. F. Breton, 34398 Montpellier Cedex 5 (France); Gunata, Ziya, E-mail: zgunata@univ-montp2.fr [UMR Qualisud, Universite Montpellier 2, place E. Bataillon, 34095 Montpellier Cedex 5 (France)

    2010-08-24

    A new and convenient synthesis of 2-acetyl-1-pyrroline (2AP), a potent flavor compound in rice, and its ring-deuterated analog, 2-acetyl-1-d{sub 2}-pyrroline (2AP-d{sub 2}), was reported. A stable isotope dilution assay (SIDA), involving headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-positive chemical ionization-ion trap-tandem mass spectrometry (GC-PCI-IT-MS-MS), was developed for 2AP quantification. A divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was used for HS-SPME procedure and parameters affecting analytes recovery, such as extraction time and temperature, pH and salt, were studied. The repeatability of the method (n = 10) expressed as relative standard deviation (RSD) was 11.6%. A good linearity was observed from 5.9 to 779 ng of 2AP (r{sup 2} = 0.9989). Limits of detection (LOD) and quantification (LOQ) for 2AP were 0.1 and 0.4 ng g{sup -1} of rice, respectively. The recovery of spiked 2AP from rice matrix was almost complete. The developed method was applied to the quantification of 2AP in aerial parts and grains of scented and non-scented rice cultivars.

  1. Parallel Transport Quantum Logic Gates with Trapped Ions.

    Science.gov (United States)

    de Clercq, Ludwig E; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2016-02-26

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity.

  2. Identification of di(ethylhexyl) phthalate as impurity in the analysis by using chromatography gas tandem mass spectrometry

    Science.gov (United States)

    Pusfitasari, Eka Dian; Hendarsyah, Hendris; Salahuddin, Ariani, Novita

    2017-01-01

    Di(ethylhexyl) phthalate (DEHP) is a plasticizer commonly used in plastics. Physically DEHP has a low vapor pressure. DEHP can seep into the liquid in direct contact with the plastic wrapping materials, and typically can occur rapidly if extractable into food or non-polar solvents, such as oil, once the food is packaged in PVC packaging materials. DEHP has been analyzed by using gas chromatography which has a high sensitivity level. If the equipment used for the analysis is made from plastic containing DEHP, then it may be possible that DEHP can be extracted and appear on the outcome of the injection. It can interfere with the process of analysis, especially for the analysis of food samples. This study has identified the present of DEHP in the blank injection performed by Gas Chromatography tandem Mass Spectrometry with Selected Ion Monitoring mode (SIM). Researchers are required to verify whether the gas chromatographic system used is ready for the analysis process. In addition, the comparison and calculation of the intensity of the ion fragmentation spectra generated by mass spectrometry detector can be used for the qualitative determination to ensure the presence of the target compound. In this study is also discussed the differences between the high-intensity fragmentation of DEHP and dioctyl phthalate (DOP).

  3. Simultaneous Detection of Flavonoids, Phenolic Acids and Alkaloids in Abri Herba and Abri Mollis Herba using Liquid Chromatography Tandem Mass Spectrometry.

    Science.gov (United States)

    Yan, Wenying; Han, Qingjie; Guo, Panpan; Wang, Chunying; Zhang, Zijian

    2016-01-01

    Abri Herba has remarkable properties, such as cleanup heat detoxification, dampness and activating blood circulation to dissipate blood stasis; as a result, it has been applied to treat acute or chronic hepatitis and mastitis. Abri mollis Herba is often used as Abri Herba. Hierarchical cluster analysis (HCA) was applied to compare the similarities and differences of the chemical compositions in the two types of medicinal materials. To establish a high-performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) method for the simultaneous analysis of 15 flavonoids, two phenolic acids and three alkaloids in Abri Herba and Abri mollis Herba. The chromatographic separation was performed on a C18 column with a mobile phase of methanol (A), acetonitrile (B) and 0.5‰ acetic acid in water (C) using gradient elution. The detection of the target compounds was performed in multiple-reaction monitoring (MRM) mode using a hybrid quadrupole linear ion trap mass spectrometer equipped with positive/negative ion-switching electrospray ionisation (ESI) source. The developed method is reliable, sensitive and specific. In addition, the method has been successfully applied to differentiate 15 batches of Abri Herba and 27 batches of Abri mollis Herba stems. Furthermore, a comparison of the contents among stems, roots and leaves from the same strain in seven batches of Abri mollis Herba and four batches of Abri Herba has also been performed. HPLC-MS/MS method is sensitive and selective and can be suitable for the reliable quality control of Abri mollis Herba and Abri Herba. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Simultaneous screening and confirmation of multiple classes of drug residues in fish by liquid chromatography-ion trap mass spectrometry.

    Science.gov (United States)

    Smith, Shani; Gieseker, Charles; Reimschuessel, Renate; Decker, Christie-Sue; Carson, Mary C

    2009-11-13

    LC-ion trap mass spectrometry was used to screen and confirm 38 compounds from a variety of drug classes in four species of fish: trout, salmon, catfish, and tilapia. Samples were extracted with acetonitrile and hexane. The acetonitrile phase was evaporated, redissolved in water and acetonitrile, and analyzed by gradient chromatography on a phenyl column. MS(2) or MS(3) spectra were monitored for each compound. Qualitative method performance was evaluated by the analysis over several days of replicate samples of control fish, fish fortified with a drug mixture at 1 ppm, 0.1 ppm and 0.01 ppm, and fish dosed with a representative from each drug class. Half of the 38 drugs were confirmed at 0.01 ppm, the lowest fortification level. This included all of the quinolones and fluoroquinolones, the macrolides, malachite green, and most of the imidazoles. Florfenicol amine, metronidazole, sulfonamides, tetracyclines, and most of the betalactams were confirmed at 0.1 ppm. Ivermectin and penicillin G were only detectable in the 1 ppm fortified samples. With the exception of amoxicillin, emamectin, metronidazole, and tylosin, residue presence was confirmed in all the dosed fish.

  5. Simultaneous Determination of Perfluorinated Compounds in Edible Oil by Gel-Permeation Chromatography Combined with Dispersive Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Yang, Lili; Jin, Fen; Zhang, Peng; Zhang, Yanxin; Wang, Jian; Shao, Hua; Jin, Maojun; Wang, Shanshan; Zheng, Lufei; Wang, Jing

    2015-09-30

    A simple analytical method was developed for the simultaneous analysis of 18 perfluorinated compounds (PFCs) in edible oil. The target compounds were extracted by acetonitrile, purified by gel permeation chromatography (GPC) and dispersive solid-phase extraction (DSPE) using graphitized carbon black (GCB) and octadecyl (C18), and analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ES-MS/MS) in negative ion mode. Recovery studies were performed at three fortification levels. The average recoveries of all target PFCs ranged from 60 to 129%, with an acceptable relative standard deviation (RSD) (1-20%, n = 3). The method detection limits (MDLs) ranged from 0.004 to 0.4 μg/kg, which was significantly improved compared with the existing liquid-liquid extraction and cleanup method. The method was successfully applied for the analysis of all target PFCs in edible oil samples collected from markets in Beijing, China, and the results revealed that C6-C10 perfluorocarboxylic acid (PFCAs) and C7 perfluorosulfonic acid PFSAs were the major PFCs detected in oil samples.

  6. Detection and identification of drugs and toxicants in human body fluids by liquid chromatography-tandem mass spectrometry under data-dependent acquisition control and automated database search.

    Science.gov (United States)

    Oberacher, Herbert; Schubert, Birthe; Libiseller, Kathrin; Schweissgut, Anna

    2013-04-03

    Systematic toxicological analysis (STA) is aimed at detecting and identifying all substances of toxicological relevance (i.e. drugs, drugs of abuse, poisons and/or their metabolites) in biological material. Particularly, gas chromatography-mass spectrometry (GC/MS) represents a competent and commonly applied screening and confirmation tool. Herein, we present an untargeted liquid chromatography-tandem mass spectrometry (LC/MS/MS) assay aimed to complement existing GC/MS screening for the detection and identification of drugs in blood, plasma and urine samples. Solid-phase extraction was accomplished on mixed-mode cartridges. LC was based on gradient elution in a miniaturized C18 column. High resolution electrospray ionization-MS/MS in positive ion mode with data-dependent acquisition control was used to generate tandem mass spectral information that enabled compound identification via automated library search in the "Wiley Registry of Tandem Mass Spectral Data, MSforID". Fitness of the developed LC/MS/MS method for application in STA in terms of selectivity, detection capability and reliability of identification (sensitivity/specificity) was demonstrated with blank samples, certified reference materials, proficiency test samples, and authentic casework samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The streaming-trapped ion interface in the equatorial inner magnetosphere

    Science.gov (United States)

    Lin, J.; Horwitz, J. L.; Gallagher, D.; Pollock, C. J.

    1994-01-01

    Spacecraft measurements of core ions on L=4-7 field-lines typically show trapped ion distributions near the magnetic equator, and frequently indicate field-aligned ion streams at higher latitudes. The nature of the transition between them may indicate both the microphysics of hot-cold plasma interactions and overall consequences for core plasma evolution. We have undertaken a statistical analysis and characterization of this interface and its relation to the equatorial region of the inner magnetosphere. In this analysis, we have characterized such features as the equatorial ion flux anisotropy, the penetration of field-aligned ionospheric streams into the equatorial region, the scale of the transition into trapped ion populations, and the transition latitude. We found that most transition latitudes occur within 13 deg of the equator. The typical values of equatorial ion anisotropies are consistent with bi-Maxwellian temperature ratios of T(sub perpendicular)/T(sub parallel) in the range of 3-5. The latitudinal scales for the edges of the trapped ion populations display a rather strong peak in the 2-3 deg range. We also found that there is a trend for the penetration ratio, the anisotropy half width, and the transition scale length to decrease with a higher equatorial ion anisotropy. We may interpret these features in terms of Liouville mapping of equatorially trapped ions and the reflection of the incoming ionospheric ion streams from the equatorial potential peaks associated with such trapped ions.

  8. Simultaneous quantification of poly-dispersed anionic, amphoteric and nonionic surfactants in simulated wastewater samples using C18 high-performance liquid chromatography-quadrupole ion-trap mass spectrometry

    Science.gov (United States)

    Levine, Lanfang H.; Garland, Jay L.; Johnson, Jodie V.

    2005-01-01

    This paper describes the development of a guantitative method for direct and simultaneous determination of three frequently encountered surfactants, amphoteric (cocoamphoacetate, CAA), anionic (sodium laureth sulfate, SLES), and nonionic (alcohol ethoxylate, AE) using a reversed-phase C18 HPLC coupled with an ESI ion-trap mass spectrometer (MS). Chemical composition, ionization characteristics and fragmentation pathways of the surfactants are presented. Positive ESI was effective for all three surfactants in agueous methanol buffered with ammonium acetate. The method enables rapid determinations in small sample volumes containing inorganic salts (up to 3.5 g L(-1)) and multiple classes of surfactants with high specificity by applying surfactant specific tandem mass spectrometric strategies. It has dynamic linear ranges of 2-60, 1.5-40, 0.8-56 mg L(-1) with R2 egual or greater than 0.999, 0.98 and 0.999 (10 microL injection) for CAA, SLES, and AE, respectively.

  9. Chemical characterization of microparticles by laser ablation in an ion trap mass spectrometer

    International Nuclear Information System (INIS)

    Dale, J.M.; Whitten, W.B.; Ramsey, J.M.

    1991-01-01

    We are developing a new technique for the chemical characterization of microparticles based upon the use of electrodynamic traps. The electrodynamic trap has achieved widespread use in the mass spectrometry community in the form of the ion trap mass spectrometer or quadrupole ion trap. Small macroscopic particles can be confined or levitated within the electrode structure of a three-dimensional quadrupole electrodynamic trap in the same way as fundamental charges or molecular ions by using a combination of ac and dc potentials. Our concept is to use the same electrode structure to perform both microparticle levitation and ion trapping/mass analysis. The microparticle will first be trapped and spatially stabilized within the trap for characterization by optical probes, i.e., absorption, fluorescence, or Raman spectroscopy. After the particle has been optically characterized, it is further characterized using mass spectrometry. Ions are generated from the particle surface using laser ablation or desorption. The characteristics of the applied voltages are changed to trap the ions formed by the laser with the ions subsequently mass analyzed. The work described in this paper focuses on the ability to perform laser desorption experiments on microparticles contained within the ion trap

  10. Dereplication-guided isolation of a new indole alkaloid triglycoside from the hooks of Uncaria rhynchophylla by LC with ion trap time-of-flight MS.

    Science.gov (United States)

    Zhang, Jian-Gang; Huang, Xiao-Yan; Ma, Yun-Bao; Zhang, Xue-Mei; Chen, Ji-Jun; Geng, Chang-An

    2018-04-01

    Uncaria rhynchophylla (Gou-Teng) as the monarch herb of many formulae (Fufang), e.g. "Tian-Ma-Gou-Teng-Yin," "Ling-Jiao-Gou-Teng-Yin," and "Yi-Gan-San", is a famous traditional Chinese medicine documented in the Chinese pharmacopoeia for mental and cardiovascular diseases. In the traditional Chinese medicine system, only the hook-bearing stems are used as the crude materials for Gou-Teng, and the hooks are always considered more effective than the stems. Focusing on the mono-herb and its active constituents from combinatorial formulae is the core idea of reductionism of traditional Chinese medicine theory. Detailed liquid chromatography with mass spectrometry analysis on the hooks of U. rhynchophylla was performed to profile the chemical constituents based on tandem mass spectrometry fragmentation and UV absorption. Under the guidance of liquid chromatography with ion trap/time-of-flight mass spectrometry, one new indole alkaloid triglycoside (1), together with five known compounds 2-6 as the main constituents, were isolated from the hooks of U. rhynchophylla by various column chromatography methods. Compound 1 showed moderate activity on MT 1 and MT 2 melatonin receptors with agonistic rates of 79.6 and 46.3% at the concentration of 1 mM. This dereplication strategy can be equally applicable to rapidly disclose the active constituents of other Chinese herbs through targeted purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Measurement of few-electron uranium ions on a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    The high-energy electron beam ion trap, dubbed Super-EBIT, was used to produce, trap, and excite uranium ions as highly charged as fully stripped U 92+ . The production of such highly charged ions was indicated by the x-ray emission observed with high-purity Ge detectors. Moreover, high-resolution Bragg crystal spectromters were used to analyze the x-ray emission, including a detailed measurement of both the 2s 1/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole transitions. Unlike in ion accelerators, where the uranium ions move at relativistic speeds, the ions in this trap are stationary. Thus very precise measurements of the transition energies could be made, and the QED contribution to the transition energies could be measured within less than 1 %. Details of the production of these highly charged ions and their measurement is given

  12. Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines.

    Science.gov (United States)

    Paula Barros, Elisabete; Moreira, Nathalie; Elias Pereira, Giuliano; Leite, Selma Gomes Ferreira; Moraes Rezende, Claudia; Guedes de Pinho, Paula

    2012-11-15

    An automated headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-ion trap/mass spectrometry (GC-IT/MS) was developed in order to quantify a large number of volatile compounds in wines such as alcohols, ester, norisoprenoids and terpenes. The procedures were optimized for SPME fiber selection, pre-incubation temperature and time, extraction temperature and time, and salt addition. A central composite experimental design was used in the optimization of the extraction conditions. The volatile compounds showed optimal extraction using a DVB/CAR/PDMS fiber, incubation of 5 ml of wine with 2g NaCl at 45 °C during 5 min, and subsequent extraction of 30 min at the same temperature. The method allowed the identification of 64 volatile compounds. Afterwards, the method was validated successfully for the most significant compounds and was applied to study the volatile composition of different white wines. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application.

    Science.gov (United States)

    Borisyuk, Petr V; Derevyashkin, Sergey P; Khabarova, Ksenia Y; Kolachevsky, Nikolay N; Lebedinsky, Yury Y; Poteshin, Sergey S; Sysoev, Alexey A; Tkalya, Evgeny V; Tregubov, Dmitry O; Troyan, Viktor I; Vasiliev, Oleg S; Yakovlev, Valery P; Yudin, Valery I

    2017-08-01

    We describe an original multisectional quadrupole ion trap aimed to realize nuclear frequency standard based on the unique isomer transition in thorium nucleus. It is shown that the system effectively operates on Th + , Th 2+ and Th 3+ ions produced by laser ablation of metallic thorium-232 target. Laser intensity used for ablation is about 6 GW/cm 2 . Via applying a bias potential to every control voltage including the RF one, we are able not only to manipulate ions within the energy range as wide as 1-500 eV but to specially adjust trap potentials in order to work mainly with ions that belong to energy distribution maximum and therefore to effectively enhance the number of trapped ions. Measurement of energy distributions of 232 Th + , 232 Th 2+ , 232 Th 3+ ions obtained by laser ablation allows us to define optimal potential values for trapping process. Observed number of ions inside trap in dependence on trapping time is found to obey an unusually slow - logarithmic decay law that needs more careful study.

  14. MOMA and other next-generation ion trap mass spectrometers for planetary exploration

    Science.gov (United States)

    Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Getty, S.; Mahaffy, P. R.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Southard, A. E.; Hovmand, L.; Cottin, H.; Makarov, A.

    2016-12-01

    Since the 1970's, quadrupole mass spectrometer (QMS) systems have served as low-risk, cost-efficient means to explore the inner and outer reaches of the solar system. These legacy instruments have interrogated the compositions of the lunar exosphere (LADEE), surface materials on Mars (MSL), and the atmospheres of Venus (Pioneer Venus), Mars (MAVEN) and outer planets (Galileo and Cassini-Huygens). However, the in situ detection of organic compounds on Mars and Titan, coupled with ground-based measurements of amino acids in meteorites and a variety of organics in comets, has underlined the importance of molecular disambiguation in the characterization of high-priority planetary environments. The Mars Organic Molecule Analyzer (MOMA) flight instrument, centered on a linear ion trap, enables the in situ detection of volatile and non-volatile organics, but also the characterization of molecular structures through SWIFT ion isolation/excitation and tandem mass spectrometry (MSn). Like the SAM instrument on MSL, the MOMA investigation also includes a gas chromatograph (GC), thereby enabling the chemical separation of potential isobaric interferences based on retention times. The Linear Ion Trap Mass Spectrometer (LITMS; PI: William Brinckerhoff), developed to TRL 6 via the ROSES MatISSE Program, augments the core MOMA design and adds: expanded mass range (from 20 - 2000 Da); high-temperature evolved gas analysis (up to 1300°C); and, dual polarity detector assemblies (supporting the measurement of negative ions). The LITMS instrument will be tested in the field in 2017 through the Atacama Rover Astrobiology Drilling Studies (ARADS; PI: Brian Glass) ROSES PSTAR award. Following on these advancements, the Advanced Resolution Organic Molecule Analyzer (AROMA; PI: Ricardo Arevalo Jr.), supported through the ROSES PICASSO Program, combines a highly capable MOMA/LITMS-like linear ion trap and the ultrahigh resolution CosmOrbitrap mass analyzer developed by a consortium of five

  15. JAERI tandem-accelerator and tandem-booster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In 1982, aiming at the new development of atomic energy research, the tandem accelerator of Japan Atomic Energy Research Institute (JAERI) was installed. In fiscal year 1993, the superconducting boosters which can increase the ion energy by up to 4 times were added, and the research in the region below 1000 MeV became possible. Those are electrostatic type accelerators which are easy to be used especially in basic research field, and are useful for future research. The tandem accelerator has been operated while maintaining the first class performance as the accelerator for various kinds of heavy ion beam. It has the special shape among electrostatic type accelerators, and is excellent in the easiness of control and stability. The main particulars of the tandem accelerator are shown. As for the ion sources of the tandem accelerator, three cesium sputter type ion sources are installed on two high voltage stands. The kinds of the ions which can be accelerated are mainly negative ions. As the improvement, electron cyclotron resonance (ECR) ion sources are expected to be adopted. As for the tandem boosters, the 1/4 wavelength type resonance hollow cylinder was adopted. The constitution of the tandem boosters is explained. The way of utilizing the tandem accelerator system and the aim for hereafter are reported. (K.I.)

  16. Geometric Phases for Mixed States in Trapped Ions

    International Nuclear Information System (INIS)

    Lu Hongxia

    2006-01-01

    The generalization of geometric phase from the pure states to the mixed states may have potential applications in constructing geometric quantum gates. We here investigate the mixed state geometric phases and visibilities of the trapped ion system in both non-degenerate and degenerate cases. In the proposed quantum system, the geometric phases are determined by the evolution time, the initial states of trapped ions, and the initial states of photons. Moreover, special periods are gained under which the geometric phases do not change with the initial states changing of photon parts in both non-degenerate and degenerate cases. The high detection efficiency in the ion trap system implies that the mixed state geometric phases proposed here can be easily tested.

  17. Single Ion Trapping for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  18. Electrostatic ion trap and Fourier transform measurements for high-resolution mass spectrometry

    International Nuclear Information System (INIS)

    Bhushan, K. G.; Gadkari, S. C.; Yakhmi, J. V.; Sahni, V. C.

    2007-01-01

    We report on the development of an electrostatic ion trap for high-resolution mass spectrometry. The trap works on purely electrostatic fields and hence trapping and storing of ions is not mass restrictive, unlike other techniques based on Penning, Paul, or radio frequency quadrupole ion traps. It allows simultaneous trapping and studying of multiple mass species over a large mass range. Mass spectra were recorded in ''dispersive'' and ''self-bunching'' modes of ions. Storage lifetimes of about 100 ms and mass resolving power of about 20 000 could be achieved from the fifth harmonic Fourier transform spectrum of Xe ions recorded in the self-bunching mode

  19. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  20. Chemical characterization of microparticles by laser ablation in an ion trap mass spectrometer

    International Nuclear Information System (INIS)

    Dale, J.M.; Whitten, W.B.; Ramsey, J.M.

    1991-01-01

    We are developing a new technique for the chemical characterization of microparticles based upon the use of electrodynamic traps. The electrodynamic trap has achieved widespread use in the mass spectrometry community in the form of the ion trap mass spectrometer or quadrupole ion trap. Small macroscopic particles can be confined or leviated within the electrode structure of a three-dimensional quadrupole electrodynamic trap in the same way as fundamental charges or molecular ions by using a combination of ac and dc potentials. Our concept is to use the same electrode structure to perform both microparticle levitation and ion trapping/mass analysis. The microparticle will first be trapped and spatially stabilized within the trap for characterization by optical probes, i.e., absorption, fluorescence, or Raman spectroscopy. After the particle has been optically characterized, it is further characterized using mass spectrometry. Ions are generated from the particle surface using laser ablation or desorption. The characteristics of the applied voltages are changed to trap the ions formed by the laser with the ions subsequently mass analyzed. The work described in this paper focuses on the ability to perform laser desorption experiments on microparticles contained within the ion trap. Laser desorption has previously been demonstrated in ion trap devices by applying the sample to a probe which is inserted so as to place the sample at the surface of the ring electrode. Our technique requires the placement of a microparticle in the center of the trap. Our initial experiments have been performed on falling microparticles rather than levitated particles to eliminate voltage switching requirements when changing from particle to ion trapping modes

  1. Heavy-ion research at the tandem and superconducting linac accelerators

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The heavy-ion research program at the Argonne Physics Division is principally aimed at the study of nuclear structure and its manifestation in heavy-ion induced nuclear reactions. In order to extract information on nuclear structure, measurements with high precision often need to be performed. Such measurements are now carried out at the tandem-linac accelerator over a wide energy range. The investigation of high-spin states near the yrast line has provided much new information on the behavior of nuclei at high angular momentum. Argonne work has concentrated on nuclei where high-spin isomers, the so-called yrast traps, are prevalent. The resonance effects observed previously in the 24 Mg( 16 O, 12 C) 28 Si reactions have been further explored through both additional measurements and a new quantitative method of analysis. The measurements were extended in energy and angular range and to various exit channels as well as similar systems. Several measurements were performed to investigate the reaction mechanisms in heavy-ion induced reactions and to map out the distribution of reaction strength as a function of energy and target-projectile masses energy regions previously not accessible. The behavior of the quasi- and deep-inelastic reaction cross sections was studied as a function of energy for medium-heavy systems, the production of inclusive alpha-particle yields for 16 O beams at energies E/A greater than or equal to 5 MeV/nucleon, and excitation functions, mass and kinetic energy distributions for heavy-ion induced fusion-fission reactions

  2. From transistor to trapped-ion computers for quantum chemistry.

    Science.gov (United States)

    Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E

    2014-01-07

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

  3. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films

    Science.gov (United States)

    Wen, Rui-Tao; Granqvist, Claes G.; Niklasson, Gunnar A.

    2015-01-01

    Amorphous WO3 thin films are of keen interest as cathodic electrodes in transmittance-modulating electrochromic devices. However, these films suffer from ion-trapping-induced degradation of optical modulation and reversibility upon extended Li+-ion exchange. Here, we demonstrate that ion-trapping-induced degradation, which is commonly believed to be irreversible, can be successfully eliminated by constant-current-driven de-trapping, i.e., WO3 films can be rejuvenated and regain their initial highly reversible electrochromic performance. Pronounced ion-trapping occurs when x exceeds ~0.65 in LixWO3 during ion insertion. We find two main kinds of Li+-ion trapping sites (intermediate and deep) in WO3, where the intermediate ones are most prevalent. Li+-ions can be completely removed from intermediate traps but are irreversibly bound in deep traps. Our results provide a general framework for developing and designing superior electrochromic materials and devices. PMID:26259104

  4. In-terminal ECR Ion Source of the Tandem Accelerator at JAERI

    CERN Document Server

    Matsuda, M; Takeuchi, S

    1999-01-01

    Electron Cyclotron Resonance Ion Source(ECRIS)s are able to produce intense beams of highly charged positive ions and used injection system for cyclotron, linac as well as experiments of atomic physics. The tandem accelerator system has been benefiting from use of an electron stripper at the high voltage terminal. The most probable charged state after a foil stripper is, however, much lower than the highest charge state of ions with an intensity of more than several emA from a high performance ECRIS. With respect to beam current, the life time of stripper foils decrease with increasing beam current. Especially for very heavy ions, it is difficult to obtain a stable and intense beam for a long time without foil exchange. Use of an ECRIS in a tandem accelerator is expected to increase beam intensity, beam energy and beam species. A small permanent magnet ECRIS has been installed in the high voltage terminal of the vertical and folded type 20UR Pelletron tandem accelerator at Japan Atomic Energy Research Institu...

  5. Nested Penning Trap as a Source of Singly Charged Ions

    International Nuclear Information System (INIS)

    Ordonez, C.A.

    2003-01-01

    In the work reported, the possibility of using a nested Penning trap as a high purity source of low-charge-state ions is studied. For the configuration considered, a relatively dense ion plasma is confined by a three-dimensional electric potential well. The three-dimensional well is produced by the electric field generated by both the trap electrodes and a trapped electron plasma. The ion and electron plasmas are each considered to have Maxwellian velocity distributions. However, it is shown that the electron plasma must have a temperature that is higher than that of the ion plasma when the ions have low charge states. The work reported includes a self-consistent prediction of a possible plasma equilibrium

  6. Determination of albendazole sulfoxide in human plasma by using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Saraner, Nihal; Özkan, Güler Yağmur; Güney, Berrak; Alkan, Erkin; Burul-Bozkurt, Nihan; Sağlam, Onursal; Fikirdeşici, Ezgi; Yıldırım, Mevlüt

    2016-06-01

    A rapid, simple and sensitive method was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for determination of albendazole sulfoxide (ABZOX) in human plasma. The plasma samples were extracted by protein precipitation using albendazole sulfoxide-d3 as internal standard (IS). The chromatographic separation was performed on Waters Xbridge C18Column (100×4.6mm, 3.5μm) with a mobile phase consisting of ammonia solution, water and methanol at a flow rate of 0.70mL/min. ABZOX was detected and identified by mass spectrometry with electrospray ionization (ESI) in positive ion and multiple-reaction monitoring (MRM) mode. The method was linear in the range of 3-1500ng/mL for ABZOX. This method was successfully applied to the bioequivalence study in human plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Comparison of Electrospray Ionization and Atmospheric Chemical Ionization Coupled with the Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Cholesteryl Esters

    Directory of Open Access Journals (Sweden)

    Hae-Rim Lee

    2015-01-01

    Full Text Available The approach of two different ionization techniques including electrospray ionization (ESI and atmospheric pressure chemical ionization (APCI coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS was tested for the analysis of cholesteryl esters (CEs. The retention time (RT, signal intensity, protonated ion, and product ion of CEs were compared between ESI and APCI. RT of CEs from both ionizations decreased with increasing double bonds, while it increased with longer carbon chain length. The ESI process generated strong signal intensity of precursor ions corresponding to [M+Na]+ and [M+NH4]+ regardless of the number of carbon chains and double bonds in CEs. On the other hand, the APCI process produced a protonated ion of CEs [M+H]+ with a weak signal intensity, and it is selectively sensitive to detect precursor ions of CEs with unsaturated fatty acids. The ESI technique proved to be effective in ionizing more kinds of CEs than the APCI technique.

  8. Spectral measurements of few-electron uranium ions produced and trapped in a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    Measurements of 2s l/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole and electric quadrupole transitions in U 82+ through U 89+ have been made with a high-resolution crystal spectrometer that recorded the line radiation from stationary ions produced and trapped in a high-energy electron beam ion trap. From the measurements we infer -39.21 ± 0.23 eV for the QED contribution to the 2s 1/2 -2p 3/2 transition energy of lithiumlike U 89+ . A comparison between our measurements and various computations illustrates the need for continued improvements in theoretical approaches for calculating the atomic structure of ions with two or more electrons in the L shell

  9. Non-thermalization in trapped atomic ion spin chains

    Science.gov (United States)

    Hess, P. W.; Becker, P.; Kaplan, H. B.; Kyprianidis, A.; Lee, A. C.; Neyenhuis, B.; Pagano, G.; Richerme, P.; Senko, C.; Smith, J.; Tan, W. L.; Zhang, J.; Monroe, C.

    2017-10-01

    Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  10. Simultaneous analysis of fourteen tertiary amine stimulants in human urine for doping control purposes by liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Lu Jianghai; Wang San; Dong Ying; Wang Xiaobing; Yang Shuming; Zhang Jianli; Deng Jing; Qin Yang; Xu Youxuan; Wu Moutian; Ouyang Gangfeng

    2010-01-01

    A method for the simultaneous screening and confirmation of the presence of fourteen tertiary amine stimulants in human urine by gas chromatography-mass spectrometry (GC-MS) in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed and validated. Solid phase extraction (SPE) and liquid-liquid extraction (LLE) approaches were utilized for the pre-treatment of the urine samples. The study indicated that the capillary temperature played a significant role in the signal abundances of the protonated molecules of cropropamide and crotethamide under positive ion electrospray ionization (ESI) conditions. In addition, comparison studies of two different pre-treatment approaches as well as the two ionization modes were conducted. The LODs of the developed method for all the analytes were lower than the minimum required performance limit (MRPL) as set forth in the World Anti-Doping Agency (WADA) technical document for laboratories. The human urine sample obtained after oral administration of prolintane.HCl was successfully analyzed by the developed method, which demonstrated the applicability and reliability of the method for routine doping control analysis.

  11. Atomic physics measurements in an electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Marrs, R.E.; Beiersdorfer, P.; Bennett, C.

    1989-01-01

    An electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged ions (q ≤ 70/+/) for x-ray spectroscopy measurements. Recent measurements of transition energies and electron excitation cross sections for x-ray line emission are summarized. 13 refs., 10 figs

  12. Performance of the linear ion trap Orbitrap mass analyzer for qualitative and quantitative analysis of drugs of abuse and relevant metabolites in sewage water

    NARCIS (Netherlands)

    Bijlsma, L.; Emke, E.; Hernández, F.; de Voogt, P.

    2013-01-01

    This work illustrates the potential of liquid chromatography coupled to a hybrid linear ion trap Fourier Transform Orbitrap mass spectrometer for the simultaneous identification and quantification of 24 drugs of abuse and relevant metabolites in sewage water. The developed methodology consisted of

  13. Simultaneous determination of water-soluble vitamins in selected food matrices by liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Gentili, Alessandra; Caretti, Fulvia; D'Ascenzo, Giuseppe; Marchese, Stefano; Perret, Daniela; Di Corcia, Daniele; Rocca, Lucia Mainero

    2008-07-01

    A rapid, simple and sensitive method based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) with an electrospray ionization (ESI) source for the simultaneous analysis of fourteen water-soluble vitamins (B1, B2, two B3 vitamers, B5, five B6 vitamers, B8, B9, B12 and C) in various food matrices, i.e. maize flour, green and golden kiwi and tomato pulp, is presented here. Analytes were separated by ion-suppression reversed-phase liquid chromatography in less than 10 min and detected in positive ion mode. Sensitivity and specificity of this method allowed two important results to be achieved: (i) limits of detection of the analytes at ng g(-1) levels (except for vitamin C); (ii) development of a rapid sample treatment that minimizes analyte exposition to light, air and heat, eliminating any step of extract concentration. Analyte recovery depended on the type of matrix. In particular, recovery of the analytes in maize flour was > or =70%, with the exception of vitamin C, pyridoxal-5'-phosphate and vitamin B9 (ca 40%); with tomato pulp, recovery was > or =64%, except for vitamin C (41%); with kiwi, recovery was > or =73%, except for nicotinamide (ca. 30%).

  14. Scalable quantum search using trapped ions

    International Nuclear Information System (INIS)

    Ivanov, S. S.; Ivanov, P. A.; Linington, I. E.; Vitanov, N. V.

    2010-01-01

    We propose a scalable implementation of Grover's quantum search algorithm in a trapped-ion quantum information processor. The system is initialized in an entangled Dicke state by using adiabatic techniques. The inversion-about-average and oracle operators take the form of single off-resonant laser pulses. This is made possible by utilizing the physical symmetries of the trapped-ion linear crystal. The physical realization of the algorithm represents a dramatic simplification: each logical iteration (oracle and inversion about average) requires only two physical interaction steps, in contrast to the large number of concatenated gates required by previous approaches. This not only facilitates the implementation but also increases the overall fidelity of the algorithm.

  15. Rapid Determination of Imatinib in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry: Application to a Pharmacokinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jeong Soo; Cho, Eun Gi; Huh, Wooseong; Ko, Jaewook; Jung, Jin Ah; Lee, Sooyoun [Samsung Medical Center, Seoul (Korea, Republic of)

    2013-08-15

    A simple, fast and robust analytical method was developed to determine imatinib in human plasma using liquid chromatography-tandem mass spectrometry with electrospray ionization in the positive ion mode. Imatinib and labeled internal standard were extracted from plasma with a simple protein precipitation. The chromatographic separation was performed using an isocratic elution of mobile phase involving 5.0 mM ammonium formate in water -5.0 mM ammonium formate in methanol (30:70, v/v) over 3.0 min on reversed-stationary phase. The detection was performed using a triple-quadrupole tandem mass spectrometer in multiple-reaction monitoring mode. The developed method was validated with lower limit of quantification of 10 ng/mL. The calibration curve was linear over 10-2000 ng/mL (R{sup 2} > 0.99). The method validation parameters met the acceptance criteria. The spiked samples and standard solutions were stable under conditions for storage and handling. The reliable method was successfully applied to real sample analyses and thus a pharmacokinetic study in 27 healthy Korean male volunteers.

  16. A drift-pump coil design for a Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Neef, W.S.; Logan, B.

    1983-01-01

    This paper describes both the theory and mechanical design behind a new concept for trapped ion removal from tandem mirror end plugs. The design has been developed for the Mirror Advanced Reactor Study (MARS). The new drift-pump coils replace charge exchange pump beams. Pump beams consume large amounts of power and seriously reduce reactor performance. Drift-pump coils consume only a few megawatts of power and introduce no added burden to the reactor vacuum pumps. In addition, they are easy to replace. The coils are similar in shape to a paper clip and are located at two positions in each end plug. The coils between the transition coil and the first anchor yinyang serve to remove ions trapped in the magnetic well just outboard of the high field choke coil. The coils located between the anchor coil set and the plug coil set remove sloshing ions and trapped cold ions from the plug region

  17. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    Science.gov (United States)

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-06

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  18. Simultaneous determination of niacin and pyridoxine at trace levels by using diode array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Sel, Sabriye; Öztürk Er, Elif; Bakırdere, Sezgin

    2017-12-01

    A highly sensitive and simple diode-array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry method was developed for the simultaneous determination of niacin and pyridoxine in pharmaceutical drugs, tap water, and wastewater samples. To determine the in vivo behavior of niacin and pyridoxine, analytes were subjected to simulated gastric conditions. The calibration plots of the diode-array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry method showed good linearity over a wide concentration range with close to 1.0 correlation coefficients for both analytes. The limit of detection/limit of quantitation values for liquid chromatography quadrupole time-of-flight tandem mass spectrometry analysis were 1.98/6.59 and 1.3/4.4 μg/L for niacin and pyridoxine, respectively, while limit of detection/limit of quantitation values for niacin and pyridoxine in high-performance liquid chromatography analysis were 3.7/12.3 and 5.7/18.9 μg/L, respectively. Recovery studies were also performed to show the applicability of the developed methods, and percentage recovery values were found to be 90-105% in tap water and 94-97% in wastewater for both analytes. The method was also successfully applied for the qualitative and quantitative determination of niacin and pyridoxine in drug samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Configurable Surface-Electrode Ion Trap Design for Quantum Information Processing

    International Nuclear Information System (INIS)

    Liu Wei; Chen Shu-Ming; Chen Ping-Xing; Wu Wei

    2013-01-01

    We propose a configurable surface-electrode ion trap design to alleviate the poor reusability of the existing traps. It can architecturally and electrically support 5 mainstream modes by design reuse, thus enhancing the trap reusability and reducing the experiment setup overhead. We also develop a corresponding simulation suite which can optimize trap geometries and calculate trap parameters to control the trapped ion's classic motion. According to our analytical and simulated results, the configurable design can serve as a unified platform for basic research of large-scale quantum information processing

  20. Cold highly charged ions in a cryogenic Paul trap

    Energy Technology Data Exchange (ETDEWEB)

    Versolato, O. O., E-mail: oscar.versolato@mpi-hd.mpg.de; Schwarz, M.; Windberger, A.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik (Germany); Schmidt, P. O. [Physikalisch-Technische Bundesanstalt (Germany); Drewsen, M. [University of Aarhus, Department of Physics and Astronomy (Denmark); Crespo Lopez-Urrutia, J. R. [Max-Planck-Institut fuer Kernphysik (Germany)

    2013-03-15

    Narrow optical transitions in highly charged ions (HCIs) are of particular interest for metrology and fundamental physics, exploiting the high sensitivity of HCIs to new physics. The highest sensitivity for a changing fine structure constant ever predicted for a stable atomic system is found in Ir{sup 17 + }. However, laser spectroscopy of HCIs is hindered by the large ({approx} 10{sup 6} K) temperatures at which they are produced and trapped. An unprecedented improvement in such laser spectroscopy can be obtained when HCIs are cooled down to the mK range in a linear Paul trap. We have developed a cryogenic linear Paul trap in which HCIs will be sympathetically cooled by {sup 9}Be{sup + } ions. Optimized optical access for laser light is provided while maintaining excellent UHV conditions. The Paul trap will be connected to an electron beam ion trap (EBIT) which is able to produce a wide range of HCIs. This EBIT will also provide the first experimental input needed for the determination of the transition energies in Ir{sup 17 + }, enabling further laser-spectroscopic investigations of this promising HCI.

  1. Confinement in a cryogenic Penning trap of highest charge state ions from EBIT

    International Nuclear Information System (INIS)

    Schneider, D.

    1994-01-01

    The retrapping of highly charged Xe 44+ and Th 68+,72+ ions extracted from an open-quotes Electron Beam Ion Trapclose quotes (EBIT) is demonstrated after injection of the ions into RETRAP, a cryogenic Penning trap (up to 6 Tesla magnetic field) currently with an open cylinder design. Ion extraction in a short pulse (5-20 μsec) from EBIT, essential for efficient retrapping, is employed. The ions are slowed down upon entering a deceleration tube mounted above the trap within the magnetic field. The potential is then rapidly (100 ns) decreased, enabling low energy ions to enter the trap. Capture efficiencies up to 25% are observed via detection of the delayed ion release pulse with a detector below the trap. Signal voltages induced in a tuned circuit due to single and multiple ions have been observed by tuning the ion resonant axial oscillation frequencies for different ions. Results from transporting and retrapping of the ions, as well as their detection, are described and the trapping efficiency is discussed, The motivation for these studies is to cool the trapped very highly charged ions to low temperatures (< 4 K) in order to perform ultrahigh resolution precision spectroscopy, collision studies at ultra low energies and to observe phase transitions in Coulomb clusters of highly charged ions

  2. Experiments with trapped ions and ultrafast laser pulses

    Science.gov (United States)

    Johnson, Kale Gifford

    Since the dawn of quantum information science, laser-cooled trapped atomic ions have been one of the most compelling systems for the physical realization of a quantum computer. By applying qubit state dependent forces to the ions, their collective motional modes can be used as a bus to realize entangling quantum gates. Ultrafast state-dependent kicks [1] can provide a universal set of quantum logic operations, in conjunction with ultrafast single qubit rotations [2], which uses only ultrafast laser pulses. This may present a clearer route to scaling a trapped ion processor [3]. In addition to the role that spin-dependent kicks (SDKs) play in quantum computation, their utility in fundamental quantum mechanics research is also apparent. In this thesis, we present a set of experiments which demonstrate some of the principle properties of SDKs including ion motion independence (we demonstrate single ion thermometry from the ground state to near room temperature and the largest Schrodinger cat state ever created in an oscillator), high speed operations (compared with conventional atom-laser interactions), and multi-qubit entanglement operations with speed that is not fundamentally limited by the trap oscillation frequency. We also present a method to provide higher stability in the radial mode ion oscillation frequencies of a linear radiofrequency (rf) Paul trap-a crucial factor when performing operations on the rf-sensitive modes. Finally, we present the highest atomic position sensitivity measurement of an isolated atom to date of 0.5 nm Hz. (-1/2) with a minimum uncertaintyof 1.7 nm using a 0.6 numerical aperature (NA) lens system, along with a method to correct aberrations and a direct position measurement of ion micromotion (the inherent oscillations of an ion trapped in an oscillating rf field). This development could be used to directly image atom motion in the quantum regime, along with sensing forces at the yoctonewton [10. (-24) N)] scale forgravity sensing

  3. Cryogenic setup for trapped ion quantum computing.

    Science.gov (United States)

    Brandl, M F; van Mourik, M W; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R

    2016-11-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40 Ca + and 88 Sr + ions. The instability of the laser manipulating the optical qubits in 40 Ca + is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10 -15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40 Ca + ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

  4. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guijun, E-mail: gliad@connect.ust.hk; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing [State Key Laboratory on Advanced Displays and Optoelectronics Technologies, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-06-09

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400–800 nm) and bottom (800–1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  5. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    International Nuclear Information System (INIS)

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-01-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400–800 nm) and bottom (800–1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  6. Analysis of carbonyl compounds via headspace solid-phase microextraction with on-fiber derivatization and gas chromatographic-ion trap tandem mass spectrometric determination of their O-(2,3,4,5,6-pentafluorobenzyl)oxime derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Schmarr, Hans-Georg [Dienstleistungszentrum Laendlicher Raum (DLR) Rheinpfalz, Breitenweg 71, D-67435 Neustadt an der Weinstrasse (Germany)], E-mail: hans-georg.schmarr@dlr.rlp.de; Potouridis, Theodoros; Ganss, Sebastian; Sang, Wei; Koepp, Benedikt; Bokuz, Ursula; Fischer, Ulrich [Dienstleistungszentrum Laendlicher Raum (DLR) Rheinpfalz, Breitenweg 71, D-67435 Neustadt an der Weinstrasse (Germany)

    2008-06-09

    An improved method for the analysis of carbonyls is described utilizing a headspace solid-phase microextraction (HS-SPME) step and on-fiber derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) hydrochloride. Thermal desorption of the oxime derivatives formed on the fiber is followed by gas chromatographic separation coupled to an ion trap tandem mass spectrometer (GC-ITMS). Selecting specific fragment ions within the electron ionization (EI{sup +}) mass spectra of these oxime derivatives as precursor ions for MS-MS fragmentation provides a suitable method for the target analysis of individual carbonyl classes, such as alkanals, (E)-2-alkenals, (E,E)-2,4-alkadienals, and others. Retention indices on polar as well as on apolar stationary phases along with EI{sup +} mass spectra patterns are presented for a large set of oxime derivatives, giving valuable information needed for unambiguous assignment of substances in complex sample matrices. The fast sample preparation and derivatization step via HS-SPME can be automated and is applicable to a variety of biological samples and foodstuffs, allowing rapid and sensitive screening analyses of important aldehydic biomarkers and aroma active compounds.

  7. Application of a hybrid ordered mesoporous silica as sorbent for solid-phase multi-residue extraction of veterinary drugs in meat by ultra-high-performance liquid chromatography coupled to ion-trap tandem mass spectrometry.

    Science.gov (United States)

    Casado, Natalia; Morante-Zarcero, Sonia; Pérez-Quintanilla, Damián; Sierra, Isabel

    2016-08-12

    A quick, sensitive and selective analytical reversed-phase multi-residue method using ultra-high performance liquid chromatography coupled to an ion-trap mass spectrometry detector (UHPLC-IT-MS/MS) operating in both positive and negative ion mode was developed for the simultaneous determination of 23 veterinary drug residues (β-blockers, β-agonists and Non-Steroidal Anti-inflammatory Drugs (NSAIDs)) in meat samples. The sample treatment involved a liquid-solid extraction followed by a solid-phase extraction (SPE) procedure. SBA-15 type mesoporous silica was synthetized and modified with octadecylsilane, and the resulting hybrid material (denoted as SBA-15-C18) was applied and evaluated as SPE sorbent in the purification of samples. The materials were comprehensively characterized, and they showed a high surface area, high pore volume and a homogeneous distribution of the pores. Chromatographic conditions and extraction procedure were optimized, and the method was validated according to the Commission Decision 2002/657/EC. The method detection limits (MDLs) and the method quantification limits (MQLs) were determined for all the analytes in meat samples and found to range between 0.01-18.75μg/kg and 0.02-62.50μg/kg, respectively. Recoveries for 15 of the target analytes ranged from 71 to 98%. In addition, for comparative purpose SBA-15-C18 was evaluated towards commercial C18 amorphous silica. Results revealed that SBA-15-C18 was clearly more successful in the multi-residue extraction of the 23 mentioned analytes with higher recovery values. The method was successfully tested to analyze prepacked preparations of mince bovine meat. Traces of propranolol, ketoprofen and diclofenac were detected in some samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Electron beam ion trap bi-annual report 1996/1997

    International Nuclear Information System (INIS)

    Schneider, D.

    1999-01-01

    The research of the EBIT (Electron Beam Ion Trap) program in N Division of the Physics and Space Technology Directorate at LLNL continues to contribute significantly to the understanding of physical processes with low energy highly charged ions in atomic physics, plasma physics, and material science. Low-energy highly charged ions (up to U 92+ ), provided by the EBIT facilities, provide a unique laboratory opportunity to study high field effects in atomic structures and dynamic interaction processes. The formation, existence, and structure of highly charged ions in astrophysical environments and laboratory plasmas make highly charged ions desirable for diagnosing various plasma conditions. The strong interaction of highly charged ions with matter and the response of solid surfaces make them a sensitive analysis tool and possibly a future capability for materials modifications at the atomic scale (nano technology). These physical applications require a good understanding and careful study of the dynamics of the interactions of the ions with complex systems. The EBIT group hosted an international conference and a workshop on trapped charged particles. The various talks and discussions showed that physics research with trapped charged particles is a very active and attractive area of innovative research, and provides a basis for research efforts in new areas. It also became obvious that the EBIT/RETRAP project has unique capabilities to perform important new experiments with trapped very highly charged ions at rest, which are complementary to and competitive with research at heavy ion storage rings and other trapping facilities planned or in operation in Europe, Japan, and the United States. Atomic structure research at EBIT provides ever better and more experimental complete benchmark data, supplying data needed to improve atomic theories. Research highlights through 1996 and 1997 include hyperfine structure measurements in H-like ions, QED studies, lifetime and

  9. Quantum computing with trapped ions, atoms and light

    International Nuclear Information System (INIS)

    Steane, Andrew M.

    2001-01-01

    We consider experimental issues relevant to quantum computing, and discuss the best way to achieve the essential requirements of reliable quantum memory and gate operations. Nuclear spins in trapped ions or atoms are a very promising candidate for the qubits. We estimate the parameters required to couple atoms using light via cavity QED in order to achieve quantum gates. We briefly comment on recent improvements to the Cirac-Zoller method for coupling trapped ions via their vibrational degree of freedom. Error processes result in a trade-off between quantum gate speed and failure probability. A useful quantum computer does appear to be feasible using a combination of ion trap and optical methods. The best understood method to stabilize a large computer relies on quantum error correction. The essential ideas of this are discussed, and recent estimates of the noise requirements in a quantum computing device are given

  10. Liquid Chromatography-Tandem Mass Spectrometry: An Emerging Technology in the Toxicology Laboratory.

    Science.gov (United States)

    Zhang, Yan Victoria; Wei, Bin; Zhu, Yu; Zhang, Yanhua; Bluth, Martin H

    2016-12-01

    In the last decade, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in routine toxicology laboratories. LC-MS/MS offers significant advantages over other traditional testing, such as immunoassay and gas chromatography-mass spectrometry methodologies. Major strengths of LC-MS/MS include improvement in specificity, flexibility, and sample throughput when compared with other technologies. Here, the basic principles of LC-MS/MS technology are reviewed, followed by advantages and disadvantages of this technology compared with other traditional techniques. In addition, toxicology applications of LC-MS/MS for simultaneous detection of large panels of analytes are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Simulating quantum effects of cosmological expansion using a static ion trap

    Science.gov (United States)

    Menicucci, Nicolas C.; Olson, S. Jay; Milburn, Gerard J.

    2010-09-01

    We propose a new experimental test bed that uses ions in the collective ground state of a static trap to study the analogue of quantum-field effects in cosmological spacetimes, including the Gibbons-Hawking effect for a single detector in de Sitter spacetime, as well as the possibility of modeling inflationary structure formation and the entanglement signature of de Sitter spacetime. To date, proposals for using trapped ions in analogue gravity experiments have simulated the effect of gravity on the field modes by directly manipulating the ions' motion. In contrast, by associating laboratory time with conformal time in the simulated universe, we can encode the full effect of curvature in the modulation of the laser used to couple the ions' vibrational motion and electronic states. This model simplifies the experimental requirements for modeling the analogue of an expanding universe using trapped ions, and it enlarges the validity of the ion-trap analogy to a wide range of interesting cases.

  12. Penning traps with unitary architecture for storage of highly charged ions.

    Science.gov (United States)

    Tan, Joseph N; Brewer, Samuel M; Guise, Nicholas D

    2012-02-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  13. Penning traps with unitary architecture for storage of highly charged ions

    International Nuclear Information System (INIS)

    Tan, Joseph N.; Guise, Nicholas D.; Brewer, Samuel M.

    2012-01-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  14. Optimisation, simulation, and training in ion chromatography - all for free!

    International Nuclear Information System (INIS)

    Dicinoski, G.W.; Shaw, M.J.; Madden, J.E.; Haddad, P.R.

    2001-01-01

    Since its inception in 1975, ion chromatography (IC) has grown to become a powerful separation tool for the analytical chemist. Today, when scientists refer to the term IC, they mean a collection of chromatographic techniques suitable for the separation of inorganic ions and low molecular weight, water-soluble, organic compounds. The range of chromatographic techniques covered by this designation includes: ion-exchange chromatography; reversed-phase ion-interaction chromatography; and ion-exclusion chromatography. The optimization of the IC separation process is extremely time-consuming. A computer simulation software, Virtual Column 2, that accurately mimic retention behaviour in IC, is presented. It is based on large datasets of experimentally measured retention times; an ideal tool for chromatographers

  15. Experimental quantum simulations of many-body physics with trapped ions.

    Science.gov (United States)

    Schneider, Ch; Porras, Diego; Schaetz, Tobias

    2012-02-01

    Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.

  16. Model for ion confinement in a hot-electron tandem mirror anchor

    International Nuclear Information System (INIS)

    Baldwin, D.E.

    1980-01-01

    Anisotropic, hot electrons trapped in local minimum-B wells have been proposed as MHD-stabilizing anchors to an otherwise axisymmetric tandem configuration. This work describes a model for plasma confinement between the anchors and the remainder of the system and calcuates the power loss implied by maintenance of this plasma

  17. Folded tandem ion accelerator facility at BARC

    International Nuclear Information System (INIS)

    Agarwal, Arun; Padmakumar, Sapna; Subrahmanyam, N.B.V.; Singh, V.P.; Bhatt, J.P.; Ware, Shailaja V.; Pol, S.S; Basu, A.; Singh, S.K.; Krishnagopal, S.; Bhagwat, P.V.

    2017-01-01

    The 5.5 MV single stage Van de Graaff (VDG) accelerator was in continuous operation at Nuclear Physics Division (NPD), Bhabha Atomic Research Centre (BARC) since its inception in 1962. During 1993-96, VDG accelerator was converted to a Folded Tandem Ion Accelerator (FOTIA). The scientists and engineers of NPD, IADD (then a part of NPD) along with several other divisions of BARC joined hands together in designing, fabrication, installation and commissioning of the FOTIA for the maximum terminal voltage of 6 MV. After experiencing the first accelerated ion beam on the target from FOTIA during April 2000, different ion species were accelerated and tested. Now this accelerator FOTIA is in continuous use for different kind of experiments

  18. Control of the conformations of ion Coulomb crystals in a Penning trap

    Science.gov (United States)

    Mavadia, Sandeep; Goodwin, Joseph F.; Stutter, Graham; Bharadia, Shailen; Crick, Daniel R.; Segal, Daniel M.; Thompson, Richard C.

    2013-01-01

    Laser-cooled atomic ions form ordered structures in radiofrequency ion traps and in Penning traps. Here we demonstrate in a Penning trap the creation and manipulation of a wide variety of ion Coulomb crystals formed from small numbers of ions. The configuration can be changed from a linear string, through intermediate geometries, to a planar structure. The transition from a linear string to a zigzag geometry is observed for the first time in a Penning trap. The conformations of the crystals are set by the applied trap potential and the laser parameters, and agree with simulations. These simulations indicate that the rotation frequency of a small crystal is mainly determined by the laser parameters, independent of the number of ions and the axial confinement strength. This system has potential applications for quantum simulation, quantum information processing and tests of fundamental physics models from quantum field theory to cosmology. PMID:24096901

  19. Liquid chromatography tandem mass spectrometry method for simultaneous determination of metoprolol tartrate and ramipril in human plasma.

    Science.gov (United States)

    Gowda, K Veeran; Mandal, Uttam; Senthamil Selvan, P; Sam Solomon, W D; Ghosh, Animesh; Sarkar, Amlan Kanti; Agarwal, Sangita; Nageswar Rao, T; Pal, Tapan Kumar

    2007-10-15

    A simple, rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of metoprolol tartrate (MT) and ramipril, in human plasma. Both the drugs were extracted by liquid-liquid extraction with diethyl ether-dichloromethane (70:30, v/v). The chromatographic separation was performed on a reversed-phase C8 column with a mobile phase of 10 mM ammonium formate-methanol (3:97, v/v). The protonated analyte was quantitated in positive ionization by multiple reaction monitoring with a mass spectrometer. The method was validated over the concentration range of 5-500 ng/ml for metoprolol and ramipril in human plasma. The precursor to product ion transitions of m/z 268.0-103.10 and m/z 417.20-117.20 were used to measure metoprolol and ramipril, respectively.

  20. Sideband cooling and coherent dynamics in a microchip multi-segmented ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Stephan A; Poschinger, Ulrich; Ziesel, Frank; Schmidt-Kaler, Ferdinand [Universitaet Ulm, Institut fuer Quanteninformationsverarbeitung, Albert-Einstein-Allee 11, D-89069 Ulm (Germany)], E-mail: stephan.schulz@uni-ulm.de

    2008-04-15

    Miniaturized ion trap arrays with many trap segments present a promising architecture for scalable quantum information processing. The miniaturization of segmented linear Paul traps allows partitioning the microtrap into different storage and processing zones. The individual position control of many ions-each of them carrying qubit information in its long-lived electronic levels-by the external trap control voltages is important for the implementation of next generation large-scale quantum algorithms. We present a novel scalable microchip multi-segmented ion trap with two different adjacent zones, one for the storage and another dedicated to the processing of quantum information using single ions and linear ion crystals. A pair of radio-frequency-driven electrodes and 62 independently controlled dc electrodes allows shuttling of single ions or linear ion crystals with numerically designed axial potentials at axial and radial trap frequencies of a few megahertz. We characterize and optimize the microtrap using sideband spectroscopy on the narrow S{sub 1/2}{r_reversible}D{sub 5/2} qubit transition of the {sup 40}Ca{sup +} ion, and demonstrate coherent single-qubit Rabi rotations and optical cooling methods. We determine the heating rate using sideband cooling measurements to the vibrational ground state, which is necessary for subsequent two-qubit quantum logic operations. The applicability for scalable quantum information processing is proved.

  1. Liquid chromatography tandem mass spectrometry method for the estimation of lamotrigine in human plasma: Application to a pharmacokinetic study

    Directory of Open Access Journals (Sweden)

    Santosh Ghatol

    2013-04-01

    Full Text Available A reliable, selective and sensitive liquid chromatography tandem mass spectrometry method was developed and validated for the quantification of lamotrigine in human plasma using lamotrigine-13C3, d3 as an internal standard. Analyte and internal standard were extracted from human plasma by solid-phase extraction and detected in positive ion mode by tandem mass spectrometry with electrospray ionization (ESI interface. Chromatographic separation was performed on a Chromolith® SpeedROD; RP-18e column (50−4.6 mm i.d. using acetonitrile: 5±0.1 mM ammonium formate solution (90:10, v/v as the mobile phase at a flow rate of 0.500 mL/min. The calibration curves were linear over the range of 5.02–1226.47 ng/mL with the lower limit of quantitation validated at 5.02 ng/mL. The analytes were found stable in human plasma through three freeze (−20 °C-thaw (ice-cold water bath cycles and under storage on bench-top in ice-cold water bath for at least 6.8 h, and also in the mobile phase at 10 °C for at least 57 h. The method has shown good reproducibility, as the intra- and inter-day precisions were within 3.0%, while the accuracies were within ±6.0% of nominal values. The validated LC–MS/MS method was applied for the evaluation of pharmacokinetic and bioequivalence parameters of lamotrigine after an oral administration of 50 mg lamotrigine tablet to thirty-two healthy adult male volunteers. Keywords: Lamotrigine, Liquid chromatography/tandem mass spectrometry, Solid phase extraction, Pharmacokinetic study

  2. Trapped-ion quantum logic gates based on oscillating magnetic fields.

    Science.gov (United States)

    Ospelkaus, C; Langer, C E; Amini, J M; Brown, K R; Leibfried, D; Wineland, D J

    2008-08-29

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.

  3. Simultaneous determination of three pesticide adjuvant residues in plant-derived agro-products using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Li, Hui; Jiang, Zejun; Cao, Xiaolin; Su, Hang; Shao, Hua; Jin, Fen; Abd El-Aty, A M; Wang, Jing

    2017-12-15

    Herein, an accurate and reliable isotope-labelled internal standard method was developed and validated for simultaneous determination of three polar pesticide adjuvants, namely 2-pyrrolidone, N-methyl-2-pyrrolidone, and N-ethyl-2-pyrrolidone in plant-derived agro-products. Matrices, including apple, cabbage, tomato, cucumber, rice, and wheat were extracted with a modified quick, easy, cheap, effective, rugged, and safe "QuEChERS" method and purified with a new clean-up sorbent (Z-Sep). A hydrophilic interaction liquid chromatography column (HILIC), exhibiting a lipophilic-hydrophilic character, was used to separate the three analytes over 10min using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Matrix effects in various matrices were evaluated and an isotope-labelled internal standard method was employed to compensate for ion enhancement/suppression effects. At three fortification levels (2.0, 5.0, and 20.0μg/kg), the mean recoveries ranged from 78.5 to 112.1% with relative standard deviations (RSDs)determination of the three tested pesticide adjuvant residues in agro-products of plant origin. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Santa, Tomofumi

    2011-01-01

    Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is one of the most prominent analytical techniques owing to its inherent selectivity and sensitivity. In LC/ESI-MS/MS, chemical derivatization is often used to enhance the detection sensitivity. Derivatization improves the chromatographic separation, and enhances the mass spectrometric ionization efficiency and MS/MS detectability. In this review, an overview of the derivatization reagents which have been applied to LC/ESI-MS/MS is presented, focusing on the applications to low molecular weight compounds. 2010 John Wiley & Sons, Ltd.

  5. Spectroscopy of a Synthetic Trapped Ion Qubit

    Science.gov (United States)

    Hucul, David; Christensen, Justin E.; Hudson, Eric R.; Campbell, Wesley C.

    2017-09-01

    133Ba+ has been identified as an attractive ion for quantum information processing due to the unique combination of its spin-1 /2 nucleus and visible wavelength electronic transitions. Using a microgram source of radioactive material, we trap and laser cool the synthetic A =133 radioisotope of barium II in a radio-frequency ion trap. Using the same, single trapped atom, we measure the isotope shifts and hyperfine structure of the 62P1 /2↔62S1 /2 and 62P1 /2↔52D3 /2 electronic transitions that are needed for laser cooling, state preparation, and state detection of the clock-state hyperfine and optical qubits. We also report the 62P1 /2↔52D3 /2 electronic transition isotope shift for the rare A =130 and 132 barium nuclides, completing the spectroscopic characterization necessary for laser cooling all long-lived barium II isotopes.

  6. Memory coherence of a sympathetically cooled trapped-ion qubit

    International Nuclear Information System (INIS)

    Home, J. P.; McDonnell, M. J.; Szwer, D. J.; Keitch, B. C.; Lucas, D. M.; Stacey, D. N.; Steane, A. M.

    2009-01-01

    We demonstrate sympathetic cooling of a 43 Ca + trapped-ion 'memory' qubit by a 40 Ca + 'coolant' ion sufficiently near the ground state of motion for fault-tolerant quantum logic, while maintaining coherence of the qubit. This is an essential ingredient in trapped-ion quantum computers. The isotope shifts are sufficient to suppress decoherence and phase shifts of the memory qubit due to the cooling light which illuminates both ions. We measure the qubit coherence during ten cycles of sideband cooling, finding a coherence loss of 3.3% per cooling cycle. The natural limit of the method is O(10 -4 ) infidelity per cooling cycle.

  7. The kick-out mass selection technique for ions stored in an Electrostatic Ion Beam Trap

    International Nuclear Information System (INIS)

    Toker, Y; Altstein, N; Aviv, O; Rappaport, M L; Heber, O; Schwalm, D; Strasser, D; Zajfman, D

    2009-01-01

    A simple mass selection technique which allows one to clean a keV ion beam of undesirable masses while stored in an Electrostatic Ion Beam Trap (EIBT) is described. The technique is based on the time-of-flight principle and takes advantage of the long storage times and self-bunching that are possible in this type of traps (self bunching being the effect that keeps ions of the same mass bunched in spite of their finite distributions of velocities and trajectories). As the oscillation period is proportional to the square root of the ion mass, bunches containing ions of different masses will separate in space with increasing storage time and can be kicked out by a pulsed deflector mounted inside the trap. A mass selector of this type has been implemented successfully in an EIBT connected to an Even-Lavie supersonic expansion source and is routinely used in ongoing cluster experiments.

  8. Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps

    Energy Technology Data Exchange (ETDEWEB)

    Highstrete, Clark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Quantum Information Sciences Dept.; Scott, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). RF/Optoelectronics Dept.; Nordquist, Christopher D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). RF/Optoelectronics Dept.; Sterk, Jonathan David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Tigges, Christopher P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Blain, Matthew Glenn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Heller, Edwin J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Microsystems Integration Dept.; Stevens, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). MESAFab Operations 2 Dept.

    2013-11-01

    Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb+ hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ion traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.

  9. Ion-pair chromatography of nucleic acid derivatives

    International Nuclear Information System (INIS)

    Perrone, P.A.; Brown, P.R.

    1985-01-01

    Little work has been done on the ion-pair chromatography of nucleic acid constituents, although there is a great potential for the use of this technique in the field. Since the classic work in 1949, nucleotides, as well as nucleosides and bases, have been separated by ion-exchange chromatography. However, ion exchange is a difficult mode and most researchers prefer the use of reversed-phase whenever possible. Although reversed-phase is now the method of choice, ionic compounds like nucleotides and some of the more polar bases are not adequately retained by many systems of this type. In addition, it is difficult to analyze simultaneously members of all three classes of nucleic acid compounds (bases, nucleosides, and nucleotides) using a reversed-phase system, even with gradient elution. Ion pairing can be a useful technique because, theoretically, the separation of nonionic bases and nucleosides along with the ionic nucleotides can be achieved. Additionally, each group of compounds may be separated isocratically. In this chapter, they will discuss ion-pair chromatography as applied to nucleic acid constituents. The current theories, advantages and disadvantages, a limited number of applications, and potential for future work are presented

  10. Ring-shaped Wigner crystals of trapped ions at the micronscale

    Science.gov (United States)

    Li, Haokun; Urban, Erik; Noel, Crystal; Chuang, Alexander; Xia, Yang; Hemmerling, Borge; Wang, Yuan; Zhang, Xiang; Haeffner, Hartmut

    Trapped ion crystals are ideal platforms to study many-body physics and quantum information processing, with both the internal electronic states and external motional degree-of-freedoms controllable at the single quantum level. In contrast to conventional, finite, linear chains of ions, a ring topology exhibiting periodic boundary conditions and rotational symmetry opens up a new directions to diverse topics. However, previous implementations of ion rings result in small aspect ratios (electrode distance to ring diameter, making the rotational symmetry of the ion crystals prone to stray electric fields from imperfections of the trap electrodes, particularly evident at low temperatures. Here, using a new trap design with a 60-fold improvement of this aspect ratio, we demonstrate crystallization of 40Ca+ ions in a ring with rotational energy barriers comparable to the thermal energy of Doppler laser cooled ion crystals. When further reducing the rotational energy barriers, we observe delocalization of the ion rings. With this result, we enter a regime where quantum topological effects can be studied and novel quantum computation and simulation experiments can be implemented.

  11. Designing of a Quadrupole Paul Ion Trap

    Science.gov (United States)

    Kiyani, Abouzar; Abdollahzadeh, M.; Sadat Kiai, S. M.; Zirak, A. R.

    2011-08-01

    The ion motion equation in a Paul ion trap known as Mathieu differential equation has been solved for the first time by using Runge-Kutta methods with 4th, 6th, and 8th orders. The first stability regions in az - qz plane and the corresponding qmax values were determined and compared. Also, the first stability regions of , , , ions in the Vdc - Vac plane were drown, and the threshold voltages for the ion separation was investigated.

  12. Quasi-conical centrifugal ion trap

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Solov'ev, K.V.; Grigor'ev, D.V.; Flegontova, E.Yu.

    1999-01-01

    This paper describes a new excellent ion trap that principally differs from the classic hyperbolic one by its action. The action is based on the axisymmetric electrostatic quasi-conical field with the following potential type: F=F 0 [ln r - r 2 /2+z 2 ], where r, z are cylindrical dimensionless coordinates. The radial potential run (f=ln r-r 2 /2), in this case, is exactly presented by the approximation function f a =ar 2 +b/r 2 +c. In addition, there are some ranges of r (for example, 0.6< r<0.35), in which the concurrence accuracy value is above 0.5%. The paper presents the theory of particles dynamics in the centrifugal trap. Basic correlation for resolution ratios and sensitivity values are developed. Recommendations on the centrifugal trap design implementation, including the recording system, are given

  13. Determination of melamine in milk-based products and other food and beverage products by ion-pair liquid chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Maria; Sancho, Juan V. [Research Institute for Pesticides and Water, University Jaume I, E-12071, Castellon (Spain); Hernandez, Felix, E-mail: felix.hernandez@qfa.uji.es [Research Institute for Pesticides and Water, University Jaume I, E-12071, Castellon (Spain)

    2009-09-01

    This paper describes a fast method for the sensitive and selective determination of melamine in a wide range of food matrices, including several milk-based products. The method involves an extraction with aqueous 1% trichloroacetic acid before the injection of the 10-fold diluted extract into the liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) system, using labelled melamine as the internal standard. As melamine is present in aqueous media in the cationic form, the chromatographic separation in reversed-phase LC requires the use of anionic ion-pair reagents, such as tridecafluoroheptanoic acid (THFA). This allows a satisfactory chromatographic retention and peak shape in all the types of food samples investigated. The method has been validated in six food matrices (biscuit, dry pasta and four milk-based products) by means of recovery experiments in samples spiked at 1 and 5 mg kg{sup -1}. Average recoveries (n = 5) ranged from 77% to 100%, with excellent precision (RSDs lower than 5%) and limits of detection between 0.01 and 0.1 mg kg{sup -1}. In addition, accuracy and robustness of the method was proven in different soya-based matrices by means of quality control (QC) sample analysis. QC recoveries, at 1 and 2.5 mg kg{sup -1}, were satisfactory, ranging from 79% to 110%. The method developed in this work has been applied to the determination of melamine in different types of food samples. All detections were confirmed by acquiring two MS/MS transitions (127 > 85 for quantification; 127 > 68 for confirmation) and comparing their ion intensity ratio with that of reference standards. Accuracy of the method was also assessed by applying it to a milk-based product and a baking mix material as part of an EU proficiency test, in which highly satisfactory results were obtained.

  14. Determination of melamine in milk-based products and other food and beverage products by ion-pair liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Ibanez, Maria; Sancho, Juan V.; Hernandez, Felix

    2009-01-01

    This paper describes a fast method for the sensitive and selective determination of melamine in a wide range of food matrices, including several milk-based products. The method involves an extraction with aqueous 1% trichloroacetic acid before the injection of the 10-fold diluted extract into the liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) system, using labelled melamine as the internal standard. As melamine is present in aqueous media in the cationic form, the chromatographic separation in reversed-phase LC requires the use of anionic ion-pair reagents, such as tridecafluoroheptanoic acid (THFA). This allows a satisfactory chromatographic retention and peak shape in all the types of food samples investigated. The method has been validated in six food matrices (biscuit, dry pasta and four milk-based products) by means of recovery experiments in samples spiked at 1 and 5 mg kg -1 . Average recoveries (n = 5) ranged from 77% to 100%, with excellent precision (RSDs lower than 5%) and limits of detection between 0.01 and 0.1 mg kg -1 . In addition, accuracy and robustness of the method was proven in different soya-based matrices by means of quality control (QC) sample analysis. QC recoveries, at 1 and 2.5 mg kg -1 , were satisfactory, ranging from 79% to 110%. The method developed in this work has been applied to the determination of melamine in different types of food samples. All detections were confirmed by acquiring two MS/MS transitions (127 > 85 for quantification; 127 > 68 for confirmation) and comparing their ion intensity ratio with that of reference standards. Accuracy of the method was also assessed by applying it to a milk-based product and a baking mix material as part of an EU proficiency test, in which highly satisfactory results were obtained.

  15. Gas Chromatographic-Ion Trap Mass Spectrometric Analysis of Volatile Organic Compounds by Ion-Molecule Reactions Using the Electron-Deficient Reagent Ion CCl{3/+}

    Science.gov (United States)

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl{3/+} was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl{3/+} could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl{3/+} with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M + CCl3 - HCl]+ for aromatic hydrocarbons, [M - OH]+ for saturated cyclic ether, ketone, and alcoholic compounds, [M - H]+ ion for monoterpenes, M·+ for sesquiterpenes, [M - CH3CO]+ for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl{3/+} were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds.

  16. Lithium adduct as precursor ion for sensitive and rapid quantification of 20 (S)-protopanaxadiol in rat plasma by liquid chromatography/quadrupole linear ion trap mass spectrometry and application to rat pharmacokinetic study.

    Science.gov (United States)

    Bao, Yuanwu; Wang, Quanying; Tang, Pingming

    2013-03-01

    A novel, rapid and sensitive liquid chromatography/quadrupole linear ion trap mass spectrometry [LC-ESI-(QqLIT)MS/MS] method was developed and validated for the quantification of protopanaxadiol (PPD) in rat plasma. Oleanolic acid (OA) was used as internal standard (IS). A simple protein precipitation based on acetonitrile (ACN) was employed. Chromatographic separation was performed on a Sepax GP-C18 column (50 × 2.1 mm, 5 μM) with a mobile phase consisting of ACN-water and 1.5 μM formic acid and 25 mM lithium acetate (90 : 10, v/v) at a flow rate of 0.4 ml/min for 3.0 min. Multiple-reaction-monitoring mode was performed using lithium adduct ion as precursor ion of m/z 467.5/449.4 and 455.6/407.4 for the drug and IS, respectively. Calibration curve was recovered over a concentration range of 0.5-100 ng/ml with a correlation coefficient >0.99. The limit of detection was 0.2 ng/ml in rat plasma for PPD. The results of the intraday and interday precision and accuracy studies were well within the acceptable limits. The validated method was successfully applied to investigate the pharmacokinetic study of PPD after intravenous and gavage administration to rat. Copyright © 2013 John Wiley & Sons, Ltd.

  17. A study of trapped ion dynamics by photon-correlation and pulse-probe techniques

    International Nuclear Information System (INIS)

    Rink, J.; Dholakia, K.; Zs, G.; Horvath, K.; Hernandez-Pozos, J. L.; Power, W.; Segal, D. M.; Thompson, R. C.; Walker, T.

    1995-01-01

    We demonstrate non-evasive methods for observing ion and ion cloud oscillation frequencies in a quadrupole ion trap. These trap resonances are measured for small clouds using a photon correlation technique. For large clouds the rotation frequency can be detected with the help of an additional pulsed probe laser. We show applications of the photon correlation method such as estimating the dynamic properties of a combined trap and detecting ion crystals

  18. Fast quantum logic gates with trapped-ion qubits

    Science.gov (United States)

    Schäfer, V. M.; Ballance, C. J.; Thirumalai, K.; Stephenson, L. J.; Ballance, T. G.; Steane, A. M.; Lucas, D. M.

    2018-03-01

    Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer. The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes. However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural ‘speed limit’ of the trap. Here we implement one such method, which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds—less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties, operation fidelities and optical connectivity of trapped-ion qubits with the submicrosecond logic speeds that are usually

  19. Technologies for Trapped-Ion Quantum Information Systems

    Science.gov (United States)

    2016-03-21

    we discuss work aiming to leverage a commer- cial CMOS (complementary metal-oxide- semiconductor ) process to develop an integrated ion trap architecture...this integration: alignment of optical elements with tiny modes to point emitters, and trap- ping charged particles close to dielectric surfaces. Inte...far by heating in several ways. The deep optical potentials required to confine a charged particle against stray fields impart significant recoil

  20. Simultaneous Determination of Chelating Agents by Ion-Suppression and Ion-Pair Chromatography in Wastewater

    International Nuclear Information System (INIS)

    Dodi, Alain; Bouscarel, Maelle

    2008-01-01

    This article describes two methods for analysing chelating agents found in nuclear waste. First, ion-suppression chromatography using an anion exchange stationary phase and mobile phase consisting of a nitric acid solution and pure water gradient. UV detection was performed at 330 nm after the reaction with a post-column reagent composed of iron nitrate in perchloric acid. Secondly, ion-pair chromatography with a mobile phase consisting of a mixture of nitric acid, tetra-butyl-ammonium hydrogeno-sulphate, tetra-butyl-ammonium hydroxide and iron chloride. A reversed-phase material was used as a stationary phase and detection was performed by direct measurement of the UV absorption at 260 nm. The quantification limits were lower for ion-pair chromatography than for ion-suppression chromatography. Both methods were easy to implement and allow a multi-element separation in less than 30 min with low detection limits. (authors)

  1. Simultaneous Determination of Chelating Agents by Ion-Suppression and Ion-Pair Chromatography in Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Dodi, Alain; Bouscarel, Maelle [Commissariat a l' energie atomique - C.E.A, Centre d' Etude de Cadarache, Laboratoire d' Analyses Radiochimiques et Chimiques, St Paul lez Durance (France)

    2008-07-01

    This article describes two methods for analysing chelating agents found in nuclear waste. First, ion-suppression chromatography using an anion exchange stationary phase and mobile phase consisting of a nitric acid solution and pure water gradient. UV detection was performed at 330 nm after the reaction with a post-column reagent composed of iron nitrate in perchloric acid. Secondly, ion-pair chromatography with a mobile phase consisting of a mixture of nitric acid, tetra-butyl-ammonium hydrogeno-sulphate, tetra-butyl-ammonium hydroxide and iron chloride. A reversed-phase material was used as a stationary phase and detection was performed by direct measurement of the UV absorption at 260 nm. The quantification limits were lower for ion-pair chromatography than for ion-suppression chromatography. Both methods were easy to implement and allow a multi-element separation in less than 30 min with low detection limits. (authors)

  2. Trapped-Ion Quantum Logic with Global Radiation Fields.

    Science.gov (United States)

    Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K

    2016-11-25

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  3. Simultaneous determination of asperosaponin VI and its active metabolite hederagenin in rat plasma by liquid chromatography-tandem mass spectrometry with positive/negative ion-switching electrospray ionization and its application in pharmacokinetic study.

    Science.gov (United States)

    Zhu, He; Ding, Li; Shakya, Shailendra; Qi, Xiemin; Hu, Linlin; Yang, Xiaolin; Yang, Zhonglin

    2011-11-15

    A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method operated in the positive/negative electrospray ionization (ESI) switching mode has been developed and validated for the simultaneous determination of asperosaponin VI and its active metabolite hederagenin in rat plasma. After addition of internal standards diazepam (for asperosaponin VI) and glycyrrhetic acid (for hederagenin), the plasma sample was deproteinized with acetonitrile, and separated on a reversed phase C18 column with a mobile phase of methanol (solvent A)-0.05% glacial acetic acid containing 10 mM ammonium acetate and 30 μM sodium acetate (solvent B) using gradient elution. The detection of target compounds was done in multiple reaction monitoring (MRM) mode using a tandem mass spectrometry equipped with positive/negative ion-switching ESI source. At the first segment, the MRM detection was operated in the positive ESI mode using the transitions of m/z 951.5 ([M+Na](+))→347.1 for asperosaponin VI and m/z 285.1 ([M+H](+))→193.1 for diazepam for 4 min, then switched to the negative ESI mode using the transitions of m/z 471.3 ([M-H](-))→471.3 for hederagenin and m/z 469.4 ([M-H](-))→425.4 for glycyrrhetic acid, respectively. The sodiated molecular ion [M+Na](+) at m/z 951.5 was selected as the precursor ion for asperosaponin VI, since it provided better sensitivity compared to the deprotonated and protonated molecular ions. Sodium acetate was added to the mobile phase to make sure that abundant amount of the sodiated molecular ion of asperosaponin VI could be produced, and more stable and intensive mass response of the product ion could be obtained. For the detection of hederagenin, since all of the mass responses of the fragment ions were very weak, the deprotonated molecular ion [M-H](-)m/z 471.3 was employed as both the precursor ion and the product ion. But the collision energy was still used for the MRM, in order to eliminate the influences induced by the interference

  4. A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams

    International Nuclear Information System (INIS)

    Herfurth, F.; Dilling, J.; Kellerbauer, A.

    2000-05-01

    An ion beam cooler and buncher has been developed for the manipulation of radioactive ion beams. The gas-filled linear radiofrequency ion trap system is installed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. Its purpose is to accumulate the 60-keV continuous ISOLDE ion beam with high efficiency and to convert it into low-energy low-emittance ion pulses. The efficiency was found to exceed 10% in agreement with simulations. A more than 10-fold reduction of the ISOLDE beam emittance can be achieved. The system has been used successfully for first on-line experiments. Its principle, setup and performance will be discussed. (orig.)

  5. Integrated System Technologies for Modular Trapped Ion Quantum Information Processing

    Science.gov (United States)

    Crain, Stephen G.

    Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

  6. Trapped Ion Quantum Computation by Adiabatic Passage

    International Nuclear Information System (INIS)

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-01-01

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  7. Pulsed flow modulation two-dimensional comprehensive gas chromatography-tandem mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Poliak, Marina; Fialkov, Alexander B; Amirav, Aviv

    2008-11-07

    Pulsed flow modulation (PFM) two-dimensional comprehensive gas chromatography (GC x GC) was combined with quadrupole-based mass spectrometry (MS) via a supersonic molecular beam (SMB) interface using a triple-quadrupole system as the base platform, which enabled tandem mass spectrometry (MS-MS). PFM is a simple GC x GC modulator that does not consume cryogenic gases while providing tunable second GC x GC column injection time for enabling the use of quadrupole-based mass spectrometry regardless its limited scanning speed. The 20-ml/min second column flow rate involved with PFM is handled, splitless, by the SMB interface without affecting the sensitivity. The combinations of PFM GC x GC-MS with SMB and PFM GC x GC-MS-MS with SMB were explored with the analysis of diazinon and permethrin in coriander. PFM GC x GC-MS with SMB is characterized by enhanced molecular ion and tailing-free fast ion source response time. It enables universal pesticide analysis with full scan and data analysis with reconstructed single ion monitoring on the enhanced molecular ion and another prominent high mass fragment ion. The elimination of the third fragment ion used in standard three ions method results in significantly reduced matrix interference. GC x GC-MS with SMB improves the GC separation, and thereby our ability for sample identification using libraries. GC-MS-MS with SMB provides better reduction (elimination) of matrix interference than GC x GC-MS. However, it is a target method, which is not always applicable. GC x GC-MS-MS does not seem to further reduce matrix interferences over GC-MS-MS and unlike GC x GC-MS, it is incompatible with library identification, but it is beneficial to have both GC x GC and MS-MS capabilities in the same system.

  8. Unified theory of ballooning instabilities and temperature gradient driven trapped ion modes

    International Nuclear Information System (INIS)

    Xu, X.Q.

    1990-08-01

    A unified theory of temperature gradient driven trapped ion modes and ballooning instabilities is developed using kinetic theory in banana regimes. All known results, such as electrostatic and purely magnetic trapped particle modes and ideal MHD ballooning modes (or shear Alfven waves) are readily derived from our single general dispersion relation. Several new results from ion-ion collision and trapped particle modification of ballooning modes are derived and discussed and the interrelationship between those modes is established. 24 refs

  9. Integrated sampling vs ion chromatography: Mathematical considerations

    International Nuclear Information System (INIS)

    Sundberg, L.L.

    1992-01-01

    This paper presents some general purpose considerations that can be utilized when comparisons are made between the results of integrated sampling over several hours or days, and ion chromatography where sample collection times are measured in minutes. The discussion is geared toward the measurement of soluble transition metal ions in BWR feedwater. Under steady-state conditions, the concentrations reported by both techniques should be in reasonable agreement. Transient operations effect both types of measurements. A simplistic model, applicable to both sampling techniques, is presented that demonstrates the effect of transients which occur during the acquisition of a steady-state sample. For a common set of conditions, the integrated concentration is proportional to the concentration and duration of the transient, and inversely proportional to the sample collection time. The adjustment of the collection period during a known transient allows an estimation of peak transient concentration. Though the probability of sampling a random transient with the integrated sampling technique is very high, the magnitude is severely diluted with long integration times. Transient concentrations are magnified with ion chromatography, but the probability of sampling a transient is significantly lower using normal ion chromatography operations. Various data averaging techniques are discussed for integrated sampling and IC determinations. The use of time-weighted averages appears to offer more advantages over arithmetic and geometric means for integrated sampling when the collection period is variable. For replicate steady-state ion chromatography determinations which bracket a transient sample, it may be advantageous to ignore the calculation of averages, and report the data as trending information only

  10. The injection of inert gas ions into solids: their trapping and escape

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.; Donnelly, S.E.; Ingram, D.C.; Webb, R.P.

    1980-01-01

    The first part of this contribution will review experimental studies of the trapping probabilities of ions injected into solids as a function of ion energy and indicate how the data can be modelled theoretically. It will be demonstrated that trapping is a two stage process, the first involving penetration into the solid and the second requiring atom dissolution and experimental evidence will be cited to show how the latter process may be dominant for light ions which create little radiation damage. For low ion fluences, injected atoms are generally trapped in isolation but as fluence increases gas-defect complexes are formed and it will be shown how post bombardment thermal evaluation studies can provide evidence for the growth of these complexes. Concomitant with trapping however, dissolved gas may be evolved from the solid by some form of sputtering process, sometimes by mechanisms much more efficient than congruent sputtering of the solid together with the trapped species. Measurements of the trapped atom concentration-ion fluence behaviour and of the evolution of one initially trapped species by bombardment with a second species provide information on the physical processes involved in trapped atom sputtering and upon the mechanism of gas incorporation saturation and experimental studies in this area, together with some first approximation theoretical investigations will be discussed. It will be shown that an important mechanism in dictating incorporation saturation, in addition to sputtering, is the atomic saturation of the solid by the implant. (author)

  11. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  12. A novel multidimensional protein identification technology approach combining protein size exclusion prefractionation, peptide zwitterion-ion hydrophilic interaction chromatography, and nano-ultraperformance RP chromatography/nESI-MS2 for the in-depth analysis of the serum proteome and phosphoproteome: application to clinical sera derived from humans with benign prostate hyperplasia.

    Science.gov (United States)

    Garbis, Spiros D; Roumeliotis, Theodoros I; Tyritzis, Stavros I; Zorpas, Kostas M; Pavlakis, Kitty; Constantinides, Constantinos A

    2011-02-01

    The current proof-of-principle study was aimed toward development of a novel multidimensional protein identification technology (MudPIT) approach for the in-depth proteome analysis of human serum derived from patients with benign prostate hyperplasia (BPH) using rational chromatographic design principles. This study constituted an extension of our published work relating to the identification and relative quantification of potential clinical biomarkers in BPH and prostate cancer (PCa) tissue specimens. The proposed MudPIT approach encompassed the use of three distinct yet complementary liquid chromatographic chemistries. High-pressure size-exclusion chromatography (SEC) was used for the prefractionation of serum proteins followed by their dialysis exchange and solution phase trypsin proteolysis. The tryptic peptides were then subjected to offline zwitterion-ion hydrophilic interaction chromatography (ZIC-HILIC) fractionation followed by their online analysis with reversed-phase nano-ultraperformance chromatography (RP-nUPLC) hyphenated to nanoelectrospray ionization-tandem mass spectrometry using an ion trap mass analyzer. For the spectral processing, the sequential use of the SpectrumMill, Scaffold, and InsPecT software tools was applied for the tryptic peptide product ion MS(2) spectral processing, false discovery rate (FDR) assessment, validation, and protein identification. This milestone serum analysis study allowed the confident identification of over 1955 proteins (p ≤ 0.05; FDR ≤ 5%) with a broad spectrum of biological and physicochemical properties including secreted, tissue-specific proteins spanning approximately 12 orders of magnitude as they occur in their native abundance levels in the serum matrix. Also encompassed in this proteome was the confident identification of 375 phosphoproteins (p ≤ 0.05; FDR ≤ 5%) with potential importance to cancer biology. To demonstrate the performance characteristics of this novel MudPIT approach, a comparison

  13. Measurement of serum 3-epi-25-hydroxyvitamin D3, 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in infant, paediatric and adolescent populations of Korea using ultra-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Cho, Sung E; Kim, Sollip; Kim, Young D; Lee, Hyojung; Seo, Dong H; Song, Junghan; Um, Tae H; Cho, Chong R; Kim, Nam H; Hwang, Jong H

    2017-09-01

    Background We evaluated the performance of ultra-performance liquid chromatography-tandem mass spectrometry to measure serum 3-epi-25-hydroxyvitamin D 3 , 25-hydroxyvitamin D 3 and 25-hydroxyvitamin D 2 concentrations in 519 infant, paediatric and adolescent serum samples in Korea. Methods We used a Kinetex XB-C18 column and isocratic methanol/water (77.5/22.5, v/v) with 0.025% (v/v) high-performance liquid chromatography solvent additive flowing at 0.25 mL/min, yielding an 11 min/sample run time. A TQD triple quadrupole mass spectrometer in electrospray ionization positive ion mode with multiple reaction monitoring transition via an MSMS vitamin D kit was used to evaluate precision, carryover, ion suppression and linearity. Samples were prepared using the 4-phenyl-1,2,4-triazoline-3,5-dione derivatization method. Results Intra- and inter-run precisions were 1.23-13.28% and 1.02-10.08%, respectively. Group carryovers were -0.27% and 0.10%, respectively. There was no ion suppression. The calibration curve showed good linearity from calibrator Level 1 (11.75 nmol/L) to 6 (375 nmol/L) with R 2  > 0.9999. The 3-epi-25-hydroxyvitamin D 3 and 25-hydroxyvitamin D 3 peaks were clearly separated in the extracted ion chromatogram. Infant serum samples 3-epi-25-hydroxyvitamin D 3 concentrations were significantly higher than paediatric and adolescent concentrations. Conclusions The ultra-performance liquid chromatography-tandem mass spectrometry assay performed acceptably, clearly separating 3-epi-25-hydroxyvitamin D 3 from 25-hydroxyvitamin D 3 . High 3-epi-25-hydroxyvitamin D 3 concentrations were observed in infant but not in paediatric and adolescent serum samples.

  14. Simultaneous determination of estrogens and progestogens in honey using high performance liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    This work describes the development and validation of a method for the simultaneous determination of 13 estrogens and progestogens in honey by high performance liquid chromatography-tandem mass spectrometry. The target compounds were preconcentrated by solid phase extraction. Pretreatment variables ...

  15. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    Science.gov (United States)

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  16. Chromium Speciation Analysis by Ion Chromatography Coupled ...

    African Journals Online (AJOL)

    Two methods coupling ion chromatography with inductively coupled plasma - optical emission spectroscopy (ICP-OES) were developed for the simultaneous separation and determination of Cr(III) and Cr(VI) species. In the first method, anion chromatography with sodium bicarbonate/carbonate solution as the eluent was ...

  17. Screening for estrogen residues in calf urine: Comparison of a validated yeast estrogen bioassay and gas chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Nielen, M.W.F.; Bovee, T.F.H.; Heskamp, H.H.; Lasaroms, J.J.P.; Sanders, M.B.; Rhijn, van J.A.; Groot, M.J.; Hoogenboom, L.A.P.

    2006-01-01

    Within the European Union, the control for residues of illegal hormones in food-producing animals is based on urine analysis for a few target analytes using gas chromatography/mass spectrometry and/or liquid chromatography¿tandem mass spectrometry. Recently, we developed a robust yeast bioassay

  18. Identification and Quantification of the Major Constituents in Egyptian Carob Extract by Liquid Chromatography?Electrospray Ionization-Tandem Mass Spectrometry

    OpenAIRE

    Owis, Asmaa Ibrahim; El-Naggar, El-Motaz Bellah

    2016-01-01

    Background: Carob - Ceratonia siliqua L., commonly known as St John's-bread or locust bean, family Fabaceae - is one of the most useful native Mediterranean trees. There is no data about the chromatography methods performed by high performance liquid chromatography (HPLC) for determining polyphenols in Egyptian carob pods. Objective: To establish a sensitive and specific liquid chromatography?electrospray ionization (ESI)-tandem mass spectrometry (MSn) methodology for the identification of th...

  19. Ion trap simulations of quantum fields in an expanding universe.

    Science.gov (United States)

    Alsing, Paul M; Dowling, Jonathan P; Milburn, G J

    2005-06-10

    We propose an experiment in which the phonon excitation of ion(s) in a trap, with a trap frequency exponentially modulated at rate kappa, exhibits a thermal spectrum with an "Unruh" temperature given by k(B)T=Planck kappa. We discuss the similarities of this experiment to the response of detectors in a de Sitter universe and the usual Unruh effect for uniformly accelerated detectors. We demonstrate a new Unruh effect for detectors that respond to antinormally ordered moments using the ion's first blue sideband transition.

  20. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    Blieck, J.

    2008-10-01

    87 Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na + projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  1. Improving methodological aspects of the analysis of five regulated haloacetic acids in water samples by solid-phase extraction, ion-pair liquid chromatography and electrospray tandem mass spectrometry.

    Science.gov (United States)

    Prieto-Blanco, M C; Alpendurada, M F; López-Mahía, P; Muniategui-Lorenzo, S; Prada-Rodríguez, D; Machado, S; Gonçalves, C

    2012-05-30

    Haloacetic acids (HAAs) are organic pollutants originated from the drinking water disinfection process, which ought to be controlled and minimized. In this work a method for monitoring haloacetic acids (HAAs) in water samples is proposed, which can be used in quality control laboratories using the techniques most frequently available. Among its main advantages we may highlight its automated character, including minimal steps of sample preparation, and above all, its improved selectivity and sensitivity in the analysis of real samples. Five haloacetic acids (HAA5) were analyzed using solid-phase extraction (SPE) combined with ion-pair liquid chromatography and tandem mass spectrometry. For the optimization of the chromatographic separation, two amines (triethylamine, TEA and dibutylamine, DBA) as ion pair reagents were compared, and a better selectivity and sensitivity was obtained using DBA, especially for monohaloacetic acids. SPE conditions were optimized using different polymeric adsorbents. The electrospray source parameters were studied for maximum precursor ion accumulation, while the collision cell energy of the triple quadrupole mass spectrometer was adjusted for optimum fragmentation. Precursor ions detected were deprotonated, dimeric and decarboxylated ions. The major product ions formed were: ionized halogen atom (chloride and bromide) and decarboxylated ions. After enrichment of the HAAs in Lichrolut EN adsorbent, the limits of detection obtained by LC-MS/MS analysis (between 0.04 and 0.3 ng mL(-1)) were comparable to those obtained by GC-MS after derivatization. Linearity with good correlation coefficients was obtained over two orders of magnitude irrespective of the compound. Adequate recoveries were achieved (60-102%), and the repeatability and intermediate precision were in the range of 2.4-6.6% and 3.8-14.8%, respectively. In order to demonstrate the usefulness of the method for routine HAAs monitoring, different types of water samples were

  2. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro [eds.

    2000-01-01

    The tandem accelerator established at Japan Atomic Energy Research Institute (JAERI) in 1982 has been one of the most prominent electrostatic accelerators in the world. The accelerator has been serving for many researches planned by not only JAERI staff but also researchers of universities and national institutes. After the completion of the tandem booster in 1993, four times higher beam energy became available. These two facilities, the tandem accelerator and the booster, made great strides in heavy ion physics and a lot of achievements have been accumulated until now. The research departments of JAERI were reformed in 1998, and the accelerators section came under the Department of Materials Science. On this reform of the research system, the symposium 'Heavy Ion Science in Tandem Energy Region' was held in cooperation with nuclear and solid state physicists although there has been no such symposium for many years. The symposium was expected to stimulate novel development in both nuclear and solid state physics, and also interdisciplinary physics between nuclear and solid state physics. The 68 papers are indexed individually. (J.P.N.)

  3. Spectroscopy and nonclassical fluorescence properties of single trapped Ba+ ions

    International Nuclear Information System (INIS)

    Bolle, J.

    1998-06-01

    This thesis reports on the setup and application of an experimental apparatus for spectroscopic and quantum optical investigations of a single Barium ion in a Paul trap. The realization of the apparatus, which consists of the ion trap in ultra high vacuum, two laser systems, and a photon counting detection system, is described in detail, with particular consideration of the noise sources like stray light and laser frequency instabilities. The two lasers at 493 nm and 650 nm needed to continuously excite resonance fluorescence from the Barium ion have been realized using diode lasers only. The preparation of a single localized Barium ion is described, in particular its optical cooling with the laser light and the minimization of induced vibration in the trapping potential. The purely quantum mechanical property of antibunching is observed by measuring the intensity correlation function of resonance fluorescence from the trapped and cooled ion. Interference properties of the single ion resonance fluorescence are investigated with a Mach-Zehnder interferometer. From the measured high-contrast interference signal it is proven that each individual fluorescence photon interferes with itself. The fluorescence excitation spectrum, on varying one laser frequency, is also measured and exhibits dark resonances. These measurements are compared to calculations based on optical Bloch equations for the 8 atomic levels involved. Future experiments, in particular the detection of reduced quantum fluctuations (squeezing) in one quadrature component of the resonance fluorescence, are discussed. (author)

  4. Stability and delayed fragmentation of highly charged C60 trapped in a conic-electrode electrostatic ion resonator (ConeTrap)

    International Nuclear Information System (INIS)

    Bernard, J.; Wei, B.; Bourgey, A.; Bredy, R.; Chen, L.; Kerleroux, M.; Martin, S.; Montagne, G.; Salmoun, A.; Terpend-Ordaciere, B.

    2007-01-01

    We employed a conic-electrode electrostatic ion resonator (ConeTrap) to store the recoil ions (C 60 r+ ) resulting from collision between 56keV Ar 8+ ions and C 60 in order to study their stability over a long time range (several milliseconds). The originality of our method, based on the trapping of a single ion to preserve the detection in coincidence of all the products of the collision, is presented in detail. Our results show that C 60 ions produced in such collisions are stable in the considered observation time. By employing the ConeTrap as a secondary mass spectrometer in order to let the ions oscillate only for a single period, we have been able to observe delayed evaporation of cold C 60 3+ ions 20μs after the collision. We interpret quantitatively the relative yields of daughter ions with a cascade model in which the transition rates are estimated via the commonly used Arrhenius law, taking into account the contribution of the radiative decay

  5. Cluster observations of trapped ions interacting with magnetosheath mirror modes

    Directory of Open Access Journals (Sweden)

    J. Soucek

    2011-06-01

    Full Text Available Mirror modes are among the most intense low frequency plasma wave phenomena observed in the magnetosheaths of magnetized planets. They appear as large amplitude non-propagating fluctuations in the magnetic field magnitude and plasma density. These structures are widely accepted to represent a non-linear stage of the mirror instability, dominant in plasmas with large ion beta and a significant ion temperature anisotropy T⊥/T∥>1. It has long been recognized that the mirror instability both in the linear and non-linear stage is a kinetic process and that the behavior of resonant particles at small parallel velocities is crucial for its development and saturation. While the dynamics of the instability and the effect of trapped particles have been studied extensively in theoretical models and numerical simulations, only spurious observations of the trapped ions were published to date. In this work we used data from the Cluster spacecraft to perform the first detailed experimental study of ion velocity distribution associated with mirror mode oscillations. We show a conclusive evidence for the predicted cooling of resonant ions at small parallel velocities and heating of trapped ions at intermediate pitch angles.

  6. Qubit Manipulations Techniques for Trapped-Ion Quantum Information Processing

    Science.gov (United States)

    Gaebler, John; Tan, Ting; Lin, Yiheng; Bowler, Ryan; Jost, John; Meier, Adam; Knill, Emanuel; Leibfried, Dietrich; Wineland, David; Ion Storage Team

    2013-05-01

    We report recent results on qubit manipulation techniques for trapped-ions towards scalable quantum information processing (QIP). We demonstrate a platform-independent benchmarking protocol for evaluating the performance of Clifford gates, which form a basis for fault-tolerant QIP. We report a demonstration of an entangling gate scheme proposed by Bermudez et al. [Phys. Rev. A. 85, 040302 (2012)] and achieve a fidelity of 0.974(4). This scheme takes advantage of dynamic decoupling which protects the qubit against dephasing errors. It can be applied directly on magnetic-field-insensitive states, and provides a number of simplifications in experimental implementation compared to some other entangling gates with trapped ions. We also report preliminary results on dissipative creation of entanglement with trapped-ions. Creation of an entangled pair does not require discrete logic gates and thus could reduce the level of quantum-coherent control needed for large-scale QIP. Supported by IARPA, ARO contract No. EAO139840, ONR, and the NIST Quantum Information Program.

  7. Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments.

    Science.gov (United States)

    Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L

    2013-01-29

    In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.

  8. Tandem Terminal Ion Source

    International Nuclear Information System (INIS)

    Harper, G.C.; Lindner, C.E.; Myers, A.W.; Wechel, T.D. van

    2000-01-01

    OAK-B135 Tandem Terminal Ion Source. The terminal ion source (TIS) was used in several experiments during this reporting period, all for the 7 Be(γ) 8 B experiment. Most of the runs used 1 H + at terminal voltages from 0.3 MV to 1.5 MV. One of the runs used 2 H + at terminal voltage of 1.4 MV. The other run used 4 He + at a terminal voltage of 1.37 MV. The list of experiments run with the TIS to date is given in table 1 below. The tank was opened four times for unscheduled source repairs. On one occasion the tank was opened to replace the einzel lens power supply which had failed. The 10 kV unit was replaced with a 15 kV unit. The second time the tank was opened to repair the extractor supply which was damaged by a tank spark. On the next occasion the tank was opened to replace a source canal which had sputtered away. Finally, the tank was opened to replace the discharge bottle which had been coated with aluminum sputtered from the exit canal

  9. Tandem Terminal Ion Source

    International Nuclear Information System (INIS)

    None

    2000-01-01

    OAK-B135 Tandem Terminal Ion Source. The terminal ion source (TIS) was used in several experiments during this reporting period, all for the(sup 7)Be((gamma))(sup 8)B experiment. Most of the runs used(sup 1)H(sup+) at terminal voltages from 0.3 MV to 1.5 MV. One of the runs used(sup 2)H(sup+) at terminal voltage of 1.4 MV. The other run used(sup 4)He(sup+) at a terminal voltage of 1.37 MV. The list of experiments run with the TIS to date is given in table 1 below. The tank was opened four times for unscheduled source repairs. On one occasion the tank was opened to replace the einzel lens power supply which had failed. The 10 kV unit was replaced with a 15 kV unit. The second time the tank was opened to repair the extractor supply which was damaged by a tank spark. On the next occasion the tank was opened to replace a source canal which had sputtered away. Finally, the tank was opened to replace the discharge bottle which had been coated with aluminum sputtered from the exit canal

  10. Spectroscopy of highly charged tungsten ions with Electron Beam Ion Traps

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Kato, Daiji; Morita, Shigeru; Murakami, Izumi; Yamamoto, Norimasa; Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki

    2013-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra is investigated of electron energies from 490 to 1440 eV. Previously unreported lines are presented in the EUV range, and some of them are identified by comparing the wavelengths with theoretical calculations. (author)

  11. Determination of γ-hydroxybutyrate in human urine samples by ion exclusion and ion exchange two-dimensional chromatography system.

    Science.gov (United States)

    Liu, Junwei; Deng, Zhifen; Zhu, Zuoyi; Wang, Yong; Wang, Guoqing; Sun, Yu-An; Zhu, Yan

    2017-12-15

    A two-dimensional ion chromatography system was developed for the determination of γ-hydroxybutyrate (GHB) in human urine samples. Ion exclusion chromatography was used in the first dimensional separation for elimination of urine matrices and detection of GHB above 10mgL -1 , ion exchange chromatography was used in the second dimensional separation via column-switching technique for detection of GHB above 0.08mgL -1 . Under the optimized chromatographic conditions, the ion exclusion and ion exchange chromatography separation system exhibited satisfactory repeatability (RSDchromatography system was convenient and practical for the determination of GHB in human urine samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cryogenic trapping of keV ion beams at the CSR prototype

    Energy Technology Data Exchange (ETDEWEB)

    Menk, Sebastian; Blaum, Klaus; Froese, Michael; Grieser, Manfred; Lange, Michael; Orlov, Dimitry; Sieber, Thomas; Hahn, Robert von; Varju, Jozef; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Heber, Oded; Rappaport, Michael; Zajfman, Daniel [Weizmann Institut of Science, Rehovot (Israel)

    2009-07-01

    A Cryogenic Trap for Fast ion beams (CTF) was built to explore cooling techniques and test thermal decoupling of ion optics for the development of the electrostatic Cryogenic Storage Ring (CSR). These challenging projects will lead to a new experimental field of atomic and molecular physics with keV ion beams. The cold conditions of 2-10 K minimize the blackbody radiation field and are expected to lead to extremely low restgas densities (equivalent pressure at room temperature {approx}10{sup -13} mbar) which result in long storage lifetimes and for molecular ions to radiative cooling to their ro-vibrational ground states. The CTF consists of two stacks of electrostatic mirror electrodes allowing the storage of up to 20 keV ion beams. Cryogenic ion beam storage has been realized with this device using a liquid helium refrigeration system to cool down the experimental trapping area to few-Kelvin cryogenic temperatures and experiments with cryogenically trapped molecular nitrogen ions have been performed to verify the low vacuum conditions by measuring their storage lifetimes.

  13. Quantum computing with trapped ions

    International Nuclear Information System (INIS)

    Haeffner, H.; Roos, C.F.; Blatt, R.

    2008-01-01

    Quantum computers hold the promise of solving certain computational tasks much more efficiently than classical computers. We review recent experimental advances towards a quantum computer with trapped ions. In particular, various implementations of qubits, quantum gates and some key experiments are discussed. Furthermore, we review some implementations of quantum algorithms such as a deterministic teleportation of quantum information and an error correction scheme

  14. New macroscopic theory of anamalous diffusion induced by the dissipative trapped-ion instability

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1975-03-01

    For an axisymmetric toroidal plasma of the TOKAMAK type a new set of dissipative trapped-fluid equations is established. In addition to E vector x B vector drifts and collisions of the trapped particles, these equations take full account of the effect of Esub(//) (of the trapped ion modes) on free and trapped particles, and of the effect of grad delta 0 (delta 0 = equilibrium fraction of trapped particles). From the new equations the linear-mode properties of the dissipative trapped-ion instability and the anomalous diffusion flux of the trapped particles are derived. (orig.) [de

  15. Ultra high performance liquid chromatography with ion-trap TOF-MS for the fast characterization of flavonoids in Citrus bergamia juice.

    Science.gov (United States)

    Sommella, Eduardo; Pepe, Giacomo; Pagano, Francesco; Tenore, Gian Carlo; Dugo, Paola; Manfra, Michele; Campiglia, Pietro

    2013-10-01

    We have developed a fast ultra HPLC with ion-trap TOF-MS method for the analysis of flavonoids in Citrus bergamia juice. With respect to the typical methods for the analysis of these matrices based on conventional HPLC techniques, a tenfold faster separation was attained. The use of a core-shell particle column ensured high resolution within the fast analysis time of only 5 min. Unambiguous determination of flavonoid identity was obtained by the employment of a hybrid ion-trap TOF mass spectrometer with high mass accuracy (average error 1.69 ppm). The system showed good retention time and peak area repeatability, with maximum RSD% values of 0.36 and 3.86, respectively, as well as good linearity (R(2) ≥ 0.99). Our results show that ultra HPLC can be a useful tool for ultra fast qualitative/quantitative analysis of flavonoid compounds in citrus fruit juices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Practical aspects of trapped ion mass spectrometry, 4 theory and instrumentation

    CERN Document Server

    March, Raymond E

    2010-01-01

    The expansion of the use of ion trapping in different areas of mass spectrometry and different areas of application indicates the value of a single source of information drawing together diverse inputs. This book provides an account of the theory and instrumentation of mass spectrometric applications and an introduction to ion trapping devices.

  17. Simultaneous determination of components released from dental composite resins in human saliva by liquid chromatography/multiple-stage ion trap mass spectrometry.

    Science.gov (United States)

    Hsu, Wei-Yi; Wang, Ven-Shing; Lai, Chien-Chen; Tsai, Fuu-Jen

    2012-02-01

    Dental composite resins are widely used for fixing teeth; however, the monomers used in dental composite resins have been found to be cytotoxic and genotoxic, namely triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), and bisphenol A glycol dimethacrylate (Bis-GMA). In this study, we incubated dental composite resins with human saliva for demonstrating the released monomers and biodegradation products. A simple saliva sample dilution method without purification or derivatization was used for quantification. We found that liquid chromatography coupled with multiple-stage ion trap mass spectrometry (LC-MS(n) ) operated in selected reaction monitoring (SRM) mode was able to separate the three monomers within 10 min. The calibration curves were linear (R² >0.996) over a wide range for each monomer in saliva: TEGDMA, 5-500 ppb; UDMA, 5-100 ppb, and Bis-GMA, 5-700 ppb. Furthermore, several biodegradation products were discovered with data-dependent MS/MS scan techniques. Although TEGMA degradation products have previously been reported, we identified two previously unknown UDMA degradation products. The LC-MS/MS method developed in this study was able to successfully quantify monomers and their principal biodegradation products from dental composite resins in human saliva. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Large tandem accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1976-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of tandem accelerators designed to operate at maximum terminal potentials in the range 14 to 30 MV. In addition, a number of older tandem accelerators are now being significantly upgraded to improve their heavy ion performance. Both of these developments have reemphasized the importance of negative heavy ion sources. The new large tandem accelerators are described, and the requirements placed on negative heavy ion source technology by these and other tandem accelerators used for the acceleration of heavy ions are discussed. First, a brief description is given of the large tandem accelerators which have been completed recently, are under construction, or are funded for construction, second, the motivation for construction of these accelerators is discussed, and last, criteria for negative ion sources for use with these accelerators are presented

  19. Quantum computing with four-particle decoherence-free states in ion trap

    OpenAIRE

    Feng, Mang; Wang, Xiaoguang

    2001-01-01

    Quantum computing gates are proposed to apply on trapped ions in decoherence-free states. As phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum computing based on this model would be perfect. Possible application of our scheme in future ion-trap quantum computer is discussed.

  20. Determination of N,N-dimethyltryptamine in beverages consumed in religious practices by headspace solid-phase microextraction followed by gas chromatography ion trap mass spectrometry.

    Science.gov (United States)

    Gaujac, Alain; Dempster, Nicola; Navickiene, Sandro; Brandt, Simon D; de Andrade, Jailson Bittencourt

    2013-03-15

    A novel analytical approach combining solid-phase microextraction (SPME)/gas chromatography ion trap mass spectrometry (GC-IT-MS) was developed for the detection and quantification N,N-dimethyltryptamine (DMT), a powerful psychoactive indole alkaloid present in a variety of South American indigenous beverages, such as ayahuasca and vinho da jurema. These particular plant products, often used within a religious context, are increasingly consumed throughout the world following an expansion of religious groups and the availability of plant material over the Internet and high street shops. The method described in the present study included the use of SPME in headspace mode combined GC-IT-MS and included the optimization of the SPME procedure using multivariate techniques. The method was performed with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber in headspace mode (70 min at 60 °C) which resulted in good precision (RSDvinho da jurema samples, obtained from Brazilian religious groups, which revealed DMT concentration levels between 0.10 and 1.81 g L(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A highly miniaturized vacuum package for a trapped ion atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather; Casias, Adrian; Wagner, Adrian R.; Moorman, Matthew; Manginell, Ronald P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Kellogg, James R.; Prestage, John D. [Jet Propulsion Laboratory, Pasadena, California 91109 (United States)

    2016-05-15

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it was sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.

  2. An Automated High Performance Capillary Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for High-Throughput Proteomics

    International Nuclear Information System (INIS)

    Belov, Mikhail E.; Anderson, Gordon A.; Wingerd, Mark A.; Udseth, Harold R.; Tang, Keqi; Prior, David C.; Swanson, Kenneth R.; Buschbach, Michael A.; Strittmatter, Eric F.; Moore, Ronald J.; Smith, Richard D.

    2004-01-01

    We report on a fully automated 9.4 tesla Fourier transform ion resonance cyclotron (FTICR) mass spectrometer coupled to reverse-phase chromatography for high-throughput proteomic studies. Modifications made to the front-end of a commercial FTICR instrument--a dual-ESI-emitter ion source; dual-channel electrodynamic ion funnel; and collisional-cooling, selection and accumulation quadrupoles--significantly improved the sensitivity, dynamic range and mass measurement accuracy of the mass spectrometer. A high-pressure capillary liquid chromatography (LC) system was incorporated with an autosampler that enabled 24 h/day operation. A novel method for accumulating ions in the ICR cell was also developed. Unattended operation of the instrument revealed the exceptional reproducibility (1-5% deviation in elution times for peptides from a bacterial proteome), repeatability (10-20% deviation in detected abundances for peptides from the same aliquot analyzed a few weeks apart) and robustness (high-throughput operation for 5 months without downtime) of the LC/FTICR system. When combined with modulated-ion-energy gated trapping, the internal calibration of FTICR mass spectra decreased dispersion of mass measurement errors for peptide identifications in conjunction with high resolution capillary LC separations to < 5 ppm over a dynamic range for each spectrum of 10 3

  3. Single trapped cold ions: a testing ground for quantum mechanics

    International Nuclear Information System (INIS)

    Maniscalco, S

    2005-01-01

    In this article I review some results obtained during my PhD work in the group of Professor Messina, at the University of Palermo. I discuss some proposals aimed at exploring fundamental issues of quantum theory, e.g. entanglement and quantum superpositions, in the context of single trapped ions. This physical context turns out to be extremely well suited both for studying fundamental features of quantum mechanics, such as the quantum-classical border, and for technological applications such as quantum logic gates and quantum registers. I focus on some procedures for engineering nonclassical states of the vibrational motion of the centre of mass of the ion. I consider both the case in which the ion interacts with classical laser beams and the case of interaction with a quantized mode of light. In particular, I discuss the generation of Schroedinger cat-like states, Bell states and Greenberger-Horn-Zeilinger states. The schemes for generating nonclassical states stem from two different quantum processes: the parity effect and the quantum state manipulation via quantum non-demolition measurement. Finally, I consider a microscopic theory of the interaction of a quantum harmonic oscillator (the centre of mass of the ion in the trapped ion context) with a bosonic thermal environment. Using an exact approach to the dynamics, I discuss a quantum theory of heating of trapped ions able to describe both the short time non-Markovian regime and the thermalization process. I conclude showing briefly how the trapped ion systems can be used as simulators of key models of open quantum systems such as the Caldeira-Leggett model. (phd tutorial)

  4. Doping control analysis of anabolic steroids in equine urine by gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Wong, April S Y; Leung, Gary N W; Leung, David K K; Wan, Terence S M

    2017-09-01

    Anabolic steroids are banned substances in equine sports. Gas chromatography-mass spectrometry (GC-MS) has been the traditional technique for doping control analysis of anabolic steroids in biological samples. Although liquid chromatography-mass spectrometry (LC/MS) has become an important technique in doping control, the detection of saturated hydroxysteroids by LC-MS remains a problem due to their low ionization efficiency under electrospray. The recent development in fast-scanning gas-chromatography-triple-quadrupole mass spectrometry (GC-MS/MS) has provided a better alternative with a significant reduction in chemical noise by means of selective reaction monitoring. Herein, we present a sensitive and selective method for the screening of over 50 anabolic steroids in equine urine using gas chromatography-tandem mass spectrometry (GC-MS/MS). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. A high-energy electron beam ion trap for production of high-charge high-Z ions

    International Nuclear Information System (INIS)

    Knapp, D.A.; Marrs, R.E.; Elliott, S.R.; Magee, E.W.; Zasadzinski, R.

    1993-01-01

    We have developed a new high-energy electron beam ion trap, the first laboratory source of low-energy, few-electron, high-Z ions. We describe the device and report measurements of its performance, including the electron beam diameter, current density and energy, and measurements of the ionization balance for several high-Z elements in the trap. This device opens up a wide range of possible experiments in atomic physics, plasma physics, and nuclear physics. (orig.)

  6. Isotopic separation by ion chromatography

    International Nuclear Information System (INIS)

    Albert, M.G.; Barre, Y.; Neige, R.

    1994-01-01

    The isotopic exchange reaction and the isotopic separation factor are first recalled; the principles of ion chromatography applied to lithium isotope separation are then reviewed (displacement chromatography) and the process is modelled in the view of dimensioning and optimizing the industrial process; the various dimensioning parameters are the isotopic separation factor, the isotopic exchange kinetics and the material flow rate. Effects of the resin type and structure are presented. Dimensioning is also affected by physico-chemical and hydraulic parameters. Industrial implementation features are also discussed. 1 fig., 1 tab., 5 refs

  7. Microwave quantum logic gates for trapped ions.

    Science.gov (United States)

    Ospelkaus, C; Warring, U; Colombe, Y; Brown, K R; Amini, J M; Leibfried, D; Wineland, D J

    2011-08-10

    Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.

  8. Preparation and cooling of magnesium ion crystals for sympathetic cooling of highly charged ions in a Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Murboeck, Tobias

    2017-07-01

    In this work, laser-cooled ion crystals containing 10{sup 3} to 10{sup 5} singly charged magnesium ions (Mg{sup +}) were prepared in a Penning trap. The properties of the ion crystals and their structure displaying long-range ordering were analyzed by various nondestructive techniques. After creation of the Mg{sup +} ions in the form of ion bunches in an external source, the ions were injected into the Penning trap where their temperature was reduced by eight orders of magnitude within seconds using a combination of buffer gas cooling and Doppler laser cooling. The achieved temperatures in the millikelvin-regime were close to the theoretical Doppler-cooling limit and sufficiently low to induce the transition to a crystal phase exhibiting long-range ordering. The structure of these mesoscopic ion crystals is in agreement with a model describing the crystal as a set of planar shells. This allows for a derivation of properties such as the charge density or the temperature of the observed crystals. For the process of combined buffer-gas and Doppler laser cooling an analytical model has been developed, which explains the time development of the temperature and the fluorescence signal in agreement with the experimental results. The external ion source for the production of singly charged magnesium ions was developed and characterized. A SIMION simulation of the ion creation and extraction process allows to describe the ion bunch structure and to increase the Mg{sup +} number by three orders of magnitude to 10{sup 6} Mg{sup +} ions per bunch. Other ion species with charge states between one (H{sup +}{sub 2}, C{sup +}, N{sup +}{sub 2}, CO{sup +}{sub 2}) and three (Ar{sup 3+}) were injected into the Mg{sup +} crystals. Ion crystals containing more than one ion species were observed with structures in agreement with the theory of centrifugal separation, which indicates sympathetic cooling of the non-fluorescing ion species. This preparation of mixed ion crystals is an

  9. Picosecond ion pulses from an EN tandem created by a femtosecond Ti:sapphire laser

    International Nuclear Information System (INIS)

    Carnes, K.D.; Cocke, C.L.; Chang, Z.; Ben-Itzhak, I.; Needham, H.V.; Rankin, A.

    2007-01-01

    As the James R. Macdonald Laboratory at Kansas State University continues its transformation from an ion collisions facility to an ultrafast laser/ion collisions facility, we are looking for novel ways to combine our traditional accelerator expertise with our new laser capabilities. One such combination is to produce picosecond pulses of stripping gas ions in the high energy accelerating tube of our EN tandem by directing ∼100 fs, sub-milliJoule laser pulses up the high energy end of the tandem toward a focusing mirror at the terminal. Ion pulses from both stripping and residual gas have been produced and identified, with pulse widths thus far on the order of a nanosecond. This width represents an upper limit, as it is dominated by pulse-to-pulse jitter in the ion time-of-flight (TOF) and is therefore not a true representation of the actual pulse width. In this paper, we describe the development process and report on the results to date. Conditions limiting the minimum temporal pulse width, such as tandem terminal ripple, thermal motion of the gas and space charge effects, are also outlined

  10. Sideband-cooling of trapped ytterbium-ions in the microwave regime

    International Nuclear Information System (INIS)

    Scharfenberger, Benedikt J.

    2012-01-01

    Trapped ions in a Paul trap are at present one of the most promising candidates for Quantum Information Processing (QIP). The technique that is used for this purpose in this experiment was introduced in 2001 by F. Mintert and Ch. Wunderlich. The core of this method is the use of atomic transitions in the radio- or microwave region, while a magnetic field gradient along the trap axis (where the ion chain is situated) lifts the degeneracy of the transition frequencies, such that the ions can be distinguished in frequency space; it also serves for the coupling of internal and external degrees of freedom of the ion chain. This method is called MAGIC (MAgnetic Gradient Induced Coupling). The performance of the measurements required that the apparatus of the experiment, which consists of laser sources, lambdameter, vacuum- and microwave system as well as imaging- and detection-units, had to be assembled and tested, which was an important prerequisite for the successful performance of the here described experiments. For the experiments it is advantageous to prepare the ions in an energetic state close to the motional ground state, which contributes to a reduction of the dephasing of the system while manipulating it with microwaves. By using the sideband-cooling technique to the sub-Doppler regime it is taken advantage of the fact, that ions in a linear trap are in good approximation situated in a harmonic oscillator potential and can therefore only populate discrete vibrational energy levels, whose frequency difference is given by the axial trap frequency ω z . If the system is excited by a microwave, which frequency is detuned from resonance to lower energies by a vibrational quantum, the ion looses one such phonon within each cooling-cycle. When this cycle is driven several times, the average phonon number and thus the temperature of the ion can be reduced efficiently and the ion can be initialized in a state close to the motional ground state. As sideband

  11. A small electron beam ion trap/source facility for electron/neutral–ion collisional spectroscopy in astrophysical plasmas

    Science.gov (United States)

    Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang

    2018-01-01

    Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.

  12. Comprehensive two-dimensional liquid chromatography: Ion chromatography × reversed-phase liquid chromatography for separation of low-molar-mass organic acids

    NARCIS (Netherlands)

    Brudin, S.S.; Shellie, R.A.; Haddad, P.R.; Schoenmakers, P.J.

    2010-01-01

    In the work presented here a novel approach to comprehensive two-dimensional liquid chromatography is evaluated. Ion chromatography is chosen for the first-dimension separation and reversed-phase liquid chromatography is chosen for the second-dimension separation mode. The coupling of these modes is

  13. Trapping of slow recoil ions: past results and speculations on the future

    International Nuclear Information System (INIS)

    Prior, M.H.

    1983-01-01

    A simple electrostatic ion trap has been utilized to capture low energy recoil ions made by fast heavy ion impact upon a neon gas target. The heavy ion beams have been provided by the LBL SuperHILAC and the work has so far concentrated upon studies of the decay of the trapped ion population in time following creation by the pulsed HILAC beam (3.3 msec pulse length, 36Hz repetition rate). The various charge states decay predominantly via electron capture collisions with the ambient gas in the ion trap. By varying the gas composition and density, one can determine the electron capture rate constants from which an effective (velocity averaged) capture cross-section can be obtained. The uniqueness of this work lies in the high charge states, up to Ne 10 + (fully stripped), and the low mean collision energies available (in the range 1.0 to 70.0 eV)

  14. Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry Measurement of Caffeine in Caffeine-Laced Pants and in Urine and Skin of a Pants User

    OpenAIRE

    Pellegrini, Manuela; Orsi, Daniela De; Guarino, Carmine; Rotolo, Maria; Giovannandrea, Rita di; Pacifici, Roberta; Pichini, Simona

    2014-01-01

    A fast and sensitive ultra-performance liquid chromatography tandem mass spectrometry method was developed for the measurement of caffeine in caffeine-laced pants and in urine and skin of a pants user. The substance and its internal standard (N-ethylnorcotinine) were separated by reversed phase chromatography with 5 mM ammonium formate pH 3.0 and 0.3% formic acid in acetonitrile mobile phase (83:17 v/v) by isocratic elution and detected by tandem mass spectrometry operated in multiple reacti...

  15. Trapped atomic ions for quantum-limited metrology

    Science.gov (United States)

    Wineland, David

    2017-04-01

    Laser-beam-manipulated trapped ions are a candidate for large-scale quantum information processing and quantum simulation but the basic techniques used can also be applied to quantum-limited metrology and sensing. Some examples being explored at NIST are: 1) As charged harmonic oscillators, trapped ions can be used to sense electric fields; this can be used to characterize the electrode-surface-based noisy electric fields that compromise logic-gate fidelities and may eventually be used as a tool in surface science. 2) Since typical qubit logic gates depend on state-dependent forces, we can adapt the gate dynamics to sensitively detect additional forces. 3) We can use extensions of Bell inequality measurements to further restrict the degree of local realism possessed by Bell states. 4) We also briefly describe experiments for creation of Bell states using Hilbert space engineering. This work is a joint effort including the Ion-Storage group, the Quantum processing group, and the Computing and Communications Theory group at NIST, Boulder. Supported by IARPA, ONR, and the NIST Quantum Information Program.

  16. Experimental system design for the integration of trapped-ion and superconducting qubit systems

    Science.gov (United States)

    De Motte, D.; Grounds, A. R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G. S.; Neilinger, P.; Oelsner, G.; Il'ichev, E.; Grajcar, M.; Hensinger, W. K.

    2016-12-01

    We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi: 10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.

  17. Structure and dynamics of highly charged heavy ions studied with the electron beam ion trap in Tokyo

    International Nuclear Information System (INIS)

    Nakamura, Nobuyuki; Hu, Zhimin; Watanabe, Hirofumi; Li, Yueming; Kato, Daiji; Currell, Fred J.; Tong Xiaomin; Watanabe, Tsutomu; Ohtani, Shunsuke

    2011-01-01

    In this paper, we present the structure and the dynamics of highly charged heavy ions studied through dielectronic recombination (DR) observations performed with the Tokyo electron beam ion trap. By measuring the energy dependence of the ion abundance ratio in the trap at equilibrium, we have observed DR processes for open shell systems very clearly. Remarkable relativistic effects due to the generalized Breit interaction have been clearly shown in DR for highly charged heavy ions. We also present the first result for the coincidence measurement of two photons emitted from a single DR event.

  18. EUV spectrum of highly charged tungsten ions in electron beam ion trap

    International Nuclear Information System (INIS)

    Sakaue, H.A.; Kato, D.; Murakami, I.; Nakamura, N.

    2016-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra was investigated for electron energy from 540 to 1370 eV. Previously unreported lines were presented in the EUV range, and comparing the wavelengths with theoretical calculations identified them. (author)

  19. Determination of parabens in serum by liquid chromatography-tandem mass spectrometry: Correlation with lipstick use.

    Science.gov (United States)

    Tahan, Gabriella Padovani; Santos, Nayara de Kássia Souza; Albuquerque, Ana Carolina; Martins, Isarita

    2016-08-01

    Parabens are the most widely used preservative and are considered to be relatively safe compounds. However, studies have demonstrated that they may have estrogenic activity, and there is ongoing debate regarding the safety and potential cancer risk of using products containing these compounds. In the present work, liquid chromatography-tandem mass spectrometry was applied to determine methylparaben and propylparaben concentrations in serum, and the results were correlated with lipstick application. Samples were analyzed using liquid-liquid extraction, followed by liquid chromatography-tandem mass spectrometry. The validation results demonstrated the linearity of the method over a range of 1-20 ng/mL, in addition to the method's precision and accuracy. A statistically significant difference was demonstrated between serum parabens in women who used lipstick containing these substances compared with those not using this cosmetic (p = 0.0005 and 0.0016, respectively), and a strong association was observed between serum parabens and lipstick use (Spearman correlation = 0.7202). Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Electron cooling of highly charged ions in penning traps; Elektronenkuehlung hochgeladener Ionen in Penningfallen

    Energy Technology Data Exchange (ETDEWEB)

    Moellers, B.

    2007-02-08

    For many high precision experiments with highly charged ions in ion traps it is necessary to work with low energy ions. One possibility to slow ions down to a very low energy in a trap is electron cooling, a method, which is already successfully used in storage rings to produce ion beams with high phase space density. Fast ions and a cold electron plasma are inserted into a Penning trap. The ions lose their energy due to Coulomb interaction with the electrons while they cross the plasma, the electrons are heated. The cooling time is the time, which is needed to cool an ion from a given initial energy to a low final energy. To calculate cooling times it is necessary to solve coupled differential equations for the ion energy and electron temperature. In a Penning trap the strong external magnetic field constitutes a theoretical challenge, as it influences the energy loss of the ions in an electron plasma, which can no longer be calculated analytically. In former estimates of cooling times this influence is neglected. But simulations show a dramatic decrease of the energy loss in the presence of a strong magnetic field, so it is necessary to investigate the effect of the magnetic field on the cooling times. This work presents a model to calculate cooling times, which includes both the magnetic field and the trap geometry. In a first step a simplified model without the external trap potential is developed. The energy loss of the ions in the magnetized electron plasma is calculated by an analytic approximation, which requires a numerical solution of integrals. With this model the dependence of the cooling time on different parameters like electron and ion density, magnetic field and the angle between ion velocity and magnetic field is studied for fully ionized uranium. In addition the influence of the electron heating is discussed. Another important topic in this context is the recombination between ions and electrons. The simplified model for cooling times allows to

  1. A high-throughput method for liquid chromatography-tandem mass spectrometry determination of plasma alkylresorcinols, biomarkers of whole grain wheat and rye intake

    DEFF Research Database (Denmark)

    Ross, Alastair B; Svelander, Cecilia; Savolainen, Otto I

    2016-01-01

    supported extraction methods for extracting alkylresorcinols from plasma and improved a normal-phase liquid chromatography coupled to a tandem mass spectrometer method to reduce sample analysis time. The method was validated and compared with gas chromatography-mass spectrometry analysis. Sample preparation...

  2. Acceleration of cluster and molecular ions by TIARA 3 MV tandem accelerator

    CERN Document Server

    Saitoh, Y; Tajima, S

    2000-01-01

    We succeeded in accelerating molecular and cluster ions (B sub 2 sub - sub 4 , C sub 2 sub - sub 1 sub 0 , O sub 2 , Al sub 2 sub - sub 4 , Si sub 2 sub - sub 4 , Cu sub 2 sub - sub 3 , Au sub 2 sub - sub 3 , LiF, and AlO) to MeV energies with high-intensity beam currents by means of a 3 MV tandem accelerator in the TIARA facility. These cluster ions were generated by a cesium sputter-type negative ion source. We tested three types of carbon sputter cathodes in which graphite powder was compressed with different pressures. The pressure difference affected the generating ratio of clusters generated to single atom ions extracted from the source and it appeared that the high-density cathode was suitable. We also investigated the optimum gas pressure for charge exchange in the tandem high-voltage terminal. Clusters of larger size tend to require lower pressure than do smaller ones. In addition, we were able to obtain doubly charged AlO molecular ions. (authors)

  3. Monitoring salivary melatonin concentrations in children with sleep disorders using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Khan, Sohil A; George, Rani; Charles, Bruce G; Taylor, Paul J; Heussler, Helen S; Cooper, David M; McGuire, Treasure M; Pache, David; Norris, Ross L G

    2013-06-01

    Melatonin is synthesized in the pineal gland and is an important circadian phase marker, especially in the determination of sleep patterns. Both temporary and permanent abnormal sleep patterns occur in children; therefore, it is desirable to have methods for monitoring melatonin in biological fluids in the diagnosis and treatment of such disorders. The objective of the study is to develop a liquid chromatography-tandem mass spectrometry method for the determination of melatonin in saliva and to apply it to monitoring salivary concentrations in children with sleep disorders. A deuterated internal standard (d7-melatonin) was added to a diluted saliva sample (20 µL) in an autosampler vial insert, and 50 µL were injected. Plasticware was strictly avoided, and all glassware was scrupulously cleaned and then baked at 120°C for at least 48 hours to obtain satisfactory performance. Reverse-phase chromatography was performed on a C8 column using a linear gradient elution profile comprising mobile phases A (0.1% aqueous formic acid) and B (15% methanol in acetonitrile containing 0.1% formic acid), pumped at a total flow rate of 0.8 mL/min. The run time was 8 minutes. After atmospheric pressure chemical ionization, mass spectrometric detection was in positive ion mode. Mass detection was by selected reaction monitoring mode with the following mass transitions used for quantification: melatonin, m/z 233.0 → 173.8 and d7-melatonin, m/z 240.0 → 178.3. Linearity (r > 0.999) was established from 3.9 to 1000 pg/mL. Imprecision (coefficient of variation percent) was less than 11%, and accuracy was 100-105% (7.0-900 pg/mL). The method was selective, and the mean (range) ratio of the slopes of calibrations in water to those in daytime saliva samples collected from 10 healthy adult subjects was 0.989 (0.982-0.997), indicating negligible matrix effects. The application of the assay was demonstrated in healthy adults and in children being clinically investigated for sleep

  4. Detection and identification of 700 drugs by multi-target screening with a 3200 Q TRAP LC-MS/MS system and library searching.

    Science.gov (United States)

    Dresen, S; Ferreirós, N; Gnann, H; Zimmermann, R; Weinmann, W

    2010-04-01

    The multi-target screening method described in this work allows the simultaneous detection and identification of 700 drugs and metabolites in biological fluids using a hybrid triple-quadrupole linear ion trap mass spectrometer in a single analytical run. After standardization of the method, the retention times of 700 compounds were determined and transitions for each compound were selected by a "scheduled" survey MRM scan, followed by an information-dependent acquisition using the sensitive enhanced product ion scan of a Q TRAP hybrid instrument. The identification of the compounds in the samples analyzed was accomplished by searching the tandem mass spectrometry (MS/MS) spectra against the library we developed, which contains electrospray ionization-MS/MS spectra of over 1,250 compounds. The multi-target screening method together with the library was included in a software program for routine screening and quantitation to achieve automated acquisition and library searching. With the help of this software application, the time for evaluation and interpretation of the results could be drastically reduced. This new multi-target screening method has been successfully applied for the analysis of postmortem and traffic offense samples as well as proficiency testing, and complements screening with immunoassays, gas chromatography-mass spectrometry, and liquid chromatography-diode-array detection. Other possible applications are analysis in clinical toxicology (for intoxication cases), in psychiatry (antidepressants and other psychoactive drugs), and in forensic toxicology (drugs and driving, workplace drug testing, oral fluid analysis, drug-facilitated sexual assault).

  5. A radio frequency quadrupole ion beam buncher for ISOLTRAP

    CERN Document Server

    Bollen, G; Dezfuli, A M G; Henry, S; Herfurth, F; Kellerbauer, A G; Kim, T; Kluge, H J; Kohl, A; Lamour, E; Lunney, M D; Moore, R B; Quint, W; Schwarz, S; Varfalvy, P; Vermeeren, L

    1998-01-01

    ISOLTRAP is a Penning trap spectrometer at the on-line mass separator ISOLDE at CERN for the mass determination of radioisotopes. It consists of three electromagnetic traps in tandem; a Paul trap for ISOLDE beam collection, a Penning trap for cooling and purification and a high-precision Penning trap for the measurement of masses by cyclotron resonance. The Paul trap, which collects radionuclide ions using only electric fields and a noble buffer gas, has been essential for the masses of radionuclides that cannot be surface ionized. The success with this system has led to the present program to increase the collection efficiency by replacing the Paul trap by a radiofrequency quadrupole ion guide operating as a buncher. This system would also provide a DC ISOLDE beam of emittance approaching 1$\\pi$ -mm-mrad. (3 refs).

  6. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry.

    Science.gov (United States)

    Maslen, Sarah; Sadowski, Pawel; Adam, Alex; Lilley, Kathryn; Stephens, Elaine

    2006-12-15

    The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.

  7. Dielectronic recombination measurements using the Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Knapp, D.A.

    1991-01-01

    We have used the Electron Beam Ion Trap at LLNL to study dielectronic recombination in highly charged ions. Our technique is unique because we observe the x-rays from dielectronic recombination at the same time we see x-rays from all other electron-ion interactions. We have recently taken high-resolution, state-selective data that resolves individual resonances

  8. Screening antiallergic components from Carthamus tinctorius using rat basophilic leukemia 2H3 cell membrane chromatography combined with high-performance liquid chromatography and tandem mass spectrometry.

    Science.gov (United States)

    Han, Shengli; Huang, Jing; Cui, Ronghua; Zhang, Tao

    2015-02-01

    Carthamus tinctorius, used in traditional Chinese medicine, has many pharmacological effects, such as anticoagulant effects, antioxidant effects, antiaging effects, regulation of gene expression, and antitumor effects. However, there is no report on the antiallergic effects of the components in C. tinctorius. In the present study, we investigated the antiallergic components of C. tinctorius and its mechanism of action. A rat basophilic leukemia 2H3/cell membrane chromatography coupled online with high-performance liquid chromatography and tandem mass spectrometry method was developed to screen antiallergic components from C. tinctorius. The screening results showed that Hydroxysafflor yellow A, from C. tinctorius, was the targeted component that retained on the rat basophilic leukemia 2H3/cell membrane chromatography column. We measured the amount of β-hexosaminidase and histamine released in mast cells and the key markers of degranulation. The release assays showed that Hydroxysafflor yellow A could attenuate the immunoglobulin E induced release of allergic cytokines without affecting cell viability from 1.0 to 50.0 μM. In conclusion, the established rat basophilic leukemia 2H3 cell membrane chromatography coupled with online high-performance liquid chromatography and tandem mass spectrometry method successfully screened and identified Hydroxysafflor yellow A from C. tinctorius as a potential antiallergic component. Pharmacological analysis elucidated that Hydroxysafflor yellow A is an effective natural component for inhibiting immunoglobulin E-antigen-mediated degranulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fast quantum logic by selective displacement of hot trapped ions

    International Nuclear Information System (INIS)

    Sasura, Marek; Steane, Andrew M.

    2003-01-01

    The 'pushing gate' proposed by Cirac and Zoller for quantum logic in ion traps is discussed, in which a force is used to give a controlled push to a pair of trapped ions and thus realize a phase gate. The original proposal had a weakness in that it involved a hidden extreme sensitivity to the size of the force. Also, the physical origin of this force was not fully addressed. Here, we discuss the sensitivity and present a way to avoid it by choosing the spatial form of the pushing force in an optimal way. We also analyze the effect of imperfections in a pair of π pulses which are used to implement a 'spin echo' to cancel correlated errors. We present a physical model for the force, namely, the dipole force, and discuss the impact of unwanted photon scattering, and of finite temperature of the ions. The main effect of the temperature is to blur the phase of the gate owing to the ions exploring a range of values of the force. When the distance scale of the force profile is smaller than the ion separation, this effect is more important than the high-order terms in the Coulomb repulsion which were originally discussed. Overall, we find that whereas the pushing gate is not as resistant to imperfection as was supposed, it remains a significant candidate for ion trap quantum computing since it does not require ground-state cooling, and in some cases it does not require the Lamb-Dicke limit, while the gate rate is fast, close to (rather than small compared to) the trap vibrational frequency

  10. Integrated Visible Photonics for Trapped-Ion Quantum Computing

    Science.gov (United States)

    2017-06-10

    etch to provide a smooth oxide facet, and clearance for fiber positioning for edge input coupling. Integrated Visible Photonics for Trapped-Ion...capability to optically address individual ions at several wavelengths. We demonstrate a dual-layered silicon nitride photonic platform for integration...coherence times, strong coulomb interactions, and optical addressability, hold great promise for implementation of practical quantum information

  11. The utility of ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) for clinically relevant steroid analysis.

    Science.gov (United States)

    Storbeck, Karl-Heinz; Gilligan, Lorna; Jenkinson, Carl; Baranowski, Elizabeth S; Quanson, Jonathan L; Arlt, Wiebke; Taylor, Angela E

    2018-05-15

    Liquid chromatography tandem mass spectrometry (LC-MS/MS) assays are considered the reference standard for serum steroid hormone analyses, while full urinary steroid profiles are only achievable by gas chromatography (GC-MS). Both LC-MS/MS and GC-MS have well documented strengths and limitations. Recently, commercial ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) systems have been developed. These systems combine the resolution of GC with the high-throughput capabilities of UHPLC. Uptake of this new technology into research and clinical labs has been slow, possibly due to the perceived increase in complexity. Here we therefore present fundamental principles of UHPSFC-MS/MS and the likely applications for this technology in the clinical research setting, while commenting on potential hurdles based on our experience to date. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Peptide sequencing and characterization of post-translational modifications by enhanced ion-charging and liquid chromatography electron-transfer dissociation tandem mass spectrometry

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Giessing, Anders; Ingrell, Christian R

    2007-01-01

    We have tested the effect of m-nitrobenzyl alcohol (m-NBA) as a method to increase the average charge state of protonated gas-phase molecular ions generated by ESI from tryptic peptides and phosphopeptides. Various concentrations of m-NBA were added to the mobile phases of a liquid chromatography...

  13. Application of ion chromatography in clinical studies and pharmaceutical industry.

    Science.gov (United States)

    Michalski, Rajmund

    2014-01-01

    Ion chromatography is a well-established regulatory method for analyzing anions and cations in environmental, food and many other samples. It offers an enormous range of possibilities for selecting stationary and mobile phases. Additionally, it usually helps to solve various separation problems, particularly when it is combined with different detection techniques. Ion chromatography can also be used to determine many ions and substances in clinical and pharmaceutical samples. It provides: availability of high capacity stationary phases and sensitive detectors; simple sample preparation; avoidance of hazardous chemicals; decreased sample volumes; flexible reaction options on a changing sample matrix to be analyzed; or the option to operate a fully-automated system. This paper provides a short review of the ion chromatography applications for determining different inorganic and organic substances in clinical and pharmaceutical samples.

  14. Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons

    Science.gov (United States)

    Shan, Shaukat Ali; Imtiaz, Nadia

    2018-05-01

    The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.

  15. Enrichment and Determination of radionuclides by ion chromatography

    International Nuclear Information System (INIS)

    ZAFIMANJATO, J.L.R.

    1996-01-01

    The fundamentals of Ion Chromatography (IC) and Liquid Scintillation Counting (LSC) are reviewed. Ion Chromatography as separation method for cations is coupled with Liquid Scintillation Counting for the determination of Radionuclides in water samples. An experimental arrangement for investigations on the applicability of guard columns for cationic radionuclide enrichment is shown. The saturation behaviour of single and bivalentic cations and their combination is presented. Our results show that radioactive bivalentic cations like strontium-90 and radium-226 are enriched on a Ion Pac CG 12 Dionex guard column from 100 to 300ml natural water in one single step. The procedure is suitable for their determination in concentrations down to 10 -2 Bq.l -1 [fr

  16. Liquid chromatography coupled with tandem mass spectrometry for the quantitative analysis of anticancer drugs in biological matrices

    NARCIS (Netherlands)

    Stokvis, Ellen

    2004-01-01

    In this thesis, the development and validation of liquid chromatography tandem mass spectrometric (LC-MS/MS) methods for the quantitative bioanalysis of anticancer drugs are described. The monitoring of these drugs in biological fluids and tissues is important during both pre-clinical and clinical

  17. Ultra-performance liquid chromatography-tandem mass spectrometry-based multiplex enzyme assay for six enzymes associated with hereditary hemolytic anemia.

    Science.gov (United States)

    Park, Chul Min; Lee, Kyunghoon; Jun, Sun-Hee; Song, Sang Hoon; Song, Junghan

    2017-08-15

    Deficiencies in erythrocyte metabolic enzymes are associated with hereditary hemolytic anemia. Here, we report the development of a novel multiplex enzyme assay for six major enzymes, namely glucose-6-phosphate dehydrogenase, pyruvate kinase, pyrimidine 5'-nucleotidase, hexokinase, triosephosphate isomerase, and adenosine deaminase, deficiencies in which are implicated in erythrocyte enzymopathies. To overcome the drawbacks of traditional spectrophotometric enzyme assays, the present assay was based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The products of the six enzymes were directly measured by using ion pairing UPLC-MS/MS, and the precision, linearity, ion suppression, optimal sample amounts, and incubation times were evaluated. Eighty-three normal individuals and 13 patients with suspected enzymopathy were analyzed. The UPLC running time was within 5min. No ion suppression was observed at the retention time for the products or internal standards. We selected an optimal dilution factor and incubation time for each enzyme system. The intra- and inter-assay imprecision values (CVs) were 2.5-12.1% and 2.9-14.3%, respectively. The linearity of each system was good, with R 2 values >0.97. Patient samples showed consistently lower enzyme activities than those from normal individuals. The present ion paring UPLC-MS/MS assay enables facile and reproducible multiplex evaluation of the activity of enzymes implicated in enzymopathy-associated hemolytic anemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. IDENTIFICATION OF MICROCYSTIN TOXINS FROM A STRAIN OF MICROCYSTIS AERUGINOSA BY LIQUID CHROMATOGRAPHY INTRODUCTION INTO A HYBRID LINEAR ION TRAP-FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETER

    Science.gov (United States)

    The cyclic heptapeptide microcystin toxins produced by a strain of Microcystis aeruginosa that has not been investigated previously were separated by liquid chromatography and identified by high-accuracy m/z measurements of their [M + H]+ ions and the fragment i...

  19. Colloquium: Quantum Networks with Trapped Ions

    Science.gov (United States)

    2010-04-28

    observed be- tween two ions held in the same trap Eichmann et al., 1993; DeVoe and Brewer, 1996. Type-II links have the advantage of being less sensitive...Childress, E. Jiang, J. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, 2007, Science 316, 1312. Eichmann , U., J. C. Bergquist

  20. X-ray spectroscopy of hydrogen-like ions in an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Tarbutt, M.R.; Crosby, D.; Silver, J.D. [Univ. of Oxford, Clarendon Lab. (United Kingdom); Myers, E.G. [Dept. of Physics, Florida State Univ., Tallahassee, FL (United States); Nakamura, N.; Ohtani, S. [ICORP, JST, Chofu, Tokyo (Japan)

    2001-07-01

    The X-ray emission from highly charged hydrogen-like ions in an electron beam ion trap is free from the problems of satellite contamination and Doppler shifts inherent in fast-beam sources. This is a favourable situation for the measurement of ground-state Lamb shifts in these ions. We present recent progress toward this goal, and discuss a method whereby wavelength comparison between transitions in hydrogenlike ions of different nuclear charge Z, enable the measurement of QED effects without requiring an absolute calibration.

  1. A Linear Ion Trap with an Expanded Inscribed Diameter to Improve Optical Access for Fluorescence Spectroscopy

    Science.gov (United States)

    Rajagopal, Vaishnavi; Stokes, Chris; Ferzoco, Alessandra

    2018-02-01

    We report a custom-geometry linear ion trap designed for fluorescence spectroscopy of gas-phase ions at ambient to cryogenic temperatures. Laser-induced fluorescence from trapped ions is collected from between the trapping rods, orthogonal to the excitation laser that runs along the axis of the linear ion trap. To increase optical access to the ion cloud, the diameter of the round trapping rods is 80% of the inscribed diameter, rather than the roughly 110% used to approximate purely quadrupolar electric fields. To encompass as much of the ion cloud as possible, the first collection optic has a 25.4 mm diameter and a numerical aperture of 0.6. The choice of geometry and collection optics yields 107 detected photons/s from trapped rhodamine 6G ions. The trap is coupled to a closed-cycle helium refrigerator, which in combination with two 50 Ohm heaters enables temperature control to below 25 K on the rod electrodes. The purpose of the instrument is to broaden the applicability of fluorescence spectroscopy of gas-phase ions to cases where photon emission is a minority relaxation pathway. Such studies are important to understand how the microenvironment of a chromophore influences excited state charge transfer processes.

  2. Trace detection of organic compounds in complex sample matrixes by single photon ionization ion trap mass spectrometry: real-time detection of security-relevant compounds and online analysis of the coffee-roasting process.

    Science.gov (United States)

    Schramm, Elisabeth; Kürten, Andreas; Hölzer, Jasper; Mitschke, Stefan; Mühlberger, Fabian; Sklorz, Martin; Wieser, Jochen; Ulrich, Andreas; Pütz, Michael; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Curtius, Joachim; Borrmann, Stephan; Zimmermann, Ralf

    2009-06-01

    An in-house-built ion trap mass spectrometer combined with a soft ionization source has been set up and tested. As ionization source, an electron beam pumped vacuum UV (VUV) excimer lamp (EBEL) was used for single-photon ionization. It was shown that soft ionization allows the reduction of fragmentation of the target analytes and the suppression of most matrix components. Therefore, the combination of photon ionization with the tandem mass spectrometry (MS/MS) capability of an ion trap yields a powerful tool for molecular ion peak detection and identification of organic trace compounds in complex matrixes. This setup was successfully tested for two different applications. The first one is the detection of security-relevant substances like explosives, narcotics, and chemical warfare agents. One test substance from each of these groups was chosen and detected successfully with single photon ionization ion trap mass spectrometry (SPI-ITMS) MS/MS measurements. Additionally, first tests were performed, demonstrating that this method is not influenced by matrix compounds. The second field of application is the detection of process gases. Here, exhaust gas from coffee roasting was analyzed in real time, and some of its compounds were identified using MS/MS studies.

  3. Multiclass analysis of antibiotic residues in honey by ultraperformance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Vidal, Jose Luis Martínez; Aguilera-Luiz, María Del Mar; Romero-González, Roberto; Frenich, Antonia Garrido

    2009-03-11

    A method has been developed and validated for the simultaneous analysis of different veterinary drug residues (macrolides, tetracyclines, quinolones, and sulfonamides) in honey. Honey samples were dissolved with Na(2)EDTA, and veterinary residues were extracted from the supernatant by solid-phase extraction (SPE), using OASIS HLB cartridges. The separation and determination was carried out by ultraperformance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS), using an electrospay ionization source (ESI) in positive mode. Data acquisition under MS/MS was achieved by applying multiple reaction monitoring (MRM) of two ion transitions per compound to provide a high degree of sensitivity and specificity. The method was validated, and mean recoveries were evaluated at three concentration levels (10, 50, and 100 microg/kg), ranging from 70 to 120% except for doxycycline, erythromycin, and tylmicosin with recovery higher than 50% at the three levels assayed. Relative standard deviations (RSDs) of the recoveries were less than 20% within the intraday precision and less than 25% within the interday precision. The limits of quantification (LOQs) were always lower than 4 microg/kg. The developed procedure was applied to 16 honey samples, and erythromycin, sarafloxacin, and tylosin were found in a few samples.

  4. Determination of flomoxef in human plasma by liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Kravtsova, Oxana Yu; Paramonov, Sergey A; Vasilevich, Natalya I; Kazyulkin, Denis N; Vlasova, Ekaterina; Engsig, Michael

    2013-12-01

    A specific, sensitive, rapid and reproducible method for the determination of flomoxef in human plasma using high-performance liquid chromatography-tandem mass spectrometry was developed and validated. Flomoxef was detected using an electrospay ionization method operated in negative-ion mode. Chromatographic separation was performed in gradient elution mode on a Luna® C18(2) column (3 μM, 20 × 4.0 mm) at a flow rate of 1 mL/min and runtime 3.5 min. The mobile phase consisted of acetonitrile and water containing 0.1% formic acid as additive. Extraction of flomoxef from plasma and precipitation of plasma proteins was performed with acetonitrile with an absolute recovery of 86.4 ± 1.6%. The calibration curve was linear with a correlation coefficient of 0.999 over the concentration range 10-5000 ng/mL and the lower limit of quantification was 10 ng/mL. The intra- and inter-day precisions were flomoxef revealed that it could be successfully analyzed at 4 ºС over 24 h, but it was unstable in solutions at room temperature during short-term storage (4 h) and several freeze-thaw cycles. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Analysis of perfluoroalkyl substances in cord blood by turbulent flow chromatography coupled to tandem mass spectrometry

    International Nuclear Information System (INIS)

    Llorca, Marta; Pérez, Francisca; Farré, Marinella; Agramunt, Sílvia; Kogevinas, Manolis; Barceló, Damià

    2012-01-01

    A fast on-line analytical method based on turbulent flow chromatography (TFC) in combination with tandem mass spectrometry has been applied for the first time for the analysis of eighteen perfluoroalkyl substances (PFASs), in cord blood. A simple and rapid sample pre-treatment was optimised consisting on protein precipitation of 100 μL of sample with acetonitrile (1:1) followed by centrifugation during 10 min. The method was adapted to be sensitive enough and robust with minimum sample injection volume requirements (20 μL). The optimised methodology presented method limits of detection (MLOD) between 0.031 and 0.76 μg/L, detection capabilities (CCα) in the range between 0.005 and 0.99 μg/L and decision limits (CCβ) ranging from 0.006 to 1.16 μg/L. The recoveries in blank blood were calculated by spiking experiments with a mixture of 18 PFASs and established between 70 and 126% for most of compounds. Isotopic dilution was carried out for quantification of selected analytes. In-house validation of this new approach was carried out according to the requirements in the 2002/657/EC Decision. Finally the good applicability of this new approach was proved by the analysis of 60 cord blood samples from two different Mediterranean cities, Barcelona (Spain) and Heraklion (Greece). Ions perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) were found at highest concentration and the more frequently compounds were PFHxS, PFOS and perfluorooctanoic acid (PFOA). The newly developed method proved to be suitable for large-scale epidemiologic studies, and to the data on PFASs exposure during pregnancy. -- Highlights: ► An on-line method has been developed for the analysis of 18 perfluoroalkyl substances. ► The method is based on turbulent flow chromatography tandem mass spectrometry. ► The method was applied in 60 cord blood samples from 2 Mediterranean cities. ► Acidic compounds were more frequently found and the method was proved to be suitable for

  6. Analysis of perfluoroalkyl substances in cord blood by turbulent flow chromatography coupled to tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, Marta; Perez, Francisca [Department of Environmental Chemistry, IDAEA-CSIC, Barcelona (Spain); Farre, Marinella, E-mail: mfuqam@cid.csic.es [Department of Environmental Chemistry, IDAEA-CSIC, Barcelona (Spain); Agramunt, Silvia [Centre for Research in Environmental Epidemiology (CREAL), Barcelona (Spain); IMIM (Hospital del Mar Research Institute), Barcelona (Spain); Kogevinas, Manolis [Centre for Research in Environmental Epidemiology (CREAL), Barcelona (Spain); IMIM (Hospital del Mar Research Institute), Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP), Barcelona (Spain); National School of Public Health, Athens (Greece); Barcelo, Damia [Department of Environmental Chemistry, IDAEA-CSIC, Barcelona (Spain); Catalan Institute for Water Research (ICRA), Girona (Spain); King Saud University, Riyadh (Saudi Arabia)

    2012-09-01

    A fast on-line analytical method based on turbulent flow chromatography (TFC) in combination with tandem mass spectrometry has been applied for the first time for the analysis of eighteen perfluoroalkyl substances (PFASs), in cord blood. A simple and rapid sample pre-treatment was optimised consisting on protein precipitation of 100 {mu}L of sample with acetonitrile (1:1) followed by centrifugation during 10 min. The method was adapted to be sensitive enough and robust with minimum sample injection volume requirements (20 {mu}L). The optimised methodology presented method limits of detection (MLOD) between 0.031 and 0.76 {mu}g/L, detection capabilities (CC{alpha}) in the range between 0.005 and 0.99 {mu}g/L and decision limits (CC{beta}) ranging from 0.006 to 1.16 {mu}g/L. The recoveries in blank blood were calculated by spiking experiments with a mixture of 18 PFASs and established between 70 and 126% for most of compounds. Isotopic dilution was carried out for quantification of selected analytes. In-house validation of this new approach was carried out according to the requirements in the 2002/657/EC Decision. Finally the good applicability of this new approach was proved by the analysis of 60 cord blood samples from two different Mediterranean cities, Barcelona (Spain) and Heraklion (Greece). Ions perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) were found at highest concentration and the more frequently compounds were PFHxS, PFOS and perfluorooctanoic acid (PFOA). The newly developed method proved to be suitable for large-scale epidemiologic studies, and to the data on PFASs exposure during pregnancy. -- Highlights: Black-Right-Pointing-Pointer An on-line method has been developed for the analysis of 18 perfluoroalkyl substances. Black-Right-Pointing-Pointer The method is based on turbulent flow chromatography tandem mass spectrometry. Black-Right-Pointing-Pointer The method was applied in 60 cord blood samples from 2 Mediterranean cities

  7. New ultra-performance liquid chromatography-tandem mass spectrometry method for the determination of irbesartan in human plasma

    Directory of Open Access Journals (Sweden)

    Tanveer A. Wani

    2015-09-01

    Full Text Available With the objective of reducing analysis time and maintaining good efficiency, there has been substantial focus on high-speed chromatographic separations and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS is a preeminent analytical tool for rapid biomedical analysis. In this study a simple, rapid, sensitive, and specific ultra-performance liquid chromatography-MS/MS method was developed and validated for quantification of the angiotensin II receptor antagonist, irbesartan (IRB, in human plasma. After a simple protein precipitation using methanol and acetonitrile, IRB and internal standard (IS telmisartan were separated on Acquity UPLC BEH C18 column (50 mm × 2.1 mm, i.d. 1.7 μm, Waters, Milford, MA, USA using a mobile phase consisted of acetonitrile: methanol: 10 mM ammonium acetate (70: 15: 15 v/v/v with a flow rate of 0.4 mL/min and detected MS/MS in negative ion mode. The ion transitions recorded in multiple reaction monitoring mode were m/z 427.2→193.08 for IRB and m/z 513.2→469.3 for IS. The assay exhibited a linear dynamic range of 2–500 ng/mL for IRB in human plasma with good correlation coefficient of (0.995 and with a lower limit of quantitation of 2 ng/mL. The intra- and interassay precisions were satisfactory; the relative standard deviations did not exceed 9.91%. The proposed UPLC-MS/MS method is simple, rapid, and highly sensitive, and hence it could be reliable for pharmacokinetic and toxicokinetic study in both animals and humans.

  8. Arsenic speciation by liquid chromatography coupled with ionspray tandem mass spectrometry

    DEFF Research Database (Denmark)

    Corr, J. J.; Larsen, Erik Huusfeldt

    1996-01-01

    Ionspray mass spectrometry, a well established organic analysis technique, has been coupled to high-performance liquid chromatography for speciation of organic arsenic compounds, The ionspray source and differentially pumped interface of the mass spectrometer were operated in dual modes...... fragmentation patterns showing molecular dissociation through an expected common product ion were obtained for the four arsenosugars, Molecular mode detection was utilized for qualitative verification of speciation analysis by high-performance liquid chromatography coupled to inductively coupled plasma mass...

  9. Determination of pesticides associated with suspended sediments in the San Joaquin River, California, USA, using gas chromatography-ion trap mass spectrometry

    Science.gov (United States)

    Bergamaschi, B.A.; Baston, D.S.; Crepeau, K.L.; Kuivila, K.M.

    1999-01-01

    An analytical method useful for the quantification of a range of pesticides and pesticide degradation products associated with suspended sediments was developed by testing a variety of extraction and cleanup schemes. The final extraction and cleanup methods chosen for use are suitable for the quantification of the listed pesticides using gas chromatography-ion trap mass spectrometry and the removal of interfering coextractable organic material found in suspended sediments. Methylene chloride extraction followed by Florisil cleanup proved most effective for separation of coextractives from the pesticide analytes. Removal of elemental sulfur was accomplished with tetrabutylammonium hydrogen sulfite. The suitability of the method for the analysis of a variety of pesticides was evaluated, and the method detection limits (MDLs) were determined (0.1-6.0 ng/g dry weight of sediment) for 21 compounds. Recovery of pesticides dried onto natural sediments averaged 63%. Analysis of duplicate San Joaquin River suspended-sediment samples demonstrated the utility of the method for environmental samples with variability between replicate analyses lower than between environmental samples. Eight of 21 pesticides measured were observed at concentrations ranging from the MDL to more than 80 ng/g dry weight of sediment and exhibited significant temporal variability. Sediment-associated pesticides, therefore, may contribute to the transport of pesticides through aquatic systems and should be studied separately from dissolved pesticides.

  10. Proposed LLNL electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.; Egan, P.O.; Proctor, I.; Levine, M.A.; Hansen, L.; Kajiyama, Y.; Wolgast, R.

    1985-01-01

    The interaction of energetic electrons with highly charged ions is of great importance to several research fields such as astrophysics, laser fusion and magnetic fusion. In spite of this importance there are almost no measurements of electron interaction cross sections for ions more than a few times ionized. To address this problem an electron beam ion trap (EBIT) is being developed at LLNL. The device is essentially an EBIS except that it is not intended as a source of extracted ions. Instead the (variable energy) electron beam interacting with the confined ions will be used to obtain measurements of ionization cross sections, dielectronic recombination cross sections, radiative recombination cross sections, energy levels and oscillator strengths. Charge-exchange recombinaion cross sections with neutral gasses could also be measured. The goal is to produce and study elements in many different charge states up to He-like xenon and Ne-like uranium. 5 refs., 2 figs

  11. Tandem ion mobility spectrometry coupled to laser excitation

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Anne-Laure; Choi, Chang Min; Clavier, Christian; Barbaire, Marc; Maurelli, Jacques; Dagany, Xavier; MacAleese, Luke; Dugourd, Philippe, E-mail: philippe.dugourd@univ-lyon1.fr [Institut Lumière Matière, Université de Lyon, Université Lyon 1-CNRS, 69622 Villeurbanne cedex (France); Chirot, Fabien [Institut des Sciences Analytiques, Université de Lyon, Université Lyon 1-CNRS, 69622 Villeurbanne cedex (France)

    2015-09-15

    This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collision is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.

  12. Temperature measurement of {sup 6}He{sup + } ions confined in a transparent Paul trap

    Energy Technology Data Exchange (ETDEWEB)

    Flechard, X., E-mail: flechard@lpccaen.in2p3.fr; Ban, G.; Durand, D.; Lienard, E.; Mauger, F. [Universite de Caen, LPC Caen, ENSICAEN (France); Mery, A. [Universite de Caen, CIMAP, CEA/CNRS/ENSICAEN (France); Naviliat-Cuncic, O. [Universite de Caen, LPC Caen, ENSICAEN (France); Rodriguez, D. [Universitad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear (Spain); Velten, P. [Universite de Caen, LPC Caen, ENSICAEN (France)

    2011-07-15

    The LPCTrap setup is a transparent Paul trap dedicated to the measurement of the {beta}-{nu} correlation coefficient a{sub {beta}{nu}} in the {beta} decay of trapped radioactive nuclides. In a first experiment, the system has been used to record {approx}10{sup 5} coincidences between the {beta} particles and recoiling ions emitted from the decay of {sup 6}He{sup + } ions. The analysis of the collected data has already shown that the size of the {sup 6}He{sup + } ion cloud confined in the Paul trap is a critical parameter, potentially limiting the accuracy on the a{sub {beta}{nu}} measurement. We report here the precise determination of the trapped ion cloud temperature and size. This was performed by extracting the trapped ions toward a position sensitive micro channel plate detector at different phases of the RF driving field. We find a temperature T{sub exp} = 0.107(7) eV, consistent with the temperature values inferred using two other observables but 20% higher than the temperature T{sub sim} = 0.09 eV predicted by realistic simulations of the ions interacting with the H{sub 2} buffer gas.

  13. New experimental initiatives using very highly charged ions from an 'electron beam ion trap'

    International Nuclear Information System (INIS)

    Schneider, D.

    1996-01-01

    A short review of the experimental program in highly-charged heavy ion physics conducted at the Lawrence Livermore National Laboratory Electron Beam Ion Trap (EBIT) facility is presented. The heavy-ion research, involving ions up to fully stripped U 92+ , includes precision x-ray spectroscopy and lifetime studies, electron impact ionization and excitation cross section measurements. The investigations of ion-surface interactions following the impact of high-Z highly charged ions on surfaces are aimed to study the neutralization dynamics effecting the ion and the response of the surface as well. (author)

  14. Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications

    Science.gov (United States)

    Burt, Eric A. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor); Larsen, Kameron (Inventor); Tjoelker, Robert L. (Inventor)

    2017-01-01

    An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.

  15. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    International Nuclear Information System (INIS)

    Schneider, D.

    1995-10-01

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA's astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th 80+ can be performed routinely. Measurements of the rates and cross sections for electron transfer from H 2 performed to determine the lifetime of HCI up to Xe q+ and Th q+ (35 ≤ q ≤ 80) have been studied at mean energies estimated to be ∼ 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events

  16. Extending the applicability of an open-ring trap to perform experiments with a single laser-cooled ion

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, J. M.; Colombano, M.; Doménech, J.; Rodríguez, D., E-mail: danielrodriguez@ugr.es [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada (Spain); Block, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, 55099 Mainz (Germany); Institut für Kernchemie, University of Mainz, 55099 Mainz (Germany); Delahaye, P. [Grand Accélérateur National d’Ions Lourds, 14000 Caen (France)

    2015-10-15

    A special ion trap was initially built up to perform β-ν correlation experiments with radioactive ions. The trap geometry is also well suited to perform experiments with laser-cooled ions, serving for the development of a new type of Penning trap, in the framework of the project TRAPSENSOR at the University of Granada. The goal of this project is to use a single {sup 40}Ca{sup +} ion as detector for single-ion mass spectrometry. Within this project and without any modification to the initial electrode configuration, it was possible to perform Doppler cooling on {sup 40}Ca{sup +} ions, starting from large clouds and reaching single ion sensitivity. This new feature of the trap might be important also for other experiments with ions produced at radioactive ion beam facilities. In this publication, the trap and the laser system will be described, together with their performance with respect to laser cooling applied to large ion clouds down to a single ion.

  17. A novel ion cooling trap for multi-reflection time-of-flight mass spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y., E-mail: yito@riken.jp [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Schury, P. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); New Mexico State University, Department Chemistry and Biochemistry, Las Cruces, NM 88003 (United States); Wada, M.; Naimi, S. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Smorra, C. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Sonoda, T. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Mita, H. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Takamine, A. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoyama Gakuin University, 4-4-25 Shibuya, Shibuya-ku, Tokyo 150-8366 (Japan); Okada, K. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Ozawa, A. [University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Wollnik, H. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); New Mexico State University, Department Chemistry and Biochemistry, Las Cruces, NM 88003 (United States)

    2013-12-15

    Highlights: • Fast cooling time: 2 ms. • High efficiency: ≈27% for {sup 23}Na{sup +} and ≈5.1% for {sup 7}Li{sup +}. • 100% Duty cycle with double trap system. -- Abstract: A radiofrequency quadrupole ion trap system for use with a multi-reflection time-of-flight mass spectrograph (MRTOF) for short-lived nuclei has been developed. The trap system consists of two different parts, an asymmetric taper trap and a flat trap. The ions are cooled to a sufficient small bunch for precise mass measurement with MRTOF in only 2 ms cooling time in the flat trap, then orthogonally ejected to the MRTOF for mass analysis. A trapping efficiency of ≈27% for {sup 23}Na{sup +} and ≈5.1% for {sup 7}Li{sup +} has been achieved.

  18. Structural Characterisation of Acetogenins from Annona muricata by Supercritical Fluid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry.

    Science.gov (United States)

    Laboureur, Laurent; Bonneau, Natacha; Champy, Pierre; Brunelle, Alain; Touboul, David

    2017-11-01

    Acetogenins are plant polyketides known to be cytotoxic and proposed as antitumor candidates. They are also suspected to be alimentary neurotoxins. Their occurrence as complex mixtures renders their dereplication and structural identification difficult using liquid chromatography coupled to tandem mass spectrometry and efforts are required to improve the methodology. To develop a supercritical fluid chromatography (SFC) high-resolution tandem mass spectrometry method, involving lithium post-column cationisation, for the structural characterisation of Annonaceous acetogenins in crude extracts. The seeds of Annona muricata L. were extracted with methanol. Supercritical fluid chromatography of the extract, using a 2-ethylpyridine stationary phase column, was monitored using a high-resolution quadrupole time-of-flight mass spectrometer. Lithium iodide was added post-column in the make-up solvent. For comparison, the same extract was analysed using high-pressure liquid chromatography coupled to the same mass spectrometer, with a column based on solid core particles. Sensitivity was similar for both HPLC and SFC approaches. Retention behaviour and fragmentation pathways of three different isomer groups are described. A previously unknown group of acetogenins was also evidenced for the first time. The use of SFC-MS/MS allows the reduction of the time of analysis, of environmental impact and an increase in the chromatographic resolution, compared to liquid chromatography. This new methodology enlightened a new group of acetogenins, isomers of montanacin-D. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Trapping of hydrogen isotopes in molybdenum and niobium predamaged by ion implantation

    International Nuclear Information System (INIS)

    Bottiger, J.; Picraux, S.T.; Rud, N.; Laursen, T.

    1977-01-01

    The trapping of hydrogen isotopes at defects in Mo and Nb have been studied. Ion beams of 11- and 18-keV He + , 55-keV O + and Ne + , and 500-keV Bi + were used to create defects. Subsequently H or D was injected at room temperature by use of molecular beams of 16-keV H + 2 and D + 2 . Appreciable enhancements were observed in the amount of H and D retained within the near-surface region of predamaged samples compared to samples with no prior damage. The total amount of D retained within the near-surface region was measured by means of the nuclear reaction D( 3 He,p) 4 He, and H depth profiles were measured via a resonance in the nuclear reaction 1 H( 19 F,αγ) 16 O. The H profiles correlate with the predicted predamaging ion profiles; however, appreciable tails to deeper depths for the hydrogen profiles are observed for the heavier predamaging ions. For a given predamage ion fluence, the amount of trapped deuterium increases linearly with incident deuterium fluence until a saturation in the enhancement is reached. The amount of deuterium trapped when saturation occurs increases with increasing predamage fluence. The experiments indicate that lighter ions, which create fewer primary displacements, are more effective per displacement in trapping hydrogen. An appreciable release of hydrogen is obtained upon annealing at 200 and 300 degreeC, and a preannealing experiment indicates this is due to detrapping rather than to any loss of traps. These temperatures suggest a much higher binding energy for the trapped hydrogen isotopes (approx.1.5 eV) than the available evidence gives for simple H-defect binding energies (approximately-less-than0.3 eV). The detailed trapping mechanism is not known. However, it is suggested on the basis of the high binding energies and the high concentrations of hydrogen which can be trapped that clusters of hydrogen may be formed

  20. A New Trapped Ion Clock Based on Hg-201(+)

    Science.gov (United States)

    Taghavi-Larigani, S.; Burt, E. A.; Lea, S. N.; Prestage, J. D.; Tjoelker, R. L.

    2009-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave clock: Hg-199(+) and Hg-201(+). Virtually all trapped mercury ion clocks to date have used the 199 isotope. We have begun to investigate the viability of a trapped ion clock based on Hg-201(+). We have measured the unperturbed frequency of the (S-2)(sub 1/2) F = 1, m(sub F) = 0 to (S-2)(sub 1/2) F = 2, m(sub F) = 0 clock transition to be 29.9543658211(2) GHz. In this paper we describe initial measurements with Hg-201(+) and new applications to clocks and fundamental physics.

  1. A cryogenic electrostatic trap for long-time storage of keV ion beams

    Science.gov (United States)

    Lange, M.; Froese, M.; Menk, S.; Varju, J.; Bastert, R.; Blaum, K.; López-Urrutia, J. R. Crespo; Fellenberger, F.; Grieser, M.; von Hahn, R.; Heber, O.; Kühnel, K.-U.; Laux, F.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Schröter, C. D.; Schwalm, D.; Shornikov, A.; Sieber, T.; Toker, Y.; Ullrich, J.; Wolf, A.; Zajfman, D.

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2×103 cm-3, which for a room temperature environment corresponds to a pressure in the 10-14 mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  2. Mats and LaSpec: High-precision experiments using ion traps and lasers at Fair

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D.; Lallena, A.M.; Blaum, K.; Bohm, C.; Cakirli, R.B.; Crespo Lopez-Urrutia, J.R.; Eliseev, S.; Ketelaer, J.; Kreim, M.S.; Kowalska, M.; Litvinov, Y.A.; Nagy, S.; Neidherr, D.; Repp, J.; Roux, C.; Schabinger, B.; Ullrich, J.; Nortershauser, W.; Eberhardt, K.; Geppert, C.; Kramer, J.; Krieger, A.; Sanchez, R.; Ahammed, M.; Das, P.; Ray, A.; Algora, A.; Rubio, B.; Tain, J.L.; Audi, G.; Lunney, D.; Naimi, S.; Aysto, J.; Jokinen, A.; Kolhinen, V.; Moore, I.; Beck, D.; Block, M.; Geissel, H.; Heinz, S.; Herfurth, F.; Litvinov, Y.A.; Minaya-Ramirez, E.; Plab, W.R.; Quint, W.; Scheidenberger, C.; Winkler, M.; Bender, M.; Billowes, J.; Campbell, P.; Flanagan, K.T.; Schwarz, S.; Bollen, G.; Ferrer, R.; George, S.; Kester, O.; Brodeur, M.; Brunner, T.; Delheij, P.; Dilling, J.; Ettenauer, S.; Lapierre, A.; Bushaw, B.A.; Cano-Ott, D.; Martinez, T.; Cortes, G.; Gomez-Hornillos, M.B.; Dax, A.; Herlert, A.; Yordanov, D.; De, A.; Dickel, T.; Geissel, H.; Jesch, C.; Kuhl, T.; Petrick, M.; PlaB, W.R.; Scheidenberger, C.; Garcia-Ramos, J.E.; Gartzke, E.; Habs, D.; Szerypo, J.; Thirolf, P.G.; Weber, C.; Gusev, Y.; Nesterenko, D.; Novikov, Y.N.; Popov, A.; Seliverstov, M.; Vasiliev, A.; Vorobjev, G.; Heenen, P.H.; Marx, G.; Schweikhard, L.; Ziegler, F.; Hobein, M.; Schuch, R.; Solders, A.; Suhonen, M.; Huber, G.; Wendt, K.; Huyse, M.; Koudriavtsev, I.; Neyens, G.; Van Duppen, P.; Le Blanc, F.; Matos, M.; Reinhard, P.G.; Schneider, D.

    2010-05-15

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10{sup -9} can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. Decay studies in ion traps will become possible with MATS. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The accuracy of laser-spectroscopic-determined nuclear properties is very high while requirements concerning production rates are moderate. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy. Since MATS and LaSpec require high-quality low

  3. Mats and LaSpec: High-precision experiments using ion traps and lasers at Fair

    International Nuclear Information System (INIS)

    Rodriguez, D.; Lallena, A.M.; Blaum, K.; Bohm, C.; Cakirli, R.B.; Crespo Lopez-Urrutia, J.R.; Eliseev, S.; Ketelaer, J.; Kreim, M.S.; Kowalska, M.; Litvinov, Y.A.; Nagy, S.; Neidherr, D.; Repp, J.; Roux, C.; Schabinger, B.; Ullrich, J.; Nortershauser, W.; Eberhardt, K.; Geppert, C.; Kramer, J.; Krieger, A.; Sanchez, R.; Ahammed, M.; Das, P.; Ray, A.; Algora, A.; Rubio, B.; Tain, J.L.; Audi, G.; Lunney, D.; Naimi, S.; Aysto, J.; Jokinen, A.; Kolhinen, V.; Moore, I.; Beck, D.; Block, M.; Geissel, H.; Heinz, S.; Herfurth, F.; Litvinov, Y.A.; Minaya-Ramirez, E.; Plab, W.R.; Quint, W.; Scheidenberger, C.; Winkler, M.; Bender, M.; Billowes, J.; Campbell, P.; Flanagan, K.T.; Schwarz, S.; Bollen, G.; Ferrer, R.; George, S.; Kester, O.; Brodeur, M.; Brunner, T.; Delheij, P.; Dilling, J.; Ettenauer, S.; Lapierre, A.; Bushaw, B.A.; Cano-Ott, D.; Martinez, T.; Cortes, G.; Gomez-Hornillos, M.B.; Dax, A.; Herlert, A.; Yordanov, D.; De, A.; Dickel, T.; Geissel, H.; Jesch, C.; Kuhl, T.; Petrick, M.; PlaB, W.R.; Scheidenberger, C.; Garcia-Ramos, J.E.; Gartzke, E.; Habs, D.; Szerypo, J.; Thirolf, P.G.; Weber, C.; Gusev, Y.; Nesterenko, D.; Novikov, Y.N.; Popov, A.; Seliverstov, M.; Vasiliev, A.; Vorobjev, G.; Heenen, P.H.; Marx, G.; Schweikhard, L.; Ziegler, F.; Hobein, M.; Schuch, R.; Solders, A.; Suhonen, M.; Huber, G.; Wendt, K.; Huyse, M.; Koudriavtsev, I.; Neyens, G.; Van Duppen, P.; Le Blanc, F.; Matos, M.; Reinhard, P.G.; Schneider, D.

    2010-01-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10 -9 can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. Decay studies in ion traps will become possible with MATS. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The accuracy of laser-spectroscopic-determined nuclear properties is very high while requirements concerning production rates are moderate. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy. Since MATS and LaSpec require high-quality low-energy beams

  4. Contribution to high-temperature chromatography and high-temperature-gas-chromatography-mass spectrometry of lipids

    International Nuclear Information System (INIS)

    Aichholz, R.

    1998-04-01

    This thesis describes the use of high temperature gas chromatography for the investigation of unusual triacylglycerols, cyanolipids and bees waxes. The used glass capillary columns were pretreated and coated with tailor made synthesized high temperature stable polysiloxane phases. The selective separation properties of the individual columns were tested with a synthetic lipid mixture. Suitable derivatization procedures for the gaschromatographic analyses of neutral lipids, containing multiple bonds as well as hydroxy-, epoxy-, and carboxyl groups, were developed and optimized. Therefore conjugated olefinic-, conjugated olefinic-acetylenic-, hydroxy-, epoxy-, and conjugated olefinic keto triacylglycerols in miscellaneous plant seed oils as well as hydroxy monoesters, diesters and hydroxy diesters in bees waxes could be analysed directly with high temperature gas chromatography for the first time. In order to elucidate the structures of separated lipid compounds, high temperature gas chromatography was coupled to mass spectrometry and tandem mass spectrometry, respectively. Comparable analytical systems are hitherto not commercial available. Therefore instrumental prerequisites for a comprehensive and detailed analysis of seed oils and bees waxes were established. In GC/MS commonly two ionization methods are used, electron impact ionization and chemical ionization. For the analysis of lipids the first is of limited use only. Due to intensive fragmentation only weak molecular ions are observed. In contrast, the chemical ionization yields in better results. Dominant quasi molecular ions enable an unambiguous determination of the molecular weight. Moreover, characteristic fragment ions provide important indications of certain structural features of the examined compounds. Nevertheless, in some cases the chromatographic resolution was insufficient in order to separate all compounds present in natural lipid mixtures. Owing to the selected detection with mass spectrometry

  5. Sympathetic cooling and crystallization of ions in a linear Paul trap

    International Nuclear Information System (INIS)

    Drewsen, M.; Bowe, P.; Hornekaer, L.; Brodersen, C.; Schiffer, J.P.; Hangst, J.S.; Schiffer, J.P.

    1999-01-01

    Coulomb crystals, containing up to a few hundred ions of which more than 50% were cooled sympathetically by the Coulomb interaction with laser cooled Mg + ions, have been produced in a linear Paul trap. By controlling the balance of the radiation pressure from the two cooling lasers, the Coulomb crystals could be segregated according to ion species. Previous studies of ion crystals and molecular dynamics simulations suggest that the temperature may be around 10 mK or lower. The obtained results indicate that a wide range of atomic and molecular ions, which due to their internal structures are not amenable to direct laser cooling, can be effectively cooled and localized (crystallized) in linear Paul traps. For high resolution spectroscopy of such ions this may turn out to be very useful. copyright 1999 American Institute of Physics

  6. Probing the Complementarity of FAIMS and Strong Cation Exchange Chromatography in Shotgun Proteomics

    OpenAIRE

    Creese, Andrew J.; Shimwell, Neil J.; Larkins, Katherine P. B.; Heath, John K.; Cooper, Helen J.

    2013-01-01

    High field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility spectrometry, coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) offers benefits for the analysis of complex proteomics samples. Advantages include increased dynamic range, increased signal-to-noise, and reduced interference from ions of similar m/z. FAIMS also separates isomers and positional variants. An alternative, and more established, method of reducing sample co...

  7. Mass-selective isolation of ions stored in a quadrupole ion trap. A simulation study

    Science.gov (United States)

    March, Raymond E.; Londry, Frank A.; Alfred, Roland L.; Franklin, Anthony M.; Todd, John F. J.

    1992-01-01

    Trajectories of single ions stored in the quadrupole ion trap have been calculated using a simulation program described as the specific program for quadrupolar resonance (SPQR). Previously, the program has been used for the investigation of quadrupolar resonance excitation of ions with a static working point (or co-ordinates) in the stability diagram. The program has been modified to accommodate continuous d.c. and/or r.f. voltage ramps so as to permit calculation of ion trajectories while the working point is being changed. The modified program has been applied to the calculation of ion trajectories during ion isolation, or mass-selective storage, in the ion trap. The quadrupolar resonance excitation aspect of SPQR was not used in this study. Trajectories are displayed as temporal variations of ion kinetic energy, and axial and radial excursions from the centre of the ion trap. The working points of three ion species (m/z 144, 146 and 148), located initially on the qz, axis with qz [approximate] 0.12, were moved to the vicinity of the upper apex by a combination of r.f. and d.c. voltages applied in succession. Stable trajectories were maintained only for the ion species of m/z 146 for which the working point lay within this apex; the other ion species were ejected either radially or axially. The d.c. voltage was then reduced to zero so as to restore the working point of the isolated ion species to the qz axis. The amplitude of the r.f voltage was reduced to its initial value so as to retrieve the initial working point for m/z 146. The process extended over a real time of 2.9 ms, and was collision-free. The trajectory of the isolated ion was stable during this process; the ion species with m/z value lower than that of the target ion, that is, m/z 144, was ejected axially at the [beta]z = 1 boundary, while that with higher m/z value, that is, m/z 148, was ejected radially at the [beta]r = 0 boundary, as expected. The moderating effects of buffer gas were not taken

  8. Scheme for teleportation of unknown states of trapped ion

    Institute of Scientific and Technical Information of China (English)

    Chen Mei-Feng; Ma Song-She

    2008-01-01

    A scheme is presented for teleporting an unknown state in a trapped ion system.The scheme only requires a single laser beam.It allows the trap to be in any state with a few phonons,e.g.a thermal motion.Furthermore,it works in the regime,where the Rabi frequency of the laser is on the order of the trap frequency.Thus,the teleportation speed is greatly increased,which is important for decreasing the decoherence effect.This idea can also be used to teleport an unknown ionic entangled state.

  9. Ion Storage Tests with the High Performance Antimatter Trap (HiPAT)

    Science.gov (United States)

    Martin, James J.; Lewis, Raymond A.; Chakrabarti, Suman; Pearson, Boise; Schafer, Charles (Technical Monitor)

    2002-01-01

    The NASA/Marshall Space Flight Centers (NASA/MSFC) Propulsion Research Center (PRC) is evaluating an antiproton storage system, referred to as the High Performance Antiproton Trap (HiPAT). This interest stems from the sheer energy represented by matter/antimatter annihilation process with has an energy density approximately 10 order of magnitude above that of chemical propellants. In other terms, one gram of antiprotons contains the equivalent energy of approximately 23 space shuttle external tanks or ET's (each ET contains roughly 740,000 kgs of fuel and oxidizer). This incredible source of stored energy, if harnessed, would be an enabling technology for deep space mission where both spacecraft weight and propulsion performance are key to satisfying aggressive mission requirements. The HiPAT hardware consists of a 4 Tesla superconductor system, an ultra high vacuum test section (vacuum approaching 10(exp -12) torr), and a high voltage confinement electrode system (up to 20 kvolts operation). The current laboratory layout is illustrated. The HiPAT designed objectives included storage of up to 1 trillion antiprotons with corresponding lifetimes approaching 18 days. To date, testing has centered on the storage of positive hydrogen ions produced in situ by a stream of high-energy electrons that passes through the trapping region. However, due to space charge issues and electron beam compression as it passes through the HiPAT central field, current ion production is limited to less then 50,000 ions. Ion lifetime was determined by counting particle populations at the end of various storage time intervals. Particle detection was accomplished by destructively expelling the ions against a micro-channel plate located just outside the traps magnetic field. The effect of radio frequency (RF) stabilization on the lifetime of trapped particles was also examined. This technique, referred to as a rotating wall, made use of a segmented electrode located near the center of the trap

  10. Investigation of electrostatic ion chromatography for the separation of inorganic ions

    OpenAIRE

    Twohill, Eadaoin

    2002-01-01

    The new technique of ‘electrostatic ion chromatography’ (ion chromatography using a zwittenomc stationary phase) has been applied to the separation of ions using pure water as an eluent, without the addition of any inorganic buffers or organic modifiers. The nature of the separation, le cationic or anionic, is dependent upon the nature of the zwittenomc stationary phase. In the work presented here, the zwittenomc surfactant Zwittergent 3-14 was used to functionalise an octadecylsihca stationa...

  11. Optimization of Sample Preparation for the Identification and Quantification of Saxitoxin in Proficiency Test Mussel Sample using Liquid Chromatography-Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Kirsi Harju

    2015-11-01

    Full Text Available Saxitoxin (STX and some selected paralytic shellfish poisoning (PSP analogues in mussel samples were identified and quantified with liquid chromatography-tandem mass spectrometry (LC-MS/MS. Sample extraction and purification methods of mussel sample were optimized for LC-MS/MS analysis. The developed method was applied to the analysis of the homogenized mussel samples in the proficiency test (PT within the EQuATox project (Establishment of Quality Assurance for the Detection of Biological Toxins of Potential Bioterrorism Risk. Ten laboratories from eight countries participated in the STX PT. Identification of PSP toxins in naturally contaminated mussel samples was performed by comparison of product ion spectra and retention times with those of reference standards. The quantitative results were obtained with LC-MS/MS by spiking reference standards in toxic mussel extracts. The results were within the z-score of ±1 when compared to the results measured with the official AOAC (Association of Official Analytical Chemists method 2005.06, pre-column oxidation high-performance liquid chromatography with fluorescence detection (HPLC-FLD.

  12. Liquid chromatography/tandem mass spectrometry method for quantitative estimation of solutol HS15 and its applications.

    Science.gov (United States)

    Bhaskar, V Vijaya; Middha, Anil; Srivastava, Pratima; Rajagopal, Sriram

    2015-04-01

    A rapid, sensitive and selective pseudoMRM (pMRM)-based method for the determination of solutol HS15 (SHS15) in rat plasma was developed using liquid chromatography/tandem mass spectrometry (LC-MS/MS). The most abundant ions corresponding to SHS15 free polyethyleneglycol (PEG) oligomers at m / z 481, 525, 569, 613, 657, 701, 745, 789, 833, 877, 921 and 965 were selected for pMRM in electrospray mode of ionization. Purity of the lipophilic and hydrophilic components of SHS15 was estimated using evaporative light scattering detector (ELSD). Plasma concentrations of SHS15 were measured after oral administration at 2.50 g/kg dose and intravenous administration at 1.00 g/kg dose in male Sprague Dawley rats. SHS15 has poor oral bioavailability of 13.74% in rats. Differences in pharmacokinetics of oligomers were studied. A novel proposal was conveyed to the scientific community, where formulation excipient could be analyzed as a qualifier in the analysis of new chemical entities (NCEs) to address the spiky plasma concentration profiles.

  13. Electron-capture process and ion mobility spectra in plasma chromatography

    International Nuclear Information System (INIS)

    Karasek, F.W.; Spangler, G.E.

    1981-01-01

    The basic principles of plasma chromatography are introduced and ion mobility relationships presented. The relationships of plasma chromatography to electron-capture detector mechanisms are discussed, including electron energy considerations and electron-capture reactions. A number of experimental studies by plasma chromatography are described. (C.F.)

  14. The nonlinear dustgrain-charging on large amplitude electrostatic waves in a dusty plasma with trapped ions

    Directory of Open Access Journals (Sweden)

    Y.-N. Nejoh

    1998-01-01

    Full Text Available The nonlinear dustgrain-charging and the influence of the ion density and temperature on electrostatic waves in a dusty plasma having trapped ions are investigated by numerical calculation. This work is the first approach to the effect of trapped ions in dusty plasmas. The nonlinear variation of the dust-charge is examined, and it is shown that the characteristics of the dustcharge number sensitively depend on the plasma potential, Mach number, dust mass-to-charge ratio, trapped ion density and temperature. The fast and slow wave modes are shown in this system. An increase of the ion temperature decreases the dust-charging rate and the propagation speed of ion waves. It is found that the existence of electrostatic ion waves sensitively depends on the ion to electron density ratio. New findings of the variable-charge dust grain particles, ion density and temperature in a dusty plasma with trapped ions are predicted.

  15. Single qubit manipulation in a microfabricated surface electrode ion trap

    Science.gov (United States)

    Mount, Emily; Baek, So-Young; Blain, Matthew; Stick, Daniel; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang

    2013-09-01

    We trap individual 171Yb+ ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms-1, indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps.

  16. Single qubit manipulation in a microfabricated surface electrode ion trap

    International Nuclear Information System (INIS)

    Mount, Emily; Baek, So-Young; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang; Blain, Matthew; Stick, Daniel

    2013-01-01

    We trap individual 171 Yb + ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms −1 , indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps. (paper)

  17. Qualitative and quantitative characterization of plasma proteins when incorporating traveling wave ion mobility into a liquid chromatography-mass spectrometry workflow for biomarker discovery: use of product ion quantitation as an alternative data analysis tool for label free quantitation.

    Science.gov (United States)

    Daly, Charlotte E; Ng, Leong L; Hakimi, Amirmansoor; Willingale, Richard; Jones, Donald J L

    2014-02-18

    Discovery of protein biomarkers in clinical samples necessitates significant prefractionation prior to liquid chromatography-mass spectrometry (LC-MS) analysis. Integrating traveling wave ion mobility spectrometry (TWIMS) enables in-line gas phase separation which when coupled with nanoflow liquid chromatography and data independent acquisition tandem mass spectrometry, confers significant advantages to the discovery of protein biomarkers by improving separation and inherent sensitivity. Incorporation of TWIMS leads to a packet of concentrated ions which ultimately provides a significant improvement in sensitivity. As a consequence of ion packeting, when present at high concentrations, accurate quantitation of proteins can be affected due to detector saturation effects. Human plasma was analyzed in triplicate using liquid-chromatography data independent acquisition mass spectrometry (LC-DIA-MS) and using liquid-chromatography ion-mobility data independent acquisition mass spectrometry (LC-IM-DIA-MS). The inclusion of TWIMS was assessed for the effect on sample throughput, data integrity, confidence of protein and peptide identification, and dynamic range. The number of identified proteins is significantly increased by an average of 84% while both the precursor and product mass accuracies are maintained between the modalities. Sample dynamic range is also maintained while quantitation is achieved for all but the most abundant proteins by incorporating a novel data interpretation method that allows accurate quantitation to occur. This additional separation is all achieved within a workflow with no discernible deleterious effect on throughput. Consequently, TWIMS greatly enhances proteome coverage and can be reliably used for quantification when using an alternative product ion quantification strategy. Using TWIMS in biomarker discovery in human plasma is thus recommended.

  18. Fluorescence profiles and cooling dynamics of laser-cooled Mg+ ions in a linear rf ion trap

    International Nuclear Information System (INIS)

    Zhao Xianzhen; Ryjkov, Vladimir L.; Schuessler, Hans A.

    2006-01-01

    Fluorescence line profiles and their implications on the cooling dynamics of the Mg + ions stored in a linear rf trap are studied. The line profile is dictated by the temperature of the ion cloud at different laser detunings. The upper bound of the lowest temperature was estimated for different values of the rf trapping potential amplitude and the buffer gas pressure. A general trend of this ultimate temperature to increase with the rf trapping voltage and buffer gas pressure is expected, with an abrupt change at some critical value corresponding to the transition to and from a strongly correlated liquid or crystal state. While on the one hand this expectation was confirmed when the buffer gas pressure was varied; on the other hand the influence of the amplitude of the trapping voltage on the ultimate temperature shows an interesting new feature of first dipping down before the sharp increase occurs

  19. A proposal for study of ion-beam induced chemical reactions using JAERI tandem accelerator

    International Nuclear Information System (INIS)

    1985-11-01

    Problems in ion-beam induced chemical reactions using JAERI Tandem Accelerator were discussed. Research philosophy, some proposed experiments which are based on measurements during ion-beam bombardment, and main features of the experimental apparatus are briefly described in this report. (author)

  20. Development of a liquid chromatography-electrospray chemical ionization tandem mass spectrometry analytical method for analysis of eleven hydroxylated polybrominated diphenyl ethers.

    Science.gov (United States)

    Feo, Maria Luisa; Barón, Enrique; Aga, Diana S; Eljarrat, Ethel; Barceló, Damià

    2013-08-02

    Recently, hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have emerged as environmentally relevant pollutants due to recent reports of their natural production and metabolism. Recent mechanistic studies in human and rats have shown that some OH-PBDEs are more potent than parent compounds (PBDEs) and may contribute substantially to neurodevelopmental disorders by direct neurotoxicity, or indirectly through altered thyroid disruption. However, analytical methodologies for determination of OH-PBDEs are currently limited. In this study a robust liquid chromatography-electrospray tandem triple quadrupole-linear ion trap mass spectrometer (LC-ESI-QqLIT-MS-MS) in negative mode method was developed for the determination of eleven OH-tri- to OH-hexa-PBDEs. Two different columns were tested and compared for chromatographic separation: a C18 BetaBasic and a Purospher STAR RP 18, working at pH 8 and 10, respectively. Mobile phase (acetonitrile:water) was optimized by changing the pH of the aqueous phase and the concentration of the organic modifier (methanol). The MS-MS parameters (declustering potential (DP), collision energy (CE) and cell exit potential (CXP)) were optimized. Selected reaction monitoring (SRM) was used in order to increase sensitivity. Two SRM transitions ([M-H](-)>[Br](-)) were selected for each OH-PBDE, one for quantification and the second one for confirmation. Under the optimized conditions, the instrumental limits of detection were between 0.17 and 0.72injectedpg. The method provided good linearity (r>0.99 for a concentration range of 0.30-100ng/mL), accuracy and precision (%Dev and %RSD≤20% for intra- and inter-assays). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Automated determination of aliphatic primary amines in wastewater by simultaneous derivatization and headspace solid-phase microextraction followed by gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Llop, Anna; Pocurull, Eva; Borrull, Francesc

    2010-01-22

    This paper presents a fully automated method for determining ten primary amines in wastewater at ng/L levels. The method is based on simultaneous derivatization with pentafluorobenzaldehyde (PFBAY) and headspace solid-phase microextraction (HS-SPME) followed by gas chromatography coupled to ion trap tandem mass spectrometry (GC-IT-MS-MS). The influence of main factors on the efficiency of derivatization and of HS-SPME is described in detail and optimized by a central composite design. For all species, the highest enrichment factors were achieved using a 85 microm polyacrylate (PA) fiber exposed in the headspace of stirred water samples (750 rpm) at pH 12, containing 360 g/L of NaCl, at 40 degrees C for 15 min. Under optimized conditions, the proposed method achieved detection limits ranging from 10 to 100 ng/L (except for cyclohexylamine). The optimized method was then used to determine the presence of primary amines in various types of wastewater samples, such as influent and effluent wastewater from municipal and industrial wastewater treatment plants (WWTPs) and a potable water treatment plant. Although the analysis of these samples revealed the presence of up to 1500 microg/L of certain primary amines in influent industrial wastewater, the concentration of these compounds in the effluent and in municipal and potable water was substantially lower, at low microg/L levels. The new derivatization-HS-SPME-GC-IT-MS-MS method is suitable for the fast, reliable and inexpensive determination of primary amines in wastewater in an automated procedure. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Development of intense high-energy noble gas ion beams from in-terminal ion injector of tandem accelerator using an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Nakanoya, T.; Hanashima, S.; Takeuchi, S. [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan)

    2011-10-21

    An ECRIS-based heavy ion injector was constructed in the high-voltage terminal of JAEA-Tokai Tandem Accelerator to develop new beam species of highly charged noble gas ions. This work was associated with a lot of development to operate the ion source on the 20UR Pelletron high voltage terminal in high pressure SF{sub 6} gas environment. Highly charged ions of N, O, Ne, Ar, Kr and Xe have been accelerated satisfactorily. Operating data integrated during many years long beam delivery service are summarized.

  3. Quantum Information Processing with Trapped Ions

    International Nuclear Information System (INIS)

    Barrett, M.D.; Schaetz, T.; Chiaverini, J.; Leibfried, D.; Britton, J.; Itano, W.M.; Jost, J.D.; Langer, C.; Ozeri, R.; Wineland, D.J.; Knill, E.

    2005-01-01

    We summarize two experiments on the creation and manipulation of multi-particle entangled states of trapped atomic ions - quantum dense coding and quantum teleportation. The techniques used in these experiments constitute an important step toward performing large-scale quantum information processing. The techniques also have application in other areas of physics, providing improvement in quantum-limited measurement and fundamental tests of quantum mechanical principles, for example

  4. Improved liquid chromatography-MS/MS of heparan sulfate oligosaccharides via chip-based pulsed makeup flow.

    Science.gov (United States)

    Huang, Yu; Shi, Xiaofeng; Yu, Xiang; Leymarie, Nancy; Staples, Gregory O; Yin, Hongfeng; Killeen, Kevin; Zaia, Joseph

    2011-11-01

    Microfluidic chip-based hydrophilic interaction chromatography (HILIC) is a useful separation system for liquid chromatography-mass spectrometry (LC-MS) in compositional profiling of heparan sulfate (HS) oligosaccharides; however, ions observed using HILIC LC-MS are low in charge. Tandem MS of HS oligosaccharide ions with low charge results in undesirable losses of SO(3) from precursor ions during collision induced dissociation. One solution is to add metal cations to stabilize sulfate groups. Another is to add a nonvolatile, polar compound such as sulfolane, a molecule known to supercharge proteins, to produce a similar effect for oligosaccharides. We demonstrate use of a novel pulsed makeup flow (MUF) HPLC-chip. The chip enables controlled application of additives during specified chromatographic time windows and thus minimizes the extent to which nonvolatile additives build up in the ion source. The pulsed MUF system was applied to LC-MS/MS of HS oligosaccharides. Metal cations and sulfolane were tested as additives. The most promising results were obtained for sulfolane, for which supercharging of the oligosaccharide ions increased their signal strengths relative to controls. Tandem MS of these supercharged precursor ions showed decreased abundances of product ions from sulfate losses yet more abundant product ions from backbone cleavages.

  5. Numerical simulation of injection and resistive trapping of ion rings

    International Nuclear Information System (INIS)

    Mankofsky, A.; Friedman, A.; Sudan, R.N.

    1981-01-01

    Numerical studies of the injection and resistive trapping efficiency of ion rings, using an improved algorithm are presented. Trapping efficiency is found to be strongly dependent upon the number of particles injected and upon mirror ratios in the system. Wall resistivity and beam divergence affect the process to a lesser extent. (author)

  6. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect

    International Nuclear Information System (INIS)

    Allcock, D T C; Sherman, J A; Stacey, D N; Burrell, A H; Curtis, M J; Imreh, G; Linke, N M; Szwer, D J; Webster, S C; Steane, A M; Lucas, D M

    2010-01-01

    We describe a new electrode design for a surface-electrode Paul trap, which allows rotation of the normal modes out of the trap plane, and a technique for micromotion compensation in all directions using a two-photon process, which avoids the need for an ultraviolet laser directed to the trap plane. The fabrication and characterization of the trap are described, as well as its implementation for the trapping and cooling of single Ca + ions. We also propose a repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling.

  7. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect

    Science.gov (United States)

    Allcock, D. T. C.; Sherman, J. A.; Stacey, D. N.; Burrell, A. H.; Curtis, M. J.; Imreh, G.; Linke, N. M.; Szwer, D. J.; Webster, S. C.; Steane, A. M.; Lucas, D. M.

    2010-05-01

    We describe a new electrode design for a surface-electrode Paul trap, which allows rotation of the normal modes out of the trap plane, and a technique for micromotion compensation in all directions using a two-photon process, which avoids the need for an ultraviolet laser directed to the trap plane. The fabrication and characterization of the trap are described, as well as its implementation for the trapping and cooling of single Ca+ ions. We also propose a repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling.

  8. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies

    International Nuclear Information System (INIS)

    Schowalter, Steven J.; Chen Kuang; Rellergert, Wade G.; Sullivan, Scott T.; Hudson, Eric R.

    2012-01-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates.

  9. A cryogenic electrostatic trap for long-time storage of keV ion beams.

    Science.gov (United States)

    Lange, M; Froese, M; Menk, S; Varju, J; Bastert, R; Blaum, K; López-Urrutia, J R Crespo; Fellenberger, F; Grieser, M; von Hahn, R; Heber, O; Kühnel, K-U; Laux, F; Orlov, D A; Rappaport, M L; Repnow, R; Schröter, C D; Schwalm, D; Shornikov, A; Sieber, T; Toker, Y; Ullrich, J; Wolf, A; Zajfman, D

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2 x 10(3) cm(-3), which for a room temperature environment corresponds to a pressure in the 10(-14) mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  10. Quantification of peramivir in dog plasma by liquid chromatography/tandem mass spectrometry employing precolumn derivatization.

    Science.gov (United States)

    Li, Xin; Li, Ying; Wang, Juan; Wang, Lili; Zhong, Wu; Ruan, Jinxiu; Zhang, Zhenqing

    2014-01-01

    Peramivir is a novel influenza neuraminidase inhibitor used for anti-influenza. In this article, a novel method was developed to determine peramivir in dog plasma using a derivatization treatment step to increase the retention time and enhance the signal intensity. The sample preparation consisted of a protein precipitation extraction followed by derivatization with 10M hydrochloric acid-methanol (10:90, v/v) and determined by liquid chromatography coupled with tandem mass spectrometry. The selected reaction monitoring mode of the positive ion was performed and the precursor to the product ion transitions of m/z 343→284 and m/z 299→152 were used to measure the derivative of peramivir and Ro 64-0802 (internal standard, an active metabolite of oseltamivir). The chromatographic separation was achieved using a ZORBAX RX-C8 (2.0mm×150mm×5μm) analytical column with an isocratic mobile phase composed of acetonitrile-water-formic acid (30:70:0.1, v/v/v, 0.2mL/min). The method was linear over a concentration range of 0.25-250ng/mL. The average intra-day/inter-day precision values were 4.04-8.17% and 3.02-7.08%, respectively, while the average accuracy value was 93.99-106.48%. This method has been successfully applied to the preclinical dog research of peramivir following intragastric administration. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register

    Science.gov (United States)

    2016-09-13

    similar to that described in Ref . [6]. The electrodes in this trap are made from 125-mm-thick sheets of Be metal, as shown in Fig. 1. We apply a po...tential fstd ­ V0 cossVT td 1 U0 to the (elliptical) ring electrode relative to the end cap electrodes. If several ions are trapped and cooled, they...previously been observed in single ions [5,10,13]; in Ref . [5], the heating drove the ion out of the motional (COM) ground state in approximately 1 ms. We

  12. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D. [ed.

    1995-10-01

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA`s astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th{sup 80+} can be performed routinely. Measurements of the rates and cross sections for electron transfer from H{sub 2} performed to determine the lifetime of HCI up to Xe{sup q+} and Th{sup q+} (35 {le} q {le} 80) have been studied at mean energies estimated to be {approximately} 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events.

  13. Simultaneous quantification of twenty Amadori products in soy sauce using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Katayama, Hiroshi; Tatemichi, Yuki; Nakajima, Ayako

    2017-08-01

    A liquid chromatography-tandem mass spectrometry method using a pentafluorophenylpropyl-bonded silica column was developed to simultaneously quantify twenty Amadori products (APs), including N-(1-Deoxy-d-fructosyl-1-yl)-l-isoleucine (Fru-Ile) and N-(1-Deoxy-d-fructosyl-1-yl)-l-leucine (Fru-Leu), in soy sauce, without the need for an ion-pairing reagent or sample derivatization. The method was applied to six types of soy sauce, to determine the total AP levels and the levels of individual APs. The level of total APs widely varied between the eight samples, from 358mg/L to 24347mg/L. The concentrations of N-ε-(1-deoxy-d-fructosyl-1-yl)-l-lysine (Fru-Lys) and N-(1-deoxy-d-fructosyl-1-yl)-l-pyroglutamic acid (Fru-pGlu) were the highest among the APs and the level of Fru-pGlu was similar to that of Fru-Lys. Furthermore, fermentation periods of up to six months greatly influenced AP levels in soy sauce but the levels remained constant thereafter. Thermal treatment of soy sauce had little effect on AP levels. Copyright © 2017. Published by Elsevier Ltd.

  14. Paul Trapping of Radioactive 6He+ Ions and Direct Observation of Their β Decay

    International Nuclear Information System (INIS)

    Flechard, X.; Lienard, E.; Mery, A.; Rodriguez, D.; Ban, G.; Durand, D.; Duval, F.; Herbane, M.; Labalme, M.; Mauger, F.; Naviliat-Cuncic, O.; Velten, Ph.; Thomas, J. C.

    2008-01-01

    We demonstrate that abundant quantities of short-lived β unstable ions can be trapped in a novel transparent Paul trap and that their decay products can directly be detected in coincidence. Low energy 6 He + (807 ms half-life) ions were extracted from the SPIRAL source at GANIL, then decelerated, cooled, and bunched by means of the buffer gas cooling technique. More than 10 8 ions have been stored over a measuring period of six days, and about 10 5 decay coincidences between the beta particles and the 6 Li ++ recoiling ions have been recorded. The technique can be extended to other short-lived species, opening new possibilities for trap assisted decay experiments

  15. Multi-residue determination of 210 drugs in pork by ultra-high-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Yin, Zhiqiang; Chai, Tingting; Mu, Pengqian; Xu, Nana; Song, Yue; Wang, Xinlu; Jia, Qi; Qiu, Jing

    2016-09-09

    This paper presents a multi-residue analytical method for 210 drugs in pork using ultra-high-performance liquid chromatography-Q-Trap tandem mass spectrometry (UPLC-MS/MS) within 20min via positive ESI in scheduled multi-reaction monitoring (MRM) mode. The 210 drugs, belonging to 21 different chemical classes, included macrolides, sulfonamides, tetracyclines, β-lactams, β-agonists, aminoglycosides, antiviral drugs, glycosides, phenothiazine, protein anabolic hormones, non-steroidal anti-inflammatory drugs (NSAIDs), quinolones, antifungal drugs, corticosteroids, imidazoles, piperidines, piperazidines, insecticides, amides, alkaloids and others. A rapid and simple preparation method was applied to process the animal tissues, including solvent extraction with an acetonitrile/water mixture (80/20, v/v), defatting and clean-up processes. The recoveries ranged from 52% to 130% with relative standard deviations (RSDs)<20% for spiked concentrations of 10, 50 and 250μg/kg. More than 90% of the analytes achieved low limits of quantification (LOQs)<10μg/kg. The decision limit (CCα), detection capability (CCβ) values were in the range of 2-502μg/kg and 4-505μg/kg, respectively. This method is significant for food safety monitoring and controlling veterinary drug use. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies.

    Science.gov (United States)

    Schowalter, Steven J; Chen, Kuang; Rellergert, Wade G; Sullivan, Scott T; Hudson, Eric R

    2012-04-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates. © 2012 American Institute of Physics

  17. In situ ion irradiation/implantation studies in the HVEM-Tandem Facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Allen, C.W.; Funk, L.L.; Ryan, E.A.; Taylor, A.

    1988-09-01

    The HVEM-Tandem User Facility at Argonne National Laboratory interfaces two ion accelerators, a 2 MV tandem accelerator and a 650 kV ion implanter, to a 1.2 MV high voltage electron microscope. This combination allows experiments involving simultaneous ion irradiation/ion implantation, electron irradiation and electron microscopy/electron diffraction to be performed. In addition the availability of a variety of microscope sample holders permits these as well as other types of in situ experiments to be performed at temperatures ranging from 10-1300 K, with the sample in a stressed state or with simultaneous determination of electrical resistivity of the specimen. This paper summarizes the details of the Facility which are relevant to simultaneous ion beam material modification and electron microscopy, presents several current applications and briefly describes the straightforward mechanism for potential users to access this US Department of Energy supported facility. 7 refs., 1 fig., 1 tab

  18. Application of High-Performance Liquid Chromatography Coupled with Linear Ion Trap Quadrupole Orbitrap Mass Spectrometry for Qualitative and Quantitative Assessment of Shejin-Liyan Granule Supplements

    Directory of Open Access Journals (Sweden)

    Jifeng Gu

    2018-04-01

    Full Text Available A method for high-performance liquid chromatography coupled with linear ion trap quadrupole Orbitrap high-resolution mass spectrometry (HPLC-LTQ-Orbitrap MS was developed and validated for the qualitative and quantitative assessment of Shejin-liyan Granule. According to the fragmentation mechanism and high-resolution MS data, 54 compounds, including fourteen isoflavones, eleven ligands, eight flavonoids, six physalins, six organic acids, four triterpenoid saponins, two xanthones, two alkaloids, and one licorice coumarin, were identified or tentatively characterized. In addition, ten of the representative compounds (matrine, galuteolin, tectoridin, iridin, arctiin, tectorigenin, glycyrrhizic acid, irigenin, arctigenin, and irisflorentin were quantified using the validated HPLC-LTQ-Orbitrap MS method. The method validation showed a good linearity with coefficients of determination (r2 above 0.9914 for all analytes. The accuracy of the intra- and inter-day variation of the investigated compounds was 95.0–105.0%, and the precision values were less than 4.89%. The mean recoveries and reproducibilities of each analyte were 95.1–104.8%, with relative standard deviations below 4.91%. The method successfully quantified the ten compounds in Shejin-liyan Granule, and the results show that the method is accurate, sensitive, and reliable.

  19. Application of High-Performance Liquid Chromatography Coupled with Linear Ion Trap Quadrupole Orbitrap Mass Spectrometry for Qualitative and Quantitative Assessment of Shejin-Liyan Granule Supplements.

    Science.gov (United States)

    Gu, Jifeng; Wu, Weijun; Huang, Mengwei; Long, Fen; Liu, Xinhua; Zhu, Yizhun

    2018-04-11

    A method for high-performance liquid chromatography coupled with linear ion trap quadrupole Orbitrap high-resolution mass spectrometry (HPLC-LTQ-Orbitrap MS) was developed and validated for the qualitative and quantitative assessment of Shejin-liyan Granule. According to the fragmentation mechanism and high-resolution MS data, 54 compounds, including fourteen isoflavones, eleven ligands, eight flavonoids, six physalins, six organic acids, four triterpenoid saponins, two xanthones, two alkaloids, and one licorice coumarin, were identified or tentatively characterized. In addition, ten of the representative compounds (matrine, galuteolin, tectoridin, iridin, arctiin, tectorigenin, glycyrrhizic acid, irigenin, arctigenin, and irisflorentin) were quantified using the validated HPLC-LTQ-Orbitrap MS method. The method validation showed a good linearity with coefficients of determination (r²) above 0.9914 for all analytes. The accuracy of the intra- and inter-day variation of the investigated compounds was 95.0-105.0%, and the precision values were less than 4.89%. The mean recoveries and reproducibilities of each analyte were 95.1-104.8%, with relative standard deviations below 4.91%. The method successfully quantified the ten compounds in Shejin-liyan Granule, and the results show that the method is accurate, sensitive, and reliable.

  20. First experiments with the Greifswald electron-beam ion trap

    Science.gov (United States)

    Schabinger, B.; Biedermann, C.; Gierke, S.; Marx, G.; Radtke, R.; Schweikhard, L.

    2013-09-01

    The former Berlin electron-beam ion trap (EBIT) was moved to Greifswald. In addition to x-ray studies the setup will be used for the investigation of interaction processes between highly charged ions and atomic clusters such as charge exchange and fragmentation. The EBIT setup has now been reassembled and highly charged ions have been produced from Xe-Ar gas mixtures to study the ‘sawtooth effect’. In addition, the layout of the extraction beamline, the interaction region and product analysis for interaction studies with highly charged ions are presented.

  1. Liquid Chromatography with Electrospray Ionization and Tandem Mass Spectrometry Applied in the Quantitative Analysis of Chitin-Derived Glucosamine for a Rapid Estimation of Fungal Biomass in Soil

    Directory of Open Access Journals (Sweden)

    Madelen A. Olofsson

    2016-01-01

    Full Text Available This method employs liquid chromatography-tandem mass spectrometry to rapidly quantify chitin-derived glucosamine for estimating fungal biomass. Analyte retention was achieved using hydrophilic interaction liquid chromatography, with a zwitter-ionic stationary phase (ZIC-HILIC, and isocratic elution using 60% 5 mM ammonium formate buffer (pH 3.0 and 40% ACN. Inclusion of muramic acid and its chromatographic separation from glucosamine enabled calculation of the bacterial contribution to the latter. Galactosamine, an isobaric isomer to glucosamine, found in significant amounts in soil samples, was also investigated. The two isomers form the same precursor and product ions and could not be chromatographically separated using this rapid method. Instead, glucosamine and galactosamine were distinguished mathematically, using the linear relationships describing the differences in product ion intensities for the two analytes. The m/z transitions of 180 → 72 and 180 → 84 were applied for the detection of glucosamine and galactosamine and that of 252 → 126 for muramic acid. Limits of detection were in the nanomolar range for all included analytes. The total analysis time was 6 min, providing a high sample throughput method.

  2. Final Report - Advanced Ion Trap Mass Spectrometry Program - Oak Ridge National Laboratory - Sandia National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Whitten, W.B.

    2002-12-18

    This report covers the three main projects that collectively comprised the Advanced Ion Trap Mass Spectrometry Program. Chapter 1 describes the direct interrogation of individual particles by laser desorption within the ion trap mass spectrometer analyzer. The goals were (1) to develop an ''intelligent trigger'' capable of distinguishing particles of biological origin from those of nonbiological origin in the background and interferent particles and (2) to explore the capability for individual particle identification. Direct interrogation of particles by laser ablation and ion trap mass spectrometry was shown to have good promise for discriminating between particles of biological origin and those of nonbiological origin, although detailed protocols and operating conditions were not worked out. A library of more than 20,000 spectra of various types of biological particles has been assembled. Methods based on multivariate analysis and on neural networks were used to discriminate between particles of biological origin and those of nonbiological origin. It was possible to discriminate between at least some species of bacteria if mass spectra of several hundred similar particles were obtained. Chapter 2 addresses the development of a new ion trap mass analyzer geometry that offers the potential for a significant increase in ion storage capacity for a given set of analyzer operating conditions. This geometry may lead to the development of smaller, lower-power field-portable ion trap mass spectrometers while retaining laboratory-scale analytical performance. A novel ion trap mass spectrometer based on toroidal ion storage geometry has been developed. The analyzer geometry is based on the edge rotation of a quadrupolar ion trap cross section into the shape of a torus. Initial performance of this device was poor, however, due to the significant contribution of nonlinear fields introduced by the rotation of the symmetric ion-trapping geometry. These

  3. Analog quantum simulation of generalized Dicke models in trapped ions

    Science.gov (United States)

    Aedo, Ibai; Lamata, Lucas

    2018-04-01

    We propose the analog quantum simulation of generalized Dicke models in trapped ions. By combining bicromatic laser interactions on multiple ions we can generate all regimes of light-matter coupling in these models, where here the light mode is mimicked by a motional mode. We present numerical simulations of the three-qubit Dicke model both in the weak field (WF) regime, where the Jaynes-Cummings behavior arises, and the ultrastrong coupling (USC) regime, where a rotating-wave approximation cannot be considered. We also simulate the two-qubit biased Dicke model in the WF and USC regimes and the two-qubit anisotropic Dicke model in the USC regime and the deep-strong coupling regime. The agreement between the mathematical models and the ion system convinces us that these quantum simulations can be implemented in the laboratory with current or near-future technology. This formalism establishes an avenue for the quantum simulation of many-spin Dicke models in trapped ions.

  4. Specific determination of 20 primary aromatic amines in aqueous food simulants by liquid chromatography-electrospray ionization-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Mortensen, Sarah Kelly; Trier, Xenia Thorsager; Foverskov, Annie

    2005-01-01

    A multi-analyte method without any pre-treatment steps using reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was developed and applied for the determination of 20 primary aromatic amines (PAA) associated with polyurethane (PUR) products or azo...

  5. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    Science.gov (United States)

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  6. Application of ion chromatography to batchwise activated sludge process for simultaneous removal of thiosulfate, acetate and ammonium ions.

    OpenAIRE

    田中, 一彦; 黒川, 利一; 中島, 良三

    1988-01-01

    Ion chromatography (IC) with conductivity detection for determining anions and ion-exclusion chromatography (IEC) with conductivity detection for determining cations were investigated. Both techniques were applied to the establishment of the optimal conditions for the simultaneous removal of thiosulfate, acetate, and ammonium ions by a batchwise activated sludge process. The process consists of the combination of aerobic and anaerobic biological treatment processes by a sequential automatic p...

  7. The low-energy-beam and ion-trap facility at NSCL/MSU

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S. E-mail: schwarz@nscl.msu.edu; Bollen, G.; Lawton, D.; Lofy, P.; Morrissey, D.J.; Ottarson, J.; Ringle, R.; Schury, P.; Sun, T.; Varentsov, V.; Weissman, L

    2003-05-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A {sup 40}Ar{sup 18+} ions in a gas cell.

  8. The low-energy-beam and ion-trap facility at NSCL/MSU

    International Nuclear Information System (INIS)

    Schwarz, S.; Bollen, G.; Lawton, D.; Lofy, P.; Morrissey, D.J.; Ottarson, J.; Ringle, R.; Schury, P.; Sun, T.; Varentsov, V.; Weissman, L.

    2003-01-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A 40 Ar 18+ ions in a gas cell

  9. Quantification of prominent volatile compounds responsible for muskmelon and watermelon aroma by purge and trap extraction followed by gas chromatography-mass spectrometry determination.

    Science.gov (United States)

    Fredes, Alejandro; Sales, Carlos; Barreda, Mercedes; Valcárcel, Mercedes; Roselló, Salvador; Beltrán, Joaquim

    2016-01-01

    A dynamic headspace purge-and-trap (DHS-P&T) methodology for the determination and quantification of 61 volatile compounds responsible for muskmelon and watermelon aroma has been developed and validated. The methodology is based on the application of purge-and-trap extraction followed by gas chromatography coupled to (ion trap) mass spectrometry detection. For this purpose two different P&T sorbent cartridges have been evaluated. The influence of different extraction factors (sample weight, extraction time, and purge flow) on extraction efficiency has been studied and optimised using response surface methodology. Precision, expressed as repeatability, has been evaluated by analysing six replicates of real samples, showing relative standard deviations between 3% and 27%. Linearity has been studied in the range of 10-6130 ng mL(-1) depending on the compound response, showing coefficients of correlation between 0.995 and 0.999. Detection limits ranged between 0.1 and 274 ng g(-1). The methodology developed is well suited for analysis of large numbers of muskmelon and watermelon samples in plant breeding programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Chromatography Of Metal Ions On Wood Cellulose Impregnated ...

    African Journals Online (AJOL)

    Adsorption chromatography of some heavy metal ions on wood cellulose of saw dust (wood waste dust) modified with hydrochloric acid, urea and thiourea was studied. Atomic absorption spectrophotometry (AAS) was used to determine the initial concentration of solutions of Zn2+, Cu2+, Ni2+, Pb2+, and Fe3+ metal ions.

  11. Quantification of pramipexole in human plasma by liquid chromatography tandem mass spectrometry using tamsulosin as internal standard.

    Science.gov (United States)

    Nirogi, Ramakrishna V S; Kandikere, Vishwottam; Shrivastava, Wishu; Mudigonda, Koteshwara; Maurya, Santosh; Ajjala, Devender

    2007-11-01

    A high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the quantification of pramipexole in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H](+) ions, m/z 212/152 for pramipexole and m/z 409/228 for the IS. The method exhibited a linear dynamic range of 200-8000 pg/mL for pramipexole in human plasma. The lower limit of quantification was 200 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 3.5 min for each sample made it possible to analyze more than 200 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies. Copyright (c) 2007 John Wiley & Sons, Ltd.

  12. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  13. Partition/Ion-Exclusion Chromatographic Ion Stacking for the Analysis of Trace Anions in Water and Salt Samples by Ion Chromatography.

    Science.gov (United States)

    Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami

    2018-01-01

    A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.

  14. An efficient hydrophilic interaction liquid chromatography separation of 7 phospholipid classes based on a diol column

    NARCIS (Netherlands)

    Zhu, C.; Dane, A.; Spijksma, G.; Wang, M.; Greef, J. van der; Luo, G.; Hankemeier, T.; Vreeken, R.J.

    2012-01-01

    A hydrophilic interaction liquid chromatography (HILIC) - ion trap mass spectrometry method was developed for separation of a wide range of phospholipids. A diol column which is often used with normal phase chromatography was adapted to separate different phospholipid classes in HILIC mode using a

  15. Trapping and re-emission of energetic hydrogen and helium ions in materials

    International Nuclear Information System (INIS)

    Yamaguchi, Sadae

    1981-01-01

    The experimental results on the trapping and re-emission of energetic hydrogen and helium ions in materials are explained. The trapping of deuterium and helium in graphite saturates at the concentration of 10 18 ions/cm 2 . The trapping rate of hydrogen depends on the kinds of target materials. In the case of the implantation in Mo over 3 x 10 16 H/cm 2 , hydrogen is hardly trapped. On the other hand, the trapping of hydrogen in Ti, Zr and Ta which form solid solution is easily made. The hydrogen in these metals can diffuse toward the inside of metals. The deuterium retained in 316 SS decreased with time. The trapping rate reached saturation more rapidly at higher implantation temperature. The effective diffusion constant for the explanation of the re-emission process is 1/100 as small as the ordinary value. The radiation damage due to helium irradiation affects on the trapping of deuterium in Mo. The temperature dependence of the trapping rate can be explained by the diffusion model based on the Sievert's law. The re-emission of helium was measured at various temperature. At low temperature, the re-emission was low at first, then the rate increased. At high temperature, the re-emission rate was high from the beginning. (Kato, T.)

  16. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    International Nuclear Information System (INIS)

    Marrs, R.E.; Bennett, C.; Chen, M.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab

  17. Observation of String Ion Cloud in a Linear RF Trap

    International Nuclear Information System (INIS)

    Aramaki, M.; Kameyama, S.; Kono, A.; Sakawa, Y.; Shoji, T.

    2009-01-01

    We aim to study the effect of the long-range correlation among ions on their statistical characteristics using ion clouds confined in a linear rf ion trap. It is important to keep the ion cloud in one dimension, where the influence of the rf heating is negligible, for the detailed research on the effect of the Coulomb interaction on the statistical characteristics of the ion cloud. In this paper, the method of the generation of an ideal ion string is proposed. We also briefly report the performances of our experimental equipment and the preliminary results of generation of ideal 1D ion cloud.

  18. Characterization of metabolites of leonurine (SCM-198) in rats after oral administration by liquid chromatography/tandem mass spectrometry and NMR spectrometry.

    Science.gov (United States)

    Zhu, Qing; Zhang, Jinlian; Yang, Ping; Tan, Bo; Liu, Xinhua; Zheng, Yuanting; Cai, Weimin; Zhu, Yizhun

    2014-01-01

    Leonurine, a major bioactive component from Herba Leonuri, shows therapeutic potential for cardiovascular disease and stroke prevention in some preclinical experiments. The aim of this study is to characterize metabolites of leonurine in rats using high performance liquid chromatography coupled with tandem mass spectrometry (HPLC/MS/MS). The chromatographic separation was performed on an Agilent ZORBAX SB-C18 column using a gradient elution with acetonitrile/ammonium acetate buffer (10 mM, pH 4.0) solvent system. An information dependent acquisition (IDA) method was developed for screening and identifying metabolites of leonurine under positive ion mode. Compared with control, the interesting compound in the extracted ion chromatogram (XIC) of the in vivo samples was chosen and further identified by analyzing their retention times, changes in observed mass (Δm/z), and spectral patterns of product ion utilizing advanced software tool. For the first time, a total of three metabolites were identified, including two phase II metabolites generated by glucuronidation (M1) and sulfation (M2) and one phase I metabolite formed by O-demethylation (M3). Finally, the lead metabolite M1 was isolated from urine and its structure was characterized as leonurine-10-O- β-D-glucuronide by NMR spectroscopy (¹H, ¹³C, HMBC, and HSQC).

  19. Infrared laser dissociation of single megadalton polymer ions in a gated electrostatic ion trap: the added value of statistical analysis of individual events.

    Science.gov (United States)

    Halim, Mohammad A; Clavier, Christian; Dagany, Xavier; Kerleroux, Michel; Dugourd, Philippe; Dunbar, Robert C; Antoine, Rodolphe

    2018-05-07

    In this study, we report the unimolecular dissociation mechanism of megadalton SO 3 -containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO 2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.

  20. Advanced ion trap structures with integrated tools for qubit manipulation

    Science.gov (United States)

    Sterk, J. D.; Benito, F.; Clark, C. R.; Haltli, R.; Highstrete, C.; Nordquist, C. D.; Scott, S.; Stevens, J. E.; Tabakov, B. P.; Tigges, C. P.; Moehring, D. L.; Stick, D.; Blain, M. G.

    2012-06-01

    We survey the ion trap fabrication technologies available at Sandia National Laboratories. These include four metal layers, precision backside etching, and low profile wirebonds. We demonstrate loading of ions in a variety of ion traps that utilize these technologies. Additionally, we present progress towards integration of on-board filtering with trench capacitors, photon collection via an optical cavity, and integrated microwave electrodes for localized hyperfine qubit control and magnetic field gradient quantum gates. [4pt] This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) Program and the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Design and Application of a High-Temperature Linear Ion Trap Reactor

    Science.gov (United States)

    Jiang, Li-Xue; Liu, Qing-Yu; Li, Xiao-Na; He, Sheng-Gui

    2018-01-01

    A high-temperature linear ion trap reactor with hexapole design was homemade to study ion-molecule reactions at variable temperatures. The highest temperature for the trapped ions is up to 773 K, which is much higher than those in available reports. The reaction between V2O6 - cluster anions and CO at different temperatures was investigated to evaluate the performance of this reactor. The apparent activation energy was determined to be 0.10 ± 0.02 eV, which is consistent with the barrier of 0.12 eV calculated by density functional theory. This indicates that the current experimental apparatus is prospective to study ion-molecule reactions at variable temperatures, and more kinetic details can be obtained to have a better understanding of chemical reactions that have overall barriers. [Figure not available: see fulltext.

  2. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Drouot, T.; Gravier, E.; Reveille, T.; Collard, M. [Institut Jean Lamour, UMR 7198 CNRS - Université de Lorraine, 54 506 Vandoeuvre-lès-Nancy Cedex (France)

    2015-10-15

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of the temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.

  3. Determination of Na+ and K+ ions in the high-level liquid waste by ion chromatography (IC)

    International Nuclear Information System (INIS)

    Chen Lianzhong; Ma Guilan

    1992-01-01

    The determination of Na + and k + ions in the high-level liquid waste is investigated using ion chromatography. In order to protect the low capacity ion exchange resin in single column IC and remove the transition metal as well as other heavy metal ions that are contained in liquid waste, the pretreatment column with EDTA chelating resin is used. Those impurity metal ions are strongly absorbed by EDTA chelating resin and 100% of Na + and K + ions in the solution are eluted. The ability of the decontamination of EDTA chelating resin is satisfactory. The sample of the high-level liquid waste is diluted appropriately, then an aliquot of the sample is passed through the pretreatment column with EDTA chelating resin, the eluate is analysed by single column ion chromatography. The precision of this method is better than 5% for the determination of Na + and K + ions (at μg· ml -1 level)

  4. Characterization of primaquine imidazolidin-4-ones with antimalarial activity by electrospray ionization-ion trap mass spectrometry

    Science.gov (United States)

    Vale, Nuno; Moreira, Rui; Gomes, Paula

    2008-02-01

    The extensive characterization by electrospray ionization-ion trap mass spectrometry (ESI-MSn) of 20 imidazolidin-4-ones derived from the antimalarial primaquine was well obtained. These compounds are being under investigation as potential antimalarials, as they have been previously found to be active against rodent P. berghei malaria and to be highly stable under physiological conditions. Experiments by collision-induced dissociation (CID) in the nozzle-skimmer region or by tandem-MS have shown the title compounds to be remarkably stable. Mechanisms are proposed to explain the major fragmentations observed in ESI-MSn experiments. Overall, this work represents an unprecedented contribution to a deeper insight into imidazolidin-4-one antimalarials based on a classic 8-aminoquinolinic scaffold. Data herein reported and discussed may be an useful guide for future studies on therapeutically relevant molecules possessing either the 8-aminoquinoline or the imidazolidin-4-one motifs.

  5. Rapid determination of six carcinogenic primary aromatic amines in mainstream cigarette smoke by two-dimensional online solid phase extraction combined with liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Bie, Zhenying; Lu, Wei; Zhu, You; Chen, Yusong; Ren, Hubo; Ji, Lishun

    2017-01-27

    A fully automated, rapid, and reliable method for simultaneous determination of six carcinogenic primary aromatic amines (AAs), including o-toluidine (o-TOL), 2, 6-dimethylaniline (2, 6-DMA), o-anisidine (o-ASD), 1-naphthylamine (1-ANP), 2-naphthylamine (2-ANP), and 4-aminobiphenyl (4-ABP), in mainstream cigarette smoke was established. The proposed method was based on two-dimensional online solid phase extraction combined with liquid chromatography tandem mass spectrometry (SPE/LC-MS/MS). The particulate phase of the mainstream cigarette smoke was collected on a Cambridge filter pad and pretreated via ultrasonic extraction with 2% formic acid (FA), while the gas phase was trapped by 2% FA without pretreatment for determination. The two-dimensional online SPE comprised of two cartridges with different absorption characteristics was applied for sample pretreatment. Analysis was performed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) under multiple reaction monitoring mode. Each sample required about 0.5h for solid phase extraction and analysis. The limit of detections (LODs) for six AAs ranged from 0.04 to 0.58ng/cig and recoveries were within 84.5%-122.9%. The relative standard deviations of intra- and inter-day tests for 3R4F reference cigarette were less than 6% and 7%, respectively, while no more than 7% and 8% separately for a type of Virginia cigarette. The proposed method enabled minimum sample pretreatment, full automation, and high throughput with high selectivity, sensitivity, and accuracy. As a part of the validation procedure, fifteen brands of cigarettes were tested by the designed method. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Liquid chromatography-tandem mass spectrometric assay for the T790M mutant EGFR inhibitor osimertinib (AZD9291) in human plasma

    NARCIS (Netherlands)

    Rood, Johannes J M; van Bussel, Mark T J; Schellens, Jan H M; Beijnen, Jos H; Sparidans, Rolf W

    2016-01-01

    A method for the quantitative analysis by ultra-performance liquid chromatography-tandem mass spectrometry of the highly selective irreversible covalent inhibitor of EGFR-TK, osimertinib in human plasma was developed and validated, using pazopanib as an internal standard. The validation was

  7. Numerical and graphical description on the ion motions in a Penning trap for mass measurements

    International Nuclear Information System (INIS)

    Sun, Y.L.; Tian, Y.L.; Huang, W.X.; Wang, J.Y.; Wang, Y.S.; Zhao, J.M.; Wang, Y.

    2013-01-01

    The ion motions in a Penning trap have been studied in detail in the presence of azimuthal dipolar and quadrupolar radio-frequency excitations and buffer gas cooling. The numerical solutions by using the Runge–Kutta method and thus the pictures of the ion trajectories in the trap have been obtained for different cases and summarized in graphical form. For the recentering of the ion of interest and to perform the purification of the ion species, one has to set a reasonable buffer gas pressure in the trap and apply azimuthal quadrupolar excitation at frequency ω rf =ω c . -- Highlights: • Azimuthal dipolar and quadrupolar rf excitations and buffer gas cooling. • Runge–Kutta method. • Pictures of the ion trajectories obtained and summarized in graphical form. • A reasonable buffer gas pressure should be set for recentering ions

  8. The low-energy-beam and ion-trap facility at NSCL/MSU

    CERN Document Server

    Schwarz, S; Lawton, D; Lofy, P; Morrissey, D J; Ottarson, J; Ringle, R; Schury, P; Sun, T; Varentsov, V; Weissman, L

    2003-01-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A sup 4 sup 0 Ar sup 1 sup 8 sup + ions in a gas cell.

  9. Highly charged ions trapping for lifetime measurements; Piegeage d'ions tres charges pour la mesure de duree de vie d'etats metastables

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2007-10-15

    A new experimental setup dedicated to highly charged ion trapping is presented in this work. The final goal is to perform lifetime measurement of metastable states produced by our ECR (Electron Cyclotron Resonance) ion source. Lifetimes to be measured are in the range of a few ms and more. We have measured the lifetimes of the M1 transitions of the metastable states of Ar{sup 9+}, Ar{sup 13+} and Ar{sup 14+}. These measurements are useful to test the N-body problem in the relativistic range. The trap we have built, was designed a few years ago at the Weizman Institute in Israel, it allows ions with an energy of several keV to be trapped for lifetimes of about 1 second. This trap was originally designed to study the dynamics of excited molecules. We have shown for the first time how the trap operates and that it can operate with highly charged ions. We have studied the beam dynamics of highly charged ions and the trap has been tested with various species of ions and different charge states: from O{sup +} to O{sup 6+}, from Ar{sup 8+} to Ar{sup 13+}, and from Kr{sup 13+} to Kr{sup 20+}.

  10. A validated liquid chromatography-tandem mass spectrometry method for the quantitative determination of 4 beta-hydroxycholesterol in human plasma

    NARCIS (Netherlands)

    van de Merbel, Nico C.; Bronsema, Kees J.; van Hout, Mischa W. J.; Nilsson, Ralf; Sillen, Henrik

    2011-01-01

    A novel liquid chromatography-tandem mass spectrometry method is described for the quantitative determination of the endogenous CYP 3A4/5 marker 4 beta-hydroxycholesterol in human K(2)-EDTA plasma. It is based on alkaline hydrolysis to convert esterified to free 4 beta-hydroxycholesterol, followed

  11. Liquid chromatography-tandem mass spectrometry assay for the quantification of free and total sialic acid in human cerebrospinal fluid.

    NARCIS (Netherlands)

    Ham, M. van der; Koning, T.J. de; Lefeber, D.J.; Fleer, A.; Prinsen, B.H.; Sain-van der Velden, M.G. de

    2010-01-01

    BACKGROUND: Analysis of sialic acid (SA) metabolites in cerebrospinal fluid (CSF) is important for clinical diagnosis. In the present study, a high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) method for free sialic acid (FSA) and total sialic acid (TSA) in human CSF was

  12. The ion circus: A novel circular Paul trap to resolve isobaric contamination

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, E. Minaya [CSNSM-IN2P3/CNRS, Bat. 108, Universite de Paris Sud, 91405 Orsay (France)], E-mail: minaya@csnsm.in2p3.fr; Cabaret, S.; Lunney, D. [CSNSM-IN2P3/CNRS, Bat. 108, Universite de Paris Sud, 91405 Orsay (France)

    2008-10-15

    The ion circus is a miniature storage ring formed by a segmented radiofrequency mass filter bent into a circle. The primary goal of this unique device is to perform high-resolution mass separation with small transmission loss since the resolving power is increased while the orbiting ions cool in the ring. Contrary to its linear brother, this circular Paul trap is designed to cool and mass separate the ions over a much longer flight path, thus requiring lower buffer gas pressure. Ions can be accumulated in the ring and extracted either in tangential or perpendicular directions. This way, the trap also serves as a versatile beam distribution device. Design principles are presented and the prototype instrument, under test in Orsay, is described.

  13. Multiresidue analysis of 47 pesticides in cooked wheat flour and polished rice by liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Lee, Sung Jung; Park, Hyeong Jin; Kim, Wooseong; Jin, Jong Sung; Abd El-Aty, A M; Shim, Jae-Han; Shin, Sung Chul

    2009-04-01

    Liquid chromatography in conjunction with tandem mass spectrometry was used to directly quantify of 47 pesticide residues from cooked wheat flour and polished rice, which are the most widely consumed cereals in the Republic of Korea. The sample clean-up was carried out according to the method established by the Korea Food and Drug Administration. The mobile phase for liquid chromatography separation consisted of water and 5 mm methanolic ammonium formate. Tandem mass spectroscopy experiments were performed in electrospray ionization positive mode and the multiple reaction monitoring mode. The matrix effects estimated for the 47 pesticides had a mean value of 99% and ranged from 45 to 147%. High recoveries (70-140%) and relative standard deviations (flour and polished rice samples. Of the screened pesticide residues, only tricyclazole and fenobucarb were found in polished rice samples. However, no samples contained residues above the MRL established by the Korea Food and Drug Administration.

  14. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  15. Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation

    Science.gov (United States)

    Bermudez, A.; Xu, X.; Nigmatullin, R.; O'Gorman, J.; Negnevitsky, V.; Schindler, P.; Monz, T.; Poschinger, U. G.; Hempel, C.; Home, J.; Schmidt-Kaler, F.; Biercuk, M.; Blatt, R.; Benjamin, S.; Müller, M.

    2017-10-01

    A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be achieved in the development of these quantum processors before their sizes are sufficiently big to consider the well-known QEC threshold. We apply this criterion to benchmark the ongoing effort in implementing QEC with topological color codes using trapped-ion quantum processors and, more importantly, to guide the future hardware developments that will be required in order to demonstrate beneficial QEC with small topological quantum codes. In doing so, we present a thorough description of a realistic trapped-ion toolbox for QEC and a physically motivated error model that goes beyond standard simplifications in the QEC literature. We focus on laser-based quantum gates realized in two-species trapped-ion crystals in high-optical aperture segmented traps. Our large-scale numerical analysis shows that, with the foreseen technological improvements described here, this platform is a very promising candidate for fault-tolerant quantum computation.

  16. [Rapid determination of 8 urinary carbamate pesticides by liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Liu, Hualiang; Wang, Yuan; Zhu, Baoli

    2015-11-01

    To establish a method for simultaneously determining the urinary concentrations of 8 carbamate pesticides. After being purified by acetonitrile precipitation, urine samples were transferred to a liquid chromatography-tandem mass spectrometry system, and the concentrations of 8 carbamate pesticides were determined by external standard method. A C18 column was used for ultra-high-performance liquid chromatography; methanol/ammonium acetate solution was used as the mobile phase for gradient elution; the mass spectrometer was operated in a multi-reaction monitoring mode. The calibration curves were linear when the urinary concentrations of these carbamate pesticides were 20~800 µg/L, and the recovery rates were 61.0%~121% at spiked levels of 20, 200 and 800 µg/L, with a relative standard deviation of 1.7%~5.5%. This determination method meets the Guide for establishing occupational health standards-part 5: Determination methods of chemicals in biological materials, and can be used for simultaneous determination of 8 carbamate pesticides in the urine of poisoning patients.

  17. LEBIT - a low-energy beam and ion trap facility at NSCL/MSU

    International Nuclear Information System (INIS)

    Schwarz, S.; Bollen, G.; Davies, D.; Lawton, D.; Lofy, P.; Morrissey, D. J.; Ottarson, J.; Ringle, R.; Schury, P.; Sun, T.; VanWasshenova, D.; Sun, T.; Weissman, L.; Wiggins, D.

    2003-01-01

    The Low Energy Beam and Ion Trap (LEBIT) Project aims to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. A combination of a high-pressure gas stopping cell and a radiofrequency quadrupole (RFQ) ion accumulator and buncher will be used to manipulate the beam accordingly. High-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system will be the first experimental program to profit from the low-energy beams. The status of the project is presented with a focus on recent stopping tests of 100-140 MeV/A Ar18+ ions in a gas cell

  18. Quantum simulation of spin models on an arbitrary lattice with trapped ions

    International Nuclear Information System (INIS)

    Korenblit, S; Kafri, D; Campbell, W C; Islam, R; Edwards, E E; Monroe, C; Gong, Z-X; Lin, G-D; Duan, L-M; Kim, J; Kim, K

    2012-01-01

    A collection of trapped atomic ions represents one of the most attractive platforms for the quantum simulation of interacting spin networks and quantum magnetism. Spin-dependent optical dipole forces applied to an ion crystal create long-range effective spin–spin interactions and allow the simulation of spin Hamiltonians that possess nontrivial phases and dynamics. Here we show how the appropriate design of laser fields can provide for arbitrary multidimensional spin–spin interaction graphs even for the case of a linear spatial array of ions. This scheme uses currently available trap technology and is scalable to levels where the classical methods of simulation are intractable. (paper)

  19. Proceedings of the DAE-BRNS theme meeting on ion chromatography separations - state of art and perspectives

    International Nuclear Information System (INIS)

    Jeyakumar, S.; Ramakumar, K.L.

    2012-01-01

    Ion Chromatography (IC) plays a vital role in all disciplines of science and technology. In the field of trace separations and speciation studies, use of IC techniques becomes indispensable. In nuclear technology, IC plays a pivotal role in the reactor water chemistry, in the front end of fuel cycle especially in the characterization of nuclear materials including the reactor fuels, post irradiation examination, actinide speciation studies and in understanding the interaction and migration of actinide species in the geo environment. Ion chromatography is also useful in the studies related to waste management particularly for the separation and determination of fission products. The aim of this meeting is to provide a forum to all the researchers in the area of ion chromatography to discuss their recent findings and information, to learn from the mutual experiences and interests, and to promote cooperation both nationally and internationally. Ion chromatography techniques including Ion Chromatography Separations and Nuclear Materials, Speciation Studies by Ion chromatography, Hyphenated -IC Techniques, Reactor Water Chemistry and Ion Chromatography, Solid Phase Extraction and Sample Preparations for IC and Separation of Bio-molecules and Environmental aspects etc are discussed. Papers relevant to INIS are indexed separately

  20. Semiclassical approach to finite-temperature quantum annealing with trapped ions

    Science.gov (United States)

    Raventós, David; Graß, Tobias; Juliá-Díaz, Bruno; Lewenstein, Maciej

    2018-05-01

    Recently it has been demonstrated that an ensemble of trapped ions may serve as a quantum annealer for the number-partitioning problem [Nat. Commun. 7, 11524 (2016), 10.1038/ncomms11524]. This hard computational problem may be addressed by employing a tunable spin-glass architecture. Following the proposal of the trapped-ion annealer, we study here its robustness against thermal effects; that is, we investigate the role played by thermal phonons. For the efficient description of the system, we use a semiclassical approach, and benchmark it against the exact quantum evolution. The aim is to understand better and characterize how the quantum device approaches a solution of an otherwise difficult to solve NP-hard problem.

  1. Immunoaffinity chromatography combined with tandem mass spectrometry: A new tool for the selective capture and analysis of brassinosteroid plant hormones

    Czech Academy of Sciences Publication Activity Database

    Oklešťková, Jana; Tarkowská, Danuše; Eyer, L.; Elbert, Tomáš; Marek, Aleš; Smržová, Z.; Novák, Ondřej; Fránek, M.; Zhabinskii, V.N.; Strnad, Miroslav

    2017-01-01

    Roč. 170, AUG 1 (2017), s. 432-440 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GA14-34792S; GA ČR GJ15-08202Y Institutional support: RVO:61389030 ; RVO:61388963 Keywords : Brassica napus * Brassinosteroids * Enzyme immunoassay * Immunoaffinity chromatography * Liquid chromatography-tandem mass spectrometry * Monoclonal antibodies Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Analytical chemistry; Biochemical research methods (UOCHB-X) Impact factor: 4.162, year: 2016

  2. Liquid chromatography/tandem mass spectrometry method for quantitative estimation of solutol HS15 and its applications

    Directory of Open Access Journals (Sweden)

    V. Vijaya Bhaskar

    2015-04-01

    Full Text Available A rapid, sensitive and selective pseudoMRM (pMRM-based method for the determination of solutol HS15 (SHS15 in rat plasma was developed using liquid chromatography/tandem mass spectrometry (LC–MS/MS. The most abundant ions corresponding to SHS15 free polyethyleneglycol (PEG oligomers at m/z 481, 525, 569, 613, 657, 701, 745, 789, 833, 877, 921 and 965 were selected for pMRM in electrospray mode of ionization. Purity of the lipophilic and hydrophilic components of SHS15 was estimated using evaporative light scattering detector (ELSD. Plasma concentrations of SHS15 were measured after oral administration at 2.50 g/kg dose and intravenous administration at 1.00 g/kg dose in male Sprague Dawley rats. SHS15 has poor oral bioavailability of 13.74% in rats. Differences in pharmacokinetics of oligomers were studied. A novel proposal was conveyed to the scientific community, where formulation excipient could be analyzed as a qualifier in the analysis of new chemical entities (NCEs to address the spiky plasma concentration profiles. Keywords: SHS15, LC–MS/MS, Spiky profiles, Validation

  3. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.

    Science.gov (United States)

    Xu, Feifei; Yang, Ting; Sheng, Yuan; Zhong, Ting; Yang, Mi; Chen, Yun

    2014-12-05

    As one of the most studied post-translational modifications (PTM), protein phosphorylation plays an essential role in almost all cellular processes. Current methods are able to predict and determine thousands of phosphorylation sites, whereas stoichiometric quantification of these sites is still challenging. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based targeted proteomics is emerging as a promising technique for site-specific quantification of protein phosphorylation using proteolytic peptides as surrogates of proteins. However, several issues may limit its application, one of which relates to the phosphopeptides with different phosphorylation sites and the same mass (i.e., isobaric phosphopeptides). While employment of site-specific product ions allows for these isobaric phosphopeptides to be distinguished and quantified, site-specific product ions are often absent or weak in tandem mass spectra. In this study, linear algebra algorithms were employed as an add-on to targeted proteomics to retrieve information on individual phosphopeptides from their common spectra. To achieve this simultaneous quantification, a LC-MS/MS-based targeted proteomics assay was first developed and validated for each phosphopeptide. Given the slope and intercept of calibration curves of phosphopeptides in each transition, linear algebraic equations were developed. Using a series of mock mixtures prepared with varying concentrations of each phosphopeptide, the reliability of the approach to quantify isobaric phosphopeptides containing multiple phosphorylation sites (≥ 2) was discussed. Finally, we applied this approach to determine the phosphorylation stoichiometry of heat shock protein 27 (HSP27) at Ser78 and Ser82 in breast cancer cells and tissue samples.

  4. Ion trapping in one-minimum potentials via charge-exchange collisions

    International Nuclear Information System (INIS)

    Maier, H.; Kuhn, S.

    1994-01-01

    A (1 d, 2 v), electrostatic, kinetics model for time-independent single-ended Q-machine states with a positively biased cold plate and a single internal minimum near the hot plate is presented. While the electrons are treated as collisionless, charge-exchange collisions between the ions and the neutral background gas atoms are taken into account by means of a linearized Boltzmann collision operator. The self-consistent plasma states are found by using an iterative analytic-numerical trajectory-simulation method in which the charge-density and potential distributions are alternately determined numerical results clearly demonstrate the sensitive role that trapped ions play in shaping the microscopic and macroscopic properties of the dc states under study. The trapped-ion distributions themselves are shown to be controlled critically by the detailed scattering conditions, which in turn are determined by the choice of the background properties. (author). 10 refs, 3 figs

  5. Fast quantitative detection of cocaine in beverages using nanoextractive electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Hu, Bin; Peng, Xuejiao; Yang, Shuiping; Gu, Haiwei; Chen, Huanwen; Huan, Yanfu; Zhang, Tingting; Qiao, Xiaolin

    2010-02-01

    Without any sample pretreatment, effervescent beverage fluids were manually sprayed into the primary ion plume created by using a nanoelectrospray ionization source for direct ionization, and the analyte ions of interest were guided into an ion trap mass spectrometer for tandem mass analysis. Functional ingredients (e.g., vitamins, taurine, and caffeine, etc.) and spiked impurity (e.g., cocaine) in various beverages, such as Red Bull energy drink, Coco-cola, and Pepsi samples were rapidly identified within 1.5 s. The limit of detection was found to be 7-15 fg (S/N = 3) for cocaine in different samples using the characteristic fragment (m/z 150) observed in the MS(3) experiments. Typical relative standard deviation and recovery of this method were 6.9%-8.6% and 104%-108% for direct analysis of three actual samples, showing that nanoextractive electrospray ionization tandem mass spectrometry is a useful technique for fast screening cocaine presence in beverages. 2010. Published by Elsevier Inc.

  6. Determination of phospholipid regiochemistry by Ag(I) adduction and tandem mass spectrometry.

    Science.gov (United States)

    Yoo, Hyun Ju; Håkansson, Kristina

    2011-02-15

    Collision-activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) of Ag-adducted phospholipids were investigated as structural tools. Previously, determination of the acyl chains at the two phospholipid esterification sites has been performed based on the R(1)COO(-)/R(2)COO(-) ratio in negative ion mode CAD tandem mass spectrometry. However, the observed product ion ratio is dependent on the extent of unsaturation of the fatty acyl group at sn-2 as well as on the total chain length. Similarly, in positive ion mode CAD with/without alkaline or alkaline earth metal adduction, the ratio of product ions resulting from either R(1)COOH or R(2)COOH neutral losses is dependent on the nature of the phospholipid polar headgroup. Ag(+) ion chromatography, in which silver ions are part of the stationary phase, can provide information on double bond number/distribution as well as double bond configuration (cis/trans) because of interaction between Ag(+) ions and olefinic π electrons of fatty acids and lipids. We hypothesized that interactions between double bonds and Ag(+) may be utilized to also reveal phospholipid esterification site information in tandem mass spectrometry. CAD and IRMPD of Ag-adducted phospholipids with unsaturated fatty acids (R(x)COOH, x = 1 or 2) provided characteristic product ions, [R(x)COOH + Ag](+), and their neutral losses. The characteristic product ions and their abundances do not depend on the type of polar headgroup or the number of double bonds of unsaturated acyl chains. Tandem mass spectrometry of Cu-adducted phospholipids was also performed for comparison based on the Lewis acid and base properties of Cu(+) and phospholipid double bonds, respectively.

  7. Development of a radiofrequency linear ion trap for {beta} decay study

    Energy Technology Data Exchange (ETDEWEB)

    Li, G. [McGill Univ., Montreal, Quebec (Canada); Argonne National Laboratory, Argonne, Illinois (United States); Scielzo, N.D. [Lawrence Livermore National Laboratory, Livermore, California (United States); Segel, R.E. [Northwestern Univ., Illinois (United States); and others

    2010-07-01

    A Beta decay Paul Trap (BPT) has been constructed at Argonne National Laboratory for the precise measurement of beta decay. We have demonstrated the capability of producing and transferring a low-energy, bunched, and isotopically pure ions beam. In BPT the ions are cooled to sub-eV energies, and confined in a volume of less than 1 mm{sup 3}. The trap has an open geometry which allows four sets of radiation detectors covering a substantial potion of solid angle. In combination with versatile detectors, BPT is able to precisely determine the entire decay kinematics of many isotopes. (author)

  8. Automated Gain Control and Internal Calibration With External Ion Accumulation Capillary liquid chromatography-electrospray ionization-fourier transform ion cyclotron resonance.

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Mikhail E.(VISITORS); Zhang, Rui (BATTELLE (PACIFIC NW LAB)); Strittmatter, Eric F.(BATTELLE (PACIFIC NW LAB)); Prior, David C.(BATTELLE (PACIFIC NW LAB)); Tang, Keqi (BATTELLE (PACIFIC NW LAB)); Smith, Richard D.(BATTELLE (PACIFIC NW LAB))

    2003-08-15

    When combined with capillary LC separations, Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FTICR MS) has increasingly been applied for advanced characterization of proteolytic digests. Incorporation of external (to the ICR cell) ion accumulation multipoles with FTICR for ion pre selection and accumulation has enhanced the dynamic range, sensitivity and duty cycle of measurements. However, the highly variable ion production rate from an LC separation can result in overfilling of the external trap, resulting in m/z discrimination and fragmentation of peptide ions. An excessive space charge trapped in the ICR cell causes significant shifts in the detected ion cyclotron frequencies, reducing the achievable mass measurement accuracy (MMA) for protein identification. To eliminate m/z discrimination in the external ion trap, further increase the duty cycle and improve MMA, we developed a capability for data-dependent adjustment of ion accumulation times in the course of an LC separation, referred to as Automated Gain Control (AGC), in combination with low kinetic energy gated ion trapping and internal calibration using a dual-channel electrodynamic ion funnel. The system was initially evaluated in the analysis of a 0.5 mg/mL tryptic digest of bovine serum albumin. The implementation of LC/ESI/AGC/FTICR with internal calibration gave rise to a {approx} 10-fold increase in the number of identified tryptic peptides within mass measurement accuracy of 2 ppm as compared to that detected during the conventional LC/FTICR run with a fixed ion accumulation time and external calibration.

  9. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry

    International Nuclear Information System (INIS)

    Izumi, Yoshihiro; Okazawa, Atsushi; Bamba, Takeshi; Kobayashi, Akio; Fukusaki, Eiichiro

    2009-01-01

    In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-IT-MS/MS) under multiple-reaction monitoring (MRM) in plant hormone profiling. Unlabeled and deuterium-labeled isotopomers of four classes of plant hormones and their derivatives, auxins, cytokinins (CK), abscisic acid (ABA), and gibberellins (GA), were analyzed by this method. The optimized nanoflow-LC-ESI-IT-MS/MS method showed ca. 5-10-fold greater sensitivity than capillary-LC-ESI-IT-MS/MS, and the detection limits (S/N = 3) of several plant hormones were in the sub-fmol range. The results showed excellent linearity (R 2 values of 0.9937-1.0000) and reproducibility of elution times (relative standard deviations, RSDs, <1.1%) and peak areas (RSDs, <10.7%) for all target compounds. Further, sample purification using Oasis HLB and Oasis MCX cartridges significantly decreased the ion-suppressing effects of biological matrix as compared to the purification using only Oasis HLB cartridge. The optimized nanoflow-LC-ESI-IT-MS/MS method was successfully used to analyze endogenous plant hormones in Arabidopsis and tobacco samples. The samples used in this analysis were extracted from only 17 tobacco dry seeds (1 mg DW), indicating that the efficiency of analysis of endogenous plant hormones strongly depends on the detection sensitivity of the method. Our analytical approach will be useful for in-depth studies on complex plant hormonal metabolism.

  10. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yoshihiro; Okazawa, Atsushi; Bamba, Takeshi; Kobayashi, Akio [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Fukusaki, Eiichiro, E-mail: fukusaki@bio.eng.osaka-u.ac.jp [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2009-08-26

    In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-IT-MS/MS) under multiple-reaction monitoring (MRM) in plant hormone profiling. Unlabeled and deuterium-labeled isotopomers of four classes of plant hormones and their derivatives, auxins, cytokinins (CK), abscisic acid (ABA), and gibberellins (GA), were analyzed by this method. The optimized nanoflow-LC-ESI-IT-MS/MS method showed ca. 5-10-fold greater sensitivity than capillary-LC-ESI-IT-MS/MS, and the detection limits (S/N = 3) of several plant hormones were in the sub-fmol range. The results showed excellent linearity (R{sup 2} values of 0.9937-1.0000) and reproducibility of elution times (relative standard deviations, RSDs, <1.1%) and peak areas (RSDs, <10.7%) for all target compounds. Further, sample purification using Oasis HLB and Oasis MCX cartridges significantly decreased the ion-suppressing effects of biological matrix as compared to the purification using only Oasis HLB cartridge. The optimized nanoflow-LC-ESI-IT-MS/MS method was successfully used to analyze endogenous plant hormones in Arabidopsis and tobacco samples. The samples used in this analysis were extracted from only 17 tobacco dry seeds (1 mg DW), indicating that the efficiency of analysis of endogenous plant hormones strongly depends on the detection sensitivity of the method. Our analytical approach will be useful for in-depth studies on complex plant hormonal metabolism.

  11. Determination of ifosfamide, 2-and 3-dechloroethyifosfamide using gas chromatography with nitrogen-phosphorus or mass spectrometry detection

    NARCIS (Netherlands)

    Kerbusch, T; Jeuken, MJ; Derraz, J; van Putten, JWG; Huitema, ADR; Beijnen, JH

    2000-01-01

    A comparison was made between methods for determining ifosfamide (IF), 2- (2DCE) and 3-dechloroethylifosfamide (3DCE) using gas chromatography with nitrogen-phosphorus detection (GC-NPD) versus positive ion electron-impact ion-trap mass spectrometry (GC-MS'). Sample pretreatment involved

  12. Chemical Profiling of Re-Du-Ning Injection by Ultra-Performance Liquid Chromatography Coupled with Electrospray Ionization Tandem Quadrupole Time-of-Flight Mass Spectrometry through the Screening of Diagnostic Ions in MSE Mode

    Science.gov (United States)

    Wang, Zhenzhong; Geng, Jianliang; Dai, Yi; Xiao, Wei; Yao, Xinsheng

    2015-01-01

    The broad applications and mechanism explorations of traditional Chinese medicine prescriptions (TCMPs) require a clear understanding of TCMP chemical constituents. In the present study, we describe an efficient and universally applicable analytical approach based on ultra-performance liquid chromatography coupled to electrospray ionization tandem quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q/TOF-MS) with the MSE (E denotes collision energy) data acquisition mode, which allowed the rapid separation and reliable determination of TCMP chemical constituents. By monitoring diagnostic ions in the high energy function of MSE, target peaks of analogous compounds in TCMPs could be rapidly screened and identified. “Re-Du-Ning” injection (RDN), a eutherapeutic traditional Chinese medicine injection (TCMI) that has been widely used to reduce fever caused by viral infections in clinical practice, was studied as an example. In total, 90 compounds, including five new iridoids and one new sesquiterpene, were identified or tentatively characterized by accurate mass measurements within 5 ppm error. This analysis was accompanied by MS fragmentation and reference standard comparison analyses. Furthermore, the herbal sources of these compounds were unambiguously confirmed by comparing the extracted ion chromatograms (EICs) of RDN and ingredient herbal extracts. Our work provides a certain foundation for further studies of RDN. Moreover, the analytical approach developed herein has proven to be generally applicable for profiling the chemical constituents in TCMPs and other complicated mixtures. PMID:25875968

  13. Trapped ion mode in toroidally rotating plasmas

    International Nuclear Information System (INIS)

    Artun, M.; Tang, W.M.; Rewoldt, G.

    1995-04-01

    The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k τ ρ bi much-lt 1, where ρ bi is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented

  14. Ejection of Coulomb Crystals from a Linear Paul Ion Trap for Ion-Molecule Reaction Studies.

    Science.gov (United States)

    Meyer, K A E; Pollum, L L; Petralia, L S; Tauschinsky, A; Rennick, C J; Softley, T P; Heazlewood, B R

    2015-12-17

    Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions.

  15. Theoretical examination of the trapping of ion-implanted hydrogen in metals

    International Nuclear Information System (INIS)

    Myers, S.M.; Nordlander, P.; Besenbacher, F.; Norskov, J.K.

    1986-01-01

    Theoretical analysis of the defect trapping of ion-implanted hydrogen in metals has been extended in two respects. A new transport formalism has been developed which takes account not only of the diffusion, trapping, and surface release of the hydrogen, which were included in earlier treatments, but also the diffusion, recombination, agglomeration, and surface annihilation of the vacancy and interstitial traps. In addition, effective-medium theory has been used to examine multiple hydrogen occupancy of the vacancy, and, for the fcc structure, appreciable binding enthalpies relative to the solution site have been found for occupancies of up to six. These extensions have been employed to model the depth distribution of ion-implanted hydrogen in Ni and Al during linear ramping of temperature, and the results have been used to interpret previously published data from these metals. The agreement between theory and experiment is good for both systems. In the case of Ni, the two experimentally observed hydrogen-release stages are both accounted for in terms of trapping at vacancies with a binding enthalpy that depends upon occupancy in accord with effective-medium theory

  16. Study of heliumlike neon using an electron beam ion trap

    International Nuclear Information System (INIS)

    Wargelin, B.J.; Kahn, S.M.; Beiersdorfer, P.

    1992-01-01

    The 2-to-1 spectra of several astrophysically abundant He-like ions are being studied using the Electron Beam Ion Trap (EBIT) at Lawrence Livermore National Laboratory. Spectra are recorded for a broad range of plasma parameters, including electron density, energy, and ionization balance. We describe the experimental equipment and procedure and present some typical data

  17. Full validation of a method for the determination of drugs of abuse in non-mineralized dental biofilm using liquid chromatography-tandem mass spectrometry and application to postmortem samples.

    Science.gov (United States)

    Henkel, Kerstin; Altenburger, Markus J; Auwärter, Volker; Neukamm, Merja A

    2018-01-01

    Alternative matrices play a major role in postmortem forensic toxicology, especially if common matrices (like body fluids or hair) are not available. Incorporation of illicit and medicinal drugs into non-mineralized dental biofilm (plaque) seems likely but has not been investigated so far. Analysis of plaque could therefore extend the spectrum of potentially used matrices in postmortem toxicology. For this reason, a rapid, simple and sensitive method for the extraction, determination and quantification of ten drugs of abuse from plaque using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and fully validated. Amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxy-N-ethylamphetamine (MDEA), 3,4-methylenedioxyamphetamine (MDA), cocaine, benzoylecgonine, morphine, codeine and 6-acetylmorphine were extracted from 2mg of dried and powdered plaque via ultrasonication with acetonitrile. The extracts were analyzed on a triple-quadrupole linear ion trap mass spectrometer in scheduled multiple reaction monitoring mode (sMRM). The method was fully validated and proved accurate, precise, selective and specific with satisfactory linearity within the calibrated ranges. The lower limit of quantification was 10-15pgmg -1 for all compounds except for MDA (100pgmg -1 ) and amphetamine (200pgmg -1 ). The method has been successfully applied to three authentic postmortem samples with known drug history. Amphetamine, MDMA, cocaine, benzoylecgonine, morphine and codeine could be detected in these cases in concentrations ranging from 18pgmg -1 for cocaine to 1400pgmg -1 for amphetamine. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Online restricted-access material combined with high-performance liquid chromatography and tandem mass spectrometry for the simultaneous determination of vanillin and its vanillic acid metabolite in human plasma.

    Science.gov (United States)

    Li, De-Qiang; Zhang, Zhi-Qing; Yang, Xiu-Ling; Zhou, Chun-Hua; Qi, Jin-Long

    2016-09-01

    An automated online solid-phase extraction with restricted-access material combined with high-performance liquid chromatography and tandem mass spectrometry was developed and validated for the simultaneous quantification of vanillin and its vanillic acid metabolite in human plasma. After protein precipitation by methanol, which contained the internal standards, the supernatant of plasma samples was injected to the system, the endogenous large molecules were flushed out, and target analytes were trapped and enriched on the adsorbent, resulting in a minimization of sample complexity and ion suppression effects. Calibration curves were linear over the concentrations of 5-1000 ng/mL for vanillin and 10-5000 ng/mL for vanillic acid with a coefficient of determination >0.999 for the determined compounds. The lower limits of quantification of vanillin and vanillic acid were 5.0 and 10.0 ng/mL, respectively. The intra- and inter-run precisions expressed as the relative standard deviation were 2.6-8.6 and 3.2-10.2%, respectively, and the accuracies expressed as the relative error were in the range of -6.1 to 7.3%. Extraction recoveries of analytes were between 89.5 and 97.4%. There was no notable matrix effect for any analyte concentration. The developed method was proved to be sensitive, repeatable, and accurate for the quantification of vanillin and its vanillic acid metabolite in human plasma. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A novel strategy for target profiling analysis of bioactive phenylethanoid glycosides in Plantago medicinal plants using ultra-performance liquid chromatography coupled with tandem quadrupole mass spectrometry.

    Science.gov (United States)

    Qi, Meng; Xiong, Aizhen; Geng, Fang; Yang, Li; Wang, Zhengtao

    2012-06-01

    Phenylethanoid glycosides are a group of phenolic compounds with diverse biological activities such as hypotensive, diuretic, and hypoglycemic effects. In this study, a target profiling analysis approach using ultra-performance liquid chromatography coupled with tandem quadrupole mass spectrometry (MS) was established on the basis of parent ion scanning for m/z 161, the characteristic product ion for phenylethanoid glycosides. It was successfully employed to discriminate the chemical composition of phenylethanoid glycosides between Plantaginis Herba and Plantaginis Semen, two medicinal parts of Plantago plants, which are widely used as herbal medicine in China. Totally, 34 phenylethanoid glycosides were characterized and tentatively identified by their retention times, MS, and tandem quadrupole MS (MS/MS) data. Combined with chemometrics analysis of principal component analysis and orthogonal projection to latent structural discriminate analysis, eight of them, especially acteoside and plantamajoside, were picked out and contributed to the chemical distinction between Plantaginis Herba and Plantaginis Semen, which might be responsible for the differences in diuretic and hypotensive effects between the two medicinal parts. This new approach for target profiling provides not only a novel idea for specific analysis of active chemical constituents in the same type, but also a promising and reference method for quality evaluation of traditional Chinese medicines. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Resistive interchange mode destabilized by helically trapped energetic ions and its effects on energetic ions and bulk plasmas

    International Nuclear Information System (INIS)

    Du, X.D.; Toi, K.; Osakabe, M.

    2014-10-01

    A resistive interchange mode with bursting behavior and rapid frequency chirping in the range less than 10 kHz is observed for the first time in the magnetic hill region of net current-free, low beta LHD (Large Helical Device) plasmas during high power injection of perpendicular neutral beams. The mode resonates with the precession motion of helically trapped energetic beam ions, following the resonant condition. The radial mode structure is found to be very similar to that of usual pressure-driven interchange mode, of which radial displacement eigenfunction has an even function around the rational surface. This beam driven mode is excited when the beta value of helically trapped energetic ions exceed a certain threshold. The radial transport of helically trapped energetic ions induced by the mode transiently generates significant radial electric field near the plasma peripheral region. Thus generated radial electric field clearly suppresses micro turbulence and improves bulk plasma confinement, suggesting strong flow shear generation. (author)

  1. Liquid chromatography-tandem mass spectrometry detection of the quaternary ammonium compound mebezonium as an active ingredient in t61.

    Science.gov (United States)

    Kirschbaum, Katrin M; Grellner, Wolfgang; Rochholz, Gertrud; Musshoff, Frank; Madea, Burkhard

    2011-03-01

    Quaternary ammonium compounds pose an analytical challenge. Mebezonium, a muscle-relaxing agent contained in veterinary euthanasia solution T61, was analyzed in body fluids, organs, and injection sites of a veterinarian by liquid chromatography-tandem mass spectrometry (LC-MS-MS) method. Additionally, embutramide and tetracaine, which are two other active ingredients contained in T61, methadone, xylazine, and analgesics were detected by LC-MS-MS and high-performance liquid chromatography-ultraviolet detection methods. For detection of mebezonium a solid-phase extraction (SPE) combined with ionpairing reagent heptafluorobutyric acid was developed. Separation was achieved on Phenomenex Synergi Hydro RP C(18) column combined with ammonium formate buffer and acetonitrile (pH 3.5). To enrich other drugs, liquid-liquid extraction procedures were used. Most of these drugs were separated on a Restek Allure PFP Propyl column using the mentioned mobile phase. Mebezonium and embutramide were detected in femoral vein serum in concentrations of 10.9 and 2.0 mg/L, respectively. The concentration of xylazine and methadone in serum was 2.0 and 0.4 mg/L, respectively. The LC-MS-MS method with SPE combined with an ion-pairing reagent allowed the quantitation of mebezonium. Methadone was detected in toxic concentrations and was, in combination with xylazine and T61, considered to be the cause of death.

  2. Blueprint for a microwave trapped ion quantum computer.

    Science.gov (United States)

    Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G; Mølmer, Klaus; Devitt, Simon J; Wunderlich, Christof; Hensinger, Winfried K

    2017-02-01

    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.

  3. Quantitative determination of a synthetic amide derivative of gallic acid, SG-HQ2, using liquid chromatography tandem mass spectrometry, and its pharmacokinetics in rats.

    Science.gov (United States)

    Seo, Seung-Yong; Kang, Wonku

    2016-11-30

    An amide derivative of gallic acid (GA), 3,4,5-trihydroxy-N-(8-hydroxyquinolin-2-yl)benzamide) (SG-HQ2) was recently synthesized, and its inhibitory actions were previously shown on histamine release and pro-inflammatory cytokine expression. In this study, a simultaneous quantification method was developed for the determination of SG-HQ2 and its possible metabolite, GA, in rat plasma using liquid chromatography with a tandem mass spectrometry (LC-MS/MS). After simple protein precipitation with acetonitrile including diclofenac (internal standard, IS), the analytes were chromatographed on a reversed phased column with a mobile phase of acetonitrile and water (60:40, v/v, including 0.1% formic acid). The ion transitions of the precursor to the product ion were principally protonated ion [M+H] + at m/z 313.2→160.6 for SG-HQ2, and deprotonated ions [M-H] - at m/z 168.7→124.9 for GA and 296.0→251.6 for the IS. The accuracy and precision of the assay were in accordance with FDA regulations for the validation of bioanalytical methods. This method was successfully applied to a pharmacokinetic study of SG-HQ2 after intravenous administration in rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Commissioning of the double Penning trap system MLLTRAP and first studies on mass-dependent systematic uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Krug, Kevin; Weber, Christine; Thirolf, Peter G.; Szerypo, Jerzy; Gartzke, Eva; Habs, Dietrich [Fakultaet fuer Physik, LMU Muenchen (Germany); Kolhinen, Veli [Fakultaet fuer Physik, LMU Muenchen (Germany); Department of Physics, University of Jyvaeskylae (Finland)

    2010-07-01

    The cylindrical double Penning trap system MLLTRAP in its commissioning phase at the Maier-Leibnitz-Laboratory (MLL) Tandem accelerator in Garching is designed to perform high-accuracy mass measurements on fusion-reaction products. As the mass uncertainty is inversely proportional to the ionic charge state, the ions of interest will be charge bred prior to injection into the Penning trap system. In the future setup, both traps are foreseen to be operated as measurement traps with a relative homogeneity of the magnetic field at the trapping sites of {delta}B/B{<=}0.3 ppm. In the commissioning phase, an offline surface ionization source is used for iterative optimization of the apparatus and studies on mass-dependent systematic uncertainties. Mass measurements via the time-of-flight ion cyclotron resonance method (TOF-ICR) of reference ions with well-known masses ({sup 85}Rb, {sup 87}Rb, {sup 39}K, {sup 133}Cs) were carried out to analyze mass-dependent systematic effects. Together with previous studies on the uncertainty due to magnetic-field fluctuations the current status with respect to the limits of mass accuracy of the apparatus is presented.

  5. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping

    Science.gov (United States)

    Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph

    2017-06-01

    A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. [Figure not available: see fulltext.

  6. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    Directory of Open Access Journals (Sweden)

    Ryo eNakabayashi

    2015-12-01

    Full Text Available In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis. To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs. The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis.

  7. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    Science.gov (United States)

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034

  8. Multiresidue analysis of pesticides in olive oil by gel permeation chromatography followed by gas chromatography-tandem mass-spectrometric determination

    International Nuclear Information System (INIS)

    Sanchez, Andres Garcia; Martos, Natividad Ramos; Ballesteros, Evaristo

    2006-01-01

    A method for the multiresidue analysis of olive oil samples for 26 pesticides is proposed. Residual pesticides are extracted from oil using an n-hexane/acetonitrile mixture, extracts being cleaned-up by gel permeation chromatography (GPC) for analysis by gas chromatography-tandem mass spectrometry (GC-MS/MS). Electron ionization and chemical ionization are employed in a single analysis for the determination of pesticides. Pesticide recoveries from virgin and refined olive oil spiked with 10, 100 and 250 μg/kg concentrations of the pesticides ranged from 83.8 to 110.3%. The proposed method features good sensitivity: its limits of quantification are low enough to allow pesticide residues to be determined at concentrations below the maximum residue levels legally accepted. The precision, expressed as relative standard deviation, ranges from 4.93 to 8.11%. Applicability was tested on 40 olive oil samples. Several pesticides were detected in most of the virgin olive oil samples. By contrast, refined olive samples contained few pesticides, and only endosulfan sulphate was detected in all

  9. Novel control modes to improve the performance of rectilinear ion trap mass spectrometer with dual pressure chambers

    Science.gov (United States)

    Huo, Xinming; Tang, Fei; Zhang, Xiaohua; Chen, Jin; Zhang, Yan; Guo, Cheng'an; Wang, Xiaohao

    2016-10-01

    The rectilinear ion trap (RIT) has gradually become one of the preferred mass analyzers for portable mass spectrometers because of its simple configuration. In order to enhance the performance, including sensitivity, quantitation capability, throughput, and resolution, a novel RIT mass spectrometer with dual pressure chambers was designed and characterized. The studied system constituted a quadrupole linear ion trap (QLIT) in the first chamber and a RIT in the second chamber. Two control modes are hereby proposed: Storage Quadrupole Linear Ion Trap-Rectilinear Ion Trap (SQLIT-RIT) mode, in which the QLIT was used at high pressure for ion storage and isolation, and the RIT was used for analysis; and Analysis Quadrupole Linear Ion Trap-Rectilinear Ion Trap (AQLIT-RIT) mode, in which the QLIT was used for ion storage and cooling. Subsequently, synchronous scanning and analysis were carried out by QLIT and RIT. In SQLIT-RIT mode, signal intensity was improved by a factor of 30; the limit of quantitation was reduced more than tenfold to 50 ng mL-1, and an optimal duty cycle of 96.4% was achieved. In AQLIT-RIT mode, the number of ions coexisting in the RIT was reduced, which weakened the space-charge effect and reduced the mass shift. Furthermore, the mass resolution was enhanced by a factor of 3. The results indicate that the novel control modes achieve satisfactory performance without adding any system complexity, which provides a viable pathway to guarantee good analytical performance in miniaturization of the mass spectrometer.

  10. Quantification of Oxidized and Unsaturated Bile Alcohols in Sea Lamprey Tissues by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ke Li

    2016-08-01

    Full Text Available A sensitive and reliable method was developed and validated for the determination of unsaturated bile alcohols in sea lamprey tissues using liquid-liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS. The liver, kidney, and intestine samples were extracted with acetonitrile and defatted by n-hexane. Gradient UHPLC separation was performed using an Acquity BEH C18 column with a mobile phase of water and methanol containing 20 mM triethylamine. Multiple reaction monitoring modes of precursor-product ion transitions for each analyte was used. This method displayed good linearity, with correlation coefficients greater than 0.99, and was validated. Precision and accuracy (RSD % were in the range of 0.31%–5.28%, while mean recoveries were between 84.3%–96.3%. With this technique, sea lamprey tissue samples were analyzed for unsaturated bile alcohol analytes. This method is practical and particularly suitable for widespread putative pheromone residue analysis.

  11. Determination of itopride in human plasma by liquid chromatography coupled to tandem mass spectrometric detection: application to a bioequivalence study.

    Science.gov (United States)

    Lee, Heon-Woo; Seo, Ji-Hyung; Choi, Seung-Ki; Lee, Kyung-Tae

    2007-01-30

    A simple method using a one-step liquid-liquid extraction (LLE) with butyl acetate followed by high-performance liquid chromatography (HPLC) with positive ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of itopride in human plasma, using sulpiride as an internal standard (IS). Acquisition was performed in multiple reaction monitoring (MRM) mode, by monitoring the transitions: m/z 359.5>166.1 for itopride and m/z 342.3>111.6 for IS, respectively. Analytes were chromatographed on an YMC C18 reverse-phase chromatographic column by isocratic elution with 1 mM ammonium acetate buffer-methanol (20: 80, v/v; pH 4.0 adjusted with acetic acid). Results were linear (r2=0.9999) over the studied range (0.5-1000 ng mL(-1)) with a total analysis time per run of 2 min for LC-MS/MS. The developed method was validated and successfully applied to bioequivalence studies of itopride hydrochloride in healthy male volunteers.

  12. Determination of anthelmintic drug residues in milk using ultra high performance liquid chromatography-tandem mass spectrometry with rapid polarity switching.

    Science.gov (United States)

    Whelan, Michelle; Kinsella, Brian; Furey, Ambrose; Moloney, Mary; Cantwell, Helen; Lehotay, Steven J; Danaher, Martin

    2010-07-02

    A new UHPLC-MS/MS (ultra high performance liquid chromatography coupled to tandem mass spectrometry) method was developed and validated to detect 38 anthelmintic drug residues, consisting of benzimidazoles, avermectins and flukicides. A modified QuEChERS-type extraction method was developed with an added concentration step to detect most of the analytes at keeper to ensure analytes remain in solution. Using rapid polarity switching in electrospray ionisation, a single injection was capable of detecting both positively and negatively charged ions in a 13 min run time. The method was validated at two levels: the unapproved use level and at the maximum residue level (MRL) according to Commission Decision (CD) 2002/657/EC criteria. The decision limit (CCalpha) of the method was in the range of 0.14-1.9 and 11-123 microg kg(-1) for drugs validated at unapproved and MRL levels, respectively. The performance of the method was successfully verified for benzimidazoles and levamisole by participating in a proficiency study.

  13. A Quantum Non-Demolition Parity measurement in a mixed-species trapped-ion quantum processor

    Science.gov (United States)

    Marinelli, Matteo; Negnevitsky, Vlad; Lo, Hsiang-Yu; Flühmann, Christa; Mehta, Karan; Home, Jonathan

    2017-04-01

    Quantum non-demolition measurements of multi-qubit systems are an important tool in quantum information processing, in particular for syndrome extraction in quantum error correction. We have recently demonstrated a protocol for quantum non-demolition measurement of the parity of two beryllium ions by detection of a co-trapped calcium ion. The measurement requires a sequence of quantum gates between the three ions, using mixed-species gates between beryllium hyperfine qubits and a calcium optical qubit. Our work takes place in a multi-zone segmented trap setup in which we have demonstrated high fidelity control of both species and multi-well ion shuttling. The advantage of using two species of ion is that we can individually manipulate and read out the state of each ion species without disturbing the internal state of the other. The methods demonstrated here can be used for quantum error correcting codes as well as quantum metrology and are key ingredients for realizing a hybrid universal quantum computer based on trapped ions. Mixed-species control may also enable the investigation of new avenues in quantum simulation and quantum state control. left the group and working in a company now.

  14. Versatile lipid profiling by liquid chromatography-high resolution mass spectrometry using all ion fragmentation and polarity switching. Preliminary application for serum samples phenotyping related to canine mammary cancer.

    Science.gov (United States)

    Gallart-Ayala, H; Courant, F; Severe, S; Antignac, J-P; Morio, F; Abadie, J; Le Bizec, B

    2013-09-24

    Lipids represent an extended class of substances characterized by such high variety and complexity that makes their unified analyses by liquid chromatography coupled to either high resolution or tandem mass spectrometry (LC-HRMS or LC-MS/MS) a real challenge. In the present study, a new versatile methodology associating ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-HRMS/MS) have been developed for a comprehensive analysis of lipids. The use of polarity switching and "all ion fragmentation" (AIF) have been two action levels particularly exploited to finally permit the detection and identification of a multi-class and multi-analyte extended range of lipids in a single run. For identification purposes, both higher energy collision dissociation (HCD) and in-source CID (collision induced dissociation) fragmentation were evaluated in order to obtain information about the precursor and product ions in the same spectra. This approach provides both class-specific and lipid-specific fragments, enhancing lipid identification. Finally, the developed method was applied for differential phenotyping of serum samples collected from pet dogs developing spontaneous malignant mammary tumors and health controls. A biological signature associated with the presence of cancer was then successfully revealed from this lipidome analysis, which required to be further investigated and confirmed at larger scale. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Enhanced quantum sensing with multi-level structures of trapped ions

    DEFF Research Database (Denmark)

    Aharon, N.; Drewsen, Michael; Retzker, A.

    2017-01-01

    , robustness to both external and controller noise is achieved. We consider trapped-ion based implementation via the dipole transitions, which is relevant for several types of ions, such as the $^{40}{\\rm{Ca}}^{+}$, $^{88}{\\rm{Sr}}^{+}$, and the $^{138}{\\rm{Ba}}^{+}$ ions. Taking experimental errors...... of magnitude of the sensitivity. In addition, we present a microwave based sensing scheme that is suitable for ions with a hyperfine structure, such as the $^{9}{\\rm{Be}}^{+}$,$^{25}{\\rm{Mg}}^{+}$,$^{43}{\\rm{Ca}}^{+}$,$^{87}{\\rm{Sr}}^{+}$,$^{137}{\\rm{Ba}}^{+}$,$^{111}{\\rm{Cd}}^{+}$,$^{171}{\\rm...

  16. Improved formulas for trapped-ion anomalous transport in tokamaks without and with shear

    International Nuclear Information System (INIS)

    Sardei, F.; Wimmel, H.K.

    1980-12-01

    More refined numerical calculations of trapped-ion anomalous transport in a 2-D slab, trapped-fluid model suggest an anomalous diffusion coefficient D approx. 3.5 x 10 -2 delta 0 a 2 νsub(i)sup(e)sup(f)sup(f) for a tokamak plasma without shear. This supersedes earlier results. The new formula is independently confirmed by two different analytical calculations. One of them uses a similarity analysis of unabridged Kadomtsev-Pogutse-type trapped-fluid equations and the multiperiodic spatial structure of the saturated trapped-ion wave found in both the earlier and the recent numerical calculations. The other calculation yields a class of exact nonlinear solutions of the trapped-fluid equations. The new shearless result is used to derive the anomalous diffusion with shear effect by a method described in an earlier paper. The new transport formulas have been numerically evaluated for several tokamaks in an IPP report, where the results are shown in graph form. (orig.)

  17. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions.

    Science.gov (United States)

    Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona

    2012-07-01

    Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.

  18. A new trapped-ion instability with large frequency and radial wavenumber

    International Nuclear Information System (INIS)

    Tagger, M.

    1979-01-01

    The need for theoretical previsions concerning anomalous transport in large Tokamaks, as well as the recent results of PLT, ask the question of the process responsible for non-linear saturation of trapped-ion instabilities. This in turn necessitates the knowledge of the linear behaviour of these waves at large frequencies and large radial wavenumbers. We study the linear dispersion relation of these modes, in the radially local approximation, but including a term due to a new physical effect, combining finite banana-width and bounce resonances. Limiting ourselves presently to the first harmonic expansion of the bounce motion of trapped ions, we show that the effect of finite banana-width on the usual trapped-ion mode is complex and quite different from what is generally expected. In addition we show, analytically and numerically, the appearance of a nex branch of this instability. Essentially due to this new effect, it involves large frequencies (ω approximately ωsub(b) and is destabilized by large radial wavelengths (ksub(x) Λ approximately 1, where Λ is the typical banana-width). We discuss the nature of this new mode and its potential relevance of the experiments

  19. Liquid chromatography-tandem mass spectrometric assay for the tyrosine kinase inhibitor afatinib in mouse plasma using salting-out liquid-liquid extraction

    NARCIS (Netherlands)

    Sparidans, Rolf W; van Hoppe, Stephanie; Rood, Johannes J M; Schinkel, Alfred H; Schellens, Jan H M; Beijnen, Jos H

    2016-01-01

    A quantitative bioanalytical liquid chromatography-tandem mass spectrometric (LC-MS/MS) assay for afatinib, an irreversible inhibitor of the ErbB (erythroblastic leukemia viral oncogene homolog) tyrosine kinase family, was developed and validated. Plasma samples were pre-treated using salting-out

  20. Ion exchange separation of nitrate from uranium compounds and its determination by spectrophotometry and ion chromatography

    International Nuclear Information System (INIS)

    Pires, M.A.F.; Atalla, L.T.; Abrao, A.

    1985-11-01

    A procedure for the separation of nitrate from uranium compounds by retaintion of uranyl ion on a cationic ion exchanger and its determination in the effluent is described. Nitrate is analysed by the spectrometric method with 1-phenol-2,4-dissulphonic acid. This determination covers the 1 to 10 μg NO - 3 /mL range and requires an amount of 10 to 100 μg NO - 3 . The main interference is uranium (VI) due its own intense yellow color. This difficulty is overcome by the complete separation of UO 2 ++ with the cationic resin. Alternatively, the ion chromatography technique is used for the determination of nitrate in the effluent of the cationic resin. The determination was easily made by the comparison of the nitrate peak hights of the analyte and the standard solutions. The ion chromatography method is very sensitive (0,3 μg NO - 3 /mL), reproducible and suitable for routine analysis and permits the determination of fraction of part per million of nitrate in uranium. The results of nitrate determination using both spectrophotometric and ion chromatography techniques are compared. The method is being routinely applied for the quality control of uranium compounds in the fuel cycle, specially uranium oxide, ammonium diuranate, uranium peroxide and ammonium uranyl tricarbonate. (Author) [pt

  1. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter.

    Science.gov (United States)

    Wang, Chunlei; Tymiak, Adrienne A; Zhang, Yingru

    2014-04-15

    Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.

  2. Experimental investigation of the stability diagram for Paul traps in the case of praseodymium ions

    International Nuclear Information System (INIS)

    Koczorowski, W.; Szawiola, G.; Walaszyk, A.; Buczek, A.; Stefanska, D.; Stachowska, E.

    2006-01-01

    The present paper describes an investigation of non-linear resonances of praseodymium ion clouds stored in a Paul trap as a function of the storage parameters. These have been observed in traps with different ring electrode diameters. In these different traps the resonances occur for different values of the operating parameters. Discrepancies with the approximation model for one ion have been found. The intensity of the fluorescence signal and the Doppler half width have been recorded as a function of one of the storage parameters: q. We use our results to optimize the fluorescence signal of the stored ions, which is especially useful in the case of the double-resonance method.

  3. Determination of cholesterol and four phytosterols in foods without derivatization by gas chromatography-tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Yan-Zong Chen

    2015-12-01

    Full Text Available In this study, a method for determination of cholesterol and four phytosterols by gas chromatography coupled with electron impact ionization mode–tandem mass spectrometry without derivatization in general food was developed. The sample was saponified with 7.5% KOH in methanol. After heating on hot plate and reflux for 60 minutes, the saponified portion was extracted with n-hexane/petroleum ether (50:50, v/v. The extracts were evaporated with rotary evaporator and then redissolved with tetrahydrofuran. The tetrahydrofuran layer was transferred into an injection vial and analyzed by gas chromatography on a 30 m VF-5 column. Limit of quantification was 2 mg/kg. Recoveries of cholesterol and four phytosterols from general food were between 91% and 100%.

  4. Liquid chromatography tandem mass spectrometry determination of total budesonide levels in dog plasma after inhalation exposure.

    Science.gov (United States)

    Berg, Seija; Melamies, Marika; Rajamäki, Minna; Vainio, Outi; Peltonen, Kimmo

    2012-01-01

    A sensitive and selective method to quantify budesonide in dog plasma samples was developed and fully validated. Liquid-liquid extraction was followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry with electrospray ionization. After reconstitution of the analytes in the mobile phase, samples were analysed by reversed-phase liquid chromatography with isocratic elution. d8-Budesonide was used as an internal standard, and characteristic transitions of d8-budesonide and budesonide were used for quantification. The method was validated with respect to selectivity, specificity, linearity, recovery, repeatability, reproducibility and limits of detection and quantification. The validated method was successfully applied to monitor the plasma levels of budesonide in dogs exposed to clinical doses of inhaled and intravenous drug.

  5. MEASUREMENT OF PYRETHROID RESIDUES IN ENVIRONMENTAL AND FOOD SAMPLES BY ENHANCED SOLVENT EXTRACTION/SUPERCRITICAL FLUID EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    Science.gov (United States)

    The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.

  6. Neutral particle time-of-flight analyzer for the Tandem Mirror Experiment Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Hibbs, S.M.; Carter, M.R.; Coutts, G.W.

    1985-01-01

    We describe the design and performance of a time-of-flight (ToF) analyzer being built for installation on the east end cell of the Tandem Mirror Experiment Upgrade (TMX-U). Its primary purpose is to measure the velocity distribution of escaping charge exchange neutral particles having energies between 20 and 5000 electron volts (eV). It also enables direct determination of the thermal barrier potential when used in conjunction with the plasma potential diagnostic and the end loss ion spectrometer. In addition, it can measure the velocity distribution of passing ions leaving the central cell and of ions trapped in the thermal barrier

  7. Precise positioning of an ion in an integrated Paul trap-cavity system using radiofrequency signals

    Science.gov (United States)

    Kassa, Ezra; Takahashi, Hiroki; Christoforou, Costas; Keller, Matthias

    2018-03-01

    We report a novel miniature Paul ion trap design with an integrated optical fibre cavity which can serve as a building block for a fibre-linked quantum network. In such cavity quantum electrodynamic set-ups, the optimal coupling of the ions to the cavity mode is of vital importance and this is achieved by moving the ion relative to the cavity mode. The trap presented herein features an endcap-style design complemented with extra electrodes on which additional radiofrequency voltages are applied to fully control the pseudopotential minimum in three dimensions. This method lifts the need to use three-dimensional translation stages for moving the fibre cavity with respect to the ion and achieves high integrability, mechanical rigidity and scalability. Not based on modifying the capacitive load of the trap, this method leads to precise control of the pseudopotential minimum allowing the ion to be moved with precisions limited only by the ion's position spread. We demonstrate this by coupling the ion to the fibre cavity and probing the cavity mode profile.

  8. Quantum-enhanced deliberation of learning agents using trapped ions

    Science.gov (United States)

    Dunjko, V.; Friis, N.; Briegel, H. J.

    2015-02-01

    A scheme that successfully employs quantum mechanics in the design of autonomous learning agents has recently been reported in the context of the projective simulation (PS) model for artificial intelligence. In that approach, the key feature of a PS agent, a specific type of memory which is explored via random walks, was shown to be amenable to quantization, allowing for a speed-up. In this work we propose an implementation of such classical and quantum agents in systems of trapped ions. We employ a generic construction by which the classical agents are ‘upgraded’ to their quantum counterparts by a nested process of adding coherent control, and we outline how this construction can be realized in ion traps. Our results provide a flexible modular architecture for the design of PS agents. Furthermore, we present numerical simulations of simple PS agents which analyze the robustness of our proposal under certain noise models.

  9. Determination of eugenol in rat plasma by liquid chromatography-quadrupole ion trap mass spectrometry using a simple off-line dansyl chloride derivatization reaction to enhance signal intensity.

    Science.gov (United States)

    Beaudry, Francis; Guénette, Sarah Annie; Vachon, Pascal

    2006-11-01

    A rapid, selective and sensitive method was developed for the determination of eugenol concentration using an off-line dansyl chloride derivatization step to enhance signal intensity. The method consisted of a protein precipitation extraction followed by derivatization with dansyl chloride and analysis by full scan liquid chromatography electrospray quadrupole ion trap mass spectrometry (LC-ESI-QIT). The separation was achieved using a 100 x 2 mm C(8) analytical column combined with an isocratic mobile phase composed of 75:25 acetonitrile: 0.1% formic acid in water set at a flow rate of 0.25 mL/min. Signal intensity of the eugenol-dansyl chloride derivative was increased up to 100-fold as compared with the underivatized eugenol in positive electrospray mode. An analytical range of 100-20,000 ng/mL was used in the calibration curve of plasma and blood samples. The LOD observed was 0.5 pg injected on column. The novel method met all requirements of specificity, sensitivity, linearity, precision, accuracy and stability. In conclusion, a rapid and sensitive LC-ESI/MS/MS method using a derivatization agent was developed to enhance signal intensity of eugenol. Copyright (c) 2006 John Wiley & Sons, Ltd.

  10. Online coupling of high-resolution chromatography with extreme UV photon activation tandem mass spectrometry: Application to the structural investigation of complex glycans by dissociative photoionization

    International Nuclear Information System (INIS)

    Ropartz, David; Giuliani, Alexandre; Fanuel, Mathieu; Hervé, Cécile; Czjzek, Mirjam; Rogniaux, Hélène

    2016-01-01

    The activation of ions by extreme-energy photons (XUV) produced by a synchrotron radiation beamline is a powerful method for characterizing complex glycans using tandem mass spectrometry (MS). As previously described, this activation method leads to rich fragmentation spectra with many structurally valuable cross-ring cleavages while maintaining labile modifications on the glycan structures. However, until now, the tandem MS event was too long to be compatible with liquid chromatography elution times. In this work, the duty cycle of the activation and detection of fragments was shortened, and the background signal on the spectra was drastically reduced. Both improvements allowed, for the first time, the successful coupling of a UHPLC system to XUV-activated tandem MS. The approach was used to characterize a complex mixture of oligo-porphyrans, which are a class of highly sulfated oligosaccharides, in a fully automated way. Due to an enhanced dynamic range and an increased sensitivity, some hypothetical structures of low abundance have been unequivocally confirmed in this study and others have been revised. Some previously undescribed species of oligo-porphyrans that exhibit lateral branching have been fully resolved. This work contributes to the scarce knowledge of the structure of porphyrans in red algae and pushes the current capacities of XUV-activation tandem MS by demonstrating the possibility of a direct coupling with UHPLC. This study will considerably broaden the applicability and practicality of this method in many fields of analytical biology. - Highlights: • For the first time, XUV photon activation tandem MS was coupled to UHPLC. • The approach was used to characterize a complex mixture of biomolecules. • The MSMS duty cycle was compatible with elution times of UHPLC without compromised. • Minor species were characterized with an enhanced sensitivity and dynamic range. • These results broaden the application of the technique in many field of

  11. Online coupling of high-resolution chromatography with extreme UV photon activation tandem mass spectrometry: Application to the structural investigation of complex glycans by dissociative photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Ropartz, David, E-mail: David.Ropartz@nantes.inra.fr [INRA, UR1268 Biopolymers Interactions Assemblies F-44316 Nantes (France); Giuliani, Alexandre [Synchrotron SOLEIL, L' Orme des Merisiers, F-91190 Gif-sur-Yvette (France); UAR 1008 CEPIA, INRA, F-44316 Nantes (France); Fanuel, Mathieu [INRA, UR1268 Biopolymers Interactions Assemblies F-44316 Nantes (France); Hervé, Cécile; Czjzek, Mirjam [Sorbonne Universités, Université Pierre et Marie Curie, Paris VI, CNRS, Integrative Biology of Marine Models, UMR 8227, Station Biologique, Place George Teissier, F29688 Roscoff Cedex (France); Rogniaux, Hélène [INRA, UR1268 Biopolymers Interactions Assemblies F-44316 Nantes (France)

    2016-08-24

    The activation of ions by extreme-energy photons (XUV) produced by a synchrotron radiation beamline is a powerful method for characterizing complex glycans using tandem mass spectrometry (MS). As previously described, this activation method leads to rich fragmentation spectra with many structurally valuable cross-ring cleavages while maintaining labile modifications on the glycan structures. However, until now, the tandem MS event was too long to be compatible with liquid chromatography elution times. In this work, the duty cycle of the activation and detection of fragments was shortened, and the background signal on the spectra was drastically reduced. Both improvements allowed, for the first time, the successful coupling of a UHPLC system to XUV-activated tandem MS. The approach was used to characterize a complex mixture of oligo-porphyrans, which are a class of highly sulfated oligosaccharides, in a fully automated way. Due to an enhanced dynamic range and an increased sensitivity, some hypothetical structures of low abundance have been unequivocally confirmed in this study and others have been revised. Some previously undescribed species of oligo-porphyrans that exhibit lateral branching have been fully resolved. This work contributes to the scarce knowledge of the structure of porphyrans in red algae and pushes the current capacities of XUV-activation tandem MS by demonstrating the possibility of a direct coupling with UHPLC. This study will considerably broaden the applicability and practicality of this method in many fields of analytical biology. - Highlights: • For the first time, XUV photon activation tandem MS was coupled to UHPLC. • The approach was used to characterize a complex mixture of biomolecules. • The MSMS duty cycle was compatible with elution times of UHPLC without compromised. • Minor species were characterized with an enhanced sensitivity and dynamic range. • These results broaden the application of the technique in many field of

  12. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids.

    Science.gov (United States)

    Raro, M; Portolés, T; Pitarch, E; Sancho, J V; Hernández, F; Garrostas, L; Marcos, J; Ventura, R; Segura, J; Pozo, O J

    2016-02-04

    The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid-liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H](+) or [M + H-2TMSOH](+) ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL(-1). Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Overview of the Livermore electron beam ion trap project

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Behar, E.; Boyce, K.R.; Brown, G.V.; Chen, H.; Gendreau, K.C.; Graf, A.; Gu, M.-F.; Harris, C.L.; Kahn, S.M.; Kelley, R.L.; Lepson, J.K.; May, M.J.; Neill, P.A.; Pinnington, E.H.; Porter, F.S.; Smith, A.J.; Stahle, C.K.; Szymkowiak, A.E.; Tillotson, A.; Thorn, D.B.; Traebert, E.; Wargelin, B.J.

    2003-01-01

    The Livermore electron beam ion trap facility has recently been moved to a new location within LLNL, and new instrumentation was added, including a 32-pixel microcalorimeter. The move was accompanied by a shift of focus toward in situ measurements of highly charged ions, which continue with increased vigor. Overviews of the facility, which includes EBIT-I and SuperEBIT, and the research projects are given, including results from optical spectroscopy, QED, and X-ray line excitation measurements

  14. Paul Ion Trap as a Diagnostic for Plasma Focus

    Science.gov (United States)

    Sadat Kiai, S. M.; Adlparvar, S.; Zirak, A.; Alhooie, Samira; Elahi, M.; Sheibani, S.; Safarien, A.; Farhangi, S.; Dabirzadeh, A. A.; Khalaj, M. M.; Mahlooji, M. S.; KaKaei, S.; Talaei, A.; Kashani, A.; Tajik Ahmadi, H.; Zahedi, F.

    2010-02-01

    The plasma discharge contamination by high and low Z Impurities affect the rate of nuclear fusion reaction products, specially when light particles have to be confined. These impurities should be analyzed and can be fairly controlled. This paper reports on the development of a Paul ion trap with ion sources by impact electron ionization as a diagnostic for the 10 kJ Iranian sunshine plasma focus device. Preliminary results of the residual gas are analyzed and presented.

  15. Ultrahigh-performance liquid chromatography-ion trap mass spectrometry characterization of the steroidal saponins of Dioscorea panthaica Prain et Burkill and its application for accelerating the isolation and structural elucidation of steroidal saponins.

    Science.gov (United States)

    Wang, Weihao; Zhao, Ye; Jing, Wenguang; Zhang, Jun; Xiao, Hui; Zha, Qin; Liu, An

    2015-03-01

    Dioscorea panthaica is a traditional Chinese medicinal herb used in the treatment of various physiological conditions, including cardiovascular disease, gastropathy and hypertension. Steroidal saponins (SS) are the main active ingredients of this herb and have effects on myocardial ischemia and cancer. The phytochemical evaluation of SS is both time-consuming and laborious, and the isolation and structural determination steps can be especially demanding. For this reason, the development of new methods to accelerate the processes involved in the identification, isolation and structural elucidation of SS is highly desirable. In this study, a new ultrahigh performance liquid chromatography-ion trap mass spectrometry (UHPLC-IT/MS(n)) method has been developed for the identification of the SS in D. panthaica Prain et Burkill. Notably, the current method can distinguish between spirostanol and furostanol-type compounds based on the fragmentation patterns observed by electrospray ionization-ion trap mass spectrometry (ESI-IT/MS(n)) analysis. UHPLC-IT/MS(n) was used to conduct a detailed investigation of the number, structural class and order of the sugar moieties in the sugar chains of the SS present in D. panthaica. The established fragmentation features were used to analyze the compounds found in the 65% ethanol fraction of the water extracts of D. panthaica. Twenty-three SS were identified, including 11 potential new compounds and six groups of isomers. Two of these newly identified SS were selected as representative examples, and their chemical structures were confirmed by (1)H and (13)C NMR analyses. This newly developed UHPLC-IT/MS(n) method therefore allowed for the efficient identification, isolation and structural determination of the SS in D. panthaica. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Quantitation of donepezil and its active metabolite 6-O-desmethyl donepezil in human plasma by a selective and sensitive liquid chromatography-tandem mass spectrometric method

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Bhavin N. [Chemistry Department, School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380 009, Gujarat (India); Analytical Laboratory, BA Research India Ltd., Bodakdev, Ahmedabad 380 054, Gujarat (India); Sharma, Naveen [Analytical Laboratory, BA Research India Ltd., Bodakdev, Ahmedabad 380 054, Gujarat (India); Sanyal, Mallika [Chemistry Department, St. Xaviers' College, Navrangpura, Ahmedabad 380 009, Gujarat (India); Shrivastav, Pranav S. [Chemistry Department, School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380 009, Gujarat (India)], E-mail: pranav_shrivastav@yahoo.com

    2008-11-23

    A sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the simultaneous determination of donepezil (D) and its pharmacologically active metabolite, 6-O-desmethyl donepezil (6-ODD) in human plasma is developed using galantamine as internal standard (IS). The analytes and IS were extracted from 500 {mu}L aliquots of human plasma via solid-phase extraction (SPE) on Waters Oasis HLB cartridges. Chromatographic separation was achieved in a run time of 6.0 min on a Waters Novapak C18 (150 mm x 3.9 mm, 4 {mu}m) column under isocratic conditions. Detection of analytes and IS was done by tandem mass spectrometry, operating in positive ion and multiple reaction monitoring (MRM) acquisition mode. The protonated precursor to product ion transitions monitored for D, 6-ODD and IS were at m/z 380.1 {yields} 91.2, 366.3 {yields} 91.3 and 288.2 {yields} 213.2, respectively. The method was fully validated for its selectivity, interference check, sensitivity, linearity, precision and accuracy, recovery, matrix effect, ion suppression/enhancement, cross-specificity, stability and dilution integrity. A linear dynamic range of 0.10-50.0 ng mL{sup -1} for D and 0.02-10.0 ng mL{sup -1} for 6-ODD was evaluated with mean correlation coefficient (r) of 0.9975 and 0.9985, respectively. The intra-batch and inter-batch precision (%CV, coefficient of variation) across five quality control levels was less than 7.5% for both the analytes. The method was successfully applied to a bioequivalence study of 10 mg donepezil tablet formulation in 24 healthy Indian male subjects under fasting condition.

  17. A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams

    International Nuclear Information System (INIS)

    Raimbault-Hartmann, H.; Bollen, G.; Beck, D.; Koenig, M.; Kluge, H.-J.; Schwarz, S.; Schark, E.; Stein, J.; Szerypo, J.

    1997-01-01

    A Penning trap ion accumulator, cooler, and buncher for low-energy ion beams has been developed for the ISOLTRAP mass spectrometer at ISOLDE/CERN. A cylindrical electrode configuration is used for the creation of a nested trapping potential. This is required for efficient accumulation of externally produced ions and for high-mass selectivity by buffer gas cooling. The design goal of a mass resolving power of about 1 x 10 5 has been achieved. Isobar separation has been demonstrated for radioactive rare-earth ion beams delivered by the ISOLDE on-line mass separator. (orig.)

  18. A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams

    CERN Document Server

    Raimbault-Hartmann, H; Bollen, G; König, M; Kluge, H J; Schark, E; Stein, J; Schwarz, S; Szerypo, J

    1997-01-01

    A Penning trap ion accumulator, cooler, and buncher for low energy ion beams has been developed for the ISOLTRAP mass spectrometer at ISOLDE/CERN. A cylindrical electrode configuration is used for the creation of a nested trapping potential. This is required for efficient accumulation of externally produced ions and for high mass selectivity by buffer gas cooling. The design goal of a mass resolving power of about $1\\cdot 10^{5}$ has been achieved. Isobar separation has been demonstrated for radioactive rare earth ion beams delivered by the ISOLDE on-line mass separator.

  19. Distance scaling of electric-field noise in a surface-electrode ion trap

    Science.gov (United States)

    Sedlacek, J. A.; Greene, A.; Stuart, J.; McConnell, R.; Bruzewicz, C. D.; Sage, J. M.; Chiaverini, J.

    2018-02-01

    We investigate anomalous ion-motional heating, a limitation to multiqubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multizone surface-electrode trap in which ions can be held at five discrete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance d . We find a scaling of approximately d-4 regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using the application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure the frequency scaling of the inherent electric-field noise close to 1 /f at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a d-4 distance dependence, including several microscopic models of current interest.

  20. Study on pharmacokinetics of 3,4-divanillyltetrahydrofuran in rats by ultra-fast liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Shan, Chen-Xiao; Cui, Xiao-Bing; Yu, Sheng; Chai, Chuan; Wen, Hong-Mei; Wang, Xin-Zhi; Sun, Xue

    2016-01-01

    3,4-Divanillyltetrahydrofuran is the main active ingredient of nettle root which can increase steroid hormones in the bloodstream for many of bodybuilders. To better understand its pharmacological activities, we need to determine its pharmacokinetic profiles. In this study, a rapid and sensitive ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed for the determination of 3,4-divanillyltetrahydrofuran in the plasma of rats. Chromatographic separation was performed on a C18 column at 40°C, with a gradient elution consisting of methanol and water containing 0.3% (v/v) formic acid at a flow rate of 0.8mL/min. The detection was performed using an electrospray triple-quadrupole MS/MS via positive ion multiple reaction monitoring mode. The lower limits-of-quantification determined were 0.5ng/mL. The intra- and inter-day precision (RSD%) was found to be within 15% and the accuracy (RE%) ranged from -4.0% to 7.0%. This simple yet sensitive method was fully validated and could be successfully applied to the study on pharmacokinetics of 3, 4-divanillyltetrahydrofuran. Copyright © 2015 Elsevier B.V. All rights reserved.