WorldWideScience

Sample records for chromatin-remodeling protein osa

  1. Chromatin Remodelers: From Function to Dysfunction

    Directory of Open Access Journals (Sweden)

    Gernot Längst

    2015-06-01

    Full Text Available Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development.

  2. The Latest Twists in Chromatin Remodeling.

    Science.gov (United States)

    Blossey, Ralf; Schiessel, Helmut

    2018-01-05

    In its most restrictive interpretation, the notion of chromatin remodeling refers to the action of chromatin-remodeling enzymes on nucleosomes with the aim of displacing and removing them from the chromatin fiber (the effective polymer formed by a DNA molecule and proteins). This local modification of the fiber structure can have consequences for the initiation and repression of the transcription process, and when the remodeling process spreads along the fiber, it also results in long-range effects essential for fiber condensation. There are three regulatory levels of relevance that can be distinguished for this process: the intrinsic sequence preference of the histone octamer, which rules the positioning of the nucleosome along the DNA, notably in relation to the genetic information coded in DNA; the recognition or selection of nucleosomal substrates by remodeling complexes; and, finally, the motor action on the nucleosome exerted by the chromatin remodeler. Recent work has been able to provide crucial insights at each of these three levels that add new twists to this exciting and unfinished story, which we highlight in this perspective. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Chromatin remodelling: the industrial revolution of DNA around histones.

    Science.gov (United States)

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  4. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  5. Chromatin Remodeling Proteins in Epilepsy: Lessons From CHD2-Associated Epilepsy

    Directory of Open Access Journals (Sweden)

    Kay-Marie J. Lamar

    2018-06-01

    Full Text Available The chromodomain helicase DNA-binding (CHD family of proteins are ATP-dependent chromatin remodelers that contribute to the reorganization of chromatin structure and deposition of histone variants necessary to regulate gene expression. CHD proteins play an important role in neurodevelopment, as pathogenic variants in CHD1, CHD2, CHD4, CHD7 and CHD8 have been associated with a range of neurological phenotypes, including autism spectrum disorder (ASD, intellectual disability (ID and epilepsy. Pathogenic variants in CHD2 are associated with developmental epileptic encephalopathy (DEE in humans, however little is known about how these variants contribute to this disorder. Of the nine CHD family members, CHD2 is the only one that leads to a brain-restricted phenotype when disrupted in humans. This suggests that despite being expressed ubiquitously, CHD2 has a unique role in human brain development and function. In this review, we will discuss the phenotypic spectrum of patients with pathogenic variants in CHD2, current animal models of CHD2 deficiency, and the role of CHD2 in proliferation, neurogenesis, neuronal differentiation, chromatin remodeling and DNA-repair. We also consider how CHD2 depletion can affect each of these biological mechanisms and how these defects may underpin neurodevelopmental disorders including epilepsy.

  6. ATP-Dependent Chromatin Remodeling Factors and Their Roles in Affecting Nucleosome Fiber Composition

    Directory of Open Access Journals (Sweden)

    Alexandra Lusser

    2011-10-01

    Full Text Available ATP-dependent chromatin remodeling factors of the SNF2 family are key components of the cellular machineries that shape and regulate chromatin structure and function. Members of this group of proteins have broad and heterogeneous functions ranging from controlling gene activity, facilitating DNA damage repair, promoting homologous recombination to maintaining genomic stability. Several chromatin remodeling factors are critical components of nucleosome assembly processes, and recent reports have identified specific functions of distinct chromatin remodeling factors in the assembly of variant histones into chromatin. In this review we will discuss the specific roles of ATP-dependent chromatin remodeling factors in determining nucleosome composition and, thus, chromatin fiber properties.

  7. Chromatin Remodeling and Plant Immunity.

    Science.gov (United States)

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance? © 2017 Elsevier Inc. All rights reserved.

  8. Analysis of DNA replication associated chromatin decondensation: in vivo assay for understanding chromatin remodeling mechanisms of selected proteins.

    Science.gov (United States)

    Borysov, Sergiy; Bryant, Victoria L; Alexandrow, Mark G

    2015-01-01

    Of critical importance to many of the events underlying transcriptional control of gene expression are modifications to core and linker histones that regulate the accessibility of trans-acting factors to the DNA substrate within the context of chromatin. Likewise, control over the initiation of DNA replication, as well as the ability of the replication machinery to proceed during elongation through the multiple levels of chromatin condensation that are likely to be encountered, is known to involve the creation of chromatin accessibility. In the latter case, chromatin access will likely need to be a transient event so as to prevent total genomic unraveling of the chromatin that would be deleterious to cells. While there are many molecular and biochemical approaches in use to study histone changes and their relationship to transcription and chromatin accessibility, few techniques exist that allow a molecular dissection of the events underlying DNA replication control as it pertains to chromatin changes and accessibility. Here, we outline a novel experimental strategy for addressing the ability of specific proteins to induce large-scale chromatin unfolding (decondensation) in vivo upon site-specific targeting to an engineered locus. Our laboratory has used this powerful system in novel ways to directly address the ability of DNA replication proteins to create chromatin accessibility, and have incorporated modifications to the basic approach that allow for a molecular genetic analysis of the mechanisms and associated factors involved in causing chromatin decondensation by a protein of interest. Alternative approaches involving co-expression of other proteins (competitors or stimulators), concurrent drug treatments, and analysis of co-localizing histone modifications are also addressed, all of which are illustrative of the utility of this experimental system for extending basic findings to physiologically relevant mechanisms. Although used by our group to analyze

  9. ATP-dependent chromatin remodeling in the DNA-damage response

    Directory of Open Access Journals (Sweden)

    Lans Hannes

    2012-01-01

    Full Text Available Abstract The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.

  10. Chromatin remodeling, development and disease

    International Nuclear Information System (INIS)

    Ko, Myunggon; Sohn, Dong H.; Chung, Heekyoung; Seong, Rho H.

    2008-01-01

    Development is a stepwise process in which multi-potent progenitor cells undergo lineage commitment, differentiation, proliferation and maturation to produce mature cells with restricted developmental potentials. This process is directed by spatiotemporally distinct gene expression programs that allow cells to stringently orchestrate intricate transcriptional activation or silencing events. In eukaryotes, chromatin structure contributes to developmental progression as a blueprint for coordinated gene expression by actively participating in the regulation of gene expression. Changes in higher order chromatin structure or covalent modification of its components are considered to be critical events in dictating lineage-specific gene expression during development. Mammalian cells utilize multi-subunit nuclear complexes to alter chromatin structure. Histone-modifying complex catalyzes covalent modifications of histone tails including acetylation, methylation, phosphorylation and ubiquitination. ATP-dependent chromatin remodeling complex, which disrupts histone-DNA contacts and induces nucleosome mobilization, requires energy from ATP hydrolysis for its catalytic activity. Here, we discuss the diverse functions of ATP-dependent chromatin remodeling complexes during mammalian development. In particular, the roles of these complexes during embryonic and hematopoietic development are reviewed in depth. In addition, pathological conditions such as tumor development that are induced by mutation of several key subunits of the chromatin remodeling complex are discussed, together with possible mechanisms that underlie tumor suppression by the complex

  11. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies.

    Science.gov (United States)

    Xue, Yutong; Gibbons, Richard; Yan, Zhijiang; Yang, Dafeng; McDowell, Tarra L; Sechi, Salvatore; Qin, Jun; Zhou, Sharleen; Higgs, Doug; Wang, Weidong

    2003-09-16

    ATRX syndrome is characterized by X-linked mental retardation associated with alpha-thalassemia. The gene mutated in this disease, ATRX, encodes a plant homeodomain-like finger and a SWI2/SNF2-like ATPase motif, both of which are often found in chromatin-remodeling enzymes, but ATRX has not been characterized biochemically. By immunoprecipitation from HeLa extract, we found that ATRX is in a complex with transcription cofactor Daxx. The following evidence supports that ATRX and Daxx are components of an ATP-dependent chromatin-remodeling complex: (i) Daxx and ATRX can be coimmunoisolated by antibodies specific for each protein; (ii) a proportion of Daxx cofractionates with ATRX as a complex of 1 MDa by gel-filtration analysis; (iii) in extract from cells of a patient with ATRX syndrome, the level of the Daxx-ATRX complex is correspondingly reduced; (iv) a proportion of ATRX and Daxx colocalize in promyelocytic leukemia nuclear bodies, with which Daxx had previously been located; and (v) the ATRX complex displays ATP-dependent activities that resemble those of other chromatin-remodeling complexes, including triple-helix DNA displacement and alteration of mononucleosome disruption patterns. But unlike the previously described SWI/SNF or NURD complexes, the ATRX complex does not randomize DNA phasing of the mononucleosomes, suggesting that it may remodel chromatin differently. Taken together, the results suggest that ATRX functions in conjunction with Daxx in a novel chromatin-remodeling complex. The defects in ATRX syndrome may result from inappropriate expression of genes controlled by this complex.

  12. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Jenna [Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet (Sweden); Ekwall, Karl, E-mail: karl.ekwall@ki.se [Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet (Sweden); School of Life Sciences, University College Sodertorn, NOVUM, Huddinge (Sweden)

    2010-05-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  13. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    International Nuclear Information System (INIS)

    Persson, Jenna; Ekwall, Karl

    2010-01-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  14. Wongabel Rhabdovirus Accessory Protein U3 Targets the SWI/SNF Chromatin Remodeling Complex

    Science.gov (United States)

    Joubert, D. Albert; Rodriguez-Andres, Julio; Monaghan, Paul; Cummins, Michelle; McKinstry, William J.; Paradkar, Prasad N.; Moseley, Gregory W.

    2014-01-01

    ABSTRACT Wongabel virus (WONV) is an arthropod-borne rhabdovirus that infects birds. It is one of the growing array of rhabdoviruses with complex genomes that encode multiple accessory proteins of unknown function. In addition to the five canonical rhabdovirus structural protein genes (N, P, M, G, and L), the 13.2-kb negative-sense single-stranded RNA (ssRNA) WONV genome contains five uncharacterized accessory genes, one overlapping the N gene (Nx or U4), three located between the P and M genes (U1 to U3), and a fifth one overlapping the G gene (Gx or U5). Here we show that WONV U3 is expressed during infection in insect and mammalian cells and is required for efficient viral replication. A yeast two-hybrid screen against a mosquito cell cDNA library identified that WONV U3 interacts with the 83-amino-acid (aa) C-terminal domain of SNF5, a component of the SWI/SNF chromatin remodeling complex. The interaction was confirmed by affinity chromatography, and nuclear colocalization was established by confocal microscopy. Gene expression studies showed that SNF5 transcripts are upregulated during infection of mosquito cells with WONV, as well as West Nile virus (Flaviviridae) and bovine ephemeral fever virus (Rhabdoviridae), and that SNF5 knockdown results in increased WONV replication. WONV U3 also inhibits SNF5-regulated expression of the cytokine gene CSF1. The data suggest that WONV U3 targets the SWI/SNF complex to block the host response to infection. IMPORTANCE The rhabdoviruses comprise a large family of RNA viruses infecting plants, vertebrates, and invertebrates. In addition to the major structural proteins (N, P, M, G, and L), many rhabdoviruses encode a diverse array of accessory proteins of largely unknown function. Understanding the role of these proteins may reveal much about host-pathogen interactions in infected cells. Here we examine accessory protein U3 of Wongabel virus, an arthropod-borne rhabdovirus that infects birds. We show that U3 enters the

  15. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    KAUST Repository

    Jégu, Teddy

    2015-10-12

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  16. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    KAUST Repository

    Jé gu, Teddy; Domenichini, Sé verine; Blein, Thomas; Ariel, Federico; Christ, Auré lie; Kim, SoonKap; Crespi, Martin; Boutet-Mercey, Sté phanie; Mouille, Gré gory; Bourge, Mickaë l; Hirt, Heribert; Bergounioux, Catherine; Raynaud, Cé cile; Benhamed, Moussa

    2015-01-01

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  17. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators.

    Directory of Open Access Journals (Sweden)

    So Yeon Kwon

    2016-04-01

    Full Text Available NURF is a conserved higher eukaryotic ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF is able to alter chromatin dynamics to control transcription and genome organization. Previous biochemical and genetic analysis of the specificity-subunit of Drosophila NURF (Nurf301/Enhancer of Bithorax (E(bx has defined NURF as a critical regulator of homeotic, heat-shock and steroid-responsive gene transcription. It has been speculated that NURF controls pathway specific transcription by co-operating with sequence-specific transcription factors to remodel chromatin at dedicated enhancers. However, conclusive in vivo demonstration of this is lacking and precise regulatory elements targeted by NURF are poorly defined. To address this, we have generated a comprehensive map of in vivo NURF activity, using MNase-sequencing to determine at base pair resolution NURF target nucleosomes, and ChIP-sequencing to define sites of NURF recruitment. Our data show that, besides anticipated roles at enhancers, NURF interacts physically and functionally with the TRF2/DREF basal transcription factor to organize nucleosomes downstream of active promoters. Moreover, we detect NURF remodeling and recruitment at distal insulator sites, where NURF functionally interacts with and co-localizes with DREF and insulator proteins including CP190 to establish nucleosome-depleted domains. This insulator function of NURF is most apparent at subclasses of insulators that mark the boundaries of chromatin domains, where multiple insulator proteins co-associate. By visualizing the complete repertoire of in vivo NURF chromatin targets, our data provide new insights into how chromatin remodeling can control genome organization and regulatory interactions.

  18. ATM-dependent pathways of chromatin remodelling and oxidative DNA damage responses.

    Science.gov (United States)

    Berger, N Daniel; Stanley, Fintan K T; Moore, Shaun; Goodarzi, Aaron A

    2017-10-05

    Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase with a master regulatory function in the DNA damage response. In this role, ATM commands a complex biochemical network that signals the presence of oxidative DNA damage, including the dangerous DNA double-strand break, and facilitates subsequent repair. Here, we review the current state of knowledge regarding ATM-dependent chromatin remodelling and epigenomic alterations that are required to maintain genomic integrity in the presence of DNA double-strand breaks and/or oxidative stress. We will focus particularly on the roles of ATM in adjusting nucleosome spacing at sites of unresolved DNA double-strand breaks within complex chromatin environments, and the impact of ATM on preserving the health of cells within the mammalian central nervous system.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Author(s).

  19. The ISWI chromatin remodeler organizes the hsrω ncRNA-containing omega speckle nuclear compartments.

    Directory of Open Access Journals (Sweden)

    Maria C Onorati

    2011-05-01

    Full Text Available The complexity in composition and function of the eukaryotic nucleus is achieved through its organization in specialized nuclear compartments. The Drosophila chromatin remodeling ATPase ISWI plays evolutionarily conserved roles in chromatin organization. Interestingly, ISWI genetically interacts with the hsrω gene, encoding multiple non-coding RNAs (ncRNA essential, among other functions, for the assembly and organization of the omega speckles. The nucleoplasmic omega speckles play important functions in RNA metabolism, in normal and stressed cells, by regulating availability of hnRNPs and some other RNA processing proteins. Chromatin remodelers, as well as nuclear speckles and their associated ncRNAs, are emerging as important components of gene regulatory networks, although their functional connections have remained poorly defined. Here we provide multiple lines of evidence showing that the hsrω ncRNA interacts in vivo and in vitro with ISWI, regulating its ATPase activity. Remarkably, we found that the organization of nucleoplasmic omega speckles depends on ISWI function. Our findings highlight a novel role for chromatin remodelers in organization of nucleoplasmic compartments, providing the first example of interaction between an ATP-dependent chromatin remodeler and a large ncRNA.

  20. Transcriptional networks and chromatin remodeling controlling adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2012-01-01

    Adipocyte differentiation is tightly controlled by a transcriptional cascade, which directs the extensive reprogramming of gene expression required to convert fibroblast-like precursor cells into mature lipid-laden adipocytes. Recent global analyses of transcription factor binding and chromatin...... remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications....... Such transcription factor hotspots are likely to represent key signaling nodes which integrate multiple adipogenic signals at specific chromatin sites, thereby facilitating coordinated action on gene expression....

  1. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene

    DEFF Research Database (Denmark)

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R

    2017-01-01

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain......-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic...... cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD+-metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation....

  2. Vitamin D receptor (VDR) promoter targeting through a novel chromatin remodeling complex.

    Science.gov (United States)

    Kato, Shigeaki; Fujiki, Ryoji; Kitagawa, Hirochika

    2004-05-01

    We have purified nuclear complexes for Vitamin D receptor (VDR), and identified one of them as a novel ATP-dependent chromatine remodeling containing Williams syndrome transcription factor (WSTF), that is supposed to be responsible for Williams syndrome. This complex (WSTF including nucleosome assembly complex (WINAC)) exhibited an ATP-dependent chromatin remodeling activity in vitro. Transient expression assays revealed that WINAC potentiates ligand-induced function of VDR in gene activation and repression. Thus, this study describes a molecular basis of the VDR function on chromosomal DNA through chromatine remodeling.

  3. Acetylation-Dependent Chromatin Reorganization by BRDT, a Testis-Specific Bromodomain-Containing Protein

    Science.gov (United States)

    Pivot-Pajot, Christophe; Caron, Cécile; Govin, Jérôme; Vion, Alexandre; Rousseaux, Sophie; Khochbin, Saadi

    2003-01-01

    The association between histone acetylation and replacement observed during spermatogenesis prompted us to consider the testis as a source for potential factors capable of remodelling acetylated chromatin. A systematic search of data banks for open reading frames encoding testis-specific bromodomain-containing proteins focused our attention on BRDT, a testis-specific protein of unknown function containing two bromodomains. BRDT specifically binds hyperacetylated histone H4 tail depending on the integrity of both bromodomains. Moreover, in somatic cells, the ectopic expression of BRDT triggered a dramatic reorganization of the chromatin only after induction of histone hyperacetylation by trichostatin A (TSA). We then defined critical domains of BRDT involved in its activity. Both bromodomains of BRDT, as well as flanking regions, were found indispensable for its histone acetylation-dependent remodelling activity. Interestingly, we also observed that recombinant BRDT was capable of inducing reorganization of the chromatin of isolated nuclei in vitro only when the nuclei were from TSA-treated cells. This assay also allowed us to show that the action of BRDT was ATP independent, suggesting a structural role for the protein in the remodelling of acetylated chromatin. This is the first demonstration of a large-scale reorganization of acetylated chromatin induced by a specific factor. PMID:12861021

  4. Mediator binds to boundaries of chromosomal interaction domains and to proteins involved in DNA looping, RNA metabolism, chromatin remodeling, and actin assembly.

    Science.gov (United States)

    Chereji, Razvan V; Bharatula, Vasudha; Elfving, Nils; Blomberg, Jeanette; Larsson, Miriam; Morozov, Alexandre V; Broach, James R; Björklund, Stefan

    2017-09-06

    Mediator is a multi-unit molecular complex that plays a key role in transferring signals from transcriptional regulators to RNA polymerase II in eukaryotes. We have combined biochemical purification of the Saccharomyces cerevisiae Mediator from chromatin with chromatin immunoprecipitation in order to reveal Mediator occupancy on DNA genome-wide, and to identify proteins interacting specifically with Mediator on the chromatin template. Tandem mass spectrometry of proteins in immunoprecipitates of mediator complexes revealed specific interactions between Mediator and the RSC, Arp2/Arp3, CPF, CF 1A and Lsm complexes in chromatin. These factors are primarily involved in chromatin remodeling, actin assembly, mRNA 3'-end processing, gene looping and mRNA decay, but they have also been shown to enter the nucleus and participate in Pol II transcription. Moreover, we have found that Mediator, in addition to binding Pol II promoters, occupies chromosomal interacting domain (CID) boundaries and that Mediator in chromatin associates with proteins that have been shown to interact with CID boundaries, such as Sth1, Ssu72 and histone H4. This suggests that Mediator plays a significant role in higher-order genome organization. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. DNA repair goes hip-hop: SMARCA and CHD chromatin remodellers join the break dance.

    Science.gov (United States)

    Rother, Magdalena B; van Attikum, Haico

    2017-10-05

    Proper signalling and repair of DNA double-strand breaks (DSB) is critical to prevent genome instability and diseases such as cancer. The packaging of DNA into chromatin, however, has evolved as a mere obstacle to these DSB responses. Posttranslational modifications and ATP-dependent chromatin remodelling help to overcome this barrier by modulating nucleosome structures and allow signalling and repair machineries access to DSBs in chromatin. Here we recap our current knowledge on how ATP-dependent SMARCA- and CHD-type chromatin remodellers alter chromatin structure during the signalling and repair of DSBs and discuss how their dysfunction impacts genome stability and human disease.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Authors.

  6. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes.

    NARCIS (Netherlands)

    Boyer, L.A.; Logie, C.; Bonte, E; Becker, P.B.; Wade, P.A.; Wolff, A.P.; Wu, C.; Imbalzano, A.N.; Peterson, C.L.

    2000-01-01

    ATP-dependent chromatin remodeling enzymes antagonize the inhibitory effects of chromatin. We compare six different remodeling complexes: ySWI/SNF, yRSC, hSWI/SNF, xMi-2, dCHRAC, and dNURF. We find that each complex uses similar amounts of ATP to remodel nucleosomal arrays at nearly identical rates.

  7. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; John, Sam

    2011-01-01

    hypersensitive site analysis to investigate the genome-wide changes in chromatin structure that accompany the binding of adipogenic transcription factors. These analyses revealed a dramatic and dynamic modulation of the chromatin landscape during the first hours of adipocyte differentiation that coincides...... and chromatin remodelling and is required for their establishment. Furthermore, a subset of early remodelled C/EBP-binding sites persists throughout differentiation and is later occupied by PPARγ, indicating that early C/EBP family members, in addition to their well-established role in activation of PPARγ...

  8. Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis.

    Science.gov (United States)

    Lee, Hong Gil; Lee, Kyounghee; Jang, Kiyoung; Seo, Pil Joon

    2015-01-01

    The circadian clock is a biological time keeper mechanism that regulates biological rhythms to a period of approximately 24 h. The circadian clock enables organisms to anticipate environmental cycles and coordinates internal cellular physiology with external environmental cues. In plants, correct matching of the clock with the environment confers fitness advantages to plant survival and reproduction. Therefore, circadian clock components are regulated at multiple layers to fine-tune the circadian oscillation. Epigenetic regulation provides an additional layer of circadian control. However, little is known about which chromatin remodeling factors are responsible for circadian control. In this work, we analyzed circadian expression of 109 chromatin remodeling factor genes and identified 17 genes that display circadian oscillation. In addition, we also found that a candidate interacts with a core clock component, supporting that clock activity is regulated in part by chromatin modification. As an initial attempt to elucidate the relationship between chromatin modification and circadian oscillation, we identified novel regulatory candidates that provide a platform for future investigations of chromatin regulation of the circadian clock.

  9. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene.

    Science.gov (United States)

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R; Knobloch, Gunnar; Kistemaker, Hans A V; Hassler, Markus; Harrer, Nadine; Blessing, Charlotte; Eustermann, Sebastian; Kotthoff, Christiane; Huet, Sébastien; Mueller-Planitz, Felix; Filippov, Dmitri V; Timinszky, Gyula; Rand, Kasper D; Ladurner, Andreas G

    2017-12-07

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD + -metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.

    Science.gov (United States)

    Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M

    2017-10-24

    Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.

  11. Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP

    DEFF Research Database (Denmark)

    Muratcioglu, Serena; Presman, Diego M; Pooley, John R

    2015-01-01

    The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow...... interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate...

  12. Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling.

    Science.gov (United States)

    Cajigas, Ivelisse; Leib, David E; Cochrane, Jesse; Luo, Hao; Swyter, Kelsey R; Chen, Sean; Clark, Brian S; Thompson, James; Yates, John R; Kingston, Robert E; Kohtz, Jhumku D

    2015-08-01

    Transcription-regulating long non-coding RNAs (lncRNAs) have the potential to control the site-specific expression of thousands of target genes. Previously, we showed that Evf2, the first described ultraconserved lncRNA, increases the association of transcriptional activators (DLX homeodomain proteins) with key DNA enhancers but represses gene expression. In this report, mass spectrometry shows that the Evf2-DLX1 ribonucleoprotein (RNP) contains the SWI/SNF-related chromatin remodelers Brahma-related gene 1 (BRG1, SMARCA4) and Brahma-associated factor (BAF170, SMARCC2) in the developing mouse forebrain. Evf2 RNA colocalizes with BRG1 in nuclear clouds and increases BRG1 association with key DNA regulatory enhancers in the developing forebrain. While BRG1 directly interacts with DLX1 and Evf2 through distinct binding sites, Evf2 directly inhibits BRG1 ATPase and chromatin remodeling activities. In vitro studies show that both RNA-BRG1 binding and RNA inhibition of BRG1 ATPase/remodeling activity are promiscuous, suggesting that context is a crucial factor in RNA-dependent chromatin remodeling inhibition. Together, these experiments support a model in which RNAs convert an active enhancer to a repressed enhancer by directly inhibiting chromatin remodeling activity, and address the apparent paradox of RNA-mediated stabilization of transcriptional activators at enhancers with a repressive outcome. The importance of BRG1/RNA and BRG1/homeodomain interactions in neurodevelopmental disorders is underscored by the finding that mutations in Coffin-Siris syndrome, a human intellectual disability disorder, localize to the BRG1 RNA-binding and DLX1-binding domains. © 2015. Published by The Company of Biologists Ltd.

  13. CHD chromatin remodelers and the transcription cycle

    Science.gov (United States)

    Murawska, Magdalena

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by “opening” or “closing” chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but also are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts. PMID:22223048

  14. Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes.

    NARCIS (Netherlands)

    Horn, P.J.; Carruthers, L.M.; Logie, C.; Hill, D.A.; Solomon, M.J.; Wade, P.A.; Imbalzano, A.N.; Hansen, J.; Peterson, C.L.

    2002-01-01

    Members of the ATP-dependent family of chromatin remodeling enzymes play key roles in the regulation of transcription, development, DNA repair and cell cycle control. We find that the remodeling activities of the ySWI/SNF, hSWI/SNF, xMi-2 and xACF complexes are nearly abolished by incorporation of

  15. Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Joseph Landry

    2008-10-01

    Full Text Available We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor, the largest subunit of NURF (Nucleosome Remodeling Factor in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf(-/- embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf(-/- embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo.

  16. The Chd1 Chromatin Remodeler Shifts Nucleosomal DNA Bidirectionally as a Monomer

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yupeng; Levendosky, Robert F.; Chakravarthy, Srinivas; Patel, Ashok; Bowman, Gregory D.; Myong, Sua

    2017-10-01

    Chromatin remodelers catalyze dynamic packaging of the genome by carrying out nucleosome assembly/disassembly, histone exchange, and nucleosome repositioning. Remodeling results in evenly spaced nucleosomes, which requires probing both sides of the nucleosome, yet the way remodelers organize sliding activity to achieve this task is not understood. Here, we show that the monomeric Chd1 remodeler shifts DNA back and forth by dynamically alternating between different segments of the nucleosome. During sliding, Chd1 generates unstable remodeling intermediates that spontaneously relax to a pre-remodeled position. We demonstrate that nucleosome sliding is tightly controlled by two regulatory domains: the DNA-binding domain, which interferes with sliding when its range is limited by a truncated linking segment, and the chromodomains, which play a key role in substrate discrimination. We propose that active interplay of the ATPase motor with the regulatory domains may promote dynamic nucleosome structures uniquely suited for histone exchange and chromatin reorganization during transcription.

  17. Quantifying transient binding of ISWI chromatin remodelers in living cells by pixel-wise photobleaching profile evolution analysis.

    Science.gov (United States)

    Erdel, Fabian; Rippe, Karsten

    2012-11-20

    Interactions between nuclear proteins and chromatin frequently occur on the time scale of seconds and below. These transient binding events are important for the fast identification of target sites as concluded from our previous analysis of the human chromatin remodelers Snf2H and Snf2L from the imitation switch (ISWI) family. Both ATP-driven molecular motor proteins are able to translocate nucleosomes along the DNA and appear to exert this activity only on a small number of nucleosomes to which they bind more tightly. For mechanistic studies, one needs to distinguish such translocation reactions or other long-lived interactions associated with conformational changes and/or ATP hydrolysis from nonproductive chromatin sampling during target search. These processes can be separated by measuring the duration of nucleosome binding with subsecond time resolution. To reach this goal, we have developed a fluorescence bleaching technique termed pixel-wise photobleaching profile evolution analysis (3PEA). It exploits the inherent time structure of confocal microscopy images and yields millisecond resolution. 3PEA represents a generally applicable approach to quantitate transient chromatin interactions in the 2- to 500-ms time regime within only ∼1 s needed for a measurement. The green autofluorescent protein (GFP)-tagged Snf2H and Snf2L and the inactive Snf2L+13 splice variant were studied by 3PEA in comparison to the isolated GFP or red autofluorescent protein and a GFP pentamer. Our results reveal that the residence time for transient chromatin binding of Snf2H and Snf2L is <2 ms, and strongly support the view that ISWI-type remodelers are only rarely active in unperturbed cells during G1 phase.

  18. Epigenetic regulation and chromatin remodeling in learning and memory.

    Science.gov (United States)

    Kim, Somi; Kaang, Bong-Kiun

    2017-01-13

    Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms.

  19. Analysis of MVP and VPARP promoters indicates a role for chromatin remodeling in the regulation of MVP.

    Science.gov (United States)

    Emre, Nil; Raval-Fernandes, Sujna; Kickhoefer, Valerie A; Rome, Leonard H

    2004-04-16

    Multi-drug-resistant cancer cells frequently express elevated levels of ribonucleoprotein complexes termed vaults. The increased expression of vault proteins and their mRNAs has led to the suggestion that vaults may play a direct role in preventing drug toxicity. To further understand vault component up-regulation, the three proteins that comprise the vault, the major vault protein (MVP), vault poly(ADP-ribose) polymerase (VPARP), and telomerase-associated protein-1 (TEP1), were examined with respect to gene amplification and drug-induced chromatin remodeling. Gene amplification was not responsible for increased vault component levels in multi-drug-resistant cancer cell lines. The TATA-less murine MVP and human VPARP promoters were identified and functionally characterized. There was no significant activation of either the MVP or VPARP promoters in drug-resistant cell lines in comparison to their parental, drug-sensitive counterparts. Treatment of various cell lines with sodium butyrate, an inhibitor of histone deacetylase (HDAC), led to an increase in vault component protein levels. Furthermore, treatment with trichostatin A (TSA), a more specific inhibitor of HDAC, caused an increase in MVP protein, mRNA, and promoter activity. These results suggest that up-regulation of MVP in multi-drug resistance (MDR) may involve chromatin remodeling.

  20. The Chromatin Remodeler BPTF Activates a Stemness Gene-Expression Program Essential for the Maintenance of Adult Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Bowen Xu

    2018-03-01

    Full Text Available Summary: Self-renewal and differentiation of adult stem cells are tightly regulated partly through configuration of chromatin structure by chromatin remodelers. Using knockout mice, we here demonstrate that bromodomain PHD finger transcription factor (BPTF, a component of the nucleosome remodeling factor (NURF chromatin-remodeling complex, is essential for maintaining the population size of hematopoietic stem/progenitor cells (HSPCs, including long-term hematopoietic stem cells (HSCs. Bptf-deficient HSCs are defective in reconstituted hematopoiesis, and hematopoietic-specific knockout of Bptf caused profound defects including bone marrow failure and anemia. Genome-wide transcriptome profiling revealed that BPTF loss caused downregulation of HSC-specific gene-expression programs, which contain several master transcription factors (Meis1, Pbx1, Mn1, and Lmo2 required for HSC maintenance and self-renewal. Furthermore, we show that BPTF potentiates the chromatin accessibility of key HSC “stemness” genes. These results demonstrate an essential requirement of the chromatin remodeler BPTF and NURF for activation of “stemness” gene-expression programs and proper function of adult HSCs. : Wang and colleagues show that a chromatin remodeler, BPTF, sustains appropriate functions of hematopoietic stem/progenitor cells (HSPCs. BPTF loss causes bone marrow failure and anemia. The authors further define a BPTF-dependent gene-expression program in HSPCs, which contains key HSC stemness factors. These results demonstrate an essential requirement of the BPTF-associated chromatin remodelers for HSC functionality and adult hematopoiesis. Keywords: Bptf, hematopoietic stem cells, chromatin remodeler, Meis1, Pbx1, Mn1, DNA accessibility, NURF, AP1 complex

  1. A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development

    Directory of Open Access Journals (Sweden)

    Justyna Nitarska

    2016-11-01

    Full Text Available Histone modifications and chromatin remodeling represent universal mechanisms by which cells adapt their transcriptional response to rapidly changing environmental conditions. Extensive chromatin remodeling takes place during neuronal development, allowing the transition of pluripotent cells into differentiated neurons. Here, we report that the NuRD complex, which couples ATP-dependent chromatin remodeling with histone deacetylase activity, regulates mouse brain development. Subunit exchange of CHDs, the core ATPase subunits of the NuRD complex, is required for distinct aspects of cortical development. Whereas CHD4 promotes the early proliferation of progenitors, CHD5 facilitates neuronal migration and CHD3 ensures proper layer specification. Inhibition of each CHD leads to defects of neuronal differentiation and migration, which cannot be rescued by expressing heterologous CHDs. Finally, we demonstrate that NuRD complexes containing specific CHDs are recruited to regulatory elements and modulate the expression of genes essential for brain development.

  2. Identification of potential nuclear reprogramming and differentiation factors by a novel selection method for cloning chromatin-binding proteins

    International Nuclear Information System (INIS)

    Wang Liu; Zheng Aihua; Yi Ling; Xu Chongren; Ding Mingxiao; Deng Hongkui

    2004-01-01

    Nuclear reprogramming is critical for animal cloning and stem cell creation through nuclear transfer, which requires extensive remodeling of chromosomal architecture involving dramatic changes in chromatin-binding proteins. To understand the mechanism of nuclear reprogramming, it is critical to identify chromatin-binding factors specify the reprogramming process. In this report, we have developed a high-throughput selection method, based on T7 phage display and chromatin immunoprecipitation, to isolate chromatin-binding factors expressed in mouse embryonic stem cells using primary mouse embryonic fibroblast chromatin. Seven chromatin-binding proteins have been isolated by this method. We have also isolated several chromatin-binding proteins involved in hepatocyte differentiation. Our method provides a powerful tool to rapidly and selectively identify chromatin-binding proteins. The method can be used to study epigenetic modification of chromatin during nuclear reprogramming, cell differentiation, and transdifferentiation

  3. Dysregulation of chromatin remodelling complexes in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Tibshirani, Michael; Zhao, Beibei; Gentil, Benoit J; Minotti, Sandra; Marques, Christine; Keith, Julia; Rogaeva, Ekaterina; Zinman, Lorne; Rouaux, Caroline; Robertson, Janice; Durham, Heather D

    2017-11-01

    Amyotrophic lateral sclerosis is a fatal neurodegenerative disease with paralysis resulting from dysfunction and loss of motor neurons. A common neuropathological finding is attrition of motor neuron dendrites, which make central connections vital to motor control. The chromatin remodelling complex, neuronal Brahma-related gene 1 (Brg1)-associated factor complex (nBAF), is critical for neuronal differentiation, dendritic extension and synaptic function. We have identified loss of the crucial nBAF subunits Brg1, Brg1-associated factor 53b and calcium responsive transactivator in cultured motor neurons expressing FUS or TAR-DNA Binding Protein 43 (TDP-43) mutants linked to familial ALS. When plasmids encoding wild-type or mutant human FUS or TDP-43 were expressed in motor neurons of dissociated spinal cord cultures prepared from E13 mice, mutant proteins in particular accumulated in the cytoplasm. Immunolabelling of nBAF subunits was reduced in proportion to loss of nuclear FUS or TDP-43 and depletion of Brg1 was associated with nuclear retention of Brg1 mRNA. Dendritic attrition (loss of intermediate and terminal dendritic branches) occurred in motor neurons expressing mutant, but not wild-type, FUS or TDP-43. This attrition was delayed by ectopic over-expression of Brg1 and was reproduced by inhibiting Brg1 activity either through genetic manipulation or treatment with the chemical inhibitor, (E)-1-(2-Hydroxyphenyl)-3-((1R, 4R)-5-(pyridin-2-yl)-2, 5-diazabicyclo[2.2.1]heptan-2-yl)prop-2-en-1-one, demonstrating the importance of Brg1 to maintenance of dendritic architecture. Loss of nBAF subunits was also documented in spinal motor neurons in autopsy tissue from familial amyotrophic sclerosis (chromosome 9 open reading frame 72 with G4C2 nucleotide expansion) and from sporadic cases with no identified mutation, pointing to dysfunction of nBAF chromatin remodelling in multiple forms of ALS. © The Author 2017. Published by Oxford University Press. All rights reserved

  4. Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities*

    Science.gov (United States)

    Yao, Wei; Beckwith, Sean L.; Zheng, Tina; Young, Thomas; Dinh, Van T.; Ranjan, Anand; Morrison, Ashby J.

    2015-01-01

    ATP-dependent chromatin remodeling, which repositions and restructures nucleosomes, is essential to all DNA-templated processes. The INO80 chromatin remodeling complex is an evolutionarily conserved complex involved in diverse cellular processes, including transcription, DNA repair, and replication. The functional diversity of the INO80 complex can, in part, be attributed to specialized activities of distinct subunits that compose the complex. Furthermore, structural analyses have identified biochemically discrete subunit modules that assemble along the Ino80 ATPase scaffold. Of particular interest is the Saccharomyces cerevisiae Arp5-Ies6 module located proximal to the Ino80 ATPase and the Rvb1-Rvb2 helicase module needed for INO80-mediated in vitro activity. In this study we demonstrate that the previously uncharacterized Ies2 subunit is required for Arp5-Ies6 association with the catalytic components of the INO80 complex. In addition, Arp5-Ies6 module assembly with the INO80 complex is dependent on distinct conserved domains within Arp5, Ies6, and Ino80, including the spacer region within the Ino80 ATPase domain. Arp5-Ies6 interacts with chromatin via assembly with the INO80 complex, as IES2 and INO80 deletion results in loss of Arp5-Ies6 chromatin association. Interestingly, ectopic addition of the wild-type Arp5-Ies6 module stimulates INO80-mediated ATP hydrolysis and nucleosome sliding in vitro. However, the addition of mutant Arp5 lacking unique insertion domains facilitates ATP hydrolysis in the absence of nucleosome sliding. Collectively, these results define the requirements of Arp5-Ies6 assembly, which are needed to couple ATP hydrolysis to productive nucleosome movement. PMID:26306040

  5. The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control

    Directory of Open Access Journals (Sweden)

    Ruo-Ran Wang

    2017-07-01

    Full Text Available ABSTRACT Metabolic syndrome has become a global epidemic that adversely affects human health. Both genetic and environmental factors contribute to the pathogenesis of metabolic disorders; however, the mechanisms that integrate these cues to regulate metabolic physiology and the development of metabolic disorders remain incompletely defined. Emerging evidence suggests that SWI/SNF chromatin-remodeling complexes are critical for directing metabolic reprogramming and adaptation in response to nutritional and other physiological signals. The ATP-dependent SWI/SNF chromatin-remodeling complexes comprise up to 11 subunits, among which the BAF60 subunit serves as a key link between the core complexes and specific transcriptional factors. The BAF60 subunit has three members, BAF60a, b, and c. The distinct tissue distribution patterns and regulatory mechanisms of BAF60 proteins confer each isoform with specialized functions in different metabolic cell types. In this review, we summarize the emerging roles and mechanisms of BAF60 proteins in the regulation of nutrient sensing and energy metabolism under physiological and disease conditions.

  6. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean; Rayapuram, Naganand; Pflieger, Delphine; Hirt, Heribert

    2014-01-01

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  7. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  8. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players.

    Science.gov (United States)

    Menoni, Hervé; Di Mascio, Paolo; Cadet, Jean; Dimitrov, Stefan; Angelov, Dimitar

    2017-06-01

    Genomic DNA is prone to a large number of insults by a myriad of endogenous and exogenous agents. The base excision repair (BER) is the major mechanism used by cells for the removal of various DNA lesions spontaneously or environmentally induced and the maintenance of genome integrity. The presence of persistent DNA damage is not compatible with life, since abrogation of BER leads to early embryonic lethality in mice. There are several lines of evidences showing existence of a link between deficient BER, cancer proneness and ageing, thus illustrating the importance of this DNA repair pathway in human health. Although the enzymology of BER mechanisms has been largely elucidated using chemically defined DNA damage substrates and purified proteins, the complex interplay of BER with another vital process like transcription or when DNA is in its natural state (i.e. wrapped in nucleosome and assembled in chromatin fiber is largely unexplored. Cells use chromatin remodeling factors to overcome the general repression associated with the nucleosomal organization. It is broadly accepted that energy-dependent nucleosome remodeling factors disrupt histones-DNA interactions at the expense of ATP hydrolysis to favor transcription as well as DNA repair. Importantly, unlike transcription, BER is not part of a regulated developmental process but represents a maintenance system that should be efficient anytime and anywhere in the genome. In this review we will discuss how BER can deal with chromatin organization to maintain genetic information. Emphasis will be placed on the following challenging question: how BER is initiated within chromatin? Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Chromatin structure and dynamics in hot environments: architectural proteins and DNA topoisomerases of thermophilic archaea.

    Science.gov (United States)

    Visone, Valeria; Vettone, Antonella; Serpe, Mario; Valenti, Anna; Perugino, Giuseppe; Rossi, Mosè; Ciaramella, Maria

    2014-09-25

    In all organisms of the three living domains (Bacteria, Archaea, Eucarya) chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair). Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C), chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.

  10. Chromatin Structure and Dynamics in Hot Environments: Architectural Proteins and DNA Topoisomerases of Thermophilic Archaea

    Directory of Open Access Journals (Sweden)

    Valeria Visone

    2014-09-01

    Full Text Available In all organisms of the three living domains (Bacteria, Archaea, Eucarya chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair. Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C, chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.

  11. The Chromatin Remodeler BPTF Activates a Stemness Gene-Expression Program Essential for the Maintenance of Adult Hematopoietic Stem Cells.

    Science.gov (United States)

    Xu, Bowen; Cai, Ling; Butler, Jason M; Chen, Dongliang; Lu, Xiongdong; Allison, David F; Lu, Rui; Rafii, Shahin; Parker, Joel S; Zheng, Deyou; Wang, Gang Greg

    2018-03-13

    Self-renewal and differentiation of adult stem cells are tightly regulated partly through configuration of chromatin structure by chromatin remodelers. Using knockout mice, we here demonstrate that bromodomain PHD finger transcription factor (BPTF), a component of the nucleosome remodeling factor (NURF) chromatin-remodeling complex, is essential for maintaining the population size of hematopoietic stem/progenitor cells (HSPCs), including long-term hematopoietic stem cells (HSCs). Bptf-deficient HSCs are defective in reconstituted hematopoiesis, and hematopoietic-specific knockout of Bptf caused profound defects including bone marrow failure and anemia. Genome-wide transcriptome profiling revealed that BPTF loss caused downregulation of HSC-specific gene-expression programs, which contain several master transcription factors (Meis1, Pbx1, Mn1, and Lmo2) required for HSC maintenance and self-renewal. Furthermore, we show that BPTF potentiates the chromatin accessibility of key HSC "stemness" genes. These results demonstrate an essential requirement of the chromatin remodeler BPTF and NURF for activation of "stemness" gene-expression programs and proper function of adult HSCs. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. De Novo Mutations in CHD4, an ATP-Dependent Chromatin Remodeler Gene, Cause an Intellectual Disability Syndrome with Distinctive Dysmorphisms

    NARCIS (Netherlands)

    Weiss, Karin; Terhal, Paulien A; Cohen, Lior; Bruccoleri, Michael; Irving, Melita; Martinez, Ariel F; Rosenfeld, Jill A; Machol, Keren; Yang, Yaping; Liu, Pengfei; Walkiewicz, Magdalena; Beuten, Joke; Gomez-Ospina, Natalia; Haude, Katrina; Fong, Chin-To; Enns, Gregory M; Bernstein, Jonathan A; Fan, Judith; Gotway, Garrett; Ghorbani, Mohammad; van Gassen, Koen; Monroe, Glen R; van Haaften, Gijs; Basel-Vanagaite, Lina; Yang, Xiang-Jiao; Campeau, Philippe M; Muenke, Maximilian

    2016-01-01

    Chromodomain helicase DNA-binding protein 4 (CHD4) is an ATP-dependent chromatin remodeler involved in epigenetic regulation of gene transcription, DNA repair, and cell cycle progression. Also known as Mi2β, CHD4 is an integral subunit of a well-characterized histone deacetylase complex. Here we

  13. MRN1 implicates chromatin remodeling complexes and architectural factors in mRNA maturation

    DEFF Research Database (Denmark)

    Düring, Louis; Thorsen, Michael; Petersen, Darima

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6¿¿ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin....... Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309¿, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing....

  14. Chromatin-regulating proteins as targets for cancer therapy

    International Nuclear Information System (INIS)

    Oike, Takahiro; Ogiwara, Hideaki; Kohno, Takashi; Amornwichet, Napapat; Nakano, Takashi

    2014-01-01

    Chromatin-regulating proteins represent a large class of novel targets for cancer therapy. In the context of radiotherapy, acetylation and deacetylation of histones by histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in the repair of DNA double-strand breaks generated by ionizing irradiation, and are therefore attractive targets for radiosensitization. Small-molecule inhibitors of HATs (garcinol, anacardic acid and curcumin) and HDACs (vorinostat, sodium butyrate and valproic acid) have been shown to sensitize cancer cells to ionizing irradiation in preclinical models, and some of these molecules are being tested in clinical trials, either alone or in combination with radiotherapy. Meanwhile, recent large-scale genome analyses have identified frequent mutations in genes encoding chromatin-regulating proteins, especially in those encoding subunits of the SWI/SNF chromatin-remodeling complex, in various human cancers. These observations have driven researchers toward development of targeted therapies against cancers carrying these mutations. DOT1L inhibition in MLL-rearranged leukemia, EZH2 inhibition in EZH2-mutant or MLL-rearranged hematologic malignancies and SNF5-deficient tumors, BRD4 inhibition in various hematologic malignancies, and BRM inhibition in BRG1-deficient tumors have demonstrated promising anti-tumor effects in preclinical models, and these strategies are currently awaiting clinical application. Overall, the data collected so far suggest that targeting chromatin-regulating proteins is a promising strategy for tomorrow's cancer therapy, including radiotherapy and molecularly targeted chemotherapy. (author)

  15. HTLV-1 Tax mediated downregulation of miRNAs associated with chromatin remodeling factors in T cells with stably integrated viral promoter.

    Directory of Open Access Journals (Sweden)

    Saifur Rahman

    Full Text Available RNA interference (RNAi is a natural cellular mechanism to silence gene expression and is predominantly mediated by microRNAs (miRNAs that target messenger RNA. Viruses can manipulate the cellular processes necessary for their replication by targeting the host RNAi machinery. This study explores the effect of human T-cell leukemia virus type 1 (HTLV-1 transactivating protein Tax on the RNAi pathway in the context of a chromosomally integrated viral long terminal repeat (LTR using a CD4(+ T-cell line, Jurkat. Transcription factor profiling of the HTLV-1 LTR stably integrated T-cell clone transfected with Tax demonstrates increased activation of substrates and factors associated with chromatin remodeling complexes. Using a miRNA microarray and bioinformatics experimental approach, Tax was also shown to downregulate the expression of miRNAs associated with the translational regulation of factors required for chromatin remodeling. These observations were validated with selected miRNAs and an HTLV-1 infected T cells line, MT-2. miR-149 and miR-873 were found to be capable of directly targeting p300 and p/CAF, chromatin remodeling factors known to play critical role in HTLV-1 pathogenesis. Overall, these results are first in line establishing HTLV-1/Tax-miRNA-chromatin concept and open new avenues toward understanding retroviral latency and/or replication in a given cell type.

  16. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

    Directory of Open Access Journals (Sweden)

    Edyta Marcon

    2014-07-01

    Full Text Available Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  17. DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity.

    Science.gov (United States)

    Riedel, Christian G; Dowen, Robert H; Lourenco, Guinevere F; Kirienko, Natalia V; Heimbucher, Thomas; West, Jason A; Bowman, Sarah K; Kingston, Robert E; Dillin, Andrew; Asara, John M; Ruvkun, Gary

    2013-05-01

    Organisms are constantly challenged by stresses and privations and require adaptive responses for their survival. The forkhead box O (FOXO) transcription factor DAF-16 (hereafter referred to as DAF-16/FOXO) is a central nexus in these responses, but despite its importance little is known about how it regulates its target genes. Proteomic identification of DAF-16/FOXO-binding partners in Caenorhabditis elegans and their subsequent functional evaluation by RNA interference revealed several candidate DAF-16/FOXO cofactors, most notably the chromatin remodeller SWI/SNF. DAF-16/FOXO and SWI/SNF form a complex and globally co-localize at DAF-16/FOXO target promoters. We show that specifically for gene activation, DAF-16/FOXO depends on SWI/SNF, facilitating SWI/SNF recruitment to target promoters, to activate transcription by presumed remodelling of local chromatin. For the animal, this translates into an essential role for SWI/SNF in DAF-16/FOXO-mediated processes, in particular dauer formation, stress resistance and the promotion of longevity. Thus, we give insight into the mechanisms of DAF-16/FOXO-mediated transcriptional regulation and establish a critical link between ATP-dependent chromatin remodelling and lifespan regulation.

  18. NoRC - a novel member of mammalian ISWI-containing chromatin remodeling machines

    Czech Academy of Sciences Publication Activity Database

    Strohner, R.; Nemeth, A.; Jansa, Petr; Hofmann-Rohrer, U.; Santoro, R.; Langst, G.; Grummt, I.

    2001-01-01

    Roč. 20, č. 17 (2001), s. 4892-4900 ISSN 0261-4189 Institutional research plan: CEZ:AV0Z5052915 Keywords : Acf1 * chromatin remodeling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 12.450, year: 2001

  19. DAF-16/FOXO employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity

    Science.gov (United States)

    Riedel, Christian G.; Dowen, Robert H.; Lourenco, Guinevere F.; Kirienko, Natalia V.; Heimbucher, Thomas; West, Jason A.; Bowman, Sarah K.; Kingston, Robert E.; Dillin, Andrew; Asara, John M.; Ruvkun, Gary

    2013-01-01

    Organisms are constantly challenged by stresses and privations and require adaptive responses for their survival. The transcription factor DAF-16/FOXO is central nexus in these responses, but despite its importance little is known about how it regulates its target genes. Proteomic identification of DAF-16/FOXO binding partners in Caenorhabditis elegans and their subsequent functional evaluation by RNA interference (RNAi) revealed several candidate DAF-16/FOXO cofactors, most notably the chromatin remodeller SWI/SNF. DAF-16/FOXO and SWI/SNF form a complex and globally colocalize at DAF-16/FOXO target promoters. We show that specifically for gene-activation, DAF-16/FOXO depends on SWI/SNF, facilitating SWI/SNF recruitment to target promoters, in order to activate transcription by presumed remodelling of local chromatin. For the animal, this translates into an essential role of SWI/SNF for DAF-16/FOXO-mediated processes, i.e. dauer formation, stress resistance, and the promotion of longevity. Thus we give insight into the mechanisms of DAF-16/FOXO-mediated transcriptional regulation and establish a critical link between ATP-dependent chromatin remodelling and lifespan regulation. PMID:23604319

  20. The chromatin remodeling BAP complex limits tumor-promoting activity of the Hippo pathway effector Yki to prevent neoplastic transformation in Drosophila epithelia

    DEFF Research Database (Denmark)

    Song, Shilin; Herranz, Héctor; Cohen, Stephen M.

    2017-01-01

    Switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are mutated in many human cancers. In this article, we make use of a Drosophila genetic model for epithelial tumor formation to explore the tumor suppressive role of SWI/SNF complex proteins. Members of the BAP complex exhibit...

  1. Mutation of neuron-specific chromatin remodeling subunit BAF53b : rescue of plasticity and memory by manipulating actin remodeling

    NARCIS (Netherlands)

    Vogel Ciernia, Annie; Kramár, Enikö A; Matheos, Dina P; Havekes, Robbert; Hemstedt, Thekla J; Magnan, Christophe N; Sakata, Keith; Tran, Ashley; Azzawi, Soraya; Lopez, Alberto; Dang, Richard; Wang, Weisheng; Trieu, Brian; Tong, Joyce; Barrett, Ruth M; Post, Rebecca J; Baldi, Pierre; Abel, Ted; Lynch, Gary; Wood, Marcelo A

    Recent human exome-sequencing studies have implicated polymorphic Brg1-associated factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several intellectual disabilities and cognitive disorders, including autism. However, it remains unclear how mutations in BAF complexes

  2. Downregulation of SWI/SNF chromatin remodeling factor subunits modulates cisplatin cytotoxicity

    International Nuclear Information System (INIS)

    Kothandapani, Anbarasi; Gopalakrishnan, Kathirvel; Kahali, Bhaskar; Reisman, David; Patrick, Steve M.

    2012-01-01

    Chromatin remodeling complex SWI/SNF plays important roles in many cellular processes including transcription, proliferation, differentiation and DNA repair. In this report, we investigated the role of SWI/SNF catalytic subunits Brg1 and Brm in the cellular response to cisplatin in lung cancer and head/neck cancer cells. Stable knockdown of Brg1 and Brm enhanced cellular sensitivity to cisplatin. Repair kinetics of cisplatin DNA adducts revealed that downregulation of Brg1 and Brm impeded the repair of both intrastrand adducts and interstrand crosslinks (ICLs). Cisplatin ICL-induced DNA double strand break repair was also decreased in Brg1 and Brm depleted cells. Altered checkpoint activation with enhanced apoptosis as well as impaired chromatin relaxation was observed in Brg1 and Brm deficient cells. Downregulation of Brg1 and Brm did not affect the recruitment of DNA damage recognition factor XPC to cisplatin DNA lesions, but affected ERCC1 recruitment, which is involved in the later stages of DNA repair. Based on these results, we propose that SWI/SNF chromatin remodeling complex modulates cisplatin cytotoxicity by facilitating efficient repair of the cisplatin DNA lesions. -- Highlights: ► Stable knockdown of Brg1 and Brm enhances cellular sensitivity to cisplatin. ► Downregulation of Brg1 and Brm impedes the repair of cisplatin intrastrand adducts and interstrand crosslinks. ► Brg1 and Brm deficiency results in impaired chromatin relaxation, altered checkpoint activation as well as enhanced apoptosis. ► Downregulation of Brg1 and Brm affects recruitment of ERCC1, but not XPC to cisplatin DNA lesions.

  3. dDYRK2 and Minibrain interact with the chromatin remodelling factors SNR1 and TRX.

    Science.gov (United States)

    Kinstrie, Ross; Lochhead, Pamela A; Sibbet, Gary; Morrice, Nick; Cleghon, Vaughn

    2006-08-15

    The DYRKs (dual specificity tyrosine phosphorylation-regulated kinases) are a conserved family of protein kinases that autophosphorylate a tyrosine residue in their activation loop by an intra-molecular mechanism and phosphorylate exogenous substrates on serine/threonine residues. Little is known about the identity of true substrates for DYRK family members and their binding partners. To address this question, we used full-length dDYRK2 (Drosophila DYRK2) as bait in a yeast two-hybrid screen of a Drosophila embryo cDNA library. Of 14 independent dDYRK2 interacting clones identified, three were derived from the chromatin remodelling factor, SNR1 (Snf5-related 1), and three from the essential chromatin component, TRX (trithorax). The association of dDYRK2 with SNR1 and TRX was confirmed by co-immunoprecipitation studies. Deletion analysis showed that the C-terminus of dDYRK2 modulated the interaction with SNR1 and TRX. DYRK family member MNB (Minibrain) was also found to co-precipitate with SNR1 and TRX, associations that did not require the C-terminus of the molecule. dDYRK2 and MNB were also found to phosphorylate SNR1 at Thr102 in vitro and in vivo. This phosphorylation required the highly conserved DH-box (DYRK homology box) of dDYRK2, whereas the DH-box was not essential for phosphorylation by MNB. This is the first instance of phosphorylation of SNR1 or any of its homologues and implicates the DYRK family of kinases with a role in chromatin remodelling.

  4. INO80 Chromatin Remodeling Coordinates Metabolic Homeostasis with Cell Division

    Directory of Open Access Journals (Sweden)

    Graeme J. Gowans

    2018-01-01

    Full Text Available Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC. Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression. Specifically, INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. In mutant cells, chromatin accessibility of periodic genes, including TORC1-responsive genes, is relatively static, concomitant with severely attenuated gene expression. Collectively, these results reveal that the INO80 complex mediates metabolic signaling to chromatin to restrict proliferation to metabolically optimal states.

  5. Concerted action of the PHD, chromo and motor domains regulates the human chromatin remodelling ATPase CHD4.

    Science.gov (United States)

    Morra, Rosa; Lee, Benjamin M; Shaw, Heather; Tuma, Roman; Mancini, Erika J

    2012-07-30

    CHD4, the core subunit of the Nucleosome Remodelling and Deacetylase (NuRD) complex, is a chromatin remodelling ATPase that, in addition to a helicase domain, harbors tandem plant homeo finger and chromo domains. By using a panel of domain constructs we dissect their roles and demonstrate that DNA binding, histone binding and ATPase activities are allosterically regulated. Molecular shape reconstruction from small-angle X-ray scattering reveals extensive domain-domain interactions, which provide a structural explanation for the regulation of CHD4 activities by intramolecular domain communication. Our results demonstrate functional interdependency between domains within a chromatin remodeller. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Mutation of Neuron-Specific Chromatin Remodeling Subunit BAF53b: Rescue of Plasticity and Memory by Manipulating Actin Remodeling

    Science.gov (United States)

    Ciernia, Annie Vogel; Kramár, Enikö A.; Matheos, Dina P.; Havekes, Robbert; Hemstedt, Thekla J.; Magnan, Christophe N.; Sakata, Keith; Tran, Ashley; Azzawi, Soraya; Lopez, Alberto; Dang, Richard; Wang, Weisheng; Trieu, Brian; Tong, Joyce; Barrett, Ruth M.; Post, Rebecca J.; Baldi, Pierre; Abel, Ted; Lynch, Gary; Wood, Marcelo A.

    2017-01-01

    Recent human exome-sequencing studies have implicated polymorphic Brg1-associated factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several intellectual disabilities and cognitive disorders, including autism. However, it remains unclear how mutations in BAF complexes result in impaired cognitive function. Post-mitotic…

  7. Dynamic Recruitment of Functionally Distinct Swi/Snf Chromatin Remodeling Complexes Modulates Pdx1 Activity in Islet β Cells

    Directory of Open Access Journals (Sweden)

    Brian McKenna

    2015-03-01

    Full Text Available Pdx1 is a transcription factor of fundamental importance to pancreas formation and adult islet β cell function. However, little is known about the positive- and negative-acting coregulators recruited to mediate transcriptional control. Here, we isolated numerous Pdx1-interacting factors possessing a wide range of cellular functions linked with this protein, including, but not limited to, coregulators associated with transcriptional activation and repression, DNA damage response, and DNA replication. Because chromatin remodeling activities are essential to developmental lineage decisions and adult cell function, our analysis focused on investigating the influence of the Swi/Snf chromatin remodeler on Pdx1 action. The two mutually exclusive and indispensable Swi/Snf core ATPase subunits, Brg1 and Brm, distinctly affected target gene expression in β cells. Furthermore, physiological and pathophysiological conditions dynamically regulated Pdx1 binding to these Swi/Snf complexes in vivo. We discuss how context-dependent recruitment of coregulatory complexes by Pdx1 could impact pancreas cell development and adult islet β cell activity.

  8. Haploinsufficiency of the Chromatin Remodeler BPTF Causes Syndromic Developmental and Speech Delay, Postnatal Microcephaly, and Dysmorphic Features

    NARCIS (Netherlands)

    Stankiewicz, P.; Khan, T.N.; Szafranski, P.; Slattery, L.; Streff, H.; Vetrini, F.; Bernstein, J.A.; Brown, C.W.; Rosenfeld, J.A.; Rednam, S.; Scollon, S.; Bergstrom, K.L.; Parsons, D.W.; Plon, S.E.; Vieira, M.W.; Quaio, C.; Baratela, W.A.R.; Guio, J.C.A.; Armstrong, R.; Mehta, S.G.; Rump, P.; Pfundt, R.P.; Lewandowski, R.; Fernandes, E.M.; Shinde, D.N.; Tang, S.; Hoyer, J.; Zweier, C.; Reis, A.; Bacino, C.A.; Xiao, R.; Breman, A.M.; Smith, J.L.; Katsanis, N.; Bostwick, B.; Popp, B.; Davis, E.E.; Yang, Y

    2017-01-01

    Bromodomain PHD finger transcription factor (BPTF) is the largest subunit of nucleosome remodeling factor (NURF), a member of the ISWI chromatin-remodeling complex. However, the clinical consequences of disruption of this complex remain largely uncharacterized. BPTF is required for

  9. PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein.

    Science.gov (United States)

    Todd, Matthew A M; Ivanochko, Danton; Picketts, David J

    2015-06-19

    The importance of chromatin regulation to human disease is highlighted by the growing number of mutations identified in genes encoding chromatin remodeling proteins. While such mutations were first identified in severe developmental disorders, or in specific cancers, several genes have been implicated in both, including the plant homeodomain finger protein 6 (PHF6) gene. Indeed, germline mutations in PHF6 are the cause of the Börjeson-Forssman-Lehmann X-linked intellectual disability syndrome (BFLS), while somatic PHF6 mutations have been identified in T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Studies from different groups over the last few years have made a significant impact towards a functional understanding of PHF6 protein function. In this review, we summarize the current knowledge of PHF6 with particular emphasis on how it interfaces with a distinct set of interacting partners and its functional roles in the nucleoplasm and nucleolus. Overall, PHF6 is emerging as a key chromatin adaptor protein critical to the regulation of neurogenesis and hematopoiesis.

  10. In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis.

    Science.gov (United States)

    Lim, Daniel A; Suárez-Fariñas, Mayte; Naef, Felix; Hacker, Coleen R; Menn, Benedicte; Takebayashi, Hirohide; Magnasco, Marcelo; Patil, Nila; Alvarez-Buylla, Arturo

    2006-01-01

    Neural stem cells and neurogenesis persist in the adult mammalian brain subventricular zone (SVZ). Cells born in the rodent SVZ migrate to the olfactory bulb (Ob) where they differentiate into interneurons. To determine the gene expression and functional profile of SVZ neurogenesis, we performed three complementary sets of transcriptional analysis experiments using Affymetrix GeneChips: (1) comparison of adult mouse SVZ and Ob gene expression profiles with those of the striatum, cerebral cortex, and hippocampus; (2) profiling of SVZ stem cells and ependyma isolated by fluorescent-activated cell sorting (FACS); and (3) analysis of gene expression changes during in vivo SVZ regeneration after anti-mitotic treatment. Gene Ontology (GO) analysis of data from these three separate approaches showed that in adult SVZ neurogenesis, RNA splicing and chromatin remodeling are biological processes as statistically significant as cell proliferation, transcription, and neurogenesis. In non-neurogenic brain regions, RNA splicing and chromatin remodeling were not prominent processes. Fourteen mRNA splicing factors including Sf3b1, Sfrs2, Lsm4, and Khdrbs1/Sam68 were detected along with 9 chromatin remodeling genes including Mll, Bmi1, Smarcad1, Baf53a, and Hat1. We validated the transcriptional profile data with Northern blot analysis and in situ hybridization. The data greatly expand the catalogue of cell cycle components, transcription factors, and migration genes for adult SVZ neurogenesis and reveal RNA splicing and chromatin remodeling as prominent biological processes for these germinal cells.

  11. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.

  12. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana

    KAUST Repository

    Bigeard, Jean; Rayapuram, Naganand; Bonhomme, Ludovic; Hirt, Heribert; Pflieger, Delphine

    2014-01-01

    The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.

  13. Radiation response and chromatin dynamics

    International Nuclear Information System (INIS)

    Ikura, Tsuyoshi

    2009-01-01

    Described is a recent progress in studies of chromatin structural alterations induced by DNA damage by radiation. DNA in eukaryotes exists in the chromatin structure and different mechanisms of response to damage and repair of DNA from those in prokaryotes have been recognized. Chromatin is composed from its unit structure of mono-nucleosome, which is formed from DNA and an octamer of core histones of H2A, H2B, H3 and H4. When DNA is damaged, histone structural alterations are required for repair factors and checkpoint proteins to access the damaged site. At the actual genome damage, chemical modification of histone to work as a code occurs dependently on the damage where chromatin remodeling factors and histone chaperone participate for structural alteration and remodeling. As well, the exchange of histone variants and fluidization of histones are recently reported. Known chemical modification involves phosphorylation, acetylation and ubiquitination of H2AX (a variant of H2A), and acetylation and methylation of H3. Each complex of TIP60, NuA4 and INO80 is known to be included in the regulation of chromatin with damaged/repaired DNA for remodeling, but little is known about recruitment of the factors concerned at the damage site. Regulatory mechanisms in above chromatin dynamics with consideration of quality and timing of radiation should be further elucidated for understanding the precise response to DNA damage. (K.T.)

  14. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope.

    Science.gov (United States)

    Tsai, Shang-Yi A; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-Fei; Xi, Zheng-Xiong; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-11-24

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal.

  15. CHD8, A Novel Beta-Catenin Associated Chromatin Remodeling Enzyme, Regulates Androgen Receptor Mediated Gene Transcription

    National Research Council Canada - National Science Library

    Bochar, Daniel A

    2008-01-01

    .... To better understand the function of beta-catenin in AR mediated transcription, we have identified a novel chromatin remodeling enzyme, CHD8, that can associate with beta-catenin and functions in AR...

  16. Default assembly of early adenovirus chromatin

    International Nuclear Information System (INIS)

    Spector, David J.

    2007-01-01

    In adenovirus particles, the viral nucleoprotein is organized into a highly compacted core structure. Upon delivery to the nucleus, the viral nucleoprotein is very likely to be remodeled to a form accessible to the transcription and replication machinery. Viral protein VII binds to intra-nuclear viral DNA, as do at least two cellular proteins, SET/TAF-Iβ and pp32, components of a chromatin assembly complex that is implicated in template remodeling. We showed previously that viral DNA-protein complexes released from infecting particles were sensitive to shearing after cross-linking with formaldehyde, presumably after transport of the genome into the nucleus. We report here the application of equilibrium-density gradient centrifugation to the analysis of the fate of these complexes. Most of the incoming protein VII was recovered in a form that was not cross-linked to viral DNA. This release of protein VII, as well as the binding of SET/TAF-Iβ and cellular transcription factors to the viral chromatin, did not require de novo viral gene expression. The distinct density profiles of viral DNA complexes containing protein VII, compared to those containing SET/TAF-Iβ or transcription factors, were consistent with the notion that the assembly of early viral chromatin requires both the association of SET/TAF-1β and the release of protein VII

  17. The RSF1 histone-remodelling factor facilitates DNA double-strand break repair by recruiting centromeric and Fanconi Anaemia proteins.

    Directory of Open Access Journals (Sweden)

    Fabio Pessina

    2014-05-01

    Full Text Available ATM is a central regulator of the cellular responses to DNA double-strand breaks (DSBs. Here we identify a biochemical interaction between ATM and RSF1 and we characterise the role of RSF1 in this response. The ATM-RSF1 interaction is dependent upon both DSBs and ATM kinase activity. Together with SNF2H/SMARCA5, RSF1 forms the RSF chromatin-remodelling complex. Although RSF1 is specific to the RSF complex, SNF2H/SMARCA5 is a catalytic subunit of several other chromatin-remodelling complexes. Although not required for checkpoint signalling, RSF1 is required for efficient repair of DSBs via both end-joining and homology-directed repair. Specifically, the ATM-dependent recruitment to sites of DSBs of the histone fold proteins CENPS/MHF1 and CENPX/MHF2, previously identified at centromeres, is RSF1-dependent. In turn these proteins recruit and regulate the mono-ubiquitination of the Fanconi Anaemia proteins FANCD2 and FANCI. We propose that by depositing CENPS/MHF1 and CENPX/MHF2, the RSF complex either directly or indirectly contributes to the reorganisation of chromatin around DSBs that is required for efficient DNA repair.

  18. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos.

    Science.gov (United States)

    Kong, Qingran; Banaszynski, Laura A; Geng, Fuqiang; Zhang, Xiaolei; Zhang, Jiaming; Zhang, Heng; O'Neill, Claire L; Yan, Peidong; Liu, Zhonghua; Shido, Koji; Palermo, Gianpiero D; Allis, C David; Rafii, Shahin; Rosenwaks, Zev; Wen, Duancheng

    2018-03-09

    Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    Science.gov (United States)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  20. Impact of the Chromatin Remodeling Factor CHD1 on Gut Microbiome Composition of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Johanna Sebald

    Full Text Available The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.

  1. The Drosophila melanogaster CHD1 chromatin remodeling factor modulates global chromosome structure and counteracts HP1a and H3K9me2.

    Science.gov (United States)

    Bugga, Lakshmi; McDaniel, Ivy E; Engie, Liana; Armstrong, Jennifer A

    2013-01-01

    CHD1 is a conserved chromatin remodeling factor that localizes to active genes and functions in nucleosome assembly and positioning as well as histone turnover. Mouse CHD1 is required for the maintenance of stem cell pluripotency while human CHD1 may function as a tumor suppressor. To investigate the action of CHD1 on higher order chromatin structure in differentiated cells, we examined the consequences of loss of CHD1 and over-expression of CHD1 on polytene chromosomes from salivary glands of third instar Drosophila melanogaster larvae. We observed that chromosome structure is sensitive to the amount of this remodeler. Loss of CHD1 resulted in alterations of chromosome structure and an increase in the heterochromatin protein HP1a, while over-expression of CHD1 disrupted higher order chromatin structure and caused a decrease in levels of HP1a. Over-expression of an ATPase inactive form of CHD1 did not result in severe chromosomal defects, suggesting that the ATPase activity is required for this in vivo phenotype. Interestingly, changes in CHD1 protein levels did not correlate with changes in the levels of the euchromatin mark H3K4me3 or elongating RNA Polymerase II. Thus, while CHD1 is localized to transcriptionally active regions of the genome, it can function to alter the levels of HP1a, perhaps through changes in methylation of H3K9.

  2. The Drosophila melanogaster CHD1 chromatin remodeling factor modulates global chromosome structure and counteracts HP1a and H3K9me2.

    Directory of Open Access Journals (Sweden)

    Lakshmi Bugga

    Full Text Available CHD1 is a conserved chromatin remodeling factor that localizes to active genes and functions in nucleosome assembly and positioning as well as histone turnover. Mouse CHD1 is required for the maintenance of stem cell pluripotency while human CHD1 may function as a tumor suppressor. To investigate the action of CHD1 on higher order chromatin structure in differentiated cells, we examined the consequences of loss of CHD1 and over-expression of CHD1 on polytene chromosomes from salivary glands of third instar Drosophila melanogaster larvae. We observed that chromosome structure is sensitive to the amount of this remodeler. Loss of CHD1 resulted in alterations of chromosome structure and an increase in the heterochromatin protein HP1a, while over-expression of CHD1 disrupted higher order chromatin structure and caused a decrease in levels of HP1a. Over-expression of an ATPase inactive form of CHD1 did not result in severe chromosomal defects, suggesting that the ATPase activity is required for this in vivo phenotype. Interestingly, changes in CHD1 protein levels did not correlate with changes in the levels of the euchromatin mark H3K4me3 or elongating RNA Polymerase II. Thus, while CHD1 is localized to transcriptionally active regions of the genome, it can function to alter the levels of HP1a, perhaps through changes in methylation of H3K9.

  3. Chromatin-modifying proteins in cancer

    DEFF Research Database (Denmark)

    Fog, Cathrine K; Jensen, Klaus T; Lund, Anders Henrik

    2007-01-01

    -despite the fact that all cells in the organism contain the same genetic information. A large amount of data gathered over the last decades has demonstrated that deregulation of chromatin-modifying proteins is etiologically involved in the development and progression of cancer. Here we discuss how epigenetic...... alterations influence cancer development and review known cancer-associated alterations in chromatin-modifying proteins....

  4. Concerted action of the PHD, chromo and motor domains regulates the human chromatin remodelling ATPase CHD4

    OpenAIRE

    Morra, Rosa; Lee, Benjamin M; Shaw, Heather; Tuma, Roman; Mancini, Erika J

    2012-01-01

    CHD4, the core subunit of the Nucleosome Remodelling and Deacetylase (NuRD) complex, is a chromatin remodelling ATPase that, in addition to a helicase domain, harbors tandem plant homeo finger and chromo domains. By using a panel of domain constructs we dissect their roles and demonstrate that DNA binding, histone binding and ATPase activities are allosterically regulated. Molecular shape reconstruction from small-angle X-ray scattering reveals extensive domain-domain interactions, which prov...

  5. Chromatin Remodeling BAF (SWI/SNF Complexes in Neural Development and Disorders

    Directory of Open Access Journals (Sweden)

    Godwin Sokpor

    2017-08-01

    Full Text Available The ATP-dependent BRG1/BRM associated factor (BAF chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders.

  6. Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders

    Science.gov (United States)

    Sokpor, Godwin; Xie, Yuanbin; Rosenbusch, Joachim; Tuoc, Tran

    2017-01-01

    The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders. PMID:28824374

  7. Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders.

    Science.gov (United States)

    Sokpor, Godwin; Xie, Yuanbin; Rosenbusch, Joachim; Tuoc, Tran

    2017-01-01

    The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders.

  8. HAB1–SWI3B Interaction Reveals a Link between Abscisic Acid Signaling and Putative SWI/SNF Chromatin-Remodeling Complexes in Arabidopsis[C][W

    Science.gov (United States)

    Saez, Angela; Rodrigues, Americo; Santiago, Julia; Rubio, Silvia; Rodriguez, Pedro L.

    2008-01-01

    Abscisic acid (ABA) has an important role for plant growth, development, and stress adaptation. HYPERSENSITIVE TO ABA1 (HAB1) is a protein phosphatase type 2C that plays a key role as a negative regulator of ABA signaling; however, the molecular details of HAB1 action in this process are not known. A two-hybrid screen revealed that SWI3B, an Arabidopsis thaliana homolog of the yeast SWI3 subunit of SWI/SNF chromatin-remodeling complexes, is a prevalent interacting partner of HAB1. The interaction mapped to the N-terminal half of SWI3B and required an intact protein phosphatase catalytic domain. Bimolecular fluorescence complementation and coimmunoprecipitation assays confirmed the interaction of HAB1 and SWI3B in the nucleus of plant cells. swi3b mutants showed a reduced sensitivity to ABA-mediated inhibition of seed germination and growth and reduced expression of the ABA-responsive genes RAB18 and RD29B. Chromatin immunoprecipitation experiments showed that the presence of HAB1 in the vicinity of RD29B and RAB18 promoters was abolished by ABA, which suggests a direct involvement of HAB1 in the regulation of ABA-induced transcription. Additionally, our results uncover SWI3B as a novel positive regulator of ABA signaling and suggest that HAB1 modulates ABA response through the regulation of a putative SWI/SNF chromatin-remodeling complex. PMID:19033529

  9. Reprogramming chromatin

    DEFF Research Database (Denmark)

    Ehrensberger, Andreas Hasso; Svejstrup, Jesper Qualmann

    2012-01-01

    attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming...... and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors...

  10. The chromatin remodelling factor BRG1 is a novel binding partner of the tumor suppressor p16INK4a

    Directory of Open Access Journals (Sweden)

    Mann Graham J

    2009-01-01

    Full Text Available Abstract Background CDKN2A/p16INK4a is frequently altered in human cancers and it is the most important melanoma susceptibility gene identified to date. p16INK4a inhibits pRb phosphorylation and induces cell cycle arrest, which is considered its main tumour suppressor function. Nevertheless, additional activities may contribute to the tumour suppressor role of p16INK4a and could help explain its specific association with melanoma predisposition. To identify such functions we conducted a yeast-two-hybrid screen for novel p16INK4a binding partners. Results We now report that p16INK4a interacts with the chromatin remodelling factor BRG1. We investigated the cooperative roles of p16INK4a and BRG1 using a panel of cell lines and a melanoma cell model with inducible p16INK4a expression and BRG1 silencing. We found evidence that BRG1 is not required for p16INK4a-induced cell cycle inhibition and propose that the p16INK4a-BRG1 complex regulates BRG1 chromatin remodelling activity. Importantly, we found frequent loss of BRG1 expression in primary and metastatic melanomas, implicating this novel p16INK4a binding partner as an important tumour suppressor in melanoma. Conclusion This data adds to the increasing evidence implicating the SWI/SNF chromatin remodelling complex in tumour development and the association of p16INK4a with chromatin remodelling highlights potentially new functions that may be important in melanoma predisposition and chemoresistance.

  11. The Role of Chromatin-Associated Proteins in Cancer

    DEFF Research Database (Denmark)

    Helin, Kristian; Minucci, Saverio

    2017-01-01

    The organization of the chromatin structure is essential for maintaining cell-type-specific gene expression and therefore for cell identity. This structure is highly dynamic and is regulated by a large number of chromatin-associated proteins that are required for normal development...... and differentiation. Recurrent somatic mutations have been found with high frequency in genes coding for chromatin-associated proteins in cancer, and several of these are required for cancer maintenance. In this review, we discuss recent advances in understanding the role of chromatin-associated proteins...

  12. The Seed Repair Response during Germination: Disclosing Correlations between DNA Repair, Antioxidant Response, and Chromatin Remodeling in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Andrea Pagano

    2017-11-01

    Full Text Available This work provides novel insights into the effects caused by the histone deacetylase inhibitor trichostatin A (TSA during Medicago truncatula seed germination, with emphasis on the seed repair response. Seeds treated with H2O and TSA (10 and 20 μM were collected during imbibition (8 h and at the radicle protrusion phase. Biometric data showed delayed germination and impaired seedling growth in TSA-treated samples. Comet assay, performed on radicles at the protrusion phase and 4-days old M. truncatula seedlings, revealed accumulation of DNA strand breaks upon exposure to TSA. Activation of DNA repair toward TSA-mediated genotoxic damage was evidenced by the up-regulation of MtOGG1(8-OXOGUANINE GLYCOSYLASE/LYASE gene involved in the removal of oxidative DNA lesions, MtLIGIV(LIGASE IV gene, a key determinant of seed quality, required for the rejoining of DNA double strand breaks and TDP(TYROSYL-DNA PHOSPHODIESTERASE genes encoding the multipurpose DNA repair enzymes tyrosyl-DNA phosphodiesterases. Since radical scavenging can prevent DNA damage, the specific antioxidant activity (SAA was measured by DPPH (1,1-diphenyl-2-picrylhydrazyl and Folin-Ciocalteu reagent assays. Fluctuations of SAA were observed in TSA-treated seeds/seedlings concomitant with the up-regulation of antioxidant genes MtSOD(SUPEROXIDE DISMUTASE, MtAPX(ASCORBATE PEROXIDASE and MtMT2(TYPE 2 METALLOTHIONEIN. Chromatin remodeling, required to facilitate the access of DNA repair enzymes at the damaged sites, is also part of the multifaceted seed repair response. To address this aspect, still poorly explored in plants, the MtTRRAP(TRANSFORMATION/TRANSACTIVATION DOMAIN-ASSOCIATED PROTEIN gene was analyzed. TRRAP is a transcriptional adaptor, so far characterized only in human cells where it is needed for the recruitment of histone acetyltransferase complexes to chromatin during DNA repair. The MtTRRAP gene and the predicted interacting partners MtHAM2 (HISTONE ACETYLTRANSFERASE OF

  13. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis

    International Nuclear Information System (INIS)

    Sigala, Barbara; Edwards, Mina; Puri, Teena; Tsaneva, Irina R.

    2005-01-01

    TIP48 is a highly conserved eukaryotic AAA + protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy. Our studies demonstrate that in interphase cells TIP48 was found mainly in the nucleus and exhibited a distinct localization in the nuclear periphery. As the cells entered mitosis, TIP48 was excluded from the condensing chromosomes but showed association with the mitotic apparatus. During anaphase, some TIP48 was detected in the centrosome colocalizing with tubulin but the strongest staining appeared in the mitotic equator associated with the midzone central spindle. Accumulation of TIP48 in the midzone and the midbody was observed in late telophase and cytokinesis. This redeployment of TIP48 during anaphase and cytokinesis was independent of microtubule assembly. The relocation of endogenous TIP48 to the midzone/midbody under physiological conditions suggests a novel and distinct function for TIP48 in mitosis and possible involvement in the exit of mitosis

  14. A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling.

    Science.gov (United States)

    Wieczorek, Dagmar; Bögershausen, Nina; Beleggia, Filippo; Steiner-Haldenstätt, Sabine; Pohl, Esther; Li, Yun; Milz, Esther; Martin, Marcel; Thiele, Holger; Altmüller, Janine; Alanay, Yasemin; Kayserili, Hülya; Klein-Hitpass, Ludger; Böhringer, Stefan; Wollstein, Andreas; Albrecht, Beate; Boduroglu, Koray; Caliebe, Almuth; Chrzanowska, Krystyna; Cogulu, Ozgur; Cristofoli, Francesca; Czeschik, Johanna Christina; Devriendt, Koenraad; Dotti, Maria Teresa; Elcioglu, Nursel; Gener, Blanca; Goecke, Timm O; Krajewska-Walasek, Malgorzata; Guillén-Navarro, Encarnación; Hayek, Joussef; Houge, Gunnar; Kilic, Esra; Simsek-Kiper, Pelin Özlem; López-González, Vanesa; Kuechler, Alma; Lyonnet, Stanislas; Mari, Francesca; Marozza, Annabella; Mathieu Dramard, Michèle; Mikat, Barbara; Morin, Gilles; Morice-Picard, Fanny; Ozkinay, Ferda; Rauch, Anita; Renieri, Alessandra; Tinschert, Sigrid; Utine, G Eda; Vilain, Catheline; Vivarelli, Rossella; Zweier, Christiane; Nürnberg, Peter; Rahmann, Sven; Vermeesch, Joris; Lüdecke, Hermann-Josef; Zeschnigk, Michael; Wollnik, Bernd

    2013-12-20

    Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.

  15. EBNA1 efficiently assembles on chromatin containing the Epstein-Barr virus latent origin of replication

    International Nuclear Information System (INIS)

    Avolio-Hunter, Tina M.; Frappier, Lori

    2003-01-01

    The Epstein-Barr virus (EBV) protein, EBNA1, activates the replication of latent EBV episomes and the transcription of EBV latency genes by binding to recognition sites in the DS and FR elements of oriP. Since EBV episomes exist as chromatin, we have examined the interaction of EBNA1 with oriP templates assembled with physiologically spaced nucleosomes. We show that EBNA1 retains the ability to efficiently bind its recognition sites within the DS and FR elements in oriP chromatin and that this property is intrinsic to the EBNA1 DNA binding domain. The efficient assembly of EBNA1 on oriP chromatin does not require ATP-dependent chromatin remodeling factors and does not cause the precise positioning of nucleosomes within or adjacent to the FR and DS elements. Thus EBNA1 belongs to a select group of proteins that can efficiently access their recognition sites within nucleosomes without the need for additional chromatin remodeling factors

  16. TIP48/Reptin and H2A.Z requirement for initiating chromatin remodeling in estrogen-activated transcription.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    2013-04-01

    Full Text Available Histone variants, including histone H2A.Z, are incorporated into specific genomic sites and participate in transcription regulation. The role of H2A.Z at these sites remains poorly characterized. Our study investigates changes in the chromatin environment at the Cyclin D1 gene (CCND1 during transcriptional initiation in response to estradiol in estrogen receptor positive mammary tumour cells. We show that H2A.Z is present at the transcription start-site and downstream enhancer sequences of CCND1 when the gene is poorly transcribed. Stimulation of CCND1 expression required release of H2A.Z concomitantly from both these DNA elements. The AAA+ family members TIP48/reptin and the histone variant H2A.Z are required to remodel the chromatin environment at CCND1 as a prerequisite for binding of the estrogen receptor (ERα in the presence of hormone. TIP48 promotes acetylation and exchange of H2A.Z, which triggers a dissociation of the CCND1 3' enhancer from the promoter, thereby releasing a repressive intragenic loop. This release then enables the estrogen receptor to bind to the CCND1 promoter. Our findings provide new insight into the priming of chromatin required for transcription factor access to their target sequence. Dynamic release of gene loops could be a rapid means to remodel chromatin and to stimulate transcription in response to hormones.

  17. Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress.

    Science.gov (United States)

    Glorieux, Christophe; Sandoval, Juan Marcelo; Fattaccioli, Antoine; Dejeans, Nicolas; Garbe, James C; Dieu, Marc; Verrax, Julien; Renard, Patricia; Huang, Peng; Calderon, Pedro Buc

    2016-10-01

    Regulation of ROS metabolism plays a major role in cellular adaptation to oxidative stress in cancer cells, but the molecular mechanism that regulates catalase, a key antioxidant enzyme responsible for conversion of hydrogen peroxide to water and oxygen, remains to be elucidated. Therefore, we investigated the transcriptional regulatory mechanism controlling catalase expression in three human mammary cell lines: the normal mammary epithelial 250MK primary cells, the breast adenocarcinoma MCF-7 cells and an experimental model of MCF-7 cells resistant against oxidative stress resulting from chronic exposure to H 2 O 2 (Resox), in which catalase was overexpressed. Here we identify a novel promoter region responsible for the regulation of catalase expression at -1518/-1226 locus and the key molecules that interact with this promoter and affect catalase transcription. We show that the AP-1 family member JunB and retinoic acid receptor alpha (RARα) mediate catalase transcriptional activation and repression, respectively, by controlling chromatin remodeling through a histone deacetylases-dependent mechanism. This regulatory mechanism plays an important role in redox adaptation to chronic exposure to H 2 O 2 in breast cancer cells. Our study suggests that cancer adaptation to oxidative stress may be regulated by transcriptional factors through chromatin remodeling, and reveals a potential new mechanism to target cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Neuron-specific chromatin remodeling: a missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders.

    Science.gov (United States)

    Vogel-Ciernia, Annie; Wood, Marcelo A

    2014-05-01

    Long-term memory formation requires the coordinated regulation of gene expression. Until recently nucleosome remodeling, one of the major epigenetic mechanisms for controlling gene expression, had been largely unexplored in the field of neuroscience. Nucleosome remodeling is carried out by chromatin remodeling complexes (CRCs) that interact with DNA and histones to physically alter chromatin structure and ultimately regulate gene expression. Human exome sequencing and gene wide association studies have linked mutations in CRC subunits to intellectual disability disorders, autism spectrum disorder and schizophrenia. However, how mutations in CRC subunits were related to human cognitive disorders was unknown. There appears to be both developmental and adult specific roles for the neuron specific CRC nBAF (neuronal Brg1/hBrm Associated Factor). nBAF regulates gene expression required for dendritic arborization during development, and in the adult, contributes to long-term potentiation, a form of synaptic plasticity, and long-term memory. We propose that the nBAF complex is a novel epigenetic mechanism for regulating transcription required for long-lasting forms of synaptic plasticity and memory processes and that impaired nBAF function may result in human cognitive disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Lipid droplet-associated gene expression and chromatin remodelling in LIPASE 5'-upstream region from beginning- to mid-endodormant bud in 'Fuji' apple.

    Science.gov (United States)

    Saito, Takanori; Wang, Shanshan; Ohkawa, Katsuya; Ohara, Hitoshi; Ikeura, Hiromi; Ogawa, Yukiharu; Kondo, Satoru

    2017-11-01

    We found that lipid accumulation in the meristem region and the expression of MdLIP2A, which appears to be regulated by chromatin remodeling, coincided with endodormancy induction in the 'Fuji' apple. In deciduous trees, including apples (Malus × domestica Borkh.), lipid accumulation in the meristem region towards endodormancy induction has been thought to be an important process for the acquisition of cold tolerance. In this study, we conducted histological staining of crude lipids in the meristem region of 'Fuji' apples and found that lipid accumulation coincided with endodormancy induction. Since a major component of lipid bodies (triacylglycerol) is esterified fatty acids, we analysed fatty acid-derived volatile compounds and genes encoding fatty acid-modifying enzymes (MdLOX1A and MdHPL2A); the reduction of lipid breakdown also coincided with endodormancy induction. We then characterised the expression patterns of lipid body-regulatory genes MdOLE1 and MdLIP2A during endodormancy induction and found that the expression of MdLIP2A correlated well with lipid accumulation towards endodormancy induction. Based on these results, we conducted chromatin remodelling studies and localized the cis-element in the 5'-upstream region of MdLIP2A to clarify its regulatory mechanism. Finally, we revealed that chromatin was concentrated - 764 to - 862 bp of the 5'-upstream region of MdLIP2A, which harbours the GARE [gibberellin responsive MYB transcription factor binding site] and CArG [MADS-box transcription factor binding site] motifs-meristem development-related protein-binding sites.

  20. The two different isoforms of the RSC chromatin remodeling complex play distinct roles in DNA damage responses.

    Directory of Open Access Journals (Sweden)

    Anna L Chambers

    Full Text Available The RSC chromatin remodeling complex has been implicated in contributing to DNA double-strand break (DSB repair in a number of studies. Both survival and levels of H2A phosphorylation in response to damage are reduced in the absence of RSC. Importantly, there is evidence for two isoforms of this complex, defined by the presence of either Rsc1 or Rsc2. Here, we investigated whether the two isoforms of RSC provide distinct contributions to DNA damage responses. First, we established that the two isoforms of RSC differ in the presence of Rsc1 or Rsc2 but otherwise have the same subunit composition. We found that both rsc1 and rsc2 mutant strains have intact DNA damage-induced checkpoint activity and transcriptional induction. In addition, both strains show reduced non-homologous end joining activity and have a similar spectrum of DSB repair junctions, suggesting perhaps that the two complexes provide the same functions. However, the hypersensitivity of a rsc1 strain cannot be complemented with an extra copy of RSC2, and likewise, the hypersensitivity of the rsc2 strain remains unchanged when an additional copy of RSC1 is present, indicating that the two proteins are unable to functionally compensate for one another in DNA damage responses. Rsc1, but not Rsc2, is required for nucleosome sliding flanking a DNA DSB. Interestingly, while swapping the domains from Rsc1 into the Rsc2 protein does not compromise hypersensitivity to DNA damage suggesting they are functionally interchangeable, the BAH domain from Rsc1 confers upon Rsc2 the ability to remodel chromatin at a DNA break. These data demonstrate that, despite the similarity between Rsc1 and Rsc2, the two different isoforms of RSC provide distinct functions in DNA damage responses, and that at least part of the functional specificity is dictated by the BAH domains.

  1. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling

    NARCIS (Netherlands)

    Budry, L.; Balsalobre, A.; Gauthier, Y.; Khetchoumian, K.; L'Honore, A.; Vallette-Kasic, S.; Brue, T; Figarella-Branger, D.; Meij, B.P.; Drouin, J.

    2012-01-01

    Genes Dev. 2012 Oct 15;26(20):2299-310. doi: 10.1101/gad.200436.112. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling. Budry L, Balsalobre A, Gauthier Y, Khetchoumian K, L'honoré A, Vallette S, Brue T, Figarella-Branger D, Meij B,

  2. The architects of crenarchaeal chromatin : A biophysical characterization of chromatin proteins from Sulfolobus solfataricus

    NARCIS (Netherlands)

    Driessen, Rosalie Paula Catharina

    2014-01-01

    Understanding of chromatin organization and compaction in Archaea is currently limited. The genome of several megabasepairs long is folded by a set of small chromatin proteins to fit into the micron-sized cell. A first step in understanding archaeal chromatin organization is to study the action of

  3. IRAK-M regulates chromatin remodeling in lung macrophages during experimental sepsis.

    Directory of Open Access Journals (Sweden)

    Kenneth Lyn-Kew

    2010-06-01

    Full Text Available Sepsis results in a profound state of immunosuppression, which is temporally associated with impaired leukocyte function. The mechanism of leukocyte reprogramming in sepsis is incompletely understood. In this study, we explored mechanisms contributing to dysregulated inflammatory cytokine expression by pulmonary macrophages during experimental sepsis. Pulmonary macrophages (PM recovered from the lungs of mice undergoing cecal ligation and puncture (CLP display transiently reduced expression of some, but not all innate genes in response to LPS. Impaired expression of TNF-alpha and iNOS was associated with reduced acetylation and methylation of specific histones (AcH4 and H3K4me3 and reduced binding of RNA polymerase II to the promoters of these genes. Transient impairment in LPS-induced cytokine responses in septic PM temporally correlated with induction of IRAK-M mRNA and protein, which occurred in a MyD88-dependent fashion. PM isolated from IRAK-M(-/- mice were largely refractory to CLP-induced impairment in cytokine expression, chromatin remodeling, recruitment of RNA polymerase II, and induction of histone deacetylase-2 observed during sepsis. Our findings indicate that systemic sepsis induces epigenetic silencing of cytokine gene expression in lung macrophages, and IRAK-M appears to be a critical mediator of this response.

  4. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure*

    Science.gov (United States)

    Becker, Annette; Zhang, Peng; Allmann, Lena; Meilinger, Daniela; Bertulat, Bianca; Eck, Daniel; Hofstaetter, Maria; Bartolomei, Giody; Hottiger, Michael O.; Schreiber, Valérie; Leonhardt, Heinrich; Cardoso, M. Cristina

    2016-01-01

    The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1−/− compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function. PMID:26772194

  5. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling

    DEFF Research Database (Denmark)

    Smeenk, G.; Wiegant, W.W.; Luijsterburg, M.S.

    2013-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) arising in native chromatin elicit an RNF8/RNF168-dependent ubiquitylation response, which triggers the recruitment of various repair factors. Precisely how this response is regulated in the context of chromatin remains largely...... unexplored. Here, we show that SMARCA5/SNF2H, the catalytic subunit of ISWI chromatin remodeling complexes, is recruited to DSBs in a poly(ADP-ribose) polymerase 1 (PARP1)-dependent manner. Remarkably, PARP activity, although dispensable for the efficient spreading of νH2AX into damaged chromatin......, selectively promotes spreading of SMARCA5, the E3 ubiquitin ligase RNF168, ubiquitin conjugates and the ubiquitin-binding factors RAD18 and the RAP80-BRCA1 complex throughout DSB-flanking chromatin. This suggests that PARP regulates the spatial organization of the RNF168-driven ubiquitin response to DNA...

  6. New mitotic regulators released from chromatin

    Directory of Open Access Journals (Sweden)

    Hideki eYokoyama

    2013-12-01

    Full Text Available Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP, produced around chromosomes, locally activates spindle assembly factors. Recent studies have uncovered that chromosomes organize mitosis beyond spindle formation. They distinctly regulate other mitotic events, such as spindle maintenance in anaphase, which is essential for chromosome segregation. Furthermore, the direct function of chromosomes is not only to produce RanGTP but, in addition, to release key mitotic regulators from chromatin. Chromatin-remodeling factors and nuclear pore complex proteins, which have established functions on chromatin in interphase, dissociate from mitotic chromatin and function in spindle assembly or maintenance. Thus, chromosomes actively organize their own segregation using chromatin-releasing mitotic regulators as well as RanGTP.

  7. Effect of triiodothyronine on rat liver chromatin protein kinase

    International Nuclear Information System (INIS)

    Kruh, J.; Tichonicky, L.

    1976-01-01

    1) Injection of triiodothyronine to rats stimulates protein kinase activity in liver chromatin nonhistone proteins. A significant increase was found after two daily injections. A 4-fold increase was observed with the purified enzyme after eight daily injections of the hormone. No variations were observed in cytosol protein kinase activity. Electrophoretic pattern, effect of heat denaturation, effect of p-hydroxymercuribenzoate seem to indicate that the enzyme present in treated rats is not identical to the enzyme in control animals, which suggests that thyroid hormone has induced nuclear protein kinase. Diiodothyronine, 3, 3', 5'-triiodothyronine have no effect on protein kinase. 2) Chromatin non-histone proteins isolated from rats injected with triiodothyronine incorporated more 32 P when incubated with [γ- 32 P]ATP than the chromatin proteins from untreated rats. Thyroidectomy reduced the in vitro 32 P incorporation. It is suggested that some of the biological activity of thyroid hormone could be mediated through its effect on chromatin non-histone proteins. (orig.) [de

  8. Autism genes keep turning up chromatin.

    Science.gov (United States)

    Lasalle, Janine M

    2013-06-19

    Autism-spectrum disorders (ASD) are complex genetic disorders collectively characterized by impaired social interactions and language as well as repetitive and restrictive behaviors. Of the hundreds of genes implicated in ASD, those encoding proteins acting at neuronal synapses have been most characterized by candidate gene studies. However, recent unbiased genome-wide analyses have turned up a multitude of novel candidate genes encoding nuclear factors implicated in chromatin remodeling, histone demethylation, histone variants, and the recognition of DNA methylation. Furthermore, the chromatin landscape of the human genome has been shown to influence the location of de novo mutations observed in ASD as well as the landscape of DNA methylation underlying neurodevelopmental and synaptic processes. Understanding the interactions of nuclear chromatin proteins and DNA with signal transduction pathways and environmental influences in the developing brain will be critical to understanding the relevance of these ASD candidate genes and continued uncovering of the "roots" of autism etiology.

  9. An overproduction of astellolides induced by genetic disruption of chromatin-remodeling factors in Aspergillus oryzae.

    Science.gov (United States)

    Shinohara, Yasutomo; Kawatani, Makoto; Futamura, Yushi; Osada, Hiroyuki; Koyama, Yasuji

    2016-01-01

    The filamentous fungus Aspergillus oryzae is an important industrial mold. Recent genomic analysis indicated that A. oryzae has a large number of biosynthetic genes for secondary metabolites (SMs), but many of the SMs they produce have not been identified. For better understanding of SMs production by A. oryzae, we screened a gene-disruption library of transcription factors including chromatin-remodeling factors and found two gene disruptions that show similarly altered SM production profiles. One is a homolog of Aspergillus nidulans cclA, a component of the histone 3 lysine 4 (H3K4) methyltransferase complex of proteins associated with Set1 complex, and the other, sppA, is an ortholog of Saccharomyces cerevisiae SPP1, another component of a complex of proteins associated with Set1 complex. The cclA and sppA disruptions in A. oryzae are deficient in trimethylation of H3K4. Furthermore, one of the SMs that increased in the cclA disruptant was identified as astellolide F (14-deacetyl astellolide B). These data indicate that both cclA and sppA affect production of SMs including astellolides by affecting the methylation status of H3K4 in A. oryzae.

  10. SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Mickaël Durand-Dubief

    2012-09-01

    Full Text Available Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in flanking nucleosome position and/or CEN core micrococcal nuclease accessibility. Fun30 deletion leads to defects in histone variant Htz1 occupancy genome-wide, including at and around most centromeres. FUN30 genetically interacts with CSE4, coding for the centromere-specific variant of histone H3, and counteracts the detrimental effect of transcription through centromeres on chromosome segregation and suppresses transcriptional noise over centromere CEN3. Previous work has shown a requirement for fission yeast and mammalian homologs of Fun30 in heterochromatin assembly. As centromeres in budding yeast are not embedded in heterochromatin, our findings indicate a direct role of Fun30 in centromere chromatin by promoting correct chromatin architecture.

  11. Chromatin proteins and modifications as drug targets

    DEFF Research Database (Denmark)

    Helin, Kristian; Dhanak, Dashyant

    2013-01-01

    A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control...... is a frequent event in disease, and the first epigenetic-based therapies for cancer treatment have been approved. A generation of new classes of potent and specific inhibitors for several chromatin-associated proteins have shown promise in preclinical trials. Although the biology of epigenetic regulation...

  12. Cardiac-enriched BAF chromatin-remodeling complex subunit Baf60c regulates gene expression programs essential for heart development and function

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2018-01-01

    Full Text Available How chromatin-remodeling complexes modulate gene networks to control organ-specific properties is not well understood. For example, Baf60c (Smarcd3 encodes a cardiac-enriched subunit of the SWI/SNF-like BAF chromatin complex, but its role in heart development is not fully understood. We found that constitutive loss of Baf60c leads to embryonic cardiac hypoplasia and pronounced cardiac dysfunction. Conditional deletion of Baf60c in cardiomyocytes resulted in postnatal dilated cardiomyopathy with impaired contractile function. Baf60c regulates a gene expression program that includes genes encoding contractile proteins, modulators of sarcomere function, and cardiac metabolic genes. Many of the genes deregulated in Baf60c null embryos are targets of the MEF2/SRF co-factor Myocardin (MYOCD. In a yeast two-hybrid screen, we identified MYOCD as a BAF60c interacting factor; we showed that BAF60c and MYOCD directly and functionally interact. We conclude that Baf60c is essential for coordinating a program of gene expression that regulates the fundamental functional properties of cardiomyocytes.

  13. Genome-wide overlap in the binding location and function of chromatin-remodeling proteins | Center for Cancer Research

    Science.gov (United States)

    A single strand of DNA can stretch several meters. Yet dozens of these strands, which can be one-tenth as thin as a human hair, need to fit into the cell’s nucleus. To pack those strands into such a small space, DNA tightly winds itself around histone proteins, forming nucleosomes that are strung together into complexes called chromatin. Beyond efficiently packaging DNA,

  14. Genomic and proteomic characterization of ARID1A chromatin remodeller in ampullary tumors.

    Science.gov (United States)

    Nastase, Anca; Teo, Jin Yao; Heng, Hong Lee; Ng, Cedric Chuan Young; Myint, Swe Swe; Rajasegaran, Vikneswari; Loh, Jia Liang; Lee, Ser Yee; Ooi, London Lucien; Chung, Alexander Yaw Fui; Chow, Pierce Kah Hoe; Cheow, Peng Chung; Wan, Wei Keat; Azhar, Rafy; Khoo, Avery; Xiu, Sam Xin; Alkaff, Syed Muhammad Fahmy; Cutcutache, Ioana; Lim, Jing Quan; Ong, Choon Kiat; Herlea, Vlad; Dima, Simona; Duda, Dan G; Teh, Bin Tean; Popescu, Irinel; Lim, Tony Kiat Hon

    2017-01-01

    AT rich interactive domain 1A (ARID1A) is one of the most commonly mutated genes in a broad variety of tumors. The mechanisms that involve ARID1A in ampullary cancer progression remains elusive. Here, we evaluated the frequency of ARID1A and KRAS mutations in ampullary adenomas and adenocarcinomas and in duodenal adenocarcinomas from two cohorts of patients from Singapore and Romania, correlated with clinical and pathological tumor features, and assessed the functional role of ARID1A . In the ampullary adenocarcinomas, the frequency of KRAS and ARID1A mutations was 34.7% and 8.2% respectively, with a loss or reduction of ARID1A protein in 17.2% of the cases. ARID1A mutational status was significantly correlated with ARID1A protein expression level (P=0.023). There was a significant difference in frequency of ARID1A mutation between Romania and Singapore (2.7% versus 25%, P=0.04), suggestive of different etiologies. One somatic mutation was detected in the ampullary adenoma group. In vitro studies indicated the tumor suppressive role of ARID1A . Our results warrant further investigation of this chromatin remodeller as a potential early biomarker of the disease, as well as identification of therapeutic targets in ARID1A mutated ampullary cancers.

  15. Connecting the dots: chromatin and alternative splicing in EMT.

    Science.gov (United States)

    Warns, Jessica A; Davie, James R; Dhasarathy, Archana

    2016-02-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.

  16. Chromatin Structure and Function

    CERN Document Server

    Wolffe, Alan P

    1999-01-01

    The Third Edition of Chromatin: Structure and Function brings the reader up-to-date with the remarkable progress in chromatin research over the past three years. It has been extensively rewritten to cover new material on chromatin remodeling, histone modification, nuclear compartmentalization, DNA methylation, and transcriptional co-activators and co-repressors. The book is written in a clear and concise fashion, with 60 new illustrations. Chromatin: Structure and Function provides the reader with a concise and coherent account of the nature, structure, and assembly of chromatin and its active

  17. Regulation of chromatin structure by poly(ADP-ribosylation

    Directory of Open Access Journals (Sweden)

    Sascha eBeneke

    2012-09-01

    Full Text Available The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose, the zinc-finger protein poly(ADP-ribose polymerase-1 (PARP1, was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor.

  18. Formation of DNA-protein crosslinks in gamma-irradiated chromatin

    International Nuclear Information System (INIS)

    Mee, L.K.

    1985-01-01

    Gamma-irradiation of chromatin in vitro and in vivo induces DNA-protein crosslinks which are stable to salt and detergent treatment. The efficiency of crosslink formation is 100 times greater in irradiated isolated chromatin than in chromatin irradiated in cells before isolation. Gamma-irradiation of isolated chromatin in the presence of radical scavengers shows that OH . is the most effective radical for the promotion of crosslinking whereas e/sub aq//sup -/ and O/sub 2//sup -/ are essentially ineffective. For chromatin irradiated in the cell before isolation, fewer crosslinks are formed in air than in an atmosphere of nitrogen; the greatest effect is found in cells irradiated in an atmosphere of nitrous oxide, suggesting that OH . may be involved in the formation of crosslinks in vivo. On the basis of comparing radiation-induced crosslinking in whole chromating (DNA, H1 histone, the core histones - H2A, H2B, H3 and H4 - and non-histone chromosomal proteins) and in a chromatin subunit (DNA and the core histones), the authors identified the core histones as the specific chromosomal proteins predominantly involved in crosslinking to DNA

  19. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.

    Science.gov (United States)

    Kurat, Christoph F; Yeeles, Joseph T P; Patel, Harshil; Early, Anne; Diffley, John F X

    2017-01-05

    The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors.

    Science.gov (United States)

    Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C; Westbrook, Thomas F; Harper, J Wade; Elledge, Stephen J

    2015-06-09

    Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS) candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose) polymerase (PARP)-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Lior Izhar

    2015-06-01

    Full Text Available Localization to sites of DNA damage is a hallmark of DNA damage response (DDR proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose polymerase (PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins.

  2. De Novo Mutations in CHD4, an ATP-Dependent Chromatin Remodeler Gene, Cause an Intellectual Disability Syndrome with Distinctive Dysmorphisms.

    Science.gov (United States)

    Weiss, Karin; Terhal, Paulien A; Cohen, Lior; Bruccoleri, Michael; Irving, Melita; Martinez, Ariel F; Rosenfeld, Jill A; Machol, Keren; Yang, Yaping; Liu, Pengfei; Walkiewicz, Magdalena; Beuten, Joke; Gomez-Ospina, Natalia; Haude, Katrina; Fong, Chin-To; Enns, Gregory M; Bernstein, Jonathan A; Fan, Judith; Gotway, Garrett; Ghorbani, Mohammad; van Gassen, Koen; Monroe, Glen R; van Haaften, Gijs; Basel-Vanagaite, Lina; Yang, Xiang-Jiao; Campeau, Philippe M; Muenke, Maximilian

    2016-10-06

    Chromodomain helicase DNA-binding protein 4 (CHD4) is an ATP-dependent chromatin remodeler involved in epigenetic regulation of gene transcription, DNA repair, and cell cycle progression. Also known as Mi2β, CHD4 is an integral subunit of a well-characterized histone deacetylase complex. Here we report five individuals with de novo missense substitutions in CHD4 identified through whole-exome sequencing and web-based gene matching. These individuals have overlapping phenotypes including developmental delay, intellectual disability, hearing loss, macrocephaly, distinct facial dysmorphisms, palatal abnormalities, ventriculomegaly, and hypogonadism as well as additional findings such as bone fusions. The variants, c.3380G>A (p.Arg1127Gln), c.3443G>T (p.Trp1148Leu), c.3518G>T (p.Arg1173Leu), and c.3008G>A, (p.Gly1003Asp) (GenBank: NM_001273.3), affect evolutionarily highly conserved residues and are predicted to be deleterious. Previous studies in yeast showed the equivalent Arg1127 and Trp1148 residues to be crucial for SNF2 function. Furthermore, mutations in the same positions were reported in malignant tumors, and a de novo missense substitution in an equivalent arginine residue in the C-terminal helicase domain of SMARCA4 is associated with Coffin Siris syndrome. Cell-based studies of the p.Arg1127Gln and p.Arg1173Leu mutants demonstrate normal localization to the nucleus and HDAC1 interaction. Based on these findings, the mutations potentially alter the complex activity but not its formation. This report provides evidence for the role of CHD4 in human development and expands an increasingly recognized group of Mendelian disorders involving chromatin remodeling and modification. Published by Elsevier Inc.

  3. Radiosensitivity modulating factors: Role of PARP-1, PARP-2 and Cdk5 proteins and chromatin implication

    International Nuclear Information System (INIS)

    Boudra, M.T.

    2011-12-01

    The post-translational modifications of DNA repair proteins and histone remodeling factors by poly(ADP-ribose)ylation and phosphorylation are essential for the maintenance of DNA integrity and chromatin structure, and in particular in response to DNA damaging produced by ionizing radiation (IR). Amongst the proteins implicated in these two processes are the poly(ADP-ribose) polymerase -1 (PARP-1) and PARP-2, and the cyclin-dependent kinase Cdk5: PARP-1 and 2 are involved in DNA single strand break (SSB) repair (SSBR) and Cdk5 depletion has been linked with increased cell sensitivity to PARP inhibition. We have shown by using HeLa cells stably depleted for either CdK5 or PARP-2, that the recruitment profile of PARP-1 and XRCC-1, two proteins involved in the short-patch (SP) SSBR sub-pathway, to DNA damage sites is sub-maximal and that of PCNA, a protein involved in the long-patch (LP) repair pathway, is increased in the absence of Cdk5 and decreased in the absence of PARP-2 suggesting that both Cdk5 and PARP-2 are involved in both SSBR sub-pathways. PARP-2 and Cdk5 also impact on the poly(ADP-ribose) levels in cells as in the absence of Cdk5 a hyper-activation of PARP-1 was found and in the absence of PARP-2 a reduction in poly(ADP-ribose) glyco-hydrolase (PARG) activity was seen. However, in spite of these changes no impact on the repair of SSBs induced by IR was seen in either the Cdk5 or PARP-2 depleted cells (Cdk5 KD or PARP-2 KD cells) but, interestingly, increased radiation sensitivity in terms of cell killing was noted in the Cdk5 depleted cells. We also found that Cdk5, PARP-2 and PARG were all implicated in the regulation of the recruitment and the dissociation of the chromatin-remodeling factor ALC1 from DNA damage sites suggesting a role for these three proteins in changes in chromatin structure after DNA photo-damage. These results, taken together with the observation that PARP-1 recruitment is sub-optimal in both Cdk5 KD and PARP-2 KD cells, show that

  4. Identification of in planta protein–protein interactions using IP-MS

    NARCIS (Netherlands)

    Jamge, Suraj; Angenent, Gerco; Bemer, Marian

    2018-01-01

    Gene regulation by transcription factors involves complex protein interaction networks, which include chromatin remodeling and modifying proteins as an integral part. Decoding these protein interactions is crucial for our understanding of chromatin-mediated gene regulation. Here, we describe a

  5. Synaptic, transcriptional and chromatin genes disrupted in autism.

    Science.gov (United States)

    De Rubeis, Silvia; He, Xin; Goldberg, Arthur P; Poultney, Christopher S; Samocha, Kaitlin; Cicek, A Erucment; Kou, Yan; Liu, Li; Fromer, Menachem; Walker, Susan; Singh, Tarinder; Klei, Lambertus; Kosmicki, Jack; Shih-Chen, Fu; Aleksic, Branko; Biscaldi, Monica; Bolton, Patrick F; Brownfeld, Jessica M; Cai, Jinlu; Campbell, Nicholas G; Carracedo, Angel; Chahrour, Maria H; Chiocchetti, Andreas G; Coon, Hilary; Crawford, Emily L; Curran, Sarah R; Dawson, Geraldine; Duketis, Eftichia; Fernandez, Bridget A; Gallagher, Louise; Geller, Evan; Guter, Stephen J; Hill, R Sean; Ionita-Laza, Juliana; Jimenz Gonzalez, Patricia; Kilpinen, Helena; Klauck, Sabine M; Kolevzon, Alexander; Lee, Irene; Lei, Irene; Lei, Jing; Lehtimäki, Terho; Lin, Chiao-Feng; Ma'ayan, Avi; Marshall, Christian R; McInnes, Alison L; Neale, Benjamin; Owen, Michael J; Ozaki, Noriio; Parellada, Mara; Parr, Jeremy R; Purcell, Shaun; Puura, Kaija; Rajagopalan, Deepthi; Rehnström, Karola; Reichenberg, Abraham; Sabo, Aniko; Sachse, Michael; Sanders, Stephan J; Schafer, Chad; Schulte-Rüther, Martin; Skuse, David; Stevens, Christine; Szatmari, Peter; Tammimies, Kristiina; Valladares, Otto; Voran, Annette; Li-San, Wang; Weiss, Lauren A; Willsey, A Jeremy; Yu, Timothy W; Yuen, Ryan K C; Cook, Edwin H; Freitag, Christine M; Gill, Michael; Hultman, Christina M; Lehner, Thomas; Palotie, Aaarno; Schellenberg, Gerard D; Sklar, Pamela; State, Matthew W; Sutcliffe, James S; Walsh, Christiopher A; Scherer, Stephen W; Zwick, Michael E; Barett, Jeffrey C; Cutler, David J; Roeder, Kathryn; Devlin, Bernie; Daly, Mark J; Buxbaum, Joseph D

    2014-11-13

    The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.

  6. High-throughput assessment of context-dependent effects of chromatin proteins

    NARCIS (Netherlands)

    Brueckner, L. (Laura); Van Arensbergen, J. (Joris); Akhtar, W. (Waseem); L. Pagie (Ludo); B. van Steensel (Bas)

    2016-01-01

    textabstractBackground: Chromatin proteins control gene activity in a concerted manner. We developed a high-throughput assay to study the effects of the local chromatin environment on the regulatory activity of a protein of interest. The assay combines a previously reported multiplexing strategy

  7. Shelterin Protects Chromosome Ends by Compacting Telomeric Chromatin

    Science.gov (United States)

    Bandaria, Jigar N.; Qin, Peiwu; Berk, Veysel; Chu, Steven; Yildiz, Ahmet

    2016-01-01

    SUMMARY Telomeres, repetitive DNA sequences at chromosome ends, are shielded against the DNA damage response (DDR) by the shelterin complex. To understand how shelterin protects telomere ends, we investigated the structural organization of telomeric chromatin in human cells using super-resolution microscopy. We found that telomeres form compact globular structures through a complex network of interactions between shelterin subunits and telomeric DNA, and not by DNA methylation, histone deacetylation or histone trimethylation at telomeres and subtelomeric regions. Mutations that abrogate shelterin assembly or removal of individual subunits from telomeres cause up to a 10-fold increase in telomere volume. Decompacted telomeres become more accessible to telomere-associated proteins and accumulate DDR signals. Recompaction of telomeric chromatin using an orthogonal method displaces DDR signals from telomeres. These results reveal the chromatin remodeling activity of shelterin and demonstrate that shelterin-mediated compaction of telomeric chromatin provides robust protection of chromosome ends against the DDR machinery. PMID:26871633

  8. Manipulation of Cell Cycle and Chromatin Configuration by Means of Cell-Penetrating Geminin.

    Directory of Open Access Journals (Sweden)

    Yoshinori Ohno

    Full Text Available Geminin regulates chromatin remodeling and DNA replication licensing which play an important role in regulating cellular proliferation and differentiation. Transcription of the Geminin gene is regulated via an E2F-responsive region, while the protein is being closely regulated by the ubiquitin-proteasome system. Our objective was to directly transduce Geminin protein into cells. Recombinant cell-penetrating Geminin (CP-Geminin was generated by fusing Geminin with a membrane translocating motif from FGF4 and was efficiently incorporated into NIH 3T3 cells and mouse embryonic fibroblasts. The withdrawal study indicated that incorporated CP-Geminin was quickly reduced after removal from medium. We confirmed CP-Geminin was imported into the nucleus after incorporation and also that the incorporated CP-Geminin directly interacted with Cdt1 or Brahma/Brg1 as the same manner as Geminin. We further demonstrated that incorporated CP-Geminin suppressed S-phase progression of the cell cycle and reduced nuclease accessibility in the chromatin, probably through suppression of chromatin remodeling, indicating that CP-Geminin constitutes a novel tool for controlling chromatin configuration and the cell cycle. Since Geminin has been shown to be involved in regulation of stem cells and cancer cells, CP-Geminin is expected to be useful for elucidating the role of Geminin in stem cells and cancer cells, and for manipulating their activity.

  9. Chromatin Structure and Replication Origins: Determinants Of Chromosome Replication And Nuclear Organization

    Science.gov (United States)

    Smith, Owen K.; Aladjem, Mirit I.

    2014-01-01

    The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome’s three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication. PMID:24905010

  10. Statistical-mechanical lattice models for protein-DNA binding in chromatin

    International Nuclear Information System (INIS)

    Teif, Vladimir B; Rippe, Karsten

    2010-01-01

    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibria measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical-mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quantitative models for the regulation of gene expression.

  11. Identification of Novel Proteins Co-Purifying with Cockayne Syndrome Group B (CSB Reveals Potential Roles for CSB in RNA Metabolism and Chromatin Dynamics.

    Directory of Open Access Journals (Sweden)

    Serena Nicolai

    Full Text Available The CSB protein, a member of the SWI/SNF ATP dependent chromatin remodeling family of proteins, plays a role in a sub-pathway of nucleotide excision repair (NER known as transcription coupled repair (TCR. CSB is frequently mutated in Cockayne syndrome group B, a segmental progeroid human autosomal recessive disease characterized by growth failure and degeneration of multiple organs. Though initially classified as a DNA repair protein, recent studies have demonstrated that the loss of CSB results in pleiotropic effects. Identification of novel proteins belonging to the CSB interactome may be useful not only for predicting the molecular basis for diverse pathological symptoms of CS-B patients but also for unraveling the functions of CSB in addition to its authentic role in DNA repair. In this study, we performed tandem affinity purification (TAP technology coupled with mass spectrometry and co-immunoprecipitation studies to identify and characterize the proteins that potentially interact with CSB-TAP. Our approach revealed 33 proteins that were not previously known to interact with CSB. These newly identified proteins indicate potential roles for CSB in RNA metabolism involving repression and activation of transcription process and in the maintenance of chromatin dynamics and integrity.

  12. [Comparative investigation of the non-histone proteins of chromatin from pigeon erythroblasts and erythrocytes].

    Science.gov (United States)

    Fedina, A B; Gazarian, G G

    1976-01-01

    Chromosomal non-histone proteins are obtained from nuclei of two types of pigeon erythroid cells: erythroblasts (cells active in RNA synthesis) and erythrocytes (cells with repressed RNA synthesis). They are well soluble in solutions of low ionic strength. Electrophoretic separation of the obtained non-histone proteins in polyacrylamide gels with urea and SDS shows the presence of qualitative differences in the pattern of non-histone proteins of chromatine from erythroblasts and erythrocytes. By electrophoresis in urea some protein bands of non-histone proteins of chromatine from erythroblasts were found which disappear with the aging of cells. At the same time two protein fractions were observed in chromatine from erythrocytes which were absent in that of erythroblasts. Disappearance of some high molecular weight protein fractions from erythrocyte chromatine as compared to erythroblasts was observed by separation of the non-histone proteins in the presence of SDS. These fractions of the non-histone proteins disappearing during aging of cells are well extractable from erythroblast chromatine by 0.35 M NaCl solution. In the in vitro system with E. coli RNA polymerase addition of non-histone proteins of chromatine from erythroblasts to chromatine from erythrocytes increases RNA synthesis 2--3 times. At the same time addition of non-histone proteins from erythrocytes is either without any influence on this process or somewhat inhibiting.

  13. Modulation of chromatin remodelling induced by the freshwater cyanotoxin cylindrospermopsin in human intestinal caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Antoine Huguet

    Full Text Available Cylindrospermopsin (CYN is a cyanotoxin that has been recognised as an emerging potential public health risk. Although CYN toxicity has been demonstrated, the mechanisms involved have not been fully characterised. To identify some key pathways related to this toxicity, we studied the transcriptomic profile of human intestinal Caco-2 cells exposed to a sub-toxic concentration of CYN (1.6 µM for 24hrs using a non-targeted approach. CYN was shown to modulate different biological functions which were related to growth arrest (with down-regulation of cdkn1a and uhrf1 genes, and DNA recombination and repair (with up-regulation of aptx and pms2 genes. Our main results reported an increased expression of some histone-modifying enzymes (histone acetyl and methyltransferases MYST1, KAT5 and EHMT2 involved in chromatin remodelling, which is essential for initiating transcription. We also detected greater levels of acetylated histone H2A (Lys5 and dimethylated histone H3 (Lys4, two products of these enzymes. In conclusion, CYN overexpressed proteins involved in DNA damage repair and transcription, including modifications of nucleosomal histones. Our results highlighted some new cell processes induced by CYN.

  14. Induction of stable protein-deoxyribonucleic acid adducts in Chinese hamster cell chromatin by ultraviolet light

    International Nuclear Information System (INIS)

    Strniste, G.F.; Rall, S.C.

    1976-01-01

    Ultraviolet (uv)-light-mediated formation of protein-DNA adducts in Chinese hamster cell chromatin was investigated in an attempt to compare chromatin alterations induced in vitro with those observed in vivo. Three independent methods of analysis indicated stable protein-DNA associations: a membrane filter assay which retained DNA on the filter in the presence of high salt-detergent; a Sepharose 4B column assay in which protein eluted coincident with DNA; and a CsCl density gradient equilibrium assay which showed both protein and DNA banding at densities other than their respective native densities. Treatment of the irradiated chromatin with DNase provided further evidence that protein--DNA and not protein-protein adducts were being observed in the column assay. There is a fluence-dependent response of protein-DNA adduct formation when the chromatin is irradiated at low ionic strength and is linear for protein over the range studied. When the chromatin is exposed to differing conditions of pH, ionic strength, or divalent metal ion concentration, the quantity of adduct formed upon uv irradiation varies. Susceptibility to adduct formation can be partially explained in terms of the condensation state of the chromatin and other factors such as rearrangement, denaturation, and dissociation of the chromatin components. Besides providing information on the biological significance of these types of uv-induced lesions, this technique may be useful as a probe of chromatin structure

  15. Dancing on damaged chromatin. Functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage

    International Nuclear Information System (INIS)

    Iijima, Kenta; Ohara, Maki; Seki, Ryota; Tauchi, Hiroshi

    2008-01-01

    In order to preserve and protect genetic information, eukaryotic cells have developed a signaling or communications network to help the cell respond to DNA damage, and ATM and NBS1 are key players in this network. ATM is a protein kinase which is activated immediately after a DNA double strand break (DSB) is formed, and the resulting signal cascade generated in response to cellular DSBs is regulated by post-translational protein modifications such as phosphorylation and acetylation. In addition, to ensure the efficient functioning of DNA repair and cell cycle checkpoints, the highly ordered structure of eukaryotic chromatin must be appropriately altered to permit access of repair-related factors to DNA. These alterations are termed chromatin remodeling, and are executed by a specific remodeling complex in conjunction with histone modifications. Current advances in the molecular analysis of DNA damage responses have shown that the auto-phosphorylation of ATM and the interaction between ATM and NBS1 are key steps for ATM activation, and that the association of ATM and NBS1 is involved in chromatin remodeling. Identification of novel factors which function in ubiquitination (RNF8, Ubc13, Rap80, etc.) has also enabled us to understand more details of the early stages in DNA repair pathways which respond to DSBs. In this review, the focus is on the role of ATM and the RAD50/MRE11/NBS1 complex in DSB response pathways, and their role in DSB repair and in the regulation of chromatin remodeling. (author)

  16. Rapid and reversible epigenome editing by endogenous chromatin regulators.

    Science.gov (United States)

    Braun, Simon M G; Kirkland, Jacob G; Chory, Emma J; Husmann, Dylan; Calarco, Joseph P; Crabtree, Gerald R

    2017-09-15

    Understanding the causal link between epigenetic marks and gene regulation remains a central question in chromatin biology. To edit the epigenome we developed the FIRE-Cas9 system for rapid and reversible recruitment of endogenous chromatin regulators to specific genomic loci. We enhanced the dCas9-MS2 anchor for genome targeting with Fkbp/Frb dimerizing fusion proteins to allow chemical-induced proximity of a desired chromatin regulator. We find that mSWI/SNF (BAF) complex recruitment is sufficient to oppose Polycomb within minutes, leading to activation of bivalent gene transcription in mouse embryonic stem cells. Furthermore, Hp1/Suv39h1 heterochromatin complex recruitment to active promoters deposits H3K9me3 domains, resulting in gene silencing that can be reversed upon washout of the chemical dimerizer. This inducible recruitment strategy provides precise kinetic information to model epigenetic memory and plasticity. It is broadly applicable to mechanistic studies of chromatin in mammalian cells and is particularly suited to the analysis of endogenous multi-subunit chromatin regulator complexes.Understanding the link between epigenetic marks and gene regulation requires the development of new tools to directly manipulate chromatin. Here the authors demonstrate a Cas9-based system to recruit chromatin remodelers to loci of interest, allowing rapid, reversible manipulation of epigenetic states.

  17. Chromatin-remodeling SWI/SNF complex regulates coenzyme Q6 synthesis and a metabolic shift to respiration in yeast.

    Science.gov (United States)

    Awad, Agape M; Venkataramanan, Srivats; Nag, Anish; Galivanche, Anoop Raj; Bradley, Michelle C; Neves, Lauren T; Douglass, Stephen; Clarke, Catherine F; Johnson, Tracy L

    2017-09-08

    Despite its relatively streamlined genome, there are many important examples of regulated RNA splicing in Saccharomyces cerevisiae Here, we report a role for the chromatin remodeler SWI/SNF in respiration, partially via the regulation of splicing. We find that a nutrient-dependent decrease in Snf2 leads to an increase in splicing of the PTC7 transcript. The spliced PTC7 transcript encodes a mitochondrial phosphatase regulator of biosynthesis of coenzyme Q 6 (ubiquinone or CoQ 6 ) and a mitochondrial redox-active lipid essential for electron and proton transport in respiration. Increased splicing of PTC7 increases CoQ 6 levels. The increase in PTC7 splicing occurs at least in part due to down-regulation of ribosomal protein gene expression, leading to the redistribution of spliceosomes from this abundant class of intron-containing RNAs to otherwise poorly spliced transcripts. In contrast, a protein encoded by the nonspliced isoform of PTC7 represses CoQ 6 biosynthesis. Taken together, these findings uncover a link between Snf2 expression and the splicing of PTC7 and establish a previously unknown role for the SWI/SNF complex in the transition of yeast cells from fermentative to respiratory modes of metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Involvement of Chromatin Remodeling Genes and the Rho GTPases RhoB and CDC42 in Ovarian Clear Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Nicolai Skovbjerg Arildsen

    2017-05-01

    Full Text Available ObjectiveOvarian clear cell carcinomas (OCCCs constitute a rare ovarian cancer subtype with distinct clinical features, but may nonetheless be difficult to distinguish morphologically from other subtypes. There is limited knowledge of genetic events driving OCCC tumorigenesis beyond ARID1A, which is reportedly mutated in 30–50% of OCCCs. We aimed to further characterize OCCCs by combined global transcriptional profiling and targeted deep sequencing of a panel of well-established cancer genes. Increased knowledge of OCCC-specific genetic aberrations may help in guiding development of targeted treatments and ultimately improve patient outcome.MethodsGene expression profiling of formalin-fixed, paraffin-embedded (FFPE tissue from a cohort of the major ovarian cancer subtypes (cohort 1; n = 67 was performed using whole-genome cDNA-mediated Annealing, Selection, extension and Ligation (WG-DASL bead arrays, followed by pathway, gene module score, and gene ontology analyses, respectively. A second FFPE cohort of 10 primary OCCCs was analyzed by targeted DNA sequencing of a panel of 60 cancer-related genes (cohort 2. Non-synonymous and non-sense variants affecting single-nucleotide variations and insertions or deletions were further analyzed. A tissue microarray of 43 OCCCs (cohort 3 was used for validation by immunohistochemistry and chromogenic in situ hybridization.ResultsGene expression analyses revealed a distinct OCCC profile compared to other histological subtypes, with, e.g., ERBB2, TFAP2A, and genes related to cytoskeletal actin regulation being overexpressed in OCCC. ERBB2 was, however, not overexpressed on the protein level and ERBB2 amplification was rare in the validation cohort. Targeted deep sequencing revealed non-synonymous variants or insertions/deletions in 11/60 cancer-related genes. Genes involved in chromatin remodeling, including ARID1A, SPOP, and KMT2D were frequently mutated across OCCC tumors.ConclusionOCCCs appear

  19. Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea

    OpenAIRE

    Guo, Li; Feng, Yingang; Zhang, Zhenfeng; Yao, Hongwei; Luo, Yuanming; Wang, Jinfeng; Huang, Li

    2007-01-01

    Archaea contain a variety of chromatin proteins consistent with the evolution of different genome packaging mechanisms. Among the two main kingdoms in the Archaea, Euryarchaeota synthesize histone homologs, whereas Crenarchaeota have not been shown to possess a chromatin protein conserved at the kingdom level. We report the identification of Cren7, a novel family of chromatin proteins highly conserved in the Crenarchaeota. A small, basic, methylated and abundant protein, Cren7 displays a high...

  20. Dietary polyphenols and chromatin remodeling.

    Science.gov (United States)

    Russo, Gian Luigi; Vastolo, Viviana; Ciccarelli, Marco; Albano, Luigi; Macchia, Paolo Emidio; Ungaro, Paola

    2017-08-13

    Polyphenols are the most abundant phytochemicals in fruits, vegetables, and plant-derived beverages. Recent findings suggest that polyphenols display the ability to reverse adverse epigenetic regulation involved in pathological conditions, such as obesity, metabolic disorder, cardiovascular and neurodegenerative diseases, and various forms of cancer. Epigenetics, defined as heritable changes to the transcriptome, independent from those occurring in the genome, includes DNA methylation, histone modifications, and posttranscriptional gene regulation by noncoding RNAs. Sinergistically and cooperatively, these processes regulate gene expression by changing chromatin organization and DNA accessibility. Such induced epigenetic changes can be inherited during cell division, resulting in permanent maintenance of the acquired phenotype, but they may also occur throughout an individual life-course and may ultimately influence phenotypic outcomes (health and disease risk). In the last decade, a number of studies have shown that nutrients can affect metabolic traits by altering the structure of chromatin and directly regulate both transcription and translational processes. In this context, dietary polyphenol-targeted epigenetics becomes an attractive approach for disease prevention and intervention. Here, we will review how polyphenols, including flavonoids, curcuminoids, and stilbenes, modulate the establishment and maintenance of key epigenetic marks, thereby influencing gene expression and, hence, disease risk and health.

  1. Chromatin in embryonic stem cell neuronal differentiation.

    Science.gov (United States)

    Meshorer, E

    2007-03-01

    Chromatin, the basic regulatory unit of the eukaryotic genetic material, is controlled by epigenetic mechanisms including histone modifications, histone variants, DNA methylation and chromatin remodeling. Cellular differentiation involves large changes in gene expression concomitant with alterations in genome organization and chromatin structure. Such changes are particularly evident in self-renewing pluripotent embryonic stem cells, which begin, in terms of cell fate, as a tabula rasa, and through the process of differentiation, acquire distinct identities. Here I describe the changes in chromatin that accompany neuronal differentiation, particularly of embryonic stem cells, and discuss how chromatin serves as the master regulator of cellular destiny.

  2. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators.

    Science.gov (United States)

    Polstein, Lauren R; Perez-Pinera, Pablo; Kocak, D Dewran; Vockley, Christopher M; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2015-08-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function. © 2015 Polstein et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Comparative aspects of basic chromatin proteins in dinoflagellates.

    Science.gov (United States)

    Rizzo, P J

    1981-01-01

    Previous work on histone-like proteins in dinoflagellates is summarized, together with some new data to give an overview of basic proteins in these algae. The first two dinoflagellates studied were both found to contain one major acid-soluble protein that migrated to the same position in acidic-urea gels. When several other genera were studied however, it became apparent that the histone-like proteins from different dinoflagellates were similar but not identical. In view of the great diversity of living dinoflagellates it is speculated that further differences in dinoflagellate basic chromatin proteins will be revealed. Electrophoretic data from the eukaryotic (endosymbiont) nucleus of Peridinium balticum showed the presence of five major components. It is speculated that two of these proteins represent an H1-like doublet and two others correspond to the highly conserved histones H3 and H4. The fifth component is a new histone that may substitute for H2A and H2B in the nucleosome. Because histones and nucleosomes are present in all higher organisms but completely lacking in procaryotes, studies on basic proteins in dinoflagellates will provides insights into the evolution of histones and eucaryotic chromatin organization.

  4. Selection on a Subunit of the NURF Chromatin Remodeler Modifies Life History Traits in a Domesticated Strain of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Edward E Large

    2016-07-01

    Full Text Available Evolutionary life history theory seeks to explain how reproductive and survival traits are shaped by selection through allocations of an individual's resources to competing life functions. Although life-history traits evolve rapidly, little is known about the genetic and cellular mechanisms that control and couple these tradeoffs. Here, we find that two laboratory-adapted strains of C. elegans descended from a single common ancestor that lived in the 1950s have differences in a number of life-history traits, including reproductive timing, lifespan, dauer formation, growth rate, and offspring number. We identified a quantitative trait locus (QTL of large effect that controls 24%-75% of the total trait variance in reproductive timing at various timepoints. Using CRISPR/Cas9-induced genome editing, we show this QTL is due in part to a 60 bp deletion in the 3' end of the nurf-1 gene, which is orthologous to the human gene encoding the BPTF component of the NURF chromatin remodeling complex. Besides reproduction, nurf-1 also regulates growth rate, lifespan, and dauer formation. The fitness consequences of this deletion are environment specific-it increases fitness in the growth conditions where it was fixed but decreases fitness in alternative laboratory growth conditions. We propose that chromatin remodeling, acting through nurf-1, is a pleiotropic regulator of life history trade-offs underlying the evolution of multiple traits across different species.

  5. The role of proteins and metal ions in the protection of chromatin DNA at fast neutrons action

    International Nuclear Information System (INIS)

    Radu, L.; Preoteasa, V.; Radulescu, I.; Constantinescu, B.

    1997-01-01

    The role of chromatin proteins and of some ions on the fast neutrons actions on chromatin DNA from rat Walker tumors was analysed. The DNA in chromatin is effectively protected against fast neutrons actions by DNA bound proteins and specially by histones, because of the limited accessibility of the condensed chromatin DNA to hydroxyl radicals and of the scavenging of radicals by the chromatin proteins. The ions utilised protect chromatin DNA against the damage produced ed by fast neutrons, through the induction of structural DNA changes with a less accessibility to OH radicals. (authors)

  6. Effect of benzimidazol-derivatives on the DNA-protein binding formation after UV-radiation of chromatin

    International Nuclear Information System (INIS)

    Mil', E.M.; Binyukov, V.I.; Zhil'tsova, V.M.; Stolyarova, L.G.; Kuznetsov, Yu.V.

    1991-01-01

    Effect of benzimidazol-derivatives on the DNA-protein binding formation was studied after UV-radiation of chromatin. These derivatives were shown to protect chromatin from UV-induced DNA-protein binding formation. Structural analog contained two aminomethyl residuals sensibilized additional binding formation in chromatin. Results suggested, that benzimidazol interacted with DNA, while aminomethyl groups interacted with protein and sensibilized binding of DNA, whilt aminomethyl groups interacted with protein and sensibilized binding of DNA with histone H1

  7. Interplay between chromatin modulators and histone acetylation regulates the formation of accessible chromatin in the upstream regulatory region of fission yeast fbp1.

    Science.gov (United States)

    Adachi, Akira; Senmatsu, Satoshi; Asada, Ryuta; Abe, Takuya; Hoffman, Charles S; Ohta, Kunihiro; Hirota, Kouji

    2018-05-03

    Numerous noncoding RNA transcripts are detected in eukaryotic cells. Noncoding RNAs transcribed across gene promoters are involved in the regulation of mRNA transcription via chromatin modulation. This function of noncoding RNA transcription was first demonstrated for the fission yeast fbp1 gene, where a cascade of noncoding RNA transcription events induces chromatin remodeling to facilitate transcription factor binding. We recently demonstrated that the noncoding RNAs from the fbp1 upstream region facilitate binding of the transcription activator Atf1 and thereby promote histone acetylation. Histone acetylation by histone acetyl transferases (HATs) and ATP-dependent chromatin remodelers (ADCRs) are implicated in chromatin remodeling, but the interplay between HATs and ADCRs in this process has not been fully elucidated. Here, we examine the roles played by two distinct ADCRs, Snf22 and Hrp3, and by the HAT Gcn5 in the transcriptional activation of fbp1. Snf22 and Hrp3 redundantly promote disassembly of chromatin in the fbp1 upstream region. Gcn5 critically contributes to nucleosome eviction in the absence of either Snf22 or Hrp3, presumably by recruiting Hrp3 in snf22∆ cells and Snf22 in hrp3∆ cells. Conversely, Gcn5-dependent histone H3 acetylation is impaired in snf22∆/hrp3∆ cells, suggesting that both redundant ADCRs induce recruitment of Gcn5 to the chromatin array in the fbp1 upstream region. These results reveal a previously unappreciated interplay between ADCRs and histone acetylation in which histone acetylation facilitates recruitment of ADCRs, while ADCRs are required for histone acetylation.

  8. Proteomic interrogation of human chromatin.

    Directory of Open Access Journals (Sweden)

    Mariana P Torrente

    Full Text Available Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the "Chromatome" is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes.

  9. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    DEFF Research Database (Denmark)

    Østrup, Olga; Hyttel, Poul; Klærke, Dan Arne

    2011-01-01

    Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression....... This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling...... and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation...

  10. Intermittent Hypoxia-Induced Cardiovascular Remodeling Is Reversed by Normoxia in a Mouse Model of Sleep Apnea.

    Science.gov (United States)

    Castro-Grattoni, Anabel L; Alvarez-Buvé, Roger; Torres, Marta; Farré, Ramon; Montserrat, Josep M; Dalmases, Mireia; Almendros, Isaac; Barbé, Ferran; Sánchez-de-la-Torre, Manuel

    2016-06-01

    Intermittent hypoxia (IH) is the principal injurious factor involved in the cardiovascular morbidity and mortality associated with OSA. The gold standard for treatment is CPAP, which eliminates IH and appears to reduce cardiovascular risk. There is no experimental evidence on the reversibility of cardiovascular remodeling after IH withdrawal. The objective of the present study is to assess the reversibility of early cardiovascular structural remodeling induced by IH after resumption of normoxic breathing in a novel recovery animal model mimicking OSA treatment. We investigated cardiovascular remodeling in C57BL/6 mice exposed to IH for 6 weeks vs the normoxia group and its spontaneous recovery after 6 subsequent weeks under normoxia. Aortic expansive remodeling was induced by IH, with intima-media thickening and without lumen perimeter changes. Elastic fiber network disorganization, fragmentation, and estrangement between the end points of disrupted fibers were increased by IH. Extracellular matrix turnover was altered, as visualized by collagen and mucoid interlaminar accumulation. Furthermore, left ventricular perivascular fibrosis was increased by IH, whereas cardiomyocytes size was unaffected. These cardiovascular remodeling events induced by IH were normalized after recovery in normoxia, mimicking CPAP treatment. The early structural cardiovascular remodeling induced by IH was normalized after IH removal, revealing a novel recovery model for studying the effects of OSA treatment. Our findings suggest the clinical relevance of early detection and effective treatment of OSA in patients to prevent the natural course of cardiovascular diseases. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  11. Interaction of maize chromatin-associated HMG proteins with mononucleosomes

    DEFF Research Database (Denmark)

    Lichota, J.; Grasser, Klaus D.

    2003-01-01

    maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA...

  12. Novel RNA-binding properties of the MTG chromatin regulatory proteins

    NARCIS (Netherlands)

    S. Rossetti (Stefano); L. van Unen (Leontine); N. Sacchi; A.T. Hoogeveen (Andre)

    2008-01-01

    textabstractBackground: The myeloid translocation gene (MTG) proteins are non-DNA-binding transcriptional regulators capable of interacting with chromatin modifying proteins. As a consequence of leukemia-associated chromosomal translocations, two of the MTG proteins, MTG8 and MTG16, are fused to the

  13. Epigenetic regulation of open chromatin in pluripotent stem cells

    Science.gov (United States)

    Kobayashi, Hiroshi; Kikyo, Nobuaki

    2014-01-01

    The recent progress in pluripotent stem cell research has opened new avenues of disease modeling, drug screening, and transplantation of patient-specific tissues that had been unimaginable until a decade ago. The central mechanism underlying pluripotency is epigenetic gene regulation; the majority of cell signaling pathways, both extracellular and cytoplasmic, eventually alter the epigenetic status of their target genes during the process of activating or suppressing the genes to acquire or maintain pluripotency. It has long been thought that the chromatin of pluripotent stem cells is globally open to enable the timely activation of essentially all genes in the genome during differentiation into multiple lineages. The current article reviews descriptive observations and the epigenetic machinery relevant to what is supposed to be globally open chromatin in pluripotent stem cells. This includes microscopic appearance, permissive gene transcription, chromatin remodeling complexes, histone modifications, DNA methylation, noncoding RNAs, dynamic movement of chromatin proteins, nucleosome accessibility and positioning, and long-range chromosomal interactions. Detailed analyses of each element, however, have revealed that the globally open chromatin hypothesis is not necessarily supported by some of the critical experimental evidence, such as genome-wide nucleosome accessibility and nucleosome positioning. Further understanding of the epigenetic gene regulation is expected to determine the true nature of the so-called globally open chromatin in pluripotent stem. PMID:24695097

  14. Chromatin versus pathogens: the function of epigenetics in plant immunity

    Science.gov (United States)

    Ding, Bo; Wang, Guo-Liang

    2015-01-01

    To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed. PMID:26388882

  15. The histone chaperone TAF-I/SET/INHAT is required for transcription in vitro of chromatin templates.

    Science.gov (United States)

    Gamble, Matthew J; Erdjument-Bromage, Hediye; Tempst, Paul; Freedman, Leonard P; Fisher, Robert P

    2005-01-01

    To uncover factors required for transcription by RNA polymerase II on chromatin, we fractionated a mammalian cell nuclear extract. We identified the histone chaperone TAF-I (also known as INHAT [inhibitor of histone acetyltransferase]), which was previously proposed to repress transcription, as a potent activator of chromatin transcription responsive to the vitamin D3 receptor or to Gal4-VP16. TAF-I associates with chromatin in vitro and can substitute for the related protein NAP-1 in assembling chromatin onto cloned DNA templates in cooperation with the remodeling enzyme ATP-dependent chromatin assembly factor (ACF). The chromatin assembly and transcriptional activation functions are distinct, however, and can be dissociated temporally. Efficient transcription of chromatin assembled with TAF-I still requires the presence of TAF-I during the polymerization reaction. Conversely, TAF-I cannot stimulate transcript elongation when added after the other factors necessary for assembly of a preinitiation complex on naked DNA. Thus, TAF-I is required to facilitate transcription at a step after chromatin assembly but before transcript elongation.

  16. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure

    DEFF Research Database (Denmark)

    Luijsterburg, Martijn S; Acs, Klara; Ackermann, Leena

    2012-01-01

    The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensation....... Our data show that CHD4, the catalytic subunit of the NuRD complex, interacts with RNF8 and is essential for RNF8-mediated chromatin unfolding. The chromatin remodelling activity of CHD4 promotes efficient ubiquitin conjugation and assembly of RNF168 and BRCA1 at DNA double-strand breaks....... Interestingly, RNF8-mediated recruitment of CHD4 and subsequent chromatin remodelling were independent of the ubiquitin-ligase activity of RNF8, but involved a non-canonical interaction with the forkhead-associated (FHA) domain. Our study reveals a new mechanism of chromatin remodelling-assisted ubiquitylation...

  17. Noradrenergic Activation of the Basolateral Amygdala Enhances Object Recognition Memory and Induces Chromatin Remodeling in the Insular Cortex

    Directory of Open Access Journals (Sweden)

    Hassiba eBeldjoud

    2015-04-01

    Full Text Available It is well established that arousal-induced memory enhancement requires noradrenergic activation of the basolateral complex of the amygdala (BLA and modulatory influences on information storage processes in its many target regions. While this concept is well accepted, the molecular basis of such BLA effects on neural plasticity changes within other brain regions remains to be elucidated. The present study investigated whether noradrenergic activation of the BLA after object recognition training induces chromatin remodeling through histone post-translational modifications in the insular cortex (IC, a brain region that is importantly involved in object recognition memory. Male Sprague–Dawley rats were trained on an object recognition task, followed immediately by bilateral microinfusions of norepinephrine (1.0 µg or saline administered into the BLA. Saline-treated control rats exhibited poor 24-h retention, whereas norepinephrine treatment induced robust 24-h object recognition memory. Most importantly, this memory-enhancing dose of norepinephrine induced a global reduction in the acetylation levels of histone H3 at lysine 14, H2B and H4 in the IC 1 h later, whereas it had no effect on the phosphorylation of histone H3 at serine 10 or tri-methylation of histone H3 at lysine 27. Norepinephrine administered into the BLA of non-trained control rats did not induce any changes in the histone marks investigated in this study. These findings indicate that noradrenergic activation of the BLA induces training-specific effects on chromatin remodeling mechanisms, and presumably gene transcription, in its target regions, which may contribute to the understanding of the molecular mechanisms of stress and emotional arousal effects on memory consolidation.

  18. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function

    Science.gov (United States)

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-01-01

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo. DOI: http://dx.doi.org/10.7554/eLife.13450.001 PMID:27130520

  19. Chromatin Immunoprecipitation Assay for the Identification of Arabidopsis Protein-DNA Interactions In Vivo.

    Science.gov (United States)

    Komar, Dorota N; Mouriz, Alfonso; Jarillo, José A; Piñeiro, Manuel

    2016-01-14

    Intricate gene regulatory networks orchestrate biological processes and developmental transitions in plants. Selective transcriptional activation and silencing of genes mediate the response of plants to environmental signals and developmental cues. Therefore, insights into the mechanisms that control plant gene expression are essential to gain a deep understanding of how biological processes are regulated in plants. The chromatin immunoprecipitation (ChIP) technique described here is a procedure to identify the DNA-binding sites of proteins in genes or genomic regions of the model species Arabidopsis thaliana. The interactions with DNA of proteins of interest such as transcription factors, chromatin proteins or posttranslationally modified versions of histones can be efficiently analyzed with the ChIP protocol. This method is based on the fixation of protein-DNA interactions in vivo, random fragmentation of chromatin, immunoprecipitation of protein-DNA complexes with specific antibodies, and quantification of the DNA associated with the protein of interest by PCR techniques. The use of this methodology in Arabidopsis has contributed significantly to unveil transcriptional regulatory mechanisms that control a variety of plant biological processes. This approach allowed the identification of the binding sites of the Arabidopsis chromatin protein EBS to regulatory regions of the master gene of flowering FT. The impact of this protein in the accumulation of particular histone marks in the genomic region of FT was also revealed through ChIP analysis.

  20. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1

    International Nuclear Information System (INIS)

    Hatta, M.; Liu, F.; Cirillo, L.A.

    2009-01-01

    Transcriptional activity of FoxO factors is controlled through the actions of multiple growth factors signaling through protein kinase B, whereby phosphorylation of FoxO factors inhibits FoxO-mediated transactivation by promoting nuclear export. Phosphorylation of FoxO factors is enhanced by p300-mediated acetylation, which decreases their affinity for DNA. The negative effect of acetylation on FoxO DNA binding, together with nuclear FoxO mobility, is eliminated by over-expression of the de-acetylase Sirt1, suggesting that acetylation mobilizes FoxO factors in chromatin for inducible gene expression. Here, we show that acetylation significantly curtails the affinity of FoxO1 for its binding sites in nucleosomal DNA but has no effect on either stable nucleosome binding or remodeling by this factor. We suggest that, while acetylation provides a first, essential step toward mobilizing FoxO factors for inducible gene repression, additional mechanisms exist for overcoming their inherent capacity to stably bind and remodel nuclear chromatin.

  1. Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea.

    Science.gov (United States)

    Guo, Li; Feng, Yingang; Zhang, Zhenfeng; Yao, Hongwei; Luo, Yuanming; Wang, Jinfeng; Huang, Li

    2008-03-01

    Archaea contain a variety of chromatin proteins consistent with the evolution of different genome packaging mechanisms. Among the two main kingdoms in the Archaea, Euryarchaeota synthesize histone homologs, whereas Crenarchaeota have not been shown to possess a chromatin protein conserved at the kingdom level. We report the identification of Cren7, a novel family of chromatin proteins highly conserved in the Crenarchaeota. A small, basic, methylated and abundant protein, Cren7 displays a higher affinity for double-stranded DNA than for single-stranded DNA, constrains negative DNA supercoils and is associated with genomic DNA in vivo. The solution structure and DNA-binding surface of Cren7 from the hyperthermophilic crenarchaeon Sulfolobus solfataricus were determined by NMR. The protein adopts an SH3-like fold. It interacts with duplex DNA through a beta-sheet and a long flexible loop, presumably resulting in DNA distortions through intercalation of conserved hydrophobic residues into the DNA structure. These data suggest that the crenarchaeal kingdom in the Archaea shares a common strategy in chromatin organization.

  2. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression.

    Science.gov (United States)

    Cai, Hanyang; Zhao, Lihua; Wang, Lulu; Zhang, Man; Su, Zhenxia; Cheng, Yan; Zhao, Heming; Qin, Yuan

    2017-06-01

    Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Effects of fast neutrons on chromatin: dependence on chromatin structure

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Dept. of Molecular Genetics, V. Babes National Inst., Bd. Timisoara, Bucharest (Romania); Constantinescu, B. [Dept. of Cyclotron, H. Hulubei National Inst., Bucharest (Romania); Gazdaru, D. [Dept. of Biophysics, Physics Faculty, Univ. of Bucharest (Romania)

    2002-07-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  4. Effects of fast neutrons on chromatin: dependence on chromatin structure

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gazdaru, D.

    2002-01-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  5. Broken silence restored-remodeling primes for deacetylation at replication forks

    DEFF Research Database (Denmark)

    Jasencakova, Zuzana; Groth, Anja

    2011-01-01

    Faithful propagation of chromatin structures requires assimilation of new histones to the modification profile of individual loci. In this issue of Molecular Cell, Rowbotham and colleagues identify a remodeler, SMARCAD1, acting at replication sites to facilitate histone deacetylation and restorat......Faithful propagation of chromatin structures requires assimilation of new histones to the modification profile of individual loci. In this issue of Molecular Cell, Rowbotham and colleagues identify a remodeler, SMARCAD1, acting at replication sites to facilitate histone deacetylation...

  6. Complex mutual regulation of facilitates chromatin transcription (FACT) subunits on both mRNA and protein levels in human cells.

    Science.gov (United States)

    Safina, Alfiya; Garcia, Henry; Commane, Mairead; Guryanova, Olga; Degan, Seamus; Kolesnikova, Kateryna; Gurova, Katerina V

    2013-08-01

    Facilitates chromatin transcription (FACT) is a chromatin remodeling complex with two subunits: SSRP1 and SPT16. Mechanisms controlling FACT levels are of interest, since the complex is not expressed in most differentiated cells, but is frequently upregulated in cancer, particularly in poorly differentiated, aggressive tumors. Moreover, inhibition of FACT expression or function in tumor cells interferes with their survival. Here we demonstrate that SSRP1 and SPT16 protein levels decline upon induction of cellular differentiation or senescence in vitro and that similar declines in protein levels for both SSRP1 and SPT16 occur upon RNAi-mediated knockdown of either SSRP1 or SPT16. The interdependence of SSRP1 and SPT16 protein levels was found to be due to their association with SSRP1 and SPT16 mRNAs, which stabilizes the proteins. In particular, presence of SSRP1 mRNA is critical for SPT16 protein stability. In addition, binding of SSRP1 and SPT16 mRNAs to the FACT complex increases the stability and efficiency of translation of the mRNAs. These data support a model in which the FACT complex is stable when SSRP1 mRNA is present, but quickly degrades when SSRP1 mRNA levels drop. In the absence of FACT complex, SSRP1 and SPT16 mRNAs are unstable and inefficiently translated, making reactivation of FACT function unlikely in normal cells. Thus, we have described a complex and unusual mode of regulation controlling cellular FACT levels that results in amplified and stringent control of FACT activity. The FACT dependence of tumor cells suggests that mechanisms controlling FACT levels could be targeted for anticancer therapy.

  7. Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload

    Science.gov (United States)

    Kuipers, Marjorie A.; Stasevich, Timothy J.; Sasaki, Takayo; Wilson, Korey A.; Hazelwood, Kristin L.; McNally, James G.; Davidson, Michael W.

    2011-01-01

    The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles. PMID:21220507

  8. Functional genomics indicates yeast requires Golgi/ER transport, chromatin remodeling, and DNA repair for low dose DMSO tolerance

    Directory of Open Access Journals (Sweden)

    Brandon David Gaytán

    2013-08-01

    Full Text Available Dimethyl sulfoxide (DMSO is frequently utilized as a solvent in toxicological and pharmaceutical investigations. It is therefore important to establish the cellular and molecular targets of DMSO in order to differentiate its intrinsic effects from those elicited by a compound of interest. We performed a genome-wide functional screen in Saccharomyces cerevisiae to identify deletion mutants exhibiting sensitivity to 1% DMSO, a concentration standard to yeast chemical profiling studies. We report that mutants defective in Golgi/ER transport are sensitive to DMSO, including those lacking components of the conserved oligomeric Golgi (COG complex. Moreover, strains deleted for members of the SWR1 histone exchange complex are hypersensitive to DMSO, with additional chromatin remodeling mutants displaying a range of growth defects. We also identify DNA repair genes important for DMSO tolerance. Finally, we demonstrate that overexpression of histone H2A.Z, which replaces chromatin-associated histone H2A in a SWR1-catalyzed reaction, confers resistance to DMSO. Many yeast genes described in this study have homologs in more complex organisms, and the data provided is applicable to future investigations into the cellular and molecular mechanisms of DMSO toxicity.

  9. Friend of Prmt1, a novel chromatin target of protein arginine methyltransferases

    NARCIS (Netherlands)

    T.B. van Dijk (Thamar); N. Gillemans (Nynke); C. Stein (Claudia); P. Fanis (Pavlos); J.A.A. Demmers (Jeroen); M.P.C. van de Corput (Mariëtte); J. Essers (Jeroen); F.G. Grosveld (Frank); U.M. Bauer (Uta-Maria); J.N.J. Philipsen (Sjaak)

    2010-01-01

    textabstractWe describe the isolation and characterization of Friend of Prmt1 (Fop), a novel chromatin target of protein arginine methyltransferases. Human Fop is encoded by C1orf77, a gene of previously unknown function. We show that Fop is tightly associated with chromatin, and that it is modified

  10. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR.

    Science.gov (United States)

    Varkey, Jobin; Langen, Ralf

    2017-07-01

    The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single

  11. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR

    Science.gov (United States)

    Varkey, Jobin; Langen, Ralf

    2017-07-01

    The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single

  12. Recruitment by the Repressor Freud-1 of Histone Deacetylase-Brg1 Chromatin Remodeling Complexes to Strengthen HTR1A Gene Repression.

    Science.gov (United States)

    Souslova, Tatiana; Mirédin, Kim; Millar, Anne M; Albert, Paul R

    2017-12-01

    Five-prime repressor element under dual repression binding protein-1 (Freud-1)/CC2D1A is genetically linked to intellectual disability and implicated in neuronal development. Freud-1 represses the serotonin-1A (5-HT1A) receptor gene HTR1A by histone deacetylase (HDAC)-dependent or HDAC-independent mechanisms in 5-HT1A-negative (e.g., HEK-293) or 5-HT1A-expressing cells (SK-N-SH), respectively. To identify the underlying mechanisms, Freud-1-associated proteins were affinity-purified from HEK-293 nuclear extracts and members of the Brg1/SMARCCA chromatin remodeling and Sin3A-HDAC corepressor complexes were identified. Pull-down assays using recombinant proteins showed that Freud-1 interacts directly with the Brg1 carboxyl-terminal domain; interaction with Brg1 required the carboxyl-terminal of Freud-1. Freud-1 complexes in HEK-293 and SK-N-SH cells differed, with low levels of BAF170/SMARCC2 and BAF57/SMARCE1 in HEK-293 cells and low-undetectable BAF155/SMARCC1, Sin3A, and HDAC1/2 in SK-N-SH cells. Similarly, by quantitative chromatin immunoprecipitation, Brg1-BAF170/57 and Sin3A-HDAC complexes were observed at the HTR1A promoter in HEK-293 cells, whereas in SK-N-SH cells, Sin3A-HDAC proteins were not detected. Quantifying 5-HT1A receptor mRNA levels in cells treated with siRNA to Freud-1, Brg1, or both RNAs addressed the functional role of the Freud-1-Brg1 complex. In HEK-293 cells, 5-HT1A receptor mRNA levels were increased only when both Freud-1 and Brg1 were depleted, but in SK-N-SH cells, depletion of either protein upregulated 5-HT1A receptor RNA. Thus, recruitment by Freud-1 of Brg1, BAF155, and Sin3A-HDAC complexes appears to strengthen repression of the HTR1A gene to prevent its expression inappropriate cell types, while recruitment of the Brg1-BAF170/57 complex is permissive to 5-HT1A receptor expression. Alterations in Freud-1-Brg1 interactions in mutants associated with intellectual disability could impair gene repression leading to altered neuronal

  13. Mutations and modeling of the chromatin remodeler CHD8 define an emerging autism etiology

    Directory of Open Access Journals (Sweden)

    Rebecca A Barnard

    2015-12-01

    Full Text Available Autism Spectrum Disorder (ASD is a common neurodevelopmental disorder with a strong but complex genetic component. Recent family based exome-sequencing strategies have identified recurrent de novo mutations at specific genes, providing strong evidence for ASD risk, but also highlighting the extreme genetic heterogeneity of the disorder. However, disruptions in these genes converge on key molecular pathways early in development. In particular, functional enrichment analyses have found that there is a bias towards genes involved in transcriptional regulation, such as chromatin regulators. Here we review recent genetic, animal model, co-expression network, and functional genomics studies relating to the high confidence ASD risk gene, CHD8. CHD8 a chromatin remodeling factor, may serve as a master regulator of a common ASD etiology. Individuals with a CHD8 mutation show an ASD subtype that includes similar physical characteristics, such as macrocephaly and prolonged GI problems including recurrent constipation. Similarly, animal models of CHD8 disruption exhibit enlarged head circumference and reduced gut motility phenotypes. Systems biology approaches suggest CHD8 and other candidate ASD risk genes are enriched during mid-fetal development, which may represent a critical time window in ASD etiology. Transcription profiles from cell and primary tissue models of early development indicate that CHD8 may also positively regulate other candidate ASD risk genes through both direct and indirect means. However continued study is needed to elucidate the mechanism of regulation as well as identify which CHD8 targets are most relevant to ASD risk. Overall, these initial studies suggest the potential for common ASD etiologies and the development of personalized treatments in the future.

  14. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.

  15. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Jeong, Kwang Won

    2014-01-01

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators

  16. Chromosome aberration model combining radiation tracks, chromatin structure, DSB repair and chromatin mobility

    International Nuclear Information System (INIS)

    Friedland, W.; Kundrat, P.

    2015-01-01

    The module that simulates the kinetics and yields of radiation-induced chromosome aberrations within the biophysical code PARTRAC is described. Radiation track structures simulated by Monte Carlo methods are overlapped with multi-scale models of DNA and chromatin to assess the resulting DNA damage. Spatial mobility of individual DNA ends from double-strand breaks is modelled simultaneously with their processing by the non-homologous end-joining enzymes. To score diverse types of chromosome aberrations, the joined ends are classified regarding their original chromosomal location, orientation and the involvement of centromeres. A comparison with experimental data on dicentrics induced by gamma and alpha particles shows that their relative dose dependence is predicted correctly, although the absolute yields are overestimated. The critical model assumptions on chromatin mobility and on the initial damage recognition and chromatin remodelling steps and their future refinements to solve this issue are discussed. (authors)

  17. The actin family protein ARP6 contributes to the structure and the function of the nucleolus.

    Science.gov (United States)

    Kitamura, Hiroshi; Matsumori, Haruka; Kalendova, Alzbeta; Hozak, Pavel; Goldberg, Ilya G; Nakao, Mitsuyoshi; Saitoh, Noriko; Harata, Masahiko

    2015-08-21

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers.

    Directory of Open Access Journals (Sweden)

    Christophe Lambing

    2015-07-01

    Full Text Available Meiotic chromosomes are organized into linear looped chromatin arrays by a protein axis localized along the loop-bases. Programmed remodelling of the axis occurs during prophase I of meiosis. Structured illumination microscopy (SIM has revealed dynamic changes in the chromosome axis in Arabidopsis thaliana and Brassica oleracea. We show that the axis associated protein ASY1 is depleted during zygotene concomitant with synaptonemal complex (SC formation. Study of an Atpch2 mutant demonstrates this requires the conserved AAA+ ATPase, PCH2, which localizes to the sites of axis remodelling. Loss of PCH2 leads to a failure to deplete ASY1 from the axes and compromizes SC polymerisation. Immunolocalization of recombination proteins in Atpch2 indicates that recombination initiation and CO designation during early prophase I occur normally. Evidence suggests that CO interference is initially functional in the mutant but there is a defect in CO maturation following designation. This leads to a reduction in COs and a failure to form COs between some homologous chromosome pairs leading to univalent chromosomes at metaphase I. Genetic analysis reveals that CO distribution is also affected in some chromosome regions. Together these data indicate that the axis remodelling defect in Atpch2 disrupts normal patterned formation of COs.

  19. Chromatin plasticity as a differentiation index during muscle differentiation of C2C12 myoblasts

    International Nuclear Information System (INIS)

    Watanabe, Tomonobu M.; Higuchi, Sayaka; Kawauchi, Keiko; Tsukasaki, Yoshikazu; Ichimura, Taro; Fujita, Hideaki

    2012-01-01

    Highlights: ► Change in the epigenetic landscape during myogenesis was optically investigated. ► Mobility of nuclear proteins was used to state the epigenetic status of the cell. ► Mobility of nuclear proteins decreased as myogenesis progressed in C2C12. ► Differentiation state diagram was developed using parameters obtained. -- Abstract: Skeletal muscle undergoes complicated differentiation steps that include cell-cycle arrest, cell fusion, and maturation, which are controlled through sequential expression of transcription factors. During muscle differentiation, remodeling of the epigenetic landscape is also known to take place on a large scale, determining cell fate. In an attempt to determine the extent of epigenetic remodeling during muscle differentiation, we characterized the plasticity of the chromatin structure using C2C12 myoblasts. Differentiation of C2C12 cells was induced by lowering the serum concentration after they had reached full confluence, resulting in the formation of multi-nucleated myotubes. Upon induction of differentiation, the nucleus size decreased whereas the aspect ratio increased, indicating the presence of force on the nucleus during differentiation. Movement of the nucleus was also suppressed when differentiation was induced, indicating that the plasticity of chromatin changed upon differentiation. To evaluate the histone dynamics during differentiation, FRAP experiment was performed, which showed an increase in the immobile fraction of histone proteins when differentiation was induced. To further evaluate the change in the histone dynamics during differentiation, FCS was performed, which showed a decrease in histone mobility on differentiation. We here show that the plasticity of chromatin decreases upon differentiation, which takes place in a stepwise manner, and that it can be used as an index for the differentiation stage during myogenesis using the state diagram developed with the parameters obtained in this study.

  20. The BRCA1 Ubiquitin ligase function sets a new trend for remodelling in DNA repair.

    Science.gov (United States)

    Densham, Ruth M; Morris, Joanna R

    2017-03-04

    The protein product of the breast and ovarian cancer gene, BRCA1, is part of an obligate heterodimer with BARD1. Together these RING bearing proteins act as an E3 ubiquitin ligase. Several functions have been attributed to BRCA1 that contribute to genome integrity but which of these, if any, require this enzymatic function was unclear. Here we review recent studies clarifying the role of BRCA1 E3 ubiquitin ligase in DNA repair. Perhaps the most surprising finding is the narrow range of BRCA1 functions this activity relates to. Remarkably ligase activity promotes chromatin remodelling and 53BP1 positioning through the remodeller SMARCAD1, but the activity is dispensable for the cellular survival in response to cisplatin or replication stressing agents. Implications for therapy response and tumor susceptibility are discussed.

  1. Epigenomic Co-localization and Co-evolution Reveal a Key Role for 5hmC as a Communication Hub in the Chromatin Network of ESCs

    Directory of Open Access Journals (Sweden)

    David Juan

    2016-02-01

    Full Text Available Summary: Epigenetic communication through histone and cytosine modifications is essential for gene regulation and cell identity. Here, we propose a framework that is based on a chromatin communication model to get insight on the function of epigenetic modifications in ESCs. The epigenetic communication network was inferred from genome-wide location data plus extensive manual annotation. Notably, we found that 5-hydroxymethylcytosine (5hmC is the most-influential hub of this network, connecting DNA demethylation to nucleosome remodeling complexes and to key transcription factors of pluripotency. Moreover, an evolutionary analysis revealed a central role of 5hmC in the co-evolution of chromatin-related proteins. Further analysis of regions where 5hmC co-localizes with specific interactors shows that each interaction points to chromatin remodeling, stemness, differentiation, or metabolism. Our results highlight the importance of cytosine modifications in the epigenetic communication of ESCs. : 5-hydroxymethylcytosine (5hmC plays a key role in the epigenomic communication network of embryonic stem cells. Juan et al. build a communication network based in co-localization of epigenomic data and literature. The analysis of the network and its components reveals that proteins reading and editing 5hmC co-evolve and serve as links between diverse molecular processes.

  2. Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Nelson, Celeste M.; Muschler, John L.; Veiseh, Mandana; Vonderhaar, Barbara K.; Bissell, Mina J.

    2009-06-03

    Epithelial cells, once dissociated and placed in two-dimensional (2D) cultures, rapidly lose tissue-specific functions. We showed previously that in addition to prolactin, signaling by laminin-111 was necessary to restore functional differentiation of mammary epithelia. Here, we elucidate two additional aspects of laminin-111 action. We show that in 2D cultures, the prolactin receptor is basolaterally localized and physically segregated from its apically placed ligand. Detachment of the cells exposes the receptor to ligation by prolactin leading to signal transducers and activators of transcription protein 5 (STAT5) activation, but only transiently and not sufficiently for induction of milk protein expression. We show that laminin-111 reorganizes mammary cells into polarized acini, allowing both the exposure of the prolactin receptor and sustained activation of STAT5. The use of constitutively active STAT5 constructs showed that the latter is necessary and sufficient for chromatin reorganization and {beta}-casein transcription. These results underscore the crucial role of continuous laminin signaling and polarized tissue architecture in maintenance of transcription factor activation, chromatin organization, and tissue-specific gene expression.

  3. Actin, actin-binding proteins, and actin-related proteins in the nucleus.

    Science.gov (United States)

    Kristó, Ildikó; Bajusz, Izabella; Bajusz, Csaba; Borkúti, Péter; Vilmos, Péter

    2016-04-01

    Extensive research in the past decade has significantly broadened our view about the role actin plays in the life of the cell and added novel aspects to actin research. One of these new aspects is the discovery of the existence of nuclear actin which became evident only recently. Nuclear activities including transcriptional activation in the case of all three RNA polymerases, editing and nuclear export of mRNAs, and chromatin remodeling all depend on actin. It also became clear that there is a fine-tuned equilibrium between cytoplasmic and nuclear actin pools and that this balance is ensured by an export-import system dedicated to actin. After over half a century of research on conventional actin and its organizing partners in the cytoplasm, it was also an unexpected finding that the nucleus contains more than 30 actin-binding proteins and new classes of actin-related proteins which are not able to form filaments but had evolved nuclear-specific functions. The actin-binding and actin-related proteins in the nucleus have been linked to RNA transcription and processing, nuclear transport, and chromatin remodeling. In this paper, we attempt to provide an overview of the wide range of information that is now available about actin, actin-binding, and actin-related proteins in the nucleus.

  4. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner

    DEFF Research Database (Denmark)

    Alexiadis, V; Waldmann, T; Andersen, Jens S.

    2000-01-01

    The structure of chromatin regulates the genetic activity of the underlying DNA sequence. We report here that the protein encoded by the proto-oncogene DEK, which is involved in acute myelogenous leukemia, induces alterations of the superhelical density of DNA in chromatin. The change in topology...

  5. A comparison of the effect of lead nitrate on rat liver chromatin, DNA and histone proteins in solution.

    Science.gov (United States)

    Rabbani-Chadegani, Azra; Abdosamadi, Sayeh; Fani, Nesa; Mohammadian, Shayesteh

    2009-06-01

    Although lead is widely recognized as a toxic substance in the environment and directly damage DNA, no studies are available on lead interaction with chromatin and histone proteins. In this work, we have examined the effect of lead nitrate on EDTA-soluble chromatin (SE chromatin), DNA and histones in solution using absorption and fluorescence spectroscopy, thermal denaturation and gel electrophoresis techniques. The results demonstrate that lead nitrate binds with higher affinity to chromatin than to DNA and produces an insoluble complex as monitored at 400 nm. Binding of lead to DNA decreases its Tm, increases its fluorescence intensity and exhibits hypochromicity at 210 nm which reveal that both DNA bases and the backbone participate in the lead-DNA interaction. Lead also binds strongly to histone proteins in the absence of DNA. The results suggest that although lead destabilizes DNA structure, in the chromatin, the binding of lead introduces some sort of compaction and aggregation, and the histone proteins play a key role in this aspect. This chromatin condensation, upon lead exposure, in turn may decrease fidelity of DNA, and inhibits DNA and RNA synthesis, the process that introduces lead toxicity at the chromatin level.

  6. Changes in chromatin-associated proteins of virus-infected tobacco leaves

    NARCIS (Netherlands)

    Telgen, van H.J.

    1985-01-01

    Symptoms of viral infections in plants often resemble disturbances in growth and development. Therefore, symptoms appear to result from an interference of the virus with the regulation of growth and development of the host plant. Particularly the non-histone chromatin- associated proteins

  7. Modulation of the Chromatin Phosphoproteome by the Haspin Protein Kinase

    DEFF Research Database (Denmark)

    Maiolica, Alessio; de Medina-Redondo, Maria; Schoof, Erwin

    2014-01-01

    , histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin- associated proteins and identified a Haspin...

  8. Soft skills turned into hard facts: nucleosome remodelling at developmental switches.

    Science.gov (United States)

    Chioda, M; Becker, P B

    2010-07-01

    Nucleosome remodelling factors are regulators of DNA accessibility in chromatin and lubricators of all major functions of eukaryotic genomes. Their action is transient and reversible, yet can be decisive for irreversible cell-fate decisions during development. In addition to the well-known local actions of nucleosome remodelling factors during transcription initiation, more global and fundamental roles for remodelling complexes in shaping the epigenome during development are emerging.

  9. Autism-Associated Chromatin Regulator Brg1/SmarcA4 Is Required for Synapse Development and Myocyte Enhancer Factor 2-Mediated Synapse Remodeling.

    Science.gov (United States)

    Zhang, Zilai; Cao, Mou; Chang, Chia-Wei; Wang, Cindy; Shi, Xuanming; Zhan, Xiaoming; Birnbaum, Shari G; Bezprozvanny, Ilya; Huber, Kimberly M; Wu, Jiang I

    2016-01-01

    Synapse development requires normal neuronal activities and the precise expression of synapse-related genes. Dysregulation of synaptic genes results in neurological diseases such as autism spectrum disorders (ASD). Mutations in genes encoding chromatin-remodeling factor Brg1/SmarcA4 and its associated proteins are the genetic causes of several developmental diseases with neurological defects and autistic symptoms. Recent large-scale genomic studies predicted Brg1/SmarcA4 as one of the key nodes of the ASD gene network. We report that Brg1 deletion in early postnatal hippocampal neurons led to reduced dendritic spine density and maturation and impaired synapse activities. In developing mice, neuronal Brg1 deletion caused severe neurological defects. Gene expression analyses indicated that Brg1 regulates a significant number of genes known to be involved in synapse function and implicated in ASD. We found that Brg1 is required for dendritic spine/synapse elimination mediated by the ASD-associated transcription factor myocyte enhancer factor 2 (MEF2) and that Brg1 regulates the activity-induced expression of a specific subset of genes that overlap significantly with the targets of MEF2. Our analyses showed that Brg1 interacts with MEF2 and that MEF2 is required for Brg1 recruitment to target genes in response to neuron activation. Thus, Brg1 plays important roles in both synapse development/maturation and MEF2-mediated synapse remodeling. Our study reveals specific functions of the epigenetic regulator Brg1 in synapse development and provides insights into its role in neurological diseases such as ASD. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Modulation of chromatin access during adipocyte differentiation

    DEFF Research Database (Denmark)

    Mandrup, Susanne; Hager, Gordon L

    2012-01-01

    identified; however, it is not until recently that we have begun to understand how these factors act at a genome-wide scale. In a recent publication we have mapped the genome-wide changes in chromatin structure during differentiation of 3T3-L1 preadipocytes and shown that a major reorganization...... of the chromatin landscape occurs within few hours following the addition of the adipogenic cocktail. In addition, we have mapped the genome-wide profiles of several of the early adipogenic transcription factors and shown that they act in a highly cooperative manner to drive this dramatic remodeling process....

  11. The importance of topoisomerases for chromatin regulated genes

    DEFF Research Database (Denmark)

    Fredsøe, Jacob Christian; Pedersen, Jakob Madsen; Rødgaard, Morten Terpager

    2013-01-01

    DNA topoisomerases are enzymes, which function to relieve torsional stress in the DNA helix by introducing transient breaks into the DNA molecule. By use of Saccharomyces cerevisiae and microarray technology we have previously shown that topoisomerases are required for the activation of chromatin...... topoisomerases for optimal activation, but in contrast to the PHO5 gene, topoisomerases are not required for chromatin remodeling of the GAL1/10 promoter region, indicating a different role of the enzymes. We are currently performing a detailed investigation of the GAL genes to elucidate the precise role...

  12. Chromatin Flavors: Chromatin composition and domain organization in Drosophila melanogaster

    NARCIS (Netherlands)

    J.G. van Bemmel (Joke)

    2012-01-01

    textabstractChromatin was originally identified by W. Flemming in 1882 as not much more than the stainable substance of the cell nucleus. Flemming named this substance according to the Greek word “chroma”, meaning color. In 1911 chromatin was characterized as proteins, named histones, that

  13. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    Energy Technology Data Exchange (ETDEWEB)

    Ostrup, Olga, E-mail: osvarcova@gmail.com [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway); Hyttel, Poul; Klaerke, Dan A. [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Collas, Philippe, E-mail: philc@medisin.uio.no [Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway)

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  14. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Directory of Open Access Journals (Sweden)

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  15. Dual mechanism of chromatin remodeling in the common shrew sex trivalent (XY 1Y 2

    Directory of Open Access Journals (Sweden)

    Sergey N. Matveevsky

    2017-11-01

    Full Text Available Here we focus on the XY1Y2 condition in male common shrew Sorex araneus Linnaeus, 1758, applying electron microscopy and immunocytochemistry for a comprehensive analysis of structure, synapsis and behaviour of the sex trivalent in pachytene spermatocytes. The pachytene sex trivalent consists of three distinct parts: short and long synaptic SC fragments (between the X and Y1 and between the X and Y2, respectively and a long asynaptic region of the X in-between. Chromatin inactivation was revealed in the XY1 synaptic region, the asynaptic region of the X and a very small asynaptic part of the Y2. This inactive part of the sex trivalent, that we named the ‘head’, forms a typical sex body and is located at the periphery of the meiotic nucleus at mid pachytene. The second part or ‘tail’, a long region of synapsis between the X and Y2 chromosomes, is directed from the periphery into the nucleus. Based on the distribution patterns of four proteins involved in chromatin inactivation, we propose a model of meiotic silencing in shrew sex chromosomes. Thus, we conclude that pachytene sex chromosomes are structurally and functionally two different chromatin domains with specific nuclear topology: the peripheral inactivated ‘true’ sex chromosome regions (part of the X and the Y1 and more centrally located transcriptionally active autosomal segments (part of the X and the Y2.

  16. The Chromatin Scaffold Protein SAFB1 Renders Chromatin Permissive for DNA Damage Signaling

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Toledo Lazaro, Luis Ignacio; Gudjonsson, Thorkell

    2013-01-01

    Although the general relevance of chromatin modifications for genotoxic stress signaling, cell-cycle checkpoint activation, and DNA repair is well established, how these modifications reach initial thresholds in order to trigger robust responses remains largely unexplored. Here, we identify...... the chromatin-associated scaffold attachment factor SAFB1 as a component of the DNA damage response and show that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged chromatin in a poly......(ADP-ribose)-polymerase 1- and poly(ADP-ribose)-dependent manner and is required for unperturbed cell-cycle checkpoint activation and guarding cells against replicative stress. Altogether, our data reveal that transient recruitment of an architectural chromatin component is required in order to overcome physiological...

  17. Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Evgenya Y.; Krauss, Sharon Wald; Short, Sarah A.; Lee, Gloria; Villalobos, Jonathan; Etzell, Joan; Koury, Mark J.; Ney, Paul A.; Chasis, Joel Anne; Grigoryev, Sergei A.

    2008-08-21

    Terminal erythroid differentiation in vertebrates is characterized by progressive heterochromatin formation, chromatin condensation and, in mammals, culminates in nuclear extrusion. To date, although mechanisms regulating avian erythroid chromatin condensation have been identified, little is known regarding this process during mammalian erythropoiesis. To elucidate the molecular basis for mammalian erythroblast chromatin condensation, we used Friend virus-infected murine spleen erythroblasts that undergo terminal differentiation in vitro. Chromatin isolated from early and late stage erythroblasts had similar levels of linker and core histones, only a slight difference in nucleosome repeats, and no significant accumulation of known developmentally-regulated architectural chromatin proteins. However, histone H3(K9) dimethylation markedly increased while histone H4(K12) acetylation dramatically decreased and became segregated from the histone methylation as chromatin condensed. One histone deacetylase, HDAC5, was significantly upregulated during the terminal stages of Friend virus-infected erythroblast differentiation. Treatment with histone deacetylase inhibitor, trichostatin A, blocked both chromatin condensation and nuclear extrusion. Based on our data, we propose a model for a unique mechanism in which extensive histone deacetylation at pericentromeric heterochromatin mediates heterochromatin condensation in vertebrate erythroblasts that would otherwise be mediated by developmentally-regulated architectural proteins in nucleated blood cells.

  18. Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration.

    Science.gov (United States)

    Matysiak, Julien; Lesbats, Paul; Mauro, Eric; Lapaillerie, Delphine; Dupuy, Jean-William; Lopez, Angelica P; Benleulmi, Mohamed Salah; Calmels, Christina; Andreola, Marie-Line; Ruff, Marc; Llano, Manuel; Delelis, Olivier; Lavigne, Marc; Parissi, Vincent

    2017-07-28

    Insertion of retroviral genome DNA occurs in the chromatin of the host cell. This step is modulated by chromatin structure as nucleosomes compaction was shown to prevent HIV-1 integration and chromatin remodeling has been reported to affect integration efficiency. LEDGF/p75-mediated targeting of the integration complex toward RNA polymerase II (polII) transcribed regions ensures optimal access to dynamic regions that are suitable for integration. Consequently, we have investigated the involvement of polII-associated factors in the regulation of HIV-1 integration. Using a pull down approach coupled with mass spectrometry, we have selected the FACT (FAcilitates Chromatin Transcription) complex as a new potential cofactor of HIV-1 integration. FACT is a histone chaperone complex associated with the polII transcription machinery and recently shown to bind LEDGF/p75. We report here that a tripartite complex can be formed between HIV-1 integrase, LEDGF/p75 and FACT in vitro and in cells. Biochemical analyzes show that FACT-dependent nucleosome disassembly promotes HIV-1 integration into chromatinized templates, and generates highly favored nucleosomal structures in vitro. This effect was found to be amplified by LEDGF/p75. Promotion of this FACT-mediated chromatin remodeling in cells both increases chromatin accessibility and stimulates HIV-1 infectivity and integration. Altogether, our data indicate that FACT regulates HIV-1 integration by inducing local nucleosomes dissociation that modulates the functional association between the incoming intasome and the targeted nucleosome.

  19. Possible nature and specificity of a protein factor favoringsolubilization of chromatin from irradiated animal thymocytes

    International Nuclear Information System (INIS)

    Soldatenkov, V.A.; Trebenok, Z.A.; Filippovich, I.V.

    1989-01-01

    It is shown that activation of endonucleolysis of thymocyte nuclear chromatin by protein factor from the cells of irradiated animals is not conditioned by its nuclease activity or ability to activate Ca 2+ , Mg 2+ - dependent lymphocyte endonuclease. DNA degradation character and kinetics of accumulation of the forming products doesn't change in autolysis of thymocyte nucleus. It is assumed that protein factor doesn't participate in starting mechanisms of postirradiation chromatin degradation but can be of significance at delayed stages of the process. The discovered effect is characterized by tissue and specific characteristic

  20. Protein acetylation sites mediated by Schistosoma mansoni GCN5

    International Nuclear Information System (INIS)

    Moraes Maciel, Renata de; Furtado Madeiro da Costa, Rodrigo; Meirelles Bastosde Oliveira, Francisco; Rumjanek, Franklin David; Fantappie, Marcelo Rosado

    2008-01-01

    The transcriptional co-activator GCN5, a histone acetyltransferase (HAT), is part of large multimeric complexes that are required for chromatin remodeling and transcription activation. As in other eukaryotes, the DNA from the parasite Schistosome mansoni is organized into nucleosomes and the genome encodes components of chromatin-remodeling complexes. Using a series of synthetic peptides we determined that Lys-14 of histone H3 was acetylated by the recombinant SmGCN5-HAT domain. SmGCN5 was also able to acetylate schistosome non-histone proteins, such as the nuclear receptors SmRXR1 and SmNR1, and the co-activator SmNCoA-62. Electron microscopy revealed the presence of SmGCN5 protein in the nuclei of vitelline cells. Within the nucleus, SmGCN5 was found to be located in interchromatin granule clusters (IGCs), which are transcriptionally active structures. The data suggest that SmGCN5 is involved in transcription activation

  1. Fanconi anemia proteins localize to chromatin and the nuclear matrix in a DNA damage- and cell cycle-regulated manner.

    Science.gov (United States)

    Qiao, F; Moss, A; Kupfer, G M

    2001-06-29

    Fanconi anemia (FA) is a genetic disease characterized by congenital defects, bone marrow failure, and cancer susceptibility. Cells from patients with FA exhibit genomic instability and hypersensitivity to DNA cross linking agents such as mitomycin C. Despite the identification of seven complementation groups and the cloning of six genes, the function of the encoded gene products remains elusive. The FancA (Fanconi anemia complementation group A), FancC, and FancG proteins have been detected within a nuclear complex, but no change in level, binding, or localization has been reported as a result of drug treatment or cell cycle. We show that in immunofluorescence studies, FancA appears as a non-nucleolar nuclear protein that is excluded from condensed, mitotic chromosomes. Biochemical fractionation reveals that the FA proteins are found in nuclear matrix and chromatin and that treatment with mitomycin C results in increase of the FA proteins in nuclear matrix and chromatin fractions. This induction occurs in wild-type cells and mutant FA-D (Fanconi complementation group D) cells but not in mutant FA-A cells. Immunoprecipitation of FancA protein in chromatin demonstrates the coprecipitation of FancA, FancC, and FancG, showing that the FA proteins move together as a complex. Also, fractionation of mitotic cells confirms the lack of FA proteins in chromatin or the nuclear matrix. Furthermore, phosphorylation of FancG was found to be temporally correlated with exit of the FA complex from chromosomes at mitosis. Taken together, these findings suggest a role for FA proteins in chromatin and nuclear matrix.

  2. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci

    DEFF Research Database (Denmark)

    Mousavi, Kambiz; Zare, Hossein; Dell'orso, Stefania

    2013-01-01

    )RNA acted to activate the downstream myogenic genes. The deployment of transcriptional machinery to appropriate loci is contingent on chromatin accessibility, a rate-limiting step preceding Pol II assembly. By nuclease sensitivity assay, we found that eRNAs regulate genomic access of the transcriptional...... complex to defined regulatory regions. In conclusion, our data suggest that eRNAs contribute to establishing a cell-type-specific transcriptional circuitry by directing chromatin-remodeling events....

  3. Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins

    Science.gov (United States)

    Chun, Chan; Haohua, Wen; Lanyuan, Lu; Jun, Fan

    2016-01-01

    Membrane curvature is no longer thought of as a passive property of the membrane; rather, it is considered as an active, regulated state that serves various purposes in the cell such as between cells and organelle definition. While transport is usually mediated by tiny membrane bubbles known as vesicles or membrane tubules, such communication requires complex interplay between the lipid bilayers and cytosolic proteins such as members of the Bin/Amphiphysin/Rvs (BAR) superfamily of proteins. With rapid developments in novel experimental techniques, membrane remodeling has become a rapidly emerging new field in recent years. Molecular dynamics (MD) simulations are important tools for obtaining atomistic information regarding the structural and dynamic aspects of biological systems and for understanding the physics-related aspects. The availability of more sophisticated experimental data poses challenges to the theoretical community for developing novel theoretical and computational techniques that can be used to better interpret the experimental results to obtain further functional insights. In this review, we summarize the general mechanisms underlying membrane remodeling controlled or mediated by proteins. While studies combining experiments and molecular dynamics simulations recall existing mechanistic models, concurrently, they extend the role of different BAR domain proteins during membrane remodeling processes. We review these recent findings, focusing on how multiscale molecular dynamics simulations aid in understanding the physical basis of BAR domain proteins, as a representative of membrane-remodeling proteins. Project supported by the National Natural Science Foundation of China (Grant No. 21403182) and the Research Grants Council of Hong Kong, China (Grant No. CityU 21300014).

  4. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk.

    Science.gov (United States)

    Waller, Rosalie G; Darlington, Todd M; Wei, Xiaomu; Madsen, Michael J; Thomas, Alun; Curtin, Karen; Coon, Hilary; Rajamanickam, Venkatesh; Musinsky, Justin; Jayabalan, David; Atanackovic, Djordje; Rajkumar, S Vincent; Kumar, Shaji; Slager, Susan; Middha, Mridu; Galia, Perrine; Demangel, Delphine; Salama, Mohamed; Joseph, Vijai; McKay, James; Offit, Kenneth; Klein, Robert J; Lipkin, Steven M; Dumontet, Charles; Vachon, Celine M; Camp, Nicola J

    2018-02-01

    The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance-a precursor to MM) cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu), a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly and p.Met890Val), a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits.

  5. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk.

    Directory of Open Access Journals (Sweden)

    Rosalie G Waller

    2018-02-01

    Full Text Available The high-risk pedigree (HRP design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS method in 11 extended, Utah, multiple myeloma (MM HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance-a precursor to MM cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu, a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly and p.Met890Val, a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits.

  6. Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication

    Directory of Open Access Journals (Sweden)

    Yasushi Shiomi

    2017-01-01

    Full Text Available During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA, acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.

  7. Widespread Chromatin Accessibility at Repetitive Elements Links Stem Cells with Human Cancer

    Directory of Open Access Journals (Sweden)

    Nicholas C. Gomez

    2016-11-01

    Full Text Available Chromatin regulation is critical for differentiation and disease. However, features linking the chromatin environment of stem cells with disease remain largely unknown. We explored chromatin accessibility in embryonic and multipotent stem cells and unexpectedly identified widespread chromatin accessibility at repetitive elements. Integrating genomic and biochemical approaches, we demonstrate that these sites of increased accessibility are associated with well-positioned nucleosomes marked by distinct histone modifications. Differentiation is accompanied by chromatin remodeling at repetitive elements associated with altered expression of genes in relevant developmental pathways. Remarkably, we found that the chromatin environment of Ewing sarcoma, a mesenchymally derived tumor, is shared with primary mesenchymal stem cells (MSCs. Accessibility at repetitive elements in MSCs offers a permissive environment that is exploited by the critical oncogene responsible for this cancer. Our data demonstrate that stem cells harbor a unique chromatin landscape characterized by accessibility at repetitive elements, a feature associated with differentiation and oncogenesis.

  8. Nuclear Matrix protein SMAR1 represses HIV-1 LTR mediated transcription through chromatin remodeling

    International Nuclear Information System (INIS)

    Sreenath, Kadreppa; Pavithra, Lakshminarasimhan; Singh, Sandeep; Sinha, Surajit; Dash, Prasanta K.; Siddappa, Nagadenahalli B.; Ranga, Udaykumar; Mitra, Debashis; Chattopadhyay, Samit

    2010-01-01

    Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that > 98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFα leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNA Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.

  9. Interaction of a non-histone chromatin protein (high-mobility group protein 2) with DNA

    International Nuclear Information System (INIS)

    Goodwin, G.H.; Shooter, K.V.; Johns, E.W.

    1975-01-01

    The interaction with DNA of the calf thymus chromatin non-histone protein termed the high-mobility group protein 2 has been studied by sedimentation analysis in the ultracentrifuge and by measuring the binding of the 125 I-labelled protein to DNA. The results have been compared with those obtained previously by us [Eur. J. Biochem. (1974) 47, 263-270] for the interaction of high-mobility group protein 1 with DNA. Although the binding parameters are similar for these two proteins, high-mobility group protein 2 differs from high-mobility group protein 1 in that the former appears to change the shape of the DNA to a more compact form. The molecular weight of high-mobility group protein 2 has been determined by equilibrium sedimentation and a mean value of 26,000 was obtained. A low level of nuclease activity detected in one preparation of high-mobility group protein 2 has been investigated. (orig.) [de

  10. The actin family protein ARP6 contributes to the structure and the function of the nucleolus

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Hiroshi [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoka-ku, Sendai 981-8555 (Japan); Matsumori, Haruka [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Kalendova, Alzbeta; Hozak, Pavel [Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague (Czech Republic); Goldberg, Ilya G. [Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224 (United States); Nakao, Mitsuyoshi [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Saitoh, Noriko [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Harata, Masahiko, E-mail: mharata@biochem.tohoku.ac.jp [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoka-ku, Sendai 981-8555 (Japan)

    2015-08-21

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis. - Highlights: • ARP6, an actin related protein, is important for nucleolar function and structure. • A population of ARP6 is localized in the center of nucleolus. • Depletion of ARP6 resulted in aberrant shape of the nucleolus. • ARP6 maintains the active rDNA transcription under high glucose. • ARP6 is required for the repression of rDNA transcription under starvation.

  11. The actin family protein ARP6 contributes to the structure and the function of the nucleolus

    International Nuclear Information System (INIS)

    Kitamura, Hiroshi; Matsumori, Haruka; Kalendova, Alzbeta; Hozak, Pavel; Goldberg, Ilya G.; Nakao, Mitsuyoshi; Saitoh, Noriko; Harata, Masahiko

    2015-01-01

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis. - Highlights: • ARP6, an actin related protein, is important for nucleolar function and structure. • A population of ARP6 is localized in the center of nucleolus. • Depletion of ARP6 resulted in aberrant shape of the nucleolus. • ARP6 maintains the active rDNA transcription under high glucose. • ARP6 is required for the repression of rDNA transcription under starvation

  12. A microscopic analysis of Arabidopsis chromatin

    NARCIS (Netherlands)

    Willemse, J.J.

    2007-01-01

    Genetic information of eukaryotic organisms is stored as DNA in the nuclei of their cells. Nuclear DNA is associated with several proteins, which together form chromatin. The most abundant chromatin proteins arehistones,they arrange the initial packaging step of the DNA. DNA

  13. Neutron-scattering studies of chromatin

    International Nuclear Information System (INIS)

    Bradbury, E.M.; Baldwin, J.P.; Carpenter, B.G.; Hjelm, R.P.; Hancock, R.; Ibel, K.

    1976-01-01

    It is clear that a knowledge of the basic molecular structure of chromatin is a prerequisite for any progress toward an understanding of chromosome organization. With a two-component system, protein and nucleic acid, neutrons have a particularly powerful application to studies of the spatial arrangements of these components because of the ability, by contrast matching with H 2 O-D 2 O mixtures, to obtain neutron-scattering data on the individual components. With this approach it has been shown that the neutron diffraction of chromatin is consistent with a ''beads on a string'' model in which the bead consists of a protein core with DNA coiled on the outside. However, because chromatin is a gel and gives limited structural data, confirmation of such a model requires extension of the neutron studies by deuteration of specific chromatin components and the isolation of chromatin subunits. Although these studies are not complete, the neutron results so far obtained support the subunit model described above

  14. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  15. Intestinal remodelling in mink fed with reduced protein content

    DEFF Research Database (Denmark)

    Chen, Pengmin; Zhao, Jingbo; Nielsen, Vivi Hunnicke

    2009-01-01

    Low protein intake occurs in humans in relation to diseases, starvation and post-operatively. Low-protein diets may affect the gastrointestinal structure and mechanical function. The aim was to study the passive biomechanical properties and tissue remodelling of the intestine in minks on reduced...... protein diets. Twenty-seven male minks were divided into three groups receiving different protein level in the diet for 6 weeks: High protein level (group H, 55% energy from protein), moderate protein level (group M, 30% energy from protein) and low protein level (group L, 15% energy from protein) (n=9...... groups. Feeding the low-protein diet shifted the stress-strain curves to the right for the circumferential direction, indicating the wall become softer in the circumferential direction. However, no significant difference was observed in the longitudinal direction for any of the intestinal segments...

  16. Tandem Affinity Purification Approach Coupled to Mass Spectrometry to Identify Post-translational Modifications of Histones Associated with Chromatin-Binding Proteins.

    Science.gov (United States)

    Beyer, Sophie; Robin, Philippe; Ait-Si-Ali, Slimane

    2017-01-01

    Protein purification by tandem affinity purification (TAP)-tag coupled to mass spectrometry analysis is usually used to reveal protein complex composition. Here we describe a TAP-tag purification of chromatin-bound proteins along with associated nucleosomes, which allow exhaustive identification of protein partners. Moreover, this method allows exhaustive identification of the post-translational modifications (PTMs) of the associated histones. Thus, in addition to partner characterization, this approach reveals the associated epigenetic landscape that can shed light on the function and properties of the studied chromatin-bound protein.

  17. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements

    DEFF Research Database (Denmark)

    Grøntved, Lars; John, Sam; Baek, Songjoon

    2013-01-01

    -binding sites are occupied by C/EBPβ. At the majority of these sites, chromatin is preaccessible suggesting a priming function of C/EBPβ for GR recruitment. Disruption of C/EBPβ binding to chromatin results in attenuation of pre-programmed chromatin accessibility, GR recruitment and GR-induced chromatin...... remodelling specifically at sites co-occupied by GR and C/EBPβ. Collectively, we demonstrate a highly cooperative mechanism by which C/EBPβ regulates selective GR binding to the genome in liver tissue. We suggest that selective targeting of GR in other tissues is likely mediated by the combined action of cell...

  18. Molecular and Biochemical Methods Useful for the Epigenetic Characterization of Chromatin-Associated Proteins in Bivalve Molluscs

    Directory of Open Access Journals (Sweden)

    Ciro Rivera-Casas

    2017-08-01

    Full Text Available Bivalve molluscs constitute a ubiquitous taxonomic group playing key functions in virtually all ecosystems, and encompassing critical commercial relevance. Along with a sessile and filter-feeding lifestyle in most cases, these characteristics make bivalves model sentinel organisms routinely used for environmental monitoring studies in aquatic habitats. The study of epigenetic mechanisms linking environmental exposure and specific physiological responses (i.e., environmental epigenetics stands out as a very innovative monitoring strategy, given the role of epigenetic modifications in acclimatization and adaptation. Furthermore, the heritable nature of many of those modifications constitutes a very promising avenue to explore the applicability of epigenetic conditioning and selection in management and restoration strategies. Chromatin provides a framework for the study of environmental epigenetic responses. Unfortunately, chromatin and epigenetic information are very limited in most non-traditional model organisms and even completely lacking in most environmentally and ecologically relevant organisms. The present work aims to provide a comprehensive and reproducible experimental workflow for the study of bivalve chromatin. First, a series of guidelines for the molecular isolation of genes encoding chromatin-associated proteins is provided, including information on primers suitable for conventional PCR, Rapid Amplification of cDNA Ends (RACE, genome walking and quantitative PCR (qPCR experiments. This section is followed by the description of methods specifically developed for the analysis of histone and SNBP proteins in different bivalve tissues, including protein extraction, purification, separation and immunodetection. Lastly, information about available antibodies, their specificity and performance is also provided. The tools and protocols described here complement current epigenetic analyses (usually limited to DNA methylation by incorporating

  19. Transcription Through Chromatin - Dynamic Organization of Genes

    Indian Academy of Sciences (India)

    different proteins involved in the synthesis of mRNA from the. DNA template. ... CBP - CREB Binding Protein. CHRAC. Chromatin .... nucleosomal interactions, and thereby change the chromatin structure, as per the ..... methyltransferases in gene regulation is yet to be elucidated. .... Molecular Biology and. Genetics Unit.

  20. Increased MCP-1 gene expression in monocytes of severe OSA patients and under intermittent hypoxia.

    Science.gov (United States)

    Chuang, Li-Pang; Chen, Ning-Hung; Lin, Yuling; Ko, Wen-Shan; Pang, Jong-Hwei S

    2016-03-01

    Obstructive sleep apnea (OSA) is known to be a risk factor of coronary artery disease. Monocyte chemoattractant protein-1 (MCP-1), as a critical factor for monocyte infiltration, is known to play a role in the development of atherosclerosis. This study aimed to investigate the effect of intermittent hypoxia, the hallmark of OSA, on the MCP-1 expression of monocytes. Peripheral blood was sampled from 61 adults enrolled for suspected OSA. RNA was prepared from the isolated monocytes for the analysis of MCP-1. The effect of in vitro intermittent hypoxia on the regulation and function of MCP-1 was investigated on THP-1 monocytic cells and human monocytes. The mRNA and secreted protein levels were investigated by RT/real-time PCR and enzyme-linked immunosorbent assay, respectively. Monocytic MCP-1 gene expression was found to be increased significantly in severe OSA patients. In vitro intermittent hypoxia was demonstrated to increase the mRNA and protein expression levels of MCP-1 dose- and time-dependently in THP-1 monocytic cells. The MCP-1 mRNA expression in monocytes isolated from OSA patient was induced to a much higher level compared to that from normal control. Pre-treatment with inhibitor for p42/44 MAPK or p38 MAPK suppressed the activation of MCP-1 expression by intermittent hypoxia. This is the first study to demonstrate the increase of MCP-1 gene expression in monocytes of severe OSA patients. In addition, monocytic MCP-1 gene expression can be induced under intermittent hypoxia.

  1. Chromatin meets its organizers.

    Science.gov (United States)

    Bodnar, Megan S; Spector, David L

    2013-06-06

    Chromatin organization and gene-gene interactions are critical components of carrying out developmental programs. Phillips-Cremins et al. identify a series of unexpected architectural proteins that work in a combinatorial manner to functionally organize chromatin in a cell-type-specific manner at the submegabase-length scale. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Sirtuins: Molecular Traffic Lights in the Crossroad of Oxidative Stress, Chromatin Remodeling, and Transcription

    Directory of Open Access Journals (Sweden)

    Ramkumar Rajendran

    2011-01-01

    Full Text Available Transcription is regulated by acetylation/deacetylation reactions of histone and nonhistone proteins mediated by enzymes called KATs and HDACs, respectively. As a major mechanism of transcriptional regulation, protein acetylation is a key controller of physiological processes such as cell cycle, DNA damage response, metabolism, apoptosis, and autophagy. The deacetylase activity of class III histone deacetylases or sirtuins depends on the presence of NAD+ (nicotinamide adenine dinucleotide, and therefore, their function is closely linked to cellular energy consumption. This activity of sirtuins connects the modulation of chromatin dynamics and transcriptional regulation under oxidative stress to cellular lifespan, glucose homeostasis, inflammation, and multiple aging-related diseases including cancer. Here we provide an overview of the recent developments in relation to the diverse biological activities associated with sirtuin enzymes and stress responsive transcription factors, DNA damage, and oxidative stress and relate the involvement of sirtuins in the regulation of these processes to oncogenesis. Since the majority of the molecular mechanisms implicated in these pathways have been described for Sirt1, this sirtuin family member is more extensively presented in this paper.

  3. Large-scale chromatin remodeling at the immunoglobulin heavy chain locus: a paradigm for multigene regulation.

    Science.gov (United States)

    Bolland, Daniel J; Wood, Andrew L; Corcoran, Anne E

    2009-01-01

    complementary processes involved in this large-scale locus organisation. We will examine the structure of the Igh locus and the large-scale and higher-order chromatin remodelling processes associated with V(D)J recombination, at the level of the locus itself, its conformational changes and its dynamic localisation within the nucleus.

  4. Quantification of Protein-Induced Membrane Remodeling Kinetics In Vitro with Lipid Multilayer Gratings

    Science.gov (United States)

    Lowry, Troy W.; Hariri, Hanaa; Prommapan, Plengchart; Kusi-Appiah, Aubrey; Vafai, Nicholas; Bienkiewicz, Ewa A.; Van Winkle, David H.; Stagg, Scott M.

    2016-01-01

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached. PMID:26649649

  5. Determination of local chromatin composition by CasID.

    Science.gov (United States)

    Schmidtmann, Elisabeth; Anton, Tobias; Rombaut, Pascaline; Herzog, Franz; Leonhardt, Heinrich

    2016-09-02

    Chromatin structure and function are determined by a plethora of proteins whose genome-wide distribution is typically assessed by immunoprecipitation (ChIP). Here, we developed a novel tool to investigate the local chromatin environment at specific DNA sequences. We combined the programmable DNA binding of dCas9 with the promiscuous biotin ligase BirA* (CasID) to biotinylate proteins in the direct vicinity of specific loci. Subsequent streptavidin-mediated precipitation and mass spectrometry identified both known and previously unknown chromatin factors associated with repetitive telomeric, major satellite and minor satellite DNA. With super-resolution microscopy, we confirmed the localization of the putative transcription factor ZNF512 at chromocenters. The versatility of CasID facilitates the systematic elucidation of functional protein complexes and locus-specific chromatin composition.

  6. Functional analysis of a Wheat Homeodomain protein, TaR1, reveals that host chromatin remodelling influences the dynamics of the switch to necrotrophic growth in the phytopathogenic fungus Zymoseptoria tritici.

    Science.gov (United States)

    Lee, Jack; Orosa, Beatriz; Millyard, Linda; Edwards, Martin; Kanyuka, Kostya; Gatehouse, Angharad; Rudd, Jason; Hammond-Kosack, Kim; Pain, Naomi; Sadanandom, Ari

    2015-04-01

    A distinguishing feature of Septoria leaf blotch disease in wheat is the long symptomless growth of the fungus amongst host cells followed by a rapid transition to necrotrophic growth resulting in disease lesions. Global reprogramming of host transcription marks this switch to necrotrophic growth. However no information exists on the components that bring about host transcriptional reprogramming. Gene-silencing, confocal-imaging and protein-protein interaction assays where employed to identify a plant homeodomain (PHD) protein, TaR1 in wheat that plays a critical role during the transition from symptomless to necrotrophic growth of Septoria. TaR1-silenced wheat show earlier symptom development upon Septoria infection but reduced fungal sporulation indicating that TaR1 is key for prolonging the symptomless phase and facilitating Septoria asexual reproduction. TaR1 is localized to the nucleus and binds to wheat Histone 3. Trimethylation of Histone 3 at lysine 4 (H3K4) and lysine 36 (H3K36) are found on open chromatin with actively transcribed genes, whereas methylation of H3K27 and H3K9 are associated with repressed loci. TaR1 specifically recognizes dimethylated and trimethylated H3K4 peptides suggesting that it regulates transcriptional activation at open chromatin. We conclude that TaR1 is an important component for the pathogen life cycle in wheat that promotes successful colonization by Septoria. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform.

    Science.gov (United States)

    Hui, Jingjing; Bao, Lei; Li, Siqiao; Zhang, Yi; Feng, Yimei; Ding, Lin; Ju, Huangxian

    2017-07-03

    Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rtt107/Esc4 binds silent chromatin and DNA repair proteins using different BRCT motifs

    Directory of Open Access Journals (Sweden)

    Jockusch Rebecca A

    2006-11-01

    Full Text Available Abstract Background By screening a plasmid library for proteins that could cause silencing when targeted to the HMR locus in Saccharomyces cerevisiae, we previously reported the identification of Rtt107/Esc4 based on its ability to establish silent chromatin. In this study we aimed to determine the mechanism of Rtt107/Esc4 targeted silencing and also learn more about its biological functions. Results Targeted silencing by Rtt107/Esc4 was dependent on the SIR genes, which encode obligatory structural and enzymatic components of yeast silent chromatin. Based on its sequence, Rtt107/Esc4 was predicted to contain six BRCT motifs. This motif, originally identified in the human breast tumor suppressor gene BRCA1, is a protein interaction domain. The targeted silencing activity of Rtt107/Esc4 resided within the C-terminal two BRCT motifs, and this region of the protein bound to Sir3 in two-hybrid tests. Deletion of RTT107/ESC4 caused sensitivity to the DNA damaging agent MMS as well as to hydroxyurea. A two-hybrid screen showed that the N-terminal BRCT motifs of Rtt107/Esc4 bound to Slx4, a protein previously shown to be involved in DNA repair and required for viability in a strain lacking the DNA helicase Sgs1. Like SLX genes, RTT107ESC4 interacted genetically with SGS1; esc4Δ sgs1Δ mutants were viable, but exhibited a slow-growth phenotype and also a synergistic DNA repair defect. Conclusion Rtt107/Esc4 binds to the silencing protein Sir3 and the DNA repair protein Slx4 via different BRCT motifs, thus providing a bridge linking silent chromatin to DNA repair enzymes.

  9. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components

    DEFF Research Database (Denmark)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Po

    2014-01-01

    To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use nascent chromatin capture (NCC) to profile chromatin proteome dynamics during...... replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3,995 proteins. The replication machinery and 485 chromatin factors...... such as CAF-1, DNMT1 and SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, whereas H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment...

  10. Spatiotemporal dynamics of membrane remodeling and fusion proteins during endocytic transport.

    Science.gov (United States)

    Arlt, Henning; Auffarth, Kathrin; Kurre, Rainer; Lisse, Dominik; Piehler, Jacob; Ungermann, Christian

    2015-04-01

    Organelles of the endolysosomal system undergo multiple fission and fusion events to combine sorting of selected proteins to the vacuole with endosomal recycling. This sorting requires a consecutive remodeling of the organelle surface in the course of endosomal maturation. Here we dissect the remodeling and fusion machinery on endosomes during the process of endocytosis. We traced selected GFP-tagged endosomal proteins relative to exogenously added fluorescently labeled α-factor on its way from the plasma membrane to the vacuole. Our data reveal that the machinery of endosomal fusion and ESCRT proteins has similar temporal localization on endosomes, whereas they precede the retromer cargo recognition complex. Neither deletion of retromer nor the fusion machinery with the vacuole affects this maturation process, although the kinetics seems to be delayed due to ESCRT deletion. Of importance, in strains lacking the active Rab7-like Ypt7 or the vacuolar SNARE fusion machinery, α-factor still proceeds to late endosomes with the same kinetics. This indicates that endosomal maturation is mainly controlled by the early endosomal fusion and remodeling machinery but not the downstream Rab Ypt7 or the SNARE machinery. Our data thus provide important further understanding of endosomal biogenesis in the context of cargo sorting. © 2015 Arlt et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Chromatin dynamics in genome stability

    DEFF Research Database (Denmark)

    Nair, Nidhi; Shoaib, Muhammad; Sørensen, Claus Storgaard

    2017-01-01

    Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote...... access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance...... of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage....

  12. Chromatin damage induced by fast neutrons or UV laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I

    2002-07-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m{sup -2}. The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  13. Chromatin damage induced by fast neutrons or UV laser radiation

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I.

    2002-01-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m -2 . The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  14. Fragmentation of chromatin with 125I radioactive disintegrations

    International Nuclear Information System (INIS)

    Turner, G.N.; Nobis, P.; Dewey, W.C.

    1976-01-01

    The DNA in Chinese hamster cells was labeled first for 3 h with [ 3 H]TdR and then for 3 h with [ 125 I]UdR. Chromatin was extracted, frozen, and stored at -30 0 C until 1.0 x 10 17 and 1.25 x 10 17 disintegrations/g of labeled DNA occurred for 125 I and 3 H, respectively. Velocity sedimentation of chromatin (DNA with associated chromosomal proteins) in neutral sucrose gradients indicated that the localized energy from the 125 I disintegrations, which gave about 1 double-strand break/disintegration plus an additional 1.3 single strand breaks, selectively fragmented the [ 125 I] chromatin into pieces smaller than the [ 3 H] chromatin. In other words, 125 I disintegrations caused much more localized damage in the chromatin labeled with 125 I than in the chromatin labeled with 3 H, and fragments induced in DNA by 125 I disintegrations were not held together by the associated chromosomal proteins. Use of this 125 I technique for studying chromosomal proteins associated with different regions in the cellular DNA is discussed. For these studies, the number of disintegrations required for fragmenting DNA molecules of different sizes is illustrated

  15. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching.

    Science.gov (United States)

    Ye, Qiaozhen; Rosenberg, Scott C; Moeller, Arne; Speir, Jeffrey A; Su, Tiffany Y; Corbett, Kevin D

    2015-04-28

    The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active 'closed' conformer to an inactive 'open' conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination.

  16. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Qiaozhen [Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States; Rosenberg, Scott C. [Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States; Moeller, Arne [National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States; Speir, Jeffrey A. [National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States; Su, Tiffany Y. [Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States; Corbett, Kevin D. [Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States

    2015-04-28

    The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active ‘closed’ conformer to an inactive ‘open’ conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination.

  17. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  18. Temporal profiling of the chromatin proteome reveals system-wide responses to replication inhibition

    DEFF Research Database (Denmark)

    Khoudoli, Guennadi A; Gillespie, Peter J; Stewart, Graeme

    2008-01-01

    Although the replication, expression, and maintenance of DNA are well-studied processes, the way that they are coordinated is poorly understood. Here, we report an analysis of the changing association of proteins with chromatin (the chromatin proteome) during progression through interphase...... of the cell cycle. Sperm nuclei were incubated in Xenopus egg extracts, and chromatin-associated proteins were analyzed by mass spectrometry at different times. Approximately 75% of the proteins varied in abundance on chromatin by more than 15%, suggesting that the chromatin proteome is highly dynamic....... Proteins were then assigned to one of 12 different clusters on the basis of their pattern of chromatin association. Each cluster contained functional groups of proteins involved in different nuclear processes related to progression through interphase. We also blocked DNA replication by inhibiting either...

  19. Paramecium tetraurelia chromatin assembly factor-1-like protein PtCAF-1 is involved in RNA-mediated control of DNA elimination.

    Science.gov (United States)

    Ignarski, Michael; Singh, Aditi; Swart, Estienne C; Arambasic, Miroslav; Sandoval, Pamela Y; Nowacki, Mariusz

    2014-10-29

    Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber

    DEFF Research Database (Denmark)

    Comet, Itys; Schuettengruber, Bernd; Sexton, Tom

    2011-01-01

    to insulate genes from regulatory elements or to take part in long-distance interactions. Using a high-resolution chromatin conformation capture (H3C) method, we show that the Drosophila gypsy insulator behaves as a conformational chromatin border that is able to prohibit contacts between a Polycomb response...... element (PRE) and a distal promoter. On the other hand, two spaced gypsy elements form a chromatin loop that is able to bring an upstream PRE in contact with a downstream gene to mediate its repression. Chromatin immunoprecipitation (ChIP) profiles of the Polycomb protein and its associated H3K27me3...... histone mark reflect this insulator-dependent chromatin conformation, suggesting that Polycomb action at a distance can be organized by local chromatin topology....

  1. Postexercise Dietary Protein Strategies to Maximize Skeletal Muscle Repair and Remodeling in Masters Endurance Athletes: A Review.

    Science.gov (United States)

    Doering, Thomas M; Reaburn, Peter R; Phillips, Stuart M; Jenkins, David G

    2016-04-01

    Participation rates of masters athletes in endurance events such as long-distance triathlon and running continue to increase. Given the physical and metabolic demands of endurance training, recovery practices influence the quality of successive training sessions and, consequently, adaptations to training. Research has suggested that, after muscle-damaging endurance exercise, masters athletes experience slower recovery rates in comparison with younger, similarly trained athletes. Given that these discrepancies in recovery rates are not observed after non-muscle-damaging exercise, it is suggested that masters athletes have impairments of the protein remodeling mechanisms within skeletal muscle. The importance of postexercise protein feeding for endurance athletes is increasingly being acknowledged, and its role in creating a positive net muscle protein balance postexercise is well known. The potential benefits of postexercise protein feeding include elevating muscle protein synthesis and satellite cell activity for muscle repair and remodeling, as well as facilitating muscle glycogen resynthesis. Despite extensive investigation into age-related anabolic resistance in sedentary aging populations, little is known about how anabolic resistance affects postexercise muscle protein synthesis and thus muscle remodeling in aging athletes. Despite evidence suggesting that physical training can attenuate but not eliminate age-related anabolic resistance, masters athletes are currently recommended to consume the same postexercise dietary protein dose (approximately 20 g or 0.25 g/kg/meal) as younger athletes. Given the slower recovery rates of masters athletes after muscle-damaging exercise, which may be due to impaired muscle remodeling mechanisms, masters athletes may benefit from higher doses of postexercise dietary protein, with particular attention directed to the leucine content of the postexercise bolus.

  2. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair

    DEFF Research Database (Denmark)

    McCord, Ronald A; Michishita, Eriko; Hong, Tao

    2009-01-01

    -PKcs) to chromatin in response to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced site-specific DSB. Abrogation of these SIRT6 activities leads to impaired resolution of DSBs. Together, these findings elucidate a mechanism whereby regulation of dynamic interaction of a DNA repair factor......-dependent protein kinase) and promotes DNA DSB repair. In response to DSBs, SIRT6 associates dynamically with chromatin and is necessary for an acute decrease in global cellular acetylation levels on histone H3 Lysine 9. Moreover, SIRT6 is required for mobilization of the DNA-PK catalytic subunit (DNA......, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the molecular mechanisms underlying these defects are not fully understood. Here, we show that SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB) repair factor DNA-PK (DNA...

  3. Endocrine and Metabolic Aspects of OSA

    Directory of Open Access Journals (Sweden)

    Ravinder Goswami

    2014-03-01

    Full Text Available Obstructive sleep apnea (OSA is characterized by repeated spells of apnea.Collapsibility of hypopharynx due to multiple factors involving pharyngeal dilatormuscles and deposition of fat or fluid in the surrounding soft tissues are importantcontributing factors in its pathogenesis. OSA commonly affects obese individuals.Males are more commonly affected than the females probably due to the disturbingeffect of testosterone on sleep.The impact of OSA on human health include disturbances in endocrine and metabolicsystem affecting hypothalamic-pituitary-gonadal axis, adrenocorticotrophic-cortisolaxis, growth hormone, antidiuretic hormones and insulin resistance. There is atendency for predisposition of the metabolic syndrome or its components includingglycemic dysregulation, hypertension, hyperlipidemia and physical parameters relatedto adiposity. On the other hand, several endocrine disorders such as hypothyroidism,growth hormone excess, polycystic ovarian disease and testosterone replacement areassociated with increased prevalence of OSA.There is limited information on the effect of treatment of OSA by continuous positiveairway pressure (CPAP on the endocrine and metabolic disturbances. There is a needto conduct randomized controlled trials using CPAP therapy in patients with OSA andto study its cause and effect relationship with endocrine and metabolic disturbances.

  4. The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2017-02-01

    Full Text Available Summary: Cellular senescence is an irreversible growth arrest that contributes to development, tumor suppression, and age-related conditions. Senescent cells show active metabolism compared with proliferating cells, but the underlying mechanisms remain unclear. Here we show that the SETD8/PR-Set7 methyltransferase, which catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1, suppresses nucleolar and mitochondrial activities to prevent cellular senescence. SETD8 protein was selectively downregulated in both oncogene-induced and replicative senescence. Inhibition of SETD8 alone was sufficient to trigger senescence. Under these states, the expression of genes encoding ribosomal proteins (RPs and ribosomal RNAs as well as the cyclin-dependent kinase (CDK inhibitor p16INK4A was increased, with a corresponding reduction of H4K20me1 at each locus. As a result, the loss of SETD8 concurrently stimulated nucleolar function and retinoblastoma protein-mediated mitochondrial metabolism. In conclusion, our data demonstrate that SETD8 acts as a barrier to prevent cellular senescence through chromatin-mediated regulation of senescence-associated metabolic remodeling. : Tanaka et al. show that SETD8/PR-Set7 methyltransferase represses senescence-associated genes including ribosomal proteins, ribosomal RNAs, and p16INK4A by catalyzing mono-methylation of histone H4 at lysine 20. Depletion of SETD8 derepresses these genes, resulting in nucleolar and mitochondrial coactivation characteristic of senescence-associated metabolic remodeling. Keywords: SETD8/PR-Set7, H4K20 methylation, senescence-associated metabolic remodeling, nucleolus, mitochondria

  5. Effect of hyperthermia on replicating chromatin

    International Nuclear Information System (INIS)

    Warters, R.L.; Roti Roti, J.L.

    1981-01-01

    The extent of heat-induced structural alterations in chromatin containing nascent (pulse-labeled) DNA was assayed using the enzyme micrococcal nuclease. The basic nucleosome structure in nascent and mature chromatin of S-phase cells appeared unaltered for up to 16 hr after exposure to hyperthermic temperatures as high as 48 0 C for 15 min. However, the rate of nuclease digestion of DNA in both nascent and mature chromatin is inhibited following exposure to hyperthermic temperatures. In unheated cells, pulse-labeled nascent DNA matured into mature chromatin structure with a half-time of 2.5 min. The half-time for the maturation of pulse-labeled DNA from nascent into mature chromatin increased in a linear manner as a function of increasing temperature of exposure with constant heating time at temperatures above 43 0 C. Both the reduced nuclease digestibility of nascent DNA and the increased time for chromatin structural changes could be due to the increased protein mass of chromatin following hyperthermia

  6. Metabolism of histones and nonhistone proteins of the nuclei and chromatin of liver cells in rats of different ages

    International Nuclear Information System (INIS)

    Klimenko, A.I.; Malyshev, A.B.; Kulachenko, B.V.

    1986-01-01

    The metabolism of various classes of histones and nonhistone proteins in whole nuclei and liver chromatin of albino Wistar rats 1, 3, 12, and 24 months of age was studied. It was shown that in the course of postnatal ontogenesis, the metabolism of nonhistone proteins, extractable by a 0.14 M solution of NaCl, is increased in the animals. The incorporation of labeled precursors into the HMG 14 and HMG 17 proteins decreases with age of the animals; a higher level of specific radioactivity was established for the HMG 1+2 proteins in the 3- and 24-month old animals. The intensity of the metabolism of nonhistone proteins and histones is higher in the chromatin complex than in the whole nucleus at all stages of postnatal development of the animals. Among the histone proteins, H1 histones possess a higher level of specific radioactivity in animals of all age groups

  7. Comparative proteome analysis between C . briggsae embryos and larvae reveals a role of chromatin modification proteins in embryonic cell division

    KAUST Repository

    An, Xiaomeng

    2017-06-21

    Caenorhabditis briggsae has emerged as a model for comparative biology against model organism C. elegans. Most of its cell fate specifications are completed during embryogenesis whereas its cell growth is achieved mainly in larval stages. The molecular mechanism underlying the drastic developmental changes is poorly understood. To gain insights into the molecular changes between the two stages, we compared the proteomes between the two stages using iTRAQ. We identified a total of 2,791 proteins in the C. briggsae embryos and larvae, 247 of which undergo up- or down-regulation between the two stages. The proteins that are upregulated in the larval stages are enriched in the Gene Ontology categories of energy production, protein translation, and cytoskeleton; whereas those upregulated in the embryonic stage are enriched in the categories of chromatin dynamics and posttranslational modification, suggesting a more active chromatin modification in the embryos than in the larva. Perturbation of a subset of chromatin modifiers followed by cell lineage analysis suggests their roles in controlling cell division pace. Taken together, we demonstrate a general molecular switch from chromatin modification to metabolism during the transition from C. briggsae embryonic to its larval stages using iTRAQ approach. The switch might be conserved across metazoans.

  8. Chromatin organization and cellular sensitivity to ionizing radiation

    International Nuclear Information System (INIS)

    Szumiel, I.; Walicka, M.

    1987-01-01

    The paper briefly describes chromatin organization in mammalian cells and reviews experimental work concerning relations between chromatin structure and accesibility of damaged DNA to repair enzymes. The ''contact effect'', the size of super-coiled DNA domains and ADP-ribosylation of chromatin proteins are discussed in relation to cellular radiosensitivity. 88 refs. (author)

  9. Local Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Saera Hihara

    2012-12-01

    Full Text Available Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy, single-nucleosome imaging, and Monte Carlo computer simulations, we demonstrate local chromatin dynamics in living mammalian cells. We show that similar to interphase chromatin, dense mitotic chromosomes also have considerable chromatin accessibility. For both interphase and mitotic chromatin, we observed local fluctuation of individual nucleosomes (∼50 nm movement/30 ms, which is caused by confined Brownian motion. Inhibition of these local dynamics by crosslinking impaired accessibility in the dense chromatin regions. Our findings show that local nucleosome dynamics drive chromatin accessibility. We propose that this local nucleosome fluctuation is the basis for scanning genome information.

  10. Can you die from obstructive sleep apnoea syndrome (OSAS)?

    LENUS (Irish Health Repository)

    O'Carroll, G

    2015-02-01

    Studies suggest an independent association between Obstructive Sleep Apnoea Syndrome (OSAS) and cardiovascular death. The purpose of our study is to examine doctors\\' awareness of this association and to determine whether this correlates with recording of OSAS on death certificates. We contacted the Central Statistics Office (CSO) and obtained relevant mention of OSAS on death certificates. We surveyed doctors on their view of OSAS-related deaths, CSO data from 2008-2011 reveal two deaths with OSAS documented as a direct cause and 52 deaths with OSAS as a contributory cause. Seventy-five doctors\\' surveyed (41%) believe OSAS can be a direct cause of death and 177 (96%) believe OSAS can be an indirect cause of death. Only 22 (12%) had putdown OSAS as a cause of death. OSAS is seldom recorded on death certificates. This is at odds with epidemiological forecasts and contrary to an opinion poll from a selection of doctors.

  11. Protein arginine methyltransferase 6 specifically methylates the nonhistone chromatin protein HMGA1a

    International Nuclear Information System (INIS)

    Miranda, Tina Branscombe; Webb, Kristofor J.; Edberg, Dale D.; Reeves, Raymond; Clarke, Steven

    2005-01-01

    The HMGA family proteins HMGA1a and HMGA1b are nuclear nonhistone species implicated in a wide range of cellular processes including inducible gene transcription, modulation of chromosome structure through nucleosome and chromosome remodeling, and neoplastic transformation. HMGA proteins are highly modified, and changes in their phosphorylation states have been correlated with the phase of the cell cycle and changes in their transcriptional activity. HMGA1a is also methylated in the first DNA-binding AT-hook at Arg25 and other sites, although the enzyme or enzymes responsible have not been identified. We demonstrate here that a GST fusion of protein arginine methyltransferase 6 (PRMT6) specifically methylates full-length recombinant HMGA1a protein in vitro. Although GST fusions of PRMT1 and PRMT3 were also capable of methylating the full-length HMGA1a polypeptide, they recognize its proteolytic degradation products much better. GST fusions of PRMT4 or PRMT7 were unable to methylate the full-length protein or its degradation products. We conclude that PRMT6 is a good candidate for the endogenous enzyme responsible for HGMA1a methylation

  12. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes.

    Science.gov (United States)

    Endorf, Elizabeth B; Qing, Hua; Aono, Jun; Terami, Naoto; Doyon, Geneviève; Hyzny, Eric; Jones, Karrie L; Findeisen, Hannes M; Bruemmer, Dennis

    2017-02-01

    Aberrant proliferation of smooth muscle cells (SMC) in response to injury induces pathological vascular remodeling during atherosclerosis and neointima formation. Telomerase is rate limiting for tissue renewal and cell replication; however, the physiological role of telomerase in vascular diseases remains to be determined. The goal of the present study was to determine whether telomerase reverse transcriptase (TERT) affects proliferative vascular remodeling and to define the molecular mechanism by which TERT supports SMC proliferation. We first demonstrate high levels of TERT expression in replicating SMC of atherosclerotic and neointimal lesions. Using a model of guidewire-induced arterial injury, we demonstrate decreased neointima formation in TERT-deficient mice. Studies in SMC isolated from TERT-deficient and TERT overexpressing mice with normal telomere length established that TERT is necessary and sufficient for cell proliferation. TERT deficiency did not induce a senescent phenotype but resulted in G1 arrest albeit hyperphosphorylation of the retinoblastoma protein. This proliferative arrest was associated with stable silencing of the E2F1-dependent S-phase gene expression program and not reversed by ectopic overexpression of E2F1. Finally, chromatin immunoprecipitation and accessibility assays revealed that TERT is recruited to E2F1 target sites and promotes chromatin accessibility for E2F1 by facilitating the acquisition of permissive histone modifications. These data indicate a previously unrecognized role for TERT in neointima formation through epigenetic regulation of proliferative gene expression in SMC. © 2016 American Heart Association, Inc.

  13. Proteomics of differential extraction fractions enriched for chromatin-binding proteins from colon adenoma and carcinoma tissues

    DEFF Research Database (Denmark)

    Knol, Jaco C; de Wit, Meike; Albrethsen, Jakob

    2014-01-01

    BACKGROUND: Altered nuclear and genomic structure and function are hallmarks of cancer cells. Research into nuclear proteins in human tissues could uncover novel molecular processes in cancer. Here, we examine biochemical tissue fractions containing chromatin-binding (CB) proteins in the context...... of colorectal cancer (CRC) progression. METHODS: CB protein-containing fractions were biochemically extracted from human colorectal tissues, including carcinomas with chromosomal instability (CIN), carcinomas with microsatellite instability (MIN), and adenomas. The CB proteins were subjected to label-free LC...

  14. Repair response for DNA double-strand damage through ubiquitylation of chromatin

    International Nuclear Information System (INIS)

    Nakada, Shinichiro

    2011-01-01

    The chromatin modulation (remodeling) via lysine63 (K63)-linked ubiquitin (U) has been found important in the repair response for DNA double-strand damage, and the sequential signaling events at the damage site are explained. As the first step of the repair, MRN (MRE11, RAD50 and nibrin) complex recognizes the damage site and binds to it followed by many linked reactions by recruited and activated enzymes of various protein kinases and phosphatases, which resulting in the enhanced early signaling. As well, gamma-H2AX (phosphorylated histone H2AX) is yielded by the process, to which phosphorylated MDC1 (mediator of DNA-damage checkpoint 1) binds to produce their complex. Then further binding of RNF8-HERC2-UBC13 (ring finger protein 8, hect domain and RCC1 (CHC1)-like domain, and U conjugating enzyme E2N, respectively) occurs for starting the cumulative ubiquitylation of H2AX via K63 as the middle phase response. Signaling in the late phase occurs on the U chain formed at the damage site by binding of RAP (receptor-associated protein) 80 and other recruited 5 proteins like BRCA1 (breast cancer 1, early onset) to repair DNA by the homologous recombination after 53BP1 (tumor protein p53 binding protein) binding followed by methylation of histone H4. In a case of human compound heterozygous RNF168 defect, RIDDLE syndrome (radiosensitivity, immunodeficiency, dysmorphic features and learning difficulties), cells have no and slight abnormality of G2/M and intra-S checkpoint, respectively. Another defecting case with homozygous nonsense mutation has high radiosensitivity, intra-S checkpoint abnormality and others. Abnormality of immuno-globulins observed in both cases is similar to that in the RNF8-knockout mouse. Many tasks in chromatin ubiquitylation in the repair are still remained to be solved for protection and treatment of related diseases. (T.T.)

  15. Fanconi anemia protein, FANCA, associates with BRG1, a component of the human SWI/SNF complex.

    Science.gov (United States)

    Otsuki, T; Furukawa, Y; Ikeda, K; Endo, H; Yamashita, T; Shinohara, A; Iwamatsu, A; Ozawa, K; Liu, J M

    2001-11-01

    Fanconi anemia (FA) is a genetic disorder that predisposes to hematopoietic failure, birth defects and cancer. We identified an interaction between the FA protein, FANCA and brm-related gene 1 (BRG1) product. BRG1 is a subunit of the SWI/SNF complex, which remodels chromatin structure through a DNA-dependent ATPase activity. FANCA was demonstrated to associate with the endogenous SWI/SNF complex. We also found a significant increase in the molecular chaperone, glucose-regulated protein 94 (GRP94) among BRG1-associated factors isolated from a FANCA-mutant cell line, which was not seen in either a normal control cell line or the mutant line complemented by wild-type FANCA. Despite this specific difference, FANCA did not appear to be absolutely required for in vitro chromatin remodeling. Finally, we demonstrated co-localization in the nucleus between transfected FANCA and BRG1. The physiological action of FANCA on the SWI/SNF complex remains to be clarified, but our work suggests that FANCA may recruit the SWI/SNF complex to target genes, thereby enabling coupled nuclear functions such as transcription and DNA repair.

  16. The Fanconi anemia proteins FANCD2 and FANCJ interact and regulate each other's chromatin localization.

    Science.gov (United States)

    Chen, Xiaoyong; Wilson, James B; McChesney, Patricia; Williams, Stacy A; Kwon, Youngho; Longerich, Simonne; Marriott, Andrew S; Sung, Patrick; Jones, Nigel J; Kupfer, Gary M

    2014-09-12

    Fanconi anemia is a genetic disease resulting in bone marrow failure, birth defects, and cancer that is thought to encompass a defect in maintenance of genomic stability. Mutations in 16 genes (FANCA, B, C, D1, D2, E, F, G, I, J, L, M, N, O, P, and Q) have been identified in patients, with the Fanconi anemia subtype J (FA-J) resulting from homozygous mutations in the FANCJ gene. Here, we describe the direct interaction of FANCD2 with FANCJ. We demonstrate the interaction of FANCD2 and FANCJ in vivo and in vitro by immunoprecipitation in crude cell lysates and from fractions after gel filtration and with baculovirally expressed proteins. Mutation of the monoubiquitination site of FANCD2 (K561R) preserves interaction with FANCJ constitutively in a manner that impedes proper chromatin localization of FANCJ. FANCJ is necessary for FANCD2 chromatin loading and focus formation in response to mitomycin C treatment. Our results suggest not only that FANCD2 regulates FANCJ chromatin localization but also that FANCJ is necessary for efficient loading of FANCD2 onto chromatin following DNA damage caused by mitomycin C treatment. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Active inhibitor-1 maintains protein hyper-phosphorylation in aging hearts and halts remodeling in failing hearts.

    Science.gov (United States)

    Pritchard, Tracy J; Kawase, Yoshiaki; Haghighi, Kobra; Anjak, Ahmad; Cai, Wenfeng; Jiang, Min; Nicolaou, Persoulla; Pylar, George; Karakikes, Ioannis; Rapti, Kleopatra; Rubinstein, Jack; Hajjar, Roger J; Kranias, Evangelia G

    2013-01-01

    Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term.

  18. Mediator, TATA-binding Protein, and RNA Polymerase II Contribute to Low Histone Occupancy at Active Gene Promoters in Yeast*

    Science.gov (United States)

    Ansari, Suraiya A.; Paul, Emily; Sommer, Sebastian; Lieleg, Corinna; He, Qiye; Daly, Alexandre Z.; Rode, Kara A.; Barber, Wesley T.; Ellis, Laura C.; LaPorta, Erika; Orzechowski, Amanda M.; Taylor, Emily; Reeb, Tanner; Wong, Jason; Korber, Philipp; Morse, Randall H.

    2014-01-01

    Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction. PMID:24727477

  19. Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor.

    Science.gov (United States)

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J K; Schubert, Dirk W; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.

  20. Self-assembly of the general membrane-remodeling protein PVAP into sevenfold virus-associated pyramids.

    Science.gov (United States)

    Daum, Bertram; Quax, Tessa E F; Sachse, Martin; Mills, Deryck J; Reimann, Julia; Yildiz, Özkan; Häder, Sabine; Saveanu, Cosmin; Forterre, Patrick; Albers, Sonja-Verena; Kühlbrandt, Werner; Prangishvili, David

    2014-03-11

    Viruses have developed a wide range of strategies to escape from the host cells in which they replicate. For egress some archaeal viruses use a pyramidal structure with sevenfold rotational symmetry. Virus-associated pyramids (VAPs) assemble in the host cell membrane from the virus-encoded protein PVAP and open at the end of the infection cycle. We characterize this unusual supramolecular assembly using a combination of genetic, biochemical, and electron microscopic techniques. By whole-cell electron cryotomography, we monitored morphological changes in virus-infected host cells. Subtomogram averaging reveals the VAP structure. By heterologous expression of PVAP in cells from all three domains of life, we demonstrate that the protein integrates indiscriminately into virtually any biological membrane, where it forms sevenfold pyramids. We identify the protein domains essential for VAP formation in PVAP truncation mutants by their ability to remodel the cell membrane. Self-assembly of PVAP into pyramids requires at least two different, in-plane and out-of-plane, protein interactions. Our findings allow us to propose a model describing how PVAP arranges to form sevenfold pyramids and suggest how this small, robust protein may be used as a general membrane-remodeling system.

  1. Elucidation of Chromatin Remodeling Machinery Involved in Regulation of Estrogen Receptor Alpha Expression in Human Breast Cancer Cells

    National Research Council Canada - National Science Library

    Sharma, Dipali

    2005-01-01

    .... Using chromatin immunoprecipitation (ChIP), we examined the chromatin status and repressor complex associated with silenced ER and changes in the key regulatory factors during reactivation by inhibitors of DNMT...

  2. Pdsg1 and Pdsg2, novel proteins involved in developmental genome remodelling in Paramecium.

    Directory of Open Access Journals (Sweden)

    Miroslav Arambasic

    Full Text Available The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2, involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.

  3. Pdsg1 and Pdsg2, novel proteins involved in developmental genome remodelling in Paramecium.

    Science.gov (United States)

    Arambasic, Miroslav; Sandoval, Pamela Y; Hoehener, Cristina; Singh, Aditi; Swart, Estienne C; Nowacki, Mariusz

    2014-01-01

    The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.

  4. Brain metabolic impairment of OSAS: evidence from MRS

    International Nuclear Information System (INIS)

    Shen Jie; Long Miaomiao; Shen Wen; Qi Ji

    2011-01-01

    Objective: To evaluate the impact of obstructive sleep apnea syndrome (OSAS) on human cerebral metabolism by using magnetic resonance spectroscopy (MRS). Materials and methods: Twenty-one severe OSAS patients, 14 mild-moderate OSAS patients, and 15 healthy control subjects were included. All subjects underwent MRS using the point-resolved echo spin spectroscopy (PRESS). Proton volumes of interest were placed in the bilateral frontal lobes and left temporal -parietal-occipital cortex, and left hippocampus. Results: 1. Compared to the controls, the NAA/Cr ratio was significantly decreased in the left frontal lobe in the severe OSAS group (P=0.004), and in the right frontal lobe in the severe (P=0.002) and mild-moderate (P=0.007) OSAS patients. The NAA/Cr ratio trended to be decreased in the left hippocampus in the OSAS patients compared to controls. 2. A significant increase in the ml/Cr ratio was detected in the right frontal regions in the severe (P=0.008) and mild-moderate (P<0.001) OSAS groups. 3. Clx/Cr ratio values were significantly smaller than controls in the left (P=0.006) and right (P=0.027) frontal regions. Conclusion: Bilateral frontal lobes are the vulnerable location in patients with OSAS. MRS can be used to screen the brain metabolic impairment. (authors)

  5. Cognitive MAC designs for OSA networks

    CERN Document Server

    Derakhshani, Mahsa

    2014-01-01

    This SpringerBrief presents recent advances in the cognitive MAC designs for opportunistic spectrum access (OSA) networks. It covers the basic MAC functionalities and MAC enhancements of IEEE 802.11. Later chapters discuss the existing MAC protocols for OSA and classify them based on characteristic features. The authors provide new research in adaptive carrier sensing-based MAC designs tailored for OSA, which optimize spectrum utilization and ensure a peaceful coexistence of licensed and unlicensed systems. Analytically devised via optimization and game-theoretic approaches, these adaptive M

  6. Overlap syndrome of COPD and OSA in Koreans.

    Science.gov (United States)

    Choi, Kyung-Mee; Thomas, Robert J; Kim, Jinkwan; Lee, Seung Ku; Yoon, Dae Wui; Shin, Chol

    2017-07-01

    Overlap syndrome of chronic obstructive pulmonary disease (COPD) and obstructive sleep apnea (OSA) leads to increased morbidity and mortality. There have been no reports available on the overlap syndrome for Koreans. Our primary aim was to identify prevalence and predictors of the overlap syndrome in Koreans.This is a cross-sectional study with a community-based sample of 1298 participants (mean age, 59.7 ± 6.7) from the cohort of Korean Genomic and Epidemiologic Study during 2013 to 2014. OSA and COPD were assessed by apnea-hypopnea index (AHI) and the ratio of forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC syndrome. The prevalence of COPD remained the same as 10.8% regardless of the presence of OSA. The mean ratio of FEV1/FVC for those with COPD was 0.77, regardless of OSA. The OR increased for age (OR, 1.1; 95% CI, 1.0-1.1) and smokers (OR, 3.6; 95% CI, 2.0-6.4), but decreased for body mass index (BMI) (OR, 0.84; 95% CI, 0.8-0.9) and overweight state (OR, 0.4; 95% CI, 0.2-0.7). Risk factors of the overlap syndrome differed by OSA severity, that is, BMI in those with moderate-to-severe OSA, whereas sex (OR, 4.7; 95% CI, 2.1-10.6) and age (OR, 1.1; 95% CI, 1.0-1.1) in those with mild OSA.In a population study from Korea, 10.8% of OSA patients had an overlap syndrome with COPD. Although BMI is a well-known risk factor of OSA, it is likely that being overweight may be protective for moderate-to-severe OSA patients from the risk of COPD (i.e., overlap syndrome).

  7. Dynamics of Histone Tails within Chromatin

    Science.gov (United States)

    Bernier, Morgan; North, Justin; Page, Michael; Jaroniec, Christopher; Hammel, Christopher; Poirier, Michael

    2012-02-01

    Genetic information in humans is encoded within DNA molecules that is wrapped around histone octamer proteins and compacted into a highly conserved structural polymer, chromatin. The physical and material properties of chromatin appear to influence gene expression by altering the accessibility of proteins to the DNA. The tails of the histones are flexible domains that are thought to play a role in regulating DNA accessibility and compaction; however the molecular mechanisms for these phenomena are not understood. I will present CW-EPR studies on site directed spin labeled nucleosomes that probe the structure and dynamics of these histone tails within nucleosomes.

  8. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verbakel, Werner, E-mail: werner.verbakel@chem.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium); Carmeliet, Geert, E-mail: geert.carmeliet@med.kuleuven.be [Laboratory of Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Herestraat 49, Bus 902, 3000 Leuven (Belgium); Engelborghs, Yves, E-mail: yves.engelborghs@fys.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium)

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase NuSAP-chromatin

  9. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    International Nuclear Information System (INIS)

    Verbakel, Werner; Carmeliet, Geert; Engelborghs, Yves

    2011-01-01

    Highlights: → The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. → This SAP-like domain is essential for chromosome loading during early mitosis. → NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. → The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase NuSAP-chromatin interaction

  10. [The selective participation of brain-specific non-histone proteins of chromatin Np-3,5 during the reproduction of a defensive habit to food in edible snails].

    Science.gov (United States)

    Kozyrev, S A; Nikitin, V P; Sherstnev, V V

    1991-01-01

    The role of brain-specific nonhistone proteins of chromatine Np-3.5 in the processes of reproduction of elaborated defensive habit to food was studied in previously learning snails. It was found, that gamma-globulines to Np-3.5 during tens of minutes inhibited behavioural and neuronal reactions elicited by a definite conditioned stimulus--carrot juice, without changing reactions to other conditioned stimulus--apple juice. gamma-globulines to other nonhistone proteins of chromatine did not influence the reproduction of food rejection habits. It was supposed that brain-specific nonhistone proteins of chromatine Np-3.5 were selectively involved in the molecular processes providing for neurophysiological mechanisms of information extraction from the long-term memory.

  11. Fast neutron irradiation effects on liver chromatin structure

    International Nuclear Information System (INIS)

    Constantinescu, B.; Radu, L.

    1996-01-01

    The growing interest in neutron therapy requires complex studies on the mechanisms of neutron action on biological systems, especially on chromatin. The chromatin was extracted from a normal tissue-livers of Wistar rats - and from a tumoral tissue - Walker tumour maintained on Wistar rats. Irradiation doses from 5 Gy to 100 Gy by fast neutron intense beams produced via d(13.5 MeV) +Be (thick target) reaction at Bucharest U-120 Classical Cyclotron were used. To study the post-irradiation effects, various methods were employed. So, the variation in the 260 nm absorbency in chromatin thermal transition was pursuit. The chromatin-ethidium bromide complexes fluorescence with λ ex =480 nm and λ em =600 nm was analyzed. To determine chromatin DNA strand breaks a fluorimetric method, with cells' suspensions as starting material was used. This method requires a partial treatment with alkali producing three components: T-estimating the total fluorescence of DNA double helix, P-assigning the untwisting rate and B-the blank, where DNA is completely unfolded The percentsge of DNA double strand,-D-, remaining after this treatment, is: %D=100x(P-B)/(T-B). The intrinsic chromatin fluorescence was determined for tyrosine (λ ex =280 nm, λ em =305 nm), specific for badic chromatin prooteins, and for tryptophane (λ ex =290 nm, λ em =345 nm) specific for acid chromatin proteins. Polyacrylamide gel electrophoresis was performed: The double fluorescent labelling of chromatin was realized with acridine orange for DNA and with dansyl chloride for chromatin proteins. Fluorescence intensity determinations were done with λ ex =505 nm, λ em =530 nm for acridine orange and with λ ex =323 nm, λ em =505 nm for dansyl chloride. A Pye Unicam SP 1800 spectrophotometer and a Aminco SPF 500 spectrofluorimeter were employed. (author)

  12. Security Analysis of Parlay/OSA Framework

    NARCIS (Netherlands)

    Corin, R.J.; Di Caprio, G.; Etalle, Sandro; Gnesi, S.; Lenzini, Gabriele; Moiso, C.; Villain, B.

    2004-01-01

    This paper analyzes the security of the Trust and Security Management (TSM) protocol, an authentication protocol which is part of the Parlay/OSA Application Program Interfaces (APIs). Architectures based on Parlay/OSA APIs allow third party service providers to develop new services that can access,

  13. Security Analysis of Parlay/OSA Framework

    NARCIS (Netherlands)

    Corin, R.J.; Di Caprio, G.; Etalle, Sandro; Gnesi, S.; Lenzini, Gabriele; Moiso, C.

    This paper analyzes the security of the Trust and Security Management (TSM) protocol, an authentication protocol which is part of the Parlay/OSA Application Program Interfaces (APIs). Architectures based on Parlay/OSA APIs allow third party service providers to develop new services that can access,

  14. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure

    NARCIS (Netherlands)

    M. Rosa-Garrido (Manuel); Chapski, D.J. (Douglas J.); Schmitt, A.D. (Anthony D.); Kimball, T.H. (Todd H.); Karbassi, E. (Elaheh); Monte, E. (Emma); Balderas, E. (Enrique); Pellegrini, M. (Matteo); Shih, T.-T. (Tsai-Ting); Soehalim, E. (Elizabeth); D.A. Liem (David); Ping, P. (Peipei); N.J. Galjart (Niels); Ren, S. (Shuxun); Wang, Y. (Yibin); Ren, B. (Bing); Vondriska, T.M. (Thomas M.)

    2017-01-01

    textabstractBACKGROUND: Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined.METHODS: To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation

  15. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning: role of protein kinase B/Akt signaling.

    Science.gov (United States)

    Feng, Jianhua; Fischer, Gregor; Lucchinetti, Eliana; Zhu, Min; Bestmann, Lukas; Jegger, David; Arras, Margarete; Pasch, Thomas; Perriard, Jean-Claude; Schaub, Marcus C; Zaugg, Michael

    2006-05-01

    Postinfarct remodeled myocardium exhibits numerous structural and biochemical alterations. So far, it is unknown whether postconditioning elicited by volatile anesthetics can also provide protection in the remodeled myocardium. Myocardial infarct was induced in male Wistar rats by ligation of the left anterior descending coronary artery. Six weeks later, hearts were buffer-perfused and exposed to 40 min of ischemia followed by 90 min of reperfusion. Anesthetic postconditioning was induced by 15 min of 2.1 vol% isoflurane. In some experiments, LY294002 (15 microM), a phosphatidylinositol 3-kinase inhibitor, was coadministered with isoflurane. Masson's trichrome staining, immunohistochemistry, Western blot analysis, and reverse-transcription polymerase chain reaction served to confirm remodeling. In buffer-perfused hearts, functional recovery was recorded, and acute infarct size was measured using 1% triphenyltetrazolium chloride staining and lactate dehydrogenase release during reperfusion. Western blot analysis was used to determine phosphorylation of reperfusion injury salvage kinases including protein kinase B/Akt and its downstream targets after 15 min of reperfusion. Infarct hearts exhibited typical macroscopic and molecular changes of remodeling. Isoflurane postconditioning improved functional recovery and decreased acute infarct size, as determined by triphenyltetrazolium (35 +/- 5% in unprotected hearts vs. 8 +/- 3% in anesthetic postconditioning; P protection was abolished by LY294002, which inhibited phosphorylation of protein kinase B/Akt and its downstream targets glycogen synthase kinase 3beta, endothelial nitric oxide synthase, and p70S6 kinase. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning via protein kinase B/Akt signaling. This is the first time to demonstrate that anesthetic postconditioning retains its marked protection in diseased myocardium.

  16. Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes.

    Science.gov (United States)

    Biedka, Stephanie; Micic, Jelena; Wilson, Daniel; Brown, Hailey; Diorio-Toth, Luke; Woolford, John L

    2018-04-24

    Ribosome biogenesis involves numerous preribosomal RNA (pre-rRNA) processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Removal of the internal transcribed spacer 2 spacer RNA is the final step in large subunit pre-rRNA processing and begins with endonucleolytic cleavage at the C 2 site of 27SB pre-rRNA. C 2 cleavage requires the hierarchical recruitment of 11 ribosomal proteins and 14 ribosome assembly factors. However, the function of these proteins in C 2 cleavage remained unclear. In this study, we have performed a detailed analysis of the effects of depleting proteins required for C 2 cleavage and interpreted these results using cryo-electron microscopy structures of assembling 60S subunits. This work revealed that these proteins are required for remodeling of several neighborhoods, including two major functional centers of the 60S subunit, suggesting that these remodeling events form a checkpoint leading to C 2 cleavage. Interestingly, when C 2 cleavage is directly blocked by depleting or inactivating the C 2 endonuclease, assembly progresses through all other subsequent steps. © 2018 Biedka et al.

  17. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.

    Science.gov (United States)

    Ansari, Suraiya A; Paul, Emily; Sommer, Sebastian; Lieleg, Corinna; He, Qiye; Daly, Alexandre Z; Rode, Kara A; Barber, Wesley T; Ellis, Laura C; LaPorta, Erika; Orzechowski, Amanda M; Taylor, Emily; Reeb, Tanner; Wong, Jason; Korber, Philipp; Morse, Randall H

    2014-05-23

    Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Studies on the Chromatin Isolated from the Organs of Animals Received Whole-body X-ray Irradiation

    International Nuclear Information System (INIS)

    Han, Su Nam

    1967-01-01

    Within experimental chromatin, the total protein: DNA ratio did not vary in the same organs of control and irradiated rats. However, the amount of RNA and total protein associated with the DNA varied considerably among the different types of chromatin. In particular, the content of chromatin was the highest in the irradiated tissue, and the lowest in the chromatin control tissue. RNA and total protein ratio of chromatins from brain, liver, testis and spleen declined with experimental organs. 2) There was the same quantitative relationship between the amount of RNA and the amount histone-protein associated with DNA in each chromatin. 3) RNA:DNA ratio of chromatin showed a 1.5-2 times increase in the irradiated organs except brain. However, RNA:DNA ratio was decreased in chromatin by irradiation. 4) Histone-protein: Residual protein ratio was greatly varied among the organs. However, the effect was not found by irradiation. 5) Priming activity of chromatins showed a higher value in testis and the activity was greater in organs with higher metabolic activity. 6) Inhibition of Actinomycin D observable in chromatin for testis, liver, spleen and brain declined without relationship between irradiated and non-irradiated conditions. Ammonium sulfate in DNA of chromatin from histone showed increased priming activity with dissociation by Electrostatics. It may give different effect of ammonium sulfate on stimulation by property of chromatins. 7) It is suggested that the results support a proposal that the higher sensitivity of radioactive in testis, spleen by irradiated showed a increase and decrease lower-sensitivity of radioactive from brain, liver than did priming activity under the radioactive conditions.

  19. Studies on the Chromatin Isolated from the Organs of Animals Received Whole-body X-ray Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Su Nam [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1967-09-15

    Within experimental chromatin, the total protein: DNA ratio did not vary in the same organs of control and irradiated rats. However, the amount of RNA and total protein associated with the DNA varied considerably among the different types of chromatin. In particular, the content of chromatin was the highest in the irradiated tissue, and the lowest in the chromatin control tissue. RNA and total protein ratio of chromatins from brain, liver, testis and spleen declined with experimental organs. 2) There was the same quantitative relationship between the amount of RNA and the amount histone-protein associated with DNA in each chromatin. 3) RNA:DNA ratio of chromatin showed a 1.5-2 times increase in the irradiated organs except brain. However, RNA:DNA ratio was decreased in chromatin by irradiation. 4) Histone-protein: Residual protein ratio was greatly varied among the organs. However, the effect was not found by irradiation. 5) Priming activity of chromatins showed a higher value in testis and the activity was greater in organs with higher metabolic activity. 6) Inhibition of Actinomycin D observable in chromatin for testis, liver, spleen and brain declined without relationship between irradiated and non-irradiated conditions. Ammonium sulfate in DNA of chromatin from histone showed increased priming activity with dissociation by Electrostatics. It may give different effect of ammonium sulfate on stimulation by property of chromatins. 7) It is suggested that the results support a proposal that the higher sensitivity of radioactive in testis, spleen by irradiated showed a increase and decrease lower-sensitivity of radioactive from brain, liver than did priming activity under the radioactive conditions.

  20. Structural hierarchy of chromatin in chicken erythrocyte nuclei based on small-angle neutron scattering: Fractal nature of the large-scale chromatin organization

    International Nuclear Information System (INIS)

    Lebedev, D. V.; Filatov, M. V.; Kuklin, A. I.; Islamov, A. Kh.; Stellbrink, J.; Pantina, R. A.; Denisov, Yu. Yu.; Toperverg, B. P.; Isaev-Ivanov, V. V.

    2008-01-01

    The chromatin organization in chicken erythrocyte nuclei was studied by small-angle neutron scattering in the scattering-vector range from 1.5 x 10 -1 to 10 -4 A -1 with the use of the contrast-variation technique. This scattering-vector range corresponds to linear dimensions from 4 nm to 6 μm and covers the whole hierarchy of chromatin structures, from the nucleosomal structure to the entire nucleus. The results of the present study allowed the following conclusions to be drawn: (1) both the chromatin-protein structure and the structure of the nucleic acid component in chicken erythrocyte nuclei have mass-fractal properties, (2) the structure of the protein component of chromatin exhibits a fractal behavior on scales extending over two orders of magnitude, from the nucleosomal size to the size of an entire nucleus, and (3) the structure of the nucleic acid component of chromatin in chicken erythrocyte nuclei is likewise of a fractal nature and has two levels of organization or two phases with the crossover point at about 300-400 nm

  1. The Yin and Yang of chromatin dynamics in adult stem cell fate selection

    Science.gov (United States)

    Adam, Rene C.; Fuchs, Elaine

    2015-01-01

    Adult organisms rely on tissue stem cells for maintenance and repair. During homeostasis, the concerted action of local niche signals and epigenetic regulators establish stable gene expression patterns to ensure that stem cells are not lost over time. However, stem cells also provide host tissues with a remarkable plasticity to respond to perturbations. How adult stem cells choose and acquire new fates is unknown, but the genome-wide mapping of epigenetic landscapes suggests a critical role for chromatin remodeling in these processes. Here, we explore the emerging role of chromatin modifiers and pioneer transcription factors in adult stem cell fate decisions and plasticity, which ensure that selective lineage choices are only made when environmentally cued. PMID:26689127

  2. Impaired chromatin remodelling at STAT1-regulated promoters leads to global unresponsiveness of Toxoplasma gondii-infected macrophages to IFN-γ.

    Directory of Open Access Journals (Sweden)

    Christine Lang

    2012-01-01

    -infected MΦ are unable to respond to IFN-γ due to disturbed chromatin remodelling, but can be rescued using histone deacetylase inhibitors.

  3. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders

    Directory of Open Access Journals (Sweden)

    Alberto J Lopez

    2015-04-01

    Full Text Available It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, schizophrenia, and Autism Spectrum Disorder. Together, these human developmental and intellectual disability disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development.

  4. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders.

    Science.gov (United States)

    López, Alberto J; Wood, Marcelo A

    2015-01-01

    It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability (ID) disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF) complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NBS), schizophrenia, and Autism Spectrum Disorder (ASD). Together, these human developmental and ID disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and ID disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development.

  5. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes*

    OpenAIRE

    Yalley, Akua; Schill, Daniel; Hatta, Mitsutoki; Johnson, Nicole; Cirillo, Lisa Ann

    2016-01-01

    FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 ...

  6. Nuclear and chromatin structures and their influence on the radiosensitivity of DNA

    International Nuclear Information System (INIS)

    Oleinick, N.L.; Chiu, S.-M.

    1994-01-01

    Among the factors contributing to the distribution of DNA damage within irradiated mammalian cell nuclei are the interactions of DNA with nuclear proteins and the formation of multi-molecular chromatin structures. Studies on the manipulation of chromatin structures of isolated nuclei are summarised. The majority of chromatin within the nucleus of living cells is tightly compacted into nucleosomal superhelices and other higher order structures which have a limited ability to be damaged by radiation. The treatment of isolated nuclei with hypotonic buffers causes a decondensation of these structures and markedly sensitises the DNA to radiation, while retaining the majority of the chromosomal proteins. On the other hand, treatment of nuclei with hypertonic buffers strips the DNA of specific classes of nuclear proteins, destroying chromatin structure, and this procedure also enhances the sensitivity of the DNA to radiation. The various expanded chromatin structures are models for the structure of the minor fraction of DNA which is decondensed in preparation for transcription or replication. The combined results indicate that the majority of nuclear DNA is protected by histones and other nuclear proteins from radiation damage, partially as a result of the limited accessibility of the condensed structures to hydroxyl radical and partially as a result of the scavenging of radicals by the proteins. (Author)

  7. Titration and hysteresis in epigenetic chromatin silencing

    International Nuclear Information System (INIS)

    Dayarian, Adel; Sengupta, Anirvan M

    2013-01-01

    Epigenetic mechanisms of silencing via heritable chromatin modifications play a major role in gene regulation and cell fate specification. We consider a model of epigenetic chromatin silencing in budding yeast and study the bifurcation diagram and characterize the bistable and the monostable regimes. The main focus of this paper is to examine how the perturbations altering the activity of histone modifying enzymes affect the epigenetic states. We analyze the implications of having the total number of silencing proteins, given by the sum of proteins bound to the nucleosomes and the ones available in the ambient, to be constant. This constraint couples different regions of chromatin through the shared reservoir of ambient silencing proteins. We show that the response of the system to perturbations depends dramatically on the titration effect caused by the above constraint. In particular, for a certain range of overall abundance of silencing proteins, the hysteresis loop changes qualitatively with certain jump replaced by continuous merger of different states. In addition, we find a nonmonotonic dependence of gene expression on the rate of histone deacetylation activity of Sir2. We discuss how these qualitative predictions of our model could be compared with experimental studies of the yeast system under anti-silencing drugs. (paper)

  8. Effect of ultraviolet irradiation on chromatin and its components from Yoshida ascites tumour cells

    International Nuclear Information System (INIS)

    Ramakrishnan, N.; Patil, M.S.; Pradhan, D.S.

    1981-01-01

    A study has been made of the effect of U.V. irradiation on Yoshida ascites tumour chromatin and its non-DNA components. The extractability of total histones was increased from 6% to 17% with an increase in U.V. incident radiation dose from 500J/m 2 to 2000J/m 2 . The polyacrylamide gel electrophoresis pattern of chromosomal proteins was examined after irradiation of the chromatin, and the effect of U.V. irradiation of chromatin on histones was also investigated. The results indicated that cross-linking of DNA with chromosomal proteins is an important category of U.V. radiation-induced lesions discerned in U.V. irradiated chromatin. Histones and several non-histone proteins seemed to undergo U.V. radiation-induced cross-linking with DNA, which was taken as indicative of their close association with DNA in the chromatin structure. It is suggested that the cross-link formation between DNA and non-histone proteins may be due to sequence-specific association of non-histone proteins with DNA. (U.K.)

  9. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    Science.gov (United States)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  10. Hypomorphic mutations in PGAP2, encoding a GPI-anchor-remodeling protein, cause autosomal-recessive intellectual disability

    DEFF Research Database (Denmark)

    Hansen, Lars; Tawamie, Hasan; Murakami, Yoshiko

    2013-01-01

    PGAP2 encodes a protein involved in remodeling the glycosylphosphatidylinositol (GPI) anchor in the Golgi apparatus. After synthesis in the endoplasmic reticulum (ER), GPI anchors are transferred to the proteins and are remodeled while transported through the Golgi to the cell membrane. Germline...... mutations in six genes (PIGA, PIGL, PIGM, PIGV, PIGN, and PIGO) in the ER-located part of the GPI-anchor-biosynthesis pathway have been reported, and all are associated with phenotypes extending from malformation and lethality to severe intellectual disability, epilepsy, minor dysmorphisms, and elevated...... alkaline phosphatase (ALP). We performed autozygosity mapping and ultra-deep sequencing followed by stringent filtering and identified two homozygous PGAP2 alterations, p.Tyr99Cys and p.Arg177Pro, in seven offspring with nonspecific autosomal-recessive intellectual disability from two consanguineous...

  11. High-affinity DNA-binding Domains of Replication Protein A (RPA) Direct SMARCAL1-dependent Replication Fork Remodeling*

    Science.gov (United States)

    Bhat, Kamakoti P.; Bétous, Rémy; Cortez, David

    2015-01-01

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. PMID:25552480

  12. High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling.

    Science.gov (United States)

    Bhat, Kamakoti P; Bétous, Rémy; Cortez, David

    2015-02-13

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The Schizosaccharomyces pombe JmjC-protein, Msc1, prevents H2A.Z localization in centromeric and subtelomeric chromatin domains.

    Directory of Open Access Journals (Sweden)

    Luke Buchanan

    2009-11-01

    Full Text Available Eukaryotic genomes are repetitively packaged into chromatin by nucleosomes, however they are regulated by the differences between nucleosomes, which establish various chromatin states. Local chromatin cues direct the inheritance and propagation of chromatin status via self-reinforcing epigenetic mechanisms. Replication-independent histone exchange could potentially perturb chromatin status if histone exchange chaperones, such as Swr1C, loaded histone variants into wrong sites. Here we show that in Schizosaccharomyces pombe, like Saccharomyces cerevisiae, Swr1C is required for loading H2A.Z into specific sites, including the promoters of lowly expressed genes. However S. pombe Swr1C has an extra subunit, Msc1, which is a JumonjiC-domain protein of the Lid/Jarid1 family. Deletion of Msc1 did not disrupt the S. pombe Swr1C or its ability to bind and load H2A.Z into euchromatin, however H2A.Z was ectopically found in the inner centromere and in subtelomeric chromatin. Normally this subtelomeric region not only lacks H2A.Z but also shows uniformly lower levels of H3K4me2, H4K5, and K12 acetylation than euchromatin and disproportionately contains the most lowly expressed genes during vegetative growth, including many meiotic-specific genes. Genes within and adjacent to subtelomeric chromatin become overexpressed in the absence of either Msc1, Swr1, or paradoxically H2A.Z itself. We also show that H2A.Z is N-terminally acetylated before, and lysine acetylated after, loading into chromatin and that it physically associates with the Nap1 histone chaperone. However, we find a negative correlation between the genomic distributions of H2A.Z and Nap1/Hrp1/Hrp3, suggesting that the Nap1 chaperones remove H2A.Z from chromatin. These data describe H2A.Z action in S. pombe and identify a new mode of chromatin surveillance and maintenance based on negative regulation of histone variant misincorporation.

  14. Higher-order structure of Saccharomyces cerevisiae chromatin

    International Nuclear Information System (INIS)

    Lowary, P.T.; Widom, J.

    1989-01-01

    We have developed a method for partially purifying chromatin from Saccharomyces cerevisiae (baker's yeast) to a level suitable for studies of its higher-order folding. This has required the use of yeast strains that are free of the ubiquitous yeast killer virus. Results from dynamic light scattering, electron microscopy, and x-ray diffraction show that the yeast chromatin undergoes a cation-dependent folding into 30-nm filaments that resemble those characteristic of higher-cell chromatin; moreover, the packing of nucleosomes within the yeast 30-nm filaments is similar to that of higher cells. These results imply that yeast has a protein or protein domain that serves the role of the histone H 1 found in higher cells; physical and genetic studies of the yeast activity could help elucidate the structure and function of H 1. Images of the yeast 30-nm filaments can be used to test crossed-linker models for 30-nm filament structure

  15. Epigenetic remodeling and modification to preserve skeletogenesis in vivo.

    Science.gov (United States)

    Godfrey, Tanner C; Wildman, Benjamin J; Javed, Amjad; Lengner, Christopher J; Hassan, Mohammad Quamarul

    2018-12-01

    Current studies offer little insight on how epigenetic remodeling of bone-specific chromatin maintains bone mass in vivo. Understanding this gap and precise mechanism is pivotal for future therapeutic innovation to prevent bone loss. Recently, we found that low bone mass is associated with decreased H3K27 acetylation (activating histone modification) of bone specific gene promoters. Here, we aim to elucidate the epigenetic mechanisms by which a miRNA cluster controls bone synthesis and homeostasis by regulating chromatin accessibility and H3K27 acetylation. In order to decipher the epigenetic axis that regulates osteogenesis, we studied a drug inducible anti-miR-23a cluster (miR-23a Cl ZIP ) knockdown mouse model. MiR-23a cluster knockdown (heterozygous) mice developed high bone mass. These mice displayed increased expression of Runx2 and Baf45a, essential factors for skeletogenesis; and decreased expression of Ezh2, a chromatin repressor indispensable for skeletogenesis. ChIP assays using miR-23a Cl knockdown calvarial cells revealed a BAF45A-EZH2 epigenetic antagonistic mechanism that maintains bone formation. Together, our findings support that the miR-23a Cl connection with tissue-specific RUNX2-BAF45A-EZH2 function is a novel molecular epigenetic axis through which a miRNA cluster orchestrates chromatin modification to elicit major effects on osteogenesis in vivo.

  16. Extensive Variation in Chromatin States Across Humans

    KAUST Repository

    Kasowski, M.

    2013-10-17

    The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.

  17. Extensive Variation in Chromatin States Across Humans

    KAUST Repository

    Kasowski, M.; Kyriazopoulou-Panagiotopoulou, S.; Grubert, F.; Zaugg, J. B.; Kundaje, A.; Liu, Y.; Boyle, A. P.; Zhang, Q. C.; Zakharia, F.; Spacek, D. V.; Li, J.; Xie, D.; Olarerin-George, A.; Steinmetz, L. M.; Hogenesch, J. B.; Kellis, M.; Batzoglou, S.; Snyder, M.

    2013-01-01

    The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.

  18. Protein receptor-independent plasma membrane remodeling by HAMLET

    DEFF Research Database (Denmark)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L.

    2015-01-01

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This "protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains...... in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range...... of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a "receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET...

  19. Condensins Exert Force on Chromatin-Nuclear Envelope Tethers to Mediate Nucleoplasmic Reticulum Formation in Drosophila melanogaster

    Science.gov (United States)

    Bozler, Julianna; Nguyen, Huy Q.; Rogers, Gregory C.; Bosco, Giovanni

    2014-01-01

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. PMID:25552604

  20. Condensins exert force on chromatin-nuclear envelope tethers to mediate nucleoplasmic reticulum formation in Drosophila melanogaster.

    Science.gov (United States)

    Bozler, Julianna; Nguyen, Huy Q; Rogers, Gregory C; Bosco, Giovanni

    2014-12-30

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. Copyright © 2015 Bozler et al.

  1. Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes

    Directory of Open Access Journals (Sweden)

    Dasgupta Dipayan

    2005-05-01

    Full Text Available Abstract Background Global regulatory mechanisms involving chromatin assembly and remodelling in the promoter regions of genes is implicated in eukaryotic transcription control especially for genes subjected to spatial and temporal regulation. The potential to utilise global regulatory mechanisms for controlling gene expression might depend upon the architecture of the chromatin in and around the gene. In-silico analysis can yield important insights into this aspect, facilitating comparison of two or more classes of genes comprising of a large number of genes within each group. Results In the present study, we carried out a comparative analysis of chromatin characteristics in terms of the scaffold/matrix attachment regions, nucleosome formation potential and the occurrence of repetitive sequences, in the upstream regulatory regions of housekeeping and tissue specific genes. Our data show that putative scaffold/matrix attachment regions are more abundant and nucleosome formation potential is higher in the 5' regions of tissue specific genes as compared to the housekeeping genes. Conclusion The differences in the chromatin features between the two groups of genes indicate the involvement of chromatin organisation in the control of gene expression. The presence of global regulatory mechanisms mediated through chromatin organisation can decrease the burden of invoking gene specific regulators for maintenance of the active/silenced state of gene expression. This could partially explain the lower number of genes estimated in the human genome.

  2. The regulation of transactivator of transcription on the activity of DNA-PKcs promoter

    International Nuclear Information System (INIS)

    Yang Tianyi; Zhang Shimeng; Qin Xia; Li Bing; Liu Xiaodan; Zhou Pingkun

    2012-01-01

    Objective: To explore the influence of human immunodeficiency virus transactivator of transcription (TAT) on the promoter activity of DNA dependent protein kinase catalytic subunit (DNA-PKcs). Methods: The truncated promoters of DNA-PKcs were cloned by PCR from the template DNA from HeLa genomic DNA, and the pGL3-basic-DNA-PKcs promoter reporter plasmids were constructed. The activity of DNA-PKcs promoters was detected by dual-luciferase reporter assay system. A Lac-repressor and Lacoperator based green fluorescent protein imaging system was used to assay the chromatin remodeling activity. Results: A series of reporter plasmids harboring the truncated promoters of DNA-PKcs from -939 bp to -1 bp were constructed. The sequence of -64 bp to-1 bp was identified as a critical element for the activity of DNA-PKes promoter. TAT can suppress the activity of DNA-PKcs promoter. TAT participates in the regulation of the large scale chromatin relaxation. Ionizing radiation attenuates the activity of TAT played in the chromatin remodeling. Conclusion: TAT represses the promoter activity of DNA repair protein DNA-PKcs, and also play a role of large scale chromatin remodeling which can te attenuated by ionizing radiation. (authors)

  3. Omal jalal maailma : 1.-5.osa / Paul Salopek ; fotografeerinud John Stanmeyer

    Index Scriptorium Estoniae

    Salopek, Paul

    2016-01-01

    Artikli 2. osa räägib autori rännakust läbi Saudi Araabias asuva Al-Hijāzi kõrbe, 3. osa rännakust piki Jordaania piiri ja Iisraelis, 4. osa rännakust Ida-Türgis ning kohtumistest Süüria sõjapõgenikega, 5. osa Armeeniast ja Türgist

  4. Long range epigenetic silencing is a trans-species mechanism that results in cancer specific deregulation by overriding the chromatin domains of normal cells.

    Science.gov (United States)

    Forn, Marta; Muñoz, Mar; Tauriello, Daniele V F; Merlos-Suárez, Anna; Rodilla, Verónica; Bigas, Anna; Batlle, Eduard; Jordà, Mireia; Peinado, Miguel A

    2013-12-01

    DNA methylation and chromatin remodeling are frequently implicated in the silencing of genes involved in carcinogenesis. Long Range Epigenetic Silencing (LRES) is a mechanism of gene inactivation that affects multiple contiguous CpG islands and has been described in different human cancer types. However, it is unknown whether there is a coordinated regulation of the genes embedded in these regions in normal cells and in early stages of tumor progression. To better characterize the molecular events associated with the regulation and remodeling of these regions we analyzed two regions undergoing LRES in human colon cancer in the mouse model. We demonstrate that LRES also occurs in murine cancer in vivo and mimics the molecular features of the human phenomenon, namely, downregulation of gene expression, acquisition of inactive histone marks, and DNA hypermethylation of specific CpG islands. The genes embedded in these regions showed a dynamic and autonomous regulation during mouse intestinal cell differentiation, indicating that, in the framework considered here, the coordinated regulation in LRES is restricted to cancer. Unexpectedly, benign adenomas in Apc(Min/+) mice showed overexpression of most of the genes affected by LRES in cancer, which suggests that the repressive remodeling of the region is a late event. Chromatin immunoprecipitation analysis of the transcriptional insulator CTCF in mouse colon cancer cells revealed disrupted chromatin domain boundaries as compared with normal cells. Malignant regression of cancer cells by in vitro differentiation resulted in partial reversion of LRES and gain of CTCF binding. We conclude that genes in LRES regions are plastically regulated in cell differentiation and hyperproliferation, but are constrained to a coordinated repression by abolishing boundaries and the autonomous regulation of chromatin domains in cancer cells. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All

  5. How do we recognize the child with OSAS?

    Science.gov (United States)

    Joosten, Koen F; Larramona, Helena; Miano, Silvia; Van Waardenburg, Dick; Kaditis, Athanasios G; Vandenbussche, Nele; Ersu, Refika

    2017-02-01

    Obstructive sleep-disordered breathing includes a spectrum of clinical entities with variable severity ranging from primary snoring to obstructive sleep apnea syndrome (OSAS). The clinical suspicion for OSAS is most often raised by parental report of specific symptoms and/or abnormalities identified by the physical examination which predispose to upper airway obstruction (e.g., adenotonsillar hypertrophy, obesity, craniofacial abnormalities, neuromuscular disorders). Symptoms and signs of OSAS are classified into those directly related to the intermittent pharyngeal airway obstruction (e.g., parental report of snoring, apneic events) and into morbidity resulting from the upper airway obstruction (e.g., increased daytime sleepiness, hyperactivity, poor school performance, inadequate somatic growth rate or enuresis). History of premature birth and a family history of OSAS as well as obesity and African American ethnicity are associated with increased risk of sleep-disordered breathing in childhood. Polysomnography is the gold standard method for the diagnosis of OSAS but may not be always feasible, especially in low-income countries or non-tertiary hospitals. Nocturnal oximetry and/or sleep questionnaires may be used to identify the child at high risk of OSAS when polysomnography is not an option. Endoscopy and MRI of the upper airway may help to identify the level(s) of upper airway obstruction and to evaluate the dynamic mechanics of the upper airway, especially in children with combined abnormalities. Pediatr Pulmonol. 2017;52:260-271. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co...

  7. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling

    NARCIS (Netherlands)

    G. Smeenk (Godelieve); W.W. Wiegant (Wouter); J.A. Marteijn (Jurgen); M.S. Luijsterburg (Martijn); N. Sroczynski (Nicholas); T. Costelloe (Thomas); R. Romeijn (Ron); A. Pastink (Albert); N. Mailand (Niels); W. Vermeulen (Wim); H. van Attikum (Haico)

    2013-01-01

    textabstractIonizing radiation (IR)-induced DNA double-strand breaks (DSBs) arising in native chromatin elicit an RNF8/RNF168-dependent ubiquitylation response, which triggers the recruitment of various repair factors. Precisely how this response is regulated in the context of chromatin remains

  8. The Cellular DNA Helicase ChlR1 Regulates Chromatin and Nuclear Matrix Attachment of the Human Papillomavirus 16 E2 Protein and High-Copy-Number Viral Genome Establishment.

    Science.gov (United States)

    Harris, Leanne; McFarlane-Majeed, Laura; Campos-León, Karen; Roberts, Sally; Parish, Joanna L

    2017-01-01

    In papillomavirus infections, the viral genome is established as a double-stranded DNA episome. To segregate the episomes into daughter cells during mitosis, they are tethered to cellular chromatin by the viral E2 protein. We previously demonstrated that the E2 proteins of diverse papillomavirus types, including bovine papillomavirus (BPV) and human papillomavirus 16 (HPV16), associate with the cellular DNA helicase ChlR1. This virus-host interaction is important for the tethering of BPV E2 to mitotic chromatin and the stable maintenance of BPV episomes. The role of the association between E2 and ChlR1 in the HPV16 life cycle is unresolved. Here we show that an HPV16 E2 Y131A mutant (E2 Y131A ) had significantly reduced binding to ChlR1 but retained transcriptional activation and viral origin-dependent replication functions. Subcellular fractionation of keratinocytes expressing E2 Y131A showed a marked change in the localization of the protein. Compared to that of wild-type E2 (E2 WT ), the chromatin-bound pool of E2 Y131A was decreased, concomitant with an increase in nuclear matrix-associated protein. Cell cycle synchronization indicated that the shift in subcellular localization of E2 Y131A occurred in mid-S phase. A similar alteration between the subcellular pools of the E2 WT protein occurred upon ChlR1 silencing. Notably, in an HPV16 life cycle model in primary human keratinocytes, mutant E2 Y131A genomes were established as episomes, but at a markedly lower copy number than that of wild-type HPV16 genomes, and they were not maintained upon cell passage. Our studies indicate that ChlR1 is an important regulator of the chromatin association of E2 and of the establishment and maintenance of HPV16 episomes. Infections with high-risk human papillomaviruses (HPVs) are a major cause of anogenital and oropharyngeal cancers. During infection, the circular DNA genome of HPV persists within the nucleus, independently of the host cell chromatin. Persistence of infection

  9. Remodeling of the methylation landscape in breast cancer metastasis.

    Directory of Open Access Journals (Sweden)

    Marsha Reyngold

    Full Text Available The development of breast cancer metastasis is accompanied by dynamic transcriptome changes and dramatic alterations in nuclear and chromatin structure. The basis of these changes is incompletely understood. The DNA methylome of primary breast cancers contribute to transcriptomic heterogeneity and different metastatic behavior. Therefore we sought to characterize methylome remodeling during regional metastasis. We profiled the DNA methylome and transcriptome of 44 matched primary breast tumors and regional metastases. Striking subtype-specific patterns of metastasis-associated methylome remodeling were observed, which reflected the molecular heterogeneity of breast cancers. These divergent changes occurred primarily in CpG island (CGI-poor areas. Regions of methylome reorganization shared by the subtypes were also observed, and we were able to identify a metastasis-specific methylation signature that was present across the breast cancer subclasses. These alterations also occurred outside of CGIs and promoters, including sequences flanking CGIs and intergenic sequences. Integrated analysis of methylation and gene expression identified genes whose expression correlated with metastasis-specific methylation. Together, these findings significantly enhance our understanding of the epigenetic reorganization that occurs during regional breast cancer metastasis across the major breast cancer subtypes and reveal the nature of methylome remodeling during this process.

  10. PREDICTION OF CHROMATIN STATES USING DNA SEQUENCE PROPERTIES

    KAUST Repository

    Bahabri, Rihab R.

    2013-06-01

    Activities of DNA are to a great extent controlled epigenetically through the internal struc- ture of chromatin. This structure is dynamic and is influenced by different modifications of histone proteins. Various combinations of epigenetic modification of histones pinpoint to different functional regions of the DNA determining the so-called chromatin states. How- ever, the characterization of chromatin states by the DNA sequence properties remains largely unknown. In this study we aim to explore whether DNA sequence patterns in the human genome can characterize different chromatin states. Using DNA sequence motifs we built binary classifiers for each chromatic state to eval- uate whether a given genomic sequence is a good candidate for belonging to a particular chromatin state. Of four classification algorithms (C4.5, Naive Bayes, Random Forest, and SVM) used for this purpose, the decision tree based classifiers (C4.5 and Random Forest) yielded best results among those we evaluated. Our results suggest that in general these models lack sufficient predictive power, although for four chromatin states (insulators, het- erochromatin, and two types of copy number variation) we found that presence of certain motifs in DNA sequences does imply an increased probability that such a sequence is one of these chromatin states.

  11. Beyond Histones: New Substrate Proteins of Lysine Deacetylases in Arabidopsis Nuclei

    Directory of Open Access Journals (Sweden)

    Magdalena Füßl

    2018-04-01

    Full Text Available The reversible acetylation of lysine residues is catalyzed by the antagonistic action of lysine acetyltransferases and deacetylases, which can be considered as master regulators of their substrate proteins. Lysine deacetylases, historically referred to as histone deacetylases, have profound functions in regulating stress defenses and development in plants. Lysine acetylation of the N-terminal histone tails promotes gene transcription and decondensation of chromatin, rendering the DNA more accessible to the transcription machinery. In plants, the classical lysine deacetylases from the RPD3/HDA1-family have thus far mainly been studied in the context of their deacetylating activities on histones, and their versatility in molecular activities is still largely unexplored. Here we discuss the potential impact of lysine acetylation on the recently identified nuclear substrate proteins of lysine deacetylases from the Arabidopsis RPD3/HDA1-family. Among the deacetylase substrate proteins, many interesting candidates involved in nuclear protein import, transcriptional regulation, and chromatin remodeling have been identified. These candidate proteins represent key starting points for unraveling new molecular functions of the Arabidopsis lysine deacetylases. Site-directed engineering of lysine acetylation sites on these target proteins might even represent a new approach for optimizing plant growth under climate change conditions.

  12. Put your 3D glasses on: plant chromatin is on show

    KAUST Repository

    Rodriguez Granados, Natalia Yaneth; Ramirez Prado, Juan Sebastian; Veluchamy, Alaguraj; Latrasse, David; Raynaud, Cé cile; Crespi, Martin; Ariel, Federico; Benhamed, Moussa

    2016-01-01

    The three-dimensional organization of the eukaryotic nucleus and its chromosomal conformation have emerged as important features in the complex network of mechanisms behind gene activity and genome connectivity dynamics, which can be evidenced in the regionalized chromosomal spatial distribution and the clustering of diverse genomic regions with similar expression patterns. The development of chromatin conformation capture (3C) techniques has permitted the elucidation of commonalities between the eukaryotic phyla, as well as important differences among them. The growing number of studies in the field performed in plants has shed light on the structural and regulatory features of these organisms. For instance, it has been proposed that plant chromatin can be arranged into different conformations such as Rabl, Rosette-like, and Bouquet, and that both short- and long-range chromatin interactions occur in Arabidopsis. In this review, we compile the current knowledge about chromosome architecture characteristics in plants, as well as the molecular events and elements (including long non-coding RNAs, histone and DNA modifications, chromatin remodeling complexes, and transcription factors) shaping the genome three-dimensional conformation. Furthermore, we discuss the developmental outputs of genome topology-mediated gene expression regulation. It is becoming increasingly clear that new tools and techniques with higher resolution need to be developed and implemented in Arabidopsis and other model plants in order to better understand chromosome architecture dynamics, from an integrative perspective with other fields of plant biology such as development, stress biology, and finally agriculture. © 2016 The Author 2016.

  13. Put your 3D glasses on: plant chromatin is on show

    KAUST Repository

    Rodriguez Granados, Natalia Yaneth

    2016-04-30

    The three-dimensional organization of the eukaryotic nucleus and its chromosomal conformation have emerged as important features in the complex network of mechanisms behind gene activity and genome connectivity dynamics, which can be evidenced in the regionalized chromosomal spatial distribution and the clustering of diverse genomic regions with similar expression patterns. The development of chromatin conformation capture (3C) techniques has permitted the elucidation of commonalities between the eukaryotic phyla, as well as important differences among them. The growing number of studies in the field performed in plants has shed light on the structural and regulatory features of these organisms. For instance, it has been proposed that plant chromatin can be arranged into different conformations such as Rabl, Rosette-like, and Bouquet, and that both short- and long-range chromatin interactions occur in Arabidopsis. In this review, we compile the current knowledge about chromosome architecture characteristics in plants, as well as the molecular events and elements (including long non-coding RNAs, histone and DNA modifications, chromatin remodeling complexes, and transcription factors) shaping the genome three-dimensional conformation. Furthermore, we discuss the developmental outputs of genome topology-mediated gene expression regulation. It is becoming increasingly clear that new tools and techniques with higher resolution need to be developed and implemented in Arabidopsis and other model plants in order to better understand chromosome architecture dynamics, from an integrative perspective with other fields of plant biology such as development, stress biology, and finally agriculture. © 2016 The Author 2016.

  14. BET domain co-regulators in obesity, inflammation and cancer.

    Science.gov (United States)

    Belkina, Anna C; Denis, Gerald V

    2012-06-22

    The bromodomain is a highly conserved motif of 110 amino acids that is bundled into four anti-parallel α-helices and found in proteins that interact with chromatin, such as transcription factors, histone acetylases and nucleosome remodelling complexes. Bromodomain proteins are chromatin 'readers'; they recruit chromatin-regulating enzymes, including 'writers' and 'erasers' of histone modification, to target promoters and to regulate gene expression. Conventional wisdom held that complexes involved in chromatin dynamics are not 'druggable' targets. However, small molecules that inhibit bromodomain and extraterminal (BET) proteins have been described. We examine these developments and discuss the implications for small molecule epigenetic targeting of chromatin networks in cancer.

  15. Reading the maps: Organization and function of chromatin types in Drosophila

    NARCIS (Netherlands)

    Braunschweig, U.

    2010-01-01

    The work presented in this thesis shows that the Drosophila genome is organized in chromatin domains with many implications for gene regulation, nuclear organization, and evolution. Furthermore it provides examples of how maps of chromatin protein binding, combined with computational approaches, can

  16. [Mechanisms of genoprotective action of a phytoecdysteroid drug(BTK-8L) in chromatin damage by tetrachloromethane].

    Science.gov (United States)

    Gubskiĭ, Iu I; Levitskiĭ, E L; Kholodova, Iu D; Goriushko, A G; Primak, R G; Vistunova, I E; Sachenko, L G

    1993-01-01

    Hepatoprotective action of prophylactic injection of aqueous solution of preparation BTK-8L from plant ecdysteroids to experimental animals with the liver damage by tetrachloromethane was revealed. This effect at least partially was connected with the genoprotective action of the given preparation. As a result, normalization of free radical chromatin lipid peroxidation reaction, modified at the intoxication, as well as partial correction of physical and chemical properties of chromatin protein-lipid complex were those molecular mechanisms of genoprotective action of BTK-8L, which were manifested by the influence of the preparation on such indices which characterized the depth structure of the complex as microviscosity and energy transfer from the protein to the lipid probe. Investigation of the interaction of the preparation with chromatin fractions in vitro and comparison of this interaction with the analogous process in model systems allowed revealing determinative participation of chromatin proteins and lipids in the given process. The preparation interacted more intensively with the active chromatin fraction, which contained a more marked protein-lipid complex, as comparing to the repressed one. Injection of the preparation also normalized such indices as relation between the chromatine fractions and protein/DNA ratio in them. On the contrary, injection of the alcoholic solution of the preparation to experimental animals, aggravated genotoxic tetrachloromethane action.

  17. The influence of chromatin structure on the frequency of radiation-induced DNA strand breaks: a study using nuclear and nucleoid monolayers

    International Nuclear Information System (INIS)

    Ljungman, M.

    1991-01-01

    To assess the influence of chromatin structure on the frequency of radiation-induced DNA strand breaks, the alkaline unwinding technique was applied to nuclear and nucleoid monolayers. These chromatin substrates were prepared by treating human fibroblasts grown as monolayers with the nonionic detergent Triton X-100 and varying concentrations of cations. The chromatin structure was modified either by a stepwise removal of DNA-bound proteins by extraction in increasing concentrations of monovalent salt, or by the addition or deletion of mono- and divalent cations to condense or decondense the chromatin, respectively. It was found that the stepwise removal of DNA-bound proteins from the chromatin dramatically increased the frequency of radiation-induced DNA strand breaks. The DNA-bound proteins showed a qualitative difference in their ability to protect the DNA where proteins removed by salt concentrations above 1.0 M exerted the greatest protection. Furthermore, the frequency of radiation-induced DNA strand breaks was found to be 6 times lower in condensed chromatin than in decondensed chromatin and about 80 times lower than in protein-depleted chromatin. It is concluded that the presence of DNA-bound proteins and the folding of the chromatin into higher-order structures protect the DNA against radiation-induced strand breaks

  18. Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization

    Directory of Open Access Journals (Sweden)

    Vuthy Ea

    2015-07-01

    Full Text Available Recent investigations on 3D chromatin folding revealed that the eukaryote genomes are both highly compartmentalized and extremely dynamic. This review presents the most recent advances in topological domains’ organization of the eukaryote genomes and discusses the relationship to chromatin loop formation. CTCF protein appears as a central factor of these two organization levels having either a strong insulating role at TAD borders, or a weaker architectural role in chromatin loop formation. TAD borders directly impact on chromatin dynamics by restricting contacts within specific genomic portions thus confining chromatin loop formation within TADs. We discuss how sub-TAD chromatin dynamics, constrained into a recently described statistical helix conformation, can produce functional interactions by contact stabilization.

  19. Kuninglikus õukonnateatris. I-IV osa / Jaanus Rohumaa

    Index Scriptorium Estoniae

    Rohumaa, Jaanus, 1969-

    1999-01-01

    Jaanus Rohumaa Londonis Royal Court Theatre' poolt korraldatud residentuuris, mis on mõeldud tänapäeva näitekirjanikele ja lavastajatele. Muljeid kokkutulnud eri maade näitekirjanikest ja lavastajatest. Jaanus Rohumaa lavastab Londonis Royal Shakespeare Company teatris Jaan Tätte näidendit "Ristumine peateega"(II osa) Inglise näitekirjaniku Sarah Kane'i loomingust, Robert Lepage'i lavastusest "Imede geomeetria" (III osa)

  20. Obesity and Obstructive Sleep Apnea: Or is it OSA and Obesity?

    Science.gov (United States)

    2008-01-01

    32–44. 66] A.K. Al-Shukaili, A.A. Al-Jabri, Rheumatoid arthritis , cytokines and hypoxia. What is the link? Saudi Med. J. 27 (2006) 1642–1649. 67...OSA. OSA appears to increase secretion of and/or lter responsiveness to the adipocyte hormone leptin and the rexigenic hormone ghrelin , and these...diabetes, dementia, arthritis , nd OSA itself [65–69]. Sequelae of obesity and OSA cross all organ systems. or example, chronic excessive

  1. CPAP increases bronchial reactivity in OSAS patients

    Directory of Open Access Journals (Sweden)

    P. Korczyski

    2008-06-01

    Full Text Available Continuous positive airways pressure (CPAP is a well known and safe method of treatment patients with obstructive sleep apnoea syndrome (OSAS. The effects of CPAP administration on the upper respiratory tract are known. However its effects on the lower respiratory tract still needs to be determined. Studies on bronchial hyperreactivity in patients treated by CPAP are contradictory. The aim of the study was to assess the influence of a 3-week CPAP treatment in patients with OSAS and to evaluate associations between changes in bronchial reactivity and clinical features of OSAS and lung function tests (LFT. Patients with newly diagnosed OSAS and lack of infection or chronic illness of the respiratory tract or other conditions which could influence bronchial hyperreactivity (BHR were included. Investigations were performed in 101 patients. There were 88 males and 13 females, mean age 51.5±11.2 years and BMI 32.6±5.4 kg·m–2. Qualified patients were randomly divided into 2 groups: 76 patients to CPAP treatment group, 25 control group. Both groups did not differ in anthropometrics features, severity of OSAS and LFT. Metacholine challenge test (MchCT was performed at baseline and repeated after 3 weeks. Analysis of the individual results showed that in 11 patients the MchCT was positive (6 in the CPAP and 5 in the control groups. After 3 weeks in the group of CPAP treated patients an increase of BHR was noted. Log PC20M decreased from 1.38±0.3 to 1.26±0.5 (p<0.05. The number of patients with a positive result in the MchCT increased from 6 to 16 patients. There was no significant change in BHR in the control group. It was found that CPAP treated patients with BHR were older, had less severe OSAS and lower FEV1 (p<0.05. In none of the patients positive result of BHR did no affect compliance to CPAP treatment. Conclusions: CPAP therapy increases bronchial reactivity, but does not affect compliance to treatment.

  2. Structure and Function of SET and MYND Domain-Containing Proteins

    Directory of Open Access Journals (Sweden)

    Nicholas Spellmon

    2015-01-01

    Full Text Available SET (Suppressor of variegation, Enhancer of Zeste, Trithorax and MYND (Myeloid-Nervy-DEAF1 domain-containing proteins (SMYD have been found to methylate a variety of histone and non-histone targets which contribute to their various roles in cell regulation including chromatin remodeling, transcription, signal transduction, and cell cycle control. During early development, SMYD proteins are believed to act as an epigenetic regulator for myogenesis and cardiomyocyte differentiation as they are abundantly expressed in cardiac and skeletal muscle. SMYD proteins are also of therapeutic interest due to the growing list of carcinomas and cardiovascular diseases linked to SMYD overexpression or dysfunction making them a putative target for drug intervention. This review will examine the biological relevance and gather all of the current structural data of SMYD proteins.

  3. Network science meets respiratory medicine for OSAS phenotyping and severity prediction

    Directory of Open Access Journals (Sweden)

    Stefan Mihaicuta

    2017-05-01

    Full Text Available Obstructive sleep apnea syndrome (OSAS is a common clinical condition. The way that OSAS risk factors associate and converge is not a random process. As such, defining OSAS phenotypes fosters personalized patient management and population screening. In this paper, we present a network-based observational, retrospective study on a cohort of 1,371 consecutive OSAS patients and 611 non-OSAS control patients in order to explore the risk factor associations and their correlation with OSAS comorbidities. To this end, we construct the Apnea Patients Network (APN using patient compatibility relationships according to six objective parameters: age, gender, body mass index (BMI, blood pressure (BP, neck circumference (NC and the Epworth sleepiness score (ESS. By running targeted network clustering algorithms, we identify eight patient phenotypes and corroborate them with the co-morbidity types. Also, by employing machine learning on the uncovered phenotypes, we derive a classification tree and introduce a computational framework which render the Sleep Apnea Syndrome Score (SASScore; our OSAS score is implemented as an easy-to-use, web-based computer program which requires less than one minute for processing one individual. Our evaluation, performed on a distinct validation database with 231 consecutive patients, reveals that OSAS prediction with SASScore has a significant specificity improvement (an increase of 234% for only 8.2% sensitivity decrease in comparison with the state-of-the-art score STOP-BANG. The fact that SASScore has bigger specificity makes it appropriate for OSAS screening and risk prediction in big, general populations.

  4. Phosphorylation of both nucleoplasmin domains is required for activation of its chromatin decondensation activity

    DEFF Research Database (Denmark)

    Bañuelos, Sonia; Omaetxebarria, Miren J; Ramos, Isbaal

    2007-01-01

    Nucleoplasmin (NP) is a histone chaperone involved in nucleosome assembly, chromatin decondensation at fertilization, and apoptosis. To carry out these activities NP has to interact with different types of histones, an interaction that is regulated by phosphorylation. Here we have identified...... are found at the tail domain, flanking the nuclear localization signal. Phosphorylation-mimicking mutations render a recombinant protein as active in chromatin decondensation as hyperphosphorylated NP isolated from Xenopus laevis eggs. Comparison of mutants in which the core and tail domains of the protein...... were independently or simultaneously "activated" indicates that activation or phosphorylation of both protein domains is required for NP to efficiently extract linker-type histones from chromatin....

  5. Evidence for the interaction of the regulatory protein Ki-1/57 with p53 and its interacting proteins

    International Nuclear Information System (INIS)

    Nery, Flavia C.; Rui, Edmilson; Kuniyoshi, Tais M.; Kobarg, Joerg

    2006-01-01

    Ki-1/57 is a cytoplasmic and nuclear phospho-protein of 57 kDa and interacts with the adaptor protein RACK1, the transcription factor MEF2C, and the chromatin remodeling factor CHD3, suggesting that it might be involved in the regulation of transcription. Here, we describe yeast two-hybrid studies that identified a total of 11 proteins interacting with Ki-1/57, all of which interact or are functionally associated with p53 or other members of the p53 family of proteins. We further found that Ki-1/57 is able to interact with p53 itself in the yeast two-hybrid system when the interaction was tested directly. This interaction could be confirmed by pull down assays with purified proteins in vitro and by reciprocal co-immunoprecipitation assays from the human Hodgkin analogous lymphoma cell line L540. Furthermore, we found that the phosphorylation of p53 by PKC abolishes its interaction with Ki-1/57 in vitro

  6. Chromatin modifications and the DNA damage response to ionizing radiation

    International Nuclear Information System (INIS)

    Kumar, Rakesh; Horikoshi, Nobuo; Singh, Mayank; Gupta, Arun; Misra, Hari S.; Albuquerque, Kevin; Hunt, Clayton R.; Pandita, Tej K.

    2013-01-01

    In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response.

  7. Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection.

    Science.gov (United States)

    Kulej, Katarzyna; Avgousti, Daphne C; Sidoli, Simone; Herrmann, Christin; Della Fera, Ashley N; Kim, Eui Tae; Garcia, Benjamin A; Weitzman, Matthew D

    2017-04-01

    Herpes simplex virus (HSV-1) lytic infection results in global changes to the host cell proteome and the proteins associated with host chromatin. We present a system level characterization of proteome dynamics during infection by performing a multi-dimensional analysis during HSV-1 lytic infection of human foreskin fibroblast (HFF) cells. Our study includes identification and quantification of the host and viral proteomes, phosphoproteomes, chromatin bound proteomes and post-translational modifications (PTMs) on cellular histones during infection. We analyzed proteomes across six time points of virus infection (0, 3, 6, 9, 12 and 15 h post-infection) and clustered trends in abundance using fuzzy c-means. Globally, we accurately quantified more than 4000 proteins, 200 differently modified histone peptides and 9000 phosphorylation sites on cellular proteins. In addition, we identified 67 viral proteins and quantified 571 phosphorylation events (465 with high confidence site localization) on viral proteins, which is currently the most comprehensive map of HSV-1 phosphoproteome. We investigated chromatin bound proteins by proteomic analysis of the high-salt chromatin fraction and identified 510 proteins that were significantly different in abundance during infection. We found 53 histone marks significantly regulated during virus infection, including a steady increase of histone H3 acetylation (H3K9ac and H3K14ac). Our data provide a resource of unprecedented depth for human and viral proteome dynamics during infection. Collectively, our results indicate that the proteome composition of the chromatin of HFF cells is highly affected during HSV-1 infection, and that phosphorylation events are abundant on viral proteins. We propose that our epi-proteomics approach will prove to be important in the characterization of other model infectious systems that involve changes to chromatin composition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. The use of ultraviolet light in the fractionation of chromatin containing unsubstituted and bromodeoxyuridine-substituted DNA

    International Nuclear Information System (INIS)

    Taichman, L.B.

    1979-01-01

    Two procedures are described for the fractionation of chromatin containing unsubstituted (LL) DNA and DNA unifilarly substituted with bromodeoxyuridine (HL). The two procedures rely upon the sensitivity of bromodeoxyuridine-containing DNA to UV light to induce either strand breakage or protein crosslinking. When a mixture of LL and HL chromatin is irradiated with UV light, the HL DNA fragments into molecules of smaller molecular weight than the LL DNA and crosslinks more chromosomal protein than the LL DNA. LL and HL chromatin can be fractionated on the basis of size by centrifuging through a neutral sucrose gradient. The HL DNA-protein adducts that are generated by the UV light have a unique buoyant density and may be isolated by isopycnic centrifugation in Cs 2 S0 4 . The ability to fractionate LL and HL chromatin permits certain studies on the structure of replicating chromatin. (author)

  9. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder

    DEFF Research Database (Denmark)

    Gui, Yaoting; Guo, Guangwu; Huang, Yi

    2011-01-01

    frequently in tumors of low stages and grades, highlighting its potential role in the classification and diagnosis of bladder cancer. Our results provide an overview of the genetic basis of TCC and suggest that aberration of chromatin regulation might be a hallmark of bladder cancer.......Transitional cell carcinoma (TCC) is the most common type of bladder cancer. Here we sequenced the exomes of nine individuals with TCC and screened all the somatically mutated genes in a prevalence set of 88 additional individuals with TCC with different tumor stages and grades. In our study, we...

  10. Chromatin Hydrodynamics

    Science.gov (United States)

    Bruinsma, Robijn; Grosberg, Alexander Y.; Rabin, Yitzhak; Zidovska, Alexandra

    2014-01-01

    Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory—the two-fluid model—in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model—the Maxwell fluid—for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity. PMID:24806919

  11. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  12. Insulator protein Su(Hw) recruits SAGA and Brahma complexes and constitutes part of Origin Recognition Complex-binding sites in the Drosophila genome

    Science.gov (United States)

    Vorobyeva, Nadezhda E.; Mazina, Marina U.; Golovnin, Anton K.; Kopytova, Daria V.; Gurskiy, Dmitriy Y.; Nabirochkina, Elena N.; Georgieva, Sofia G.; Georgiev, Pavel G.; Krasnov, Aleksey N.

    2013-01-01

    Despite increasing data on the properties of replication origins, molecular mechanisms underlying origin recognition complex (ORC) positioning in the genome are still poorly understood. The Su(Hw) protein accounts for the activity of best-studied Drosophila insulators. Here, we show that Su(Hw) recruits the histone acetyltransferase complex SAGA and chromatin remodeler Brahma to Su(Hw)-dependent insulators, which gives rise to regions with low nucleosome density and creates conditions for ORC binding. Depletion in Su(Hw) leads to a dramatic drop in the levels of SAGA, Brahma and ORC subunits and a significant increase in nucleosome density on Su(Hw)-dependent insulators, whereas artificial Su(Hw) recruitment itself is sufficient for subsequent SAGA, Brahma and ORC binding. In contrast to the majority of replication origins that associate with promoters of active genes, Su(Hw)-binding sites constitute a small proportion (6%) of ORC-binding sites that are localized preferentially in transcriptionally inactive chromatin regions termed BLACK and BLUE chromatin. We suggest that the key determinants of ORC positioning in the genome are DNA-binding proteins that constitute different DNA regulatory elements, including insulators, promoters and enhancers. Su(Hw) is the first example of such a protein. PMID:23609538

  13. Vasotrophic Regulation of Age-Dependent Hypoxic Cerebrovascular Remodeling

    Science.gov (United States)

    Silpanisong, Jinjutha; Pearce, William J.

    2015-01-01

    Hypoxia can induce functional and structural vascular remodeling by changing the expression of trophic factors to promote homeostasis. While most experimental approaches have been focused on functional remodeling, structural remodeling can reflect changes in the abundance and organization of vascular proteins that determine functional remodeling. Better understanding of age-dependent hypoxic macrovascular remodeling processes of the cerebral vasculature and its clinical implications require knowledge of the vasotrophic factors that influence arterial structure and function. Hypoxia can affect the expression of transcription factors, classical receptor tyrosine kinase factors, non-classical G-protein coupled factors, catecholamines, and purines. Hypoxia’s remodeling effects can be mediated by Hypoxia Inducible Factor (HIF) upregulation in most vascular beds, but alterations in the expression of growth factors can also be independent of HIF. PPARγ is another transcription factor involved in hypoxic remodeling. Expression of classical receptor tyrosine kinase ligands, including vascular endothelial growth factor, platelet derived growth factor, fibroblast growth factor and angiopoietins, can be altered by hypoxia which can act simultaneously to affect remodeling. Tyrosine kinase-independent factors, such as transforming growth factor, nitric oxide, endothelin, angiotensin II, catecholamines, and purines also participate in the remodeling process. This adaptation to hypoxic stress can fundamentally change with age, resulting in different responses between fetuses and adults. Overall, these mechanisms integrate to assure that blood flow and metabolic demand are closely matched in all vascular beds and emphasize the view that the vascular wall is a highly dynamic and heterogeneous tissue with multiple cell types undergoing regular phenotypic transformation. PMID:24063376

  14. Digital Morphometrics: A New Upper Airway Phenotyping Paradigm in OSA.

    Science.gov (United States)

    Schwab, Richard J; Leinwand, Sarah E; Bearn, Cary B; Maislin, Greg; Rao, Ramya Bhat; Nagaraja, Adithya; Wang, Stephen; Keenan, Brendan T

    2017-08-01

    OSA is associated with changes in pharyngeal anatomy. The goal of this study was to objectively and reproducibly quantify pharyngeal anatomy by using digital morphometrics based on a laser ruler and to assess differences between subjects with OSA and control subjects and associations with the apnea-hypopnea index (AHI). To the best of our knowledge, this study is the first to use digital morphometrics to quantify intraoral risk factors for OSA. Digital photographs were obtained by using an intraoral laser ruler and digital camera in 318 control subjects (mean AHI, 4.2 events/hour) and 542 subjects with OSA (mean AHI, 39.2 events/hour). The digital morphometric paradigm was validated and reproducible over time and camera distances. A larger modified Mallampati score and having a nonvisible airway were associated with a higher AHI, both unadjusted (P digital morphometrics is an accurate, high-throughput, and noninvasive technique to identify anatomic OSA risk factors. Morphometrics may also provide a more reproducible and standardized measurement of the Mallampati score. Digital morphometrics represent an efficient and cost-effective method of examining intraoral crowding and tongue size when examining large populations, genetics, or screening for OSA. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  15. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

    Science.gov (United States)

    Martín-Sánchez, Paloma; Luengo, Alicia; Griera, Mercedes; Orea, María Jesús; López-Olañeta, Marina; Chiloeches, Antonio; Lara-Pezzi, Enrique; de Frutos, Sergio; Rodríguez-Puyol, Manuel; Calleros, Laura; Rodríguez-Puyol, Diego

    2018-02-01

    Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras -/- ) and control wild-type (H -ras +/+ ) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iβ protein expression in H -ras -/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras -/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3β-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iβ overexpression in H -ras -/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iβ overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

  16. Toxic effects of lead and nickel nitrate on rat liver chromatin components.

    Science.gov (United States)

    Rabbani-Chadegani Iii, Azra; Fani, Nesa; Abdossamadi, Sayeh; Shahmir, Nosrat

    2011-01-01

    The biological activity of heavy metals is related to their physicochemical interaction with biological receptors. In the present study, the effect of low concentrations of nickel nitrate and lead nitrate (lead nitrate to chromatin compared to nickel nitrate. Also, the binding affinity of lead nitrate to histone proteins free in solution was higher than nickel. On the basis of the results, it is concluded that lead reacts with chromatin components even at very low concentrations and induce chromatin aggregation through histone-DNA cross-links. Whereas, nickel nitrate is less effective on chromatin at low concentrations, suggesting higher toxicity of lead nitrate on chromatin compared to nickel. Copyright © 2010 Wiley Periodicals, Inc.

  17. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  18. Protein receptor-independent plasma membrane remodeling by HAMLET: a tumoricidal protein-lipid complex.

    Science.gov (United States)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L; James, Ho C S; Rydström, Anna; Ngassam, Viviane N; Klausen, Thomas Kjær; Pedersen, Stine Falsig; Lam, Matti; Parikh, Atul N; Svanborg, Catharina

    2015-11-12

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ''protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ''receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.

  19. Oligomer formation and G-quadruplex binding by purified murine Rif1 protein, a key organizer of higher-order chromatin architecture.

    Science.gov (United States)

    Moriyama, Kenji; Yoshizawa-Sugata, Naoko; Masai, Hisao

    2018-03-09

    Rap1-interacting protein 1 (Rif1) regulates telomere length in budding yeast. We previously reported that, in metazoans and fission yeast, Rif1 also plays pivotal roles in controlling genome-wide DNA replication timing. We proposed that Rif1 may assemble chromatin compartments that contain specific replication-timing domains by promoting chromatin loop formation. Rif1 also is involved in DNA lesion repair, restart after replication fork collapse, anti-apoptosis activities, replicative senescence, and transcriptional regulation. Although multiple physiological functions of Rif1 have been characterized, biochemical and structural information on mammalian Rif1 is limited, mainly because of difficulties in purifying the full-length protein. Here, we expressed and purified the 2418-amino-acid-long, full-length murine Rif1 as well as its partially truncated variants in human 293T cells. Hydrodynamic analyses indicated that Rif1 forms elongated or extended homo-oligomers in solution, consistent with the presence of a HEAT-type helical repeat segment known to adopt an elongated shape. We also observed that the purified murine Rif1 bound G-quadruplex (G4) DNA with high specificity and affinity, as was previously shown for Rif1 from fission yeast. Both the N-terminal (HEAT-repeat) and C-terminal segments were involved in oligomer formation and specifically bound G4 DNA, and the central intrinsically disordered polypeptide segment increased the affinity for G4. Of note, pulldown assays revealed that Rif1 simultaneously binds multiple G4 molecules. Our findings support a model in which Rif1 modulates chromatin loop structures through binding to multiple G4 assemblies and by holding chromatin fibers together. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Herpes simplex virus type 1 tegument protein VP22 interacts with TAF-I proteins and inhibits nucleosome assembly but not regulation of histone acetylation by INHAT.

    Science.gov (United States)

    van Leeuwen, Hans; Okuwaki, Mitsuru; Hong, Rui; Chakravarti, Debabrata; Nagata, Kyosuke; O'Hare, Peter

    2003-09-01

    Affinity chromatography was used to identify cellular proteins that interact with the herpes simplex virus (HSV) tegument protein VP22. Among a small set of proteins that bind specifically to VP22, we identified TAF-I (template-activating factor I), a chromatin remodelling protein and close homologue of the histone chaperone protein NAP-1. TAF-I has been shown previously to promote more ordered transfer of histones to naked DNA through a direct interaction with histones. TAF-I, as a subunit of the INHAT (inhibitor of acetyltransferases) protein complex, also binds to histones and masks them from being substrates for the acetyltransferases p300 and PCAF. Using in vitro assays for TAF-I activity in chromatin assembly, we show that VP22 inhibits nucleosome deposition on DNA by binding to TAF-I. We also observed that VP22 binds non-specifically to DNA, an activity that is abolished by TAF-I. However, the presence of VP22 does not affect the property of INHAT in inhibiting the histone acetyltransferase activity of p300 or PCAF in vitro. We speculate that this interaction could be relevant to HSV DNA organization early in infection, for example, by interfering with nucleosomal deposition on the genome. Consistent with this possibility was the observation that overexpression of TAF-I in transfected cells interferes with the progression of HSV-1 infection.

  1. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof Poterlowicz

    2017-09-01

    Full Text Available Mammalian genomes contain several dozens of large (>0.5 Mbp lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene

  2. Analysis of Mcm2-7 chromatin binding during anaphase and in the transition to quiescence in fission yeast

    International Nuclear Information System (INIS)

    Namdar, Mandana; Kearsey, Stephen E.

    2006-01-01

    Mcm2-7 proteins are generally considered to function as a heterohexameric complex, providing helicase activity for the elongation step of DNA replication. These proteins are loaded onto replication origins in M-G1 phase in a process termed licensing or pre-replicative complex formation. It is likely that Mcm2-7 proteins are loaded onto chromatin simultaneously as a pre-formed hexamer although some studies suggest that subcomplexes are recruited sequentially. To analyze this process in fission yeast, we have compared the levels and chromatin binding of Mcm2-7 proteins during the fission yeast cell cycle. Mcm subunits are present at approximately 1 x 10 4 molecules/cell and are bound with approximately equal stoichiometry on chromatin in G1/S phase cells. Using a single cell assay, we have correlated the timing of chromatin association of individual Mcm subunits with progression through mitosis. This showed that Mcm2, 4 and 7 associate with chromatin at about the same stage of anaphase, suggesting that licensing involves the simultaneous binding of these subunits. We also examined Mcm2-7 chromatin association when cells enter a G0-like quiescent state. Chromatin binding is lost in this transition in a process that does not require DNA replication or the selective degradation of specific subunits

  3. Methyl CpG–binding proteins induce large-scale chromatin reorganization during terminal differentiation

    Science.gov (United States)

    Brero, Alessandro; Easwaran, Hariharan P.; Nowak, Danny; Grunewald, Ingrid; Cremer, Thomas; Leonhardt, Heinrich; Cardoso, M. Cristina

    2005-01-01

    Pericentric heterochromatin plays an important role in epigenetic gene regulation. We show that pericentric heterochromatin aggregates during myogenic differentiation. This clustering leads to the formation of large chromocenters and correlates with increased levels of the methyl CpG–binding protein MeCP2 and pericentric DNA methylation. Ectopic expression of fluorescently tagged MeCP2 mimicked this effect, causing a dose-dependent clustering of chromocenters in the absence of differentiation. MeCP2-induced rearrangement of heterochromatin occurred throughout interphase, did not depend on the H3K9 histone methylation pathway, and required the methyl CpG–binding domain (MBD) only. Similar to MeCP2, another methyl CpG–binding protein, MBD2, also increased during myogenic differentiation and could induce clustering of pericentric regions, arguing for functional redundancy. This MeCP2- and MBD2-mediated chromatin reorganization may thus represent a molecular link between nuclear genome topology and the epigenetic maintenance of cellular differentiation. PMID:15939760

  4. Uus äriseadustik lihtsustab osaühingu asutamist ja juhtimist / Karina Paatsi

    Index Scriptorium Estoniae

    Paatsi, Karina

    2010-01-01

    Osaühingut puudutavatest äriseadustiku muudatustest (sissemakseta osaühing, osa võõrandamise võimaluste laienemine, juhatuse liikme valimine tähtajatuks perioodiks, nõukogu nõude kaotamine, elukoha piirangu kaotamine, mitterahalise sissemakse hindamine, reservkapitali nõude kadumine)

  5. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization.

    Science.gov (United States)

    Pascali, Chiara; Teichmann, Martin

    2013-01-01

    RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.

  6. Sequential chromatin immunoprecipitation to detect SUMOylated MeCP2 in neurons

    Directory of Open Access Journals (Sweden)

    Tao Wu

    2016-03-01

    Full Text Available The small ubiquitin-like modifier (SUMO is a short peptide that can be covalently linked to proteins altering their function. SUMOylation is an essential post-translational modification (PTM. Because of its dynamic nature, low abundance levels, and technical limitations, the occupation of endogenous SUMOylated transcription factors at genomic loci is challenging to detect. The chromatin regulator Methyl CpG binding protein 2 (MeCP2 is subjected to PTMs including SUMO. Mutations in MeCP2 lead to Rett syndrome, a severe neurodevelopmental disorder. Here, we present an efficient method to perform sequential chromatin immunoprecipitation (Seq-ChIP for detecting SUMOylated MeCP2 in neurons. This Seq-ChIP technique is a useful tool to determine the occupancy of SUMOylated transcription and chromatin factors at specific genomic regions.

  7. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression.

    Directory of Open Access Journals (Sweden)

    Marc Lavigne

    2009-12-01

    Full Text Available The heterochromatin-enriched HP1 proteins play a critical role in regulation of transcription. These proteins contain two related domains known as the chromo- and the chromoshadow-domain. The chromo-domain binds histone H3 tails methylated on lysine 9. However, in vivo and in vitro experiments have shown that the affinity of HP1 proteins to native methylated chromatin is relatively poor and that the opening of chromatin occurring during DNA replication facilitates their binding to nucleosomes. These observations prompted us to investigate whether HP1 proteins have additional histone binding activities, envisioning also affinity for regions potentially occluded by the nucleosome structure. We find that the chromoshadow-domain interacts with histone H3 in a region located partially inside the nucleosomal barrel at the entry/exit point of the nucleosome. Interestingly, this region is also contacted by the catalytic subunits of the human SWI/SNF complex. In vitro, efficient SWI/SNF remodeling requires this contact and is inhibited in the presence of HP1 proteins. The antagonism between SWI/SNF and HP1 proteins is also observed in vivo on a series of interferon-regulated genes. Finally, we show that SWI/SNF activity favors loading of HP1 proteins to chromatin both in vivo and in vitro. Altogether, our data suggest that HP1 chromoshadow-domains can benefit from the opening of nucleosomal structures to bind chromatin and that HP1 proteins use this property to detect and arrest unwanted chromatin remodeling.

  8. Ectopic protein interactions within BRD4–chromatin complexes drive oncogenic megadomain formation in NUT midline carcinoma

    OpenAIRE

    Alekseyenko, Artyom A.; Walsh, Erica M.; Zee, Barry M.; Pakozdi, Tibor; Hsi, Peter; Lemieux, Madeleine E.; Dal Cin, Paola; Ince, Tan A.; Kharchenko, Peter V.; Kuroda, Mitzi I.; French, Christopher A.

    2017-01-01

    Chromatin factors generally act within large, multisubunit complexes; thus, identifying both their normal and aberrant interactors in cancer should provide important information regarding potential targets for therapeutic intervention. Here, we apply this principle to analysis of BRD4–NUT, a fusion oncoprotein that drives an aggressive subtype of squamous cell cancer. We identify ZNF532 as a prominent BRD4–NUT–interacting protein in an established NUT midline carcinoma patient cell line, and ...

  9. Genome-wide identification of physically clustered genes suggests chromatin-level co-regulation in male reproductive development in Arabidopsis thaliana.

    Science.gov (United States)

    Reimegård, Johan; Kundu, Snehangshu; Pendle, Ali; Irish, Vivian F; Shaw, Peter; Nakayama, Naomi; Sundström, Jens F; Emanuelsson, Olof

    2017-04-07

    Co-expression of physically linked genes occurs surprisingly frequently in eukaryotes. Such chromosomal clustering may confer a selective advantage as it enables coordinated gene regulation at the chromatin level. We studied the chromosomal organization of genes involved in male reproductive development in Arabidopsis thaliana. We developed an in-silico tool to identify physical clusters of co-regulated genes from gene expression data. We identified 17 clusters (96 genes) involved in stamen development and acting downstream of the transcriptional activator MS1 (MALE STERILITY 1), which contains a PHD domain associated with chromatin re-organization. The clusters exhibited little gene homology or promoter element similarity, and largely overlapped with reported repressive histone marks. Experiments on a subset of the clusters suggested a link between expression activation and chromatin conformation: qRT-PCR and mRNA in situ hybridization showed that the clustered genes were up-regulated within 48 h after MS1 induction; out of 14 chromatin-remodeling mutants studied, expression of clustered genes was consistently down-regulated only in hta9/hta11, previously associated with metabolic cluster activation; DNA fluorescence in situ hybridization confirmed that transcriptional activation of the clustered genes was correlated with open chromatin conformation. Stamen development thus appears to involve transcriptional activation of physically clustered genes through chromatin de-condensation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Preparation And Physicochemical Properties of Octenyl Succinic Anhydride (OSA) Modified Sago Starch

    International Nuclear Information System (INIS)

    Nur Farhana Zainal Abiddin; Anida Yusoff; Noorlaila Ahmad

    2016-01-01

    Starch from sago (Metroxylon sagu) was esterified with octenyl succinic anhydride (OSA) in order to regulate its shortcoming by adding amphiphilic properties. The objective of this work is to determine the physicochemical properties of native sago and OSA sago starches. The OSA sago starch was produced according to the optimum condition generated via response surface methodology (RSM) with 5.00 % OSA at pH 7.20 and a reaction time of 9.65 hours. The esterified sago starch gives a degree of substitution (DS) value of 0.012. The physicochemical properties of OSA sago starch was determined by measuring the amylose content, laser diffraction particle size analyzer, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). The amylose content for OSA sago starch was found to be reduced after esterification reaction. The particle size of OSA sago starch was found to increase significantly (p<0.05) compared to their native starches. Scanning electron microscopy (SEM) revealed that OSA starch developed slightly rough surface and their edges lost some definition. FT-IR spectroscopy shows that there was appearance of new absorption correspond to ester carbonyl group (1717 cm -1 ) and carboxylate RCOO- (1569 cm -1 ). This study showed that the physicochemical properties of modified starches were influenced not only by DS but also on the botanical origin of the starches. (author)

  11. Mass Spectrometry-Based Proteomics for the Analysis of Chromatin Structure and Dynamics

    Directory of Open Access Journals (Sweden)

    Monica Soldi

    2013-03-01

    Full Text Available Chromatin is a highly structured nucleoprotein complex made of histone proteins and DNA that controls nearly all DNA-dependent processes. Chromatin plasticity is regulated by different associated proteins, post-translational modifications on histones (hPTMs and DNA methylation, which act in a concerted manner to enforce a specific “chromatin landscape”, with a regulatory effect on gene expression. Mass Spectrometry (MS has emerged as a powerful analytical strategy to detect histone PTMs, revealing interplays between neighbouring PTMs and enabling screens for their readers in a comprehensive and quantitative fashion. Here we provide an overview of the recent achievements of state-of-the-art mass spectrometry-based proteomics for the detailed qualitative and quantitative characterization of histone post-translational modifications, histone variants, and global interactomes at specific chromatin regions. This synopsis emphasizes how the advances in high resolution MS, from “Bottom Up” to “Top Down” analysis, together with the uptake of quantitative proteomics methods by chromatin biologists, have made MS a well-established method in the epigenetics field, enabling the acquisition of original information, highly complementary to that offered by more conventional, antibody-based, assays.

  12. Age, gender, neck circumference, and Epworth sleepiness scale do not predict obstructive sleep apnea (OSA in moderate to severe chronic obstructive pulmonary disease (COPD: The challenge to predict OSA in advanced COPD.

    Directory of Open Access Journals (Sweden)

    Xavier Soler

    Full Text Available The combination of chronic obstructive pulmonary disease (COPD and obstructive sleep apnea (OSA is associated with substantial morbidity and mortality. We hypothesized that predictors of OSA among patients with COPD may be distinct from OSA in the general population. Therefore, we investigated associations between traditional OSA risk factors (e.g. age, and sleep questionnaires [e.g. Epworth Sleepiness Scale] in 44 patients with advanced COPD. As a second aim we proposed a pilot, simplified screening test for OSA in patients with COPD. In a prospective, observational study of patients enrolled in the UCSD Pulmonary Rehabilitation Program we collected baseline characteristics, cardiovascular events (e.g. atrial fibrillation, and sleep questionnaires [e.g. Pittsburgh Sleep Quality Index (PSQI]. For the pilot questionnaire, a BMI ≥25 kg/m2 and the presence of cardiovascular disease were used to construct the pilot screening test. Male: 59%; OSA 66%. FEV1 (mean ± SD = 41.0±18.2% pred., FEV1/FVC = 41.5±12.7%]. Male gender, older age, and large neck circumference were not associated with OSA. Also, Epworth Sleepiness Scale and the STOP-Bang questionnaire were not associated with OSA in univariate logistic regression. In contrast, BMI ≥25 kg/m2 (OR = 3.94, p = 0.04 and diagnosis of cardiovascular disease (OR = 5.06, p = 0.03 were significantly associated with OSA [area under curve (AUC = 0.74]. The pilot COPD-OSA test (OR = 5.28, p = 0.05 and STOP-Bang questionnaire (OR = 5.13, p = 0.03 were both associated with OSA in Receiver Operating Characteristics (ROC analysis. The COPD-OSA test had the best AUC (0.74, sensitivity (92%, and specificity (83%. A ten-fold cross-validation validated our results. We found that traditional OSA predictors (e.g. gender, Epworth score did not perform well in patients with more advanced COPD. Our pilot test may be an easy to implement instrument to screen for OSA. However, a larger validation study is necessary

  13. Age, gender, neck circumference, and Epworth sleepiness scale do not predict obstructive sleep apnea (OSA) in moderate to severe chronic obstructive pulmonary disease (COPD): The challenge to predict OSA in advanced COPD.

    Science.gov (United States)

    Soler, Xavier; Liao, Shu-Yi; Marin, Jose Maria; Lorenzi-Filho, Geraldo; Jen, Rachel; DeYoung, Pamela; Owens, Robert L; Ries, Andrew L; Malhotra, Atul

    2017-01-01

    The combination of chronic obstructive pulmonary disease (COPD) and obstructive sleep apnea (OSA) is associated with substantial morbidity and mortality. We hypothesized that predictors of OSA among patients with COPD may be distinct from OSA in the general population. Therefore, we investigated associations between traditional OSA risk factors (e.g. age), and sleep questionnaires [e.g. Epworth Sleepiness Scale] in 44 patients with advanced COPD. As a second aim we proposed a pilot, simplified screening test for OSA in patients with COPD. In a prospective, observational study of patients enrolled in the UCSD Pulmonary Rehabilitation Program we collected baseline characteristics, cardiovascular events (e.g. atrial fibrillation), and sleep questionnaires [e.g. Pittsburgh Sleep Quality Index (PSQI)]. For the pilot questionnaire, a BMI ≥25 kg/m2 and the presence of cardiovascular disease were used to construct the pilot screening test. Male: 59%; OSA 66%. FEV1 (mean ± SD) = 41.0±18.2% pred., FEV1/FVC = 41.5±12.7%]. Male gender, older age, and large neck circumference were not associated with OSA. Also, Epworth Sleepiness Scale and the STOP-Bang questionnaire were not associated with OSA in univariate logistic regression. In contrast, BMI ≥25 kg/m2 (OR = 3.94, p = 0.04) and diagnosis of cardiovascular disease (OR = 5.06, p = 0.03) were significantly associated with OSA [area under curve (AUC) = 0.74]. The pilot COPD-OSA test (OR = 5.28, p = 0.05) and STOP-Bang questionnaire (OR = 5.13, p = 0.03) were both associated with OSA in Receiver Operating Characteristics (ROC) analysis. The COPD-OSA test had the best AUC (0.74), sensitivity (92%), and specificity (83%). A ten-fold cross-validation validated our results. We found that traditional OSA predictors (e.g. gender, Epworth score) did not perform well in patients with more advanced COPD. Our pilot test may be an easy to implement instrument to screen for OSA. However, a larger validation study is necessary before

  14. Chromatin Structure in Cell Differentiation, Aging and Cancer

    NARCIS (Netherlands)

    S. Kheradmand Kia (Sima)

    2009-01-01

    textabstractChromatin is the structure that the eukaryotic genome is packaged into, allowing over a metre of DNA to fit into the small volume of the nucleus. It is composed of DNA and proteins, most of which are histones. This DNA-protein complex is the template for a number of essential cell

  15. Non coding RNA: sequence-specific guide for chromatin modification and DNA damage signaling

    Directory of Open Access Journals (Sweden)

    Sofia eFrancia

    2015-11-01

    Full Text Available Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports suggest that ncRNAs are involved in DDR signaling and homology-mediated DNA repair. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.

  16. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development

    Science.gov (United States)

    2011-01-01

    Background Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Results Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Conclusions Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling. PMID:21401930

  17. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development.

    Science.gov (United States)

    Mouchel-Vielh, Emmanuèle; Rougeot, Julien; Decoville, Martine; Peronnet, Frédérique

    2011-03-14

    Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.

  18. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development

    Directory of Open Access Journals (Sweden)

    Peronnet Frédérique

    2011-03-01

    Full Text Available Abstract Background Mitogen-activated protein kinase (MAPK cascades (p38, JNK, ERK pathways are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Results Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Conclusions Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.

  19. Local changes of higher-order chromatin structure during DSB-repair

    International Nuclear Information System (INIS)

    Falk, M; Lukasova, E; Gabrielova, B; Ondrej, V; Kozubek, S

    2008-01-01

    We show that double-strand breaks (DSBs) induced in DNA of human cells by γ-radiation arise mainly in active, gene-rich, decondensed chromatin. We demonstrate that DSBs show limited movement in living cells, occasionally resulting in their permanent clustering, which poses a risk of incorrect DNA rejoining. In addition, some DSBs remain unrepaired for several days after irradiation, forming lesions repairable only with difficulty which are hazardous for genome stability. These 'late' DSBs colocalize with heterochromatin markers (dimethylated histone H3 at lysine 9, HP1 and CENP-A proteins), despite the low density of the surrounding chromatin. This indicates that there is epigenetic silencing of loci close to unrepaired DSBs and/or stabilization of damaged decondensed chromatin loops during repair and post-repair reconstitution of chromatin structure

  20. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.

    Science.gov (United States)

    Valero, M Luz; Sendra, Ramon; Pamblanco, Mercè

    2016-03-16

    Histones and their post-translational modifications contribute to regulating fundamental biological processes in all eukaryotic cells. We have applied a conventional tandem affinity purification strategy to histones H3 and H4 of the yeast Saccharomyces cerevisiae. Mass spectrometry analysis of the co-purified proteins revealed multiple associated proteins, including core histones, which indicates that tagged histones may be incorporated to the nucleosome particle. Among the many other co-isolated proteins there are histone chaperones, elements of chromatin remodeling, of nucleosome assembly/disassembly, and of histone modification complexes. The histone chaperone Rtt106p, two members of chromatin assembly FACT complex and Psh1p, an ubiquitin ligase, were the most abundant proteins obtained with both H3-TAP and H4-TAP, regardless of the cell extraction medium stringency. Our mass spectrometry analyses have also revealed numerous novel post-translational modifications, including 30 new chemical modifications in histones, mainly by ubiquitination. We have discovered not only new sites of ubiquitination but that, besides lysine, also serine and threonine residues are targets of ubiquitination on yeast histones. Our results show the standard tandem affinity purification procedure is suitable for application to yeast histones, in order to isolate and characterize histone-binding proteins and post-translational modifications, avoiding the bias caused by histone purification from a chromatin-enriched fraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Commentary

    Indian Academy of Sciences (India)

    Unknown

    Mother, I really think the flowers go to school underground.” ... ecotypes to new and distant locales, thereby obfuscating its natural, global patterns of .... In Drosophila, PcG proteins generally act by remodelling chromatin ... tions in genomic DNA methylation and local chromatin structure (Meyer 2000; Habu et al 2001).

  2. Gene expression profiling of low-grade endometrial stromal sarcoma indicates fusion protein-mediated activation of the Wnt signaling pathway.

    Science.gov (United States)

    Przybyl, Joanna; Kidzinski, Lukasz; Hastie, Trevor; Debiec-Rychter, Maria; Nusse, Roel; van de Rijn, Matt

    2018-05-01

    Low-grade endometrial stromal sarcomas (LGESS) harbor chromosomal translocations that affect proteins associated with chromatin remodeling Polycomb Repressive Complex 2 (PRC2), including SUZ12, PHF1 and EPC1. Roughly half of LGESS also demonstrate nuclear accumulation of β-catenin, which is a hallmark of Wnt signaling activation. However, the targets affected by the fusion proteins and the role of Wnt signaling in the pathogenesis of these tumors remain largely unknown. Here we report the results of a meta-analysis of three independent gene expression profiling studies on LGESS and immunohistochemical evaluation of nuclear expression of β-catenin and Lef1 in 112 uterine sarcoma specimens obtained from 20 LGESS and 89 LMS patients. Our results demonstrate that 143 out of 310 genes overexpressed in LGESS are known to be directly regulated by SUZ12. In addition, our gene expression meta-analysis shows activation of multiple genes implicated in Wnt signaling. We further emphasize the role of the Wnt signaling pathway by demonstrating concordant nuclear expression of β-catenin and Lef1 in 7/16 LGESS. Based on our findings, we suggest that LGESS-specific fusion proteins disrupt the repressive function of the PRC2 complex similar to the mechanism seen in synovial sarcoma, where the SS18-SSX fusion proteins disrupt the mSWI/SNF (BAF) chromatin remodeling complex. We propose that these fusion proteins in LGESS contribute to overexpression of Wnt ligands with subsequent activation of Wnt signaling pathway and formation of an active β-catenin/Lef1 transcriptional complex. These observations could lead to novel therapeutic approaches that focus on the Wnt pathway in LGESS. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. [The role of remodeling complexes CHD1 and ISWI in spontaneous and UV-induced mutagenesis control in yeast Saccharomyces cerevisiae].

    Science.gov (United States)

    Evstiukhina, T A; Alekseeva, E A; Fedorov, D V; Peshekhonov, V T; Korolev, V G

    2017-02-01

    Chromatin remodulators are special multiprotein machines capable of transforming the structure, constitution, and positioning of nucleosomes on DNA. Biochemical activities of remodeling complexes CHD1 and ISWI from the SWI2/SNF2 family are well established. They ensure correct positioning of nucleosomes along the genome, which is probably critical for genome stability, in particular, after action of polymerases, repair enzymes, and transcription. In this paper, we show that single mutations in genes ISW1, ISW2, and CHD1 weakly affect repair and mutagenic processes in yeast cells. At the same time, there are differences in the effect of these mutations on spontaneous mutation levels, which indicates certain specificity of action of protein complexes ISW1, ISW2, and CHD1 on expression of different genes that control repair and mutation processes in yeast.

  4. Protein-protein interactions in the regulation of WRKY transcription factors.

    Science.gov (United States)

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  5. High-Frequency Promoter Firing Links THO Complex Function to Heavy Chromatin Formation

    DEFF Research Database (Denmark)

    Mouaikel, John; Causse, Sébastien Z; Rougemaille, Mathieu

    2013-01-01

    The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes...... (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single......-molecule fluorescence insitu hybridization measurements show that heavy chromatin formation correlates with an unusually high firing pace of the promoter with more than 20 transcription events per minute. Heavy chromatin formation closely follows the modulation of promoter firing and strongly correlates with polymerase...

  6. Analysis of OSAS incidence and influential factors in middle-aged and elderly patients with hypertension.

    Science.gov (United States)

    Wang, Shuang; Niu, Xinqing; Zhang, Peipei; Su, Dexing; Zhang, Jing; Liu, Wei

    2018-04-24

    To investigate the detection rate and influencing factors of obstructive sleep apnea syndrome (OSAS) in middle-aged and elderly patients with hypertension. A total of 440 patients with hypertension were selected as the research objects, all of them participated in the Berlin questionnaire survey, and the polysomnography (PSG) was performed on the patients with a high risk of OSAS. The detection rate of OSAS was analyzed, the clinical data between non-OSAS group and OSAS group were compared and stepwise linear regression and Logistic regression were used to analyze the related influencing factors to apnea hyponea index (AHI) and OSAS in hypertensive patients. A total of 235 patients completed PSG and 196 patients were diagnosed as OSAS with the detection rate of 83.40%. The detection rate of OSAS in male patients was higher than that in females (89.04% vs.74.16%, x²=8.025, P=0.006). The detection rates of OSAS in normal BMI group, overweight group and obesity group were 56.52%, 92.37% and 100%, respectively (x²=36.438, P<0.001). The detection rates of OSAS in normal waistline group and central obesity group were 74.42% and 88.59% (x²=7.539, P=0.016). The detection rates of OSAS in grade1, grade 2 and grade 3 hypertension groups were 57.47%, 98.23% and 100%, respectively (x²=44.623, P<0.001). BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP), low density lipoprotein (LDL) and waist circumference of OSAS group were all higher than those in non-OSAS group (P<0.05). BMI, SBP and DBP were positively correlated with AHI (p<0.05), which were independent risk factors of OSAS [OR value (95%CI) = 2.548 (1.449-4.327), 1.342 (1.214-1.965) and 1.169 (1.025-1.622), respectively, P<0.05]. The incidence of OSAS in middle-aged and elderly patients with hypertension is high. High BMI, SBP, and DBP are independent risk factors of OSAS.

  7. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    Directory of Open Access Journals (Sweden)

    Christopher A Lavender

    2016-08-01

    Full Text Available Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment.

  8. Global chromatin fibre compaction in response to DNA damage

    International Nuclear Information System (INIS)

    Hamilton, Charlotte; Hayward, Richard L.; Gilbert, Nick

    2011-01-01

    Highlights: ► Robust KAP1 phosphorylation in response to DNA damage in HCT116 cells. ► DNA repair foci are found in soluble chromatin. ► Biophysical analysis reveals global chromatin fibre compaction after DNA damage. ► DNA damage is accompanied by rapid linker histone dephosphorylation. -- Abstract: DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation (γH2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and γH2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by linker histones. We suggest that following DSB formation, although there is localised chromatin unfolding to

  9. Chromatin Heterogeneity and Distribution of Regulatory Elements in the Late-Replicating Intercalary Heterochromatin Domains of Drosophila melanogaster Chromosomes.

    Directory of Open Access Journals (Sweden)

    Varvara A Khoroshko

    Full Text Available Late-replicating domains (intercalary heterochromatin in the Drosophila genome display a number of features suggesting their organization is quite unique. Typically, they are quite large and encompass clusters of functionally unrelated tissue-specific genes. They correspond to the topologically associating domains and conserved microsynteny blocks. Our study aims at exploring further details of molecular organization of intercalary heterochromatin and has uncovered surprising heterogeneity of chromatin composition in these regions. Using the 4HMM model developed in our group earlier, intercalary heterochromatin regions were found to host chromatin fragments with a particular epigenetic profile. Aquamarine chromatin fragments (spanning 0.67% of late-replicating regions are characterized as a class of sequences that appear heterogeneous in terms of their decompactization. These fragments are enriched with enhancer sequences and binding sites for insulator proteins. They likely mark the chromatin state that is related to the binding of cis-regulatory proteins. Malachite chromatin fragments (11% of late-replicating regions appear to function as universal transitional regions between two contrasting chromatin states. Namely, they invariably delimit intercalary heterochromatin regions from the adjacent active chromatin of interbands. Malachite fragments also flank aquamarine fragments embedded in the repressed chromatin of late-replicating regions. Significant enrichment of insulator proteins CP190, SU(HW, and MOD2.2 was observed in malachite chromatin. Neither aquamarine nor malachite chromatin types appear to correlate with the positions of highly conserved non-coding elements (HCNE that are typically replete in intercalary heterochromatin. Malachite chromatin found on the flanks of intercalary heterochromatin regions tends to replicate earlier than the malachite chromatin embedded in intercalary heterochromatin. In other words, there exists a

  10. Nucleocytoplasmic Shuttling of Cytoskeletal Proteins: Molecular Mechanism and Biological Significance

    Directory of Open Access Journals (Sweden)

    Masahiro Kumeta

    2012-01-01

    Full Text Available Various nuclear functional complexes contain cytoskeletal proteins as regulatory subunits; for example, nuclear actin participates in transcriptional complexes, and actin-related proteins are integral to chromatin remodeling complexes. Nuclear complexes such as these are involved in both basal and adaptive nuclear functions. In addition to nuclear import via classical nuclear transport pathways or passive diffusion, some large cytoskeletal proteins spontaneously migrate into the nucleus in a karyopherin-independent manner. The balance of nucleocytoplasmic distribution of such proteins can be altered by several factors, such as import versus export, or capture and release by complexes. The resulting accumulation or depletion of the nuclear populations thereby enhances or attenuates their nuclear functions. We propose that such molecular dynamics constitute a form of cytoskeleton-modulated regulation of nuclear functions which is mediated by the translocation of cytoskeletal components in and out of the nucleus.

  11. [Biochemical characterization of fractionated rat liver chromatin in experimental D-hypovitaminosis and after administration of steroidal drugs].

    Science.gov (United States)

    Levitskiĭ, E L; Kholodova, Iu D; Gubskiĭ, Iu I; Primak, R G; Chabannyĭ, V N; Kindruk, N L; Mozzhukhina, T G; Lenchevskaia, L K; Mironova, V N; Saad, L M

    1993-01-01

    Marked changes in the structural and functional characteristics of liver nuclear chromatin fractions are observed under experimental D-hypovitaminosis, which differ in the degree of transcriptional activity. DNA-polymerase activity and activity of the fraction, enriched with RNA-polymerase I, increases in the active fraction. Free radical LPO reactions are modified in the chromatin fraction with low activity and to the less degree in the active one. Disturbances of chromatine structural properties are caused with the change in the protein and lipid components of chromatin. Administration of ecdysterone preparations (separately and together with vitamin D3) has a partial corrective effect on structural and functional organization of nuclear chromatine. At the action of ecdysterone normalization of LPO reactions modified by pathological changes is observed in the chromatin fraction with low activity and to the less degree in the active one. This kind of influence corrects to the less degree chromatin functional activity and quantitative and qualitative modifications of its protein component. Simultaneous influence of ecdysterone and vitamin D3 leads to the partial normalization of the biochemical indices studied (except for those which characterize LPO reactions) mainly in the active chromatin fraction.

  12. The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility

    KAUST Repository

    Jé gu, Teddy; Veluchamy, Alaguraj; Ramirez Prado, Juan Sebastian; Rizzi-Paillet, Charley; Perez, Magalie; Lhomme, Anaï s; Latrasse, David; Coleno, Emeline; Vicaire, Serge; Legras, Sté phanie; Jost, Bernard; Rougé e, Martin; Barneche, Fredy; Bergounioux, Catherine; Crespi, Martin; Mahfouz, Magdy M.; Hirt, Heribert; Raynaud, Cé cile; Benhamed, Moussa

    2017-01-01

    Plant adaptive responses to changing environments involve complex molecular interplays between intrinsic and external signals. Whilst much is known on the signaling components mediating diurnal, light, and temperature controls on plant development, their influence on chromatin-based transcriptional controls remains poorly explored.In this study we show that a SWI/SNF chromatin remodeler subunit, BAF60, represses seedling growth by modulating DNA accessibility of hypocotyl cell size regulatory genes. BAF60 binds nucleosome-free regions of multiple G box-containing genes, opposing in cis the promoting effect of the photomorphogenic and thermomorphogenic regulator Phytochrome Interacting Factor 4 (PIF4) on hypocotyl elongation. Furthermore, BAF60 expression level is regulated in response to light and daily rhythms.These results unveil a short path between a chromatin remodeler and a signaling component to fine-tune plant morphogenesis in response to environmental conditions.

  13. The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility

    KAUST Repository

    Jégu, Teddy

    2017-06-15

    Plant adaptive responses to changing environments involve complex molecular interplays between intrinsic and external signals. Whilst much is known on the signaling components mediating diurnal, light, and temperature controls on plant development, their influence on chromatin-based transcriptional controls remains poorly explored.In this study we show that a SWI/SNF chromatin remodeler subunit, BAF60, represses seedling growth by modulating DNA accessibility of hypocotyl cell size regulatory genes. BAF60 binds nucleosome-free regions of multiple G box-containing genes, opposing in cis the promoting effect of the photomorphogenic and thermomorphogenic regulator Phytochrome Interacting Factor 4 (PIF4) on hypocotyl elongation. Furthermore, BAF60 expression level is regulated in response to light and daily rhythms.These results unveil a short path between a chromatin remodeler and a signaling component to fine-tune plant morphogenesis in response to environmental conditions.

  14. Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming.

    Science.gov (United States)

    Malik, Vikas; Zimmer, Dennis; Jauch, Ralf

    2018-05-01

    The POU (Pit-Oct-Unc) protein family is an evolutionary ancient group of transcription factors (TFs) that bind specific DNA sequences to direct gene expression programs. The fundamental importance of POU TFs to orchestrate embryonic development and to direct cellular fate decisions is well established, but the molecular basis for this activity is insufficiently understood. POU TFs possess a bipartite 'two-in-one' DNA binding domain consisting of two independently folding structural units connected by a poorly conserved and flexible linker. Therefore, they represent a paradigmatic example to study the molecular basis for the functional versatility of TFs. Their modular architecture endows POU TFs with the capacity to accommodate alternative composite DNA sequences by adopting different quaternary structures. Moreover, associations with partner proteins crucially influence the selection of their DNA binding sites. The plentitude of DNA binding modes confers the ability to POU TFs to regulate distinct genes in the context of different cellular environments. Likewise, different binding modes of POU proteins to DNA could trigger alternative regulatory responses in the context of different genomic locations of the same cell. Prominent POU TFs such as Oct4, Brn2, Oct6 and Brn4 are not only essential regulators of development but have also been successfully employed to reprogram somatic cells to pluripotency and neural lineages. Here we review biochemical, structural, genomic and cellular reprogramming studies to examine how the ability of POU TFs to select regulatory DNA, alone or with partner factors, is tied to their capacity to epigenetically remodel chromatin and drive specific regulatory programs that give cells their identities.

  15. A simple and versatile system for the ATP-dependent assembly of chromatin.

    Science.gov (United States)

    Khuong, Mai T; Fei, Jia; Cruz-Becerra, Grisel; Kadonaga, James T

    2017-11-24

    Chromatin is the natural form of DNA in the eukaryotic nucleus and is the substrate for diverse biological phenomena. The functional analysis of these processes ideally would be carried out with nucleosomal templates that are assembled with customized core histones, DNA sequences, and chromosomal proteins. Here we report a simple, reliable, and versatile method for the ATP-dependent assembly of evenly spaced nucleosome arrays. This minimal chromatin assembly system comprises the Drosophila nucleoplasmin-like protein (dNLP) histone chaperone, the imitation switch (ISWI) ATP-driven motor protein, core histones, template DNA, and ATP. The dNLP and ISWI components were synthesized in bacteria, and each protein could be purified in a single step by affinity chromatography. We show that the dNLP-ISWI system can be used with different DNA sequences, linear or circular DNA, bulk genomic DNA, recombinant or native Drosophila core histones, native human histones, the linker histone H1, the non-histone chromosomal protein HMGN2, and the core histone variants H3.3 and H2A.V. The dNLP-ISWI system should be accessible to a wide range of researchers and enable the assembly of customized chromatin with specifically desired DNA sequences, core histones, and other chromosomal proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  17. A role for Caenorhabditis elegans chromatin-associated protein HIM-17 in the proliferation vs. meiotic entry decision.

    Science.gov (United States)

    Bessler, Jessica B; Reddy, Kirthi C; Hayashi, Michiko; Hodgkin, Jonathan; Villeneuve, Anne M

    2007-04-01

    Chromatin-associated protein HIM-17 was previously shown to function in the chromosomal events of meiotic prophase. Here we report an additional role for HIM-17 in regulating the balance between germ cell proliferation and meiotic development. A cryptic function for HIM-17 in promoting meiotic entry and/or inhibiting proliferation was revealed by defects in germline organization in him-17 mutants grown at high temperature (25 degrees) and by a synthetic tumorous germline phenotype in glp-1(ar202); him-17 mutants at 15 degrees.

  18. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Alfonso Urbanucci

    2017-06-01

    Full Text Available Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4 have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC. Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC. We show that the deregulation of androgen receptor (AR expression is a driver of chromatin relaxation and that AR/androgen-regulated bromodomain-containing proteins (BRDs mediate this effect. We also report that BRDs are overexpressed in CRPCs and that ATAD2 and BRD2 have prognostic value. Finally, we developed gene stratification signature (BROMO-10 for bromodomain response and PC prognostication, to inform current and future trials with drugs targeting these processes. Our findings provide a compelling rational for combination therapy targeting bromodomains in selected patients in which BRD-mediated TF binding is enhanced or modified as cancer progresses.

  19. The effect of CPAP treatment on EEG of OSAS patients.

    Science.gov (United States)

    Zhang, Cheng; Lv, Jun; Zhou, Junhong; Su, Li; Feng, Liping; Ma, Jing; Wang, Guangfa; Zhang, Jue

    2015-12-01

    Continuous positive airway pressure (CPAP) is currently the most effective treatment method for obstructive sleep apnea syndrome (OSAS). The purpose of this study was to compare the sleep electroencephalogram (EEG) changes before and after the application of CPAP to OSAS patients. A retrospective study was conducted and 45 sequential patients who received both polysomnography (PSG) and CPAP titration were included. The raw data of sleep EEG were extracted and analyzed by engineers using two main factors: fractal dimension (FD) and the zero-crossing rate of detrended FD (zDFD). FD was an effective indicator reflecting the EEG complexity and zDFD was useful to reflect the variability of the EEG complexity. The FD and zDFD indexes of sleep EEG of 45 OSAS patients before and after CPAP titration were analyzed. The age of 45 OSAS patients was 52.7 ± 5.6 years old and the patients include 12 females and 33 males. After CPAP treatment, FD of EEG in non-rapid eye movement (NREM) sleep decreased significantly (P CPAP therapy (P CPAP therapy had a significant influence on sleep EEG in patients with OSAHS, which lead to a more stable EEG pattern. This may be one of the mechanisms that CPAP could improve sleep quality and brain function of OSAS patients.

  20. Obstructive sleep apnea decreases central nervous system-derived proteins in the cerebrospinal fluid.

    Science.gov (United States)

    Ju, Yo-El S; Finn, Mary Beth; Sutphen, Courtney L; Herries, Elizabeth M; Jerome, Gina M; Ladenson, Jack H; Crimmins, Daniel L; Fagan, Anne M; Holtzman, David M

    2016-07-01

    We hypothesized that one mechanism underlying the association between obstructive sleep apnea (OSA) and Alzheimer's disease is OSA leading to decreased slow wave activity (SWA), increased synaptic activity, decreased glymphatic clearance, and increased amyloid-β. Polysomnography and lumbar puncture were performed in OSA and control groups. SWA negatively correlated with cerebrospinal fluid (CSF) amyloid-β-40 among controls and was decreased in the OSA group. Unexpectedly, amyloid-β-40 was decreased in the OSA group. Other neuronally derived proteins, but not total protein, were also decreased in the OSA group, suggesting that OSA may affect the interaction between interstitial and cerebrospinal fluid. Ann Neurol 2016;80:154-159. © 2016 American Neurological Association.

  1. Deleting HDAC3 Rescues Long-Term Memory Impairments Induced by Disruption of the Neuron-Specific Chromatin Remodeling Subunit BAF53b

    Science.gov (United States)

    Shu, Guanhua; Kramár, Enikö A.; López, Alberto J.; Huynh, Grace; Wood, Marcelo A.; Kwapis, Janine L.

    2018-01-01

    Multiple epigenetic mechanisms, including histone acetylation and nucleosome remodeling, are known to be involved in long-term memory formation. Enhancing histone acetylation by deleting histone deacetylases, like HDAC3, typically enhances long-term memory formation. In contrast, disrupting nucleosome remodeling by blocking the neuron-specific…

  2. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes.

    Science.gov (United States)

    Dembowski, Jill A; DeLuca, Neal A

    2015-05-01

    Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND) was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics during infection and

  3. RNA is an integral component of chromatin that contributes to its structural organization.

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez-Campos

    Full Text Available Chromatin structure is influenced by multiples factors, such as pH, temperature, nature and concentration of counterions, post-translational modifications of histones and binding of structural non-histone proteins. RNA is also known to contribute to the regulation of chromatin structure as chromatin-induced gene silencing was shown to depend on the RNAi machinery in S. pombe, plants and Drosophila. Moreover, both in Drosophila and mammals, dosage compensation requires the contribution of specific non-coding RNAs. However, whether RNA itself plays a direct structural role in chromatin is not known. Here, we report results that indicate a general structural role for RNA in eukaryotic chromatin. RNA is found associated to purified chromatin prepared from chicken liver, or cultured Drosophila S2 cells, and treatment with RNase A alters the structural properties of chromatin. Our results indicate that chromatin-associated RNAs, which account for 2%-5% of total chromatin-associated nucleic acids, are polyA(- and show a size similar to that of the DNA contained in the corresponding chromatin fragments. Chromatin-associated RNA(s are not likely to correspond to nascent transcripts as they are also found bound to chromatin when cells are treated with alpha-amanitin. After treatment with RNase A, chromatin fragments of molecular weight >3.000 bp of DNA showed reduced sedimentation through sucrose gradients and increased sensitivity to micrococcal nuclease digestion. This structural transition, which is observed both at euchromatic and heterochromatic regions, proceeds without loss of histone H1 or any significant change in core-histone composition and integrity.

  4. Low morning serum cortisol levels in children with tonsillar hypertrophy and moderate-to-severe OSA.

    Science.gov (United States)

    Malakasioti, Georgia; Alexopoulos, Emmanouel I; Varlami, Vasiliki; Chaidas, Konstantinos; Liakos, Nikolaos; Gourgoulianis, Konstantinos; Kaditis, Athanasios G

    2013-09-01

    Hypertrophic tonsillar tissue in children with obstructive sleep apnea (OSA) has enhanced expression of glucocorticoid receptors, which may reflect low endogenous cortisol levels. We have evaluated the effect of the interaction between tonsillar hypertrophy and OSA severity on morning serum cortisol levels. Children with and without snoring underwent polysomnography, tonsillar size grading, and measurement of morning serum cortisol. Seventy children (2-13 years old) were recruited: 30 with moderate-to-severe OSA (apnea-hypopnea index [AHI] > 5 episodes/h), 26 with mild OSA (AHI > 1 and ≤ 5), and 14 controls (no snoring; AHI ≤ 1). Tonsillar hypertrophy was present in 56.7%, 53.8%, and 42.9% of participants in each group, respectively. Application of a general linear model demonstrated a significant effect of the interaction between severity of OSA and tonsillar hypertrophy on cortisol levels (P = 0.04), after adjustment for obesity, gender, and age. Among children with tonsillar hypertrophy, subjects with moderate-to-severe OSA (n = 17; AHI 14.7 ± 10.6), mild OSA (n = 14; AHI 2.3 ± 1.2), and control participants (n = 6; AHI 0.7 ± 0.2) were significantly different regarding cortisol levels (P = 0.02). Subjects with moderate-to-severe OSA had lower cortisol (16.9 ± 8.7 mcg/dL) than those with mild OSA (23.3 ± 4.2; P = 0.01) and those without OSA (controls) (23.6 ± 5.3 mcg/dL; P = 0.04). In contrast, children with normal-size tonsils and moderate-to-severe OSA, mild OSA, and controls did not differ in cortisol levels. Children with moderate-to-severe obstructive sleep apnea and the phenotype of hypertrophic tonsils have reduced morning serum cortisol levels and potentially decreased glucocorticoid inhibitory effects on tonsillar growth.

  5. Modification of a Volume-Overload Heart Failure Model to Track Myocardial Remodeling and Device-Related Reverse Remodeling

    Science.gov (United States)

    Tuzun, Egemen; Bick, Roger; Kadipasaoglu, Cihan; Conger, Jeffrey L.; Poindexter, Brian J.; Gregoric, Igor D.; Frazier, O. H.; Towbin, Jeffrey A.; Radovancevic, Branislav

    2011-01-01

    Purpose. To provide an ovine model of ventricular remodeling and reverse remodeling by creating congestive heart failure (CHF) and then treating it by implanting a left ventricular assist device (LVAD). Methods. We induced volume-overload heart failure in 2 sheep; 20 weeks later, we implanted an LVAD and assessed recovery 11 weeks thereafter. We examined changes in histologic and hemodynamic data and levels of cellular markers of CHF. Results. After CHF induction, we found increases in LV end-diastolic pressure, LV systolic and diastolic dimensions, wall thickness, left atrial diameter, and atrial natriuretic protein (ANP) and endothelin-1 (ET-1) levels; β-adrenergic receptor (BAR) and dystrophin expression decreased markedly. Biopsies confirmed LV remodeling. After LVAD support, LV systolic and diastolic dimensions, wall thickness, and mass, and ANP and ET-1 levels decreased. Histopathologic and hemodynamic markers improved, and BAR and dystrophin expression normalized. Conclusions. We describe a successful sheep model for ventricular and reverse remodeling. PMID:22347659

  6. Multiclassifier combinatorial proteomics of organelle shadows at the example of mitochondria in chromatin data.

    Science.gov (United States)

    Kustatscher, Georg; Grabowski, Piotr; Rappsilber, Juri

    2016-02-01

    Subcellular localization is an important aspect of protein function, but the protein composition of many intracellular compartments is poorly characterized. For example, many nuclear bodies are challenging to isolate biochemically and thus remain inaccessible to proteomics. Here, we explore covariation in proteomics data as an alternative route to subcellular proteomes. Rather than targeting a structure of interest biochemically, we target it by machine learning. This becomes possible by taking data obtained for one organelle and searching it for traces of another organelle. As an extreme example and proof-of-concept we predict mitochondrial proteins based on their covariation in published interphase chromatin data. We detect about ⅓ of the known mitochondrial proteins in our chromatin data, presumably most as contaminants. However, these proteins are not present at random. We show covariation of mitochondrial proteins in chromatin proteomics data. We then exploit this covariation by multiclassifier combinatorial proteomics to define a list of mitochondrial proteins. This list agrees well with different databases on mitochondrial composition. This benchmark test raises the possibility that, in principle, covariation proteomics may also be applicable to structures for which no biochemical isolation procedures are available. © 2015 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chromatin is wonderful stuff.

    NARCIS (Netherlands)

    van Driel, R.

    2007-01-01

    Chromatin molecules have properties that set them aside from all other biomacromolecules in the cell. (i) Chromosomes, which are single chromatin molecules, are the largest macromolecules in eukaryotic cells. (ii) Chromatin molecules carry the cell's genetic and epigenetic information and all

  8. Zinc finger proteins and other transcription regulators as response proteins in benzo[a]pyrene exposed cells

    International Nuclear Information System (INIS)

    Gao Zhihua; Jin Jinghua; Yang Jun; Yu Yingnian

    2004-01-01

    Proteomic analysis, which combines two-dimensional electrophoresis (2-DE) and mass spectrometry (MS), is an important approach to screen proteins responsive to specific stimuli. Benzo[a]pyrene (B[a]P), a prototype of polycyclic hydrocarbons (PAHs), is a potent procarcinogen generated from the combustion of fossil fuel and cigarette smoke. To further probe the molecular mechanism of mutagenesis and carcinogenesis, and to find potential molecular markers involved in cellular responses to B[a]P exposure, we performed proteomic analysis of whole cellular proteins in human amnion epithelial cells after B[a]P-treatment. Image visualization and statistical analysis indicated that more than 40 proteins showed significant changes following B[a]P-treatment (P<0.05). Among them, 20 proteins existed only in the control groups, while six were only present in B[a]P-treated cells. In addition, the expression of 10 proteins increased whereas 11 decreased after B[a]P-treatment. These proteins were subjected to in-gel tryptic digestion followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) analysis. Using peptide mass fingerprinting (PMF) to search the nrNCBI database, we identified 22 proteins. Most of these proteins have unknown functions and have not been previously connected to a response to B[a]P exposure. To further annotate the characteristics of these proteins, GOblet analysis was carried out and results indicated that they were involved in multiple biological processes including regulation of transcription, cell proliferation, cell aging and other processes. However, expression changes were noted in a number of transcription regulators, including eight zinc finger proteins as well as SNF2L1 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1), which is closely linked to the chromatin remodeling process. These data may provide new clues to further understand the implication of

  9. Activation of chromatin degradation by a protein factor of thymocyte cytoplasm of irradiated mice

    International Nuclear Information System (INIS)

    Soldatenkov, V.A.; Filippovich, I.V.

    1986-01-01

    A cytoplasmic thymocyte fraction isolated 1 h after irradiation of mice accelerates chromatin degradation in isolated nuclei. Treatment of the cytoplasmic fraction by heat and injection of cycloheximide to mice prevent the acceleration of DNA degradation. The analysis of the chromatin degradation products and the kinetics of this process at acid and alkaline pH shows that activation of DNA degradation in thymocytes by a factor obtained from the irradiated cell cytoplasm is specific for a Ca 2+ , Mg 2+ -dependent enzyme. The time- and dose-dependent parameters of the appearance in the thymocyte cytoplasm of the factor influencing degradation of chromatin are in a good agreement with both the time of the onset of its postirradiation degradation and the dose dependence of this process

  10. Prioritizing Popular Proteins in Liver Cancer: Remodelling One-Carbon Metabolism.

    Science.gov (United States)

    Mora, María Isabel; Molina, Manuela; Odriozola, Leticia; Elortza, Félix; Mato, José María; Sitek, Barbara; Zhang, Pumin; He, Fuchu; Latasa, María Uxue; Ávila, Matías Antonio; Corrales, Fernando José

    2017-12-01

    Primary liver cancer (HCC) is recognized as the fifth most common neoplasm and the second leading cause of cancer death worldwide. Most risk factors are known, and the molecular pathogenesis has been widely studied in the past decade; however, the underlying molecular mechanisms remain to be unveiled, as they will facilitate the definition of novel biomarkers and clinical targets for more effective patient management. We utilize the B/D-HPP popular protein strategy. We report a list of popular proteins that have been highly cocited with the expression "liver cancer". Several enzymes highlight the known metabolic remodeling of liver cancer cells, four of which participate in one-carbon metabolism. This pathway is central to the maintenance of differentiated hepatocytes, as it is considered the connection between intermediate metabolism and epigenetic regulation. We designed a targeted selective reaction monitoring (SRM) method to follow up one-carbon metabolism adaptation in mouse HCC and in regenerating liver following exposure to CCl 4 . This method allows systematic monitoring of one-carbon metabolism and could prove useful in the follow-up of HCC and of chronically liver-diseased patients (cirrhosis) at risk of HCC. The SRM data are available via ProteomeXchange in PASSEL (PASS01060).

  11. Chromatin degradation under the effect of differentiation inductors and γ-radiation on thymus lymphocytes in vitro

    International Nuclear Information System (INIS)

    Soldatenkov, V.A.; Sorokina, N.I.; Filippovich, I.V.

    1985-01-01

    Chemical inductors of differentiation were shown to cause chromatin degradation in thymus lymphocytes. This process was prevented by the protein synthesis inhibitors. The fragments formed after the effect of chemical differentiation inductors on thymocytes were fully identical to chromatin internucleosome degradation products formed in the exposed cells. Chromatin degradation under the effect of chemical differentiation inductors was most pronounced in a more radiosensitive thymocyte fraction

  12. New insights into chromatin folding and dynamics from multi-scale modeling

    Science.gov (United States)

    Olson, Wilma

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of roughly 150 DNA base pairs and eight histone proteins-found on chromatin fibers. We have developed a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs with 3-25 evenly spaced nucleosomes. The correspondence between the predicted and observed effects of nucleosome composition, spacing, and numbers on long-range communication between regulatory proteins bound to the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We have extracted effective nucleosome-nucleosome potentials from the mesoscale simulations and introduced the potentials in a larger scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable influence of nucleosome spacing on chromatin flexibility. Small changes in the length of the DNA fragments linking successive nucleosomes introduce marked changes in the local interactions of the nucleosomes and in the spatial configurations of the fiber as a whole. The changes in nucleosome positioning influence the statistical properties of longer chromatin constructs with 100-10,000 nucleosomes. We are investigating the extent to which the `local' interactions of regularly spaced nucleosomes contribute to the corresponding interactions in chains with mixed spacings as a step toward the treatment of fibers with nucleosomes positioned at the sites mapped at base-pair resolution on genomic sequences. Support of the work by USPHS R01 GM 34809 is gratefully acknowledged.

  13. Bronchoconstriction Induces TGF-β Release and Airway Remodelling in Guinea Pig Lung Slices.

    Directory of Open Access Journals (Sweden)

    Tjitske A Oenema

    Full Text Available Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A or TGF-β receptor kinase (SB431542 prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.

  14. Endogenous RGS14 is a cytoplasmic-nuclear shuttling protein that localizes to juxtanuclear membranes and chromatin-rich regions of the nucleus

    Science.gov (United States)

    Hepler, John R.

    2017-01-01

    Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates G protein and H-Ras/MAPkinase signaling pathways to regulate synaptic plasticity important for hippocampal learning and memory. However, to date, little is known about the subcellular distribution and roles of endogenous RGS14 in a neuronal cell line. Most of what is known about RGS14 cellular behavior is based on studies of tagged, recombinant RGS14 ectopically overexpressed in unnatural host cells. Here, we report for the first time a comprehensive assessment of the subcellular distribution and dynamic localization of endogenous RGS14 in rat B35 neuroblastoma cells. Using confocal imaging and 3D-structured illumination microscopy, we find that endogenous RGS14 localizes to subcellular compartments not previously recognized in studies of recombinant RGS14. RGS14 localization was observed most notably at juxtanuclear membranes encircling the nucleus, at nuclear pore complexes (NPC) on both sides of the nuclear envelope and within intranuclear membrane channels, and within both chromatin-poor and chromatin-rich regions of the nucleus in a cell cycle-dependent manner. In addition, a subset of nuclear RGS14 localized adjacent to active RNA polymerase II. Endogenous RGS14 was absent from the plasma membrane in resting cells; however, the protein could be trafficked to the plasma membrane from juxtanuclear membranes in endosomes derived from ER/Golgi, following constitutive activation of endogenous RGS14 G protein binding partners using AlF4¯. Finally, our findings show that endogenous RGS14 behaves as a cytoplasmic-nuclear shuttling protein confirming what has been shown previously for recombinant RGS14. Taken together, the findings highlight possible cellular roles for RGS14 not previously recognized that are distinct from the regulation of conventional GPCR-G protein signaling, in particular undefined roles for RGS14 in the nucleus. PMID:28934222

  15. A Map of General and Specialized Chromatin Readers in Mouse Tissues Generated by Label-free Interaction Proteomics

    DEFF Research Database (Denmark)

    Eberl, H.C.; Mann, M.; Spruijt, C.G.

    2013-01-01

    Posttranslational modifications on core histones can serve as binding scaffolds for chromatin-associated proteins. Proteins that specifically bind to or "read" these modifications were previously identified in mass spectrometry-based proteomics screens based on stable isotope-labeling in cell lines...... the chromatin interaction landscape in mouse tissues, our workflow can be used for peptides with different modifications and cell types of any organism....

  16. Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome.

    Science.gov (United States)

    Santen, Gijs W E; Aten, Emmelien; Sun, Yu; Almomani, Rowida; Gilissen, Christian; Nielsen, Maartje; Kant, Sarina G; Snoeck, Irina N; Peeters, Els A J; Hilhorst-Hofstee, Yvonne; Wessels, Marja W; den Hollander, Nicolette S; Ruivenkamp, Claudia A L; van Ommen, Gert-Jan B; Breuning, Martijn H; den Dunnen, Johan T; van Haeringen, Arie; Kriek, Marjolein

    2012-03-18

    We identified de novo truncating mutations in ARID1B in three individuals with Coffin-Siris syndrome (CSS) by exome sequencing. Array-based copy-number variation (CNV) analysis in 2,000 individuals with intellectual disability revealed deletions encompassing ARID1B in 3 subjects with phenotypes partially overlapping that of CSS. Taken together with published data, these results indicate that haploinsufficiency of the ARID1B gene, which encodes an epigenetic modifier of chromatin structure, is an important cause of CSS and is potentially a common cause of intellectual disability and speech impairment.

  17. online-osa festivalil / Tiia Johannson

    Index Scriptorium Estoniae

    Johannson, Tiia, 1965-2002

    1998-01-01

    Prantsusmaa, Balti ja Põhjamaade video ja uue meedia festival "offline@online" Eesti Kunstiakadeemias. Ka eesti netikunstist, festivali korralduslikust küljest, tulevikuplaanidest. Erilist äramärkimist leidis sloveenia kunstniku Vuk Cosici töö "ascii history of moving images", online-presentatsioonide osas Lev Manovichi teoreetiline loeng "Uue meedia keel". Aadress festivali netikunsti vaatamiseks

  18. Isolation of Chromatin from Dysfunctional Telomeres Reveals an Important Role for Ring1b in NHEJ-Mediated Chromosome Fusions

    Directory of Open Access Journals (Sweden)

    Cristina Bartocci

    2014-05-01

    Full Text Available When telomeres become critically short, DNA damage response factors are recruited at chromosome ends, initiating a cellular response to DNA damage. We performed proteomic isolation of chromatin fragments (PICh in order to define changes in chromatin composition that occur upon onset of acute telomere dysfunction triggered by depletion of the telomere-associated factor TRF2. This unbiased purification of telomere-associated proteins in functional or dysfunctional conditions revealed the dynamic changes in chromatin composition that take place at telomeres upon DNA damage induction. On the basis of our results, we describe a critical role for the polycomb group protein Ring1b in nonhomologous end-joining (NHEJ-mediated end-to-end chromosome fusions. We show that cells with reduced levels of Ring1b have a reduced ability to repair uncapped telomeric chromatin. Our data represent an unbiased isolation of chromatin undergoing DNA damage and are a valuable resource to map the changes in chromatin composition in response to DNA damage activation.

  19. Evaluation of degree of lacunar infarction and carotid atherosclerosis in patients with different severity of OSAS

    Directory of Open Access Journals (Sweden)

    Ming Du

    2016-07-01

    Full Text Available Objective: To assess the degree of lacunar infarction and carotid atherosclerosis in patients with different severity of obstructive sleep apnea syndrome (OSAS. Methods: A total of 198 patients with OSAS were retrospectively studied from case information and test results, and were divided into mild group 84 cases, medium group 70 cases and severe group 44 cases according to apnea-hypopnea index (AHI, and 176 cases of non-OSAS people who received physical examination in our hospital during the same period were selected as healthy control group. Differences in the values of serum lacunar infarction-related indexes, blood viscosity and hemocyte-related indexes, carotid structure and function parameters, serum arteriosclerosis-related indexes and so on were compared among groups. Results: t-PA value of healthy control group was higher than those of OSAS group while vWF, PAI-1 and Fg values were lower than those of OSAS group (P<0.05, and with the increase of OSAS severity, t-PA value decreased while vWF, PAI-1 and Fg values increased (P<0.05; blood viscosity, Hct, PDW, RDW and EFR values of healthy control group were lower than those of OSAS group (P<0.05, and with the increase of OSAS severity, blood viscosity, Hct, PDW, RDW and EFR values increased (P<0.05; FMD, NID and DC values of healthy control group were higher than those of OSAS group while Dis, CC and PWV values were lower than those of OSAS group (P<0.05, and with the increase of OSAS severity, FMD, NID and DC values decreased while Dis, CC and PWV values increased (P<0.05; blood uric acid and EF-1 values of healthy control group were lower than those of OSAS group while CGRP and fetuin A levels were higher than those of OSAS group (P<0.05, and with the aggravation of OSAS, blood uric acid and EF-1 levels increased while CGRP and fetuin A levels decreased, and differences among groups were significant (P<0.05. Conclusions: With the aggravation of OSAS, patients’ microcirculation

  20. Coordinating repair of oxidative DNA damage with transcription and replication

    International Nuclear Information System (INIS)

    Cooper, P.K.

    2003-01-01

    Transcription-coupled repair (TCR) preferentially removes DNA lesions from template strands of active genes. Defects in TCR, which acts both on lesions removed by nucleotide excision repair (NER) and on oxidative lesions removed by base excision repair (BER), underlie the fatal developmental disorder Cockayne syndrome. Although its detailed mechanism remains unknown, TCR involves recognition of a stalled RNA polymerase (RNAP), removal or remodeling of RNAP to allow access to the lesion, and recruitment of repair enzymes. At a minimum, these early steps require a non-enzymatic function of the multifunctional repair protein XPG, the CSB protein with ATP-dependent chromatin remodeling activity, and the TFIIH complex (including the XPB and XPD helicases) that is also required for basal transcription initiation and NER. XPG exists in the cell in a complex with TFIIH, and in vitro evidence has suggested that it interacts with CSB. To address the mechanism of TCR, we are characterizing protein-DNA and protein-protein interactions of XPG. We show that XPG preferentially binds to double-stranded DNA containing bubbles resembling in size the unpaired regions associated with transcription. Two distinct domains of XPG are required for the observed strong binding specificity and stability. XPG both interacts directly with CSB and synergistically binds with it to bubble DNA, and it strongly stimulates the bubble DNA-dependent ATPase activity of CSB. Significantly for TCR, XPG also interacts directly with RNAP II, binds both the protein and nucleic acid components (the R-loop) of a stalled RNA polymerase, and forms a ternary complex with CSB and the stalled RNAP. These results are consistent with the model that XPG and CSB jointly interact with the DNA/chromatin structure in the vicinity of the stalled transcriptional apparatus and with the transcriptional machinery itself to remodel the chromatin and either move or remodel the blocked RNA polymerase to expose the lesion

  1. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication...... initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  2. The Compass-like locus, exclusive to the Ambulacrarians, encodes a chromatin insulator binding protein in the sea urchin embryo.

    Directory of Open Access Journals (Sweden)

    Vincenzo Cavalieri

    Full Text Available Chromatin insulators are eukaryotic genome elements that upon binding of specific proteins display barrier and/or enhancer-blocking activity. Although several insulators have been described throughout various metazoans, much less is known about proteins that mediate their functions. This article deals with the identification and functional characterization in Paracentrotus lividus of COMPASS-like (CMPl, a novel echinoderm insulator binding protein. Phylogenetic analysis shows that the CMPl factor, encoded by the alternative spliced Cmp/Cmpl transcript, is the founder of a novel ambulacrarian-specific family of Homeodomain proteins containing the Compass domain. Specific association of CMPl with the boxB cis-element of the sns5 chromatin insulator is demonstrated by using a yeast one-hybrid system, and further corroborated by ChIP-qPCR and trans-activation assays in developing sea urchin embryos. The sns5 insulator lies within the early histone gene cluster, basically between the H2A enhancer and H1 promoter. To assess the functional role of CMPl within this locus, we challenged the activity of CMPl by two distinct experimental strategies. First we expressed in the developing embryo a chimeric protein, containing the DNA-binding domain of CMPl, which efficiently compete with the endogenous CMPl for the binding to the boxB sequence. Second, to titrate the embryonic CMPl protein, we microinjected an affinity-purified CMPl antibody. In both the experimental assays we congruently observed the loss of the enhancer-blocking function of sns5, as indicated by the specific increase of the H1 expression level. Furthermore, microinjection of the CMPl antiserum in combination with a synthetic mRNA encoding a forced repressor of the H2A enhancer-bound MBF1 factor restores the normal H1 mRNA abundance. Altogether, these results strongly support the conclusion that the recruitment of CMPl on sns5 is required for buffering the H1 promoter from the H2A enhancer

  3. To spread or not to spread - chromatin modifications in response to DNA damage

    DEFF Research Database (Denmark)

    Altmeyer, M.; Lukas, J.

    2013-01-01

    Chromatin modifications in response to DNA damage are vital for genome integrity. Multiple proteins and pathways required to generate specialized chromatin domains around DNA lesions have been identified and the increasing amount of information calls for unifying concepts that would allow us...... to grasp the ever-increasing complexity. This review aims at contributing to this trend by focusing on feed-forward and feedback mechanisms, which in mammalian cells determine the extent of chromatin modifications after DNA damage. We highlight the emerging notion that the nodal points of these highly...... dynamic pathways operate in a rate-limiting mode, whose deregulation can disrupt physiological boundaries between damaged and undamaged chromatin, dictate repair pathway choice, and determine the fate of cells exposed to genotoxic stress....

  4. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity

    Science.gov (United States)

    Du, Wen-Jie; Guo, Jing-Jing; Gao, Ming-Tao; Hu, Sheng-Quan; Dong, Xiao-Yan; Han, Yi-Fan; Liu, Fu-Feng; Jiang, Shaoyi; Sun, Yan

    2015-01-01

    Soluble amyloid β-protein (Aβ) oligomers, the main neurotoxic species, are predominantly formed from monomers through a fibril-catalyzed secondary nucleation. Herein, we virtually screened an in-house library of natural compounds and discovered brazilin as a dual functional compound in both Aβ42 fibrillogenesis inhibition and mature fibril remodeling, leading to significant reduction in Aβ42 cytotoxicity. The potent inhibitory effect of brazilin was proven by an IC50 of 1.5 +/- 0.3 μM, which was smaller than that of (-)-epigallocatechin gallate in Phase III clinical trials and about one order of magnitude smaller than those of curcumin and resveratrol. Most importantly, it was found that brazilin redirected Aβ42 monomers and its mature fibrils into unstructured Aβ aggregates with some β-sheet structures, which could prevent both the primary nucleation and the fibril-catalyzed secondary nucleation. Molecular simulations demonstrated that brazilin inhibited Aβ42 fibrillogenesis by directly binding to Aβ42 species via hydrophobic interactions and hydrogen bonding and remodeled mature fibrils by disrupting the intermolecular salt bridge Asp23-Lys28 via hydrogen bonding. Both experimental and computational studies revealed a different working mechanism of brazilin from that of known inhibitors. These findings indicate that brazilin is of great potential as a neuroprotective and therapeutic agent for Alzheimer's disease.

  5. The USC-OSA-EPS section activities in optics

    Science.gov (United States)

    Aymerich, María.; Cambronero-López, Ferran; Aragón, Ángel L.; Delgado, Tamara; Blanco, Manuel; Gómez Varela, Ana I.; Gargallo, Ana; Williamson, Sandra; Amorín, Adán.; Sánchez-García, Ángel; Bao-Varela, Carmen; Flores-Arias, M. Teresa

    2017-08-01

    The USC-OSA Student Chapter and USC-EPS Young Minds Section is a group financed by The Optical Society (OSA) and the European Physical Society (EPS). It is formed by PhD and degree students from the Universidade de Santiago de Compostela (USC) and one supervisor of the Faculty of Physics. Its main goal is to promote and diffuse Optics in the society. For this purpose, the group carries out several activities in the academic and non-academic community. The group is also committed to the professional development of our members and motivates the exposition of our work into the scientific community.

  6. MORC Proteins: Novel Players in Plant and Animal Health.

    Science.gov (United States)

    Koch, Aline; Kang, Hong-Gu; Steinbrenner, Jens; Dempsey, D'Maris A; Klessig, Daniel F; Kogel, Karl-Heinz

    2017-01-01

    Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II)-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.

  7. MORC Proteins: Novel Players in Plant and Animal Health

    Directory of Open Access Journals (Sweden)

    Aline Koch

    2017-10-01

    Full Text Available Microrchidia (MORC proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.

  8. Real-Time Tracking of Parental Histones Reveals Their Contribution to Chromatin Integrity Following DNA Damage.

    Science.gov (United States)

    Adam, Salomé; Dabin, Juliette; Chevallier, Odile; Leroy, Olivier; Baldeyron, Céline; Corpet, Armelle; Lomonte, Patrick; Renaud, Olivier; Almouzni, Geneviève; Polo, Sophie E

    2016-10-06

    Chromatin integrity is critical for cell function and identity but is challenged by DNA damage. To understand how chromatin architecture and the information that it conveys are preserved or altered following genotoxic stress, we established a system for real-time tracking of parental histones, which characterize the pre-damage chromatin state. Focusing on histone H3 dynamics after local UVC irradiation in human cells, we demonstrate that parental histones rapidly redistribute around damaged regions by a dual mechanism combining chromatin opening and histone mobilization on chromatin. Importantly, parental histones almost entirely recover and mix with new histones in repairing chromatin. Our data further define a close coordination of parental histone dynamics with DNA repair progression through the damage sensor DDB2 (DNA damage-binding protein 2). We speculate that this mechanism may contribute to maintaining a memory of the original chromatin landscape and may help preserve epigenome stability in response to DNA damage. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. The C-terminal domain of the Arabidopsis AtMBD7 protein confers strong chromatin binding activity

    International Nuclear Information System (INIS)

    Zemach, Assaf; Paul, Laju K.; Stambolsky, Perry; Efroni, Idan; Rotter, Varda; Grafi, Gideon

    2009-01-01

    The Arabidopsis MBD7 (AtMBD7) - a naturally occurring poly MBD protein - was previously found to be functional in binding methylated-CpG dinucleotides in vitro and localized to highly methylated chromocenters in vivo. Furthermore, AtMBD7 has significantly lower mobility within the nucleus conferred by cooperative activity of its three MBD motifs. Here we show that besides the MBD motifs, AtMBD7 possesses a strong chromatin binding domain located at its C-terminus designated sticky-C (StkC). Mutational analysis showed that a glutamic acid residue near the C-terminus is essential though not sufficient for the StkC function. Further analysis demonstrated that this motif can render nuclear proteins highly immobile both in plant and animal cells, without affecting their native subnuclear localization. Thus, the C-terminal, StkC motif plays an important role in fastening AtMBD7 to its chromosomal, CpG-methylated sites. It may be possible to utilize this motif for fastening nuclear proteins to their chromosomal sites both in plant and animal cells for research and gene therapy applications.

  10. Heterogeneous chromatin target model

    International Nuclear Information System (INIS)

    Watanabe, Makoto

    1996-01-01

    The higher order structure of the entangled chromatin fibers in a chromosome plays a key role in molecular control mechanism involved in chromosome mutation due to ionizing radiations or chemical mutagens. The condensed superstructure of chromatin is not so rigid and regular as has been postulated in general. We have proposed a rheological explanation for the flexible network system ('chromatin network') that consists of the fluctuating assembly of nucleosome clusters linked with supertwisting DNA in a chromatin fiber ('Supertwisting Particulate Model'). We have proposed a 'Heterosensitive Target Model' for cellular radiosensitivity that is a modification of 'Heterogeneous Target Model'. The heterogeneity of chromatin target is derived from the highly condensed organization of chromatin segments consist of unstable and fragile sites in the fluctuating assembly of nucleosome clusters, namely 'supranucleosomal particles' or 'superbeads'. The models have been principally supported by our electron microscopic experiments employing 'surface - spreading whole - mount technique' since 1967. However, some deformation and artifacts in the chromatin structure are inevitable with these electron microscopic procedures. On the contrary, the 'atomic force microscope (AFM)' can be operated in liquid as well as in the air. A living specimen can be examined without any preparative procedures. Micromanipulation of the isolated chromosome is also possible by the precise positional control of a cantilever on the nanometer scale. The living human chromosomes were submerged in a solution of culture medium and observed by AFM using a liquid immersion cell. The surface - spreading whole - mount technique was applicable for this observation. The particulate chromatin segments of nucleosome clusters were clearly observed within mitotic human chromosomes in a living hydrated condition. These findings support the heterogeneity of chromatin target in a living cell. (J.P.N.)

  11. Alpha radiation-induced alterations of the proliferation kinetics, chromatin structure and gene expression in mammalian cells

    International Nuclear Information System (INIS)

    Hieber, L.

    1983-01-01

    Exponentially growing mammalian cells were exposed to 3.4 MeV alpha particles. The chromatin of cells arrested in G2 by alpha irradiation was severely damaged, though all cells were still capable to condensate their chromatin after fusion with mitotic cells. In addition to the common types of aberrations (breaks, gaps, dicentrics and exchanges) cells were found possessing one or more chromosomes with long stretches of undercondensed chromatin. Repair of these lesions was indicated by site specific unscheduled DNA synthesis and by the observation that condensation of these regions improved during G2 arrest. Furthermore, during G2 arrest the synthesis of two cellular proteins was stimulated. This was studied by two-dimensional gel electrophoresis of 35 S-methionine labeled cellular proteins. All these findings provided evidence that radiation-induced G2 arrest is caused by chromatin damage, which prevents regular chromosome condensation for mitosis. (orig./MG) [de

  12. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics

    Science.gov (United States)

    Aguilar, Carlos A.; Craighead, Harold G.

    2013-10-01

    Deoxyribonucleic acid (DNA) is the blueprint on which life is based and transmitted, but the way in which chromatin -- a dynamic complex of nucleic acids and proteins -- is packaged and behaves in the cellular nucleus has only begun to be investigated. Epigenetic modifications sit 'on top of' the genome and affect how DNA is compacted into chromatin and transcribed into ribonucleic acid (RNA). The packaging and modifications around the genome have been shown to exert significant influence on cellular behaviour and, in turn, human development and disease. However, conventional techniques for studying epigenetic or conformational modifications of chromosomes have inherent limitations and, therefore, new methods based on micro- and nanoscale devices have been sought. Here, we review the development of these devices and explore their use in the study of DNA modifications, chromatin modifications and higher-order chromatin structures.

  13. Chk1 protects against chromatin bridges by constitutively phosphorylating BLM serine 502 to inhibit BLM degradation.

    Science.gov (United States)

    Petsalaki, Eleni; Dandoulaki, Maria; Morrice, Nick; Zachos, George

    2014-09-15

    Chromatin bridges represent incompletely segregated chromosomal DNA connecting the anaphase poles and can result in chromosome breakage. The Bloom's syndrome protein helicase (BLM, also known as BLMH) suppresses formation of chromatin bridges. Here, we show that cells deficient in checkpoint kinase 1 (Chk1, also known as CHEK1) exhibit higher frequency of chromatin bridges and reduced BLM protein levels compared to controls. Chk1 inhibition leads to BLM ubiquitylation and proteasomal degradation during interphase. Furthermore, Chk1 constitutively phosphorylates human BLM at serine 502 (S502) and phosphorylated BLM localises to chromatin bridges. Mutation of S502 to a non-phosphorylatable alanine residue (BLM-S502A) reduces the stability of BLM, whereas expression of a phospho-mimicking BLM-S502D, in which S502 is mutated to aspartic acid, stabilises BLM and prevents chromatin bridges in Chk1-deficient cells. In addition, wild-type but not BLM-S502D associates with cullin 3, and cullin 3 depletion rescues BLM accumulation and localisation to chromatin bridges after Chk1 inhibition. We propose that Chk1 phosphorylates BLM-S502 to inhibit cullin-3-mediated BLM degradation during interphase. These results suggest that Chk1 prevents deleterious anaphase bridges by stabilising BLM. © 2014. Published by The Company of Biologists Ltd.

  14. Chromatin replication and histone dynamics

    DEFF Research Database (Denmark)

    Alabert, Constance; Jasencakova, Zuzana; Groth, Anja

    2017-01-01

    Inheritance of the DNA sequence and its proper organization into chromatin is fundamental for genome stability and function. Therefore, how specific chromatin structures are restored on newly synthesized DNA and transmitted through cell division remains a central question to understand cell fate...... choices and self-renewal. Propagation of genetic information and chromatin-based information in cycling cells entails genome-wide disruption and restoration of chromatin, coupled with faithful replication of DNA. In this chapter, we describe how cells duplicate the genome while maintaining its proper...... organization into chromatin. We reveal how specialized replication-coupled mechanisms rapidly assemble newly synthesized DNA into nucleosomes, while the complete restoration of chromatin organization including histone marks is a continuous process taking place throughout the cell cycle. Because failure...

  15. EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription.

    Directory of Open Access Journals (Sweden)

    Kevin Tsai

    2011-11-01

    Full Text Available Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs, suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus.

  16. EBV Tegument Protein BNRF1 Disrupts DAXX-ATRX to Activate Viral Early Gene Transcription

    Science.gov (United States)

    Tsai, Kevin; Thikmyanova, Nadezhda; Wojcechowskyj, Jason A.; Delecluse, Henri-Jacques; Lieberman, Paul M.

    2011-01-01

    Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV) typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs) and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs), suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus. PMID:22102817

  17. Assessment of the Depression, Anxiety, and Stress Scale (DASS-21) in untreated obstructive sleep apnea (OSA).

    Science.gov (United States)

    Nanthakumar, Shenooka; Bucks, Romola S; Skinner, Timothy C; Starkstein, Sergio; Hillman, David; James, Alan; Hunter, Michael

    2017-10-01

    The assessment of depression in obstructive sleep apnea (OSA) is confounded by symptom overlap. The Depression, Anxiety, and Stress Scale-short form (DASS-21) is a commonly used measure of negative affect, but it not known whether the DASS-21 is suitable for use in an OSA sample. This study compared the fit of Lovibond and Lovibond's (1995) correlated 3-factor structure of the DASS-21 and measurement invariance between a non-OSA and an OSA sample using confirmatory factor analysis. As measurement invariance was not found, to determine the source of non-invariance differential item functioning (DIF) was examined using dMACS. The correlated 3-factor structure (with correlated errors) of the DASS-21 was a better fit in the non-OSA sample. dMACS indicated that there was a degree of DIF for each of the subscales, especially for the Anxiety subscale, in which 2 symptoms (that are also physiological symptoms of OSA) produced lower severity scores in the OSA sample compared with the non-OSA sample. However, the degree of DIF for each of the subscales is not sufficient to cause concern when using the DASS-21; therefore, the total DASS-21 is suitable for use in an OSA sample. Interestingly, the impact of symptom overlap in anxiety symptoms may be reducing anxiety scores because of DIF, which contrasts with the proposed effect of symptom overlap in depression, where it leads to the inflation of depression scores in OSA. This deserves greater consideration in relation to OSA and other clinical disorders or chronic illness conditions with different patterns of overlapping symptoms. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Modifiers of notch transcriptional activity identified by genome-wide RNAi

    Directory of Open Access Journals (Sweden)

    Firnhaber Christopher B

    2010-10-01

    Full Text Available Abstract Background The Notch signaling pathway regulates a diverse array of developmental processes, and aberrant Notch signaling can lead to diseases, including cancer. To obtain a more comprehensive understanding of the genetic network that integrates into Notch signaling, we performed a genome-wide RNAi screen in Drosophila cell culture to identify genes that modify Notch-dependent transcription. Results Employing complementary data analyses, we found 399 putative modifiers: 189 promoting and 210 antagonizing Notch activated transcription. These modifiers included several known Notch interactors, validating the robustness of the assay. Many novel modifiers were also identified, covering a range of cellular localizations from the extracellular matrix to the nucleus, as well as a large number of proteins with unknown function. Chromatin-modifying proteins represent a major class of genes identified, including histone deacetylase and demethylase complex components and other chromatin modifying, remodeling and replacement factors. A protein-protein interaction map of the Notch-dependent transcription modifiers revealed that a large number of the identified proteins interact physically with these core chromatin components. Conclusions The genome-wide RNAi screen identified many genes that can modulate Notch transcriptional output. A protein interaction map of the identified genes highlighted a network of chromatin-modifying enzymes and remodelers that regulate Notch transcription. Our results open new avenues to explore the mechanisms of Notch signal regulation and the integration of this pathway into diverse cellular processes.

  19. Meta-analysis of DNA double-strand break response kinetics

    NARCIS (Netherlands)

    Kochan, Jakub A.; Desclos, Emilie C. B.; Bosch, Ruben; Meister, Luna; Vriend, Lianne E. M.; Attikum, Haico V.; Krawczyk, Przemek M.

    2017-01-01

    Most proteins involved in the DNA double-strand break response (DSBR) accumulate at the damage sites, where they perform functions related to damage signaling, chromatin remodeling and repair. Over the last two decades, studying the accumulation of many DSBR proteins provided information about their

  20. The alteration of chromatin domains during damage repair induced by ionizing radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Olson, K.M.; Olson, G.B.

    1995-01-01

    Several groups previously have reported the ability of chromatin structure to influence the production of damage induced by ionizing radiation. The authors' interest has been to determine whether chromatin structural alterations exist after ionizing radiation during a repair interval. The earlier work investigated this question using biochemical techniques. The crosslinking of nuclear structural proteins to DNA after ionizing radiation was observed. In addition, they found that the chromatin structure in vitro as measured by sucrose density gradient sedimentation, was altered after ionizing radiation. These observations added to earlier studies in which digital imaging techniques showed an alteration in feulgen-positive DNA after irradiation prompted the present study. The object of this study was to detect whether the higher order structure of DNA into chromatin domains within interphase human cells was altered in interphase cells in response to a radiation induced damage. The present study takes advantage of the advances in the detection of chromatin domains in situ using DNA specific dyes and digital image processing of established human T and B cell lines

  1. Diazinon alters sperm chromatin structure in mice by phosphorylating nuclear protamines

    International Nuclear Information System (INIS)

    Pina-Guzman, B.; Solis-Heredia, M.J.; Quintanilla-Vega, B.

    2005-01-01

    Organophosphorus (OP) pesticides, widely used in agriculture and pest control, are associated with male reproductive effects, including sperm chromatin alterations, but the mechanisms underlying these effects are unknown. The main toxic action of OP is related to phosphorylation of proteins. Chemical alterations in sperm nuclear proteins (protamines), which pack DNA during the last steps of spermatogenesis, contribute to male reproductive toxicity. Therefore, in the present study, we tested the ability of diazinon (DZN), an OP compound, to alter sperm chromatin by phosphorylating nuclear protamines. Mice were injected with a single dose of DZN (8.12 mg/kg, i.p.), and killed 8 and 15 days after treatment. Quality of sperm from epididymis and vas deferens was evaluated through standard methods and chromatin condensation by flow cytometry (DNA Fragmented Index parameters: DFI and DFI%) and fluorescence microscopy using chromomycin-A 3 (CMA 3 ). Increases in DFI (15%), DFI% (4.5-fold), and CMA 3 (2-fold) were observed only at 8 days post-treatment, indicating an alteration in sperm chromatin condensation and DNA damage during late spermatid differentiation. In addition, an increase of phosphorous content (approximately 50%) in protamines, especially in the phosphoserine content (approximately 73%), was found at 8 days post-treatment. Sperm viability, motility, and morphology showed significant alterations at this time. These data strongly suggest that spermatozoa exposed during the late steps of maturation were the targets of DZN exposure. The correlation observed between the phosphorous content in nuclear protamines with DFI%, DFI, and CMA 3 provides evidence that phosphorylation of nuclear protamines is involved in the OP effects on sperm chromatin

  2. The Nance-Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology.

    Science.gov (United States)

    Brooks, Simon P; Coccia, Margherita; Tang, Hao R; Kanuga, Naheed; Machesky, Laura M; Bailly, Maryse; Cheetham, Michael E; Hardcastle, Alison J

    2010-06-15

    Nance-Horan syndrome (NHS) is an X-linked developmental disorder, characterized by bilateral congenital cataracts, dental anomalies, facial dysmorphism and mental retardation. Null mutations in a novel gene, NHS, cause the syndrome. The NHS gene appears to have multiple isoforms as a result of alternative transcription, but a cellular function for the NHS protein has yet to be defined. We describe NHS as a founder member of a new protein family (NHS, NHSL1 and NHSL2). Here, we demonstrate that NHS is a novel regulator of actin remodelling and cell morphology. NHS localizes to sites of cell-cell contact, the leading edge of lamellipodia and focal adhesions. The N-terminus of isoforms NHS-A and NHS-1A, implicated in the pathogenesis of NHS, have a functional WAVE homology domain that interacts with the Abi protein family, haematopoietic stem/progenitor cell protein 300 (HSPC300), Nap1 and Sra1. NHS knockdown resulted in the disruption of the actin cytoskeleton. We show that NHS controls cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. NHS knockdown led to a striking increase in cell spreading. Conversely, ectopic overexpression of NHS inhibited lamellipod formation. Remodelling of the actin cytoskeleton and localized actin polymerization into branched actin filaments at the plasma membrane are essential for mediating changes in cell shape, migration and cell contact. Our data identify NHS as a new regulator of actin remodelling. We suggest that NHS orchestrates actin regulatory protein function in response to signalling events during development.

  3. The Nance–Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology

    Science.gov (United States)

    Brooks, Simon P.; Coccia, Margherita; Tang, Hao R.; Kanuga, Naheed; Machesky, Laura M.; Bailly, Maryse; Cheetham, Michael E.; Hardcastle, Alison J.

    2010-01-01

    Nance–Horan syndrome (NHS) is an X-linked developmental disorder, characterized by bilateral congenital cataracts, dental anomalies, facial dysmorphism and mental retardation. Null mutations in a novel gene, NHS, cause the syndrome. The NHS gene appears to have multiple isoforms as a result of alternative transcription, but a cellular function for the NHS protein has yet to be defined. We describe NHS as a founder member of a new protein family (NHS, NHSL1 and NHSL2). Here, we demonstrate that NHS is a novel regulator of actin remodelling and cell morphology. NHS localizes to sites of cell–cell contact, the leading edge of lamellipodia and focal adhesions. The N-terminus of isoforms NHS-A and NHS-1A, implicated in the pathogenesis of NHS, have a functional WAVE homology domain that interacts with the Abi protein family, haematopoietic stem/progenitor cell protein 300 (HSPC300), Nap1 and Sra1. NHS knockdown resulted in the disruption of the actin cytoskeleton. We show that NHS controls cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. NHS knockdown led to a striking increase in cell spreading. Conversely, ectopic overexpression of NHS inhibited lamellipod formation. Remodelling of the actin cytoskeleton and localized actin polymerization into branched actin filaments at the plasma membrane are essential for mediating changes in cell shape, migration and cell contact. Our data identify NHS as a new regulator of actin remodelling. We suggest that NHS orchestrates actin regulatory protein function in response to signalling events during development. PMID:20332100

  4. Asthma Control and Its Relationship with Obstructive Sleep Apnea (OSA in Older Adults

    Directory of Open Access Journals (Sweden)

    Mihaela Teodorescu

    2013-01-01

    Full Text Available Background/Objectives. Asthma in older individuals is poorly understood. We aimed to characterize the older asthma phenotype and test its association with obstructive sleep apnea (OSA. Design. Cross-sectional. Setting. Pulmonary and Asthma/Allergy clinics. Participants. 659 asthma subjects aged 18–59 years (younger and 154 aged 60–75 (older. Measurements. Sleep Apnea scale of Sleep Disorders Questionnaire (SA-SDQ, asthma severity step (1–4, severe if step 3 or 4, established OSA diagnosis, continuous positive airway pressure (CPAP use, and comorbidities. Results. Older versus younger had worse control, as assessed by asthma step, lung function, and inhaled corticosteroid use. Among older subjects, after controlling for known asthma aggravators, OSA diagnosis was the only factor robustly associated with severe asthma: on average, OSA was associated with nearly 7 times greater likelihood of severe asthma in an older individual (OR=6.67. This relationship was of greater magnitude than in younger subjects (OR=2.16. CPAP use attenuated the likelihood of severe asthma in older subjects by 91% (P=0.005, much more than in the younger asthmatics. Conclusion. Diagnosed OSA increases the risk for worse asthma control in older patients, while CPAP therapy may have greater impact on asthma outcomes. Unrecognized OSA may be a reason for poor asthma control, particularly among older patients.

  5. Downregulation of β-Adrenoceptors in Isoproterenol-Induced Cardiac Remodeling through HuR.

    Directory of Open Access Journals (Sweden)

    Qian Yin

    Full Text Available β-adrenergic receptors (β-ARs play an important role in cardiac remodeling, which is the key pathological process in various heart diseases and leads to heart failure. However, the regulation of β-AR expression in remodeling hearts is still unclear. This study aims to clarify the possible mechanisms underlying the regulation of β1- and β2-AR expression in cardiac remodeling. The rat model of cardiac remodeling was established by subcutaneous injection of isoproterenol(ISO at the dose of 0.25 mg·kg(-1·d(-1 for 7 days. We found that the expression of β1- and β2-ARs decreased in the remodeling heart. The mechanisms may include the inhibition of DNA transcription and the increase of mRNA degradation. cAMP-response element binding protein(CREB is a well-known transcription factor of β-AR. However, the expression and activation of CREB was not changed in the remodeling heart. Further, human Antigen-R (HuR, a RNA binding protein, which binds to the 3'-untranslated region of the β-AR mRNA and promotes RNA degradation, was increased in the remodeling model. And in vitro, HuR deficiency reversed the reduction of β-AR mRNA induced by ISO. Therefore, the present findings indicate that HuR, but not CREB, is responsible for the reduction of β-AR expression in ISO induced cardiac remodeling.

  6. Evolution of high mobility group nucleosome-binding proteins and its implications for vertebrate chromatin specialization.

    Science.gov (United States)

    González-Romero, Rodrigo; Eirín-López, José M; Ausió, Juan

    2015-01-01

    High mobility group (HMG)-N proteins are a family of small nonhistone proteins that bind to nucleosomes (N). Despite the amount of information available on their structure and function, there is an almost complete lack of information on the molecular evolutionary mechanisms leading to their exclusive differentiation. In the present work, we provide evidence suggesting that HMGN lineages constitute independent monophyletic groups derived from a common ancestor prior to the diversification of vertebrates. Based on observations of the functional diversification across vertebrate HMGN proteins and on the extensive silent nucleotide divergence, our results suggest that the long-term evolution of HMGNs occurs under strong purifying selection, resulting from the lineage-specific functional constraints of their different protein domains. Selection analyses on independent lineages suggest that their functional specialization was mediated by bursts of adaptive selection at specific evolutionary times, in a small subset of codons with functional relevance-most notably in HMGN1, and in the rapidly evolving HMGN5. This work provides useful information to our understanding of the specialization imparted on chromatin metabolism by HMGNs, especially on the evolutionary mechanisms underlying their functional differentiation in vertebrates. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Valsartan Reduced Atrial Fibrillation Susceptibility by Inhibiting Atrial Parasympathetic Remodeling through MAPKs/Neurturin Pathway

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2015-07-01

    Full Text Available Background/Aims: Angiotensin II receptor blockers (ARBs have been proved to be effective in preventing atrial structural and electrical remodelinq in atrial fibrillation (AF. Previous studies have shown that parasympathetic remodeling plays an important role in AF. However, the effects of ARBs on atrial parasympathetic remodeling in AF and the underlying mechanisms are still unknown. Methods: Canines were divided into sham-operated, pacing and valsartan + pacing groups. Rats and HL-1 cardiomyocytes were divided into control, angiotensin II (Ang II and Ang II + valsartan groups, respectively. Atrial parasympathetic remodeling was quantified by immunocytochemical staining with anti-choline acetyltransferase (ChAT antibody. Western blot was used to analysis the protein expression of neurturin. Results: Both inducibility and duration were increased in chronic atrial rapid-pacing canine model, which was significantly inhibited by the treatment with valsartan. The density of ChAT-positive nerves and the protein level of neurturin in the atria of pacing canines were both increased than those in sham-operated canines. Ang II treatment not only induced atrial parasympathetic remodeling in rats, but also up-regulated the protein expression of neurturin. Valsartan significantly prevented atrial parasympathetic remodeling, and suppressed the protein expression of neurturin. Meanwhile, valsartan inhibited Ang II -induced up-regulation of neurturin and MAPKs in cultured cardiac myocytes. Inhibition of MAPKs dramatically attenuated neurturin up-regulation induced by Ang II. Conclusion: Parasympathetic remodeling was present in animals subjected to rapid pacing or Ang II infusion, which was mediated by MAPKs/neurturin pathway. Valsartan is able to prevent atrial parasympathetic remodeling and the occurrence of AF via inhibiting MAPKs/neurturin pathway.

  8. Valsartan Reduced Atrial Fibrillation Susceptibility by Inhibiting Atrial Parasympathetic Remodeling through MAPKs/Neurturin Pathway.

    Science.gov (United States)

    Liu, Lei; Geng, Jianqiang; Zhao, Hongwei; Yun, Fengxiang; Wang, Xiaoyu; Yan, Sen; Ding, Xue; Li, Wenpeng; Wang, Dingyu; Li, Jianqiang; Pan, Zhenwei; Gong, Yongtai; Tan, Xiangyang; Li, Yue

    2015-01-01

    Angiotensin II receptor blockers (ARBs) have been proved to be effective in preventing atrial structural and electrical remodelinq in atrial fibrillation (AF). Previous studies have shown that parasympathetic remodeling plays an important role in AF. However, the effects of ARBs on atrial parasympathetic remodeling in AF and the underlying mechanisms are still unknown. Canines were divided into sham-operated, pacing and valsartan + pacing groups. Rats and HL-1 cardiomyocytes were divided into control, angiotensin II (Ang II) and Ang II + valsartan groups, respectively. Atrial parasympathetic remodeling was quantified by immunocytochemical staining with anti-choline acetyltransferase (ChAT) antibody. Western blot was used to analysis the protein expression of neurturin. Both inducibility and duration were increased in chronic atrial rapid-pacing canine model, which was significantly inhibited by the treatment with valsartan. The density of ChAT-positive nerves and the protein level of neurturin in the atria of pacing canines were both increased than those in sham-operated canines. Ang II treatment not only induced atrial parasympathetic remodeling in rats, but also up-regulated the protein expression of neurturin. Valsartan significantly prevented atrial parasympathetic remodeling, and suppressed the protein expression of neurturin. Meanwhile, valsartan inhibited Ang II -induced up-regulation of neurturin and MAPKs in cultured cardiac myocytes. Inhibition of MAPKs dramatically attenuated neurturin up-regulation induced by Ang II. Parasympathetic remodeling was present in animals subjected to rapid pacing or Ang II infusion, which was mediated by MAPKs/neurturin pathway. Valsartan is able to prevent atrial parasympathetic remodeling and the occurrence of AF via inhibiting MAPKs/neurturin pathway. © 2015 S. Karger AG, Basel.

  9. Polycomb group proteins in cell cycle progression and cancer

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Helin, Kristian

    2004-01-01

    Epigenetic deregulation of gene expression is emerging as key mechanism in tumorigenesis. Deregulated activity of the chromatin remodeling Polycomb Repressive Complex 2 (PRC2) has recently been shown to be a frequent event in human tumors. Here we discuss these findings and speculate on the role ...

  10. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage

    Science.gov (United States)

    Ortega-Atienza, Sara; Wong, Victor C.; DeLoughery, Zachary; Luczak, Michal W.; Zhitkovich, Anatoly

    2016-01-01

    Many carcinogens damage both DNA and protein constituents of chromatin, and it is unclear how cells respond to this compound injury. We examined activation of the main DNA damage-responsive kinase ATM and formation of DNA double-strand breaks (DSB) by formaldehyde (FA) that forms histone adducts and replication-blocking DNA-protein crosslinks (DPC). We found that low FA doses caused a strong and rapid activation of ATM signaling in human cells, which was ATR-independent and restricted to S-phase. High FA doses inactivated ATM via its covalent dimerization and formation of larger crosslinks. FA-induced ATM signaling showed higher CHK2 phosphorylation but much lower phospho-KAP1 relative to DSB inducers. Replication blockage by DPC did not produce damaged forks or detectable amounts of DSB during the main wave of ATM activation, which did not require MRE11. Chromatin-monitoring KAT5 (Tip60) acetyltransferase was responsible for acetylation and activation of ATM by FA. KAT5 and ATM were equally important for triggering of intra-S-phase checkpoint and ATM signaling promoted recovery of normal human cells after low-dose FA. Our results revealed a major role of the KAT5-ATM axis in protection of replicating chromatin against damage by the endogenous carcinogen FA. PMID:26420831

  11. The N-terminal domain determines the affinity and specificity of H1 binding to chromatin

    International Nuclear Information System (INIS)

    Öberg, Christine; Belikov, Sergey

    2012-01-01

    Highlights: ► wt Human histone H1.4 and hH1.4 devoid of N-terminal domain, ΔN-hH1.4, were compared. ► Both histones bind to chromatin, however, ΔN-hH1.4 displays lower binding affinity. ► Interaction of ΔN-hH1.4 with chromatin includes a significant unspecific component. ► N-terminal domain is a determinant of specificity of histone H1 binding to chromatin. -- Abstract: Linker histone H1, one of the most abundant nuclear proteins in multicellular eukaryotes, is a key component of the chromatin structure mainly due to its role in the formation and maintenance of the 30 nm chromatin fiber. It has a three-domain structure; a central globular domain flanked by a short N-terminal domain and a long, highly basic C-terminal domain. Previous studies have shown that the binding abilities of H1 are at large determined by the properties of the C-terminal domain; much less attention has been paid to role of the N-terminal domain. We have previously shown that H1 can be reconstituted via cytoplasmic mRNA injection in Xenopus oocytes, cells that lack somatic H1. The heterologously expressed H1 proteins are incorporated into in vivo assembled chromatin at specific sites and the binding event is monitored as an increase in nucleosomal repeat length (NRL). Using this setup we have here compared the binding properties of wt-H1.4 and hH1.4 devoid of its N-terminal domain (ΔN-hH1.4). The ΔN-hH1.4 displays a drastically lower affinity for chromatin binding as compared to the wild type hH1.4. Our data also indicates that ΔN-hH1.4 is more prone to unspecific chromatin binding than the wild type. We conclude that the N-terminal domain of H1 is an important determinant of affinity and specificity of H1-chromatin interactions.

  12. Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling

    Science.gov (United States)

    Sears, James C.; Broadie, Kendal

    2018-01-01

    Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the

  13. Antisense RNA Controls LRP1 Sense Transcript Expression through Interaction with a Chromatin-Associated Protein, HMGB2

    Directory of Open Access Journals (Sweden)

    Yasunari Yamanaka

    2015-05-01

    Full Text Available Long non-coding RNAs (lncRNAs, including natural antisense transcripts (NATs, are expressed more extensively than previously anticipated and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here, we identify a NAT of low-density lipoprotein receptor-related protein 1 (Lrp1, referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to high-mobility group box 2 (Hmgb2 and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein and increase Lrp1 expression by enhancing Hmgb2 activity. Quantitative RT-PCR analysis of brain tissue samples from Alzheimer’s disease patients and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion.

  14. The effect of allergic rhinitis on the degree of stress, fatigue and quality of life in OSA patients.

    Science.gov (United States)

    Park, Cheol Eon; Shin, Seung Youp; Lee, Kun Hee; Cho, Joong Saeng; Kim, Sung Wan

    2012-09-01

    Both allergic rhinitis (AR) and obstructive sleep apnea (OSA) are known to increase stress and fatigue, but the result of their coexistence has not been studied. The objective of this study was to evaluate the amount of stress and fatigue when AR is combined with OSA. One hundred and twelve patients diagnosed with OSA by polysomnography were enrolled. Among them, 37 patients were diagnosed with AR by a skin prick test and symptoms (OSA-AR group) and 75 patients were classified into the OSA group since they tested negative for allergies. We evaluated the Epworth sleepiness scale (ESS), stress score, fatigue score, ability to cope with stress, and rhinosinusitis quality of life questionnaire (RQLQ) with questionnaires and statistically compared the scores of both groups. There were no significant differences in BMI and sleep parameters such as LSAT, AHI, and RERA between the two groups. However, the OSA-AR group showed a significantly higher ESS score compared to the OSA group (13.7 ± 4.7 vs. 9.3 ± 4.8). Fatigue scores were also significantly higher in the OSA-AR group than in the OSA group (39.8 ± 11.0 vs. 30.6 ± 5.4). The OSA-AR group had a significantly higher stress score (60.4 ± 18.6 vs. 51.2 ± 10.4). The ability to cope with stress was higher in the OSA group, although this difference was not statistically significant. RQLQ scores were higher in the OSA-AR group (60.2 ± 16.7 compared to 25.1 ± 13.9). In conclusion, management of allergic rhinitis is very important in treating OSA patients in order to eliminate stress and fatigue and to minimize daytime sleepiness and quality of life.

  15. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes.

    Directory of Open Access Journals (Sweden)

    Jill A Dembowski

    2015-05-01

    Full Text Available Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics

  16. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Peng

    2015-02-27

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response.

  17. N-Butyrate alters chromatin accessibility to DNA repair enzymes

    International Nuclear Information System (INIS)

    Smith, P.J.

    1986-01-01

    Current evidence suggests that the complex nature of mammalian chromatin can result in the concealment of DNA damage from repair enzymes and their co-factors. Recently it has been proposed that the acetylation of histone proteins in chromatin may provide a surveillance system whereby damaged regions of DNA become exposed due to changes in chromatin accessibility. This hypothesis has been tested by: (i) using n-butyrate to induce hyperacetylation in human adenocarcinoma (HT29) cells; (ii) monitoring the enzymatic accessibility of chromatin in permeabilised cells; (iii) measuring u.v. repair-associated nicking of DNA in intact cells and (iv) determining the effects of n-butyrate on cellular sensitivity to DNA damaging agents. The results indicate that the accessibility of chromatin to Micrococcus luteus u.v. endonuclease is enhanced by greater than 2-fold in n-butyrate-treated cells and that there is a corresponding increase in u.v. repair incision rates in intact cells exposed to the drug. Non-toxic levels of n-butyrate induce a block to G1 phase transit and there is a significant growth delay on removal of the drug. Resistance of HT29 cells to u.v.-radiation and adriamycin is enhanced in n-butyrate-treated cells whereas X-ray sensitivity is increased. Although changes in the responses of cells to DNA damaging agents must be considered in relation to the effects of n-butyrate on growth rate and cell-cycle distribution, the results are not inconsistent with the proposal that increased enzymatic-accessibility/repair is biologically favourable for the resistance of cells to u.v.-radiation damage. Overall the results support the suggested operation of a histone acetylation-based chromatin surveillance system in human cells

  18. Chromatin maturation depends on continued DNA-replication

    International Nuclear Information System (INIS)

    Schlaeger, E.J.; Puelm, W.; Knippers, R.

    1983-01-01

    The structure of [ 3 H]thymidine pulse-labeled chromatin in lymphocytes differs from that of non-replicating chromatin by several operational criteria which are related to the higher nuclease sensitivity of replicating chromatin. These structural features of replicating chromatin rapidly disappear when the [ 3 H]thymidine pulse is followed by a chase in the presence of an excess of non-radioactive thymidine. However, when the rate of DNA replication is reduced, as in cycloheximide-treated lymphocytes, chromatin maturation is retarded. No chromatin maturation is observed when nuclei from pulse-labeled lymphocytes are incubated in vitro in the absence of DNA precursors. In contrast, when these nuclei are incubated under conditions known to be optimal for DNA replication, the structure of replicating chromatin is efficiently converted to that of 'mature', non-replicating chromatin. The authors conclude that the properties of nascent DNA and/or the distance from the replication fork are important factors in chromatin maturation. (Auth.)

  19. Multiplexed ChIP-Seq Using Direct Nucleosome Barcoding: A Tool for High-Throughput Chromatin Analysis.

    Science.gov (United States)

    Chabbert, Christophe D; Adjalley, Sophie H; Steinmetz, Lars M; Pelechano, Vicent

    2018-01-01

    Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) or microarray hybridization (ChIP-on-chip) are standard methods for the study of transcription factor binding sites and histone chemical modifications. However, these approaches only allow profiling of a single factor or protein modification at a time.In this chapter, we present Bar-ChIP, a higher throughput version of ChIP-Seq that relies on the direct ligation of molecular barcodes to chromatin fragments. Bar-ChIP enables the concurrent profiling of multiple DNA-protein interactions and is therefore amenable to experimental scale-up, without the need for any robotic instrumentation.

  20. Autonomic and metabolic effects of OSA in childhood obesity.

    Science.gov (United States)

    Oliveira, F M; Tran, W H; Lesser, D; Bhatia, R; Ortega, R; Mittelman, S D; Keens, T G; Davidson Ward, S L; Khoo, M C

    2010-01-01

    This study investigates the effects of exposure to intermittent hypoxia on cardiovascular autonomic control and metabolic function in obese children with obstructive sleep apnea (OSA). Each subject underwent: (1) a polysomnography; (2) morning fasting blood samples and a subsequent FSIVGTT; (3) noninvasive measurement of respiration, arterial blood pressure, and heart rate during supine and standing postures. Assessment of adiposity was performed using a DEXA scan. From these measurements, we deduced the pertinent sleep parameters, Bergman minimal model parameters and the parameters characterizing a minimal model of cardiovascular variability. Results suggest that intermittent hypoxia in OSA contributes independently to insulin resistance and autonomic dysfunction in overweight children.

  1. Comparative Emulsifying Properties of Octenyl Succinic Anhydride (OSA-Modified Starch: Granular Form vs Dissolved State.

    Directory of Open Access Journals (Sweden)

    María Matos

    Full Text Available The emulsifying ability of OSA-modified and native starch in the granular form, in the dissolved state and a combination of both was compared. This study aims to understand mixed systems of particles and dissolved starch with respect to what species dominates at droplet interfaces and how stability is affected by addition of one of the species to already formed emulsions. It was possible to create emulsions with OSA-modified starch isolated from Quinoa as sole emulsifier. Similar droplet sizes were obtained with emulsions prepared at 7% (w/w oil content using OSA-modified starch in the granular form or molecularly dissolved but large differences were observed regarding stability. Pickering emulsions kept their droplet size constant after one month while emulsions formulated with OSA-modified starch dissolved exhibited coalescence. All emulsions stabilized combining OSA-modified starch in granular form and in solution showed larger mean droplet sizes with no significant differences with respect to the order of addition. These emulsions were unstable due to coalescence regarding presence of free oil. Similar results were obtained when emulsions were prepared by combining OSA-modified granules with native starch in solution. The degree of surface coverage of starch granules was much lower in presence of starch in solution which indicates that OSA-starch is more surface active in the dissolved state than in granular form, although it led to unstable systems compared to starch granule stabilized Pickering emulsions, which demonstrated to be extremely stable.

  2. High-resolution mapping reveals links of HP1 with active and inactive chromatin components.

    Directory of Open Access Journals (Sweden)

    Elzo de Wit

    2007-03-01

    Full Text Available Heterochromatin protein 1 (HP1 is commonly seen as a key factor of repressive heterochromatin, even though a few genes are known to require HP1-chromatin for their expression. To obtain insight into the targeting of HP1 and its interplay with other chromatin components, we have mapped HP1-binding sites on Chromosomes 2 and 4 in Drosophila Kc cells using high-density oligonucleotide arrays and the DNA adenine methyltransferase identification (DamID technique. The resulting high-resolution maps show that HP1 forms large domains in pericentric regions, but is targeted to single genes on chromosome arms. Intriguingly, HP1 shows a striking preference for exon-dense genes on chromosome arms. Furthermore, HP1 binds along entire transcription units, except for 5' regions. Comparison with expression data shows that most of these genes are actively transcribed. HP1 target genes are also marked by the histone variant H3.3 and dimethylated histone 3 lysine 4 (H3K4me2, which are both typical of active chromatin. Interestingly, H3.3 deposition, which is usually observed along entire transcription units, is limited to the 5' ends of HP1-bound genes. Thus, H3.3 and HP1 are mutually exclusive marks on active chromatin. Additionally, we observed that HP1-chromatin and Polycomb-chromatin are nonoverlapping, but often closely juxtaposed, suggesting an interplay between both types of chromatin. These results demonstrate that HP1-chromatin is transcriptionally active and has extensive links with several other chromatin components.

  3. Trichostatin A induced histone acetylation causes decondensation of interphase chromatin.

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); M. Wachsmuth (Malte); M. Frank-Stöhr (Monika); M. Stöhr (Michael); C.P. Bacher (Christian); K. Rippe (Karsten)

    2004-01-01

    textabstractThe effect of trichostatin A (TSA)-induced histone acetylation on the interphase chromatin structure was visualized in vivo with a HeLa cell line stably expressing histone H2A, which was fused to enhanced yellow fluorescent protein. The globally increased histone acetylation caused a

  4. Marcadores de estrés oxidativo en placentas de gestantes añosas

    Directory of Open Access Journals (Sweden)

    Silvia Suárez

    2007-12-01

    Full Text Available Introducción: Un factor de riesgo alto ginecoobstétrico que contribuye a la morbimortalidad materna perinatal es la edad materna mayor de 35 años. Es posible que el estado oxidativo en la placenta de la gestante añosa sea mayor a la de la gestante no añosa. Objetivo: Evaluar el estado oxidativo de la placenta en gestantes mayores de 35 años. Diseño: Estudio observacional y transversal. Lugar: Hospital Nacional Docente Materno Infantil San Bartolomé y Centro de Investigación de Bioquímica y Nutrición de la Universidad Nacional Mayor de San Marcos. Material biológico: 28 placentas de gestantes de 35 años o más y 28 placentas de gestantes de menos de 35 años, obtenidas de partos vaginales a término. Intervenciones: La muestra de placenta se homogenizó al 10% con buffer fosfato 10 mM, pH 7,4, se centrifugó a 2000 rpm por 5’. Parte del sobrenadante se usó para analizar lipoperoxidación y glutatión (GSH; el sobrenadante restante fue centrifugado a 42 000 rpm por 1 hora, para medir actividad de superóxido dismutasa (SOD. Principales medidas de resultados: Estado oxidativo de placentas obtenidas de mujeres añosas y no añosas. Resultados: La actividad de la SOD y el contenido de GSH placentarios en añosas fue 43,52 U/g de tejido y 4,67 µmol/mL x 10-²; para el grupo control fueron 54,13 U/g de tejido y 6,02 µmol/mL x 10-², respectivamente; en ambos hubo significancia estadística (p < 0,05. La medición de TBARS (lipoperoxidación no mostró diferencias significativas. Conclusiones: Las placentas obtenidas de mujeres añosas muestran menor capacidad de defensa antioxidante frente a las placentas obtenidas de mujeres no añosas.

  5. LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin.

    Directory of Open Access Journals (Sweden)

    Anderly C Chueh

    2009-01-01

    Full Text Available We have previously identified and characterized the phenomenon of ectopic human centromeres, known as neocentromeres. Human neocentromeres form epigenetically at euchromatic chromosomal sites and are structurally and functionally similar to normal human centromeres. Recent studies have indicated that neocentromere formation provides a major mechanism for centromere repositioning, karyotype evolution, and speciation. Using a marker chromosome mardel(10 containing a neocentromere formed at the normal chromosomal 10q25 region, we have previously mapped a 330-kb CENP-A-binding domain and described an increased prevalence of L1 retrotransposons in the underlying DNA sequences of the CENP-A-binding clusters. Here, we investigated the potential role of the L1 retrotransposons in the regulation of neocentromere activity. Determination of the transcriptional activity of a panel of full-length L1s (FL-L1s across a 6-Mb region spanning the 10q25 neocentromere chromatin identified one of the FL-L1 retrotransposons, designated FL-L1b and residing centrally within the CENP-A-binding clusters, to be transcriptionally active. We demonstrated the direct incorporation of the FL-L1b RNA transcripts into the CENP-A-associated chromatin. RNAi-mediated knockdown of the FL-L1b RNA transcripts led to a reduction in CENP-A binding and an impaired mitotic function of the 10q25 neocentromere. These results indicate that LINE retrotransposon RNA is a previously undescribed essential structural and functional component of the neocentromeric chromatin and that retrotransposable elements may serve as a critical epigenetic determinant in the chromatin remodelling events leading to neocentromere formation.

  6. The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress

    NARCIS (Netherlands)

    Mlynarova, L.; Nap, J.P.H.; Bisseling, T.

    2007-01-01

    One of the earliest responses of plants to environmental stress is establishing a temporary growth arrest that allows adaptation to adverse conditions. The response to abiotic stress requires the modulation of gene expression, which may be mediated by the alteration of chromatin structures. This

  7. Tet Proteins Connect the O-Linked N-acetylglucosamine Transferase Ogt to Chromatin in Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Vella, Pietro; Scelfo, Andrea; Jammula, Sriganesh

    2013-01-01

    . These regions are characterized by low levels of DNA modification, suggesting a link between Tet1 and Ogt activities in regulating CpG island methylation. Finally, we show that Tet1 is required for binding of Ogt to chromatin affecting Tet1 activity. Taken together, our data characterize how O......-GlcNAcylation is recruited to chromatin and interacts with the activity of 5-methylcytosine hydroxylases....

  8. Methyl CpG level at distal part of heat-shock protein promoter HSP70 exhibits epigenetic memory for heat stress by modulating recruitment of POU2F1-associated nucleosome-remodeling deacetylase (NuRD) complex.

    Science.gov (United States)

    Kisliouk, Tatiana; Cramer, Tomer; Meiri, Noam

    2017-05-01

    Depending on its stringency, exposure to heat in early life leads to either resilience or vulnerability to heat stress later in life. We hypothesized that epigenetic alterations in genes belonging to the cell proteostasis pathways are attributed to long-term responses to heat stress. Epigenetic regulation of the mRNA expression of the molecular chaperone heat-shock protein (HSP) 70 (HSPA2) was evaluated in the chick hypothalamus during the critical period of thermal-control establishment on day 3 post-hatch and during heat challenge on day 10. Both the level and duration of HSP70 expression during heat challenge a week after heat conditioning were more pronounced in chicks conditioned under harsh versus mild temperature. Analyzing different segments of the promoter in vitro indicated that methylation of a distal part altered its transcriptional activity. In parallel, DNA-methylation level of this segment in vivo was higher in harsh- compared to mild-heat-conditioned chicks. Hypermethylation of the HSP70 promoter in high-temperature-conditioned chicks was accompanied by a reduction in both POU Class 2 Homeobox 1 (POU2F1) binding and recruitment of the nucleosome remodeling deacetylase (NuRD) chromatin-remodeling complex. As a result, histone H3 acetylation levels at the HSP70 promoter were higher in harsh-temperature-conditioned chicks than in their mild-heat-conditioned counterparts. These results suggest that methylation level of a distal part of the HSP70 promoter and POU2F1 recruitment may reflect heat-stress-related epigenetic memory and may be useful in differentiating between individuals that are resilient or vulnerable to stress. © 2017 International Society for Neurochemistry.

  9. Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation.

    Science.gov (United States)

    Tanaka, Leonardo Y; Laurindo, Francisco R M

    2017-08-01

    Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho)physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases. Copyright © 2017 Elsevier Inc. All

  10. Arborvitae (Thuja plicata essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Xuesheng Han

    2017-06-01

    Full Text Available Arborvitae (Thuja plicata essential oil (AEO is becoming increasingly popular in skincare, although its biological activity in human skin cells has not been investigated. Therefore, we sought to study AEO's effect on 17 important protein biomarkers that are closely related to inflammation and tissue remodeling by using a pre-inflamed human dermal fibroblast culture model. AEO significantly inhibited the expression of vascular cell adhesion molecule 1 (VCAM-1, intracellular cell adhesion molecule 1 (ICAM-1, interferon gamma-induced protein 10 (IP-10, interferon-inducible T-cell chemoattractant (I-TAC, monokine induced by interferon gamma (MIG, and macrophage colony-stimulating factor (M-CSF. It also showed significant antiproliferative activity and robustly inhibited collagen-I, collagen-III, plasminogen activator inhibitor-1 (PAI-1, and tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2. The inhibitory effect of AEO on increased production of these protein biomarkers suggests it has anti-inflammatory property. We then studied the effect of AEO on the genome-wide expression of 21,224 genes in the same cell culture. AEO significantly and diversely modulated global gene expression. Ingenuity pathway analysis (IPA showed that AEO robustly affected numerous critical genes and signaling pathways closely involved in inflammatory and tissue remodeling processes. The findings of this study provide the first evidence of the biological activity and beneficial action of AEO in human skin cells.

  11. Centriole Remodeling during Spermiogenesis in Drosophila.

    Science.gov (United States)

    Khire, Atul; Jo, Kyoung H; Kong, Dong; Akhshi, Tara; Blachon, Stephanie; Cekic, Anthony R; Hynek, Sarah; Ha, Andrew; Loncarek, Jadranka; Mennella, Vito; Avidor-Reiss, Tomer

    2016-12-05

    The first cell of an animal (zygote) requires centrosomes that are assembled from paternally inherited centrioles and maternally inherited pericentriolar material (PCM) [1]. In some animals, sperm centrioles with typical ultrastructure are the origin of the first centrosomes in the zygote [2-4]. In other animals, however, sperm centrioles lose their proteins and are thought to be degenerated and non-functional during spermiogenesis [5, 6]. Here, we show that the two sperm centrioles (the giant centriole [GC] and the proximal centriole-like structure [PCL]) in Drosophila melanogaster are remodeled during spermiogenesis through protein enrichment and ultrastructure modification in parallel to previously described centrosomal reduction [7]. We found that the ultrastructure of the matured sperm (spermatozoa) centrioles is modified dramatically and that the PCL does not resemble a typical centriole. We also describe a new phenomenon of Poc1 enrichment of the atypical centrioles in the spermatozoa. Using various mutants, protein expression during spermiogenesis, and RNAi knockdown of paternal Poc1, we found that paternal Poc1 enrichment is essential for the formation of centrioles during spermiogenesis and for the formation of centrosomes after fertilization in the zygote. Altogether, these findings demonstrate that the sperm centrioles are remodeled both in their protein composition and in ultrastructure, yet they are functional and are essential for normal embryogenesis in Drosophila. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells.

    Directory of Open Access Journals (Sweden)

    Laurie A Steiner

    Full Text Available CTCF and cohesinSA-1 are regulatory proteins involved in a number of critical cellular processes including transcription, maintenance of chromatin domain architecture, and insulator function. To assess changes in the CTCF and cohesinSA-1 interactomes during erythropoiesis, chromatin immunoprecipitation coupled with high throughput sequencing and mRNA transcriptome analyses via RNA-seq were performed in primary human hematopoietic stem and progenitor cells (HSPC and primary human erythroid cells from single donors.Sites of CTCF and cohesinSA-1 co-occupancy were enriched in gene promoters in HSPC and erythroid cells compared to single CTCF or cohesin sites. Cell type-specific CTCF sites in erythroid cells were linked to highly expressed genes, with the opposite pattern observed in HSPCs. Chromatin domains were identified by ChIP-seq with antibodies against trimethylated lysine 27 histone H3, a modification associated with repressive chromatin. Repressive chromatin domains increased in both number and size during hematopoiesis, with many more repressive domains in erythroid cells than HSPCs. CTCF and cohesinSA-1 marked the boundaries of these repressive chromatin domains in a cell-type specific manner.These genome wide data, changes in sites of protein occupancy, chromatin architecture, and related gene expression, support the hypothesis that CTCF and cohesinSA-1 have multiple roles in the regulation of gene expression during erythropoiesis including transcriptional regulation at gene promoters and maintenance of chromatin architecture. These data from primary human erythroid cells provide a resource for studies of normal and perturbed erythropoiesis.

  13. C-terminal region of DNA ligase IV drives XRCC4/DNA ligase IV complex to chromatin

    International Nuclear Information System (INIS)

    Liu, Sicheng; Liu, Xunyue; Kamdar, Radhika Pankaj; Wanotayan, Rujira; Sharma, Mukesh Kumar; Adachi, Noritaka; Matsumoto, Yoshihisa

    2013-01-01

    Highlights: •Chromatin binding of XRCC4 is dependent on the presence of DNA ligase IV. •C-terminal region of DNA ligase IV alone can recruit itself and XRCC4 to chromatin. •Two BRCT domains of DNA ligase IV are essential for the chromatin binding of XRCC4. -- Abstract: DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ

  14. Combgap Promotes Ovarian Niche Development and Chromatin Association of EcR-Binding Regions in BR-C.

    Science.gov (United States)

    Hitrik, Anna; Popliker, Malka; Gancz, Dana; Mukamel, Zohar; Lifshitz, Aviezer; Schwartzman, Omer; Tanay, Amos; Gilboa, Lilach

    2016-11-01

    The development of niches for tissue-specific stem cells is an important aspect of stem cell biology. Determination of niche size and niche numbers during organogenesis involves precise control of gene expression. How this is achieved in the context of a complex chromatin landscape is largely unknown. Here we show that the nuclear protein Combgap (Cg) supports correct ovarian niche formation in Drosophila by controlling ecdysone-Receptor (EcR)- mediated transcription and long-range chromatin contacts in the broad locus (BR-C). Both cg and BR-C promote ovarian growth and the development of niches for germ line stem cells. BR-C levels were lower when Combgap was either reduced or over-expressed, indicating an intricate regulation of the BR-C locus by Combgap. Polytene chromosome stains showed that Cg co-localizes with EcR, the major regulator of BR-C, at the BR-C locus and that EcR binding to chromatin was sensitive to changes in Cg levels. Proximity ligation assay indicated that the two proteins could reside in the same complex. Finally, chromatin conformation analysis revealed that EcR-bound regions within BR-C, which span ~30 KBs, contacted each other. Significantly, these contacts were stabilized in an ecdysone- and Combgap-dependent manner. Together, these results highlight Combgap as a novel regulator of chromatin structure that promotes transcription of ecdysone target genes and ovarian niche formation.

  15. The USC-OSA Student Chapter: goals and benefits for the optics community

    Science.gov (United States)

    Gómez-Varela, A. I.; Gargallo, Ana; González Núñez, Héctor; Delgado-García, Tamara; Almaguer-Gómez, Citlalli; Cambronero-López, F.; Flores-Arias, M. T.

    2014-07-01

    The USC-OSA Student Chapter has been constituted in March 2013 by members of the University of Santiago de Compostela (USC) in Spain and sponsored by The Optical Society of America (OSA). It is formed by five graduate and one undergraduate students with the common interest in Optics and Photonics research and a professor of the USC is also involved as a faculty advisor. We decided to start this group with the aim of involving kids, precollege and undergraduate students in the world of Optics and Photonics. The activities that the USC-OSA Student Chapter members intend to realize are mainly educational tasks for the spreading of knowledge in Photonics by means of basic experiments, demonstrations and lectures by leading researchers and teachers. Most of the needed resources to accomplish these activities are provided by the OSA, such as educational posters and a portable kit for demonstrating Optics to students. At this moment the USC-OSA Student Chapter is carrying out several activities, as educational journeys at the Santiago de Compostela University Hospital Complex (CHUS), where hospitalized children can approach to Optics through some simple experiments and games. A teaching program is also being organized in collaboration with Galician secondary schools in order to show students the importance and uses of Optics and Photonics and to arouse their interest in this field, as well as encouraging them to develop their scientific thinking. Another activity will take place in November during the Science Week, which includes a program of lectures targeted to undergraduate students and an exposition of several demonstrations

  16. UV-induced structural changes in chromatin

    International Nuclear Information System (INIS)

    Lang, H.; Zimmer, C.; Vengerov, Yu.Yu.

    1985-01-01

    UV-induced structural alterations of chromatin were studied by means of CD, electron microscopic, and gel electrophoretic measurements. The results indicate that chromatin undergoes serious structural changes after irradiation even at very low fluences. In the low fluence range the structural transitions from the higher ordered chromatin structure to the unfolded state occur without detectable changes in the content of histone H1 and of the core histones. Histone H1 disappears only at fluences above 10 kJ/m 2 . Furthermore, DNA in chromatin is much more sensitive against UV-irradiation and shows a higher degree of strand scission relative to free DNA. While fragmentation in free DNA occurs at fluences above 15 kJ/m 2 , it occurs even at 5.5 kJ/m 2 in the case of chromatin. The biological meaning of the observed UV-induced structural alterations of chromatin is discussed. (author)

  17. Expression, purification and characterization of the human MTA2-RBBP7 complex

    DEFF Research Database (Denmark)

    Brasen, Christoffer; Dorosz, Jerzy; Wiuf, Anders

    2017-01-01

    The repressive Nucleosome Remodeling and histone Deacetylation (NuRD) complex remodels the chromatin structure by coupling ATP-dependent remodeling activity with histone deacetylase function and plays important roles in regulating gene transcription, DNA damage repair and chromatin assembly. The ...

  18. Chromatin challenges during DNA replication and repair

    DEFF Research Database (Denmark)

    Groth, Anja; Rocha, Walter; Verreault, Alain

    2007-01-01

    Inheritance and maintenance of the DNA sequence and its organization into chromatin are central for eukaryotic life. To orchestrate DNA-replication and -repair processes in the context of chromatin is a challenge, both in terms of accessibility and maintenance of chromatin organization. To meet...... the challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic...... landscape may be stably maintained even in the face of dramatic changes in chromatin structure....

  19. Molecular mechanisms of canalization: Hsp90 and beyond

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-03-26

    Mar 26, 2007 ... In plants, Hsp90 function remained little characterized until recent .... unknown if Hsp90 and chromatin remodeling factors act independently or in ..... protein 90 in plant disease resistance; EMBO J. 22 5690–5699. Maloof J N ...

  20. Effect of CPAP Therapy in Improving Daytime Sleepiness in Indian Patients with Moderate and Severe OSA.

    Science.gov (United States)

    Battan, Gulshan; Kumar, Sanjeev; Panwar, Ajay; Atam, Virendra; Kumar, Pradeep; Gangwar, Anil; Roy, Ujjawal

    2016-11-01

    Obstructive Sleep Apnoea (OSA) is a highly prevalent disease and a major public health issue in India. Excessive daytime sleepiness is an almost ubiquitous symptom of OSA. Epworth Sleepiness Scale (ESS) score is a validated objective score to measure the degree of daytime sleepiness. Continuous Positive Airway Pressure (CPAP) therapy has been established as the gold standard treatment modality for OSA patients. A few Indian studies have reported the effectiveness of CPAP therapy in improving ESS scores after 1 st month of CPAP use. To observe both, short-term (one month) and long-term (three month) effects of CPAP therapy on ESS scores in moderate to severe OSA patients. The patients complaining of excessive day-time sleepiness, snoring and choking episodes during sleep, consecutively presenting to medicine OPD over a period of 2 years, were subjected to Polysomnography (PSG). Seventy-three patients with apnoea-hypopnea index (AHI) ≥15 were categorised as having moderate to severe forms of OSA (moderate OSA with AHI=15-30 and severe OSA with AHI >30), and were scheduled for an initial trial of CPAP therapy. Forty-seven patients reported good tolerance to CPAP therapy after a trial period of 2 weeks and comprised the final study group. ESS scores in these patients were recorded at the baseline, and after 1 st and 3 rd month of CPAP therapy, and statistically analysed for significance. Mean ESS score at the baseline among moderate and severe OSA patients were 13.67±2.29 and 16.56 ±1.87, respectively. ESS score in both these subgroups improved significantly to 11.63±3.79, p=0.022, CI (0.3293-4.0106)} and 14.13 ±3.74, p CPAP therapy. Likewise, mean ESS scores among moderate and severe OSA patients improved significantly to 9.84 ±2.97, p = 0.022, CI (0.3293-4.0106) and 12.29 ±3.97, p CPAP therapy. The result of the present study shows that CPAP therapy is significantly effective in improving ESS scores in Indian patients having moderate to severe OSA. Benefits

  1. E2F1 and p53 Transcription Factors as Accessory Factors for Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    David G. Johnson

    2012-10-01

    Full Text Available Many of the biochemical details of nucleotide excision repair (NER have been established using purified proteins and DNA substrates. In cells however, DNA is tightly packaged around histones and other chromatin-associated proteins, which can be an obstacle to efficient repair. Several cooperating mechanisms enhance the efficiency of NER by altering chromatin structure. Interestingly, many of the players involved in modifying chromatin at sites of DNA damage were originally identified as regulators of transcription. These include ATP-dependent chromatin remodelers, histone modifying enzymes and several transcription factors. The p53 and E2F1 transcription factors are well known for their abilities to regulate gene expression in response to DNA damage. This review will highlight the underappreciated, transcription-independent functions of p53 and E2F1 in modifying chromatin structure in response to DNA damage to promote global NER.

  2. Systematic dissection of roles for chromatin regulators in a yeast stress response.

    Directory of Open Access Journals (Sweden)

    Assaf Weiner

    Full Text Available Packaging of eukaryotic genomes into chromatin has wide-ranging effects on gene transcription. Curiously, it is commonly observed that deletion of a global chromatin regulator affects expression of only a limited subset of genes bound to or modified by the regulator in question. However, in many single-gene studies it has become clear that chromatin regulators often do not affect steady-state transcription, but instead are required for normal transcriptional reprogramming by environmental cues. We therefore have systematically investigated the effects of 83 histone mutants, and 119 gene deletion mutants, on induction/repression dynamics of 170 transcripts in response to diamide stress in yeast. Importantly, we find that chromatin regulators play far more pronounced roles during gene induction/repression than they do in steady-state expression. Furthermore, by jointly analyzing the substrates (histone mutants and enzymes (chromatin modifier deletions we identify specific interactions between histone modifications and their regulators. Combining these functional results with genome-wide mapping of several histone marks in the same time course, we systematically investigated the correspondence between histone modification occurrence and function. We followed up on one pathway, finding that Set1-dependent H3K4 methylation primarily acts as a gene repressor during multiple stresses, specifically at genes involved in ribosome biosynthesis. Set1-dependent repression of ribosomal genes occurs via distinct pathways for ribosomal protein genes and ribosomal biogenesis genes, which can be separated based on genetic requirements for repression and based on chromatin changes during gene repression. Together, our dynamic studies provide a rich resource for investigating chromatin regulation, and identify a significant role for the "activating" mark H3K4me3 in gene repression.

  3. Spectroscopic study of fast-neutron-irradiated chromatin

    International Nuclear Information System (INIS)

    Radu, L.; Gazdaru, D.; Constantinescu, B.

    2004-01-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [ 1 H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [ 1 H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  4. Spectroscopic study of fast-neutron-irradiated chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [V. Babes National Inst., Dept. of Molecular Genetics, Bucharest (Romania)]. E-mail: serbanradu@pcnet.ro; Gazdaru, D. [Bucharest Univ., Dept. of Biophysics, Physics Faculty, Bucharest (Romania); Constantinescu, B. [H. Hulubei National Inst., Dept. of Cyclotron, Bucharest (Romania)

    2004-02-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [{sup 1}H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [{sup 1}H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  5. Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: Experimental proof

    Science.gov (United States)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Sivignon, J. F.; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2018-06-01

    Optical sensors based on absorption spectroscopy play a central role in the detection and monitoring of atmospheric trace gases. We here present for the first time the experimental demonstration of OSAS-Lidar on the remote sensing of CH4 in the atmosphere. This new methodology, the OSAS-Lidar, couples the Optical Similitude Absorption Spectroscopy (OSAS) methodology with a light detection and ranging device. It is based on the differential absorption of spectrally integrated signals following Beer Lambert-Bouguer law, which are range-resolved. Its novelty originates from the use of broadband laser spectroscopy and from the mathematical approach used to retrieve the trace gas concentration. We previously applied the OSAS methodology in laboratory on the 2ν3 methane absorption band, centered at the 1665 nm wavelength and demonstrated that the OSAS-methodology is almost independent from atmospheric temperature and pressure. In this paper, we achieve an OSAS-Lidar device capable of observing large concentrations of CH4 released from a methane source directly into the atmosphere. Comparison with a standard in-situ measurement device shows that the path-integrated concentrations retrieved from OSAS-Lidar methodology exhibit sufficient sensitivity (2 000 ppm m) and observational time resolution (1 s) to remotely sense methane leaks in the atmosphere. The coupling of OSAS-lidar with a wind measurement device opens the way to monitor time-resolved methane flux emissions, which is important in regards to future climate mitigation involving regional reduction of CH4 flux emissions.

  6. Quality of Life in Youth With Obstructive Sleep Apnea Syndrome (OSAS) Treated With Continuous Positive Airway Pressure (CPAP) Therapy.

    Science.gov (United States)

    Lynch, Mary K; Elliott, Lindsey C; Avis, Kristin T; Schwebel, David C; Goodin, Burel R

    2017-05-30

    Improvement is sought for youth with obstructive sleep apnea syndrome (OSAS) who have poor quality of life (QoL), which resolves somewhat following treatment. One mitigating factor in improved QoL following treatment may be adherence to the CPAP protocol, which presents a barrier to most youth. This study explored relations between CPAP adherence and QoL in youth with OSAS. We recruited 42 youth-caregiver dyads in which youth between the ages of 8 and 16 years were diagnosed with OSAS and required CPAP use as part of their treatment plan. Following diagnosis of OSAS requiring treatment with CPAP therapy, caregivers completed baseline measures of OSAS-specific QoL. The OSAS-specific QoL domains assessed included sleep disturbance, physical symptoms, emotional distress, daytime function, and caregiver concern. Families received routine CPAP care for three months, after which caregivers again completed measures of OSAS-specific QoL. Adherence data were collected from smartcards within the CPAP machine after three months of treatment. Fifteen youth were adherent to CPAP therapy and 10 were not adherent. CPAP-adherent youth demonstrated significant changes in two domains of OSAS-specific QoL when compared to nonadherent youth: decreased sleep disturbance and decreased caregiver concern. CPAP adherence appears to be associated with positive changes in OSAS-specific QoL domains. It will be important for future research and clinical work to examine strategies for improving CPAP adherence in youth with OSAS.

  7. Histone modifications in response to DNA damage

    International Nuclear Information System (INIS)

    Altaf, Mohammed; Saksouk, Nehme; Cote, Jacques

    2007-01-01

    The packaging of the eukaryotic genome into highly condensed chromatin makes it inaccessible to the factors required for gene transcription, DNA replication, recombination and repair. Eukaryotes have developed intricate mechanisms to overcome this repressive barrier imposed by chromatin. Histone modifying enzymes and ATP-dependent chromatin remodeling complexes play key roles here as they regulate many nuclear processes by altering the chromatin structure. Significantly, these activities are integral to the process of DNA repair where histone modifications act as signals and landing platforms for various repair proteins. This review summarizes the recent developments in our understanding of histone modifications and their role in the maintenance of genome integrity

  8. Structural chromatin organization as a factor determining the rate of chromatin endonucleolysis in irradiated and intact thymocytes

    International Nuclear Information System (INIS)

    Ryabchenko, N.I.; Ivannik, B.P.

    1987-01-01

    A study was made of chromatin endonucleolysis in hypotonized thymocytes incubating in digestive buffers containing different concentrations of potassium, magnesium, calcium, and mercaptoethanol. Inhibition of endonucleolysis by univalent cation during the first 20 min of incubation was followed by intensive chromatin degradation. A decrease in free potassium content retarded chromatin degradation and enhanced the inhibiting effect of the univalent cations. The regularities of changes in the rate of chromatin endonucleolysis in different digestive buffers were similar with both exposed and intact thymocytes

  9. Association between lectin complement pathway initiators, C-reactive protein and left ventricular remodeling in myocardial infarction-a magnetic resonance study

    DEFF Research Database (Denmark)

    Schoos, Mikkel Malby; Munthe-Fog, Lea; Skjoedt, Mikkel-Ole

    2013-01-01

    Lectin complement pathway (LP) activation is an important mechanism in myocardial ischemia reperfusion injury (IRI). LP is activated via the recognition molecules mannose-binding lectin (MBL), ficolins-2 and-3 and is regulated by MBL/Ficolin-associated Protein-1 (MAP-1). Also, C-reactive protein...... (CRP) and ficolin-2 interact in vitro, but the role of the ficolins in IRI is unknown.Methods and results In 55 patients with ST segment elevation myocardial infarction, we investigated the association of LP components and CRP in plasma samples with left ventricular (LV) end systolic and diastolic......-activation in IRI and LV remodeling....

  10. The action of fast neutrons on Walker tumor chromatin in rats treated with thiotepa and lomustine cytostatics and with estradiol hormone

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gostian, O.

    1994-01-01

    Wistar rats bearing Walker carcinosarcoma were treated with thiotepa (1 mg) and lomustine (3 mg) cytostatics and with each of these cytostatics associated with estradiol hormone (0.15 mg). The extracted chromatins were subjected to fast neutrons (d(13 MeV)+Be thick target) at 30-100 Gy doses. The parameters estimated at chromatin samples were: the tyrosine and tryptophan intrinsic fluorescence, the fluorescence of chromatin - ethidium bromide complexes and thermal transition. A different and specific susceptibility to fast neutrons was observed in treated chromatin samples, when compared with controls. The chromatin acidic proteins destruction was greater in the case of estradiol - thiotepa association. (Author)

  11. Neutron scatter studies of chromatin structures related to functions

    International Nuclear Information System (INIS)

    Bradbury, E.M.

    1992-01-01

    We have made considerable progress in chromatin reconstitution with very lysine rich histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized in intrinsically bent DNA region flaking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interactions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear Magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin

  12. The planar cell polarity protein VANGL2 coordinates remodeling of the extracellular matrix.

    Science.gov (United States)

    Williams, B Blairanne; Mundell, Nathan; Dunlap, Julie; Jessen, Jason

    2012-07-01

    Understanding how planar cell polarity (PCP) is established, maintained, and coordinated in migrating cell populations is an important area of research with implications for both embryonic morphogenesis and tumor cell invasion. We recently reported that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell surface level of membrane type-1 matrix metalloproteinase (MMP14 or MT1-MMP). Here, we further discuss these findings in terms of extracellular matrix (ECM) remodeling, cell migration, and zebrafish gastrulation. We also demonstrate that VANGL2 function impacts the focal degradation of ECM by human cancer cells including the formation or stability of invadopodia. Together, our findings implicate MMP14 as a downstream effector of VANGL2 signaling and suggest a model whereby the regulation of pericellular proteolysis is a fundamental aspect of PCP in migrating cells.

  13. Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases

    NARCIS (Netherlands)

    Liu, Gang; Cooley, Marion A; Jarnicki, Andrew G; Hsu, Alan C-Y; Nair, Prema M; Haw, Tatt Jhong; Fricker, Michael; Gellatly, Shaan L; Kim, Richard Y; Inman, Mark D; Tjin, Gavin; Wark, Peter A B; Walker, Marjorie M; Horvat, Jay C; Oliver, Brian G; Argraves, W Scott; Knight, Darryl A; Burgess, Janette K; Hansbro, Philip M

    2016-01-01

    Airway and/or lung remodeling, involving exaggerated extracellular matrix (ECM) protein deposition, is a critical feature common to pulmonary diseases including chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Fibulin-1 (Fbln1), an important ECM protein

  14. Gametophyte differentiation and imprinting control in plants: Crosstalk between RBR and chromatin.

    Science.gov (United States)

    Johnston, Amal J; Gruissem, Wilhelm

    2009-01-01

    The Retinoblastoma (pRb) pathway has been implicated as a convergent regulatory unit in the control of cell cycle and disease. We have shown that a crosstalk between RETINOBLASTOMA RELATED (RBR), the Arabidopsis homologue of pRb, and the genes encoding proteins of the chromatin complexes involved in DNA or histone methylation, controls gametophytic and post-fertilization differentiation events and a subset of imprinting effects. We describe here a plausible model that incorporates several components of the plant Retinoblastoma pathway, thus offering a novel paradigm that merges the traditional cell cycle and the chromatin components in the control of cell differentiation and imprinting.

  15. H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo

    Science.gov (United States)

    Ejlassi-Lassallette, Aïda; Mocquard, Eloïse; Arnaud, Marie-Claire; Thiriet, Christophe

    2011-01-01

    While specific posttranslational modification patterns within the H3 and H4 tail domains are associated with the S-phase, their actual functions in replication-dependent chromatin assembly have not yet been defined. Here we used incorporation of trace amounts of recombinant proteins into naturally synchronous macroplasmodia of Physarum polycephalum to examine the function of H3 and H4 tail domains in replication-coupled chromatin assembly. We found that the H3/H4 complex lacking the H4 tail domain was not efficiently recovered in nuclei, whereas depletion of the H3 tail domain did not impede nuclear import but chromatin assembly failed. Furthermore, our results revealed that the proper pattern of acetylation on the H4 tail domain is required for nuclear import and chromatin assembly. This is most likely due to binding of Hat1, as coimmunoprecipitation experiments showed Hat1 associated with predeposition histones in the cytoplasm and with replicating chromatin. These results suggest that the type B histone acetyltransferase assists in shuttling the H3/H4 complex from cytoplasm to the replication forks. PMID:21118997

  16. Chromatin-mediated transcriptional regulation by the yeast architectural factors NHP6A and NHP6B

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    2000-01-01

    The Saccharomyces cerevisiae NHP6A and NHP6B proteins are chromatin architectural factors, functionally and structurally related to the mammalian high mobility group (HMG)-1 and -2 proteins, a family of non-sequence-specific DNA binding proteins. nhp6a nhp6b mutants have various morphological...

  17. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    Science.gov (United States)

    Ramakrishnan, N.; Sunil Kumar, P. B.; Radhakrishnan, Ravi

    2014-01-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this

  18. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins.

    Science.gov (United States)

    Ramakrishnan, N; Sunil Kumar, P B; Radhakrishnan, Ravi

    2014-10-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this

  19. Nasal vs Oronasal CPAP for OSA Treatment: A Meta-Analysis.

    Science.gov (United States)

    Andrade, Rafaela G S; Viana, Fernanda M; Nascimento, Juliana A; Drager, Luciano F; Moffa, Adriano; Brunoni, André R; Genta, Pedro R; Lorenzi-Filho, Geraldo

    2018-03-01

    Nasal CPAP is the "gold standard" treatment for OSA. However, oronasal masks are frequently used in clinical practice. The aim of this study was to perform a meta-analysis of all randomized and nonrandomized trials that compared nasal vs oronasal masks on CPAP level, residual apnea-hypopnea index (AHI), and CPAP adherence to treat OSA. The Cochrane Central Register of Controlled Trials, Medline, and Web of Science were searched for relevant studies in any language with the following terms: "sleep apnea" and "CPAP" or "sleep apnea" and "oronasal mask" or "OSA" and "oronasal CPAP" or "oronasal mask" and "adherence." Studies on CPAP treatment for OSA were included, based on the following criteria: (1) original article; (2) randomized or nonrandomized trials; and (3) comparison between nasal and oronasal CPAP including pressure level, and/or residual AHI, and/or CPAP adherence. We identified five randomized and eight nonrandomized trials (4,563 patients) that reported CPAP level and/or residual AHI and/or CPAP adherence. Overall, the random-effects meta-analysis revealed that as compared with nasal, oronasal masks were associated with a significantly higher CPAP level (Hedges' g, -0.59; 95% CI, -0.82 to -0.37; P CPAP level, higher residual AHI, and poorer adherence than nasal masks. PROSPERO database; No.: CRD42017064584; URL: https://www.crd.york.ac.uk/prospero/. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  20. Fast neutron biological effects on normal and tumor chromatin

    International Nuclear Information System (INIS)

    Constantinescu, B.; Bugoi, Roxana; Paunica, Tatiana; Radu, Liliana

    1997-01-01

    Growing interest in neutron therapy and radioprotection requires complex studies on the mechanisms of neutron action on biological systems, especially on chromatin (the complex of deoxyribonucleic acid-DNA- with proteins in eukaryotic cells). Our study aims to investigate the fast neutrons induced damages in normal and tumor chromatin, studying thermal transition, intrinsic fluorescence and fluorescence of chromatin-ethidium bromide complexes behavior versus irradiation dose. The Bucharest U-120 variable energy Cyclotron was employed as an intense source of fast neutrons produced by 13.5 MeV deuterons on a thick beryllium target (166.5 mg/cm 2 ) placed at 20 angle against the incident beam. The average energy is 5.24 MeV. The total yield at 0 angle is 6.7 x 10 16 n/sr·C·MeV. To determine neutron and gamma irradiation doses, home made thermoluminescent detectors-TLD(γ) and TLD (γ + n) were used: for gamma MgF 2 : Mn mixed with Teflon pellets (φ 12.5 mm, 0.6±0.1 mm thick) and for gamma plus neutrons MgF 2 :Mn mixed with 6 LiF and Teflon pellets (same dimensions). Using a 8.022 x 10 -2 albedo factor value and the equivalence 1Gy (n)=2·10 10 fast neutron/cm 2 , the dose for the irradiation of 1.2 x 10 2 Gy/μC, with an estimated precision of 15% C for neutrons and 7.8 x 10 -4 Gy/μC for gamma, at 10 cm behind Be target, was found, respectively. A diminution of the negative fluorescence intensity for chromatin-ethidium bromide complexes with the increasing of neutron dose (from 0.98 at 5 Gy to 0.85 at 100 Gy) was observed for normal chromatin. This fact reflects chromatin DNA injuries, with the decrease of double helix DNA proportion. To study the influence of gyrostan, thyroxine and D3 vitamin treatments on fast neutron radiolysis in tumor chromatin,10 mg/kg of anticancer drug gyrostan, 40μg/kg of hormonal compound thyroxine and 30,000 IU/kg of D3 vitamin were administrated, separately or associated, to Wistar rats bearing Walker carcinosarcoma. Representing

  1. WBFSH aastakoosolek Varssavis. I-II osa / Raigo Kollom

    Index Scriptorium Estoniae

    Kollom, Raigo, 1936-

    2013-01-01

    Poolas 7.-9. oktoobrini Maailma Sporthobuste Kasvatajate Föderatsiooni peaassambleel toimunust ning loengutest ja aruteludest: Hobuste "genoomilisest aretusest", Jõudluskontrolli ja terviseandmete kasutamisest Rootsi aretuses, Hobuste lineaarse kirjeldamise meetodist, tõuraamatute tulevikust. Teises osas: Hobusekasvatuse seisust Poolas, Janow Podlaski hobusekasvatusest ja üldisest eluolust

  2. Lung tissue remodeling in the acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Souza Alba Barros de

    2003-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS is characterized by diffuse alveolar damage, and evolves progressively with three phases: exsudative, fibroproliferative, and fibrotic. In the exudative phase, there are interstitial and alveolar edemas with hyaline membrane. The fibropro­liferative phase is characterized by exudate organization and fibroelastogenesis. There is proliferation of type II pneumocytes to cover the damaged epithelial surface, followed by differentiation into type I pneumocytes. The fibroproliferative phase starts early, and its severity is related to the patient?s prognosis. The alterations observed in the phenotype of the pulmonary parenchyma cells steer the tissue remodeling towards either progressive fibrosis or the restoration of normal alveolar architecture. The fibrotic phase is characterized by abnormal and excessive deposition of extracellular matrix proteins, mainly collagen. The dynamic control of collagen deposition and degradation is regulated by metalloproteinases and their tissular regulators. The deposition of proteoglycans in the extracellular matrix of ARDS patients needs better study. The regulation of extracellular matrix remodeling, in normal conditions or in several pulmonary diseases, such as ARDS, results from a complex mechanism that integrate the transcription of elements that destroy the matrix protein and produce activation/inhibition of several cellular types of lung tissue. This review article will analyze the ECM organization in ARDS, the different pulmonary parenchyma remodeling mechanisms, and the role of cytokines in the regulation of the different matrix components during the remodeling process.

  3. ΔNp63α is an oncogene that induces Lsh expression and promotes stem-like proliferation

    Science.gov (United States)

    Keyes, William M.; Pecoraro, Matteo; Aranda, Victoria; Vernersson-Lindahl, Emma; Li, Wangzhi; Vogel, Hannes; Guo, Xuecui; Garcia, Elvin L.; Michurina, Tatyana V.; Enikolopov, Grigori; Muthuswamy, Senthil K.; Mills, Alea A.

    2014-01-01

    SUMMARY The p53 homolog p63 is essential for development, yet its role in cancer is not clear. We discovered that p63 deficiency evokes the tumor suppressive mechanism of cellular senescence, causing a striking absence of stratified epithelia such as the skin. Here we identify the predominant p63 isoform, ΔNp63α, as a protein that bypasses oncogene induced senescence to drive tumorigenesis in vivo. Interestingly, bypass of senescence promotes stem-like proliferation and maintains survival of the keratin 15-positive stem cell population. Furthermore, we identify the chromatin remodeling protein Lsh as a new target of ΔNp63α that is an essential mediator of senescence bypass. These findings indicate that ΔNp63α is an oncogene that cooperates with Ras to promote tumor-initiating stem-like proliferation, and suggest that Lsh-mediated chromatin remodeling events are critical to this process. PMID:21295273

  4. Investigation of histone H4 hyperacetylation dynamics in the 5S rRNA genes family by chromatin immunoprecipitation assay.

    Science.gov (United States)

    Burlibașa, Liliana; Suciu, Ilinca

    2015-12-01

    Oogenesis is a critical event in the formation of female gamete, whose role in development is to transfer genomic information to the next generation. During this process, the gene expression pattern changes dramatically concomitant with genome remodelling, while genomic information is stably maintained. The aim of the present study was to investigate the presence of H4 acetylation of the oocyte and somatic 5S rRNA genes in Triturus cristatus, using chromatin immunoprecipitation assay (ChIP). Our findings suggest that some epigenetic mechanisms such as histone acetylation could be involved in the transcriptional regulation of 5S rRNA gene families.

  5. Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells

    OpenAIRE

    Máthé, Csaba; Mikóné Hamvas, Márta; Vasas, Gábor

    2013-01-01

    Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs), a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN), an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studi...

  6. One, Two, Three: Polycomb Proteins Hit All Dimensions of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Stefania del Prete

    2015-07-01

    Full Text Available Polycomb group (PcG proteins contribute to the formation and maintenance of a specific repressive chromatin state that prevents the expression of genes in a particular space and time. Polycomb repressive complexes (PRCs consist of several PcG proteins with specific regulatory or catalytic properties. PRCs are recruited to thousands of target genes, and various recruitment factors, including DNA-binding proteins and non-coding RNAs, are involved in the targeting. PcG proteins contribute to a multitude of biological processes by altering chromatin features at different scales. PcG proteins mediate both biochemical modifications of histone tails and biophysical modifications (e.g., chromatin fiber compaction and three-dimensional (3D chromatin conformation. Here, we review the role of PcG proteins in nuclear architecture, describing their impact on the structure of the chromatin fiber, on chromatin interactions, and on the spatial organization of the genome in nuclei. Although little is known about the role of plant PcG proteins in nuclear organization, much is known in the animal field, and we highlight similarities and differences in the roles of PcG proteins in 3D gene regulation in plants and animals.

  7. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, N., E-mail: ramn@seas.upenn.edu [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Bioengineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA-19104 (United States); Sunil Kumar, P.B., E-mail: sunil@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai, 600036 (India); Radhakrishnan, Ravi, E-mail: rradhak@seas.upenn.edu [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Bioengineering, University of Pennsylvania, Philadelphia, PA-19104 (United States); Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA-19104 (United States)

    2014-10-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein–lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham–Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description

  8. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    International Nuclear Information System (INIS)

    Ramakrishnan, N.; Sunil Kumar, P.B.; Radhakrishnan, Ravi

    2014-01-01

    Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein–lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham–Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description

  9. Plant HDAC inhibitor chrysin arrest cell growth and induce p21WAF1 by altering chromatin of STAT response element in A375 cells

    International Nuclear Information System (INIS)

    Pal-Bhadra, Manika; Bhadra, Utpal; Ramaiah, M Janaki; Reddy, T Lakshminarayan; Krishnan, Anita; Pushpavalli, SNCVL; Babu, K Suresh; Tiwari, Ashok K; Rao, J Madhusudana; Yadav, Jhillu S

    2012-01-01

    Chrysin and its analogues, belongs to flavonoid family and possess potential anti-tumour activity. The aim of this study is to determine the molecular mechanism by which chrysin controls cell growth and induce apoptosis in A375 cells. Effect of chrysin and its analogues on cell viability and cell cycle analysis was determined by MTT assay and flowcytometry. A series of Western blots was performed to determine the effect of chrysin on important cell cycle regulatory proteins (Cdk2, cyclin D1, p53, p21, p27). The fluorimetry and calorimetry based assays was conducted for characterization of chrysin as HDAC inhibitor. The changes in histone tail modification such as acetylation and methylation was studied after chrysin treatment was estimated by immuno-fluorescence and western blot analysis. The expression of Bcl-xL, survivin and caspase-3 was estimated in chrysin treated cells. The effect of chrysin on p21 promoter activity was studied by luciferase and ChIP assays. Chrysin cause G1 cell cycle arrest and found to inhibit HDAC-2 and HDAC-8. Chrysin treated cells have shown increase in the levels of H3acK14, H4acK12, H4acK16 and decrease in H3me2K9 methylation. The p21 induction by chrysin treatment was found to be independent of p53 status. The chromatin remodelling at p21 WAF1 promoter induces p21 activity, increased STAT-1 expression and epigenetic modifications that are responsible for ultimate cell cycle arrest and apoptosis. Chrysin shows in vitro anti-cancer activity that is correlated with induction of histone hyperacetylation and possible recruitment of STAT-1, 3, 5 proteins at STAT (−692 to −684) region of p21 promoter. Our results also support an unexpected action of chrysin on the chromatin organization of p21 WAF1 promoter through histone methylation and hyper-acetylation. It proposes previously unknown sequence specific chromatin modulations in the STAT responsive elements for regulating cell cycle progression negatively via the induction of the CDK

  10. Targeted resequencing of regulatory regions at schizophrenia risk loci: Role of rare functional variants at chromatin repressive states.

    Science.gov (United States)

    González-Peñas, Javier; Amigo, Jorge; Santomé, Luis; Sobrino, Beatriz; Brenlla, Julio; Agra, Santiago; Paz, Eduardo; Páramo, Mario; Carracedo, Ángel; Arrojo, Manuel; Costas, Javier

    2016-07-01

    There is mounting evidence that regulatory variation plays an important role in genetic risk for schizophrenia. Here, we specifically search for regulatory variants at risk by sequencing promoter regions of twenty-three genes implied in schizophrenia by copy number variant or genome-wide association studies. After strict quality control, a total of 55,206bp per sample were analyzed in 526 schizophrenia cases and 516 controls from Galicia, NW Spain, using the Applied Biosystems SOLiD System. Variants were filtered based on frequency from public databases, chromatin states from the RoadMap Epigenomics Consortium at tissues relevant for schizophrenia, such as fetal brain, mid-frontal lobe, and angular gyrus, and prediction of functionality from RegulomeDB. The proportion of rare variants at polycomb repressive chromatin state at relevant tissues was higher in cases than in controls. The proportion of rare variants with predicted regulatory role was significantly higher in cases than in controls (P=0.0028, OR=1.93, 95% C.I.=1.23-3.04). Combination of information from both sources led to the identification of an excess of carriers of rare variants with predicted regulatory role located at polycomb repressive chromatin state at relevant tissues in cases versus controls (P=0.0016, OR=19.34, 95% C.I.=2.45-2495.26). The variants are located at two genes affected by the 17q12 copy number variant, LHX1 and HNF1B. These data strongly suggest that a specific epigenetic mechanism, chromatin remodeling by histone modification during early development, may be impaired in a subset of schizophrenia patients, in agreement with previous data. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The role of inducible nitric oxide synthase for interstitial remodeling of alveolar septa in surfactant protein D-deficient mice

    Science.gov (United States)

    Atochina-Vasserman, Elena N.; Massa, Christopher B.; Birkelbach, Bastian; Guo, Chang-Jiang; Scott, Pamela; Haenni, Beat; Beers, Michael F.; Ochs, Matthias; Gow, Andrew J.

    2015-01-01

    Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd−/−) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd−/− mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd−/− mice. These changes were reduced in DiNOS, and compared with Sftpd−/− mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd−/−. Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces. PMID:26320150

  12. Neutron scatter studies of chromatin structures related to functions

    International Nuclear Information System (INIS)

    Bradbury, E.M.

    1992-01-01

    Despite of setbacks in the lack of neutrons for the proposed We have made considerable progress in chromatin reconstitution with the VLR histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized an intrinsically bent DNA region flanking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interatctions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin

  13. A Long-Distance Chromatin Affair

    NARCIS (Netherlands)

    Denker, Annette; de Laat, Wouter

    2015-01-01

    Changes in transcription factor binding sequences result in correlated changes in chromatin composition locally and at sites hundreds of kilobases away. New studies demonstrate that this concordance is mediated via spatial chromatin interactions that constitute regulatory modules of the human

  14. OSA screening with the pediatric sleep questionnaire for adolescents undergoing bariatric surgery in teen-LABS.

    Science.gov (United States)

    Ishman, Stacey; Heubi, Christine; Jenkins, Todd; Michalsky, Marc; Simakajornboon, Narong; Inge, Thomas

    2016-11-01

    Obstructive sleep apnea (OSA) is reported in 70% of adolescents who present for bariatric surgery. The Pediatric Sleep Questionnaire (PSQ) was developed to identify children at risk for OSA but is not validated in adolescents with obesity. The aims of this study were: (1) to assess validity of the PSQ to detect OSA and (2) to determine the correlation between anthropometric and polysomnography measurements. A cross-sectional assessment of Teen-Longitudinal Assessment of Bariatric Surgery participants at high risk for OSA was performed. Participants completed an overnight polysomnography, and caregivers completed the PSQ. Forty-five participants (84% female, 78% Caucasian, mean age = 16.7 ± 1.5 years) were evaluated. Mean BMI was 51.3 ± 7.7 kg/m 2 and mean obstructive apnea-hypopnea index (oAHI) was 6.1 ± 5.9 events/h. For diagnosis of OSA (oAHI ≥5), the total PSQ score sensitivity, specificity, and positive predictive value (PPV) were 86%, 38%, and 55%, respectively. For snoring >50% of the time, PPV was 84%, sensitivity was 64%, and specificity was 43%. Sagittal abdominal diameter correlated with oAHI and oxygen saturation nadir (ρ = 0.34, P = 0.027), whereas BMI, neck, and waist circumference correlated with neither. The PSQ demonstrated low specificity, and PPV and the question regarding snoring >50% of the time did not effectively identify OSA. Sagittal abdominal diameter correlated with oAHI and oxygen saturation nadir. © 2016 The Obesity Society.

  15. Radiation-induced XRCC4 association with chromatin DNA analyzed by biochemical fractionation

    International Nuclear Information System (INIS)

    Kamdar, R.P.; Matsumoto, Yoshihisa

    2010-01-01

    XRCC4, in association with DNA ligase IV, is thought to play a critical role in the ligation of two DNA ends in DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ) pathway. In the present study, we captured radiation-induced chromatin-recruitment of XRCC4 by biochemical fractionation using detergent Nonidet P-40. A subpopulation of XRCC4 changed into a form that is resistant to the extraction with 0.5% Nonidet P-40-containing buffer after irradiation. This form of XRCC4 was liberated by micrococcal nuclease treatment, indicating that it had been tethered to chromatin DNA. This chromatin-recruitment of XRCC4 could be seen immediately (<0.1 hr) after irradiation and remained up to 4 hr after 20 Gy irradiation. It was seen even after irradiation of small doses, id est (i.e.), 2 Gy, but the residence of XRCC4 on chromatin was very transient after 2 Gy irradiation, returning to near normal level in 0.2-0.5 hr after irradiation. The chromatin-bound XRCC4 represented only -1% of total XRCC4 molecules even after 20 Gy irradiation and the quantitative analysis using purified protein as the reference suggested that only a few XRCC4-DNA ligase IV complexes were recruited to each DNA end. We further show that the chromatin-recruitment of XRCC4 was not attenuated by wortmannin, an inhibitor of DNA-PK, or siRNA-mediated knockdown of the DNA-PK catalytic subunit (DNA-PKcs), indicating that this process does not require DNA-PKcs. These results would provide us with useful experimental tools and important insights to understand the DNA repair process through NHEJ pathway. (author)

  16. Specific distribution of the Saccharomyces cerevisiae linker histone homolog HHO1p in the chromatin

    OpenAIRE

    Freidkin, Ilya; Katcoff, Don J.

    2001-01-01

    In virtually all eukaryotic organisms, linker DNA between nucleosomes is associated with a histone termed linker histone or histone H1. In Saccharomyces cerevisiae, HHO1 encodes a putative linker histone with very significant homology to histone H1. The encoded protein is expressed in the nucleus, but has not been shown to affect global chromatin structure, nor has its deletion shown any detectable phenotype. In vitro chromatin assembly experiments with recombinant HHO1p have shown that it is...

  17. A transient ischemic environment induces reversible compaction of chromatin.

    Science.gov (United States)

    Kirmes, Ina; Szczurek, Aleksander; Prakash, Kirti; Charapitsa, Iryna; Heiser, Christina; Musheev, Michael; Schock, Florian; Fornalczyk, Karolina; Ma, Dongyu; Birk, Udo; Cremer, Christoph; Reid, George

    2015-11-05

    Cells detect and adapt to hypoxic and nutritional stress through immediate transcriptional, translational and metabolic responses. The environmental effects of ischemia on chromatin nanostructure were investigated using single molecule localization microscopy of DNA binding dyes and of acetylated histones, by the sensitivity of chromatin to digestion with DNAseI, and by fluorescence recovery after photobleaching (FRAP) of core and linker histones. Short-term oxygen and nutrient deprivation of the cardiomyocyte cell line HL-1 induces a previously undescribed chromatin architecture, consisting of large, chromatin-sparse voids interspersed between DNA-dense hollow helicoid structures 40-700 nm in dimension. The chromatin compaction is reversible, and upon restitution of normoxia and nutrients, chromatin transiently adopts a more open structure than in untreated cells. The compacted state of chromatin reduces transcription, while the open chromatin structure induced upon recovery provokes a transitory increase in transcription. Digestion of chromatin with DNAseI confirms that oxygen and nutrient deprivation induces compaction of chromatin. Chromatin compaction is associated with depletion of ATP and redistribution of the polyamine pool into the nucleus. FRAP demonstrates that core histones are not displaced from compacted chromatin; however, the mobility of linker histone H1 is considerably reduced, to an extent that far exceeds the difference in histone H1 mobility between heterochromatin and euchromatin. These studies exemplify the dynamic capacity of chromatin architecture to physically respond to environmental conditions, directly link cellular energy status to chromatin compaction and provide insight into the effect ischemia has on the nuclear architecture of cells.

  18. The Influence of Spatial Variation in Chromatin Density Determined by X-Ray Tomograms on the Time to Find DNA Binding Sites

    Science.gov (United States)

    Larabell, Carolyn A.; Le Gros, Mark A.; McQueen, David M.; Peskin, Charles S.

    2014-01-01

    In this work, we examine how volume exclusion caused by regions of high chromatin density might influence the time required for proteins to find specific DNA binding sites. The spatial variation of chromatin density within mouse olfactory sensory neurons is determined from soft X-ray tomography reconstructions of five nuclei. We show that there is a division of the nuclear space into regions of low-density euchromatin and high-density heterochromatin. Volume exclusion experienced by a diffusing protein caused by this varying density of chromatin is modeled by a repulsive potential. The value of the potential at a given point in space is chosen to be proportional to the density of chromatin at that location. The constant of proportionality, called the volume exclusivity, provides a model parameter that determines the strength of volume exclusion. Numerical simulations demonstrate that the mean time for a protein to locate a binding site localized in euchromatin is minimized for a finite, nonzero volume exclusivity. For binding sites in heterochromatin, the mean time is minimized when the volume exclusivity is zero (the protein experiences no volume exclusion). An analytical theory is developed to explain these results. The theory suggests that for binding sites in euchromatin there is an optimal level of volume exclusivity that balances a reduction in the volume searched in finding the binding site, with the height of effective potential barriers the protein must cross during the search process. PMID:23955281

  19. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Yolanda Stypula-Cyrus

    Full Text Available Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC. However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  20. A role for the malignant brain tumour (MBT domain protein LIN-61 in DNA double-strand break repair by homologous recombination.

    Directory of Open Access Journals (Sweden)

    Nicholas M Johnson

    Full Text Available Malignant brain tumour (MBT domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR for the repair of DNA double-strand breaks (DSBs. lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT-deficient tumours may also have defective DSB repair.