WorldWideScience

Sample records for chromatin-remodeling complex ino80

  1. The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair.

    Science.gov (United States)

    Chambers, Anna L; Downs, Jessica A

    2012-01-01

    In eukaryotes, DNA is packaged into chromatin and is therefore relatively inaccessible to DNA repair enzymes. In order to perform efficient DNA repair, ATP-dependent chromatin-remodeling enzymes are required to alter the chromatin structure near the site of damage to facilitate processing and allow access to repair enzymes. Two of the best-studied remodeling complexes involved in repair are RSC (Remodels the Structure of Chromatin) and INO80 from Saccharomyces cerevisiae, which are both conserved in higher eukaryotes. RSC is very rapidly recruited to breaks and mobilizes nucleosomes to promote phosphorylation of H2A S129 and resection. INO80 enrichment at a break occurs later and is dependent on phospho-S129 H2A. INO80 activity at the break site also facilitates resection. Consequently, both homologous recombination and nonhomologous end-joining are defective in rsc mutants, while subsets of these repair pathways are affected in ino80 mutants.

  2. The mammalian INO80 chromatin remodeling complex is required for replication stress recovery

    Science.gov (United States)

    Vassileva, Ivelina; Yanakieva, Iskra; Peycheva, Michaela; Gospodinov, Anastas; Anachkova, Boyka

    2014-01-01

    A number of studies have implicated the yeast INO80 chromatin remodeling complex in DNA replication, but the function of the human INO80 complex during S phase remains poorly understood. Here, we have systematically investigated the involvement of the catalytic subunit of the human INO80 complex during unchallenged replication and under replication stress by following the effects of its depletion on cell survival, S-phase checkpoint activation, the fate of individual replication forks, and the consequences of fork collapse. We report that INO80 was specifically needed for efficient replication elongation, while it was not required for initiation of replication. In the absence of the Ino80 protein, cells became hypersensitive to hydroxyurea and displayed hyperactive ATR-Chk1 signaling. Using bulk and fiber labeling of DNA, we found that cells deficient for Ino80 and Arp8 had impaired replication restart after treatment with replication inhibitors and accumulated double-strand breaks as evidenced by the formation of γ-H2AX and Rad51 foci. These data indicate that under conditions of replication stress mammalian INO80 protects stalled forks from collapsing and allows their subsequent restart. PMID:25016522

  3. Synergy and antagonism in regulation of recombinant human INO80 chromatin remodeling complex

    Science.gov (United States)

    Willhoft, Oliver; Bythell-Douglas, Rohan; McCormack, Elizabeth A.; Wigley, Dale B.

    2016-01-01

    We have purified a minimal core human Ino80 complex from recombinant protein expressed in insect cells. The complex comprises one subunit each of an N-terminally truncated Ino80, actin, Arp4, Arp5, Arp8, Ies2 and Ies6, together with a single heterohexamer of the Tip49a and Tip49b proteins. This core complex has nucleosome sliding activity that is similar to that of endogenous human and yeast Ino80 complexes and is also inhibited by inositol hexaphosphate (IP6). We show that IP6 is a non-competitive inhibitor that acts by blocking the stimulatory effect of nucleosomes on the ATPase activity. The IP6 binding site is located within the C-terminal region of the Ino80 subunit. We have also prepared complexes lacking combinations of Ies2 and Arp5/Ies6 subunits that reveal regulation imposed by each of them individually and synergistically that couples ATP hydrolysis to nucleosome sliding. This coupling between Ies2 and Arp5/Ies6 can be overcome in a bypass mutation of the Arp5 subunit that is active in the absence of Ies2. These studies reveal several underlying mechanisms for regulation of ATPase activity involving a complex interplay between these protein subunits and IP6 that in turn controls nucleosome sliding. PMID:27257055

  4. Human INO80 chromatin-remodelling complex contributes to DNA double-strand break repair via the expression of Rad54B and XRCC3 genes.

    Science.gov (United States)

    Park, Eun-Jung; Hur, Shin-Kyoung; Kwon, Jongbum

    2010-10-15

    Recent studies have shown that the SWI/SNF family of ATP-dependent chromatin-remodelling complexes play important roles in DNA repair as well as in transcription. The INO80 complex, the most recently described member of this family, has been shown in yeast to play direct role in DNA DSB (double-strand break) repair without affecting the expression of the genes involved in this process. However, whether this function of the INO80 complex is conserved in higher eukaryotes has not been investigated. In the present study, we found that knockdown of hINO80 (human INO80) confers DNA-damage hypersensitivity and inefficient DSB repair. Microarray analysis and other experiments have identified the Rad54B and XRCC3 (X-ray repair complementing defective repair in Chinese-hamster cells 3) genes, implicated in DSB repair, to be repressed by hINO80 deficiency. Chromatin immunoprecipitation studies have shown that hINO80 binds to the promoters of the Rad54B and XRCC3 genes. Re-expression of the Rad54B and XRCC3 genes rescues the DSB repair defect in hINO80-deficient cells. These results suggest that hINO80 assists DSB repair by positively regulating the expression of the Rad54B and XRCC3 genes. Therefore, unlike yeast INO80, hINO80 can contribute to DSB repair indirectly via gene expression, suggesting that the mechanistic role of this chromatin remodeller in DSB repair is evolutionarily diversified.

  5. Actin Family Proteins in the Human INO80 Chromatin Remodeling Complex Exhibit Functional Roles in the Induction of Heme Oxygenase-1 with Hemin

    Science.gov (United States)

    Takahashi, Yuichiro; Murakami, Hirokazu; Akiyama, Yusuke; Katoh, Yasutake; Oma, Yukako; Nishijima, Hitoshi; Shibahara, Kei-ichi; Igarashi, Kazuhiko; Harata, Masahiko

    2017-01-01

    Nuclear actin family proteins, comprising of actin and actin-related proteins (Arps), are essential functional components of the multiple chromatin remodeling complexes. The INO80 chromatin remodeling complex, which is evolutionarily conserved and has roles in transcription, DNA replication and repair, consists of actin and actin-related proteins Arp4, Arp5, and Arp8. We generated Arp5 knockout (KO) and Arp8 KO cells from the human Nalm-6 pre-B cell line and used these KO cells to examine the roles of Arp5 and Arp8 in the transcriptional regulation mediated by the INO80 complex. In both of Arp5 KO and Arp8 KO cells, the oxidative stress-induced expression of HMOX1 gene, encoding for heme oxygenase-1 (HO-1), was significantly impaired. Consistent with these observations, chromatin immunoprecipitation (ChIP) assay revealed that oxidative stress caused an increase in the binding of the INO80 complex to the regulatory sites of HMOX1 in wild-type cells. The binding of INO80 complex to chromatin was reduced in Arp8 KO cells compared to that in the wild-type cells. On the other hand, the binding of INO80 complex to chromatin in Arp5 KO cells was similar to that in the wild-type cells even under the oxidative stress condition. However, both remodeling of chromatin at the HMOX1 regulatory sites and binding of a transcriptional activator to these sites were impaired in Arp5 KO cells, indicating that Arp5 is required for the activation of the INO80 complex. Collectively, these results suggested that these nuclear Arps play indispensable roles in the function of the INO80 chromatin remodeling complex. PMID:28270832

  6. Human INO80/YY1 chromatin remodeling complex transcriptionally regulates the BRCA2- and CDKN1A-interacting protein (BCCIP) in cells.

    Science.gov (United States)

    Su, Jiaming; Sui, Yi; Ding, Jian; Li, Fuqiang; Shen, Shuang; Yang, Yang; Lu, Zeming; Wang, Fei; Cao, Lingling; Liu, Xiaoxia; Jin, Jingji; Cai, Yong

    2016-10-01

    The BCCIP (BRCA2- and CDKN1A-interacting protein) is an important cofactor for BRCA2 in tumor suppression. Although the low expression of BCCIP is observed in multiple clinically diagnosed primary tumor tissues such as ovarian cancer, renal cell carcinoma and colorectal carcinoma, the mechanism of how BCCIP is regulated in cells is still unclear. The human INO80/YY1 chromatin remodeling complex composed of 15 subunits catalyzes ATP-dependent sliding of nucleosomes along DNA. Here, we first report that BCCIP is a novel target gene of the INO80/YY1 complex by presenting a series of experimental evidence. Gene expression studies combined with siRNA knockdown data locked candidate genes including BCCIP of the INO80/YY1 complex. Silencing or over-expressing the subunits of the INO80/YY1 complex regulates the expression level of BCCIP both in mRNA and proteins in cells. Also, the functions of INO80/YY1 complex in regulating the transactivation of BCCIP were confirmed by luciferase reporter assays. Chromatin immunoprecipitation (ChIP) experiments clarify the enrichment of INO80 and YY1 at +0.17 kb downstream of the BCCIP transcriptional start site. However, this enrichment is significantly inhibited by either knocking down INO80 or YY1, suggesting the existence of both INO80 and YY1 is required for recruiting the INO80/YY1 complex to BCCIP promoter region. Our findings strongly indicate that BCCIP is a potential target gene of the INO80/YY1 complex.

  7. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair.

    Science.gov (United States)

    Morrison, Ashby J; Highland, Jessica; Krogan, Nevan J; Arbel-Eden, Ayelet; Greenblatt, Jack F; Haber, James E; Shen, Xuetong

    2004-12-17

    While the role of ATP-dependent chromatin remodeling in transcription is well established, a link between chromatin remodeling and DNA repair has remained elusive. We have found that the evolutionarily conserved INO80 chromatin remodeling complex directly participates in the repair of a double-strand break (DSB) in yeast. The INO80 complex is recruited to a HO endonuclease-induced DSB through a specific interaction with the DNA damage-induced phosphorylated histone H2A (gamma-H2AX). This interaction requires Nhp10, an HMG-like subunit of the INO80 complex. The loss of Nhp10 or gamma-H2AX results in reduced INO80 recruitment to the DSB. Finally, components of the INO80 complex show synthetic genetic interactions with the RAD52 DNA repair pathway, the main pathway for DSB repair in yeast. Our findings reveal a new role of ATP-dependent chromatin remodeling in nuclear processes and suggest that an ATP-dependent chromatin remodeling complex can read a DNA repair histone code.

  8. Interaction of the Chromatin Remodeling Protein hINO80 with DNA

    Science.gov (United States)

    Jain, Shruti; Kaur, Taniya; Brahmachari, Vani

    2016-01-01

    The presence of a highly conserved DNA binding domain in INO80 subfamily predicted that INO80 directly interacts with DNA and we demonstrated its DNA binding activity in vitro. Here we report the consensus motif recognized by the DBINO domain identified by SELEX method and demonstrate the specific interaction of INO80 with the consensus motif. We show that INO80 significantly down regulates the reporter gene expression through its binding motif, and the repression is dependent on the presence of INO80 but not YY1 in the cell. The interaction is lost if specific residues within the consensus motif are altered. We identify a large number of potential target sites of INO80 in the human genome through in silico analysis that can grouped into three classes; sites that contain the recognition sequence for INO80 and YY1, only YY1 and only INO80. We demonstrate the binding of INO80 to a representative set of sites in HEK cells and the correlated repressive histone modifications around the binding motif. In the light of the role of INO80 in homeotic gene regulation in Drosophila as an Enhancer of trithorax and polycomb protein (ETP) that can modify the effect of both repressive complexes like polycomb as well as the activating complex like trithorax, it remains to be seen if INO80 can act as a recruiter of chromatin modifying complexes. PMID:27428271

  9. The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening.

    Science.gov (United States)

    Musladin, Sanja; Krietenstein, Nils; Korber, Philipp; Barbaric, Slobodan

    2014-04-01

    Although yeast PHO5 promoter chromatin opening is a founding model for chromatin remodeling, the complete set of involved remodelers remained unknown for a long time. The SWI/SNF and INO80 remodelers cooperate here, but nonessentially, and none of the many tested single or combined remodeler gene mutations could prevent PHO5 promoter opening. RSC, the most abundant and only remodeler essential for viability, was a controversial candidate for the unrecognized remodeling activity but unassessed in vivo. Now we show that remodels the structure of chromatin (RSC) is crucially involved in PHO5 promoter opening. Further, the isw1 chd1 double deletion also delayed chromatin remodeling. Strikingly, combined absence of RSC and Isw1/Chd1 or Snf2 abolished for the first time promoter opening on otherwise sufficient induction in vivo. Together with previous findings, we recognize now a surprisingly complex network of five remodelers (RSC, SWI/SNF, INO80, Isw1 and Chd1) from four subfamilies (SWI/SNF, INO80, ISWI and CHD) as involved in PHO5 promoter chromatin remodeling. This is likely the first described complete remodeler set for a physiological chromatin transition. RSC was hardly involved at the coregulated PHO8 or PHO84 promoters despite cofactor recruitment by the same transactivator and RSC's presence at all three promoters. Therefore, promoter-specific chromatin rather than transactivators determine remodeler requirements.

  10. The transcriptional coactivator SAYP is a trithorax group signature subunit of the PBAP chromatin remodeling complex

    NARCIS (Netherlands)

    G.E. Chalkley (Gillian); Y.M. Moshkin (Yuri); K. Langenberg (Karin); K. Bezstarosti (Karel); A. Blastyak (Andras); H. Gyurkovics (Henrik); J.A.A. Demmers (Jeroen); C.P. Verrijzer (Peter)

    2008-01-01

    textabstractSWI/SNF ATP-dependent chromatin remodeling complexes (remodelers) perform critical functions in eukaryotic gene expression control. BAP and PBAP are the fly representatives of the two evolutionarily conserved major subclasses of SWI/SNF remodelers. Both complexes share seven core subunit

  11. Structure and Function of SWI/SNF Chromatin Remodeling Complexes and Mechanistic Implications for Transcription

    OpenAIRE

    Tang, Liling; Nogales, Eva; Ciferri, Claudio

    2010-01-01

    ATP-dependent chromatin remodeling complexes are specialized protein machinery able to restructure the nucleosome to make its DNA accessible during transcription, replication and DNA repair. During the past few years structural biologists have defined the architecture and dynamics of some of these complexes using electron microscopy, shedding light on the mechanisms of action of these important complexes. In this paper we review the existing structural information on the SWI/SNF family of the...

  12. Chromatin remodeling complexes in the assembly of long noncoding RNA-dependent nuclear bodies.

    Science.gov (United States)

    Kawaguchi, Tetsuya; Hirose, Tetsuro

    2015-01-01

    Paraspeckles are subnuclear structures that assemble on nuclear paraspeckle assembly transcript 1 (NEAT1) long noncoding (lnc)RNA. Paraspeckle formation requires appropriate NEAT1 biogenesis and subsequent assembly with multiple prion-like domain (PLD) containing RNA-binding proteins. We found that SWI/SNF chromatin remodeling complexes function as paraspeckle components that interact with paraspeckle proteins (PSPs) and NEAT1. SWI/SNF complexes play an essential role in paraspeckle formation that does not require their ATP-dependent chromatin remodeling activity. Instead, SWI/SNF complexes facilitate organization of the PSP interaction network required for intact paraspeckle assembly. SWI/SNF complexes may collectively bind multiple PSPs to recruit them onto NEAT1. SWI/SNF complexes are also required for Sat III (Satellite III) lncRNA-dependent formation of nuclear stress bodies under heat shock conditions. Organization of the lncRNA-dependent omega speckle in Drosophila also depends on the chromatin remodeling complex. These findings raise the possibility that a common mechanism controls the formation of lncRNA-dependent nuclear body architecture.

  13. Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer

    Institute of Scientific and Technical Information of China (English)

    Jiang I. Wu

    2012-01-01

    Mammalian SWI/SNF like Brg1/Brm associated factors (BAF) chromatin-remodeling complexes are able to use energy derived from adenosine triphosphate (ATP) hydrolysis to change chromatin structures and regulate nuclear processes such as transcription.BAF complexes contain multiple subunits and the diverse subunit compositions provide functional specificities to BAF complexes.In this review,we summarize the functions of BAF subunits during mammalian development and in progression of various cancers.The mechanisms underlying the functional diversity and specificities of BAF complexes will be discussed.

  14. Selective removal of promoter nucleosomes by the RSC chromatin-remodeling complex.

    Science.gov (United States)

    Lorch, Yahli; Griesenbeck, Joachim; Boeger, Hinrich; Maier-Davis, Barbara; Kornberg, Roger D

    2011-08-01

    Purified chromatin rings, excised from the PHO5 locus of Saccharomyces cerevisiae in transcriptionally repressed and activated states, were remodeled with RSC and ATP. Nucleosomes were translocated, and those originating on the promoter of repressed rings were removed, whereas those originating on the open reading frame (ORF) were retained. Treatment of the repressed rings with histone deacetylase diminished the removal of promoter nucleosomes. These findings point to a principle of promoter chromatin remodeling for transcription, namely that promoter specificity resides primarily in the nucleosomes rather than in the remodeling complex that acts upon them.

  15. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae.

    Science.gov (United States)

    Czaja, Wioletta; Mao, Peng; Smerdon, Michael J

    2014-04-01

    The base excision repair (BER) pathway is a conserved DNA repair system required to maintain genomic integrity and prevent mutagenesis in all eukaryotic cells. Nevertheless, how BER operates in vivo (i.e. in the context of chromatin) is poorly understood. We have investigated the role of an essential ATP-dependent chromatin remodelling (ACR) complex RSC (Remodels the Structure of Chromatin) in BER of intact yeast cells. We show that depletion of STH1, the ATPase subunit of RSC, causes enhanced sensitivity to the DNA alkylating agent methyl methanesulfonate (MMS) and results in a substantial inhibition of BER, at the GAL1 locus and in the genome overall. Consistent with this observation, the DNA in chromatin is less accessible to micrococcal nuclease digestion in the absence of RSC. Quantitative PCR results indicate that repair deficiency in STH1 depleted cells is not due to changes in the expression of BER genes. Collectively, our data indicates the RSC complex promotes efficient BER in chromatin. These results provide, for the first time, a link between ATP-dependent chromatin remodelling and BER in living cells.

  16. The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome.

    Science.gov (United States)

    Kitagawa, Hirochika; Fujiki, Ryoji; Yoshimura, Kimihiro; Mezaki, Yoshihiro; Uematsu, Yoshikatsu; Matsui, Daisuke; Ogawa, Satoko; Unno, Kiyoe; Okubo, Mataichi; Tokita, Akifumi; Nakagawa, Takeya; Ito, Takashi; Ishimi, Yukio; Nagasawa, Hiromichi; Matsumoto, Toshio; Yanagisawa, Junn; Kato, Shigeaki

    2003-06-27

    We identified a human multiprotein complex (WINAC) that directly interacts with the vitamin D receptor (VDR) through the Williams syndrome transcription factor (WSTF). WINAC has ATP-dependent chromatin-remodeling activity and contains both SWI/SNF components and DNA replication-related factors. The latter might explain a WINAC requirement for normal S phase progression. WINAC mediates the recruitment of unliganded VDR to VDR target sites in promoters, while subsequent binding of coregulators requires ligand binding. This recruitment order exemplifies that an interaction of a sequence-specific regulator with a chromatin-remodeling complex can organize nucleosomal arrays at specific local sites in order to make promoters accessible for coregulators. Furthermore, overexpression of WSTF could restore the impaired recruitment of VDR to vitamin D regulated promoters in fibroblasts from Williams syndrome patients. This suggests that WINAC dysfunction contributes to Williams syndrome, which could therefore be considered, at least in part, a chromatin-remodeling factor disease.

  17. Structure and function insights into the NuRD chromatin remodeling complex.

    Science.gov (United States)

    Torchy, Morgan P; Hamiche, Ali; Klaholz, Bruno P

    2015-07-01

    Transcription regulation through chromatin compaction and decompaction is regulated through various chromatin-remodeling complexes such as nucleosome remodeling and histone deacetylation (NuRD) complex. NuRD is a 1 MDa multi-subunit protein complex which comprises many different subunits, among which histone deacetylases HDAC1/2, ATP-dependent remodeling enzymes CHD3/4, histone chaperones RbAp46/48, CpG-binding proteins MBD2/3, the GATAD2a (p66α) and/or GATAD2b (p66β) and specific DNA-binding proteins MTA1/2/3. Here, we review the currently known crystal and NMR structures of these subunits, the functional data and their relevance for biomedical research considering the implication of NuRD subunits in cancer and various other diseases. The complexity of this macromolecular assembly, and its poorly understood mode of interaction with the nucleosome, the repeating unit of chromatin, illustrate that this complex is a major challenge for structure-function relationship studies which will be tackled best by an integrated biology approach.

  18. RSC Chromatin-Remodeling Complex Is Important for Mitochondrial Function in Saccharomyces cerevisiae.

    Science.gov (United States)

    Imamura, Yuko; Yu, Feifei; Nakamura, Misaki; Chihara, Yuhki; Okane, Kyo; Sato, Masahiro; Kanai, Muneyoshi; Hamada, Ryoko; Ueno, Masaru; Yukawa, Masashi; Tsuchiya, Eiko

    2015-01-01

    RSC (Remodel the Structure of Chromatin) is an ATP-dependent chromatin remodeling complex essential for the growth of Saccharomyces cerevisiae. RSC exists as two distinct isoforms that share core subunits including the ATPase subunit Nps1/Sth1 but contain either Rsc1or Rsc2. Using the synthetic genetic array (SGA) of the non-essential null mutation method, we screened for mutations exhibiting synthetic growth defects in combination with the temperature-sensitive mutant, nps1-105, and found connections between mitochondrial function and RSC. rsc mutants, including rsc1Δ, rsc2Δ, and nps1-13, another temperature-sensitive nps1 mutant, exhibited defective respiratory growth; in addition, rsc2Δ and nps1-13 contained aggregated mitochondria. The rsc2Δ phenotypes were relieved by RSC1 overexpression, indicating that the isoforms play a redundant role in respiratory growth. Genome-wide expression analysis in nps1-13 under respiratory conditions suggested that RSC regulates the transcription of some target genes of the HAP complex, a transcriptional activator of respiratory gene expression. Nps1 physically interacted with Hap4, the transcriptional activator moiety of the HAP complex, and overexpression of HAP4 alleviated respiratory defects in nps1-13, suggesting that RSC plays pivotal roles in mitochondrial gene expression and shares a set of target genes with the HAP complex.

  19. Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1.

    Science.gov (United States)

    Nguyen, Vu Q; Ranjan, Anand; Stengel, Florian; Wei, Debbie; Aebersold, Ruedi; Wu, Carl; Leschziner, Andres E

    2013-09-12

    The ATP-dependent chromatin-remodeling complex SWR1 exchanges a variant histone H2A.Z/H2B dimer for a canonical H2A/H2B dimer at nucleosomes flanking histone-depleted regions, such as promoters. This localization of H2A.Z is conserved throughout eukaryotes. SWR1 is a 1 megadalton complex containing 14 different polypeptides, including the AAA+ ATPases Rvb1 and Rvb2. Using electron microscopy, we obtained the three-dimensional structure of SWR1 and mapped its major functional components. Our data show that SWR1 contains a single heterohexameric Rvb1/Rvb2 ring that, together with the catalytic subunit Swr1, brackets two independently assembled multisubunit modules. We also show that SWR1 undergoes a large conformational change upon engaging a limited region of the nucleosome core particle. Our work suggests an important structural role for the Rvbs and a distinct substrate-handling mode by SWR1, thereby providing a structural framework for understanding the complex dimer-exchange reaction.

  20. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    1999-01-01

    In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism in eukar......In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism...... in eukaryotic organisms. Here we show that the yeast chromatin-remodeling complex, RSC (remodels the structure of chromatin), isolated on the basis of homology to the SWI/SNF complex, is required for proper transcriptional regulation and nucleosome positioning in the highly inducible CHA1 promoter...... of the CHA1 promoter is disrupted, an architectural change normally only observed during transcriptional induction. In addition, deletion of the gene-specific activator Cha4p did not affect derepression of CHA1 in cells depleted for Swh3p. Thus, CHA1 constitutes a target for the RSC complex, and we propose...

  1. The transcriptional coactivator SAYP is a trithorax group signature subunit of the PBAP chromatin remodeling complex.

    Science.gov (United States)

    Chalkley, Gillian E; Moshkin, Yuri M; Langenberg, Karin; Bezstarosti, Karel; Blastyak, Andras; Gyurkovics, Henrik; Demmers, Jeroen A A; Verrijzer, C Peter

    2008-05-01

    SWI/SNF ATP-dependent chromatin remodeling complexes (remodelers) perform critical functions in eukaryotic gene expression control. BAP and PBAP are the fly representatives of the two evolutionarily conserved major subclasses of SWI/SNF remodelers. Both complexes share seven core subunits, including the Brahma ATPase, but differ in a few signature subunits; POLYBROMO and BAP170 specify PBAP, whereas OSA defines BAP. Here, we show that the transcriptional coactivator and PHD finger protein SAYP is a novel PBAP subunit. Biochemical analysis established that SAYP is tightly associated with PBAP but absent from BAP. SAYP, POLYBROMO, and BAP170 display an intimately overlapping distribution on larval salivary gland polytene chromosomes. Genome-wide expression analysis revealed that SAYP is critical for PBAP-dependent transcription. SAYP is required for normal development and interacts genetically with core- and PBAP-selective subunits. Genetic analysis suggested that, like BAP, PBAP also counteracts Polycomb silencing. SAYP appears to be a key architectural component required for the integrity and association of the PBAP-specific module. We conclude that SAYP is a signature subunit that plays a major role in the functional specificity of the PBAP holoenzyme.

  2. Chromatin Remodeling and Plant Immunity.

    Science.gov (United States)

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    2017-01-01

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?

  3. The RSC Chromatin Remodeling Complex Bears an Essential Fungal-Specific Protein Module With Broad Functional Roles

    OpenAIRE

    Wilson, Boris; Erdjument-Bromage, Hediye; Tempst, Paul; Bradley R Cairns

    2006-01-01

    RSC is an essential and abundant ATP-dependent chromatin remodeling complex from Saccharomyces cerevisiae. Here we show that the RSC components Rsc7/Npl6 and Rsc14/Ldb7 interact physically and/or functionally with Rsc3, Rsc30, and Htl1 to form a module important for a broad range of RSC functions. A strain lacking Rsc7 fails to properly assemble RSC, which confers sensitivity to temperature and to agents that cause DNA damage, microtubule depolymerization, or cell wall stress (likely via tran...

  4. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies

    OpenAIRE

    Xue, Yutong; Gibbons, Richard; Yan, Zhijiang; Yang, Dafeng; McDowell, Tarra L.; Sechi, Salvatore; QIN Jun; Zhou, Sharleen; Higgs, Doug; Wang, Weidong

    2003-01-01

    ATRX syndrome is characterized by X-linked mental retardation associated with α-thalassemia. The gene mutated in this disease, ATRX, encodes a plant homeodomain-like finger and a SWI2/SNF2-like ATPase motif, both of which are often found in chromatin-remodeling enzymes, but ATRX has not been characterized biochemically. By immunoprecipitation from HeLa extract, we found that ATRX is in a complex with transcription cofactor Daxx. The following evidence supports that ATRX and Daxx are component...

  5. MRN1 implicates chromatin remodeling complexes and architectural factors in mRNA maturation

    DEFF Research Database (Denmark)

    Düring, Louis; Thorsen, Michael; Petersen, Darima;

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6¿¿ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin....... Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309¿, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing....

  6. MRN1 implicates chromatin remodeling complexes and architectural factors in mRNA maturation

    DEFF Research Database (Denmark)

    Düring, Louis; Thorsen, Michael; Petersen, Darima

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6¿¿ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin...... architectural proteins Nhp6A/Nhp6B, accumulate intron-containing pre-mRNA at the restrictive temperature. In addition, we demonstrate that rsc8-ts16 nhp6¿¿ cells contain low levels of U6 snRNA and U4/U6 di-snRNA that is further exacerbated after two hours growth at the restrictive temperature. This change in U6...

  7. Whole-exome sequencing of endometriosis identifies frequent alterations in genes involved in cell adhesion and chromatin-remodeling complexes.

    Science.gov (United States)

    Li, Xiaolei; Zhang, Yan; Zhao, Luyang; Wang, Lingxiong; Wu, Zhiqiang; Mei, Qian; Nie, Jing; Li, Xiang; Li, Yali; Fu, Xiaobing; Wang, Xiaoning; Meng, Yuanguang; Han, Weidong

    2014-11-15

    Endometriosis is a complex and enigmatic disease that arises from the interplay among multiple genetic and environmental factors. The defining feature of endometriosis is the deposition and growth of endometrial tissues at sites outside of the uterine cavity. Studies to date have established that endometriosis is heritable but have not addressed the causal genetic variants for this disease. Here, we conducted whole-exome sequencing to comprehensively search for somatic mutations in both eutopic and ectopic endometrium from 16 endometriosis patients and five normal control patients using laser capture microdissection. We compared the mutational landscape of ectopic endometrium with the corresponding eutopic sample from endometriosis patients compared with endometrium from normal women and identified previously unreported mutated genes and pathway alternations. Statistical analysis of exome data identified that most genes were specifically mutated in both eutopic and ectopic endometrium cells. In particular, genes that are involved in biological adhesion, cell-cell junctions, and chromatin-remodeling complex(es) were identified, which partially supports the retrograde menstruation theory that proposes that endometrial cells are refluxed through the fallopian tubes during menstruation and implanted onto the peritoneum or pelvic organs. Conspicuously, when we compared exomic mutation data for paired eutopic and ectopic endometrium, we identified a mutational signature in both endometrial types for which no overlap in somatic single nucleotide variants were observed. These mutations occurred in a mutually exclusive manner, likely because of the discrepancy in endometriosis pathology and physiology, as eutopic endometrium rapidly regrows, and ectopic endometrial growth is inert. Our findings provide, to our knowledge, an unbiased view of the landscape of genetic alterations in endometriosis and vital information for indicating that genetic alterations in cytoskeletal and

  8. MiRNA-Mediated Regulation of the SWI/SNF Chromatin Remodeling Complex Controls Pluripotency and Endodermal Differentiation in Human ESCs.

    Science.gov (United States)

    Wade, Staton L; Langer, Lee F; Ward, James M; Archer, Trevor K

    2015-10-01

    MicroRNAs and chromatin remodeling complexes represent powerful epigenetic mechanisms that regulate the pluripotent state. miR-302 is a strong inducer of pluripotency, which is characterized by a distinct chromatin architecture. This suggests that miR-302 regulates global chromatin structure; however, a direct relationship between miR-302 and chromatin remodelers has not been established. Here, we provide data to show that miR-302 regulates Brg1 chromatin remodeling complex composition in human embryonic stem cells (hESCs) through direct repression of the BAF53a and BAF170 subunits. With the subsequent overexpression of BAF170 in hESCs, we show that miR-302's inhibition of BAF170 protein levels can affect the expression of genes involved in cell proliferation. Furthermore, miR-302-mediated repression of BAF170 regulates pluripotency by positively influencing mesendodermal differentiation. Overexpression of BAF170 in hESCs led to biased differentiation toward the ectoderm lineage during EB formation and severely hindered directed definitive endoderm differentiation. Taken together, these data uncover a direct regulatory relationship between miR-302 and the Brg1 chromatin remodeling complex that controls gene expression and cell fate decisions in hESCs and suggests that similar mechanisms are at play during early human development.

  9. Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP

    DEFF Research Database (Denmark)

    Muratcioglu, Serena; Presman, Diego M; Pooley, John R

    2015-01-01

    The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow...... interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate...

  10. Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP.

    Science.gov (United States)

    Muratcioglu, Serena; Presman, Diego M; Pooley, John R; Grøntved, Lars; Hager, Gordon L; Nussinov, Ruth; Keskin, Ozlem; Gursoy, Attila

    2015-09-15

    The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate to regulate gene expression. This study suggests models for the assembly of the SWI/SNF-A (SWItch/Sucrose-NonFermentable) complex and its interaction with the GR. We used the PRISM algorithm (PRotein Interactions by Structural Matching) to predict the three-dimensional complex structures of the target proteins. The structural models indicate that BAF57 and/or BAF250 mediate the interaction between the GR and the SWI/SNF-A complex, corroborating experimental data. They further suggest that a BAF60a/BAF155 and/or BAF60a/BAF170 interaction is critical for association between the core and variant subunits. Further, we model the interaction between GR and CCAAT-enhancer-binding proteins (C/EBPs), since the GR can regulate gene expression indirectly by interacting with other transcription factors like C/EBPs. We observe that GR can bind to bZip domains of the C/EBPα homodimer as both a monomer and dimer of the DNA-binding domain. In silico mutagenesis of the predicted interface residues confirm the importance of these residues in binding. In vivo analysis of the computationally suggested mutations reveals that double mutations of the leucine residues (L317D+L335D) may disrupt the interaction between GR and C/EBPα. Determination of the complex structures of the GR is of fundamental relevance to understanding its interactions and functions, since the function of a protein or a

  11. Transcription profiling of Epstein-Barr virus nuclear antigen (EBNA-1 expressing cells suggests targeting of chromatin remodeling complexes.

    Directory of Open Access Journals (Sweden)

    Ramakrishna Sompallae

    Full Text Available The Epstein-Barr virus (EBV encoded nuclear antigen (EBNA-1 regulates virus replication and transcription, and participates in the remodeling of the cellular environment that accompanies EBV induced B-cell immortalization and malignant transformation. The putative cellular targets of these effects of EBNA-1 are largely unknown. To address this issue we have profiled the transcriptional changes induced by short- and long-term expression of EBNA-1 in the EBV negative B-cell lymphoma BJAB. Three hundred and nineteen cellular genes were regulated in a conditional transfectant shortly after EBNA-1 induction while a ten fold higher number of genes was regulated upon continuous EBNA-1 expression. Promoter analysis of the differentially regulated genes demonstrated a significant enrichment of putative EBNA-1 binding sites suggesting that EBNA-1 may directly influence the transcription of a subset of genes. Gene ontology analysis of forty seven genes that were consistently regulated independently on the time of EBNA-1 expression revealed an unexpected enrichment of genes involved in the maintenance of chromatin architecture. The interaction network of the affected gene products suggests that EBNA-1 may promote a broad rearrangement of the cellular transcription landscape by altering the expression of key components of chromatin remodeling complexes.

  12. SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia-associated transcription factor in melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Vachtenheim, Jiri, E-mail: jivach@upn.anet.cz [Laboratory of Molecular Biology, University Hospital, Charles University, Prague (Czech Republic); Ondrusova, Lubica [Laboratory of Molecular Biology, University Hospital, Charles University, Prague (Czech Republic); Borovansky, Jan [Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University, Prague (Czech Republic)

    2010-02-12

    The microphthalmia-associated transcription factor (MITF) is required for melanocyte development, maintenance of the melanocyte-specific transcription, and survival of melanoma cells. MITF positively regulates expression of more than 25 genes in pigment cells. Recently, it has been demonstrated that expression of several MITF downstream targets requires the SWI/SNF chromatin remodeling complex, which contains one of the two catalytic subunits, Brm or Brg1. Here we show that the expression of MITF itself critically requires active SWI/SNF. In several Brm/Brg1-expressing melanoma cell lines, knockdown of Brg1 severely compromised MITF expression with a concomitant dowregulation of MITF targets and decreased cell proliferation. Although Brm was able to substitute for Brg1 in maintaining MITF expression and melanoma cell proliferation, sequential knockdown of both Brm and Brg1 in 501mel cells abolished proliferation. In Brg1-null SK-MEL-5 melanoma cells, depletion of Brm alone was sufficient to abrogate MITF expression and cell proliferation. Chromatin immunoprecipitation confirmed the binding of Brg1 or Brm to the promoter of MITF. Together these results demonstrate the essential role of SWI/SNF for expression of MITF and suggest that SWI/SNF may be a promissing target in melanoma therapy.

  13. Chromatin Remodelers: From Function to Dysfunction

    Directory of Open Access Journals (Sweden)

    Gernot Längst

    2015-06-01

    Full Text Available Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development.

  14. The developmental and pathogenic roles of BAF57, a special subunit of the BAF chromatin-remodeling complex.

    Science.gov (United States)

    Lomelí, Hilda; Castillo-Robles, Jorge

    2016-06-01

    Mammalian SWI/SNF or BAF chromatin-remodeling complexes are polymorphic assemblies of homologous subunit families that remodel nucleosomes. BAF57 is a subunit of the BAF complexes; it is encoded only in higher eukaryotes and is present in all mammalian assemblies. Its main structural feature is a high-mobility group domain, the DNA-binding properties of which suggest that BAF57 may play topological roles as the BAF complex enters or exits the nucleosome. BAF57 displays specific interactions with a number of proteins outside the BAF complex. Through these interactions, it can accomplish specific functions. In the embryo, BAF57 is responsible for the silencing of the CD4 gene during T-cell differentiation, and during the repression of neuronal genes in non-neuronal cells, BAF57 interacts with the transcriptional corepressor, Co-REST, and facilitates repression. Extensive work has demonstrated a specific role of BAF57 in regulating the interactions between BAF and nuclear hormone receptors. Despite its involvement in oncogenic pathways, new generation sequencing studies do not support a prominent role for BAF57 in the initiation of cancer. On the other hand, evidence has emerged to support a role for BAF57 as a metastasis factor, a prognosis marker and a therapeutic target. In humans, BAF57 is associated with disease, as mutations in this gene predispose to important congenital disorders, including menigioma disease or the Coffin-Siris syndrome. In this article, we present an exhaustive analysis of the BAF57 molecular and biochemical properties, cellular functions, loss-of-function phenotypes in living organisms and pathological manifestations in cases of human mutations.

  15. The Core Subunit of A Chromatin-Remodeling Complex, ZmCHB101, Plays Essential Roles in Maize Growth and Development.

    Science.gov (United States)

    Yu, Xiaoming; Jiang, Lili; Wu, Rui; Meng, Xinchao; Zhang, Ai; Li, Ning; Xia, Qiong; Qi, Xin; Pang, Jinsong; Xu, Zheng-Yi; Liu, Bao

    2016-12-05

    ATP-dependent chromatin remodeling complexes play essential roles in the regulation of diverse biological processes by formulating a DNA template that is accessible to the general transcription apparatus. Although the function of chromatin remodelers in plant development has been studied in A. thaliana, how it affects growth and development of major crops (e.g., maize) remains uninvestigated. Combining genetic, genomic and bioinformatic analyses, we show here that the maize core subunit of chromatin remodeling complex, ZmCHB101, plays essential roles in growth and development of maize at both vegetative and reproductive stages. Independent ZmCHB101 RNA interference plant lines displayed abaxially curling leaf phenotype due to increase of bulliform cell numbers, and showed impaired development of tassel and cob. RNA-seq-based transcriptome profiling revealed that ZmCHB101 dictated transcriptional reprogramming of a significant set of genes involved in plant development, photosynthesis, metabolic regulation, stress response and gene expressional regulation. Intriguingly, we found that ZmCHB101 was required for maintaining normal nucleosome density and 45 S rDNA compaction. Our findings suggest that the SWI3 protein, ZmCHB101, plays pivotal roles in maize normal growth and development via regulation of chromatin structure.

  16. The two different isoforms of the RSC chromatin remodeling complex play distinct roles in DNA damage responses.

    Science.gov (United States)

    Chambers, Anna L; Brownlee, Peter M; Durley, Samuel C; Beacham, Tracey; Kent, Nicholas A; Downs, Jessica A

    2012-01-01

    The RSC chromatin remodeling complex has been implicated in contributing to DNA double-strand break (DSB) repair in a number of studies. Both survival and levels of H2A phosphorylation in response to damage are reduced in the absence of RSC. Importantly, there is evidence for two isoforms of this complex, defined by the presence of either Rsc1 or Rsc2. Here, we investigated whether the two isoforms of RSC provide distinct contributions to DNA damage responses. First, we established that the two isoforms of RSC differ in the presence of Rsc1 or Rsc2 but otherwise have the same subunit composition. We found that both rsc1 and rsc2 mutant strains have intact DNA damage-induced checkpoint activity and transcriptional induction. In addition, both strains show reduced non-homologous end joining activity and have a similar spectrum of DSB repair junctions, suggesting perhaps that the two complexes provide the same functions. However, the hypersensitivity of a rsc1 strain cannot be complemented with an extra copy of RSC2, and likewise, the hypersensitivity of the rsc2 strain remains unchanged when an additional copy of RSC1 is present, indicating that the two proteins are unable to functionally compensate for one another in DNA damage responses. Rsc1, but not Rsc2, is required for nucleosome sliding flanking a DNA DSB. Interestingly, while swapping the domains from Rsc1 into the Rsc2 protein does not compromise hypersensitivity to DNA damage suggesting they are functionally interchangeable, the BAH domain from Rsc1 confers upon Rsc2 the ability to remodel chromatin at a DNA break. These data demonstrate that, despite the similarity between Rsc1 and Rsc2, the two different isoforms of RSC provide distinct functions in DNA damage responses, and that at least part of the functional specificity is dictated by the BAH domains.

  17. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes.

    Science.gov (United States)

    Lee, Kenneth K; Sardiu, Mihaela E; Swanson, Selene K; Gilmore, Joshua M; Torok, Michael; Grant, Patrick A; Florens, Laurence; Workman, Jerry L; Washburn, Michael P

    2011-07-05

    Despite the availability of several large-scale proteomics studies aiming to identify protein interactions on a global scale, little is known about how proteins interact and are organized within macromolecular complexes. Here, we describe a technique that consists of a combination of biochemistry approaches, quantitative proteomics and computational methods using wild-type and deletion strains to investigate the organization of proteins within macromolecular protein complexes. We applied this technique to determine the organization of two well-studied complexes, Spt-Ada-Gcn5 histone acetyltransferase (SAGA) and ADA, for which no comprehensive high-resolution structures exist. This approach revealed that SAGA/ADA is composed of five distinct functional modules, which can persist separately. Furthermore, we identified a novel subunit of the ADA complex, termed Ahc2, and characterized Sgf29 as an ADA family protein present in all Gcn5 histone acetyltransferase complexes. Finally, we propose a model for the architecture of the SAGA and ADA complexes, which predicts novel functional associations within the SAGA complex and provides mechanistic insights into phenotypical observations in SAGA mutants.

  18. Genome-wide Association of Yorkie with Chromatin and Chromatin-Remodeling Complexes

    Directory of Open Access Journals (Sweden)

    Hyangyee Oh

    2013-02-01

    Full Text Available The Hippo pathway regulates growth through the transcriptional coactivator Yorkie, but how Yorkie promotes transcription remains poorly understood. We address this by characterizing Yorkie’s association with chromatin and by identifying nuclear partners that effect transcriptional activation. Coimmunoprecipitation and mass spectrometry identify GAGA factor (GAF, the Brahma complex, and the Mediator complex as Yorkie-associated nuclear protein complexes. All three are required for Yorkie’s transcriptional activation of downstream genes, and GAF and the Brahma complex subunit Moira interact directly with Yorkie. Genome-wide chromatin-binding experiments identify thousands of Yorkie sites, most of which are associated with elevated transcription, based on genome-wide analysis of messenger RNA and histone H3K4Me3 modification. Chromatin binding also supports extensive functional overlap between Yorkie and GAF. Our studies suggest a widespread role for Yorkie as a regulator of transcription and identify recruitment of the chromatin-modifying GAF protein and BRM complex as a molecular mechanism for transcriptional activation by Yorkie.

  19. Knockdown Brm and Baf170, components of chromatin remodeling complex, facilitates reprogramming of somatic cells

    Science.gov (United States)

    The SWI/SNF (SWItch/Sucrose NonFermentable or BAF, Brg/Brahma-associated factors) complexes are epigenetic modifiers of chromatin structure and undergo progressive changes in subunit composition during cellular differentiation. For example, in embryonic stem cells (ESCs) esBAF contains Brg1 and Baf...

  20. Methylation specific targeting of a chromatin remodeling complex from sponges to humans

    Science.gov (United States)

    Cramer, Jason M.; Pohlmann, Deborah; Gomez, Fernando; Mark, Leslie; Kornegay, Benjamin; Hall, Chelsea; Siraliev-Perez, Edhriz; Walavalkar, Ninad M.; Sperlazza, M. Jeannette; Bilinovich, Stephanie; Prokop, Jeremy W.; Hill, April L.; Williams Jr., David C.

    2017-01-01

    DNA cytosine methylation and methyl-cytosine binding domain (MBD) containing proteins are found throughout all vertebrate species studied to date. However, both the presence of DNA methylation and pattern of methylation varies among invertebrate species. Invertebrates generally have only a single MBD protein, MBD2/3, that does not always contain appropriate residues for selectively binding methylated DNA. Therefore, we sought to determine whether sponges, one of the most ancient extant metazoan lineages, possess an MBD2/3 capable of recognizing methylated DNA and recruiting the associated nucleosome remodeling and deacetylase (NuRD) complex. We find that Ephydatia muelleri has genes for each of the NuRD core components including an EmMBD2/3 that selectively binds methylated DNA. NMR analyses reveal a remarkably conserved binding mode, showing almost identical chemical shift changes between binding to methylated and unmethylated CpG dinucleotides. In addition, we find that EmMBD2/3 and EmGATAD2A/B proteins form a coiled-coil interaction known to be critical for the formation of NuRD. Finally, we show that knockdown of EmMBD2/3 expression disrupts normal cellular architecture and development of E. muelleri. These data support a model in which the MBD2/3 methylation-dependent functional role emerged with the earliest multicellular organisms and has been maintained to varying degrees across animal evolution. PMID:28094816

  1. Downregulation of ARID1A, a component of the SWI/SNF chromatin remodeling complex, in breast cancer

    Science.gov (United States)

    Takao, Chika; Morikawa, Akemi; Ohkubo, Hiroshi; Kito, Yusuke; Saigo, Chiemi; Sakuratani, Takuji; Futamura, Manabu; Takeuchi, Tamotsu; Yoshida, Kazuhiro

    2017-01-01

    Recent studies unraveled that AT-rich interactive domain-containing protein 1A (ARID1A), a subunit of the mammary SWI/SNF chromatin remodeling complex, acts as a tumor suppressor in various cancers. In this study, we first evaluated ARID1A expression by immunohistochemistry in invasive breast cancer tissue specimens and assessed the correlation with the prognosis of patients with breast cancer. Non-tumorous mammary duct epithelial cells exhibited strong nuclear ARID1A staining, whereas different degrees of loss in ARID1A immunoreactivity were observed in many invasive breast cancer cells. We scored ARID1A immunoreactivity based on the sum of the percentage score in invasive cancer cells (on a scale of 0 to 5) and the intensity score (on a scale of 0 to 3), for a possible total score of 0 to 8. Interestingly, partial loss of ARID1A expression, score 2 to 3, was significantly correlated with poor disease free survival of the patients. Subsequently, we performed siRNA-mediated ARID1A knockdown in cultured breast cancer cells followed by comprehensive gene profiling and quantitative RT-PCR. Interestingly, many genes were downregulated by partial loss of ARID1A, whereas RAB11FIP1 gene expression was significantly upregulated by partial loss of ARID1A expression in breast cancer cells. In contrast, a more than 50% reduction in ARID1A mRNA decreased RAB11FIP1gene expression. Immunoblotting also demonstrated that partial downregulation of ARID1A mRNA at approximately 20% reduction significantly increased the expression of RAB11FIP1 protein in MCF-7 cells, whereas, over 50% reduction of ARID1A mRNA resulted in reduction of RAB11FIP1 protein in cultured breast cancer cells. Recent studies reveal that RAB11FIP1 overexpression leads to breast cancer progression. Altogether, the present findings indicated that partial loss of ARID1A expression is linked to unfavorable outcome for patients with breast cancer, possibly due to increased RAB11FIP1 expression.

  2. BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells

    Science.gov (United States)

    Yan, Zhijiang; Wang, Zhong; Sharova, Lioudmila; Sharov, Alexei A.; Ling, Chen; Piao, Yulan; Aiba, Kazuhiro; Matoba, Ryo; Wang, Weidong; Ko, Minoru S.H.

    2008-01-01

    Whether SWI/SNF chromatin remodeling complexes play roles in embryonic stem (ES) cells remains unknown. Here we show that SWI/SNF complexes are present in mouse ES cells, and their composition is dynamically regulated upon induction of ES cell differentiation. For example, the SWI/SNF purified from undifferentiated ES cells contains a high level of BAF155 and a low level of BAF170 (both of which are homologs of yeast SWI3 protein), whereas that from differentiated cells contains near equal amounts of both. Moreover, the levels of BAF250A and BAF250B decrease, whereas that of BRM increases, during the differentiation of ES cells. The altered expression of SWI/SNF components hinted that these complexes could play roles in ES cell maintenance or differentiation. We therefore generated ES cells with biallelic inactivation of BAF250B, and found that these cells display a reduced proliferation rate and an abnormal cell cycle. Importantly, these cells are deficient in self-renewal capacity of undifferentiated ES cells, and exhibit certain phenotypes of differentiated cells, including reduced expression of several pluripotency-related genes, and increased expression of some differentiation-related genes. These data suggest that the BAF250B-associated SWI/SNF is essential for mouse ES cells to maintain its normal proliferation and pluripotency. The work presented here underscores the importance of SWI/SNF chromatin remodeling complexes in pluripotent stem cells. PMID:18323406

  3. SLIDE, the Protein Interacting Domain of Imitation Switch Remodelers, Binds DDT-Domain Proteins of Different Subfamilies in Chromatin Remodeling Complexes

    Institute of Scientific and Technical Information of China (English)

    Jiaqiang Dong; Zheng Gao; Shujing Liu; Guang Li; Zhongnan Yang; Hai Huang; Lin Xu

    2013-01-01

    The Imitation Switch (ISWI) type adenosine triphosphate (ATP)-dependent chromatin remodeling factors are conserved proteins in eukaryotes, and some of them are known to form stable remodeling complexes with members from a family of proteins, termed DDT-domain proteins. Although it is well documented that ISWIs play important roles in different biological processes in many eukaryotic species, the molecular basis for protein interactions in ISWI complexes has not been fully addressed. Here, we report the identification of interaction domains for both ISWI and DDT-domain proteins. By analyzing CHROMATIN REMODELING11 (CHR11) and RINGLET1 (RLT1), an Arabidopsis thaliana ISWI (AtISWI) and AtDDT-domain protein, respectively, we show that the SLIDE domain of CHR11 and the DDT domain together with an adjacent sequence of RLT1 are responsible for their binding. The Arabidopsis genome contains at least 12 genes that encode DDT-domain proteins, which could be grouped into five subfamilies based on the sequence similarity. The SLIDE domain of AtISWI is able to bind members from different AtDDT subfamilies. Moreover, a human ISWI protein SNF2H is capable of binding AtDDT-domain proteins through its SLIDE domain, suggesting that binding to DDT-domain proteins is a conserved biochemical function for the SLIDE domain of ISWIs in eukaryotes.

  4. Haploinsufficiency of ARID1B, a Member of the SWI/SNF-A Chromatin-Remodeling Complex, Is a Frequent Cause of Intellectual Disability

    Science.gov (United States)

    Hoyer, Juliane; Ekici, Arif B.; Endele, Sabine; Popp, Bernt; Zweier, Christiane; Wiesener, Antje; Wohlleber, Eva; Dufke, Andreas; Rossier, Eva; Petsch, Corinna; Zweier, Markus; Göhring, Ina; Zink, Alexander M.; Rappold, Gudrun; Schröck, Evelin; Wieczorek, Dagmar; Riess, Olaf; Engels, Hartmut; Rauch, Anita; Reis, André

    2012-01-01

    Intellectual disability (ID) is a clinically and genetically heterogeneous common condition that remains etiologically unresolved in the majority of cases. Although several hundred diseased genes have been identified in X-linked, autosomal-recessive, or syndromic types of ID, the establishment of an etiological basis remains a difficult task in unspecific, sporadic cases. Just recently, de novo mutations in SYNGAP1, STXBP1, MEF2C, and GRIN2B were reported as relatively common causes of ID in such individuals. On the basis of a patient with severe ID and a 2.5 Mb microdeletion including ARID1B in chromosomal region 6q25, we performed mutational analysis in 887 unselected patients with unexplained ID. In this cohort, we found eight (0.9%) additional de novo nonsense or frameshift mutations predicted to cause haploinsufficiency. Our findings indicate that haploinsufficiency of ARID1B, a member of the SWI/SNF-A chromatin-remodeling complex, is a common cause of ID, and they add to the growing evidence that chromatin-remodeling defects are an important contributor to neurodevelopmental disorders. PMID:22405089

  5. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  6. The SWI/SNF chromatin remodeling complex exerts both negative and positive control over LET-23/EGFR-dependent vulval induction in Caenorhabditis elegans.

    Science.gov (United States)

    Flibotte, Stephane; Kim, Bo Ram; Van de Laar, Emily; Brown, Louise; Moghal, Nadeem

    2016-07-01

    Signaling by the epidermal growth factor receptor (EGFR) generates diverse developmental patterns. This requires precise control over the location and intensity of signaling. Elucidation of these regulatory mechanisms is important for understanding development and disease pathogenesis. In Caenorhabditis elegans, LIN-3/EGF induces vulval formation in the mid-body, which requires LET-23/EGFR activation only in P6.p, the vulval progenitor nearest the LIN-3 source. To identify mechanisms regulating this signaling pattern, we screened for mutations that cooperate with a let-23 gain-of-function allele to cause ectopic vulval induction. Here, we describe a dominant gain-of-function mutation in swsn-4, a component of SWI/SNF chromatin remodeling complexes. Loss-of-function mutations in multiple SWI/SNF components reveal that weak reduction in SWI/SNF activity causes ectopic vulval induction, while stronger reduction prevents adoption of vulval fates, a phenomenon also observed with increasing loss of LET-23 activity. High levels of LET-23 expression in P6.p are thought to locally sequester LIN-3, thereby preventing ectopic vulval induction, with slight reductions in its expression interfering with LIN-3 sequestration, but not vulval fate signaling. We find that SWI/SNF positively regulates LET-23 expression in P6.p descendants, providing an explanation for the similarities between let-23 and SWI/SNF mutant phenotypes. However, SWI/SNF regulation of LET-23 expression is cell-specific, with SWI/SNF repressing its expression in the ALA neuron. The swsn-4 gain-of-function mutation affects the PTH domain, and provides the first evidence that its auto-inhibitory function in yeast Sth1p is conserved in metazoan chromatin remodelers. Finally, our work supports broad use of SWI/SNF in regulating EGFR signaling during development, and suggests that dominant SWI/SNF mutations in certain human congenital anomaly syndromes may be gain-of-functions.

  7. A unique missense allele of BAF155, a core BAF chromatin remodeling complex protein, causes neural tube closure defects in mice.

    Science.gov (United States)

    Harmacek, Laura; Watkins-Chow, Dawn E; Chen, Jianfu; Jones, Kenneth L; Pavan, William J; Salbaum, J Michael; Niswander, Lee

    2014-05-01

    Failure of embryonic neural tube closure results in the second most common class of birth defects known as neural tube defects (NTDs). While NTDs are likely the result of complex multigenic dysfunction, it is not known whether polymorphisms in epigenetic regulators may be risk factors for NTDs. Here we characterized Baf155(msp3) , a unique ENU-induced allele in mice. Homozygous Baf155(mps3) embryos exhibit highly penetrant exencephaly, allowing us to investigate the roles of an assembled, but malfunctional BAF chromatin remodeling complex in vivo at the time of neural tube closure. Evidence of defects in proliferation and apoptosis were found within the neural tube. RNA-Seq analysis revealed that surprisingly few genes showed altered expression in Baf155 mutant neural tissue, given the broad epigenetic role of the BAF complex, but included genes involved in neural development and cell survival. Moreover, gene expression changes between individual mutants were variable even though the NTD was consistently observed. This suggests that inconsistent gene regulation contributes to failed neural tube closure. These results shed light on the role of the BAF complex in the process of neural tube closure and highlight the importance of studying missense alleles to understand epigenetic regulation during critical phases of development.

  8. Chromatin remodeling and cancer, Part I: Covalent histone modifications.

    Science.gov (United States)

    Wang, Gang G; Allis, C David; Chi, Ping

    2007-09-01

    Dynamic chromatin remodeling underlies many, if not all, DNA-templated biological processes, including gene transcription; DNA replication and repair; chromosome condensation; and segregation and apoptosis. Disruption of these processes has been linked to the development and progression of cancer. The mechanisms of dynamic chromatin remodeling include the use of covalent histone modifications, histone variants, ATP-dependent complexes and DNA methylation. Together, these mechanisms impart variation into the chromatin fiber, and this variation gives rise to an 'epigenetic landscape' that extends the biological output of DNA alone. Here, we review recent advances in chromatin remodeling, and pay particular attention to mechanisms that appear to be linked to human cancer. Where possible, we discuss the implications of these advances for disease-management strategies.

  9. SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis.

    Science.gov (United States)

    Berriri, Souha; Gangappa, Sreeramaiah N; Kumar, S Vinod

    2016-07-06

    Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWR1c and H2A.Z have been shown to control gene expression underlying development and environmental responses. Although they have been implicated in defense, the specific roles of the complex subunits and H2A.Z in immunity are not well understood. In this study, we analyzed the roles of the SWR1c subunits, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6), as well as H2A.Z, in defense and gene regulation. We found that SWR1c components play different roles in resistance to different pathogens. Loss of PIE1 and SWC6 function as well as depletion of H2A.Z led to reduced basal resistance, while loss of ARP6 fucntion resulted in enhanced resistance. We found that mutations in PIE1 and SWC6 resulted in impaired effector-triggered immunity. Mutation in SWR1c components and H2A.Z also resulted in compromised jasmonic acid/ethylene-mediated immunity. Genome-wide expression analyses similarly reveal distinct roles for H2A.Z and SWR1c components in gene regulation, and suggest a potential role for PIE1 in the regulation of the cross talk between defense signaling pathways. Our data show that although they are part of the same complex, Arabidopsis SWR1c components could have non-redundant functions in plant immunity and gene regulation.

  10. Is chromatin remodeling required to build sister-chromatid cohesion?

    NARCIS (Netherlands)

    Riedel, Christian G; Gregan, Juraj; Gruber, Stephan; Nasmyth, Kim

    2004-01-01

    Chromosome segregation during mitosis and meiosis depends on the linkage of sister DNA molecules after replication. These links, known as sister-chromatid cohesion, are provided by a multi-subunit complex called cohesin. Recent papers suggest that chromatin-remodeling complexes also have a role in t

  11. BRAHMA ATPase of the SWI/SNF chromatin remodeling complex acts as a positive regulator of gibberellin-mediated responses in arabidopsis.

    Directory of Open Access Journals (Sweden)

    Rafal Archacki

    Full Text Available SWI/SNF chromatin remodeling complexes perform a pivotal function in the regulation of eukaryotic gene expression. Arabidopsis (Arabidopsis thaliana mutants in major SWI/SNF subunits display embryo-lethal or dwarf phenotypes, indicating their critical role in molecular pathways controlling development and growth. As gibberellins (GA are major positive regulators of plant growth, we wanted to establish whether there is a link between SWI/SNF and GA signaling in Arabidopsis. This study revealed that in brm-1 plants, depleted in SWI/SNF BRAHMA (BRM ATPase, a number of GA-related phenotypic traits are GA-sensitive and that the loss of BRM results in markedly decreased level of endogenous bioactive GA. Transcriptional profiling of brm-1 and the GA biosynthesis mutant ga1-3, as well as the ga1-3/brm-1 double mutant demonstrated that BRM affects the expression of a large set of GA-responsive genes including genes responsible for GA biosynthesis and signaling. Furthermore, we found that BRM acts as an activator and directly associates with promoters of GA3ox1, a GA biosynthetic gene, and SCL3, implicated in positive regulation of the GA pathway. Many GA-responsive gene expression alterations in the brm-1 mutant are likely due to depleted levels of active GAs. However, the analysis of genetic interactions between BRM and the DELLA GA pathway repressors, revealed that BRM also acts on GA-responsive genes independently of its effect on GA level. Given the central position occupied by SWI/SNF complexes within regulatory networks controlling fundamental biological processes, the identification of diverse functional intersections of BRM with GA-dependent processes in this study suggests a role for SWI/SNF in facilitating crosstalk between GA-mediated regulation and other cellular pathways.

  12. p63 and Brg1 control developmentally regulated higher-order chromatin remodelling at the epidermal differentiation complex locus in epidermal progenitor cells

    Science.gov (United States)

    Mardaryev, Andrei N.; Gdula, Michal R.; Yarker, Joanne L.; Emelianov, Vladimir N.; Poterlowicz, Krzysztof; Sharov, Andrey A.; Sharova, Tatyana Y.; Scarpa, Julie A.; Chambon, Pierre; Botchkarev, Vladimir A.; Fessing, Michael Y.

    2014-01-01

    Chromatin structural states and their remodelling, including higher-order chromatin folding and three-dimensional (3D) genome organisation, play an important role in the control of gene expression. The role of 3D genome organisation in the control and execution of lineage-specific transcription programmes during the development and differentiation of multipotent stem cells into specialised cell types remains poorly understood. Here, we show that substantial remodelling of the higher-order chromatin structure of the epidermal differentiation complex (EDC), a keratinocyte lineage-specific gene locus on mouse chromosome 3, occurs during epidermal morphogenesis. During epidermal development, the locus relocates away from the nuclear periphery towards the nuclear interior into a compartment enriched in SC35-positive nuclear speckles. Relocation of the EDC locus occurs prior to the full activation of EDC genes involved in controlling terminal keratinocyte differentiation and is a lineage-specific, developmentally regulated event controlled by transcription factor p63, a master regulator of epidermal development. We also show that, in epidermal progenitor cells, p63 directly regulates the expression of the ATP-dependent chromatin remodeller Brg1, which binds to distinct domains within the EDC and is required for relocation of the EDC towards the nuclear interior. Furthermore, Brg1 also regulates gene expression within the EDC locus during epidermal morphogenesis. Thus, p63 and its direct target Brg1 play an essential role in remodelling the higher-order chromatin structure of the EDC and in the specific positioning of this locus within the landscape of the 3D nuclear space, as required for the efficient expression of EDC genes in epidermal progenitor cells during skin development. PMID:24346698

  13. Recruitment by the Repressor Freud-1 of Histone Deacetylase-Brg1 Chromatin Remodeling Complexes to Strengthen HTR1A Gene Repression.

    Science.gov (United States)

    Souslova, Tatiana; Mirédin, Kim; Millar, Anne M; Albert, Paul R

    2016-12-02

    Five-prime repressor element under dual repression binding protein-1 (Freud-1)/CC2D1A is genetically linked to intellectual disability and implicated in neuronal development. Freud-1 represses the serotonin-1A (5-HT1A) receptor gene HTR1A by histone deacetylase (HDAC)-dependent or HDAC-independent mechanisms in 5-HT1A-negative (e.g., HEK-293) or 5-HT1A-expressing cells (SK-N-SH), respectively. To identify the underlying mechanisms, Freud-1-associated proteins were affinity-purified from HEK-293 nuclear extracts and members of the Brg1/SMARCCA chromatin remodeling and Sin3A-HDAC corepressor complexes were identified. Pull-down assays using recombinant proteins showed that Freud-1 interacts directly with the Brg1 carboxyl-terminal domain; interaction with Brg1 required the carboxyl-terminal of Freud-1. Freud-1 complexes in HEK-293 and SK-N-SH cells differed, with low levels of BAF170/SMARCC2 and BAF57/SMARCE1 in HEK-293 cells and low-undetectable BAF155/SMARCC1, Sin3A, and HDAC1/2 in SK-N-SH cells. Similarly, by quantitative chromatin immunoprecipitation, Brg1-BAF170/57 and Sin3A-HDAC complexes were observed at the HTR1A promoter in HEK-293 cells, whereas in SK-N-SH cells, Sin3A-HDAC proteins were not detected. Quantifying 5-HT1A receptor mRNA levels in cells treated with siRNA to Freud-1, Brg1, or both RNAs addressed the functional role of the Freud-1-Brg1 complex. In HEK-293 cells, 5-HT1A receptor mRNA levels were increased only when both Freud-1 and Brg1 were depleted, but in SK-N-SH cells, depletion of either protein upregulated 5-HT1A receptor RNA. Thus, recruitment by Freud-1 of Brg1, BAF155, and Sin3A-HDAC complexes appears to strengthen repression of the HTR1A gene to prevent its expression inappropriate cell types, while recruitment of the Brg1-BAF170/57 complex is permissive to 5-HT1A receptor expression. Alterations in Freud-1-Brg1 interactions in mutants associated with intellectual disability could impair gene repression leading to altered neuronal

  14. The Chd Family of Chromatin Remodelers

    OpenAIRE

    Marfella, Concetta G.A.; Imbalzano, Anthony N.

    2007-01-01

    Chromatin remodeling enzymes contribute to the dynamic changes that occur in chromatin structure during cellular processes such as transcription, recombination, repair, and replication. Members of the chromodomain helicase DNA-binding (Chd) family of enzymes belong to the SNF2 superfamily of ATP-dependent chromatin remodelers. The Chd proteins are distinguished by the presence of two N-terminal chromodomains that function as interaction surfaces for a variety of chromatin components. Genetic,...

  15. Analysis list: INO80 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available INO80 Blood + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/INO80.1.t...sv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/INO80.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/INO...80.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/INO80.Blood.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Blood.gml ...

  16. Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer

    OpenAIRE

    Weissman, Bernard; Knudsen, Karen E

    2009-01-01

    There is increasing evidence that alterations in chromatin remodeling play a significant role in human disease. The SWI/SNF chromatin remodeling complex family mobilizes nucleosomes and functions as a master regulator of gene expression and chromatin dynamics whose functional specificity is driven by combinatorial assembly of a central ATPase and association with 10-12 unique subunits. While the biochemical consequence of SWI/SNF in model systems has been extensively reviewed, the present art...

  17. Chromatin remodeling in cardiovascular development and physiology.

    Science.gov (United States)

    Han, Pei; Hang, Calvin T; Yang, Jin; Chang, Ching-Pin

    2011-02-04

    Chromatin regulation provides an important means for controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various transcription factors in the fine regulation of gene expression, essential for all aspects of cardiovascular biology. Aberrant cardiac gene expression, triggered by a variety of pathological insults, can cause heart diseases in both animals and humans. The severity of cardiomyopathy and heart failure correlates strongly with abnormal cardiac gene expression. Therefore, controlling cardiac gene expression presents a promising approach to the treatment of human cardiomyopathy. This review focuses on the roles of ATP-dependent chromatin-remodeling factors and chromatin-modifying enzymes in the control of gene expression during cardiovascular development and disease.

  18. Chromatin remodeling in cardiovascular development and physiology

    OpenAIRE

    Han, Pei; Hang, Calvin T.; Yang, Jin; Chang, Ching-Pin

    2011-01-01

    Chromatin regulation provides an important means of controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various tran...

  19. The yeast chromatin remodeler Rsc1-RSC complex is required for transcriptional activation of autophagy-related genes and inhibition of the TORC1 pathway in response to nitrogen starvation.

    Science.gov (United States)

    Yu, Feifei; Imamura, Yuko; Ueno, Masaru; Suzuki, Sho W; Ohsumi, Yoshinori; Yukawa, Masashi; Tsuchiya, Eiko

    2015-09-01

    The yeast RSC, an ATP-dependent chromatin-remodeling complex, is essential for mitotic and meiotic growth. There are two distinct isoforms of this complex defined by the presence of either Rsc1 or Rsc2; however, the functional differences between these complexes are unclear. Here we show that the RSC complex containing Rsc1, but not Rsc2, functions in autophagy induction. Rsc1 was required not only for full expression of ATG8 mRNA but also for maintenance of Atg8 protein stability. Interestingly, decreased autophagic activity and Atg8 protein stability in rsc1Δ cells, but not the defect in ATG8 mRNA expression, were partially suppressed by deletion of TOR1. In addition, we found that rsc1Δ impaired the binding between the Rho GTPase Rho1 and the TORC1-specific component Kog1, which is required for down-regulation of TORC1 activity. These results suggest that the Rsc1-containing RSC complex plays dual roles in the proper induction of autophagy: 1) the transcriptional activation of autophagy-related genes independent of the TORC1 pathway and 2) the inactivation of TORC1, possibly through enhancement of Rho1-Kog1 binding.

  20. Rsc4 Connects the Chromatin Remodeler RSC to RNA Polymerases‡

    Science.gov (United States)

    Soutourina, Julie; Bordas-Le Floch, Véronique; Gendrel, Gabrielle; Flores, Amando; Ducrot, Cécile; Dumay-Odelot, Hélène; Soularue, Pascal; Navarro, Francisco; Cairns, Bradley R.; Lefebvre, Olivier; Werner, Michel

    2006-01-01

    RSC is an essential, multisubunit chromatin remodeling complex. We show here that the Rsc4 subunit of RSC interacted via its C terminus with Rpb5, a conserved subunit shared by all three nuclear RNA polymerases (Pol). Furthermore, the RSC complex coimmunoprecipitated with all three RNA polymerases. Mutations in the C terminus of Rsc4 conferred a thermosensitive phenotype and the loss of interaction with Rpb5. Certain thermosensitive rpb5 mutations were lethal in combination with an rsc4 mutation, supporting the physiological significance of the interaction. Pol II transcription of ca. 12% of the yeast genome was increased or decreased twofold or more in a rsc4 C-terminal mutant. The transcription of the Pol III-transcribed genes SNR6 and RPR1 was also reduced, in agreement with the observed localization of RSC near many class III genes. Rsc4 C-terminal mutations did not alter the stability or assembly of the RSC complex, suggesting an impact on Rsc4 function. Strikingly, a C-terminal mutation of Rsc4 did not impair RSC recruitment to the RSC-responsive genes DUT1 and SMX3 but rather changed the chromatin accessibility of DNases to their promoter regions, suggesting that the altered transcription of DUT1 and SMX3 was the consequence of altered chromatin remodeling. PMID:16782880

  1. Advances in chromatin remodeling and human disease.

    Science.gov (United States)

    Cho, Kyoung Sang; Elizondo, Leah I; Boerkoel, Cornelius F

    2004-06-01

    Epigenetic factors alter phenotype without changing genotype. A primary molecular mechanism underlying epigenetics is the alteration of chromatin structure by covalent DNA modifications, covalent histone modifications, and nucleosome reorganization. Remodeling of chromatin structure regulates DNA methylation, replication, recombination, and repair as well as gene expression. As these functions would predict, dysfunction of the proteins that remodel chromatin causes an array of multi-system disorders and neoplasias. Insights from these diseases suggest that during embryonic and fetal life, environmental distortions of chromatin remodeling encode a 'molecular memory' that predispose the individual to diseases in adulthood.

  2. CHD chromatin remodelers and the transcription cycle.

    Science.gov (United States)

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  3. Epigenetic regulation and chromatin remodeling in learning and memory

    Science.gov (United States)

    Kim, Somi; Kaang, Bong-Kiun

    2017-01-01

    Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms. PMID:28082740

  4. Signaling to the circadian clock: plasticity by chromatin remodeling.

    Science.gov (United States)

    Nakahata, Yasukazu; Grimaldi, Benedetto; Sahar, Saurabh; Hirayama, Jun; Sassone-Corsi, Paolo

    2007-04-01

    Circadian rhythms govern several fundamental physiological functions in almost all organisms, from prokaryotes to humans. The circadian clocks are intrinsic time-tracking systems with which organisms can anticipate environmental changes and adapt to the appropriate time of day. In mammals, circadian rhythms are generated in pacemaker neurons within the suprachiasmatic nuclei (SCN), a small area of the hypothalamus, and are entrained by environmental cues, principally light. Disruption of these rhythms can profoundly influence human health, being linked to depression, insomnia, jet lag, coronary heart disease and a variety of neurodegenerative disorders. It is now well established that circadian clocks operate via transcriptional feedback autoregulatory loops that involve the products of circadian clock genes. Furthermore, peripheral tissues also contain independent clocks, whose oscillatory function is orchestrated by the SCN. The complex program of gene expression that characterizes circadian physiology involves dynamic changes in chromatin transitions. These remodeling events are therefore of great importance to ensure the proper timing and extent of circadian regulation. How signaling influences chromatin remodeling through histone modifications is therefore highly relevant in the context of circadian oscillation. Recent advances in the field have revealed unexpected links between circadian regulators, chromatin remodeling and cellular metabolism.

  5. Balancing chromatin remodeling and histone modifications in transcription.

    Science.gov (United States)

    Petty, Emily; Pillus, Lorraine

    2013-11-01

    Chromatin remodelers use the energy of ATP hydrolysis to reposition or evict nucleosomes or to replace canonical histones with histone variants. By regulating nucleosome dynamics, remodelers gate access to the underlying DNA for replication, repair, and transcription. Nucleosomes are subject to extensive post-translational modifications that can recruit regulatory proteins or alter the local chromatin structure. Just as extensive crosstalk has been observed between different histone post-translational modifications, there is growing evidence for both coordinated and antagonistic functional relations between nucleosome remodeling and modifying machineries. Defining the combined functions of the complexes that alter nucleosome interactions, position, and stability is key to understanding processes that require access to DNA, particularly with growing appreciation of their contributions to human health and disease. Here, we highlight recent advances in the interactions between histone modifications and the imitation-switch (ISWI) and chromodomain helicase DNA-binding protein 1 (CHD1) chromatin remodelers from studies in budding yeast, fission yeast, flies, and mammalian cells, with a focus on yeast.

  6. The WSTF-ISWI chromatin remodeling complex transiently associates with the human inactive X chromosome during late S-phase prior to BRCA1 and γ-H2AX.

    Directory of Open Access Journals (Sweden)

    Ashley E Culver-Cochran

    Full Text Available Replicating the genome prior to each somatic cell division not only requires precise duplication of the genetic information, but also accurately reestablishing the epigenetic signatures that instruct how the genetic material is to be interpreted in the daughter cells. The mammalian inactive X chromosome (Xi, which is faithfully inherited in a silent state in each daughter cell, provides an excellent model of epigenetic regulation. While much is known about the early stages of X chromosome inactivation, much less is understood with regards to retaining the Xi chromatin through somatic cell division. Here we report that the WSTF-ISWI chromatin remodeling complex (WICH associates with the Xi during late S-phase as the Xi DNA is replicated. Elevated levels of WICH at the Xi is restricted to late S-phase and appears before BRCA1 and γ-H2A.X. The sequential appearance of WICH and BRCA1/γ-H2A.X implicate each as performing important but distinct roles in the maturation and maintenance of heterochromatin at the Xi.

  7. Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer.

    Science.gov (United States)

    Weissman, Bernard; Knudsen, Karen E

    2009-11-01

    There is increasing evidence that alterations in chromatin remodeling play a significant role in human disease. The SWI/SNF chromatin remodeling complex family mobilizes nucleosomes and functions as a master regulator of gene expression and chromatin dynamics whose functional specificity is driven by combinatorial assembly of a central ATPase and association with 10 to 12 unique subunits. Although the biochemical consequence of SWI/SNF in model systems has been extensively reviewed, the present article focuses on the evidence linking SWI/SNF perturbations to cancer initiation and tumor progression in human disease.

  8. The linkage of chromatin remodeling to genome maintenance: contribution from a human disease gene BRIT1/MCPH1

    OpenAIRE

    Peng, Guang; Lin, Shiaw-Yih

    2009-01-01

    Genomic DNA is packed into a highly condensed chromatin structure, which acts as natural barrier preventing accessibility of DNA. In various processes to maintain genomic integrity such as DNA replication, DNA repair, telomere regulation, proteins need to overcome the barrier of condensed chromatin to gain access to DNA. ATP-dependent chromatin remodeling is one of the fundamental mechanisms used by cells to relax chromatin. However, the chromatin remodeling complex does not contain intrinsic...

  9. The linkage of chromatin remodeling to genome maintenance: contribution from a human disease gene BRIT1/MCPH1.

    Science.gov (United States)

    Peng, Guang; Lin, Shiaw-Yih

    2009-10-01

    Genomic DNA is packed into a highly condensed chromatin structure, which acts as natural barrier preventing accessibility of DNA. In various processes to maintain genomic integrity such as DNA replication, DNA repair, telomere regulation, proteins need to overcome the barrier of condensed chromatin to gain access to DNA. ATP-dependent chromatin remodeling is one of the fundamental mechanisms used by cells to relax chromatin. However, the chromatin remodeling complex does not contain intrinsic specificity for particular nuclear process, and the mechanism mediating its recruitment to DNA lesions remains to be an outstanding question. To address this question, in this review, we will discuss our current findings and future perspectives about how BRIT1/MCPH1, a human disease gene, specifies the function of chromatin remodelers and links chromatin remodeling to genome maintenance.

  10. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes.

    NARCIS (Netherlands)

    Boyer, L.A.; Logie, C.; Bonte, E; Becker, P.B.; Wade, P.A.; Wolff, A.P.; Wu, C.; Imbalzano, A.N.; Peterson, C.L.

    2000-01-01

    ATP-dependent chromatin remodeling enzymes antagonize the inhibitory effects of chromatin. We compare six different remodeling complexes: ySWI/SNF, yRSC, hSWI/SNF, xMi-2, dCHRAC, and dNURF. We find that each complex uses similar amounts of ATP to remodel nucleosomal arrays at nearly identical rates.

  11. Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes.

    NARCIS (Netherlands)

    Horn, P.J.; Carruthers, L.M.; Logie, C.; Hill, D.A.; Solomon, M.J.; Wade, P.A.; Imbalzano, A.N.; Hansen, J.; Peterson, C.L.

    2002-01-01

    Members of the ATP-dependent family of chromatin remodeling enzymes play key roles in the regulation of transcription, development, DNA repair and cell cycle control. We find that the remodeling activities of the ySWI/SNF, hSWI/SNF, xMi-2 and xACF complexes are nearly abolished by incorporation of l

  12. Genetic variants in chromatin-remodeling pathway associated with lung cancer risk in a Chinese population.

    Science.gov (United States)

    Geng, Liguo; Zhu, Meng; Wang, Yuzhuo; Cheng, Yang; Liu, Jia; Shen, Wei; Li, Zhihua; Zhang, Jiahui; Wang, Cheng; Jin, Guangfu; Ma, Hongxia; Shen, Hongbing; Hu, Zhibin; Dai, Juncheng

    2016-08-10

    Chromatin remodeling complexes utilize the energy of ATP hydrolysis to remodel nucleosomes and have essential roles in transcriptional modulation. Increasing evidences indicate that these complexes directly interact with numerous proteins and regulate the formation of cancer. However, few studies reported the association of polymorphisms in chromatin remodeling genes and lung cancer. We hypothesized that variants in critical genes of chromatin remodeling pathway might contribute to the susceptibility of lung cancer. To validate this hypothesis, we systematically screened 40 polymorphisms in six key chromatin remodeling genes (SMARCA5, SMARCC2, SMARCD2, ARID1A, NR3C1 and SATB1) and evaluated them with a case-control study including 1341 cases and 1982 controls. Logistic regression revealed that four variants in NR3C1 and SATB1 were significantly associated with lung cancer risk after false discovery rate (FDR) correction [For NR3C1, rs9324921: odds ratio (OR)=1.23, P for FDR=0.029; rs12521436: OR=0.85, P for FDR=0.040; rs4912913: OR=1.17, P for FDR=0.040; For SATB1, rs6808523: OR=1.33, P for FDR=0.040]. Combing analysis presented a significant allele-dosage tendency for the number of risk alleles and lung cancer risk (Ptrendlung tumor and adjacent normal tissues in the database of The Cancer Genome Atlas (TCGA) (P=0.009 for rs6808523). These findings suggested that genetic variants in key chromatin remodeling genes may contribute to lung cancer risk in Chinese population. Further large and well-designed studies are warranted to validate our results.

  13. ATP-dependent chromatin remodeling in the DNA-damage response

    Directory of Open Access Journals (Sweden)

    Lans Hannes

    2012-01-01

    Full Text Available Abstract The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.

  14. Kinetic proofreading of chromatin remodeling: from gene activation to gene repression and back

    Directory of Open Access Journals (Sweden)

    Raghvendra P Singh

    2015-08-01

    Full Text Available ATP-dependent chromatin remodeling is the active displacement of nucleosomes along or off DNA induced by chromatin remodeling complexes. This key process of gene regulation in eukaryote organisms has recently been argued to be controlled by a kinetic proofreading mechanism. In this paper we present a discussion of the current understanding of this process. We review the case of gene repression via heterochromatin formation by remodelers from the ISWI family and then discuss the activation of the IFN-β gene, where the displacement of the nucleosome is initiated by histone tail acetylations by the enzyme GCN5 which are required for the recruitment of SWI-SNF remodelers. We quantify the speci city of the acetylation step in the remodeling process by peptide docking simulations.

  15. Chromatin remodelling: the industrial revolution of DNA around histones.

    Science.gov (United States)

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  16. Instability of trinucleotidic repeats during chromatin remodeling in spermatids.

    Science.gov (United States)

    Simard, Olivier; Grégoire, Marie-Chantal; Arguin, Mélina; Brazeau, Marc-André; Leduc, Frédéric; Marois, Isabelle; Richter, Martin V; Boissonneault, Guylain

    2014-11-01

    Transient DNA breaks and evidence of DNA damage response have recently been reported during the chromatin remodeling process in haploid spermatids, creating a potential window of enhanced genetic instability. We used flow cytometry to achieve separation of differentiating spermatids into four highly purified populations using transgenic mice harboring 160 CAG repeats within exon 1 of the human Huntington disease gene (HTT). Trinucleotic repeat expansion was found to occur immediately following the chromatin remodeling steps, confirming the genetic instability of the process and pointing to the origin of paternal anticipation observed in some trinucleotidic repeats diseases.

  17. Chromatin remodelers in the DNA double strand break response

    NARCIS (Netherlands)

    Smeenk, Godelieve

    2012-01-01

    During my PhD project, I studied the role of several chromatin remodelers in the DNA double strand break (DSB) response. We discovered that both CHD4 and SMARCA5 are required for ubiquitin signaling through the E3 ubiquitin ligases RNF8 and RNF168, which is a central signaling event in the response

  18. Functional Insights into Chromatin Remodelling from Studies on CHARGE Syndrome

    NARCIS (Netherlands)

    Basson, M. Albert; van Ravenswaaij-Arts, Conny

    2015-01-01

    CHARGE syndrome is a rare genetic syndrome characterised by a unique combination of multiple organ anomalies. Dominant loss-of-function mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7), which is an ATP-dependent chromatin remodeller, have been identified as the cause

  19. ATRX: The case of a peculiar chromatin remodeler

    OpenAIRE

    Ratnakumar, Kajan; Bernstein, Emily

    2013-01-01

    The SWI/SNF-like chromatin remodeler ATRX has recently garnered renewed attention. ATRX mutations were first identified in patients bearing the syndrome after which it is named, alpha thalassemia/mental retardation, X-linked. While ATRX has long been implicated in transcriptional regulation through multiple mechanisms, recent studies have identified a role for ATRX in the regulation of histone variant deposition. In addition, current reports describe ATRX to be mutated at high percentages in ...

  20. Reversible phosphorylation and regulation of mammalian oocyte meiotic chromatin remodeling and segregation.

    Science.gov (United States)

    Swain, J E; Smith, G D

    2007-01-01

    The mammalian oocyte is notorious for high rates of chromosomal abnormalities. This results in subsequent embryonic aneuploidy, resulting in infertility and congenital defects. Therefore, understanding regulatory mechanisms involved in chromatin remodeling and chromosome segregation during oocyte meiotic maturation is imperative to fully understand the complex process and establish potential therapies. This review will focus on major events occurring during oocyte meiosis, critical to ensure proper cellular ploidy. Mechanistic and cellular events such as chromosome condensation, meiotic spindle formation, as well as cohesion of homologues and sister chromatids will be discussed, focusing on the role of reversible phosphorylation in control of these processes.

  1. Diverse chromatin remodeling genes antagonize the Rb-involved SynMuv pathways in C. elegans.

    Directory of Open Access Journals (Sweden)

    Mingxue Cui

    2006-05-01

    Full Text Available In Caenorhabditis elegans, vulval cell-fate specification involves the activities of multiple signal transduction and regulatory pathways that include a receptor tyrosine kinase/Ras/mitogen-activated protein kinase pathway and synthetic multivulva (SynMuv pathways. Many genes in the SynMuv pathways encode transcription factors including the homologs of mammalian Rb, E2F, and components of the nucleosome-remodeling deacetylase complex. To further elucidate the functions of the SynMuv genes, we performed a genome-wide RNA interference (RNAi screen to search for genes that antagonize the SynMuv gene activities. Among those that displayed a varying degree of suppression of the SynMuv phenotype, 32 genes are potentially involved in chromatin remodeling (called SynMuv suppressor genes herein. Genetic mutations of two representative genes (zfp-1 and mes-4 were used to further characterize their positive roles in vulval induction and relationships with Ras function. Our analysis revealed antagonistic roles of the SynMuv suppressor genes and the SynMuv B genes in germline-soma distinction, RNAi, somatic transgene silencing, and tissue specific expression of pgl-1 and the lag-2/Delta genes. The opposite roles of these SynMuv B and SynMuv suppressor genes on transcriptional regulation were confirmed in somatic transgene silencing. We also report the identifications of ten new genes in the RNAi pathway and six new genes in germline silencing. Among the ten new RNAi genes, three encode homologs of proteins involved in both protein degradation and chromatin remodeling. Our findings suggest that multiple chromatin remodeling complexes are involved in regulating the expression of specific genes that play critical roles in developmental decisions.

  2. Up regulation in gene expression of chromatin remodelling factors in cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Van Niekerk Dirk

    2008-02-01

    Full Text Available Abstract Background The highest rates of cervical cancer are found in developing countries. Frontline monitoring has reduced these rates in developed countries and present day screening programs primarily identify precancerous lesions termed cervical intraepithelial neoplasias (CIN. CIN lesions described as mild dysplasia (CIN I are likely to spontaneously regress while CIN III lesions (severe dysplasia are likely to progress if untreated. Thoughtful consideration of gene expression changes paralleling the progressive pre invasive neoplastic development will yield insight into the key casual events involved in cervical cancer development. Results In this study, we have identified gene expression changes across 16 cervical cases (CIN I, CIN II, CIN III and normal cervical epithelium using the unbiased long serial analysis of gene expression (L-SAGE method. The 16 L-SAGE libraries were sequenced to the level of 2,481,387 tags, creating the largest SAGE data collection for cervical tissue worldwide. We have identified 222 genes differentially expressed between normal cervical tissue and CIN III. Many of these genes influence biological functions characteristic of cancer, such as cell death, cell growth/proliferation and cellular movement. Evaluation of these genes through network interactions identified multiple candidates that influence regulation of cellular transcription through chromatin remodelling (SMARCC1, NCOR1, MRFAP1 and MORF4L2. Further, these expression events are focused at the critical junction in disease development of moderate dysplasia (CIN II indicating a role for chromatin remodelling as part of cervical cancer development. Conclusion We have created a valuable publically available resource for the study of gene expression in precancerous cervical lesions. Our results indicate deregulation of the chromatin remodelling complex components and its influencing factors occur in the development of CIN lesions. The increase in SWI

  3. The Chromatin Remodeler CHD8 Is Required for Activation of Progesterone Receptor-Dependent Enhancers

    Science.gov (United States)

    Giannopoulou, Eugenia G.; Soronellas, Daniel; Vázquez-Chávez, Elena; Vicent, Guillermo P.; Elemento, Olivier; Beato, Miguel; Reyes, José C.

    2015-01-01

    While the importance of gene enhancers in transcriptional regulation is well established, the mechanisms and the protein factors that determine enhancers activity have only recently begun to be unravelled. Recent studies have shown that progesterone receptor (PR) binds regions that display typical features of gene enhancers. Here, we show by ChIP-seq experiments that the chromatin remodeler CHD8 mostly binds promoters under proliferation conditions. However, upon progestin stimulation, CHD8 re-localizes to PR enhancers also enriched in p300 and H3K4me1. Consistently, CHD8 depletion severely impairs progestin-dependent gene regulation. CHD8 binding is PR-dependent but independent of the pioneering factor FOXA1. The SWI/SNF chromatin-remodelling complex is required for PR-dependent gene activation. Interestingly, we show that CHD8 interacts with the SWI/SNF complex and that depletion of BRG1 and BRM, the ATPases of SWI/SNF complex, impairs CHD8 recruitment. We also show that CHD8 is not required for H3K27 acetylation, but contributes to increase accessibility of the enhancer to DNaseI. Furthermore, CHD8 was required for RNAPII recruiting to the enhancers and for transcription of enhancer-derived RNAs (eRNAs). Taken together our data demonstrate that CHD8 is involved in late stages of PR enhancers activation. PMID:25894978

  4. The chromatin Remodeler CHD8 is required for activation of progesterone receptor-dependent enhancers.

    Science.gov (United States)

    Ceballos-Chávez, María; Subtil-Rodríguez, Alicia; Giannopoulou, Eugenia G; Soronellas, Daniel; Vázquez-Chávez, Elena; Vicent, Guillermo P; Elemento, Olivier; Beato, Miguel; Reyes, José C

    2015-04-01

    While the importance of gene enhancers in transcriptional regulation is well established, the mechanisms and the protein factors that determine enhancers activity have only recently begun to be unravelled. Recent studies have shown that progesterone receptor (PR) binds regions that display typical features of gene enhancers. Here, we show by ChIP-seq experiments that the chromatin remodeler CHD8 mostly binds promoters under proliferation conditions. However, upon progestin stimulation, CHD8 re-localizes to PR enhancers also enriched in p300 and H3K4me1. Consistently, CHD8 depletion severely impairs progestin-dependent gene regulation. CHD8 binding is PR-dependent but independent of the pioneering factor FOXA1. The SWI/SNF chromatin-remodelling complex is required for PR-dependent gene activation. Interestingly, we show that CHD8 interacts with the SWI/SNF complex and that depletion of BRG1 and BRM, the ATPases of SWI/SNF complex, impairs CHD8 recruitment. We also show that CHD8 is not required for H3K27 acetylation, but contributes to increase accessibility of the enhancer to DNaseI. Furthermore, CHD8 was required for RNAPII recruiting to the enhancers and for transcription of enhancer-derived RNAs (eRNAs). Taken together our data demonstrate that CHD8 is involved in late stages of PR enhancers activation.

  5. ATP-Dependent Chromatin Remodeling Factors and Their Roles in Affecting Nucleosome Fiber Composition

    Directory of Open Access Journals (Sweden)

    Alexandra Lusser

    2011-10-01

    Full Text Available ATP-dependent chromatin remodeling factors of the SNF2 family are key components of the cellular machineries that shape and regulate chromatin structure and function. Members of this group of proteins have broad and heterogeneous functions ranging from controlling gene activity, facilitating DNA damage repair, promoting homologous recombination to maintaining genomic stability. Several chromatin remodeling factors are critical components of nucleosome assembly processes, and recent reports have identified specific functions of distinct chromatin remodeling factors in the assembly of variant histones into chromatin. In this review we will discuss the specific roles of ATP-dependent chromatin remodeling factors in determining nucleosome composition and, thus, chromatin fiber properties.

  6. The chromatin remodelling factor BRG1 is a novel binding partner of the tumor suppressor p16INK4a

    Directory of Open Access Journals (Sweden)

    Mann Graham J

    2009-01-01

    Full Text Available Abstract Background CDKN2A/p16INK4a is frequently altered in human cancers and it is the most important melanoma susceptibility gene identified to date. p16INK4a inhibits pRb phosphorylation and induces cell cycle arrest, which is considered its main tumour suppressor function. Nevertheless, additional activities may contribute to the tumour suppressor role of p16INK4a and could help explain its specific association with melanoma predisposition. To identify such functions we conducted a yeast-two-hybrid screen for novel p16INK4a binding partners. Results We now report that p16INK4a interacts with the chromatin remodelling factor BRG1. We investigated the cooperative roles of p16INK4a and BRG1 using a panel of cell lines and a melanoma cell model with inducible p16INK4a expression and BRG1 silencing. We found evidence that BRG1 is not required for p16INK4a-induced cell cycle inhibition and propose that the p16INK4a-BRG1 complex regulates BRG1 chromatin remodelling activity. Importantly, we found frequent loss of BRG1 expression in primary and metastatic melanomas, implicating this novel p16INK4a binding partner as an important tumour suppressor in melanoma. Conclusion This data adds to the increasing evidence implicating the SWI/SNF chromatin remodelling complex in tumour development and the association of p16INK4a with chromatin remodelling highlights potentially new functions that may be important in melanoma predisposition and chemoresistance.

  7. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling.

    Science.gov (United States)

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA-DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx (-/-) pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration.

  8. Plasmodium falciparum Histone Acetyltransferase, a Yeast GCN5 Homologue Involved in Chromatin Remodeling

    Institute of Scientific and Technical Information of China (English)

    QiFan; LijiaAn; LiwangCui

    2005-01-01

    The yeast transcriptional coactivator GCN5 (yGCN5), a histone acetyltransferase (HAT), is part of large multimeric complexes that are required for chromatin remodeling and transcriptional activation. Like other eukaryotes, the malaria parasite DNA is organized into nucleosomes and the genome encodes components of chromatin-remodeling complexes. Here we show that GCN5 is conserved in Plasmodium species and that the most homologous regions are within the HAT domain and the bromodomain. The Plasmodiumfalclparum GCN5 homologue (PfGCN5) is spliced with three introns, encoding a protein of 1,464 residues. Mapping of the ends of the PfGCN5 transcript suggests that the mRNA is 5.2 to 5.4 kb, consistent with the result from Northern analysis. Using free core histones, we determined that recombinant PfGCN5 proteins have conserved HAT activity with a substrate preference for histone H3. Using substrate-specific antibodies, we determined that both Lys-8 and -14 of H3 were acetylated by the recombinant PfGCN5. In eukaryotes, GCN5 homologues interact with yeast ADA2 homologues and form large multiprotein HAT complexes. We have identified an ADA2 homologue in P. falciparum, PfADA2. Yeast two-hybrid and in vitro binding assays verified the interactions between PfGCN5 and PfADA2, suggesting that they may be associated with each other in vivo. The conserved function of the HAT domain in PfGCN5 was further illustrated with yeast complementation experiments, which showed that the PfGCN5 region corresponding to the full-length yGCN5 could partially complement the yGCN5 deletion mutation. Furthermore, a chimera comprising the PfGCN5 HAT domain fused to the remainder of yeast GCN5 (yGCN5) fully rescued the yGCN5 deletion mutant. These data demonstrate that PfGCN5 is an authentic GCN5 family member and may exist in chromatin-remodeling complexes to regulate gene expression in P. falciparum.

  9. Interplay of Dynamic Transcription and Chromatin Remodeling: Lessons from Yeast

    Directory of Open Access Journals (Sweden)

    Eva Klopf

    2011-07-01

    Full Text Available Regulation of transcription involves dynamic rearrangements of chromatin structure. The budding yeast Saccharomyces cerevisiae has a variety of highly conserved factors necessary for these reconstructions. Chromatin remodelers, histone modifiers and histone chaperones directly associate to promoters and open reading frames of exposed genes and facilitate activation and repression of transcription. We compare two distinct patterns of induced transcription: Sustained transcribed genes switch to an activated state where they remain as long as the induction signal is present. In contrast, single pulsed transcribed genes show a quick and strong induction pulse resulting in high transcript levels followed by adaptation and repression to basal levels. We discuss intensively studied promoters and coding regions from both groups for their co-factor requirements during transcription. Interplay between chromatin restructuring factors and dynamic transcription is highly variable and locus dependent.

  10. Chromatin Remodeling in Stem Cell Maintenance in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Lin Xu; Wen-Hui Shen

    2009-01-01

    Pluripotent stem cells are able to both self-renew and generate undifferentiated cells for the formation of new tissues and organs.In higher plants,stem cells found in the shoot apical meristem (SAM) and the root apical meristem (RAM) are origins of organogenesis occurring post-embryonically.It is important to understand how the regulation of stem cell fate is coordinated to enable the meristem to constantly generate different types of lateral organs.Much knowledge has accumulated on specific transcription factors controlling SAM and RAM activity.Here,we review recent evidences for a role of chromatin remodeling in the maintenance of stable expression states of transcription factor genes and the control of stem cell activity in Arabidopsis.

  11. Sliding and peeling of histone during chromatin remodelling

    CERN Document Server

    Garai, Ashok; Chowdhury, Debashish

    2011-01-01

    ATP-dependent chromatin remodeling enzymes (CRE) are bio-molecular motors in eukaryotic cells. These are driven by a chemical fuel, namely, adenosine triphosphate (ATP). CREs actively participate in many cellular processes that require accessibility of specific stretches of DNA which are packaged as chromatin. The basic unit of chromatin is a nucleosome where 146 bp $\\sim$ 50 nm of a double stranded DNA (dsDNA) is wrapped around a spool formed by histone proteins. We investigate the mechanism of peeling of the histone spool, and its complete detachment, from the dsDNA by a CRE. Our two-state model of a CRE captures effectively two distinct chemical (or conformational) states in the mechano-chemical cycle of each ATP-dependent CRE. We calculate the mean times for histone detachment. Our predictions on the ATP-dependence of the measurable quantities can be tested by carrying out {\\it in-vitro} experiments.

  12. ATRX: the case of a peculiar chromatin remodeler.

    Science.gov (United States)

    Ratnakumar, Kajan; Bernstein, Emily

    2013-01-01

    The SWI/SNF-like chromatin remodeler ATRX has recently garnered renewed attention. ATRX mutations were first identified in patients bearing the syndrome after which it is named, alpha thalassemia/mental retardation, X-linked. While ATRX has long been implicated in transcriptional regulation through multiple mechanisms, recent studies have identified a role for ATRX in the regulation of histone variant deposition. In addition, current reports describe ATRX to be mutated at high percentages in multiple tumor types, suggestive of a potential 'driver' role in cancer. Here we discuss the numerous and seemingly diverse roles for ATRX in transcriptional regulation and histone deposition and suggest that ATRX's effects are mediated by its regulation of histones within the chromatin template.

  13. The chromatin remodeller ATRX: a repeat offender in human disease.

    Science.gov (United States)

    Clynes, David; Higgs, Douglas R; Gibbons, Richard J

    2013-09-01

    The regulation of chromatin structure is of paramount importance for a variety of fundamental nuclear processes, including gene expression, DNA repair, replication, and recombination. The ATP-dependent chromatin-remodelling factor ATRX (α thalassaemia/mental retardation X-linked) has emerged as a key player in each of these processes. Exciting recent developments suggest that ATRX plays a variety of key roles at tandem repeat sequences within the genome, including the deposition of a histone variant, prevention of replication fork stalling, and the suppression of a homologous recombination-based pathway of telomere maintenance. Here, we provide a mechanistic overview of the role of ATRX in each of these processes, and propose how they may be connected to give rise to seemingly disparate human diseases.

  14. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes.

    Science.gov (United States)

    Wippo, Christian J; Israel, Lars; Watanabe, Shinya; Hochheimer, Andreas; Peterson, Craig L; Korber, Philipp

    2011-04-01

    Nucleosomes impede access to DNA. Therefore, nucleosome positioning is fundamental to genome regulation. Nevertheless, the molecular nucleosome positioning mechanisms are poorly understood. This is partly because in vitro reconstitution of in vivo-like nucleosome positions from purified components is mostly lacking, barring biochemical studies. Using a yeast extract in vitro reconstitution system that generates in vivo-like nucleosome patterns at S. cerevisiae loci, we find that the RSC chromatin remodelling enzyme is necessary for nucleosome positioning. This was previously suggested by genome-wide in vivo studies and is confirmed here in vivo for individual loci. Beyond the limitations of conditional mutants, we show biochemically that RSC functions directly, can be sufficient, but mostly relies on other factors to properly position nucleosomes. Strikingly, RSC could not be replaced by either the closely related SWI/SNF or the Isw2 remodelling enzyme. Thus, we pinpoint that nucleosome positioning specifically depends on the unique properties of the RSC complex.

  15. Downregulation of SWI/SNF chromatin remodeling factor subunits modulates cisplatin cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kothandapani, Anbarasi [Department of Biochemistry and Cancer Biology, University of Toledo-Health Science Campus, Toledo, OH 43614 (United States); Gopalakrishnan, Kathirvel [Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614 (United States); Kahali, Bhaskar; Reisman, David [Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610 (United States); Patrick, Steve M., E-mail: Stephan.Patrick@utoledo.edu [Department of Biochemistry and Cancer Biology, University of Toledo-Health Science Campus, Toledo, OH 43614 (United States)

    2012-10-01

    Chromatin remodeling complex SWI/SNF plays important roles in many cellular processes including transcription, proliferation, differentiation and DNA repair. In this report, we investigated the role of SWI/SNF catalytic subunits Brg1 and Brm in the cellular response to cisplatin in lung cancer and head/neck cancer cells. Stable knockdown of Brg1 and Brm enhanced cellular sensitivity to cisplatin. Repair kinetics of cisplatin DNA adducts revealed that downregulation of Brg1 and Brm impeded the repair of both intrastrand adducts and interstrand crosslinks (ICLs). Cisplatin ICL-induced DNA double strand break repair was also decreased in Brg1 and Brm depleted cells. Altered checkpoint activation with enhanced apoptosis as well as impaired chromatin relaxation was observed in Brg1 and Brm deficient cells. Downregulation of Brg1 and Brm did not affect the recruitment of DNA damage recognition factor XPC to cisplatin DNA lesions, but affected ERCC1 recruitment, which is involved in the later stages of DNA repair. Based on these results, we propose that SWI/SNF chromatin remodeling complex modulates cisplatin cytotoxicity by facilitating efficient repair of the cisplatin DNA lesions. -- Highlights: Black-Right-Pointing-Pointer Stable knockdown of Brg1 and Brm enhances cellular sensitivity to cisplatin. Black-Right-Pointing-Pointer Downregulation of Brg1 and Brm impedes the repair of cisplatin intrastrand adducts and interstrand crosslinks. Black-Right-Pointing-Pointer Brg1 and Brm deficiency results in impaired chromatin relaxation, altered checkpoint activation as well as enhanced apoptosis. Black-Right-Pointing-Pointer Downregulation of Brg1 and Brm affects recruitment of ERCC1, but not XPC to cisplatin DNA lesions.

  16. Chromatin remodeling pathways in smooth muscle cell differentiation, and evidence for an integral role for p300.

    Directory of Open Access Journals (Sweden)

    Joshua M Spin

    Full Text Available BACKGROUND: Phenotypic alteration of vascular smooth muscle cells (SMC in response to injury or inflammation is an essential component of vascular disease. Evidence suggests that this process is dependent on epigenetic regulatory processes. P300, a histone acetyltransferase (HAT, activates crucial muscle-specific promoters in terminal (non-SMC myocyte differentiation, and may be essential to SMC modulation as well. RESULTS: We performed a subanalysis examining transcriptional time-course microarray data obtained using the A404 model of SMC differentiation. Numerous chromatin remodeling genes (up to 62% of such genes on our array platform showed significant regulation during differentiation. Members of several chromatin-remodeling families demonstrated involvement, including factors instrumental in histone modification, chromatin assembly-disassembly and DNA silencing, suggesting complex, multi-level systemic epigenetic regulation. Further, trichostatin A, a histone deacetylase inhibitor, accelerated expression of SMC differentiation markers in this model. Ontology analysis indicated a high degree of p300 involvement in SMC differentiation, with 60.7% of the known p300 interactome showing significant expression changes. Knockdown of p300 expression accelerated SMC differentiation in A404 cells and human SMCs, while inhibition of p300 HAT activity blunted SMC differentiation. The results suggest a central but complex role for p300 in SMC phenotypic modulation. CONCLUSIONS: Our results support the hypothesis that chromatin remodeling is important for SMC phenotypic switching, and detail wide-ranging involvement of several epigenetic modification families. Additionally, the transcriptional coactivator p300 may be partially degraded during SMC differentiation, leaving an activated subpopulation with increased HAT activity and SMC differentiation-gene specificity.

  17. Akirin: a context-dependent link between transcription and chromatin remodeling.

    Science.gov (United States)

    Nowak, Scott J; Baylies, Mary K

    2012-01-01

    Embryonic patterning relies upon an exquisitely timed program of gene regulation. While the regulation of this process via the action of transcription factor networks is well understood, new lines of study have highlighted the importance of a concurrently regulated program of chromatin remodeling during development. Chromatin remodeling refers to the manipulation of the chromatin architecture through rearrangement, repositioning, or restructuring of nucleosomes to either favor or hinder the expression of associated genes. While the role of chromatin remodeling pathways during tumor development and cancer progression are beginning to be clarified, the roles of these pathways in the course of tissue specification, morphogenesis and patterning remains relatively unknown. Further, relatively little is understood as to the mechanism whereby developmentally critical transcription factors coordinate with chromatin remodeling factors to optimize target gene loci for gene expression. Such a mechanism might involve direct transcription factor/chromatin remodeling factor interactions, or could likely be mediated via an unknown intermediary. Our group has identified the relatively unknown protein Akirin as a putative member of this latter group: a secondary cofactor that serves as an interface between a developmentally critical transcription factor and the chromatin remodeling machinery. This role for the Akirin protein suggests a novel regulatory mode for regulating gene expression during development.

  18. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    KAUST Repository

    Jégu, Teddy

    2015-10-12

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  19. Long-Term Effects of Chromatin Remodeling and DNA Damage in Stem Cells Induced by Environmental and Dietary Agents

    OpenAIRE

    Bariar, Bhawana; Vestal, C. Greer; Richardson, Christine

    2013-01-01

    The presence of histones acts as a barrier to protein access; thus chromatin remodeling must occur for essential processes such as transcription and replication. In conjunction with histone modifications, DNA methylation plays critical roles in gene silencing through chromatin remodeling. Chromatin remodeling is also interconnected with the DNA damage response, maintenance of stem cell properties, and cell differentiation programs. Chromatin modifications have increasingly been shown to produ...

  20. Defective ATM-Kap-1-mediated chromatin remodeling impairs DNA repair and accelerates senescence in progeria mouse model.

    Science.gov (United States)

    Liu, Baohua; Wang, Zimei; Ghosh, Shrestha; Zhou, Zhongjun

    2013-04-01

    ATM-mediated phosphorylation of KAP-1 triggers chromatin remodeling and facilitates the loading and retention of repair proteins at DNA lesions. Mouse embryonic fibroblasts (MEFs) derived from Zmpste24(-/-) mice undergo early senescence, attributable to delayed recruitment of DNA repair proteins. Here, we show that ATM-Kap-1 signaling is compromised in Zmpste24(-/-) MEFs, leading to defective DNA damage-induced chromatin remodeling. Knocking down Kap-1 rescues impaired chromatin remodeling, defective DNA repair and early senescence in Zmpste24(-/-) MEFs. Thus, ATM-Kap-1-mediated chromatin remodeling plays a critical role in premature aging, carrying significant implications for progeria therapy.

  1. Selection on a Subunit of the NURF Chromatin Remodeler Modifies Life History Traits in a Domesticated Strain of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Edward E Large

    2016-07-01

    Full Text Available Evolutionary life history theory seeks to explain how reproductive and survival traits are shaped by selection through allocations of an individual's resources to competing life functions. Although life-history traits evolve rapidly, little is known about the genetic and cellular mechanisms that control and couple these tradeoffs. Here, we find that two laboratory-adapted strains of C. elegans descended from a single common ancestor that lived in the 1950s have differences in a number of life-history traits, including reproductive timing, lifespan, dauer formation, growth rate, and offspring number. We identified a quantitative trait locus (QTL of large effect that controls 24%-75% of the total trait variance in reproductive timing at various timepoints. Using CRISPR/Cas9-induced genome editing, we show this QTL is due in part to a 60 bp deletion in the 3' end of the nurf-1 gene, which is orthologous to the human gene encoding the BPTF component of the NURF chromatin remodeling complex. Besides reproduction, nurf-1 also regulates growth rate, lifespan, and dauer formation. The fitness consequences of this deletion are environment specific-it increases fitness in the growth conditions where it was fixed but decreases fitness in alternative laboratory growth conditions. We propose that chromatin remodeling, acting through nurf-1, is a pleiotropic regulator of life history trade-offs underlying the evolution of multiple traits across different species.

  2. Essential roles of Snf21, a Swi2/Snf2 family chromatin remodeler, in fission yeast mitosis.

    Science.gov (United States)

    Yamada, Kentaro; Hirota, Kouji; Mizuno, Ken-Ichi; Shibata, Takehiko; Ohta, Kunihiro

    2008-10-01

    ATP-dependent chromatin remodelers (ADCRs) convert local chromatin structure into both transcriptional active and repressive state. Recent studies have revealed that ADCRs play diverse regulatory roles in chromosomal events such as DNA repair and recombination. Here we have newly identified a fission yeast gene encoding a Swi2/Snf2 family ADCR. The amino acid sequence of this gene, snf21(+), implies that Snf21 is a fission yeast orthologue of the budding yeast Sth1, the catalytic core of the RSC chromatin remodeling complex. The snf21(+) gene product is a nuclear protein essential to cell viability: the null mutant cells stop growing after several rounds of cell divisions. A temperature sensitive allele of snf21(+), snf21-36 exhibits at non-permissive temperature (34 degrees C) a cell cycle arrest at G2-M phase and defects in chromosome segregation, thereby causing cell elongation, lack of cell growth, and death of some cell population. snf21-36 shows thiabendazole (TBZ) sensitivity even at permissive temperature (25 degrees C). The TBZ sensitivity becomes severer as snf21-36 is combined with the deletion of a centromere-localized Mad2 spindle checkpoint protein. The cell cycle arrest phenotype at 34 degrees C cannot be rescued by the mad2(+) deletion, although it is substantially alleviated at 30 degrees C in mad2Delta. These data suggest that Snf21 plays an essential role in mitosis possibly functioning in centromeric chromatin.

  3. Selection on a Subunit of the NURF Chromatin Remodeler Modifies Life History Traits in a Domesticated Strain of Caenorhabditis elegans

    Science.gov (United States)

    Large, Edward E.; Zhao, Yuehui; Long, Lijiang; Butcher, Rebecca A.; Andersen, Erik C.; McGrath, Patrick T.

    2016-01-01

    Evolutionary life history theory seeks to explain how reproductive and survival traits are shaped by selection through allocations of an individual’s resources to competing life functions. Although life-history traits evolve rapidly, little is known about the genetic and cellular mechanisms that control and couple these tradeoffs. Here, we find that two laboratory-adapted strains of C. elegans descended from a single common ancestor that lived in the 1950s have differences in a number of life-history traits, including reproductive timing, lifespan, dauer formation, growth rate, and offspring number. We identified a quantitative trait locus (QTL) of large effect that controls 24%–75% of the total trait variance in reproductive timing at various timepoints. Using CRISPR/Cas9-induced genome editing, we show this QTL is due in part to a 60 bp deletion in the 3’ end of the nurf-1 gene, which is orthologous to the human gene encoding the BPTF component of the NURF chromatin remodeling complex. Besides reproduction, nurf-1 also regulates growth rate, lifespan, and dauer formation. The fitness consequences of this deletion are environment specific—it increases fitness in the growth conditions where it was fixed but decreases fitness in alternative laboratory growth conditions. We propose that chromatin remodeling, acting through nurf-1, is a pleiotropic regulator of life history trade-offs underlying the evolution of multiple traits across different species. PMID:27467070

  4. Essential roles of the chromatin remodeling factor BRG1 in spermatogenesis in mice.

    Science.gov (United States)

    Wang, Jianguan; Gu, Honggang; Lin, Haifan; Chi, Tian

    2012-06-01

    Mammalian spermatogenesis is a complex process that involves spatiotemporal regulation of gene expression and meiotic recombination, both of which require the modulation of chromatin structure. Proteins important for chromatin regulation during spermatogenesis remain poorly understood. Here we addressed the role of BRG1, the catalytic subunit of the mammalian Swi/Snf-like BAF chromatin-remodeling complex, during spermatogenesis in mice. BRG1 expression is dynamically regulated in the male germline, being weakly detectable in spermatogonia, highly expressed in pachytene spermatocytes, and turned off in maturing round spermatids. This expression pattern overlaps that of Brm, the Brg1 homolog. While Brm knockout males are known to be fertile, germline-specific Brg1 deletion completely arrests spermatogenesis at the midpachytene stage, which is associated with spermatocyte apoptosis and apparently also with impaired homologous recombination and meiotic sex chromosome inactivation. However, Brg1 is dispensable for gammaH2AX formation during meiotic recombination, contrary to its reported role in DNA repair in somatic cells. Our study reveals the essential role of Brg1 in meiosis and underscores the differences in the mechanisms of DNA repair between germ cells and somatic cells.

  5. Camk2a-Cre-mediated conditional deletion of chromatin remodeler Brg1 causes perinatal hydrocephalus.

    Science.gov (United States)

    Cao, Mou; Wu, Jiang I

    2015-06-15

    Mammalian SWI/SNF-like BAF chromatin remodeling complexes are essential for many aspects of neural development. Mutations in the genes encoding the core subunit Brg1/SmarcA4 or other complex components cause neurodevelopmental diseases and are associated with autism. Congenital hydrocephalus is a serious brain disorder often experienced by these patients. We report a role of Brg1 in the pathogenesis of hydrocephalus disorder. We discovered an unexpected early activity of mouse Camk2a-Cre transgene, which mediates Brg1 deletion in a subset of forebrain neurons beginning in the late embryonic stage. Brg1 deletion in these neurons led to severe congenital hydrocephalus with enlargement of the lateral ventricles and attenuation of the cerebral cortex. The Brg1-deficient mice had significantly smaller subcommissural organs and narrower Sylvian aqueducts than mice that express normal levels of Brg1. Effects were non-cell autonomous and may be responsible for the development of the congenital hydrocephalus phenotype. Our study provides evidence indicating that abnormalities in Brg1 function result in defects associated with neurodevelopmental disorders and autism.

  6. Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    Science.gov (United States)

    Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl

    2008-01-01

    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875

  7. Regulation of Vegetative Phase Change by SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA.

    Science.gov (United States)

    Xu, Yunmin; Guo, Changkui; Zhou, Bingying; Li, Chenlong; Wang, Huasen; Zheng, Ben; Ding, Han; Zhu, Zhujun; Peragine, Angela; Cui, Yuhai; Poethig, Scott; Wu, Gang

    2016-12-01

    Plants progress from a juvenile vegetative phase of development to an adult vegetative phase of development before they enter the reproductive phase. miR156 has been shown to be the master regulator of the juvenile-to-adult transition in plants. However, the mechanism of how miR156 is transcriptionally regulated still remains elusive. In a forward genetic screen, we identified that a mutation in the SWI2/SNF2 chromatin remodeling ATPase BRAHMA (BRM) exhibited an accelerated vegetative phase change phenotype by reducing the expression of miR156, which in turn caused a corresponding increase in the levels of SQUAMOSA PROMOTER BINDING PROTEIN LIKE genes. BRM regulates miR156 expression by directly binding to the MIR156A promoter. Mutations in BRM not only increased occupancy of the -2 and +1 nucleosomes proximal to the transcription start site at the MIR156A locus but also the levels of trimethylated histone H3 at Lys 27. The precocious phenotype of brm mutant was partially suppressed by a second mutation in SWINGER (SWN), but not by a mutation in CURLEY LEAF, both of which are key components of the Polycomb Group Repressive Complex 2 in plants. Our results indicate that BRM and SWN act antagonistically at the nucleosome level to fine-tune the temporal expression of miR156 to regulate vegetative phase change in Arabidopsis.

  8. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size.

    Science.gov (United States)

    Sirinakis, George; Clapier, Cedric R; Gao, Ying; Viswanathan, Ramya; Cairns, Bradley R; Zhang, Yongli

    2011-06-15

    ATP-dependent chromatin remodelling complexes use the energy of ATP hydrolysis to reposition and reconfigure nucleosomes. Despite their diverse functions, all remodellers share highly conserved ATPase domains, many shown to translocate DNA. Understanding remodelling requires biophysical knowledge of the DNA translocation process: how the ATPase moves DNA and generates force, and how translocation and force generation are coupled on nucleosomes. Here, we characterize the real-time activity of a minimal RSC translocase 'motor' on bare DNA, using high-resolution optical tweezers and a 'tethered' translocase system. We observe on dsDNA a processivity of ∼35 bp, a speed of ∼25 bp/s, and a step size of 2.0 (±0.4, s.e.m.) bp. Surprisingly, the motor is capable of moving against high force, up to 30 pN, making it one of the most force-resistant motors known. We also provide evidence for DNA 'buckling' at initiation. These observations reveal the ATPase as a powerful DNA translocating motor capable of disrupting DNA-histone interactions by mechanical force.

  9. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism.

    Science.gov (United States)

    Parnell, Timothy J; Schlichter, Alisha; Wilson, Boris G; Cairns, Bradley R

    2015-01-01

    ISWI family chromatin remodelers typically organize nucleosome arrays, while SWI/SNF family remodelers (RSC) typically disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex or mutations in the 'basic patch' of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. RSC and ISW1a largely co-localize, and genomic nucleosome studies using rsc isw1 mutant combinations revealed opposing functions: promoters classified with a nucleosome-deficient region (NDR) gain nucleosome occupancy in rsc mutants, but this gain is attenuated in rsc isw1 double mutants. Furthermore, promoters lacking NDRs have the highest occupancy of both remodelers, consistent with regulation by nucleosome occupancy, and decreased transcription in rsc mutants. Taken together, we provide the first genetic and genomic evidence for RSC-ISW1a antagonism and reveal different mechanisms at two different promoter architectures.

  10. Protooncogene Ski cooperates with the chromatin-remodeling factor Satb2 in specifying callosal neurons.

    Science.gov (United States)

    Baranek, Constanze; Dittrich, Manuela; Parthasarathy, Srinivas; Bonnon, Carine Gaiser; Britanova, Olga; Lanshakov, Dmitriy; Boukhtouche, Fatiha; Sommer, Julia E; Colmenares, Clemencia; Tarabykin, Victor; Atanasoski, Suzana

    2012-02-28

    First insights into the molecular programs orchestrating the progression from neural stem cells to cortical projection neurons are emerging. Loss of the transcriptional regulator Ski has been linked to the human 1p36 deletion syndrome, which includes central nervous system defects. Here, we report critical roles for Ski in the maintenance of the neural stem cell pool and the specification of callosal neurons. Ski-deficient callosal neurons lose their identity and ectopically express the transcription factor Ctip2. The misspecified callosal neurons largely fail to form the corpus callosum and instead redirect their axons toward subcortical targets. We identify the chromatin-remodeling factor Satb2 as a partner of Ski, and show that both proteins are required for transcriptional repression of Ctip2 in callosal neurons. We propose a model in which Satb2 recruits Ski to the Ctip2 locus, and Ski attracts histone deacetylases, thereby enabling the formation of a functional nucleosome remodeling and deacetylase repressor complex. Our findings establish a central role for Ski-Satb2 interactions in regulating transcriptional mechanisms of callosal neuron specification.

  11. Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Joseph Landry

    2008-10-01

    Full Text Available We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor, the largest subunit of NURF (Nucleosome Remodeling Factor in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf(-/- embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf(-/- embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo.

  12. Effective chromosome pairing requires chromatin remodeling at the onset of meiosis

    Science.gov (United States)

    Colas, Isabelle; Shaw, Peter; Prieto, Pilar; Wanous, Michael; Spielmeyer, Wolfgang; Mago, Rohit; Moore, Graham

    2008-01-01

    During meiosis, homologous chromosomes (homologues) recognize each other and then intimately associate. Studies exploiting species with large chromosomes reveal that chromatin is remodeled at the onset of meiosis before this intimate association. However, little is known about the effect the remodeling has on pairing. We show here in wheat that chromatin remodeling of homologues can only occur if they are identical or nearly identical. Moreover, a failure to undergo remodeling results in reduced pairing between the homologues. Thus, chromatin remodeling at the onset of meiosis enables the chromosomes to become competent to pair and recombine efficiently. PMID:18417451

  13. HTLV-1 Tax mediated downregulation of miRNAs associated with chromatin remodeling factors in T cells with stably integrated viral promoter.

    Directory of Open Access Journals (Sweden)

    Saifur Rahman

    Full Text Available RNA interference (RNAi is a natural cellular mechanism to silence gene expression and is predominantly mediated by microRNAs (miRNAs that target messenger RNA. Viruses can manipulate the cellular processes necessary for their replication by targeting the host RNAi machinery. This study explores the effect of human T-cell leukemia virus type 1 (HTLV-1 transactivating protein Tax on the RNAi pathway in the context of a chromosomally integrated viral long terminal repeat (LTR using a CD4(+ T-cell line, Jurkat. Transcription factor profiling of the HTLV-1 LTR stably integrated T-cell clone transfected with Tax demonstrates increased activation of substrates and factors associated with chromatin remodeling complexes. Using a miRNA microarray and bioinformatics experimental approach, Tax was also shown to downregulate the expression of miRNAs associated with the translational regulation of factors required for chromatin remodeling. These observations were validated with selected miRNAs and an HTLV-1 infected T cells line, MT-2. miR-149 and miR-873 were found to be capable of directly targeting p300 and p/CAF, chromatin remodeling factors known to play critical role in HTLV-1 pathogenesis. Overall, these results are first in line establishing HTLV-1/Tax-miRNA-chromatin concept and open new avenues toward understanding retroviral latency and/or replication in a given cell type.

  14. SWI/SNF chromatin remodeling regulates alcohol response behaviors in Caenorhabditis elegans and is associated with alcohol dependence in humans.

    Science.gov (United States)

    Mathies, Laura D; Blackwell, GinaMari G; Austin, Makeda K; Edwards, Alexis C; Riley, Brien P; Davies, Andrew G; Bettinger, Jill C

    2015-03-10

    Alcohol abuse is a widespread and serious problem. Understanding the factors that influence the likelihood of abuse is important for the development of effective therapies. There are both genetic and environmental influences on the development of abuse, but it has been difficult to identify specific liability factors, in part because of both the complex genetic architecture of liability and the influences of environmental stimuli on the expression of that genetic liability. Epigenetic modification of gene expression can underlie both genetic and environmentally sensitive variation in expression, and epigenetic regulation has been implicated in the progression to addiction. Here, we identify a role for the switching defective/sucrose nonfermenting (SWI/SNF) chromatin-remodeling complex in regulating the behavioral response to alcohol in the nematode Caenorhabditis elegans. We found that SWI/SNF components are required in adults for the normal behavioral response to ethanol and that different SWI/SNF complexes regulate different aspects of the acute response to ethanol. We showed that the SWI/SNF subunits SWSN-9 and SWSN-7 are required in neurons and muscle for the development of acute functional tolerance to ethanol. Examination of the members of the SWI/SNF complex for association with a diagnosis of alcohol dependence in a human population identified allelic variation in a member of the SWI/SNF complex, suggesting that variation in the regulation of SWI/SNF targets may influence the propensity to develop abuse disorders. Together, these data strongly implicate the chromatin remodeling associated with SWI/SNF complex members in the behavioral responses to alcohol across phyla.

  15. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling.

    Science.gov (United States)

    Toiber, Debra; Erdel, Fabian; Bouazoune, Karim; Silberman, Dafne M; Zhong, Lei; Mulligan, Peter; Sebastian, Carlos; Cosentino, Claudia; Martinez-Pastor, Barbara; Giacosa, Sofia; D'Urso, Agustina; Näär, Anders M; Kingston, Robert; Rippe, Karsten; Mostoslavsky, Raul

    2013-08-22

    DNA damage is linked to multiple human diseases, such as cancer, neurodegeneration, and aging. Little is known about the role of chromatin accessibility in DNA repair. Here, we find that the deacetylase sirtuin 6 (SIRT6) is one of the earliest factors recruited to double-strand breaks (DSBs). SIRT6 recruits the chromatin remodeler SNF2H to DSBs and focally deacetylates histone H3K56. Lack of SIRT6 and SNF2H impairs chromatin remodeling, increasing sensitivity to genotoxic damage and recruitment of downstream factors such as 53BP1 and breast cancer 1 (BRCA1). Remarkably, SIRT6-deficient mice exhibit lower levels of chromatin-associated SNF2H in specific tissues, a phenotype accompanied by DNA damage. We demonstrate that SIRT6 is critical for recruitment of a chromatin remodeler as an early step in the DNA damage response, indicating that proper unfolding of chromatin plays a rate-limiting role. We present a unique crosstalk between a histone modifier and a chromatin remodeler, regulating a coordinated response to prevent DNA damage.

  16. Noradrenergic Activation of the Basolateral Amygdala Enhances Object Recognition Memory and Induces Chromatin Remodeling in the Insular Cortex

    Directory of Open Access Journals (Sweden)

    Hassiba eBeldjoud

    2015-04-01

    Full Text Available It is well established that arousal-induced memory enhancement requires noradrenergic activation of the basolateral complex of the amygdala (BLA and modulatory influences on information storage processes in its many target regions. While this concept is well accepted, the molecular basis of such BLA effects on neural plasticity changes within other brain regions remains to be elucidated. The present study investigated whether noradrenergic activation of the BLA after object recognition training induces chromatin remodeling through histone post-translational modifications in the insular cortex (IC, a brain region that is importantly involved in object recognition memory. Male Sprague–Dawley rats were trained on an object recognition task, followed immediately by bilateral microinfusions of norepinephrine (1.0 µg or saline administered into the BLA. Saline-treated control rats exhibited poor 24-h retention, whereas norepinephrine treatment induced robust 24-h object recognition memory. Most importantly, this memory-enhancing dose of norepinephrine induced a global reduction in the acetylation levels of histone H3 at lysine 14, H2B and H4 in the IC 1 h later, whereas it had no effect on the phosphorylation of histone H3 at serine 10 or tri-methylation of histone H3 at lysine 27. Norepinephrine administered into the BLA of non-trained control rats did not induce any changes in the histone marks investigated in this study. These findings indicate that noradrenergic activation of the BLA induces training-specific effects on chromatin remodeling mechanisms, and presumably gene transcription, in its target regions, which may contribute to the understanding of the molecular mechanisms of stress and emotional arousal effects on memory consolidation.

  17. Adr1 and Cat8 mediate coactivator recruitment and chromatin remodeling at glucose-regulated genes.

    Directory of Open Access Journals (Sweden)

    Rhiannon K Biddick

    Full Text Available BACKGROUND: Adr1 and Cat8 co-regulate numerous glucose-repressed genes in S. cerevisiae, presenting a unique opportunity to explore their individual roles in coactivator recruitment, chromatin remodeling, and transcription. METHODOLOGY/PRINCIPAL FINDINGS: We determined the individual contributions of Cat8 and Adr1 on the expression of a cohort of glucose-repressed genes and found three broad categories: genes that need both activators for full derepression, genes that rely mostly on Cat8 and genes that require only Adr1. Through combined expression and recruitment data, along with analysis of chromatin remodeling at two of these genes, ADH2 and FBP1, we clarified how these activators achieve this wide range of co-regulation. We find that Adr1 and Cat8 are not intrinsically different in their abilities to recruit coactivators but rather, promoter context appears to dictate which activator is responsible for recruitment to specific genes. These promoter-specific contributions are also apparent in the chromatin remodeling that accompanies derepression: ADH2 requires both Adr1 and Cat8, whereas, at FBP1, significant remodeling occurs with Cat8 alone. Although over-expression of Adr1 can compensate for loss of Cat8 at many genes in terms of both activation and chromatin remodeling, this over-expression cannot complement all of the cat8Delta phenotypes. CONCLUSIONS/SIGNIFICANCE: Thus, at many of the glucose-repressed genes, Cat8 and Adr1 appear to have interchangeable roles and promoter architecture may dictate the roles of these activators.

  18. The Emerging Roles of ATP-Dependent Chromatin Remodeling Enzymes in Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Wioletta Czaja

    2012-09-01

    Full Text Available DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo.

  19. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

    Science.gov (United States)

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Bou Dargham, Daria; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B Franklin; Gérard, Matthieu

    2016-02-01

    ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.

  20. Context-dependent role for chromatin remodeling component PBRM1/BAF180 in clear cell renal cell carcinoma

    Science.gov (United States)

    Murakami, A; Wang, L; Kalhorn, S; Schraml, P; Rathmell, W K; Tan, A C; Nemenoff, R; Stenmark, K; Jiang, B-H; Reyland, M E; Heasley, L; Hu, C-J

    2017-01-01

    A subset of clear cell renal cell carcinoma (ccRCC) tumors exhibit a HIF1A gene mutation, yielding two ccRCC tumor types, H1H2 type expressing both HIF1α and HIF2α, and H2 type expressing HIF2α, but not functional HIF1α protein. However, it is unclear how the H1H2 type ccRCC tumors escape HIF1's tumor-suppressive activity. The polybromo-1 (PBRM1) gene coding for the BAF180 protein, a component of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex, is inactivated in 40% ccRCCs, the function and mechanism of BAF180 mutation is unknown. Our previous study indicates that BAF180-containing SWI/SNF chromatin remodeling complex is a co-activator for transcription factor HIF to induce HIF target genes. Thus, our questions are if BAF180 is involved in HIF-mediated hypoxia response and if PBRM1/BAF180 mutation has any association with the HIF1A retention in H1H2 type ccRCC. We report here that BAF180 is mutated in H1H2 ccRCC cell lines and tumors, and BAF180 re-expression in H1H2 ccRCC cell lines reduced cell proliferation/survival, indicating that BAF180 has tumor-suppressive role in these cells. However, BAF180 is expressed in HIF1-deficient H2 ccRCC cell lines and tumors, and BAF180 knockdown in H2 type ccRCC cell lines reduced cell proliferation/survival, indicating that BAF180 has tumor-promoting activity in these cells. In addition, our data show that BAF180 functions as co-activator for HIF1- and HIF2-mediated transcriptional response, and BAF180's tumor-suppressive and -promoting activity in ccRCC cell lines depends on co-expression of HIF1 and HIF2, respectively. Thus, our studies reveal that BAF180 function in ccRCC is context dependent, and that mutation of PBRM1/BAF180 serves as an alternative strategy for ccRCC tumors to reduce HIF1 tumor-suppressive activity in H1H2 ccRCC tumors. Our studies define distinct functional subgroups of ccRCCs based on expression of BAF180, and suggest that BAF180 inhibition may be a novel therapeutic

  1. Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes.

    Science.gov (United States)

    Thijssen, Peter E; Tobi, Elmar W; Balog, Judit; Schouten, Suzanne G; Kremer, Dennis; El Bouazzaoui, Fatiha; Henneman, Peter; Putter, Hein; Eline Slagboom, P; Heijmans, Bastiaan T; van der Maarel, Silvère M

    2013-05-01

    Subtelomeres are patchworks of evolutionary conserved sequence blocks and harbor the transcriptional start sites for telomere repeat containing RNAs (TERRA). Recent studies suggest that the interplay between telomeres and subtelomeric chromatin is required for maintaining telomere function. To further characterize chromatin remodeling of subtelomeres in relation to telomere shortening and cellular senescence, we systematically quantified histone modifications and DNA methylation at the subtelomeres of chromosomes 7q and 11q in primary human WI-38 fibroblasts. Upon senescence, both subtelomeres were characterized by a decrease in markers of constitutive heterochromatin, suggesting relative chromatin relaxation. However, we did not find increased levels of markers of euchromatin or derepression of the 7q VIPR2 gene. The repressed state of the subtelomeres was maintained upon senescence, which could be attributed to a rise in levels of facultative heterochromatin markers at both subtelomeres. While senescence-induced subtelomeric chromatin remodeling was similar for both chromosomes, chromatin remodeling at TERRA promoters displayed chromosome-specific patterns. At the 7q TERRA promoter, chromatin structure was co-regulated with the more proximal subtelomere. In contrast, the 11q TERRA promoter, which was previously shown to be bound by CCCTC-binding factor CTCF, displayed lower levels of markers of constitutive heterochromatin that did not change upon senescence, whereas levels of markers of facultative heterochromatin decreased upon senescence. In line with the chromatin state data, transcription of 11q TERRA but not 7q TERRA was detected. Our study provides a detailed description of human subtelomeric chromatin dynamics and shows distinct regulation of the TERRA promoters of 7q and 11q upon cellular senescence.

  2. Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence

    Science.gov (United States)

    Thijssen, Peter E.; Tobi, Elmar W.; Balog, Judit; Schouten, Suzanne G.; Kremer, Dennis; El Bouazzaoui, Fatiha; Henneman, Peter; Putter, Hein; Eline Slagboom, P.; Heijmans, Bastiaan T.; Van der Maarel, Silvère M.

    2013-01-01

    Subtelomeres are patchworks of evolutionary conserved sequence blocks and harbor the transcriptional start sites for telomere repeat containing RNAs (TERRA). Recent studies suggest that the interplay between telomeres and subtelomeric chromatin is required for maintaining telomere function. To further characterize chromatin remodeling of subtelomeres in relation to telomere shortening and cellular senescence, we systematically quantified histone modifications and DNA methylation at the subtelomeres of chromosomes 7q and 11q in primary human WI-38 fibroblasts. Upon senescence, both subtelomeres were characterized by a decrease in markers of constitutive heterochromatin, suggesting relative chromatin relaxation. However, we did not find increased levels of markers of euchromatin or derepression of the 7q VIPR2 gene. The repressed state of the subtelomeres was maintained upon senescence, which could be attributed to a rise in levels of facultative heterochromatin markers at both subtelomeres. While senescence-induced subtelomeric chromatin remodeling was similar for both chromosomes, chromatin remodeling at TERRA promoters displayed chromosome-specific patterns. At the 7q TERRA promoter, chromatin structure was co-regulated with the more proximal subtelomere. In contrast, the 11q TERRA promoter, which was previously shown to be bound by CCCTC-binding factor CTCF, displayed lower levels of markers of constitutive heterochromatin that did not change upon senescence, whereas levels of markers of facultative heterochromatin decreased upon senescence. In line with the chromatin state data, transcription of 11q TERRA but not 7q TERRA was detected. Our study provides a detailed description of human subtelomeric chromatin dynamics and shows distinct regulation of the TERRA promoters of 7q and 11q upon cellular senescence. PMID:23644601

  3. Chromatin remodeling and SWI/SNF2 factors in human disease.

    Science.gov (United States)

    Kokavec, Juraj; Podskocova, Jarmila; Zavadil, Jiri; Stopka, Tomas

    2008-05-01

    Chromatin structure and its changes or maintenance throughout developmental checkpoints play indispensable role in organismal homeostasis. Chromatin remodeling factors of the SWI/SNF2 superfamily use ATP hydrolysis to change DNA-protein contacts, and their loss-of-function or inappropriate increase leads to distinct human pathologic states. In this review, we focus on the translational view of human pathologic physiology involving SWI/SNF2 superfamily, combining latest finding from basic and clinical research. We discuss in mechanistic terms the consequences resulting from dose alteration of the SWI/SNF2 superfamily ATPases and emphasize the necessity of future human subject-based studies.

  4. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder

    DEFF Research Database (Denmark)

    Gui, Yaoting; Guo, Guangwu; Huang, Yi;

    2011-01-01

    discovered a variety of genes previously unknown to be mutated in TCC. Notably, we identified genetic aberrations of the chromatin remodeling genes (UTX, MLL-MLL3, CREBBP-EP300, NCOR1, ARID1A and CHD6) in 59% of our 97 subjects with TCC. Of these genes, we showed UTX to be altered substantially more...... frequently in tumors of low stages and grades, highlighting its potential role in the classification and diagnosis of bladder cancer. Our results provide an overview of the genetic basis of TCC and suggest that aberration of chromatin regulation might be a hallmark of bladder cancer....

  5. Functional genomics indicates yeast requires Golgi/ER transport, chromatin remodeling, and DNA repair for low dose DMSO tolerance

    Directory of Open Access Journals (Sweden)

    Brandon David Gaytán

    2013-08-01

    Full Text Available Dimethyl sulfoxide (DMSO is frequently utilized as a solvent in toxicological and pharmaceutical investigations. It is therefore important to establish the cellular and molecular targets of DMSO in order to differentiate its intrinsic effects from those elicited by a compound of interest. We performed a genome-wide functional screen in Saccharomyces cerevisiae to identify deletion mutants exhibiting sensitivity to 1% DMSO, a concentration standard to yeast chemical profiling studies. We report that mutants defective in Golgi/ER transport are sensitive to DMSO, including those lacking components of the conserved oligomeric Golgi (COG complex. Moreover, strains deleted for members of the SWR1 histone exchange complex are hypersensitive to DMSO, with additional chromatin remodeling mutants displaying a range of growth defects. We also identify DNA repair genes important for DMSO tolerance. Finally, we demonstrate that overexpression of histone H2A.Z, which replaces chromatin-associated histone H2A in a SWR1-catalyzed reaction, confers resistance to DMSO. Many yeast genes described in this study have homologs in more complex organisms, and the data provided is applicable to future investigations into the cellular and molecular mechanisms of DMSO toxicity.

  6. A Mutation in Plant-Specific SWI2/SNF2-Like Chromatin-Remodeling Proteins, DRD1 and DDM1, Delays Leaf Senescence in Arabidopsis thaliana.

    Science.gov (United States)

    Cho, Eun Ju; Choi, Seung Hee; Kim, Ji Hong; Kim, Ji Eun; Lee, Min Hee; Chung, Byung Yeoup; Woo, Hye Ryun; Kim, Jin-Hong

    2016-01-01

    Leaf senescence is a finely regulated complex process; however, evidence for the involvement of epigenetic processes in the regulation of leaf senescence is still fragmentary. Therefore, we chose to examine the functions of DRD1, a SWI2/SNF2 chromatin remodeling protein, in epigenetic regulation of leaf senescence, particularly because drd1-6 mutants exhibited a delayed leaf senescence phenotype. Photosynthetic parameters such as Fv/Fm and ETRmax were decreased in WT leaves compared to leaves of drd1-6 mutants after dark treatment. The WT leaves remarkably lost more chlorophyll and protein content during dark-induced senescence (DIS) than the drd1-6 leaves did. The induction of senescence-associated genes was noticeably inhibited in the drd1-6 mutant after 5-d of DIS. We compared changes in epigenetic regulation during DIS via quantitative expression analysis of 180-bp centromeric (CEN) and transcriptionally silent information (TSI) repeats. Their expression levels significantly increased in both the WT and the drd1-6 mutant, but did much less in the latter. Moreover, the delayed leaf senescence was observed in ddm1-2 mutants as well as the drd1-6, but not in drd1-p mutants. These data suggest that SWI2/SNF2 chromatin remodeling proteins such as DRD1 and DDM1 may influence leaf senescence possibly via epigenetic regulation.

  7. Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization.

    Science.gov (United States)

    Emelyanov, Alexander V; Rabbani, Joshua; Mehta, Monika; Vershilova, Elena; Keogh, Michael C; Fyodorov, Dmitry V

    2014-09-15

    Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization leads to sperm chromatin remodeling, during which protamines are expelled and replaced by histones. Despite our increased understanding of the factors that mediate nucleosome assembly in the nascent male pronucleus, the machinery for protamine removal remains largely unknown. Here we identify four Drosophila protamine chaperones that mediate the dissociation of protamine-DNA complexes: NAP-1, NLP, and nucleophosmin are previously characterized histone chaperones, and TAP/p32 has no known function in chromatin metabolism. We show that TAP/p32 is required for the removal of Drosophila protamine B in vitro, whereas NAP-1, NLP, and Nph share roles in the removal of protamine A. Embryos from P32-null females show defective formation of the male pronucleus in vivo. TAP/p32, similar to NAP-1, NLP, and Nph, facilitates nucleosome assembly in vitro and is therefore a histone chaperone. Furthermore, mutants of P32, Nlp, and Nph exhibit synthetic-lethal genetic interactions. In summary, we identified factors mediating protamine removal from DNA and reconstituted in a defined system the process of sperm chromatin remodeling that exchanges protamines for histones to form the nucleosome-based chromatin characteristic of somatic cells.

  8. Structural basis of H2A.Z recognition by SRCAP chromatin-remodeling subunit YL1.

    Science.gov (United States)

    Liang, Xiaoping; Shan, Shan; Pan, Lu; Zhao, Jicheng; Ranjan, Anand; Wang, Feng; Zhang, Zhuqiang; Huang, Yingzi; Feng, Hanqiao; Wei, Debbie; Huang, Li; Liu, Xuehui; Zhong, Qiang; Lou, Jizhong; Li, Guohong; Wu, Carl; Zhou, Zheng

    2016-04-01

    Histone variant H2A.Z, a universal mark of dynamic nucleosomes flanking gene promoters and enhancers, is incorporated into chromatin by SRCAP (SWR1), an ATP-dependent, multicomponent chromatin-remodeling complex. The YL1 (Swc2) subunit of SRCAP (SWR1) plays an essential role in H2A.Z recognition, but how it achieves this has been unclear. Here, we report the crystal structure of the H2A.Z-binding domain of Drosophila melanogaster YL1 (dYL1-Z) in complex with an H2A.Z-H2B dimer at 1.9-Å resolution. The dYL1-Z domain adopts a new whip-like structure that wraps over H2A.Z-H2B, and preferential recognition is largely conferred by three residues in loop 2, the hyperacidic patch and the extended αC helix of H2A.Z. Importantly, this domain is essential for deposition of budding yeast H2A.Z in vivo and SRCAP (SWR1)-catalyzed histone H2A.Z replacement in vitro. Our studies distinguish YL1-Z from known H2A.Z chaperones and suggest a hierarchical mechanism based on increasing binding affinity facilitating H2A.Z transfer from SRCAP (SWR1) to the nucleosome.

  9. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2.

    Science.gov (United States)

    Elfring, L K; Daniel, C; Papoulas, O; Deuring, R; Sarte, M; Moseley, S; Beek, S J; Waldrip, W R; Daubresse, G; DePace, A; Kennison, J A; Tamkun, J W

    1998-01-01

    The Drosophila brahma (brm) gene encodes an activator of homeotic genes related to the yeast chromatin remodeling factor SWI2/SNF2. Here, we report the phenotype of null and dominant-negative brm mutations. Using mosaic analysis, we found that the complete loss of brm function decreases cell viability and causes defects in the peripheral nervous system of the adult. A dominant-negative brm mutation was generated by replacing a conserved lysine in the ATP-binding site of the BRM protein with an arginine. This mutation eliminates brm function in vivo but does not affect assembly of the 2-MD BRM complex. Expression of the dominant-negative BRM protein caused peripheral nervous system defects, homeotic transformations, and decreased viability. Consistent with these findings, the BRM protein is expressed at relatively high levels in nuclei throughout the developing organism. Site-directed mutagenesis was used to investigate the functions of conserved regions of the BRM protein. Domain II is essential for brm function and is required for the assembly or stability of the BRM complex. In spite of its conservation in numerous eukaryotic regulatory proteins, the deletion of the bromodomain of the BRM protein has no discernible phenotype.

  10. The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression

    Science.gov (United States)

    Whittaker, Danielle E.; Riegman, Kimberley L.H.; Kasah, Sahrunizam; Mohan, Conor; Yu, Tian; Sala, Blanca Pijuan; Hebaishi, Husam; Caruso, Angela; Marques, Ana Claudia; Michetti, Caterina; Smachetti, María Eugenia Sanz; Shah, Apar; Sabbioni, Mara; Kulhanci, Omer; Tee, Wee-Wei; Reinberg, Danny; Scattoni, Maria Luisa; McGonnell, Imelda; Wardle, Fiona C.; Fernandes, Cathy

    2017-01-01

    The mechanisms underlying the neurodevelopmental deficits associated with CHARGE syndrome, which include cerebellar hypoplasia, developmental delay, coordination problems, and autistic features, have not been identified. CHARGE syndrome has been associated with mutations in the gene encoding the ATP-dependent chromatin remodeler CHD7. CHD7 is expressed in neural stem and progenitor cells, but its role in neurogenesis during brain development remains unknown. Here we have shown that deletion of Chd7 from cerebellar granule cell progenitors (GCps) results in reduced GCp proliferation, cerebellar hypoplasia, developmental delay, and motor deficits in mice. Genome-wide expression profiling revealed downregulated expression of the gene encoding the glycoprotein reelin (Reln) in Chd7-deficient GCps. Recessive RELN mutations have been associated with severe cerebellar hypoplasia in humans. We found molecular and genetic evidence that reductions in Reln expression contribute to GCp proliferative defects and cerebellar hypoplasia in GCp-specific Chd7 mouse mutants. Finally, we showed that CHD7 is necessary for maintaining an open, accessible chromatin state at the Reln locus. Taken together, this study shows that Reln gene expression is regulated by chromatin remodeling, identifies CHD7 as a previously unrecognized upstream regulator of Reln, and provides direct in vivo evidence that a mammalian CHD protein can control brain development by modulating chromatin accessibility in neuronal progenitors. PMID:28165338

  11. Wolbachia-mediated male killing is associated with defective chromatin remodeling.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Riparbelli

    Full Text Available Male killing, induced by different bacterial taxa of maternally inherited microorganisms, resulting in highly distorted female-biased sex-ratios, is a common phenomenon among arthropods. Some strains of the endosymbiont bacteria Wolbachia have been shown to induce this phenotype in particular insect hosts. High altitude populations of Drosophila bifasciata infected with Wolbachia show selective male killing during embryonic development. However, since this was first reported, circa 60 years ago, the interaction between Wolbachia and its host has remained unclear. Herein we show that D. bifasciata male embryos display defective chromatin remodeling, improper chromatid segregation and chromosome bridging, as well as abnormal mitotic spindles and gradual loss of their centrosomes. These defects occur at different times in the early development of male embryos leading to death during early nuclear division cycles or large defective areas of the cellular blastoderm, culminating in abnormal embryos that die before eclosion. We propose that Wolbachia affects the development of male embryos by specifically targeting male chromatin remodeling and thus disturbing mitotic spindle assembly and chromosome behavior. These are the first observations that demonstrate fundamental aspects of the cytological mechanism of male killing and represent a solid base for further molecular studies of this phenomenon.

  12. Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress.

    Science.gov (United States)

    Glorieux, Christophe; Sandoval, Juan Marcelo; Fattaccioli, Antoine; Dejeans, Nicolas; Garbe, James C; Dieu, Marc; Verrax, Julien; Renard, Patricia; Huang, Peng; Calderon, Pedro Buc

    2016-10-01

    Regulation of ROS metabolism plays a major role in cellular adaptation to oxidative stress in cancer cells, but the molecular mechanism that regulates catalase, a key antioxidant enzyme responsible for conversion of hydrogen peroxide to water and oxygen, remains to be elucidated. Therefore, we investigated the transcriptional regulatory mechanism controlling catalase expression in three human mammary cell lines: the normal mammary epithelial 250MK primary cells, the breast adenocarcinoma MCF-7 cells and an experimental model of MCF-7 cells resistant against oxidative stress resulting from chronic exposure to H2O2 (Resox), in which catalase was overexpressed. Here we identify a novel promoter region responsible for the regulation of catalase expression at -1518/-1226 locus and the key molecules that interact with this promoter and affect catalase transcription. We show that the AP-1 family member JunB and retinoic acid receptor alpha (RARα) mediate catalase transcriptional activation and repression, respectively, by controlling chromatin remodeling through a histone deacetylases-dependent mechanism. This regulatory mechanism plays an important role in redox adaptation to chronic exposure to H2O2 in breast cancer cells. Our study suggests that cancer adaptation to oxidative stress may be regulated by transcriptional factors through chromatin remodeling, and reveals a potential new mechanism to target cancer cells.

  13. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

    Science.gov (United States)

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Dargham, Daria Bou; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P.; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B. Franklin; Gérard, Matthieu

    2015-01-01

    Summary ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers1–3 target specific nucleosomes to regulate transcription is unclear. Here, we present genome-wide remodeller-nucleosome interaction profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank MNase-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites (TSSs) are nevertheless chromatinized with non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and modifications (H3K4me3 and H3K27ac). RNA polymerase (pol) II therefore navigates hundreds of bp of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers play either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs. PMID:26814966

  14. Compact tomato seedlings and plants upon overexpression of a tomato chromatin remodelling ATPase gene.

    Science.gov (United States)

    Folta, Adam; Bargsten, Joachim W; Bisseling, Ton; Nap, Jan-Peter; Mlynarova, Ludmila

    2016-02-01

    Control of plant growth is an important aspect of crop productivity and yield in agriculture. Overexpression of the AtCHR12/23 genes in Arabidopsis thaliana reduced growth habit without other morphological changes. These two genes encode Snf2 chromatin remodelling ATPases. Here, we translate this approach to the horticultural crop tomato (Solanum lycopersicum). We identified and cloned the single tomato ortholog of the two Arabidopsis Snf2 genes, designated SlCHR1. Transgenic tomato plants (cv. Micro-Tom) that constitutively overexpress the coding sequence of SlCHR1 show reduced growth in all developmental stages of tomato. This confirms that SlCHR1 combines the functions of both Arabidopsis genes in tomato. Compared to the wild type, the transgenic seedlings of tomato have significantly shorter roots, hypocotyls and reduced cotyledon size. Transgenic plants have a much more compact growth habit with markedly reduced plant height, severely compacted reproductive structures with smaller flowers and smaller fruits. The results indicate that either GMO-based or non-GMO-based approaches to modulate the expression of chromatin remodelling ATPase genes could develop into methods to control plant growth, for example to replace the use of chemical growth retardants. This approach is likely to be applicable and attractive for any crop for which growth habit reduction has added value.

  15. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Nicola Wiechens

    2016-03-01

    Full Text Available Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.

  16. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors.

    Science.gov (United States)

    Wiechens, Nicola; Singh, Vijender; Gkikopoulos, Triantaffyllos; Schofield, Pieta; Rocha, Sonia; Owen-Hughes, Tom

    2016-03-01

    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.

  17. Protein markers of synaptic behavior and chromatin remodeling of the neo-XY body in phyllostomid bats.

    Science.gov (United States)

    Rahn, Mónica I; Noronha, Renata C; Nagamachi, Cleusa Y; Pieczarka, Julio C; Solari, Alberto J; Sciurano, Roberta B

    2016-09-01

    The XX/XY system is the rule among mammals. However, many exceptions from this general pattern have been discovered since the last decades. One of these non-conventional sex chromosome mechanisms is the multiple sex chromosome system, which is evolutionary fixed among many bat species of the family Phyllostomidae, and has arisen by a translocation between one original gonosome (X or Y chromosome), and an autosome, giving rise to a "neo-XY body." The aim of this work is to study the synaptic behavior and the chromatin remodeling of multiple sex chromosomes in different species of phyllostomid bats using electron microscopy and molecular markers. Testicular tissues from adult males of the species Artibeus lituratus, Artibeus planirostris, Uroderma bilobatum, and Vampyrodes caraccioli from the eastern Amazonia were analyzed by optical/electron microscopy and immunofluorescence of meiotic proteins involved in synapsis (SYCP3 and SYCE3), sister-chromatid cohesion (SMC3), and chromatin silencing (BRCA1, γ-H2AX, and RNApol 2). The presence of asynaptic axes-labeled by BRCA1 and γ-H2AX-at meiotic prophase in testes that have a normal development of spermatogenesis, suggests that the basic mechanism that arrests spreading of transcriptional silencing (meiotic sex chromosome inactivation (MSCI)) to the autosomal segments may be per se the formation of a functional synaptonemal complex between homologous or non-homologous regions, and thus, this SC barrier might be probably related to the preservation of fertility in these systems.

  18. Chromatin Remodeling Protein SMAR1 Is a Critical Regulator of T Helper Cell Differentiation and Inflammatory Diseases

    Science.gov (United States)

    Mirlekar, Bhalchandra; Gautam, Dipendra; Chattopadhyay, Samit

    2017-01-01

    T cell differentiation from naïve T cells to specialized effector subsets of mature cells is determined by the iterative action of transcription factors. At each stage of specific T cell lineage differentiation, transcription factor interacts not only with nuclear proteins such as histone and histone modifiers but also with other factors that are bound to the chromatin and play a critical role in gene expression. In this review, we focus on one of such nuclear protein known as tumor suppressor and scaffold matrix attachment region-binding protein 1 (SMAR1) in CD4+ T cell differentiation. SMAR1 facilitates Th1 differentiation by negatively regulating T-bet expression via recruiting HDAC1–SMRT complex to its gene promoter. In contrast, regulatory T (Treg) cell functions are dependent on inhibition of Th17-specific genes mainly IL-17 and STAT3 by SMAR1. Here, we discussed a critical role of chromatin remodeling protein SMAR1 in maintaining a fine-tuned balance between effector CD4+ T cells and Treg cells by influencing the transcription factors during allergic and autoimmune inflammatory diseases.

  19. Epigenetics in Rome: breaking news from the chromatin remodeling and human disease workshop.

    Science.gov (United States)

    Gaetano, Carlo; Capogrossi, Maurizio C; Fanciulli, Maurizio; Filetici, Patrizia; Piaggio, Giulia

    2010-04-01

    In 2009 the Istituto Regina Elena (IRE) and Istituto Dermopatico dell' Immacolata (IDI), joined their efforts to organize the "First IRE Annual Workshop on Chromatin Remodeling and Human Disease, which had place in Rome on the 3-4 of December 2009. The Workshop program listed a number of presentations on various epigenetic phenomena believed to have an impact on human diseases. Internationally recognized leaders in this field from Europe and USA have brilliantly accomplished this highly compelling task. Special emphasis has been placed on emerging understanding of epigenetic mechanisms as they relate to the physiopathology of numerous human diseases. How this field scientifically and technologically recently progressed in this direction, was clearly evident from the presentations and discussions having place during the workshop.

  20. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling

    NARCIS (Netherlands)

    Budry, L.; Balsalobre, A.; Gauthier, Y.; Khetchoumian, K.; L'Honore, A.; Vallette-Kasic, S.; Brue, T; Figarella-Branger, D.; Meij, B.P.; Drouin, J.

    2012-01-01

    Genes Dev. 2012 Oct 15;26(20):2299-310. doi: 10.1101/gad.200436.112. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling. Budry L, Balsalobre A, Gauthier Y, Khetchoumian K, L'honoré A, Vallette S, Brue T, Figarella-Branger D, Meij B, Drou

  1. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock.

    Science.gov (United States)

    Alvarez-Saavedra, Matías; Antoun, Ghadi; Yanagiya, Akiko; Oliva-Hernandez, Reynaldo; Cornejo-Palma, Daniel; Perez-Iratxeta, Carolina; Sonenberg, Nahum; Cheng, Hai-Ying M

    2011-02-15

    Mammalian circadian rhythms are synchronized to the external time by daily resetting of the suprachiasmatic nucleus (SCN) in response to light. As the master circadian pacemaker, the SCN coordinates the timing of diverse cellular oscillators in multiple tissues. Aberrant regulation of clock timing is linked to numerous human conditions, including cancer, cardiovascular disease, obesity, various neurological disorders and the hereditary disorder familial advanced sleep phase syndrome. Additionally, mechanisms that underlie clock resetting factor into the sleep and physiological disturbances experienced by night-shift workers and travelers with jet lag. The Ca(2+)/cAMP response element-binding protein-regulated microRNA, miR-132, is induced by light within the SCN and attenuates its capacity to reset, or entrain, the clock. However, the specific targets that are regulated by miR-132 and underlie its effects on clock entrainment remained elusive until now. Here, we show that genes involved in chromatin remodeling (Mecp2, Ep300, Jarid1a) and translational control (Btg2, Paip2a) are direct targets of miR-132 in the mouse SCN. Coordinated regulation of these targets underlies miR-132-dependent modulation of Period gene expression and clock entrainment: the mPer1 and mPer2 promoters are bound to and transcriptionally activated by MeCP2, whereas PAIP2A and BTG2 suppress the translation of the PERIOD proteins by enhancing mRNA decay. We propose that miR-132 is selectively enriched for chromatin- and translation-associated target genes and is an orchestrator of chromatin remodeling and protein translation within the SCN clock, thereby fine-tuning clock entrainment. These findings will further our understanding of mechanisms governing clock entrainment and its involvement in human diseases.

  2. Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice.

    Science.gov (United States)

    Patel, Tejas; Patel, Vasu; Singh, Rajvir; Jayaraman, Sundararajan

    2011-07-01

    Epigenetic alteration of the genome has been shown to provide palliative effects in mouse models of certain human autoimmune diseases. We have investigated whether chromatin remodeling could provide protection against autoimmune diabetes in NOD mice. Treatment of female mice during the transition from prediabetic to diabetic stage (18-24 weeks of age) with the well-characterized histone deacetylase inhibitor, trichostatin A effectively reduced the incidence of diabetes. However, similar treatment of overtly diabetic mice during the same time period failed to reverse the disease. Protection against diabetes was accompanied by histone hyperacetylation in pancreas and spleen, enhanced frequency of CD4(+) CD62L(+) cells in the spleen, reduction in cellular infiltration of islets, restoration of normoglycemia and glucose-induced insulin release by beta cells. Activation of splenic T lymphocytes derived from protected mice in vitro with pharmacological agents that bypass the antigen receptor or immobilized anti-CD3 antibody resulted in enhanced expression of Ifng mRNA and protein without altering the expression of Il4, Il17, Il18, Inos and Tnfa genes nor the secretion of IL-2, IL-4, IL-17 and TNF-α proteins. Consistently, expression of the transcription factor involved in Ifng transcription, Tbet/Tbx21 but not Gata3 and Rorgt, respectively, required for the transcription of Il4 and Il17, was upregulated in activated splenocytes of protected mice. These results indicate that chromatin remodeling can lead to amelioration of diabetes by using multiple mechanisms including differential gene transcription. Thus, epigenetic modulation could be a novel therapeutic approach to block the transition from benign to frank diabetes.

  3. Reduced expression of the ATRX gene, a chromatin-remodeling factor, causes hippocampal dysfunction in mice.

    Science.gov (United States)

    Nogami, Tatsuya; Beppu, Hideyuki; Tokoro, Takashi; Moriguchi, Shigeki; Shioda, Norifumi; Fukunaga, Kohji; Ohtsuka, Toshihisa; Ishii, Yoko; Sasahara, Masakiyo; Shimada, Yutaka; Nishijo, Hisao; Li, En; Kitajima, Isao

    2011-06-01

    Mutations of the ATRX gene, which encodes an ATP-dependent chromatin-remodeling factor, were identified in patients with α-thalassemia X-linked mental retardation (ATR-X) syndrome. There is a milder variant of ATR-X syndrome caused by mutations in the Exon 2 of the gene. To examine the impact of the Exon 2 mutation on neuronal development, we generated ATRX mutant (ATRX(ΔE2)) mice. Truncated ATRX protein was produced from the ATRX(ΔE2) mutant allele with reduced expression level. The ATRX(ΔE2) mice survived and reproduced normally. There was no significant difference in Morris water maze test between wild-type and ATRX(ΔE2) mice. In a contextual fear conditioning test, however, total freezing time was decreased in ATRX(ΔE2) mice compared to wild-type mice, suggesting that ATRX(ΔE2) mice have impaired contextual fear memory. ATRX(ΔE2) mice showed significantly reduced long-term potentiation in the hippocampal CA1 region evoked by high-frequency stimulation. Moreover, autophosphorylation of calcium-calmodulin-dependent kinase II (αCaMKII) and phosphorylation of glutamate receptor, ionotropic, AMPA 1 (GluR1) were decreased in the hippocampi of the ATRX(ΔE2) mice compared to wild-type mice. These findings suggest that ATRX(ΔE2) mice may have fear-associated learning impairment with the dysfunction of αCaMKII and GluR1. The ATRX(ΔE2) mice would be useful tools to investigate the role of the chromatin-remodeling factor in the pathogenesis of abnormal behaviors and learning impairment.

  4. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators.

    Directory of Open Access Journals (Sweden)

    So Yeon Kwon

    2016-04-01

    Full Text Available NURF is a conserved higher eukaryotic ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF is able to alter chromatin dynamics to control transcription and genome organization. Previous biochemical and genetic analysis of the specificity-subunit of Drosophila NURF (Nurf301/Enhancer of Bithorax (E(bx has defined NURF as a critical regulator of homeotic, heat-shock and steroid-responsive gene transcription. It has been speculated that NURF controls pathway specific transcription by co-operating with sequence-specific transcription factors to remodel chromatin at dedicated enhancers. However, conclusive in vivo demonstration of this is lacking and precise regulatory elements targeted by NURF are poorly defined. To address this, we have generated a comprehensive map of in vivo NURF activity, using MNase-sequencing to determine at base pair resolution NURF target nucleosomes, and ChIP-sequencing to define sites of NURF recruitment. Our data show that, besides anticipated roles at enhancers, NURF interacts physically and functionally with the TRF2/DREF basal transcription factor to organize nucleosomes downstream of active promoters. Moreover, we detect NURF remodeling and recruitment at distal insulator sites, where NURF functionally interacts with and co-localizes with DREF and insulator proteins including CP190 to establish nucleosome-depleted domains. This insulator function of NURF is most apparent at subclasses of insulators that mark the boundaries of chromatin domains, where multiple insulator proteins co-associate. By visualizing the complete repertoire of in vivo NURF chromatin targets, our data provide new insights into how chromatin remodeling can control genome organization and regulatory interactions.

  5. Lichen-forming fungus Caloplaca flavoruscens inhibits transcription factors and chromatin remodeling system in fungi.

    Science.gov (United States)

    Kwon, Youngho; Cha, Jaeyul; Chiang, Jennifer; Tran, Grant; Nislow, Corey; Hur, Jae-Seoun; Kwak, Youn-Sig

    2016-06-01

    Lichen-forming fungi and extracts derived from them have been used as alternative medicine sources for millennia and recently there has been a renewed interest in their known bioactive properties for anticancer agents, cosmetics and antibiotics. Although lichen-forming fungus-derived compounds are biologically and commercially valuable, few studies have been performed to determine their modes of action. This study used chemical-genetic and chemogenomic high-throughput analyses to gain insight into the modes of action of Caloplaca flavoruscens extracts. High-throughput screening of 575 lichen extracts was performed and 39 extracts were identified which inhibited yeast growth. A C. flavoruscens extract was selected as a promising antifungal and was subjected to genome-wide haploinsufficiency profiling and homozygous profiling assays. These screens revealed that yeast deletion strains lacking Rsc8, Pro1 and Toa2 were sensitive to three concentrations (IC25.5, IC25 and IC50, respectively) of C. flavoruscens extract. Gene-enrichment analysis of the data showed that C. flavoruscens extracts appear to perturb transcription and chromatin remodeling.

  6. Impact of the Chromatin Remodeling Factor CHD1 on Gut Microbiome Composition of Drosophila melanogaster.

    Science.gov (United States)

    Sebald, Johanna; Willi, Michaela; Schoberleitner, Ines; Krogsdam, Anne; Orth-Höller, Dorothea; Trajanoski, Zlatko; Lusser, Alexandra

    2016-01-01

    The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.

  7. IRAK-M regulates chromatin remodeling in lung macrophages during experimental sepsis.

    Directory of Open Access Journals (Sweden)

    Kenneth Lyn-Kew

    Full Text Available Sepsis results in a profound state of immunosuppression, which is temporally associated with impaired leukocyte function. The mechanism of leukocyte reprogramming in sepsis is incompletely understood. In this study, we explored mechanisms contributing to dysregulated inflammatory cytokine expression by pulmonary macrophages during experimental sepsis. Pulmonary macrophages (PM recovered from the lungs of mice undergoing cecal ligation and puncture (CLP display transiently reduced expression of some, but not all innate genes in response to LPS. Impaired expression of TNF-alpha and iNOS was associated with reduced acetylation and methylation of specific histones (AcH4 and H3K4me3 and reduced binding of RNA polymerase II to the promoters of these genes. Transient impairment in LPS-induced cytokine responses in septic PM temporally correlated with induction of IRAK-M mRNA and protein, which occurred in a MyD88-dependent fashion. PM isolated from IRAK-M(-/- mice were largely refractory to CLP-induced impairment in cytokine expression, chromatin remodeling, recruitment of RNA polymerase II, and induction of histone deacetylase-2 observed during sepsis. Our findings indicate that systemic sepsis induces epigenetic silencing of cytokine gene expression in lung macrophages, and IRAK-M appears to be a critical mediator of this response.

  8. Chromatin remodeling gene EZH2 involved in the genetic etiology of autism in Chinese Han population.

    Science.gov (United States)

    Li, Jun; You, Yang; Yue, Weihua; Yu, Hao; Lu, Tianlan; Wu, Zhiliu; Jia, Meixiang; Ruan, Yanyan; Liu, Jing; Zhang, Dai; Wang, Lifang

    2016-01-01

    Autism spectrum disorder (ASD) is a group of severe neurodevelopmental disorders. Epigenetic factors play a critical role in the etiology of ASD. Enhancer of zest homolog 2 (EZH2), which encodes a histone methyltransferase, plays an important role in the process of chromatin remodeling during neurodevelopment. Further, EZH2 is located in chromosome 7q35-36, which is one of the linkage regions for autism. However, the genetic relationship between autism and EZH2 remains unclear. To investigate the association between EZH2 and autism in Chinese Han population, we performed a family-based association study between autism and three tagged single nucleotide polymorphisms (SNPs) that covered 95.4% of the whole region of EZH2. In the discovery cohort of 239 trios, two SNPs (rs740949 and rs6464926) showed a significant association with autism. To decrease false positive results, we expanded the sample size to 427 trios. A SNP (rs6464926) was significantly associated with autism even after Bonferroni correction (p=0.008). Haplotype G-T (rs740949 and rs6464926) was a risk factor for autism (Z=2.655, p=0.008, Global p=0.024). In silico function prediction for SNPs indicated that these two SNPs might be regulatory SNPs. Expression pattern of EZH2 showed that it is highly expressed in human embryonic brains. In conclusion, our findings demonstrate that EZH2 might contribute to the genetic etiology of autism in Chinese Han population.

  9. Impact of the Chromatin Remodeling Factor CHD1 on Gut Microbiome Composition of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Johanna Sebald

    Full Text Available The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.

  10. Genomic and proteomic characterization of ARID1A chromatin remodeller in ampullary tumors

    Science.gov (United States)

    Nastase, Anca; Teo, Jin Yao; Heng, Hong Lee; Ng, Cedric Chuan Young; Myint, Swe Swe; Rajasegaran, Vikneswari; Loh, Jia Liang; Lee, Ser Yee; Ooi, London Lucien; Chung, Alexander Yaw Fui; Chow, Pierce Kah Hoe; Cheow, Peng Chung; Wan, Wei Keat; Azhar, Rafy; Khoo, Avery; Xiu, Sam Xin; Alkaff, Syed Muhammad Fahmy; Cutcutache, Ioana; Lim, Jing Quan; Ong, Choon Kiat; Herlea, Vlad; Dima, Simona; Duda, Dan G; Teh, Bin Tean; Popescu, Irinel; Lim, Tony Kiat Hon

    2017-01-01

    AT rich interactive domain 1A (ARID1A) is one of the most commonly mutated genes in a broad variety of tumors. The mechanisms that involve ARID1A in ampullary cancer progression remains elusive. Here, we evaluated the frequency of ARID1A and KRAS mutations in ampullary adenomas and adenocarcinomas and in duodenal adenocarcinomas from two cohorts of patients from Singapore and Romania, correlated with clinical and pathological tumor features, and assessed the functional role of ARID1A. In the ampullary adenocarcinomas, the frequency of KRAS and ARID1A mutations was 34.7% and 8.2% respectively, with a loss or reduction of ARID1A protein in 17.2% of the cases. ARID1A mutational status was significantly correlated with ARID1A protein expression level (P=0.023). There was a significant difference in frequency of ARID1A mutation between Romania and Singapore (2.7% versus 25%, P=0.04), suggestive of different etiologies. One somatic mutation was detected in the ampullary adenoma group. In vitro studies indicated the tumor suppressive role of ARID1A. Our results warrant further investigation of this chromatin remodeller as a potential early biomarker of the disease, as well as identification of therapeutic targets in ARID1A mutated ampullary cancers.

  11. Mutation in PHC1 implicates chromatin remodeling in primary microcephaly pathogenesis.

    Science.gov (United States)

    Awad, Salma; Al-Dosari, Mohammed S; Al-Yacoub, Nadya; Colak, Dilek; Salih, Mustafa A; Alkuraya, Fowzan S; Poizat, Coralie

    2013-06-01

    Primary microcephaly (PM) is a developmental disorder of early neuroprogenitors that results in reduction of the brain mass, particularly the cortex. To gain fresh insight into the pathogenesis of PM, we describe a consanguineous family with a novel genetic variant responsible for the disease. We performed autozygosity mapping followed by exome sequencing to detect the causal genetic variant. Several functional assays in cells expressing the wild-type or mutant gene were performed to understand the pathogenesis of the identified mutation. We identify a novel mutation in PHC1, a human orthologue of the Drosophila polyhomeotic member of polycomb group (PcG), which significantly decreases PHC1 protein expression, increases Geminin protein level and markedly abolishes the capacity to ubiquitinate histone H2A in patient cells. PHC1 depletion in control cells similarly enhances Geminin expression and decreases histone H2A ubiquitination. The ubiquitination defect and accumulation of Geminin with consequent defect in cell cycle are rescued by over-expression of PHC1 in patient cells. Although patients with the PHC1 mutation exhibit PM with no overt progression of the disease, patient cells also show aberrant DNA damage repair, which is rescued by PHC1 overexpression. These findings reveal several cellular defects in cells carrying the PHC1 mutation and highlight the role of chromatin remodeling in the pathogenesis of PM.

  12. SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Mickaël Durand-Dubief

    2012-09-01

    Full Text Available Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in flanking nucleosome position and/or CEN core micrococcal nuclease accessibility. Fun30 deletion leads to defects in histone variant Htz1 occupancy genome-wide, including at and around most centromeres. FUN30 genetically interacts with CSE4, coding for the centromere-specific variant of histone H3, and counteracts the detrimental effect of transcription through centromeres on chromosome segregation and suppresses transcriptional noise over centromere CEN3. Previous work has shown a requirement for fission yeast and mammalian homologs of Fun30 in heterochromatin assembly. As centromeres in budding yeast are not embedded in heterochromatin, our findings indicate a direct role of Fun30 in centromere chromatin by promoting correct chromatin architecture.

  13. Cotranscriptional Chromatin Remodeling by Small RNA Species: An HTLV-1 Perspective

    Directory of Open Access Journals (Sweden)

    Nishat Aliya

    2012-01-01

    Full Text Available Cell type specificity of human T cell leukemia virus 1 has been proposed as a possible reason for differential viral outcome in primary target cells versus secondary. Through chromatin remodeling, the HTLV-1 transactivator protein Tax interacts with cellular factors at the chromosomally integrated viral promoter to activate downstream genes and control viral transcription. RNA interference is the host innate defense mechanism mediated by short RNA species (siRNA or miRNA that regulate gene expression. There exists a close collaborative functioning of cellular transcription factors with miRNA in order to regulate the expression of a number of eukaryotic genes including those involved in suppression of cell growth, induction of apoptosis, as well as repressing viral replication and propagation. In addition, it has been suggested that retroviral latency is influenced by chromatin alterations brought about by miRNA. Since Tax requires the assembly of transcriptional cofactors to carry out viral gene expression, there might be a close association between miRNA influencing chromatin alterations and Tax-mediated LTR activation. Herein we explore the possible interplay between HTLV-1 infection and miRNA pathways resulting in chromatin reorganization as one of the mechanisms determining HTLV-1 cell specificity and viral fate in different cell types.

  14. Relationships between chromatin remodeling and DNA damage repair induced by 8-methoxypsoralen and UVA in yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Lavínia Almeida Cruz

    2012-01-01

    Full Text Available Eukaryotic cells have developed mechanisms to prevent genomic instability, such as DNA damage detection and repair, control of cell cycle progression and cell death induction. The bifunctional compound furocumarin 8-methoxy-psoralen (8-MOP is widely used in the treatment of various inflammatory skin diseases. In this review, we summarize recent data about the role of chromatin remodeling in the repair of DNA damage induced by treatment with 8-methoxypsoralen plus UVA (8-MOP+UVA, focusing on repair proteins in budding yeast Saccharomyces cerevisiae, an established model system for studying DNA repair pathways. The interstrand crosslinks (ICL formed by the 8-MOP+UVA treatment are detrimental lesions that can block transcription and replication, leading to cell death if not repaired. Current data show the involvement of different pathways in ICL processing, such as nucleotide excision repair (NER, base excision repair (BER, translesion repair (TLS and double-strand break repair. 8-MOP+UVA treatment in yeast enhances the expression of genes involved in the DNA damage response, double strand break repair by homologous replication, as well as genes related to cell cycle regulation. Moreover, alterations in the expression of subtelomeric genes and genes related to chromatin remodeling are consistent with structural modifications of chromatin relevant to DNA repair. Taken together, these findings indicate a specific profile in 8-MOP+UVA responses related to chromatin remodeling and DNA repair.

  15. Long-term effects of chromatin remodeling and DNA damage in stem cells induced by environmental and dietary agents.

    Science.gov (United States)

    Bariar, Bhawana; Vestal, C Greer; Richardson, Christine

    2013-01-01

    The presence of histones acts as a barrier to protein access; thus chromatin remodeling must occur for essential processes such as transcription and replication. In conjunction with histone modifications, DNA methylation plays critical roles in gene silencing through chromatin remodeling. Chromatin remodeling is also interconnected with the DNA damage response, maintenance of stem cell properties, and cell differentiation programs. Chromatin modifications have increasingly been shown to produce long-lasting alterations in chromatin structure and transcription. Recent studies have shown environmental exposures in utero have the potential to alter normal developmental signaling networks, physiologic responses, and disease susceptibility later in life during a process known as developmental reprogramming. In this review we discuss the long-term impact of exposure to environmental compounds, the chromatin modifications that they induce, and the differentiation and developmental programs of multiple stem and progenitor cell types altered by exposure. The main focus is to highlight agents present in the human lifestyle that have the potential to promote epigenetic changes that impact developmental programs of specific cell types, may promote tumorigenesis through altering epigenetic marks, and may be transgenerational, for example, those able to be transmitted through multiple cell divisions.

  16. Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation

    Directory of Open Access Journals (Sweden)

    He Shuying

    2010-11-01

    Full Text Available Abstract Background Brahma-related gene 1 (Brg1, also known as Smarca4 and Snf2β encodes an adenosine-5'-triphosphate (ATP-dependent catalytical subunit of the (switch/sucrose nonfermentable (SWI/SNF chromatin remodeling complexes. SWI/SNF complexes are recruited to chromatin through multiple mechanisms, including specific DNA-binding factors (for example, heat shock transcription factor 4 (Hsf4 and paired box gene 6 (Pax6, chromatin structural proteins (for example, high-mobility group A1 (HMGA1 and/or acetylated core histones. Previous studies have shown that a single amino acid substitution (K798R in the Brg1 ATPase domain acts via a dominant-negative (dn mechanism. Genetic studies have demonstrated that Brg1 is an essential gene for early (that is, prior implantation mouse embryonic development. Brg1 also controls neural stem cell maintenance, terminal differentiation of multiple cell lineages and organs including the T-cells, glial cells and limbs. Results To examine the roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific αA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (that is, denucleation of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in embryonic day 15.5 (E15.5 wild-type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous and Hsf4 homozygous lenses identified multiple genes coregulated by Brg1, Hsf4 and Pax6. DNase IIβ, a key enzyme required for lens fiber cell denucleation, was found to be downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that

  17. SHORT HYPOCOTYL1 Encodes a SMARCA3-Like Chromatin Remodeling Factor Regulating Elongation1[OPEN

    Science.gov (United States)

    Bo, Kailiang; Behera, Tusar K.; Pandey, Sudhakar; Wen, Changlong; Wang, Yuhui; Simon, Philipp W.; Li, Yuhong

    2016-01-01

    In Arabidopsis (Arabidopsis thaliana), the UVR8-mediated signaling pathway is employed to attain UVB protection and acclimation to deal with low-dosage UVB (LDUVB)-induced stresses. Here, we identified SHORT HYPOCOTYL1 (SH1) in cucumber (Cucumis sativus), which regulates LDUVB-dependent hypocotyl elongation by modulating the UVR8 signaling pathway. We showed that hypocotyl elongation in cucumbers carrying the recessive sh1 allele was LDUVB insensitive and that Sh1 encoded a human SMARCA3-like chromatin remodeling factor. The allele frequency and distribution pattern at this locus among natural populations supported the wild cucumber origin of sh1 for local adaptation, which was under selection during domestication. The cultivated cucumber carries predominantly the Sh1 allele; the sh1 allele is nearly fixed in the semiwild Xishuangbanna cucumber, and the wild cucumber population is largely at Hardy-Weinberg equilibrium for the two alleles. The SH1 protein sequence was highly conserved among eukaryotic organisms, but its regulation of hypocotyl elongation in cucumber seems to be a novel function. While Sh1 expression was inhibited by LDUVB, its transcript abundance was highly correlated with hypocotyl elongation rate and the expression level of cell-elongation-related genes. Expression profiling of key regulators in the UVR8 signaling pathway revealed significant differential expression of CsHY5 between two near isogenic lines of Sh1. Sh1 and CsHY5 acted antagonistically at transcriptional level. A working model was proposed in which Sh1 regulates LDUVB-dependent hypocotyl elongation in cucumber through changing the chromatin states and thus the accessibility of CsHY5 in the UVR8 signaling pathway to promoters of LDUVB-responsive genes for hypocotyl elongation. PMID:27559036

  18. Impaired contextual fear extinction learning is associated with aberrant regulation of CHD-type chromatin remodeling factors

    Directory of Open Access Journals (Sweden)

    Alexandra eWille

    2015-11-01

    Full Text Available Successful attenuation of fearful memories is a cognitive process requiring initiation of highly coordinated transcription programs. Chromatin-modulating mechanisms such as DNA methylation and histone modifications, including acetylation, are key regulators of these processes. However, knowledge concerning the role of ATP-dependent chromatin remodeling factors (ChRFs being required for successful fear extinction is lacking. Underscoring the potential importance of these factors that alter histone-DNA contacts within nucleosomes are recent genome-wide association studies linking several ChRFs to various human cognitive and psychiatric disorders. To better understand the role of ChRFs in the brain, and since to date little is known about ChRF expression in the brain, we performed a comprehensive survey of expression levels of 24 ATP-dependent remodelers across different brain areas, and we identified several distinct high molecular weight complexes by chromatographic methods. We next aimed to gain novel insight into the potential regulation of ChRFs in different brain regions in association with normal and impaired fear extinction learning. To this end, we established the 129S1/SvImJ (S1 laboratory mouse strain as a model for compromised contextual fear extinction learning that can be rescued by dietary zinc restriction. Using this model along with genetically related but fear extinction-competent 129S6/SvEv (S6 mice as controls, we found that impaired fear extinction in S1 was associated with enhanced ventral hippocampal expression of CHD1 and reduced expression of CHD5 that was normalized following successful rescue of impaired fear extinction. Moreover, a select reduction in CHD3 expression was observed in the ventral hippocampus following successful rescue of fear extinction in S1 mice. Taken together, these data provide novel insight into the regulation of specific ChRFs following an impaired cognitive process and its rescue, and they suggest

  19. Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals.

    Science.gov (United States)

    Footitt, Steven; Müller, Kerstin; Kermode, Allison R; Finch-Savage, William E

    2015-02-01

    The involvement of chromatin remodelling in dormancy cycling in the soil seed bank (SSB) is poorly understood. Natural variation between the winter and summer annual Arabidopsis ecotypes Cvi and Bur was exploited to investigate the expression of genes involved in chromatin remodelling via histone 2B (H2B) ubiquitination/de-ubiquitination and histone acetylation/deacetylation, the repressive histone methyl transferases CURLY LEAF (CLF) and SWINGER (SWN), and the gene silencing repressor ROS1 (REPRESSOR OF SILENCING1) and promoter of silencing KYP/SUVH4 (KRYPTONITE), during dormancy cycling in the SSB. ROS1 expression was positively correlated with dormancy while the reverse was observed for CLF and KYP/SUVH4. We propose ROS1 dependent repression of silencing and a sequential requirement of CLF and KYP/SUVH4 dependent gene repression and silencing for the maintenance and suppression of dormancy during dormancy cycling. Seasonal expression of H2B modifying genes was correlated negatively with temperature and positively with DOG1 expression, as were histone acetyltransferase genes, with histone deacetylases positively correlated with temperature. Changes in the histone marks H3K4me3 and H3K27me3 were seen on DOG1 (DELAY OF GERMINATION1) in Cvi during dormancy cycling. H3K4me3 activating marks remained stable along DOG1. During relief of dormancy, H3K27me3 repressive marks slowly accumulated and accelerated on exposure to light completing dormancy loss. We propose that these marks on DOG1 serve as a thermal sensing mechanism during dormancy cycling in preparation for light repression of dormancy. Overall, chromatin remodelling plays a vital role in temporal sensing through regulation of gene expression.

  20. Genome-wide association data reveal a global map of genetic interactions among protein complexes.

    Directory of Open Access Journals (Sweden)

    Gregory Hannum

    2009-12-01

    Full Text Available This work demonstrates how gene association studies can be analyzed to map a global landscape of genetic interactions among protein complexes and pathways. Despite the immense potential of gene association studies, they have been challenging to analyze because most traits are complex, involving the combined effect of mutations at many different genes. Due to lack of statistical power, only the strongest single markers are typically identified. Here, we present an integrative approach that greatly increases power through marker clustering and projection of marker interactions within and across protein complexes. Applied to a recent gene association study in yeast, this approach identifies 2,023 genetic interactions which map to 208 functional interactions among protein complexes. We show that such interactions are analogous to interactions derived through reverse genetic screens and that they provide coverage in areas not yet tested by reverse genetic analysis. This work has the potential to transform gene association studies, by elevating the analysis from the level of individual markers to global maps of genetic interactions. As proof of principle, we use synthetic genetic screens to confirm numerous novel genetic interactions for the INO80 chromatin remodeling complex.

  1. Histone H2B ubiquitylation represses gametogenesis by opposing RSC-dependent chromatin remodeling at the ste11 master regulator locus.

    Science.gov (United States)

    Materne, Philippe; Vázquez, Enrique; Sánchez, Mar; Yague-Sanz, Carlo; Anandhakumar, Jayamani; Migeot, Valerie; Antequera, Francisco; Hermand, Damien

    2016-01-01

    In fission yeast, the ste11 gene encodes the master regulator initiating the switch from vegetative growth to gametogenesis. In a previous paper, we showed that the methylation of H3K4 and consequent promoter nucleosome deacetylation repress ste11 induction and cell differentiation (Materne et al., 2015) but the regulatory steps remain poorly understood. Here we report a genetic screen that highlighted H2B deubiquitylation and the RSC remodeling complex as activators of ste11 expression. Mechanistic analyses revealed more complex, opposite roles of H2Bubi at the promoter where it represses expression, and over the transcribed region where it sustains it. By promoting H3K4 methylation at the promoter, H2Bubi initiates the deacetylation process, which decreases chromatin remodeling by RSC. Upon induction, this process is reversed and efficient NDR (nucleosome depleted region) formation leads to high expression. Therefore, H2Bubi represses gametogenesis by opposing the recruitment of RSC at the promoter of the master regulator ste11 gene.

  2. Cloning and analysis of a Toxoplasma gondii histone acetyltransferase: a novel chromatin remodelling factor in Apicomplexan parasites.

    Science.gov (United States)

    Hettmann, C; Soldati, D

    1999-11-15

    The yeast transcriptional adaptor GCN5 functions as a histone acetyltransferase, directly linking chromatin modification to transcriptional regulation. Homologues of yeast GCN5 have been found in Tetrahymena, Drosophila, Arabidopsis and human, suggesting that this pathway of chromatin remodelling is evolutionarily conserved. Consistent with this view, we have identified the Toxoplasma gondii homologue, referred to here as TgGCN5. The gene codes for a protein of 474 amino acids with an estimated molecular mass of 53 kDa. The protein reveals two regions of close similarity with the GCN5 family members, the HAT domain and the bromodomain. Tg GCN5 occurs in a single copy in the T.gondii genome. The introduction of a second copy of TgGCN5 in T.gondii tachyzoites is toxic unless the HAT activity is disrupted by a single point mutation. Full TgGCN5 does not complement the growth defect in a yeast gcn5 (-)mutant strain, but a chimera comprising the T.gondii HAT domain fused to the remainder of yGCN5 does. These data show that T.gondii GNC5 is a histone acetyltransferase attesting to the significance of chromatin remodelling in gene regulation of Apicomplexa.

  3. Regulation of Egr1 Target Genes by the Nurd Chromatin Remodeling Complex

    Science.gov (United States)

    2008-06-01

    domain; HDAC, histone deacetylase; RAD, Ras homolog in diabetes; PHD, plant homeodo- main; siRNA, short interfering RNA; DBD, DNA-binding domain; TSA...and mouse thymus and neurospheres (GenBankTM BQ956141, AI117547, and CX201479, respectively). We tested the ability of the NAB2 splice variant to

  4. Reverse genetic analysis of the yeast RSC chromatin remodeler reveals a role for RSC3 and SNF5 homolog 1 in ploidy maintenance.

    Directory of Open Access Journals (Sweden)

    Coen Campsteijn

    2007-06-01

    Full Text Available The yeast "remodels the structure of chromatin" (RSC complex is a multi-subunit "switching deficient/sucrose non-fermenting" type ATP-dependent nucleosome remodeler, with human counterparts that are well-established tumor suppressors. Using temperature-inducible degron fusions of all the essential RSC subunits, we set out to map RSC requirement as a function of the mitotic cell cycle. We found that RSC executes essential functions during G1, G2, and mitosis. Remarkably, we observed a doubling of chromosome complements when degron alleles of the RSC subunit SFH1, the yeast hSNF5 tumor suppressor ortholog, and RSC3 were combined. The requirement for simultaneous deregulation of SFH1 and RSC3 to induce these ploidy shifts was eliminated by knockout of the S-phase cyclin CLB5 and by transient depletion of replication origin licensing factor Cdc6p. Further, combination of the degron alleles of SFH1 and RSC3, with deletion alleles of each of the nine Cdc28/Cdk1-associated cyclins, revealed a strong and specific genetic interaction between the S-phase cyclin genes CLB5 and RSC3, indicating a role for Rsc3p in proper S-phase regulation. Taken together, our results implicate RSC in regulation of the G1/S-phase transition and establish a hitherto unanticipated role for RSC-mediated chromatin remodeling in ploidy maintenance.

  5. Versatile reporter systems show that transactivation by human T-cell leukemia virus type 1 Tax occurs independently of chromatin remodeling factor BRG1.

    Science.gov (United States)

    Zhang, Ling; Liu, Meihong; Merling, Randall; Giam, Chou-Zen

    2006-08-01

    Potent activation of human T-cell leukemia virus type 1 (HTLV-1) gene expression is mediated by the virus-encoded transactivator protein Tax and three imperfect 21-bp repeats in the viral long terminal repeats. Each 21-bp repeat contains a cAMP-responsive-element core flanked by 5' G-rich and 3' C-rich sequences. Tax alone does not bind DNA. Rather, it interacts with basic domain-leucine zipper transcription factors CREB and ATF-1 to form ternary complexes with the 21-bp repeats. In the context of the ternary complexes, Tax contacts the G/C-rich sequences and recruits transcriptional coactivators CREB-binding protein (CBP)/p300 to effect potent transcriptional activation. Using an easily transduced and chromosomally integrated reporter system derived from a self-inactivating lentivirus vector, we showed in a BRG1- and BRM1-deficient adrenal carcinoma cell line, SW-13, that Tax- and 21-bp repeat-mediated transactivation does not require BRG1 or BRM1 and is not enhanced by BRG1. With a similar reporter system, we further demonstrated that Tax- and tumor necrosis factor alpha-induced NF-kappaB activation occurs readily in SW-13 cells in the absence of BRG1 and BRM1. These results suggest that the assembly of stable multiprotein complexes containing Tax, CREB/ATF-1, and CBP/p300 on the 21-bp repeats is the principal mechanism employed by Tax to preclude nucleosome formation at the HTLV-1 enhancer/promoter. This most likely bypasses the need for BRG1-containing chromatin-remodeling complexes. Likewise, recruitment of CBP/p300 by NF-kappaB may be sufficient to disrupt histone-DNA interaction for the initiation of transcription.

  6. Multi-omic data integration links Deleted in Breast Cancer 1 (DBC1) Degradation to Chromatin Remodeling in Inflammatory Response

    Energy Technology Data Exchange (ETDEWEB)

    Nakayasu, Ernesto S.; Brown, Roslyn N.; Ansong, Charles; Sydor, Michael A.; Imtiaz, Sayed; Mihai, Cosmin; Sontag, Ryan L.; Hixson, Kim K.; Monroe, Matthew E.; Sobreira, Tiago; Orr, Galya; Petyuk, Vladislav A.; Yang, Feng; Smith, Richard D.; Adkins, Joshua N.

    2013-08-12

    Ubiquitination is a common protein post-translational modification that regulates many key cellular functions. Here we investigated the dynamics of ubiquitinated proteins after an inflammatory stimulation of RAW264.7 macrophage-like cells with bacterial lipopolysaccharide. We demonstrate that levels of global ubiquitination, and K48 and K63 polyubiquitination change after lipopolysaccharide stimulation. A quantitative proteomic analysis identified 1199 ubiquitinated proteins, 78 of which had significantly changed ubiquitination levels after lipopolysaccharide stimulation. We next identified a subset of proteins that were targeted for degradation after lipopolysaccharide stimulation, by integrating the ubiquitinome data with global proteomics and transcriptomics results. Using cellular assays and western blot analyses we biochemically validated DBC1, a histone deacetylase inhibitor not previously linked to inflammation, as a degradation substrate, which is targeted via an orchestrated mechanism utilizing caspases and the proteasome. The degradation of DBC1 releases histone deacetylase activity, linking lipopolysaccharide activation to chromatin remodeling in caspase- and proteasome-mediated signaling.

  7. Over-expression of Arabidopsis AtCHR23 chromatin remodeling ATPase results in increased variability of growth and gene expression

    NARCIS (Netherlands)

    Folta, A.; Severing, E.I.; Krauskopf, J.; Geest, van de H.C.; Verver, J.; Nap, J.P.H.; Mlynarova, L.

    2014-01-01

    Background Plants are sessile organisms that deal with their -sometimes adverse- environment in well-regulated ways. Chromatin remodeling involving SWI/SNF2-type ATPases is thought to be an important epigenetic mechanism for the regulation of gene expression in different developmental programs and f

  8. Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin Remodeler RSC (Remodels Structure of Chromatin).

    Science.gov (United States)

    Duan, Ming-Rui; Smerdon, Michael J

    2014-03-21

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage.

  9. Stress and the Emerging Roles of Chromatin Remodeling in Signal Integration and Stable Transmission of Reversible Phenotypes

    Science.gov (United States)

    Weaver, Ian C. G.; Korgan, Austin C.; Lee, Kristen; Wheeler, Ryan V.; Hundert, Amos S.; Goguen, Donna

    2017-01-01

    The influence of early life experience and degree of parental-infant attachment on emotional development in children and adolescents has been comprehensively studied. Structural and mechanistic insight into the biological foundation and maintenance of mammalian defensive systems (metabolic, immune, nervous and behavioral) is slowly advancing through the emerging field of developmental molecular (epi)genetics. Initial evidence revealed that differential nurture early in life generates stable differences in offspring hypothalamic-pituitary-adrenal (HPA) regulation, in part, through chromatin remodeling and changes in DNA methylation of specific genes expressed in the brain, revealing physical, biochemical and molecular paths for the epidemiological concept of gene-environment interactions. Herein, a primary molecular mechanism underpinning the early developmental programming and lifelong maintenance of defensive (emotional) responses in the offspring is the alteration of chromatin domains of specific genomic regions from a condensed state (heterochromatin) to a transcriptionally accessible state (euchromatin). Conversely, DNA methylation promotes the formation of heterochromatin, which is essential for gene silencing, genomic integrity and chromosome segregation. Therefore, inter-individual differences in chromatin modifications and DNA methylation marks hold great potential for assessing the impact of both early life experience and effectiveness of intervention programs—from guided psychosocial strategies focused on changing behavior to pharmacological treatments that target chromatin remodeling and DNA methylation enzymes to dietary approaches that alter cellular pools of metabolic intermediates and methyl donors to affect nutrient bioavailability and metabolism. In this review article, we discuss the potential molecular mechanism(s) of gene regulation associated with chromatin modeling and programming of endocrine (e.g., HPA and metabolic or cardiovascular) and

  10. The chromatin remodeler Mi-2beta is required for establishment of the basal epidermis and normal differentiation of its progeny.

    Science.gov (United States)

    Kashiwagi, Mariko; Morgan, Bruce A; Georgopoulos, Katia

    2007-04-01

    Using conditional gene targeting in mice, we show that the chromatin remodeler Mi-2beta is crucial for different aspects of skin development. Early (E10.5) depletion of Mi-2beta in the developing ventral epidermis results in the delayed reduction of its suprabasal layers in late embryogenesis and to the ultimate depletion of its basal layer. Later (E13.5) loss of Mi-2beta in the dorsal epidermis does not interfere with suprabasal layer differentiation or maintenance of the basal layer, but induction of hair follicles is blocked. After initiation of the follicle, some subsequent morphogenesis of the hair peg may proceed in the absence of Mi-2beta, but production of the progenitors that give rise to the inner layers of the hair follicle and hair shaft is impaired. These results suggest that the extended self-renewal capacity of epidermal precursors arises early during embryogenesis by a process that is critically dependent on Mi-2beta. Once this process is complete, Mi-2beta is apparently dispensable for the maintenance of established repopulating epidermal stem cells and for the differentiation of their progeny into interfollicular epidermis for the remainder of gestation. Mi-2beta is however essential for the reprogramming of basal cells to the follicular and, subsequently, hair matrix fates.

  11. Targeting the chromatin remodeling enzyme BRG1 increases the efficacy of chemotherapy drugs in breast cancer cells

    Science.gov (United States)

    Wu, Qiong; Sharma, Soni; Cui, Hang; LeBlanc, Scott E.; Zhang, Hong; Muthuswami, Rohini; Nickerson, Jeffrey A.; Imbalzano, Anthony N.

    2016-01-01

    Brahma related gene product 1 (BRG1) is an ATPase that drives the catalytic activity of a subset of the mammalian SWI/SNF chromatin remodeling enzymes. BRG1 is overexpressed in most human breast cancer tumors without evidence of mutation and is required for breast cancer cell proliferation. We demonstrate that knockdown of BRG1 sensitized triple negative breast cancer cells to chemotherapeutic drugs used to treat breast cancer. An inhibitor of the BRG1 bromodomain had no effect on breast cancer cell viability, but an inhibitory molecule that targets the BRG1 ATPase activity recapitulated the increased drug efficacy observed in the presence of BRG1 knockdown. We further demonstrate that inhibition of BRG1 ATPase activity blocks the induction of ABC transporter genes by these chemotherapeutic drugs and that BRG1 binds to ABC transporter gene promoters. This inhibition increased intracellular concentrations of the drugs, providing a likely mechanism for the increased chemosensitivity. Since ABC transporters and their induction by chemotherapy drugs are a major cause of chemoresistance and treatment failure, these results support the idea that targeting the enzymatic activity of BRG1 would be an effective adjuvant therapy for breast cancer. PMID:27029062

  12. Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection.

    Science.gov (United States)

    Clapier, Cedric R; Kasten, Margaret M; Parnell, Timothy J; Viswanathan, Ramya; Szerlong, Heather; Sirinakis, George; Zhang, Yongli; Cairns, Bradley R

    2016-05-01

    The RSC chromatin remodeler slides and ejects nucleosomes, utilizing a catalytic subunit (Sth1) with DNA translocation activity, which can pump DNA around the nucleosome. A central question is whether and how DNA translocation is regulated to achieve sliding versus ejection. Here, we report the regulation of DNA translocation efficiency by two domains residing on Sth1 (Post-HSA and Protrusion 1) and by actin-related proteins (ARPs) that bind Sth1. ARPs facilitated sliding and ejection by improving "coupling"-the amount of DNA translocation by Sth1 relative to ATP hydrolysis. We also identified and characterized Protrusion 1 mutations that promote "coupling," and Post-HSA mutations that improve ATP hydrolysis; notably, the strongest mutations conferred efficient nucleosome ejection without ARPs. Taken together, sliding-to-ejection involves a continuum of DNA translocation efficiency, consistent with higher magnitudes of ATPase and coupling activities (involving ARPs and Sth1 domains), enabling the simultaneous rupture of multiple histone-DNA contacts facilitating ejection.

  13. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook;

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and...

  14. miR-151-5p, targeting chromatin remodeler SMARCA5, as a marker for the BRCAness phenotype.

    Science.gov (United States)

    Tommasi, Stefania; Pinto, Rosamaria; Danza, Katia; Pilato, Brunella; Palumbo, Orazio; Micale, Lucia; De Summa, Simona

    2016-12-06

    In recent years, the assessment of biomarkers useful for "precision medicine" has been a hot topic in research. The involvement of microRNAs in the pathogenesis of breast cancer has been highly investigated with the aim of being able to molecularly stratify this highly heterogeneous disease. Our aim was to identify microRNAs targeting DNA repair machinery, through Affymetrix GeneChip miRNA Arrays, in a cohort of BRCA-related and sporadic breast cancers. Moreover, we analyzed microRNA expression taking into account our previous results on the expression of PARP1, because of its importance in targeted therapy. miR-361-5p and miR-151-5p were found to be overexpressed in PARP1-upregulating BRCA-germline mutated and sporadic breast tumors. Pathway enrichment analysis was performed to identify potential target genes to be analyzed in the validation step in an independent cohort. Our results confirmed the overexpression of miR-151-5p and, interestingly, its role in the targeting of SMARCA5, a chromatin remodeler. This result was also confirmed in vitro, both through luciferase assay and by analyzing endogenous levels of SMARCA5 in MCF-7 cell lines using miR-151-5p mimic and inhibitor. In conclusion, our data showed the possibility of considering the overexpression of PARP1 and miR-151-5p as biomarkers useful to correctly treat sporadic breast cancers, which eventually could be considered as BRCAness tumors, with PARP-inhibitors.

  15. The Cardiac TBX5 Interactome Reveals a Chromatin Remodeling Network Essential for Cardiac Septation.

    Science.gov (United States)

    Waldron, Lauren; Steimle, Jeffrey D; Greco, Todd M; Gomez, Nicholas C; Dorr, Kerry M; Kweon, Junghun; Temple, Brenda; Yang, Xinan Holly; Wilczewski, Caralynn M; Davis, Ian J; Cristea, Ileana M; Moskowitz, Ivan P; Conlon, Frank L

    2016-02-08

    Human mutations in the cardiac transcription factor gene TBX5 cause congenital heart disease (CHD), although the underlying mechanism is unknown. We report characterization of the endogenous TBX5 cardiac interactome and demonstrate that TBX5, long considered a transcriptional activator, interacts biochemically and genetically with the nucleosome remodeling and deacetylase (NuRD) repressor complex. Incompatible gene programs are repressed by TBX5 in the developing heart. CHD mis-sense mutations that disrupt the TBX5-NuRD interaction cause depression of a subset of repressed genes. Furthermore, the TBX5-NuRD interaction is required for heart development. Phylogenetic analysis showed that the TBX5-NuRD interaction domain evolved during early diversification of vertebrates, simultaneous with the evolution of cardiac septation. Collectively, this work defines a TBX5-NuRD interaction essential to cardiac development and the evolution of the mammalian heart, and when altered may contribute to human CHD.

  16. Akirin specifies NF-κB selectivity of Drosophila innate immune response via chromatin remodeling

    Science.gov (United States)

    Bonnay, François; Nguyen, Xuan-Hung; Cohen-Berros, Eva; Troxler, Laurent; Batsche, Eric; Camonis, Jacques; Takeuchi, Osamu; Reichhart, Jean-Marc; Matt, Nicolas

    2014-01-01

    The network of NF-κB-dependent transcription that activates both pro- and anti-inflammatory genes in mammals is still unclear. As NF-κB factors are evolutionarily conserved, we used Drosophila to understand this network. The NF-κB transcription factor Relish activates effector gene expression following Gram-negative bacterial immune challenge. Here, we show, using a genome-wide approach, that the conserved nuclear protein Akirin is a NF-κB co-factor required for the activation of a subset of Relish-dependent genes correlating with the presence of H3K4ac epigenetic marks. A large-scale unbiased proteomic analysis revealed that Akirin orchestrates NF-κB transcriptional selectivity through the recruitment of the Osa-containing-SWI/SNF-like Brahma complex (BAP). Immune challenge in Drosophila shows that Akirin is required for the transcription of a subset of effector genes, but dispensable for the transcription of genes that are negative regulators of the innate immune response. Therefore, Akirins act as molecular selectors specifying the choice between subsets of NF-κB target genes. The discovery of this mechanism, conserved in mammals, paves the way for the establishment of more specific and less toxic anti-inflammatory drugs targeting pro-inflammatory genes. PMID:25180232

  17. Chromatin remodeling by rosuvastatin normalizes TSC2-/meth cell phenotype through the expression of tuberin.

    Science.gov (United States)

    Lesma, Elena; Ancona, Silvia; Orpianesi, Emanuela; Grande, Vera; Di Giulio, Anna Maria; Gorio, Alfredo

    2013-05-01

    Tuberous sclerosis complex (TSC) is a multi-systemic syndrome caused by mutations in TSC1 or TSC2 gene. In TSC2-null cells, Rheb, a member of the Ras family of GTPases, is constitutively activated. Statins inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase and block the synthesis of isoprenoid lipids with inhibition of Rheb farnesylation and RhoA geranylgeranylation. The effects of rosuvastatin on the function of human TSC2(-/-) and TSC2(-/meth) α-actin smooth muscle (ASM) cells have been investigated. The TSC2(-/-) and TSC2(-/meth) ASM cells, previously isolated in our laboratory from the renal angiomyolipoma of two TSC patients, do not express tuberin and bear loss of heterozigosity caused by a double hit on TSC2 and methylation of TSC2 promoter, respectively. Exposure to rosuvastatin affected TSC2(-/meth) ASM cell growth and promoted tuberin expression by acting as a demethylating agent. This occurred without changes in interleukin release. Rosuvastatin also reduced RhoA activation in TSC2(-/meth) ASM cells, and it required coadministration with the specific mTOR (mammalian target of rapamycin) inhibitor rapamycin to be effective in TSC2(-/-) ASM cells. Rapamycin enhanced rosuvastatin effect in inhibiting cell proliferation in TSC2(-/-) and TSC2(-/meth) ASM cells. Rosuvastatin alone did not alter phosphorylation of S6 and extracellular signal-regulated kinase (ERK), and at the higher concentration, rosuvastatin and rapamycin slightly decreased ERK phosphorylation. These results suggest that rosuvastatin may potentially represent a treatment adjunct to the therapy with mTOR inhibitors now in clinical development for TSC. In particular, rosuvastatin appears useful when the disease is originated by epigenetic defects.

  18. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling

    DEFF Research Database (Denmark)

    Smeenk, G.; Wiegant, W.W.; Luijsterburg, M.S.

    2013-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) arising in native chromatin elicit an RNF8/RNF168-dependent ubiquitylation response, which triggers the recruitment of various repair factors. Precisely how this response is regulated in the context of chromatin remains largely unexp...... to IR and results in DSB repair defects. Our study unveils a functional link between DNA damage-induced poly(ADP-ribosyl)ation, SMARCA5- mediated chromatin remodeling and RNF168-dependent signaling and repair of DSBs. © 2013. Published by The Company of Biologists Ltd....

  19. Use of chromatin remodeling ATPases as RNAi targets for parental control of western corn rootworm (Diabrotica virgifera virgifera) and Neotropical brown stink bug (Euschistus heros).

    Science.gov (United States)

    Fishilevich, Elane; Vélez, Ana M; Khajuria, Chitvan; Frey, Meghan L F; Hamm, Ronda L; Wang, Haichuan; Schulenberg, Greg A; Bowling, Andrew J; Pence, Heather E; Gandra, Premchand; Arora, Kanika; Storer, Nicholas P; Narva, Kenneth E; Siegfried, Blair D

    2016-04-01

    RNA interference (RNAi) is a gene silencing mechanism that is present in animals and plants and is triggered by double stranded RNA (dsRNA) or small interfering RNA (siRNA), depending on the organism. In the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), RNAi can be achieved by feeding rootworms dsRNA added to artificial diet or plant tissues transformed to express dsRNA. The effect of RNAi depends on the targeted gene function and can range from an absence of phenotypic response to readily apparent responses, including lethality. Furthermore, RNAi can directly affect individuals that consume dsRNA or the effect may be transferred to the next generation. Our previous work described the potential use of genes involved in embryonic development as a parental RNAi technology for the control of WCR. In this study, we describe the use of chromatin-remodeling ATPases as target genes to achieve parental gene silencing in two insect pests, a coleopteran, WCR, and a hemipteran, the Neotropical brown stink bug, Euschistus heros Fabricius (Hemiptera: Pentatomidae). Our results show that dsRNA targeting chromatin-remodeling ATPase transcripts, brahma, mi-2, and iswi strongly reduced the fecundity of the exposed females in both insect species. Additionally, knockdown of chd1 reduced the fecundity of E. heros.

  20. Roles of chromatin remodelers in maintenance mechanisms of multipotency of mouse trunk neural crest cells in the formation of neural crest-derived stem cells.

    Science.gov (United States)

    Fujita, Kyohei; Ogawa, Ryuhei; Kawawaki, Syunsaku; Ito, Kazuo

    2014-08-01

    We analyzed roles of two chromatin remodelers, Chromodomain Helicase DNA-binding protein 7 (CHD7) and SWItch/Sucrose NonFermentable-B (SWI/SNF-B), and Bone Morphogenetic Protein (BMP)/Wnt signaling in the maintenance of the multipotency of mouse trunk neural crest cells, leading to the formation of mouse neural crest-derived stem cells (mouse NCSCs). CHD7 was expressed in the undifferentiated neural crest cells and in the dorsal root ganglia (DRG) and sciatic nerve, typical tissues containing NCSCs. BMP/Wnt signaling stimulated the expression of CHD7 and participated in maintaining the multipotency of neural crest cells. Furthermore, the promotion of CHD7 expression maintained the multipotency of these cells. The inhibition of CHD7 and SWI/SNF-B expression significantly suppressed the maintenance of the multipotency of these cells. In addition, BMP/Wnt treatment promoted CHD7 expression and caused the increase of the percentage of multipotent cells in DRG. Thus, the present data suggest that the chromatin remodelers as well as BMP/Wnt signaling play essential roles in the maintenance of the multipotency of mouse trunk neural crest cells and in the formation of mouse NCSCs.

  1. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2'-deoxyguanosine, a marker of oxidative stress.

    Science.gov (United States)

    De Iuliis, Geoffry N; Thomson, Laura K; Mitchell, Lisa A; Finnie, Jane M; Koppers, Adam J; Hedges, Andrew; Nixon, Brett; Aitken, R John

    2009-09-01

    DNA damage in human spermatozoa has been associated with a range of adverse clinical outcomes, including infertility, abortion, and disease in the offspring. We have advanced a two-step hypothesis to explain this damage involving impaired chromatin remodeling during spermiogenesis followed by a free radical attack to induce DNA strand breakage. The objective of the present study was to test this hypothesis by determining whether impaired chromatin protamination is correlated with oxidative base damage and DNA fragmentation in human spermatozoa. DNA fragmentation, chromatin protamination, mitochondrial membrane potential, and formation of the oxidative base adduct, 8-hydroxy-2'-deoxyguanosine (8OHdG), were monitored by flow cytometry/fluorescence microscopy. Impairment of DNA protamination during late spermatogenesis was highly correlated (P human spermatozoa. The disruption of chromatin remodeling also was associated with a significant elevation in the levels of 8OHdG (P < 0.001), and the latter was itself highly correlated with DNA fragmentation (P < 0.001). The significance of oxidative stress in 8OHdG formation was demonstrated experimentally using H2O2/Fe2+ and by the correlation observed between this base adduct and superoxide generation (P < 0.001). That 8OHdG formation was inversely associated with mitochondrial membrane potential (P < 0.001) suggested a possible role for these organelles in the creation of oxidative stress. These results clearly highlight the importance of oxidative stress in the induction of sperm DNA damage and carry significant implications for the clinical management of this condition.

  2. Arabidopsis BREVIPEDICELLUS interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA to regulate KNAT2 and KNAT6 expression in control of inflorescence architecture.

    Science.gov (United States)

    Zhao, Minglei; Yang, Songguang; Chen, Chia-Yang; Li, Chenlong; Shan, Wei; Lu, Wangjin; Cui, Yuhai; Liu, Xuncheng; Wu, Keqiang

    2015-03-01

    BREVIPEDICELLUS (BP or KNAT1), a class-I KNOTTED1-like homeobox (KNOX) transcription factor in Arabidopsis thaliana, contributes to shaping the normal inflorescence architecture through negatively regulating other two class-I KNOX genes, KNAT2 and KNAT6. However, the molecular mechanism of BP-mediated transcription regulation remains unclear. In this study, we showed that BP directly interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA (BRM) both in vitro and in vivo. Loss-of-function BRM mutants displayed inflorescence architecture defects, with clustered inflorescences, horizontally orientated pedicels, and short pedicels and internodes, a phenotype similar to the bp mutants. Furthermore, the transcript levels of KNAT2 and KNAT6 were elevated in brm-3, bp-9 and brm-3 bp-9 double mutants. Increased histone H3 lysine 4 tri-methylation (H3K4me3) levels were detected in brm-3, bp-9 and brm-3 bp-9 double mutants. Moreover, BRM and BP co-target to KNAT2 and KNAT6 genes, and BP is required for the binding of BRM to KNAT2 and KNAT6. Taken together, our results indicate that BP interacts with the chromatin remodeling factor BRM to regulate the expression of KNAT2 and KNAT6 in control of inflorescence architecture.

  3. Subunit Composition and Substrate Specificity of a MOF-containing Histone Acetyltransferase Distinct from the Male-specific Lethal (MSL) Complex*

    Science.gov (United States)

    Cai, Yong; Jin, Jingji; Swanson, Selene K.; Cole, Michael D.; Choi, Seung Hyuk; Florens, Laurence; Washburn, Michael P.; Conaway, Joan W.; Conaway, Ronald C.

    2010-01-01

    Human MOF (MYST1), a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs), is the human ortholog of the Drosophila males absent on the first (MOF) protein. MOF is the catalytic subunit of the male-specific lethal (MSL) HAT complex, which plays a key role in dosage compensation in the fly and is responsible for a large fraction of histone H4 lysine 16 (H4K16) acetylation in vivo. MOF was recently reported to be a component of a second HAT complex, designated the non-specific lethal (NSL) complex (Mendjan, S., Taipale, M., Kind, J., Holz, H., Gebhardt, P., Schelder, M., Vermeulen, M., Buscaino, A., Duncan, K., Mueller, J., Wilm, M., Stunnenberg, H. G., Saumweber, H., and Akhtar, A. (2006) Mol. Cell 21, 811–823). Here we report an analysis of the subunit composition and substrate specificity of the NSL complex. Proteomic analyses of complexes purified through multiple candidate subunits reveal that NSL is composed of nine subunits. Two of its subunits, WD repeat domain 5 (WDR5) and host cell factor 1 (HCF1), are shared with members of the MLL/SET family of histone H3 lysine 4 (H3K4) methyltransferase complexes, and a third subunit, MCRS1, is shared with the human INO80 chromatin-remodeling complex. In addition, we show that assembly of the MOF HAT into MSL or NSL complexes controls its substrate specificity. Although MSL-associated MOF acetylates nucleosomal histone H4 almost exclusively on lysine 16, NSL-associated MOF exhibits a relaxed specificity and also acetylates nucleosomal histone H4 on lysines 5 and 8. PMID:20018852

  4. Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Avendaño, Amaranta; Riego, Lina; DeLuna, Alexander; Aranda, Cristina; Romero, Guillermo; Ishida, Cecilia; Vázquez-Acevedo, Miriam; Rodarte, Beatriz; Recillas-Targa, Félix; Valenzuela, Lourdes; Zonszein, Sergio; González, Alicia

    2005-07-01

    It is accepted that Saccharomyces cerevisiae genome arose from complete duplication of eight ancestral chromosomes; functionally normal ploidy was recovered because of the massive loss of 90% of duplicated genes. There is evidence that indicates that part of this selective conservation of gene pairs is compelling to yeast facultative metabolism. As an example, the duplicated NADP-glutamate dehydrogenase pathway has been maintained because of the differential expression of the paralogous GDH1 and GDH3 genes, and the biochemical specialization of the enzymes they encode. The present work has been aimed to the understanding of the regulatory mechanisms that modulate GDH3 transcriptional activation. Our results show that GDH3 expression is repressed in glucose-grown cultures, as opposed to what has been observed for GDH1, and induced under respiratory conditions, or under stationary phase. Although GDH3 pertains to the nitrogen metabolic network, and its expression is Gln3p-regulated, complete derepression is ultimately determined by the carbon source through the action of the SAGA and SWI/SNF chromatin remodelling complexes. GDH3 carbon-mediated regulation is over-imposed to that exerted by the nitrogen source, highlighting the fact that operation of facultative metabolism requires strict control of enzymes, like Gdh3p, involved in biosynthetic pathways that use tricarboxylic acid cycle intermediates.

  5. 染色质重塑因子ARID1A的肿瘤抑制作用%Tumor suppressor role of chromatin-remodeling factor ARID1A

    Institute of Scientific and Technical Information of China (English)

    郭晓强; 张巧霞; 黄卫人; 段相林; 蔡志明

    2013-01-01

    The mammalian SWI/SNF complex is one of ATP-dependent chromatin-remodeling complexes, which plays important roles in cell proliferation, differentiation, development and tumor suppression. ARID 1A (AT-rich interactive domain-containing protein 1A) is a large subunit of SWI/SNF complex, and also an ARID family member with non-sequence-specific DNA binding activity. ARIDIA is a tumor suppressor gene which is frequently mutated in many cancers, such as ovarian, bladder and gastric cancers. ARIDIA can suppress cell proliferation through the up-regulation of p21 and the down-regulation of E2F-responsive genes. These findings on ARIDIA and its role of tumor suppression contribute to understanding the mechanism of cancer development and developing new therapy for cancer.lt is introduced in the review that ARIDIA basic characteristic, related to cancer development, and biological role for full understanding of ARIDIA%哺乳动物SWI/SNF复合物是一种ATP依赖的染色质重塑复合物,在细胞增殖、分化、发育和肿瘤抑制过程中发挥着重要作用.ARID 1A是一种SWI/SNF复合物亚基,此外还是一种ARID家族成员,具有非序列特异性DNA结合活性.ARID 1A发挥着肿瘤抑制作用,在多种肿瘤如卵巢癌、膀胱癌和胃癌等存在频繁基因突变.ARID1A可通过上调p21和下调E2F-反应基因表达而抑制细胞增殖.ARID1A与肿瘤抑制作用的发现对癌症发生的理解和癌症新治疗有重要裨益.文章介绍了ARID 1A的基本特征、肿瘤发生的关联及生物学作用,以期对ARID 1A有一个全面理解.

  6. The Arabidopsis SWI2/SNF2 chromatin Remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene SVP.

    Science.gov (United States)

    Li, Chenlong; Chen, Chen; Gao, Lei; Yang, Songguang; Nguyen, Vi; Shi, Xuejiang; Siminovitch, Katherine; Kohalmi, Susanne E; Huang, Shangzhi; Wu, Keqiang; Chen, Xuemei; Cui, Yuhai

    2015-01-01

    The chromatin remodeler BRAHMA (BRM) is a Trithorax Group (TrxG) protein that antagonizes the functions of Polycomb Group (PcG) proteins in fly and mammals. Recent studies also implicate such a role for Arabidopsis (Arabidopsis thaliana) BRM but the molecular mechanisms underlying the antagonism are unclear. To understand the interplay between BRM and PcG during plant development, we performed a genome-wide analysis of trimethylated histone H3 lysine 27 (H3K27me3) in brm mutant seedlings by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Increased H3K27me3 deposition at several hundred genes was observed in brm mutants and this increase was partially supressed by removal of the H3K27 methyltransferase CURLY LEAF (CLF) or SWINGER (SWN). ChIP experiments demonstrated that BRM directly binds to a subset of the genes and prevents the inappropriate association and/or activity of PcG proteins at these loci. Together, these results indicate a crucial role of BRM in restricting the inappropriate activity of PcG during plant development. The key flowering repressor gene SHORT VEGETATIVE PHASE (SVP) is such a BRM target. In brm mutants, elevated PcG occupancy at SVP accompanies a dramatic increase in H3K27me3 levels at this locus and a concomitant reduction of SVP expression. Further, our gain- and loss-of-function genetic evidence establishes that BRM controls flowering time by directly activating SVP expression. This work reveals a genome-wide functional interplay between BRM and PcG and provides new insights into the impacts of these proteins in plant growth and development.

  7. The Arabidopsis SWI2/SNF2 chromatin Remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene SVP.

    Directory of Open Access Journals (Sweden)

    Chenlong Li

    2015-01-01

    Full Text Available The chromatin remodeler BRAHMA (BRM is a Trithorax Group (TrxG protein that antagonizes the functions of Polycomb Group (PcG proteins in fly and mammals. Recent studies also implicate such a role for Arabidopsis (Arabidopsis thaliana BRM but the molecular mechanisms underlying the antagonism are unclear. To understand the interplay between BRM and PcG during plant development, we performed a genome-wide analysis of trimethylated histone H3 lysine 27 (H3K27me3 in brm mutant seedlings by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq. Increased H3K27me3 deposition at several hundred genes was observed in brm mutants and this increase was partially supressed by removal of the H3K27 methyltransferase CURLY LEAF (CLF or SWINGER (SWN. ChIP experiments demonstrated that BRM directly binds to a subset of the genes and prevents the inappropriate association and/or activity of PcG proteins at these loci. Together, these results indicate a crucial role of BRM in restricting the inappropriate activity of PcG during plant development. The key flowering repressor gene SHORT VEGETATIVE PHASE (SVP is such a BRM target. In brm mutants, elevated PcG occupancy at SVP accompanies a dramatic increase in H3K27me3 levels at this locus and a concomitant reduction of SVP expression. Further, our gain- and loss-of-function genetic evidence establishes that BRM controls flowering time by directly activating SVP expression. This work reveals a genome-wide functional interplay between BRM and PcG and provides new insights into the impacts of these proteins in plant growth and development.

  8. Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D.

    Science.gov (United States)

    Simbolo, Michele; Mafficini, Andrea; Sikora, Katarzyna O; Fassan, Matteo; Barbi, Stefano; Corbo, Vincenzo; Mastracci, Luca; Rusev, Borislav; Grillo, Federica; Vicentini, Caterina; Ferrara, Roberto; Pilotto, Sara; Davini, Federico; Pelosi, Giuseppe; Lawlor, Rita T; Chilosi, Marco; Tortora, Giampaolo; Bria, Emilio; Fontanini, Gabriella; Volante, Marco; Scarpa, Aldo

    2017-03-01

    Next-generation sequencing (NGS) was applied to 148 lung neuroendocrine tumours (LNETs) comprising the four World Health Organization classification categories: 53 typical carcinoid (TCs), 35 atypical carcinoid (ACs), 27 large-cell neuroendocrine carcinomas, and 33 small-cell lung carcinomas. A discovery screen was conducted on 46 samples by the use of whole-exome sequencing and high-coverage targeted sequencing of 418 genes. Eighty-eight recurrently mutated genes from both the discovery screen and current literature were verified in the 46 cases of the discovery screen, and validated on additional 102 LNETs by targeted NGS; their prevalence was then evaluated on the whole series. Thirteen of these 88 genes were also evaluated for copy number alterations (CNAs). Carcinoids and carcinomas shared most of the altered genes but with different prevalence rates. When mutations and copy number changes were combined, MEN1 alterations were almost exclusive to carcinoids, whereas alterations of TP53 and RB1 cell cycle regulation genes and PI3K/AKT/mTOR pathway genes were significantly enriched in carcinomas. Conversely, mutations in chromatin-remodelling genes, including those encoding histone modifiers and members of SWI-SNF complexes, were found at similar rates in carcinoids (45.5%) and carcinomas (55.0%), suggesting a major role in LNET pathogenesis. One AC and one TC showed a hypermutated profile associated with a POLQ damaging mutation. There were fewer CNAs in carcinoids than in carcinomas; however ACs showed a hybrid pattern, whereby gains of TERT, SDHA, RICTOR, PIK3CA, MYCL and SRC were found at rates similar to those in carcinomas, whereas the MEN1 loss rate mirrored that of TCs. Multivariate survival analysis revealed RB1 mutation (p = 0.0005) and TERT copy gain (p = 0.016) as independent predictors of poorer prognosis. MEN1 mutation was associated with poor prognosis in AC (p = 0.0045), whereas KMT2D mutation correlated with longer survival in SCLC

  9. The BRG1 chromatin remodeler protects against ovarian cysts, uterine tumors, and mammary tumors in a lineage-specific manner.

    Directory of Open Access Journals (Sweden)

    Daniel W Serber

    Full Text Available The BRG1 catalytic subunit of SWI/SNF-related complexes is required for mammalian development as exemplified by the early embryonic lethality of Brg1 null homozygous mice. BRG1 is also a tumor suppressor and, in mice, 10% of heterozygous (Brg1(null/+ females develop mammary tumors. We now demonstrate that BRG1 mRNA and protein are expressed in both the luminal and basal cells of the mammary gland, raising the question of which lineage requires BRG1 to promote mammary homeostasis and prevent oncogenic transformation. To investigate this question, we utilized Wap-Cre to mutate both Brg1 floxed alleles in the luminal cells of the mammary epithelium of pregnant mice where WAP is exclusively expressed within the mammary gland. Interestingly, we found that Brg1(Wap-Cre conditional homozygotes lactated normally and did not develop mammary tumors even when they were maintained on a Brm-deficient background. However, Brg1(Wap-Cre mutants did develop ovarian cysts and uterine tumors. Analysis of these latter tissues showed that both, like the mammary gland, contain cells that normally express Brg1 and Wap. Thus, tumor formation in Brg1 mutant mice appears to be confined to particular cell types that require BRG1 and also express Wap. Our results now show that such cells exist both in the ovary and the uterus but not in either the luminal or the basal compartments of the mammary gland. Taken together, these findings indicate that SWI/SNF-related complexes are dispensable in the luminal cells of the mammary gland and therefore argue against the notion that SWI/SNF-related complexes are essential for cell survival. These findings also suggest that the tumor-suppressor activity of BRG1 is restricted to the basal cells of the mammary gland and demonstrate that this function extends to other female reproductive organs, consistent with recent observations of recurrent ARID1A/BAF250a mutations in human ovarian and endometrial tumors.

  10. Chromatin remodeling protein SMAR1 regulates NF-κB dependent Interleukin-8 transcription in breast cancer.

    Science.gov (United States)

    Malonia, Sunil K; Yadav, Bhawna; Sinha, Surajit; Lazennec, Gwendel; Chattopadhyay, Samit

    2014-10-01

    Interleukin-8 (IL-8) is a pleiotropic chemokine involved in metastasis and angiogenesis of breast tumors. The expression of IL-8 is deregulated in metastatic breast carcinomas owing to aberrant NF-κB activity, which is known to positively regulate IL-8 transcription. Earlier, we have shown that tumor suppressor SMAR1 suppresses NF-κB transcriptional activity by modulating IκBα function. Here, we show that NF-κB target gene IL-8, is a direct transcriptional target of SMAR1. Using chromatin immunoprecipitation and reporter assays, we demonstrate that SMAR1 binds to IL-8 promoter MAR (matrix attachment region) and recruits HDAC1 dependent co-repressor complex. Further, we also show that SMAR1 antagonizes p300-mediated acetylation of RelA/p65, a post-translational modification indispensable for IL-8 transactivation. Thus, we decipher a new role of SMAR1 in NF-κB dependent transcriptional regulation of pro-angiogenic chemokine IL-8.

  11. Chromatin remodeling and human disease.

    Science.gov (United States)

    Huang, Cheng; Sloan, Emily A; Boerkoel, Cornelius F

    2003-06-01

    In the past few years, there has been a nascent convergence of scientific understanding of inherited human diseases with epigenetics. Identified epigenetic processes involved in human disease include covalent DNA modifications, covalent histone modifications, and histone relocation. Each of these processes influences chromatin structure and thereby regulates gene expression and DNA methylation, replication, recombination, and repair. The importance of these processes for nearly all aspects of normal growth and development is illustrated by the array of multi-system disorders and neoplasias caused by their dysregulation.

  12. The analysis of chromatin remodeling and the staining for DNA methylation and histone acetylation do not provide definitive indicators of the developmental ability of inter-species cloned embryos.

    Science.gov (United States)

    Lee, Eugine; Kim, Ji Hye; Park, Seon Mi; Jeong, Yeon Ik; Lee, Jong Yun; Park, Sun Woo; Choi, Jiho; Kim, Huen Suk; Jeong, Yeon Woo; Kim, Sue; Hyun, Sang Hwan; Hwang, Woo Suk

    2008-05-01

    The restricted supply of oocytes in the domestic dog limits the development of reproductive biotechnologies in this species. Inter-species somatic cell nuclear transfer could be an alternative for cloning animals whose oocytes are difficult to obtain. In this study, the possibility of cloning dog embryos using pig oocytes was investigated by evaluating nuclear remodeling. Chromatin remodeling, assessed by premature chromosome condensation, pseudo-pronuclei formation, DNA methylation and histone acetylation, along with the developmental ability was compared between intra- and inter-species cloned embryos. The incidence of premature chromosome condensation was significantly higher in intra-species cloned embryos relative to inter-species cloned embryos (87.2% vs. 61.7%; Pcell stage while 18.3% of intra-species cloned embryos developed to the blastocyst stage. The relative level of both DNA methylation and histone acetylation was similar between intra- and inter-species cloned embryos at all times examined. These results suggest that although partial chromatin remodeling occurs, further investigation is needed to be able to use pig oocytes as recipient oocytes in dog cloning.

  13. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes.

    Science.gov (United States)

    Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy; Groitl, Peter; Wimmer, Peter; Kinkley, Sarah; Mund, Andreas; Everett, Roger D; Dobner, Thomas

    2013-04-01

    Death domain-associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein-protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling.

  14. HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR

    Directory of Open Access Journals (Sweden)

    McCaffrey Timothy

    2007-07-01

    Full Text Available Abstract Background RNA interference (RNAi is a regulatory mechanism conserved in higher eukaryotes. The RNAi pathway generates small interfering RNA (siRNA or micro RNA (miRNA from either long double stranded stretches of RNA or RNA hairpins, respectively. The siRNA or miRNA then guides an effector complex to a homologous sequence of mRNA and regulates suppression of gene expression through one of several mechanisms. The suppression of gene expression through these mechanisms serves to regulate endogenous gene expression and protect the cell from foreign nucleic acids. There is growing evidence that many viruses have developed in the context of RNAi and express either a suppressor of RNAi or their own viral miRNA. Results In this study we investigated the possibility that the HIV-1 TAR element, a hairpin structure of ~50 nucleotides found at the 5' end of the HIV viral mRNA, is recognized by the RNAi machinery and processed to yield a viral miRNA. We show that the protein Dicer, the enzyme responsible for cleaving miRNA and siRNA from longer RNA sequences, is expressed in CD4+ T-cells. Interestingly, the level of expression of Dicer in monocytes is sub-optimal, suggesting a possible role for RNAi in maintaining latency in T-cells. Using a biotin labeled TAR element we demonstrate that Dicer binds to this structure. We show that recombinant Dicer is capable of cleaving the TAR element in vitro and that TAR derived miRNA is present in HIV-1 infected cell lines and primary T-cell blasts. Finally, we show that a TAR derived miRNA is capable of regulating viral gene expression and may be involved in repressing gene expression through transcriptional silencing. Conclusion HIV-1 TAR element is processed by the Dicer enzyme to create a viral miRNA. This viral miRNA is detectable in infected cells and appears to contribute to viral latency.

  15. Does chromatin remodeling mark systemic acquired resistance?

    NARCIS (Netherlands)

    Burg, van den H.A.; Takken, F.L.W.

    2009-01-01

    The recognition of plant pathogens activates local defense responses and triggers a long-lasting systemic acquired resistance (SAR) response. Activation of SAR requires the hormone salicylic acid (SA), which induces SA-responsive gene expression. Recent data link changes in gene expression to chroma

  16. Transcriptional networks and chromatin remodeling controlling adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2012-01-01

    remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications...

  17. Ubiquitous Over-Expression of Chromatin Remodeling Factor SRG3 Ameliorates the T Cell-Mediated Exacerbation of EAE by Modulating the Phenotypes of both Dendritic Cells and Macrophages.

    Science.gov (United States)

    Lee, Sung Won; Park, Hyun Jung; Jeon, Sung Ho; Lee, Changjin; Seong, Rho Hyun; Park, Se-Ho; Hong, Seokmann

    2015-01-01

    Although SWI3-related gene (SRG3), a chromatin remodeling factor, is critical for various biological processes including early embryogenesis and thymocyte development, it is unclear whether SRG3 is involved in the differentiation of CD4+ T cells, the key mediator of adaptive immune responses. Because it is known that experimental autoimmune encephalomyelitis (EAE) development is determined by the activation of CD4+ T helper cells, here, we investigated the role of SRG3 in EAE development using SRG3 transgenic mouse models exhibiting two distinct SRG3 expression patterns: SRG3 expression driven by either the CD2 or β-actin promoter. We found that the outcome of EAE development was completely different depending on the expression pattern of SRG3. The specific over-expression of SRG3 using the CD2 promoter facilitated EAE via the induction of Th1 and Th17 cells, whereas the ubiquitous over-expression of SRG3 using the β-actin promoter inhibited EAE by promoting Th2 differentiation and suppressing Th1 and Th17 differentiation. In addition, the ubiquitous over-expression of SRG3 polarized CD4+ T cell differentiation towards the Th2 phenotype by converting dendritic cells (DCs) or macrophages to Th2 types. SRG3 over-expression not only reduced pro-inflammatory cytokine production by DCs but also shifted macrophages from the inducible nitric oxide synthase (iNOS)-expressing M1 phenotype to the arginase-1-expressing M2 phenotype during EAE. In addition, Th2 differentiation in β-actin-SRG3 Tg mice during EAE was associated with an increase in the basophil and mast cell populations and in IL4 production. Furthermore, the increased frequency of Treg cells in the spinal cord of β-actin-SRG3 Tg mice might induce the suppression of and accelerate the recovery from EAE symptoms. Taken together, our results provide the first evidence supporting the development of a new therapeutic strategy for EAE involving the modulation of SRG3 expression to induce M2 and Th2 polarization

  18. Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes.

    Science.gov (United States)

    Simon, Jeffrey A; Tamkun, John W

    2002-04-01

    Polycomb and trithorax group proteins are evolutionarily conserved chromatin components that maintain stable states of gene expression. Recent studies have identified and characterized several multiprotein complexes containing these transcriptional regulators. Advances in understanding molecular activities of these complexes in vitro, and functional domains present in their subunits, suggest that they control transcription through multistep mechanisms that involve nucleosome modification, chromatin remodeling, and interaction with general transcription factors.

  19. Facilitates Chromatin Transcription Complex Is an “Accelerator” of Tumor Transformation and Potential Marker and Target of Aggressive Cancers

    Directory of Open Access Journals (Sweden)

    Henry Garcia

    2013-07-01

    Full Text Available The facilitates chromatin transcription (FACT complex is involved in chromatin remodeling during transcription, replication, and DNA repair. FACT was previously considered to be ubiquitously expressed and not associated with any disease. However, we discovered that FACT is the target of a class of anticancer compounds and is not expressed in normal cells of adult mammalian tissues, except for undifferentiated and stem-like cells. Here, we show that FACT expression is strongly associated with poorly differentiated aggressive cancers with low overall survival. In addition, FACT was found to be upregulated during in vitro transformation and to be necessary, but not sufficient, for driving transformation. FACT also promoted survival and growth of established tumor cells. Genome-wide mapping of chromatin-bound FACT indicated that FACT’s role in cancer most likely involves selective chromatin remodeling of genes that stimulate proliferation, inhibit cell death and differentiation, and regulate cellular stress responses.

  20. Structural basis for the activation and inhibition of the UCH37 deubiquitylase

    Science.gov (United States)

    Schmitt, Benjamin; Ndoja, Ada; Whitby, Frank G.; Robinson, Howard; Cohen, Robert E.; Yao, Tingting; Hill, Christopher P.

    2015-01-01

    SUMMARY The UCH37 deubiquitylase functions in two large and very different complexes, the 26S proteasome and the INO80 chromatin remodeler. We have performed biochemical characterization and determined crystal structures of UCH37 in complexes with RPN13 and NFRKB, which mediate its recruitment to proteasome and INO80, respectively. RPN13 and NFRKB make similar contacts to the UCH37 C-terminal domain, but quite different contacts to the catalytic UCH domain. RPN13 can activate UCH37 by disrupting dimerization, although physiologically-relevant activation likely results from stabilization of a surface competent for ubiquitin binding and modulation of the active-site crossover loop. In contrast, NFRKB inhibits UCH37 by blocking the ubiquitin-binding site and by disrupting the enzyme active site. These findings reveal remarkable commonality in mechanisms of recruitment, yet very different mechanisms of regulating enzyme activity, and provide a foundation for understanding the role of UCH37 in the unrelated proteasome and INO80 complexes. PMID:25702872

  1. Dia2 controls transcription by mediating assembly of the RSC complex.

    Directory of Open Access Journals (Sweden)

    Edward J Andress

    Full Text Available BACKGROUND: Dia2 is an F-box protein found in the budding yeast, S. cerevisiae. Together with Skp1 and Cul1, Dia2 forms the substrate-determining part of an E3 ubiquitin ligase complex, otherwise known as the SCF. Dia2 has previously been implicated in the control of replication and genome stability via its interaction with the replisome progression complex. PRINCIPAL FINDINGS: We identified components of the RSC chromatin remodelling complex as genetic interactors with Dia2, suggesting an additional role for Dia2 in the regulation of transcription. We show that Dia2 is involved in controlling assembly of the RSC complex. RSC belongs to a group of ATP-dependent nucleosome-remodelling complexes that controls the repositioning of nucleosomes. The RSC complex is expressed abundantly and its 17 subunits are recruited to chromatin in response to both transcription activation and repression. In the absence of Dia2, RSC-mediated transcription regulation was impaired, with concomitant abnormalities in nucleosome positioning. CONCLUSIONS: Our findings imply that Dia2 is required for the correct assembly and function of the RSC complex. Dia2, by controlling the RSC chromatin remodeller, fine-tunes transcription by controlling nucleosome positioning during transcriptional activation and repression.

  2. DNA Methylation and Chromatin Remodeling: The Blueprint of Cancer Epigenetics

    Directory of Open Access Journals (Sweden)

    Dipanjan Bhattacharjee

    2016-01-01

    Full Text Available Epigenetics deals with the interactions between genes and the immediate cellular environment. These interactions go a long way in shaping up each and every person’s individuality. Further, reversibility of epigenetic interactions may offer a dynamic control over the expression of various critical genes. Thus, tweaking the epigenetic machinery may help cause or cure diseases, especially cancer. Therefore, cancer epigenetics, especially at a molecular level, needs to be scrutinised closely, as it could potentially serve as the future pharmaceutical goldmine against neoplastic diseases. However, in view of its rapidly enlarging scope of application, it has become difficult to keep abreast of scientific information coming out of various epigenetic studies directed against cancer. Using this review, we have attempted to shed light on two of the most important mechanisms implicated in cancer, that is, DNA (deoxyribonucleic acid methylation and histone modifications, and their place in cancer pathogenesis. Further, we have attempted to take stock of the new epigenetic drugs that have emerged onto the market as well as those in the pipeline that offer hope in mankind’s fight against cancer.

  3. Nuclei of Taxus baccata: Flavanols Linked to Chromatin Remodeling Factors

    Directory of Open Access Journals (Sweden)

    Walter Feucht

    2009-01-01

    Full Text Available Microscopic studies of young needles and shoot tips from Taxus baccata showed that flavanols are localized in the nuclei. This observation is based on the histochemical staining of flavanols with the DMACA reagent. The colour that is obtained with this reagent varies from pale to deep blue, depending on the amount of flavanols. This study is focused on nondifferentiated cell lineages and on differentiating cells. The key point to note is that all nuclei of a cell lineage showed a uniform DMACA staining pattern based on the amount and structural appearence of nuclear flavanols. This points to transcriptional and epigenetic programming. However, comparing various cell lineages from different shoot tips and needles revealed a lineage-specific expression of nuclear flavanols. This result implied that both positional and developmental signals from neighbouring cells were involved in the nuclear flavanol binding of lineages. The cells of a developmentally advanced lineage loose their intimate contact and, then, they separate from each other to undergo an autonomous, individual sequence of differentiation. This in turn was accompanied by differences in the nuclear flavanol patterns of the single cells. Investigating different mitotic stages revealed a wide spectrum in flavanol staining intensities of the chromosomes. These observations should be linked to UV-VIS spectroscopical kinetic results indicating that nuclear flavanols bound to histones are involved in epigenetically regulated modification of chromatin. The kinetic studies show that catechin is relatively rapidly degraded by oxygen in the presence of Mg2+-ions. However, this degradation reaction is strongly inhibited when histone proteins were added. This behaviour is a clear indication that coregulatory interactions exist between catechin and histones.

  4. Chromatin remodeling regulated by steroid and nuclear receptors

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Coactivators and corepressors regulate transcription by controlling interactions between sequence-specific transcription factors,the basal transcriptional machinery and the chromatin environment,This review consider the access of nuclear and steroid receptors to chromatin,their use of corepressors and coactivators to modify chromatin structure and the implications for transcriptional control.The assembly of specific nucleoprotein architectures and targeted histone modification emerge as central controlling elements for gene expression.

  5. Chromatin remodeling in the UV-induced DNA damage response

    NARCIS (Netherlands)

    Ö.Z. Aydin (Özge)

    2014-01-01

    markdownabstract__Abstract__ DNA damage interferes with transcription and replication, causing cell death, chromosomal aberrations or mutations, eventually leading to aging and tumorigenesis (Hoeijmakers, 2009). The integrity of DNA is protected by a network of DNA repair and associated signalling

  6. Chromatin remodeling and stem cell theory of relativity.

    Science.gov (United States)

    Cerny, Jan; Quesenberry, Peter J

    2004-10-01

    The field of stem cell biology is currently being redefined. Stem cell (hematopoietic and non-hematopoietic) differentiation has been considered hierarchical in nature, but recent data suggest that there is no progenitor/stem cell hierarchy, but rather a reversible continuum. The stem cell (hematopoietic and non-hematopoietic) phenotype, the total differentiation capacity (hematopoietic and non-hematopoietic), gene expression as well as other stem cell functional characteristics (homing, receptor and adhesion molecule expression) vary throughout a cell-cycle transit widely. This seems to be dependent on shifting chromatin and gene expression with cell-cycle transit. The published data on DNA methylation, histone acetylation, and also RNAi, the major regulators of gene expression, conjoins very well and provides an explanation for the major issues of stem cell biology. Those features of stem cells mentioned above can be rather difficult to apprehend when a classical hierarchy biology view is applied, but they become clear and easier to understand once they are correlated with the underlining epigenetic changes. We are entering a new era of stem cell biology the era of "chromatinomics." We are one step closer to the practical use of cellular therapy for degenerative diseases.

  7. Baculoviruses and nucleosome management.

    Science.gov (United States)

    Volkman, Loy E

    2015-02-01

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management.

  8. Identification and Development of 2,3-Dihydropyrrolo[1,2-a]quinazolin-5(1H)-one Inhibitors Targeting Bromodomains within the Switch/Sucrose Nonfermenting Complex.

    Science.gov (United States)

    Sutherell, Charlotte L; Tallant, Cynthia; Monteiro, Octovia P; Yapp, Clarence; Fuchs, Julian E; Fedorov, Oleg; Siejka, Paulina; Müller, Suzanne; Knapp, Stefan; Brenton, James D; Brennan, Paul E; Ley, Steven V

    2016-05-26

    Bromodomain containing proteins PB1, SMARCA4, and SMARCA2 are important components of SWI/SNF chromatin remodeling complexes. We identified bromodomain inhibitors that target these proteins and display unusual binding modes involving water displacement from the KAc binding site. The best compound binds the fifth bromodomain of PB1 with a KD of 124 nM, SMARCA2B and SMARCA4 with KD values of 262 and 417 nM, respectively, and displays excellent selectivity over bromodomains other than PB1, SMARCA2, and SMARCA4.

  9. The RSC complex localizes to coding sequences to regulate Pol II and histone occupancy.

    Science.gov (United States)

    Spain, Marla M; Ansari, Suraiya A; Pathak, Rakesh; Palumbo, Michael J; Morse, Randall H; Govind, Chhabi K

    2014-12-01

    ATP-dependent chromatin remodelers regulate chromatin structure during multiple stages of transcription. We report that RSC, an essential chromatin remodeler, is recruited to the open reading frames (ORFs) of actively transcribed genes genome wide, suggesting a role for RSC in regulating transcription elongation. Consistent with such a role, Pol II occupancy in the ORFs of weakly transcribed genes is drastically reduced upon depletion of the RSC catalytic subunit Sth1. RSC inactivation also reduced histone H3 occupancy across transcribed regions. Remarkably, the strongest effects on Pol II and H3 occupancy were confined to the genes displaying the greatest RSC ORF enrichment. Additionally, RSC recruitment to the ORF requires the activities of the SAGA and NuA4 HAT complexes and is aided by the activities of the Pol II CTD Ser2 kinases Bur1 and Ctk1. Overall, our findings strongly implicate ORF-associated RSC in governing Pol II function and in maintaining chromatin structure over transcribed regions.

  10. Long Non-Coding RNAs and Complex Human Diseases

    Directory of Open Access Journals (Sweden)

    Changning Liu

    2013-09-01

    Full Text Available Long non-coding RNAs (lncRNAs are a heterogeneous class of RNAs that are generally defined as non-protein-coding transcripts longer than 200 nucleotides. Recently, an increasing number of studies have shown that lncRNAs can be involved in various critical biological processes, such as chromatin remodeling, gene transcription, and protein transport and trafficking. Moreover, lncRNAs are dysregulated in a number of complex human diseases, including coronary artery diseases, autoimmune diseases, neurological disorders, and various cancers, which indicates their important roles in these diseases. Here, we reviewed the current understanding of lncRNAs, including their definition and subclassification, regulatory functions, and potential roles in different types of complex human diseases.

  11. [SWI/SNF Protein Complexes Participate in the Initiation and Elongation Stages of Drosophila hsp70 Gene Transcription].

    Science.gov (United States)

    Mazina, M Yu; Nikolenko, Yu V; Krasnov, A N; Vorobyeva, N E

    2016-02-01

    The participation of the SWI/SNF chromatin remodeling complex in the stimulation of the RNA polymerase II binding to gene promotors was demonstrated in all model eukaryotic organisms. It was shown eight years ago that the SWI/SNF complex influence on transcription is not limited to its role in initiation but also includes participation in elongation and alternative splicing. In the current work, we describe the subunit composition of the SWI/SNF complexes participating in initiation, preparing for the elongation and elongation of hsp70 gene transcription in Drosophila melanogaster. The data reveal the high mobility of the SWI/SNF complex composition during the hsp 70 gene transcription process. We suggest a model describing the process of sequential SWI/SNF complex formation during heat-shock induced transcription of the hsp 70 gene.

  12. BAF Complex Is Closely Related to and Interacts with NF1/CTF and RNA Polymerase Ⅱ in Gene Transcriptional Activation

    Institute of Scientific and Technical Information of China (English)

    Li-Hui ZHAO; Xue-Qing BA; Xiao-Guang WANG; Xiao-Juan ZHU; Li WANG; Xian-Lu ZENG

    2005-01-01

    Brg- or hBrm-associated factor (BAF) complexes, a chromatin-remodeling complex family of mammalian cells, facilitate transcriptional activity by remodeling nucleosome structure. Brg 1 is the core subunit of Brg-associated factor complexes. In the present study, we investigated the spatial relationship between Brg1 and nuclear factor 1 (NF1/CTF) and RNA polymerase Ⅱ (RNAP Ⅱ) upon gene transcriptional activation in vivo by employing immuno-gold labeling. The data showed that Brg1 was closely co-localized with NF1/CTF and RNAP Ⅱ in HeLa cells. Moreover, the co-immunoprecipitation assay further revealed that Brg1 can be isolated together with NF1/CTF and RNAP Ⅱ in the ConA-stimulated, but not the resting,T lymphocyte. The combined results suggested that BAF complexes can interact with NF1/CTF and RNAP Ⅱ, and this interaction is closely dependent on the activation of gene transcription.

  13. Complex role of microRNAs in HTLV-1 infections

    Directory of Open Access Journals (Sweden)

    Gavin C Sampey

    2012-12-01

    Full Text Available Human T-lymphotropic virus 1 (HTLV-1 was the first human retrovirus to be discovered and is the causative agent of adult T-cell leukemia/lymphoma (ATL and the neurodegenerative disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. The importance of microRNA (miRNA in the replicative cycle of several other viruses, as well as in the progression of associated pathologies, has been well established in the past decade. Moreover, involvement of miRNA alteration in the HTLV-1 life cycle, and in the progression of its related oncogenic and neurodegenerative diseases, has recently come to light. Several HTLV-1 derived proteins alter transcription factor functionalities, interact with chromatin remodelers, or manipulate components of the RNA interference (RNAi machinery, thereby establishing various routes by which miRNA expression can be up- or down-regulated in the host cell. Furthermore, the mechanism of action through which dysregulation of host miRNAs affects HTLV-1 infected cells can vary substantially and include mRNA silencing via the RNA-induced silencing complex (RISC, transcriptional gene silencing, inhibition of RNAi components, and chromatin remodeling. These miRNA induced changes can lead to increased cell survival, invasiveness, proliferation, and differentiation, as well as allow for viral latency. While many recent studies have successfully implicated miRNAs in the life cycle and pathogenesis of HTLV-1 infections, there are still significant outstanding questions to be addressed. Here we will review recent discoveries elucidating HTLV-1 mediated manipulation of host cell miRNA profiles and examine the impact on pathogenesis, as well as explore future lines of inquiry that could increase understanding in this field of study.

  14. Comprehensive analysis of interacting proteins and genome-wide location studies of the Sas3-dependent NuA3 histone acetyltransferase complex.

    Science.gov (United States)

    Vicente-Muñoz, Sara; Romero, Paco; Magraner-Pardo, Lorena; Martinez-Jimenez, Celia P; Tordera, Vicente; Pamblanco, Mercè

    2014-01-01

    Histone acetylation affects several aspects of gene regulation, from chromatin remodelling to gene expression, by modulating the interplay between chromatin and key transcriptional regulators. The exact molecular mechanism underlying acetylation patterns and crosstalk with other epigenetic modifications requires further investigation. In budding yeast, these epigenetic markers are produced partly by histone acetyltransferase enzymes, which act as multi-protein complexes. The Sas3-dependent NuA3 complex has received less attention than other histone acetyltransferases (HAT), such as Gcn5-dependent complexes. Here, we report our analysis of Sas3p-interacting proteins using tandem affinity purification (TAP), coupled with mass spectrometry. This analysis revealed Pdp3p, a recently described component of NuA3, to be one of the most abundant Sas3p-interacting proteins. The PDP3 gene, was TAP-tagged and protein complex purification confirmed that Pdp3p co-purified with the NuA3 protein complex, histones, and several transcription-related and chromatin remodelling proteins. Our results also revealed that the protein complexes associated with Sas3p presented HAT activity even in the absence of Gcn5p and vice versa. We also provide evidence that Sas3p cannot substitute Gcn5p in acetylation of lysine 9 in histone H3 in vivo. Genome-wide occupancy of Sas3p using ChIP-on-chip tiled microarrays showed that Sas3p was located preferentially within the 5'-half of the coding regions of target genes, indicating its probable involvement in the transcriptional elongation process. Hence, this work further characterises the function and regulation of the NuA3 complex by identifying novel post-translational modifications in Pdp3p, additional Pdp3p-co-purifying chromatin regulatory proteins involved in chromatin-modifying complex dynamics and gene regulation, and a subset of genes whose transcriptional elongation is controlled by this complex.

  15. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons.

    Science.gov (United States)

    Zhong, Xuehua; Hale, Christopher J; Law, Julie A; Johnson, Lianna M; Feng, Suhua; Tu, Andy; Jacobsen, Steven E

    2012-09-01

    The plant-specific DNA-dependent RNA polymerase V (Pol V) evolved from Pol II to function in an RNA-directed DNA methylation pathway. Here, we have identified targets of Pol V in Arabidopsis thaliana on a genome-wide scale using ChIP-seq of NRPE1, the largest catalytic subunit of Pol V. We found that Pol V is enriched at promoters and evolutionarily recent transposons. This localization pattern is highly correlated with Pol V-dependent DNA methylation and small RNA accumulation. We also show that genome-wide chromatin association of Pol V is dependent on all members of a putative chromatin-remodeling complex termed DDR. Our study presents a genome-wide view of Pol V occupancy and sheds light on the mechanistic basis of Pol V localization. Furthermore, these findings suggest a role for Pol V and RNA-directed DNA methylation in genome surveillance and in responding to genome evolution.

  16. Schizosaccharomyces pombe centromere protein Mis19 links Mis16 and Mis18 to recruit CENP-A through interacting with NMD factors and the SWI/SNF complex.

    Science.gov (United States)

    Hayashi, Takeshi; Ebe, Masahiro; Nagao, Koji; Kokubu, Aya; Sajiki, Kenichi; Yanagida, Mitsuhiro

    2014-07-01

    CENP-A is a centromere-specific variant of histone H3 that is required for accurate chromosome segregation. The fission yeast Schizosaccharomyces pombe and mammalian Mis16 and Mis18 form a complex essential for CENP-A recruitment to centromeres. It is unclear, however, how the Mis16-Mis18 complex achieves this function. Here, we identified, by mass spectrometry, novel fission yeast centromere proteins Mis19 and Mis20 that directly interact with Mis16 and Mis18. Like Mis18, Mis19 and Mis20 are localized at the centromeres during interphase, but not in mitosis. Inactivation of Mis19 in a newly isolated temperature-sensitive mutant resulted in CENP-A delocalization and massive chromosome missegregation, whereas Mis20 was dispensable for proper chromosome segregation. Mis19 might be a bridge component for Mis16 and Mis18. We isolated extragenic suppressor mutants for temperature-sensitive mis18 and mis19 mutants and used whole-genome sequencing to determine the mutated sites. We identified two groups of loss-of-function suppressor mutations in non-sense-mediated mRNA decay factors (upf2 and ebs1), and in SWI/SNF chromatin-remodeling components (snf5, snf22 and sol1). Our results suggest that the Mis16-Mis18-Mis19-Mis20 CENP-A-recruiting complex, which is functional in the G1-S phase, may be counteracted by the SWI/SNF chromatin-remodeling complex and non-sense-mediated mRNA decay, which may prevent CENP-A deposition at the centromere.

  17. Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae

    Science.gov (United States)

    Uthe, Henriette; Vanselow, Jens T.; Schlosser, Andreas

    2017-01-01

    Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis. PMID:28240253

  18. CHD4 Is a Peripheral Component of the Nucleosome Remodeling and Deacetylase Complex.

    Science.gov (United States)

    Low, Jason K K; Webb, Sarah R; Silva, Ana P G; Saathoff, Hinnerk; Ryan, Daniel P; Torrado, Mario; Brofelth, Mattias; Parker, Benjamin L; Shepherd, Nicholas E; Mackay, Joel P

    2016-07-22

    Chromatin remodeling enzymes act to dynamically regulate gene accessibility. In many cases, these enzymes function as large multicomponent complexes that in general comprise a central ATP-dependent Snf2 family helicase that is decorated with a variable number of regulatory subunits. The nucleosome remodeling and deacetylase (NuRD) complex, which is essential for normal development in higher organisms, is one such macromolecular machine. The NuRD complex comprises ∼10 subunits, including the histone deacetylases 1 and 2 (HDAC1 and HDAC2), and is defined by the presence of a CHD family remodeling enzyme, most commonly CHD4 (chromodomain helicase DNA-binding protein 4). The existing paradigm holds that CHD4 acts as the central hub upon which the complex is built. We show here that this paradigm does not, in fact, hold and that CHD4 is a peripheral component of the NuRD complex. A complex lacking CHD4 that has HDAC activity can exist as a stable species. The addition of recombinant CHD4 to this nucleosome deacetylase complex reconstitutes a NuRD complex with nucleosome remodeling activity. These data contribute to our understanding of the architecture of the NuRD complex.

  19. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription.

    Directory of Open Access Journals (Sweden)

    Harm van Bakel

    2013-05-01

    Full Text Available Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies.

  20. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription.

    Science.gov (United States)

    van Bakel, Harm; Tsui, Kyle; Gebbia, Marinella; Mnaimneh, Sanie; Hughes, Timothy R; Nislow, Corey

    2013-05-01

    Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies.

  1. Non-coding RNAs: the architects of eukaryotic complexity.

    Science.gov (United States)

    Mattick, J S

    2001-11-01

    Around 98% of all transcriptional output in humans is non-coding RNA. RNA-mediated gene regulation is widespread in higher eukaryotes and complex genetic phenomena like RNA interference, co-suppression, transgene silencing, imprinting, methylation, and possibly position-effect variegation and transvection, all involve intersecting pathways based on or connected to RNA signaling. I suggest that the central dogma is incomplete, and that intronic and other non-coding RNAs have evolved to comprise a second tier of gene expression in eukaryotes, which enables the integration and networking of complex suites of gene activity. Although proteins are the fundamental effectors of cellular function, the basis of eukaryotic complexity and phenotypic variation may lie primarily in a control architecture composed of a highly parallel system of trans-acting RNAs that relay state information required for the coordination and modulation of gene expression, via chromatin remodeling, RNA-DNA, RNA-RNA and RNA-protein interactions. This system has interesting and perhaps informative analogies with small world networks and dataflow computing.

  2. Function of Brg1 Chromatin Remodeling Factor in Sonic Hedgehog-Dependent Medulloblastoma Initiation and Maintenance

    Science.gov (United States)

    2015-12-01

    Brg1 BAF53b-Cre Control F/F Cotrol MEF2C MEF2-VP16 ** n.s. 60a,c 45b,c250CREST 53b Nuclear Membrane Brg1 47 170155 57 Actin Synaptic Genes Synapse...restricted to the Shh pathway, and their expression reflects Shh/Gli signalling activities. In this screen, we identified an H3K27me3/H3K4me3 bivalent

  3. Synapsis, recombination, and chromatin remodeling in the XY body of armadillos.

    Science.gov (United States)

    Sciurano, Roberta B; Rahn, Mónica I; Rossi, Luis; Luaces, Juan Pablo; Merani, María Susana; Solari, Alberto J

    2012-02-01

    Three xenarthrans species Chaetophractus villosus, Chaetophractus vellerosus, and Zaedyus pichiy have been used for the analysis of the structure, behavior, and immunochemical features of the XY body during pachytene. In all these species, the sex chromosomes form an XY body easily identifiable in thin sections by the special and regular packing of the chromatin fibers of the internal region of the XY body ("differential" regions) and those of the peripheral region (synaptic region). Spermatocyte spreads show a complete synapsis between the X- and the Y-axis, which lasts up to the end of pachytene. From the early pachytene substages to the late ones, the X-axis develops prominent branches, which in late pachytene span the synaptic region. Synapsis is regular as shown by SYCP1 labeling. Axial development is followed by SYCP3 labeling and in the asynaptic region of the X-axis by BRCA1. Gamma-H2AX labels exclusively the differential (asynaptic) region of the X chromosome. A single focus is labeled by MLH1 in the synaptic region. The location of this MLH1 focus spans from 0.3 to 1.6 μm from the telomere in the analyzed xenarthrans, covering approximately half of the Y-axis length. It is concluded that xenarthrans, as basal placental mammals, harbor the largest pseudoautosomal regions of presently analyzed mammals, and shows the typical features of meiotic sex chromosome inactivation (MSCI).

  4. The emerging role of epigenetic modifications and chromatin remodeling in spinal muscular atrophy.

    Science.gov (United States)

    Lunke, Sebastian; El-Osta, Assam

    2009-06-01

    As the leading genetic cause for infantile death, Spinal Muscular Atrophy (SMA) has been extensively studied since its first description in the early 1890s. Though today much is known about the cause of the disease, a cure or effective treatment is not currently available. Recently the short chain fatty acid valproic acid, a drug used for decades in the management of epilepsy and migraine therapy, has been shown to elevate the levels of the essential survival motor neuron protein in cultured cells. In SMA mice, valproic acid diminished the severity of the disease phenotype. This effect was linked to the ability of the short chain fatty acid to suppress histone deacetylase activity and activate gene transcription. Since then, the study of different histone deacetylase inhibitors and their epigenetic modifying capabilities has been of high interest in an attempt to find potential candidates for effective treatment of SMA. In this review, we summarize the current knowledge about use of histone deacetylase inhibitors in SMA as well as their proposed effects on chromatin structure and discuss further implications for possible treatments of SMA arising from research examining epigenetic change.

  5. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus.

    Science.gov (United States)

    Tran, Phu V; Kennedy, Bruce C; Lien, Yu-Chin; Simmons, Rebecca A; Georgieff, Michael K

    2015-02-15

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency.

  6. Chromatin remodeling: the interface between extrinsic cues and the genetic code?

    Science.gov (United States)

    Ezzat, Shereen

    2008-10-01

    The successful completion of the human genome project ushered a new era of hope and skepticism. However, the promise of finding the fundamental basis of human traits and diseases appears less than fulfilled. The original premise was that the DNA sequence of every gene would allow precise characterization of critical differences responsible for altered cellular functions. The characterization of intragenic mutations in cancers paved the way for early screening and the design of targeted therapies. However, it has also become evident that unmasking genetic codes alone cannot explain the diversity of disease phenotypes within a population. Further, classic genetics has not been able to explain the differences that have been observed among identical twins or even cloned animals. This new reality has re-ignited interest in the field of epigenetics. While traditionally defined as heritable changes that can alter gene expression without affecting the corresponding DNA sequence, this definition has come into question. The extent to which epigenetic change can also be acquired in response to chemical stimuli represents an exciting dimension in the "nature vs nurture" debate. In this review I will describe a series of studies in my laboratory that illustrate the significance of epigenetics and its potential clinical implications.

  7. Early programming of the oocyte epigenome temporally controls late prophase I transcription and chromatin remodelling.

    Science.gov (United States)

    Navarro-Costa, Paulo; McCarthy, Alicia; Prudêncio, Pedro; Greer, Christina; Guilgur, Leonardo G; Becker, Jörg D; Secombe, Julie; Rangan, Prashanth; Martinho, Rui G

    2016-08-10

    Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated. Here we comprehensively define the Drosophila female germ line epigenome throughout oogenesis and show that the oocyte has a unique, dynamic and remarkably diversified epigenome characterized by the presence of both euchromatic and heterochromatic marks. We observed that the perturbation of the oocyte's epigenome in early oogenesis, through depletion of the dKDM5 histone demethylase, results in the temporal deregulation of meiotic transcription and affects female fertility. Taken together, our results indicate that the early programming of the oocyte epigenome primes meiotic chromatin for subsequent functions in late prophase I.

  8. ISWI and CHD chromatin remodelers bind promoters but act in gene bodies.

    Directory of Open Access Journals (Sweden)

    Gabriel E Zentner

    Full Text Available ATP-dependent nucleosome remodelers influence genetic processes by altering nucleosome occupancy, positioning, and composition. In vitro, Saccharomyces cerevisiae ISWI and CHD remodelers require ∼30-85 bp of extranucleosomal DNA to reposition nucleosomes, but linker DNA in S. cerevisiae averages <20 bp. To address this discrepancy between in vitro and in vivo observations, we have mapped the genomic distributions of the yeast Isw1, Isw2, and Chd1 remodelers at base-pair resolution on native chromatin. Although these remodelers act in gene bodies, we find that they are also highly enriched at nucleosome-depleted regions (NDRs, where they bind to extended regions of DNA adjacent to particular transcription factors. Surprisingly, catalytically inactive remodelers show similar binding patterns. We find that remodeler occupancy at NDRs and gene bodies is associated with nucleosome turnover and transcriptional elongation rate, suggesting that remodelers act on regions of transient nucleosome unwrapping or depletion within gene bodies subsequent to transcriptional elongation.

  9. The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage

    DEFF Research Database (Denmark)

    Larsen, Dorthe Helena; Poinsignon, Catherine; Gudjonsson, Thorkell;

    2010-01-01

    In response to ionizing radiation (IR), cells delay cell cycle progression and activate DNA repair. Both processes are vital for genome integrity, but the mechanisms involved in their coordination are not fully understood. In a mass spectrometry screen, we identified the adenosine triphosphate-de...

  10. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor

    NARCIS (Netherlands)

    E. Citterio (Elisabetta); V. van den Boom (Vincent); G. Schnitzler; R. Kanaar (Roland); E. Bonte (Edgar); R.E. Kingston; W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan)

    2000-01-01

    textabstractThe Cockayne syndrome B protein (CSB) is required for coupling DNA excision repair to transcription in a process known as transcription-coupled repair (TCR). Cockayne syndrome patients show UV sensitivity and severe neurodevelopmental abnormalities. CSB is a DNA-d

  11. Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders

    OpenAIRE

    Bouazoune, Karim; Kingston, Robert Edward

    2012-01-01

    Mutations in the CHD7 gene cause human developmental disorders including CHARGE syndrome. Genetic studies in model organisms have further established CHD7 as a central regulator of vertebrate development. Functional analysis of the CHD7 protein has been hampered by its large size. We used a dual-tag system to purify intact recombinant CHD7 protein and found that it is an ATP-dependent nucleosome remodeling factor. Biochemical analyses indicate that CHD7 has characteristics distinct from SWI/S...

  12. Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders.

    Science.gov (United States)

    Bouazoune, Karim; Kingston, Robert E

    2012-11-20

    Mutations in the CHD7 gene cause human developmental disorders including CHARGE syndrome. Genetic studies in model organisms have further established CHD7 as a central regulator of vertebrate development. Functional analysis of the CHD7 protein has been hampered by its large size. We used a dual-tag system to purify intact recombinant CHD7 protein and found that it is an ATP-dependent nucleosome remodeling factor. Biochemical analyses indicate that CHD7 has characteristics distinct from SWI/SNF- and ISWI-type remodelers. Further investigations show that CHD7 patient mutations have consequences that range from subtle to complete inactivation of remodeling activity, and that mutations leading to protein truncations upstream of amino acid 1899 of CHD7 are likely to cause a hypomorphic phenotype for remodeling. We propose that nucleosome remodeling is a key function for CHD7 during developmental processes and provide a molecular basis for predicting the impact of disease mutations on that function.

  13. Chromatin Remodeling Function of BRCA1 and its Implication in Regulation of DNA Replication

    Science.gov (United States)

    2000-09-01

    different structural module. For example, the BRCT domains present in DNA ligase III and XRCC 1, two mammalian DNA repair proteins, interact with each...in mediating protein-protein interactions with another BRCT domain or a different structural module. For example, the BRCT domains present in DNA ... ligase IEd and XRCCI, two mammalian DNA repair proteins, interact with each other strongly (19). In addition, the BRCT domain of BRCA1 binds CtIP, a

  14. SHORT HYPOCOTYL 1 encodes a SMARCA3-like chromatin remodeling factor regulating elongation

    Science.gov (United States)

    Understanding the mechanisms and control of hypocotyl elongation is important for greenhouse vegetable crop production. In this study, we identified SHORT HYPOCOTYL1 (SH1) in cucumber which regulates low-dosage ultraviolet B (LDUVB)-dependent hypocotyl elongation by recruiting the cucumber UVR8 sign...

  15. Gearing up chromatin: A role for chromatin remodeling during the transcriptional restart upon DNA damage

    NARCIS (Netherlands)

    I.K. Mandemaker (Imke); W. Vermeulen (Wim); J.A. Marteijn (Jurgen)

    2014-01-01

    textabstractDuring transcription, RNA polymerase may encounter DNA lesions, which causes stalling of transcription. To overcome the RNA polymerase blocking lesions, the transcribed strand is repaired by a dedicated repair mechanism, called transcription coupled nucleotide excision repair (TC-NER). A

  16. ATP-dependent chromatin remodeling in the DNA-damage response

    NARCIS (Netherlands)

    H. Lans (Hannes); J.A. Marteijn (Jurgen); W. Vermeulen (Wim)

    2012-01-01

    textabstractThe integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired prope

  17. Localization of the chromatin remodelling protein, ATRX in the adult testis.

    Science.gov (United States)

    Tang, Paisu; Argentaro, Anthony; Pask, Andrew J; O'Donnell, Liza; Marshall-Graves, Jennifer; Familari, Mary; Harley, Vincent R

    2011-06-01

    Mutations in ATRX (alpha-thalassaemia and mental retardation on the X-chromosome) can give rise to ambiguous or female genitalia in XY males, implying a role for ATRX in testicular development. Studies on ATRX have mainly focused on its crucial role in brain development and α-globin regulation; however, little is known about its function in sexual differentiation and its expression in the adult testis. Here we show that the ATRX protein is present in adult human and rat testis and is expressed in the somatic cells; Sertoli, Leydig, and peritubular myoid cells, and also in germ cells; spermatogonia and early meiotic spermatocytes. The granular pattern of ATRX staining is consistent with that observed in other cell-types and suggests a role in chromatin regulation. The findings suggest that ATRX in humans may play a role in adult spermatogenesis as well as in testicular development.

  18. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX.

    Science.gov (United States)

    Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Scott, Caroline; Mitson, Matthew; Taylor, Stephen; Higgs, Douglas R; Gibbons, Richard J

    2015-07-06

    Fifteen per cent of cancers maintain telomere length independently of telomerase by the homologous recombination (HR)-associated alternative lengthening of telomeres (ALT) pathway. A unifying feature of these tumours are mutations in ATRX. Here we show that expression of ectopic ATRX triggers a suppression of the pathway and telomere shortening. Importantly ATRX-mediated ALT suppression is dependent on the histone chaperone DAXX. Re-expression of ATRX is associated with a reduction in replication fork stalling, a known trigger for HR and loss of MRN from telomeres. A G-quadruplex stabilizer partially reverses the effect of ATRX, inferring ATRX may normally facilitate replication through these sequences that, if they persist, promote ALT. We propose that defective telomere chromatinization through loss of ATRX promotes the persistence of aberrant DNA secondary structures, which in turn present a barrier to DNA replication, leading to replication fork stalling, collapse, HR and subsequent recombination-mediated telomere synthesis in ALT cancers.

  19. Baculoviruses and nucleosome management

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Loy E., E-mail: lvolkman@berkeley.edu

    2015-02-15

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management. - Highlights: • Baculoviruses have negatively-supercoiled, circular ds DNA. • Negatively-supercoiled DNA spontaneously forms nucleosomes in the nucleus. • Nucleosomes must be mobilized for replication and transcription to proceed. • Actin-containing chromatin modifiers participate in baculovirus replication.

  20. mSWI/SNF (BAF) Complexes Are Indispensable for the Neurogenesis and Development of Embryonic Olfactory Epithelium.

    Science.gov (United States)

    Bachmann, Christina; Nguyen, Huong; Rosenbusch, Joachim; Pham, Linh; Rabe, Tamara; Patwa, Megha; Sokpor, Godwin; Seong, Rho H; Ashery-Padan, Ruth; Mansouri, Ahmed; Stoykova, Anastassia; Staiger, Jochen F; Tuoc, Tran

    2016-09-01

    Neurogenesis is a key developmental event through which neurons are generated from neural stem/progenitor cells. Chromatin remodeling BAF (mSWI/SNF) complexes have been reported to play essential roles in the neurogenesis of the central nervous system. However, whether BAF complexes are required for neuron generation in the olfactory system is unknown. Here, we identified onscBAF and ornBAF complexes, which are specifically present in olfactory neural stem cells (oNSCs) and olfactory receptor neurons (ORNs), respectively. We demonstrated that BAF155 subunit is highly expressed in both oNSCs and ORNs, whereas high expression of BAF170 subunit is observed only in ORNs. We report that conditional deletion of BAF155, a core subunit in both onscBAF and ornBAF complexes, causes impaired proliferation of oNSCs as well as defective maturation and axonogenesis of ORNs in the developing olfactory epithelium (OE), while the high expression of BAF170 is important for maturation of ORNs. Interestingly, in the absence of BAF complexes in BAF155/BAF170 double-conditional knockout mice (dcKO), OE is not specified. Mechanistically, BAF complex is required for normal activation of Pax6-dependent transcriptional activity in stem cells/progenitors of the OE. Our findings unveil a novel mechanism mediated by the mSWI/SNF complex in OE neurogenesis and development.

  1. The structure of the core NuRD repression complex provides insights into its interaction with chromatin.

    Science.gov (United States)

    Millard, Christopher J; Varma, Niranjan; Saleh, Almutasem; Morris, Kyle; Watson, Peter J; Bottrill, Andrew R; Fairall, Louise; Smith, Corinne J; Schwabe, John W R

    2016-04-21

    The NuRD complex is a multi-protein transcriptional corepressor that couples histone deacetylase and ATP-dependent chromatin remodelling activities. The complex regulates the higher-order structure of chromatin, and has important roles in the regulation of gene expression, DNA damage repair and cell differentiation. HDACs 1 and 2 are recruited by the MTA1 corepressor to form the catalytic core of the complex. The histone chaperone protein RBBP4, has previously been shown to bind to the carboxy-terminal tail of MTA1. We show that MTA1 recruits a second copy of RBBP4. The crystal structure reveals an extensive interface between MTA1 and RBBP4. An EM structure, supported by SAXS and crosslinking, reveals the architecture of the dimeric HDAC1:MTA1:RBBP4 assembly which forms the core of the NuRD complex. We find evidence that in this complex RBBP4 mediates interaction with histone H3 tails, but not histone H4, suggesting a mechanism for recruitment of the NuRD complex to chromatin.

  2. Loss-of-Function Mutations in YY1AP1 Lead to Grange Syndrome and a Fibromuscular Dysplasia-Like Vascular Disease.

    Science.gov (United States)

    Guo, Dong-Chuan; Duan, Xue-Yan; Regalado, Ellen S; Mellor-Crummey, Lauren; Kwartler, Callie S; Kim, Dong; Lieberman, Kenneth; de Vries, Bert B A; Pfundt, Rolph; Schinzel, Albert; Kotzot, Dieter; Shen, Xuetong; Yang, Min-Lee; Bamshad, Michael J; Nickerson, Deborah A; Gornik, Heather L; Ganesh, Santhi K; Braverman, Alan C; Grange, Dorothy K; Milewicz, Dianna M

    2017-01-05

    Fibromuscular dysplasia (FMD) is a heterogeneous group of non-atherosclerotic and non-inflammatory arterial diseases that primarily involves the renal and cerebrovascular arteries. Grange syndrome is an autosomal-recessive condition characterized by severe and early-onset vascular disease similar to FMD and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Exome-sequencing analysis of DNA from three affected siblings with Grange syndrome identified compound heterozygous nonsense variants in YY1AP1, and homozygous nonsense or frameshift YY1AP1 variants were subsequently identified in additional unrelated probands with Grange syndrome. YY1AP1 encodes yin yang 1 (YY1)-associated protein 1 and is an activator of the YY1 transcription factor. We determined that YY1AP1 localizes to the nucleus and is a component of the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication. Molecular studies revealed that loss of YY1AP1 in vascular smooth muscle cells leads to cell cycle arrest with decreased proliferation and increased levels of the cell cycle regulator p21/WAF/CDKN1A and disrupts TGF-β-driven differentiation of smooth muscle cells. Identification of YY1AP1 mutations as a cause of FMD indicates that this condition can result from underlying genetic variants that significantly alter the phenotype of vascular smooth muscle cells.

  3. Loss of BAF (mSWI/SNF Complexes Causes Global Transcriptional and Chromatin State Changes in Forebrain Development

    Directory of Open Access Journals (Sweden)

    Ramanathan Narayanan

    2015-12-01

    Full Text Available BAF (Brg/Brm-associated factors complexes play important roles in development and are linked to chromatin plasticity at selected genomic loci. Nevertheless, a full understanding of their role in development and chromatin remodeling has been hindered by the absence of mutants completely lacking BAF complexes. Here, we report that the loss of BAF155/BAF170 in double-conditional knockout (dcKO mice eliminates all known BAF subunits, resulting in an overall reduction in active chromatin marks (H3K9Ac, a global increase in repressive marks (H3K27me2/3, and downregulation of gene expression. We demonstrate that BAF complexes interact with H3K27 demethylases (JMJD3 and UTX and potentiate their activity. Importantly, BAF complexes are indispensable for forebrain development, including proliferation, differentiation, and cell survival of neural progenitor cells. Our findings reveal a molecular mechanism mediated by BAF complexes that controls the global transcriptional program and chromatin state in development.

  4. Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication

    Directory of Open Access Journals (Sweden)

    Yasushi Shiomi

    2017-01-01

    Full Text Available During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA, acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.

  5. Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication.

    Science.gov (United States)

    Shiomi, Yasushi; Nishitani, Hideo

    2017-01-26

    During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA), acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC) complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.

  6. HIC1 interacts with a specific subunit of SWI/SNF complexes, ARID1A/BAF250A

    Energy Technology Data Exchange (ETDEWEB)

    Van Rechem, Capucine; Boulay, Gaylor [CNRS UMR 8161, Institut de Biologie de LILLE, Universite de Lille Nord de FRANCE, Institut PASTEUR de LILLE, IFR 142, 1 Rue Calmette, 59017 LILLE Cedex (France); Leprince, Dominique, E-mail: dominique.leprince@ibl.fr [CNRS UMR 8161, Institut de Biologie de LILLE, Universite de Lille Nord de FRANCE, Institut PASTEUR de LILLE, IFR 142, 1 Rue Calmette, 59017 LILLE Cedex (France)

    2009-08-07

    HIC1, a tumor suppressor gene epigenetically silenced in many human cancers encodes a transcriptional repressor involved in regulatory loops modulating p53-dependent and E2F1-dependent cell survival and stress responses. HIC1 is also implicated in growth control since it recruits BRG1, one of the two alternative ATPases (BRM or BRG1) of SWI/SNF chromatin-remodeling complexes to repress transcription of E2F1 in quiescent fibroblasts. Here, through yeast two-hybrid screening, we identify ARID1A/BAF250A, as a new HIC1 partner. ARID1A/BAF250A is one of the two mutually exclusive ARID1-containing subunits of SWI/SNF complexes which define subsets of complexes endowed with anti-proliferative properties. Co-immunoprecipitation assays in WI38 fibroblasts and in BRG1-/- SW13 cells showed that endogenous HIC1 and ARID1A proteins interact in a BRG1-dependent manner. Furthermore, we demonstrate that HIC1 does not interact with BRM. Finally, sequential chromatin immunoprecipitation (ChIP-reChIP) experiments demonstrated that HIC1 represses E2F1 through the recruitment of anti-proliferative SWI/SNF complexes containing ARID1A.

  7. Gene Silencing Associated with SWI/SNF Complex Loss During NSCLC Development

    Science.gov (United States)

    Song, Shujie; Walter, Vonn; Karaca, Mehmet; Li, Ying; Bartlett, Christopher S.; Smiraglia, Dominic J.; Serber, Daniel; Sproul, Christopher D.; Plass, Christoph; Zhang, Jiren; Hayes, D. Neil; Zheng, Yanfang; Weissman, Bernard E.

    2014-01-01

    The SWI/SNF chromatin-remodeling complex regulates gene expression and alters chromatin structures in an ATP-dependent manner. Recent sequencing efforts have shown mutations in BRG1 (SMARCA4), one of two mutually exclusive ATPase subunits in the complex, in a significant number of human lung tumor cell lines and primary non-small cell lung carcinoma (NSCLC) clinical specimens. To determine how BRG1 loss fuels tumor progression in NSCLC, molecular profiling was performed after restoration of BRG1 expression or treatment with an HDAC inhibitor or a DNMT inhibitor in a BRG1-deficient NSCLC cells. Importantly, validation studies from multiple cell lines revealed that BRG1 re-expression led to substantial changes in the expression of CDH1, CDH3, EHF and RRAD that commonly undergo silencing by other epigenetic mechanisms during NSCLC development. Furthermore, treatment with DNMT inhibitors did not restore expression of these transcripts indicating that this common mechanism of gene silencing did not account for their loss of expression. Collectively, BRG1 loss is an important mechanism for the epigenetic silencing of target genes during NSCLC development. PMID:24445599

  8. Loss of Snf5 Induces Formation of an Aberrant SWI/SNF Complex

    Directory of Open Access Journals (Sweden)

    Payel Sen

    2017-02-01

    Full Text Available The SWI/SNF chromatin remodeling complex is highly conserved from yeast to human, and aberrant SWI/SNF complexes contribute to human disease. The Snf5/SMARCB1/INI1 subunit of SWI/SNF is a tumor suppressor frequently lost in pediatric rhabdoid cancers. We examined the effects of Snf5 loss on the composition, nucleosome binding, recruitment, and remodeling activities of yeast SWI/SNF. The Snf5 subunit is shown by crosslinking-mass spectrometry (CX-MS and subunit deletion analysis to interact with the ATPase domain of Snf2 and to form a submodule consisting of Snf5, Swp82, and Taf14. Snf5 promotes binding of the Snf2 ATPase domain to nucleosomal DNA and enhances the catalytic and nucleosome remodeling activities of SWI/SNF. Snf5 is also required for SWI/SNF recruitment by acidic transcription factors. RNA-seq analysis suggests that both the recruitment and remodeling functions of Snf5 are required in vivo for SWI/SNF regulation of gene expression. Thus, loss of SNF5 alters the structure and function of SWI/SNF.

  9. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

    Directory of Open Access Journals (Sweden)

    Edyta Marcon

    2014-07-01

    Full Text Available Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  10. Human-chromatin-related protein interactions identify a demethylase complex required for chromosome segregation.

    Science.gov (United States)

    Marcon, Edyta; Ni, Zuyao; Pu, Shuye; Turinsky, Andrei L; Trimble, Sandra Smiley; Olsen, Jonathan B; Silverman-Gavrila, Rosalind; Silverman-Gavrila, Lorelei; Phanse, Sadhna; Guo, Hongbo; Zhong, Guoqing; Guo, Xinghua; Young, Peter; Bailey, Swneke; Roudeva, Denitza; Zhao, Dorothy; Hewel, Johannes; Li, Joyce; Gräslund, Susanne; Paduch, Marcin; Kossiakoff, Anthony A; Lupien, Mathieu; Emili, Andrew; Wodak, Shoshana J; Greenblatt, Jack

    2014-07-10

    Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision) network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  11. The Metastasis-associated Proteins 1 and 2 Form Distinct Protein Complexes with Histone Deacetylase Activity

    Institute of Scientific and Technical Information of China (English)

    Ya-LiYao; Wcn-MingYang

    2005-01-01

    The metastasis-associated protein MTA1 has been shown to express differentially to high levels in metastatic cells. MTA2, which is homologous to MTA1, is a component of the NURD ATP-dependcnt chromatin remodeling and histone deacetylase complex. Here we report evidence that although both human MTA1 and MTA2 repress transcription specifically, are located in the nucleus, and contain associated histone deacetylase activity, they exist in two biochemically distinct protein complexes and may perform different functions pertaining to tumor metastasis. Specifically, both MTA1 and MTA2 complexes exert histone deacetylase activity. However, the MTA1 complex contained HDAC1/2, RbAp46/48, and MBD3, but not Sin3 or Mi2, two important components of the MTA2 complex. Moreover, the MTA2 complex is similar to the HDAC1 complex, suggesting a housekeeping role of the MTA2 complex. The MTA1 complex could be further separated, resulting in acore MTA1-HDAC complex, showing that the histone deacetylase activity and transcriptional repression activity were integral properties of the MTA1 complex. Finally, MTA1, unlike MTA2, did not interact with the pleotropic transcription factor YY1 or the immunophilin FKBP25. We suggest that MTA1 associates with adifferent set of transcription factors from MTA2 and that this property may contribute to the metastatic potential of cells overexpressing MTA1. We also report the finding of human MTA3, which is highly homologous toboth MTA1 and MTA2. However, MTA3 does not repress transcription to a significant level and appears to have a diffused pattern of subcellular localization, suggesting a biological role distinct from that of the other two MTA proteins.

  12. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  13. The transcriptional histone acetyltransferase cofactor TRRAP associates with the MRN repair complex and plays a role in DNA double-strand break repair.

    Science.gov (United States)

    Robert, Flavie; Hardy, Sara; Nagy, Zita; Baldeyron, Céline; Murr, Rabih; Déry, Ugo; Masson, Jean-Yves; Papadopoulo, Dora; Herceg, Zdenko; Tora, Làszlò

    2006-01-01

    Transactivation-transformation domain-associated protein (TRRAP) is a component of several multiprotein histone acetyltransferase (HAT) complexes implicated in transcriptional regulation. TRRAP was shown to be required for the mitotic checkpoint and normal cell cycle progression. MRE11, RAD50, and NBS1 (product of the Nijmegan breakage syndrome gene) form the MRN complex that is involved in the detection, signaling, and repair of DNA double-strand breaks (DSBs). By using double immunopurification, mass spectrometry, and gel filtration, we describe the stable association of TRRAP with the MRN complex. The TRRAP-MRN complex is not associated with any detectable HAT activity, while the isolated other TRRAP complexes, containing either GCN5 or TIP60, are. TRRAP-depleted extracts show a reduced nonhomologous DNA end-joining activity in vitro. Importantly, small interfering RNA knockdown of TRRAP in HeLa cells or TRRAP knockout in mouse embryonic stem cells inhibit the DSB end-joining efficiency and the precise nonhomologous end-joining process, further suggesting a functional involvement of TRRAP in the DSB repair processes. Thus, TRRAP may function as a molecular link between DSB signaling, repair, and chromatin remodeling.

  14. Unravelling the Complexity and Functions of MTA Coregulators in Human Cancer.

    Science.gov (United States)

    Li, Da-Qiang; Kumar, Rakesh

    2015-01-01

    Since the initial recognition of the metastasis-associated protein 1 (MTA1) as a metastasis-relevant gene approximately 20 years ago, our appreciation for the complex role of the MTA family of coregulatory proteins in human cancer has profoundly grown. MTA proteins consist of six family members with similar structural units and act as central signaling nodes for integrating upstream signals into regulatory chromatin-remodeling networks, leading to regulation of gene expression in cancer cells. Substantial experimental and clinical evidence demonstrates that MTA proteins, particularly MTA1, are frequently deregulated in a wide range of human cancers. The MTA family governs cell survival, the invasive and metastatic phenotypes of cancer cells, and the aggressiveness of cancer and the prognosis of patients with MTA1 overexpressing cancers. Our discussion here highlights our current understanding of the regulatory mechanisms and functional roles of MTA proteins in cancer progression and expands upon the potential implications of MTA proteins in cancer biology and cancer therapeutics.

  15. Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes.

    Directory of Open Access Journals (Sweden)

    Jesse R Raab

    2015-12-01

    Full Text Available Multiple positions within the SWI/SNF chromatin remodeling complex can be filled by mutually exclusive subunits. Inclusion or exclusion of these proteins defines many unique forms of SWI/SNF and has profound functional consequences. Often this complex is studied as a single entity within a particular cell type and we understand little about the functional relationship between these biochemically distinct forms of the remodeling complex. Here we examine the functional relationships among three complex-specific ARID (AT-Rich Interacting Domain subunits using genome-wide chromatin immunoprecipitation, transcriptome analysis, and transcription factor binding maps. We find widespread overlap in transcriptional regulation and the genomic binding of distinct SWI/SNF complexes. ARID1B and ARID2 participate in wide-spread cooperation to repress hundreds of genes. Additionally, we find numerous examples of competition between ARID1A and another ARID, and validate that gene expression changes following loss of one ARID are dependent on the function of an alternative ARID. These distinct regulatory modalities are correlated with differential occupancy by transcription factors. Together, these data suggest that distinct SWI/SNF complexes dictate gene-specific transcription through functional interactions between the different forms of the SWI/SNF complex and associated co-factors. Most genes regulated by SWI/SNF are controlled by multiple biochemically distinct forms of the complex, and the overall expression of a gene is the product of the interaction between these different SWI/SNF complexes. The three mutually exclusive ARID family members are among the most frequently mutated chromatin regulators in cancer, and understanding the functional interactions and their role in transcriptional regulation provides an important foundation to understand their role in cancer.

  16. Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes

    Science.gov (United States)

    Raab, Jesse R.; Resnick, Samuel; Magnuson, Terry

    2015-01-01

    Multiple positions within the SWI/SNF chromatin remodeling complex can be filled by mutually exclusive subunits. Inclusion or exclusion of these proteins defines many unique forms of SWI/SNF and has profound functional consequences. Often this complex is studied as a single entity within a particular cell type and we understand little about the functional relationship between these biochemically distinct forms of the remodeling complex. Here we examine the functional relationships among three complex-specific ARID (AT-Rich Interacting Domain) subunits using genome-wide chromatin immunoprecipitation, transcriptome analysis, and transcription factor binding maps. We find widespread overlap in transcriptional regulation and the genomic binding of distinct SWI/SNF complexes. ARID1B and ARID2 participate in wide-spread cooperation to repress hundreds of genes. Additionally, we find numerous examples of competition between ARID1A and another ARID, and validate that gene expression changes following loss of one ARID are dependent on the function of an alternative ARID. These distinct regulatory modalities are correlated with differential occupancy by transcription factors. Together, these data suggest that distinct SWI/SNF complexes dictate gene-specific transcription through functional interactions between the different forms of the SWI/SNF complex and associated co-factors. Most genes regulated by SWI/SNF are controlled by multiple biochemically distinct forms of the complex, and the overall expression of a gene is the product of the interaction between these different SWI/SNF complexes. The three mutually exclusive ARID family members are among the most frequently mutated chromatin regulators in cancer, and understanding the functional interactions and their role in transcriptional regulation provides an important foundation to understand their role in cancer. PMID:26716708

  17. The PAF1 complex component Leo1 is essential for cardiac and neural crest development in zebrafish.

    Science.gov (United States)

    Nguyen, Catherine T; Langenbacher, Adam; Hsieh, Michael; Chen, Jau-Nian

    2010-05-01

    Leo1 is a component of the Polymerase-Associated Factor 1 (PAF1) complex, an evolutionarily conserved protein complex involved in gene transcription regulation and chromatin remodeling. The role of leo1 in vertebrate embryogenesis has not previously been examined. Here, we report that zebrafish leo1 encodes a nuclear protein that has a similar molecular structure to Leo1 proteins from other species. From a genetic screen, we identified a zebrafish mutant defective in the leo1 gene. The truncated Leo1(LA1186) protein lacks a nuclear localization signal and is distributed mostly in the cytoplasm. Phenotypic analysis showed that while the initial patterning of the primitive heart tube is not affected in leo1(LA1186) mutant embryos, the differentiation of cardiomyocytes at the atrioventricular boundary is aberrant, suggesting a requirement for Leo1 in cardiac differentiation. In addition, the expression levels of markers for neural crest-derived cells such as crestin, gch2, dct and mitfa are greatly reduced in leo1(LA1186) mutants, indicating a requirement for Leo1 in maintaining the neural crest population. Consistent with this finding, melanocyte and xanthophore populations are severely reduced, craniofacial cartilage is barely detectable, and mbp-positive glial cells are absent in leo1(LA1186) mutants after three days of development. Taken together, these results provide the first genetic evidence of the requirement for Leo1 in the development of the heart and neural crest cell populations.

  18. Yeast H2A.Z, FACT complex and RSC regulate transcription of tRNA gene through differential dynamics of flanking nucleosomes.

    Science.gov (United States)

    Mahapatra, Sahasransu; Dewari, Pooran S; Bhardwaj, Anubhav; Bhargava, Purnima

    2011-05-01

    FACT complex is involved in elongation and ensures fidelity in the initiation step of transcription by RNA polymerase (pol) II. Histone variant H2A.Z is found in nucleosomes at the 5'-end of many genes. We report here H2A.Z-chaperone activity of the yeast FACT complex on the short, nucleosome-free, non-coding, pol III-transcribed yeast tRNA genes. On a prototype gene, yeast SUP4, chromatin remodeler RSC and FACT regulate its transcription through novel mechanisms, wherein the two gene-flanking nucleosomes containing H2A.Z, play different roles. Nhp6, which ensures transcription fidelity and helps load yFACT onto the gene flanking nucleosomes, has inhibitory role. RSC maintains a nucleosome abutting the gene terminator downstream, which results in reduced transcription rate in active state while H2A.Z probably helps RSC in keeping the gene nucleosome-free and serves as stress-sensor. All these factors maintain an epigenetic state which allows the gene to return quickly from repressed to active state and tones down the expression from the active SUP4 gene, required probably to maintain the balance in cellular tRNA pool.

  19. CHD8, A Novel Beta-Catenin Associated Chromatin Remodeling Enzyme, Regulates Androgen Receptor Mediated Gene Transcription

    Science.gov (United States)

    2010-03-01

    NP- 40 , Nonidet P - 40 ; PPAR, peroxisome prolif- erator-activated receptor; PSA, prostate-specific antigen; SDS, sodium dodecyl sulfate; siRNA, small... Nonidet P - 40 (NP- 40 ). Cell lysates were cleared by centrifugation at 20,800 g for 10 min at 4 C and used for protein interaction studies as...or therapeutic target in prostate cancer. REFERENCES 1. Mulholland, D. J., Cheng, H., Reid, K., Rennie, P . S., and Nelson, C. C. (2002) J Biol

  20. AT1 receptor induced alterations in histone H2A reveal novel insights into GPCR control of chromatin remodeling.

    Directory of Open Access Journals (Sweden)

    Rajaganapathi Jagannathan

    Full Text Available Chronic activation of angiotensin II (AngII type 1 receptor (AT(1R, a prototypical G protein-coupled receptor (GPCR induces gene regulatory stress which is responsible for phenotypic modulation of target cells. The AT(1R-selective drugs reverse the gene regulatory stress in various cardiovascular diseases. However, the molecular mechanisms are not clear. We speculate that activation states of AT(1R modify the composition of histone isoforms and post-translational modifications (PTM, thereby alter the structure-function dynamics of chromatin. We combined total histone isolation, FPLC separation, and mass spectrometry techniques to analyze histone H2A in HEK293 cells with and without AT(1R activation. We have identified eight isoforms: H2AA, H2AG, H2AM, H2AO, H2AQ, Q96QV6, H2AC and H2AL. The isoforms, H2AA, H2AC and H2AQ were methylated and H2AC was phosphorylated. The relative abundance of specific H2A isoforms and PTMs were further analyzed in relationship to the activation states of AT(1R by immunochemical studies. Within 2 hr, the isoforms, H2AA/O exchanged with H2AM. The monomethylated H2AC increased rapidly and the phosphorylated H2AC decreased, thus suggesting that enhanced H2AC methylation is coupled to Ser1p dephosphorylation. We show that H2A125Kme1 promotes interaction with the heterochromatin associated protein, HP1α. These specific changes in H2A are reversed by treatment with the AT(1R specific inhibitor losartan. Our analysis provides a first step towards an awareness of histone code regulation by GPCRs.

  1. Behavioral and molecular neuroepigenetic alterations in prenatally stressed mice: relevance for the study of chromatin remodeling properties of antipsychotic drugs

    Science.gov (United States)

    Dong, E; Tueting, P; Matrisciano, F; Grayson, D R; Guidotti, A

    2016-01-01

    We have recently reported that mice born from dams stressed during pregnancy (PRS mice), in adulthood, have behavioral deficits reminiscent of behaviors observed in schizophrenia (SZ) and bipolar (BP) disorder patients. Furthermore, we have shown that the frontal cortex (FC) and hippocampus of adult PRS mice, like that of postmortem chronic SZ patients, are characterized by increases in DNA-methyltransferase 1 (DNMT1), ten-eleven methylcytosine dioxygenase 1 (TET1) and exhibit an enrichment of 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) at neocortical GABAergic and glutamatergic gene promoters. Here, we show that the behavioral deficits and the increased 5MC and 5HMC at glutamic acid decarboxylase 67 (Gad1), reelin (Reln) and brain-derived neurotrophic factor (Bdnf) promoters and the reduced expression of the messenger RNAs (mRNAs) and proteins corresponding to these genes in FC of adult PRS mice is reversed by treatment with clozapine (5 mg kg−1 twice a day for 5 days) but not by haloperidol (1 mg kg−1 twice a day for 5 days). Interestingly, clozapine had no effect on either the behavior, promoter methylation or the expression of these mRNAs and proteins when administered to offspring of nonstressed pregnant mice. Clozapine, but not haloperidol, reduced the elevated levels of DNMT1 and TET1, as well as the elevated levels of DNMT1 binding to Gad1, Reln and Bdnf promoters in PRS mice suggesting that clozapine, unlike haloperidol, may limit DNA methylation by interfering with DNA methylation dynamics. We conclude that the PRS mouse model may be useful preclinically in screening for the potential efficacy of antipsychotic drugs acting on altered epigenetic mechanisms. Furthermore, PRS mice may be invaluable for understanding the etiopathogenesis of SZ and BP disorder and for predicting treatment responses at early stages of the illness allowing for early detection and remedial intervention. PMID:26756904

  2. TIP48/Reptin and H2A.Z requirement for initiating chromatin remodeling in estrogen-activated transcription.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    2013-04-01

    Full Text Available Histone variants, including histone H2A.Z, are incorporated into specific genomic sites and participate in transcription regulation. The role of H2A.Z at these sites remains poorly characterized. Our study investigates changes in the chromatin environment at the Cyclin D1 gene (CCND1 during transcriptional initiation in response to estradiol in estrogen receptor positive mammary tumour cells. We show that H2A.Z is present at the transcription start-site and downstream enhancer sequences of CCND1 when the gene is poorly transcribed. Stimulation of CCND1 expression required release of H2A.Z concomitantly from both these DNA elements. The AAA+ family members TIP48/reptin and the histone variant H2A.Z are required to remodel the chromatin environment at CCND1 as a prerequisite for binding of the estrogen receptor (ERα in the presence of hormone. TIP48 promotes acetylation and exchange of H2A.Z, which triggers a dissociation of the CCND1 3' enhancer from the promoter, thereby releasing a repressive intragenic loop. This release then enables the estrogen receptor to bind to the CCND1 promoter. Our findings provide new insight into the priming of chromatin required for transcription factor access to their target sequence. Dynamic release of gene loops could be a rapid means to remodel chromatin and to stimulate transcription in response to hormones.

  3. CRIF1 enhances p53 activity via the chromatin remodeler SNF5 in the HCT116 colon cancer cell lines.

    Science.gov (United States)

    Yan, Hai-Xia; Zhang, Yan-Jun; Zhang, Yuan; Ren, Xue; Shen, Yu-Fei; Cheng, Mo-Bin; Zhang, Ye

    2017-02-21

    CR6-interacting factor 1 (CRIF1) is ubiquitously expressed in human tissues. CRIF1 was first identified as a Gadd45γ (also known as CR6)-interacting protein, and it was also identified in a human colon cancer cell line stably transformed with p53. These results suggested that CRIF1 functions in the nucleus with p53 and Gadd45 family proteins in the suppression of cell growth and tumor development. Here, we found that CRIF1 could be recruited to a specific region in the promoter of the p53 gene, eliciting an increase in the mRNA and protein levels of p53 as well as p53 functional target genes. These functions required CRIF1 to interact with SNF5. CRIF1 was further recruited to the upstream promoter region of the p53 gene to suppress cell cycle progression in HCT116 cells. To our knowledge, this is the first evidence indicating that SNF5 is indispensable for CRIF1-enhanced p53 activity and its function in the suppression of cell cycle arrest in human cancer cells.

  4. The Cyclophilin AtCYP71 Interacts with CAF-1 and LHP1 and Functions in Multiple Chromatin Remodeling Processes

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Sheng Luan

    2011-01-01

    Chromatin is the primary carrier of epigenetic information in higher eukaryotes. AtCYP71 contains both cyclo-philin domain and WD40 repeats. Loss of AtCYP71 function causes drastic pleiotropic phenotypic defects. Here, we show that AtCYP71 physically interacts with FAS1 and LHP1, respectively, to modulate their distribution on chromatin. The Ihpl cyp71 double mutant showed more severe phenotypes than the single mutants, suggesting that AtCYP71 and LHP1 syn-ergistically control plant development. Such synergism was in part illustrated by the observation that LHP1 association with its specific target loci requires AtCYP71 function. We also demonstrate that AtCYP71 physically interacts with FAS1and is indispensable for FAS1 targeting to the KNAT1 locus. Together, our data suggest that AtCYP71 is involved in fun-damental processes of chromatin assembly and histone modification in plants.

  5. Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Nelson, Celeste M.; Muschler, John L.; Veiseh, Mandana; Vonderhaar, Barbara K.; Bissell, Mina J.

    2009-06-03

    Epithelial cells, once dissociated and placed in two-dimensional (2D) cultures, rapidly lose tissue-specific functions. We showed previously that in addition to prolactin, signaling by laminin-111 was necessary to restore functional differentiation of mammary epithelia. Here, we elucidate two additional aspects of laminin-111 action. We show that in 2D cultures, the prolactin receptor is basolaterally localized and physically segregated from its apically placed ligand. Detachment of the cells exposes the receptor to ligation by prolactin leading to signal transducers and activators of transcription protein 5 (STAT5) activation, but only transiently and not sufficiently for induction of milk protein expression. We show that laminin-111 reorganizes mammary cells into polarized acini, allowing both the exposure of the prolactin receptor and sustained activation of STAT5. The use of constitutively active STAT5 constructs showed that the latter is necessary and sufficient for chromatin reorganization and {beta}-casein transcription. These results underscore the crucial role of continuous laminin signaling and polarized tissue architecture in maintenance of transcription factor activation, chromatin organization, and tissue-specific gene expression.

  6. Cross-talk between sporophyte and gametophyte generations is promoted by CHD3 chromatin remodelers in Arabidopsis thaliana

    NARCIS (Netherlands)

    Carter, Benjamin; Henderson, James T.; Svedin, Elisabeth; Fiers, M.A.; McCarthy, Kyle; Smith, Amanda; Guo, Changhua; Bishop, Brett; Zhang, Heng; Riksen-Bruinsma, T.; Shockley, Allison; Dilkes, Brian P.; Boutilier, K.A.; Ogas, Joe

    2016-01-01

    Angiosperm reproduction requires the integrated development of multiple tissues with different genotypes. To achieve successful fertilization, the haploid female gametophytes and diploid ovary must coordinate their development, after which the male gametes must navigate through the maternal sporophy

  7. Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro.

    Science.gov (United States)

    Kuryan, Benjamin G; Kim, Jessica; Tran, Nancy Nga H; Lombardo, Sarah R; Venkatesh, Swaminathan; Workman, Jerry L; Carey, Michael

    2012-02-01

    ATPases and histone chaperones facilitate RNA polymerase II (pol II) elongation on chromatin. In vivo, the coordinated action of these enzymes is necessary to permit pol II passage through a nucleosome while restoring histone density afterward. We have developed a biochemical system recapitulating this basic process. Transcription through a nucleosome in vitro requires the ATPase remodels structure of chromatin (RSC) and the histone chaperone nucleosome assembly protein 1 (NAP1). In the presence of NAP1, RSC generates a hexasome. Despite the propensity of RSC to evict histones, NAP1 reprograms the reaction such that the hexasome is retained on the template during multiple rounds of transcription. This work has implications toward understanding the mechanism of pol II elongation on chromatin.

  8. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling.

    Science.gov (United States)

    Budry, Lionel; Balsalobre, Aurélio; Gauthier, Yves; Khetchoumian, Konstantin; L'honoré, Aurore; Vallette, Sophie; Brue, Thierry; Figarella-Branger, Dominique; Meij, Björn; Drouin, Jacques

    2012-10-15

    The anterior and intermediate lobes of the pituitary gland derive from the surface ectoderm. They provide a simple system to assess mechanisms of developmental identity established by tissue determinants. Each lobe contains a lineage expressing the hormone precursor pro-opiomelanocortin (POMC): the corticotropes and melanotropes. The T-box transcription factor Tpit controls terminal differentiation of both lineages. We now report on the unique role of Pax7 as a selector of intermediate lobe and melanotrope identity. Inactivation of the Pax7 gene results in loss of melanotrope gene expression and derepression of corticotrope genes. Pax7 acts by remodeling chromatin and allowing Tpit binding to a new subset of enhancers for activation of melanotrope-specific genes. Thus, the selector function of Pax7 is exerted through pioneer transcription factor activity. Genome-wide, the Pax7 pioneer activity is preferentially associated with composite binding sites that include paired and homeodomain motifs. Pax7 expression is conserved in human and dog melanotropes and defines two subtypes of pituitary adenomas causing Cushing's disease. In summary, expression of Pax7 provides a unique tissue identity to the pituitary intermediate lobe that alters Tpit-driven differentiation through pioneer and classical transcription factor activities.

  9. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and toll-like receptor signaling.

    Science.gov (United States)

    Qiao, Yu; Giannopoulou, Eugenia G; Chan, Chun Hin; Park, Sung-Ho; Gong, Shiaoching; Chen, Janice; Hu, Xiaoyu; Elemento, Olivier; Ivashkiv, Lionel B

    2013-09-19

    Synergistic activation of inflammatory cytokine genes by interferon-γ (IFN-γ) and Toll-like receptor (TLR) signaling is important for innate immunity and inflammatory disease pathogenesis. Enhancement of TLR signaling, a previously proposed mechanism, is insufficient to explain strong synergistic activation of cytokine production in human macrophages. Rather, we found that IFN-γ induced sustained occupancy of transcription factors STAT1, IRF-1, and associated histone acetylation at promoters and enhancers at the TNF, IL6, and IL12B loci. This priming of chromatin did not activate transcription but greatly increased and prolonged recruitment of TLR4-induced transcription factors and RNA polymerase II to gene promoters and enhancers. Priming sensitized cytokine transcription to suppression by Jak inhibitors. Genome-wide analysis revealed pervasive priming of regulatory elements by IFN-γ and linked coordinate priming of promoters and enhancers with synergistic induction of transcription. Our results provide a synergy mechanism whereby IFN-γ creates a primed chromatin environment to augment TLR-induced gene transcription.

  10. Elucidation of Chromatin Remodeling Machinery Involved in Regulation of Estrogen Receptor Alpha Expression in Human Breast Cancer Cells

    Science.gov (United States)

    2005-08-01

    encoded by different genes (26, 27)), can act as transcriptional repressors by using their ATRX domain to recruit HDAC1 (28, 29). Heterochromatic...genes (26, 27), can act as transcrip- ER promoter in MDA-MB-231 cells showed little or no tional repressors by using their ATRX domain to recruit

  11. Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination

    Science.gov (United States)

    Srivastava, Rakesh; Rai, Krishan Mohan; Pandey, Bindu; Singh, Sudhir P.; Sawant, Samir V.

    2015-01-01

    The recruitment of RNA polymerase II on a promoter is assisted by the assembly of basal transcriptional machinery in eukaryotes. The Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex plays an important role in transcription regulation in eukaryotes. However, even in the advent of genome sequencing of various plants, SAGA complex has been poorly defined for their components and roles in plant development and physiological functions. Computational analysis of Arabidopsis thaliana and Oryza sativa genomes for SAGA complex resulted in the identification of 17 to 18 potential candidates for SAGA subunits. We have further classified the SAGA complex based on the conserved domains. Phylogenetic analysis revealed that the SAGA complex proteins are evolutionary conserved between plants, yeast and mammals. Functional annotation showed that they participate not only in chromatin remodeling and gene regulation, but also in different biological processes, which could be indirect and possibly mediated via the regulation of gene expression. The in silico expression analysis of the SAGA components in Arabidopsis and O. sativa clearly indicates that its components have a distinct expression profile at different developmental stages. The co-expression analysis of the SAGA components suggests that many of these subunits co-express at different developmental stages, during hormonal interaction and in response to stress conditions. Quantitative real-time PCR analysis of SAGA component genes further confirmed their expression in different plant tissues and stresses. The expression of representative salt, heat and light inducible genes were affected in mutant lines of SAGA subunits in Arabidopsis. Altogether, the present study reveals expedient evidences of involvement of the SAGA complex in plant gene regulation and stress responses. PMID:26263547

  12. Spt-Ada-Gcn5-Acetyltransferase (SAGA Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination.

    Directory of Open Access Journals (Sweden)

    Rakesh Srivastava

    Full Text Available The recruitment of RNA polymerase II on a promoter is assisted by the assembly of basal transcriptional machinery in eukaryotes. The Spt-Ada-Gcn5-Acetyltransferase (SAGA complex plays an important role in transcription regulation in eukaryotes. However, even in the advent of genome sequencing of various plants, SAGA complex has been poorly defined for their components and roles in plant development and physiological functions. Computational analysis of Arabidopsis thaliana and Oryza sativa genomes for SAGA complex resulted in the identification of 17 to 18 potential candidates for SAGA subunits. We have further classified the SAGA complex based on the conserved domains. Phylogenetic analysis revealed that the SAGA complex proteins are evolutionary conserved between plants, yeast and mammals. Functional annotation showed that they participate not only in chromatin remodeling and gene regulation, but also in different biological processes, which could be indirect and possibly mediated via the regulation of gene expression. The in silico expression analysis of the SAGA components in Arabidopsis and O. sativa clearly indicates that its components have a distinct expression profile at different developmental stages. The co-expression analysis of the SAGA components suggests that many of these subunits co-express at different developmental stages, during hormonal interaction and in response to stress conditions. Quantitative real-time PCR analysis of SAGA component genes further confirmed their expression in different plant tissues and stresses. The expression of representative salt, heat and light inducible genes were affected in mutant lines of SAGA subunits in Arabidopsis. Altogether, the present study reveals expedient evidences of involvement of the SAGA complex in plant gene regulation and stress responses.

  13. PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae.

    Science.gov (United States)

    Baccarini, Leticia; Martínez-Montañés, Fernando; Rossi, Silvia; Proft, Markus; Portela, Paula

    2015-11-01

    Gene expression regulation by intracellular stimulus-activated protein kinases is essential for cell adaptation to environmental changes. There are three PKA catalytic subunits in Saccharomyces cerevisiae: Tpk1, Tpk2, and Tpk3 and one regulatory subunit: Bcy1. Previously, it has been demonstrated that Tpk1 and Tpk2 are associated with coding regions and promoters of target genes in a carbon source and oxidative stress dependent manner. Here we studied five genes, ALD6, SED1, HSP42, RPS29B, and RPL1B whose expression is regulated by saline stress. We found that PKA catalytic and regulatory subunits are associated with both coding regions and promoters of the analyzed genes in a stress dependent manner. Tpk1 and Tpk2 recruitment was completely abolished in catalytic inactive mutants. BCY1 deletion changed the binding kinetic to chromatin of each Tpk isoform and this strain displayed a deregulated gene expression in response to osmotic stress. In addition, yeast mutants with high PKA activity exhibit sustained association to target genes of chromatin-remodeling complexes such as Snf2-catalytic subunit of the SWI/SNF complex and Arp8-component of INO80 complex, leading to upregulation of gene expression during osmotic stress. Tpk1 accumulation in the nucleus was stimulated upon osmotic stress, while the nuclear localization of Tpk2 and Bcy1 showed no change. We found that each PKA subunit is transported into the nucleus by a different β-karyopherin pathway. Moreover, β-karyopherin mutant strains abolished the chromatin association of Tpk1 or Tpk2, suggesting that nuclear localization of PKA catalytic subunits is required for its association to target genes and properly gene expression.

  14. Genome-Wide Analysis of the TORC1 and Osmotic Stress Signaling Network in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Jeremy Worley

    2016-02-01

    Full Text Available The Target of Rapamycin kinase Complex I (TORC1 is a master regulator of cell growth and metabolism in eukaryotes. Studies in yeast and human cells have shown that nitrogen/amino acid starvation signals act through Npr2/Npr3 and the small GTPases Gtr1/Gtr2 (Rags in humans to inhibit TORC1. However, it is unclear how other stress and starvation stimuli inhibit TORC1, and/or act in parallel with the TORC1 pathway, to control cell growth. To help answer these questions, we developed a novel automated pipeline and used it to measure the expression of a TORC1-dependent ribosome biogenesis gene (NSR1 during osmotic stress in 4700 Saccharomyces cerevisiae strains from the yeast knock-out collection. This led to the identification of 440 strains with significant and reproducible defects in NSR1 repression. The cell growth control and stress response proteins deleted in these strains form a highly connected network, including 56 proteins involved in vesicle trafficking and vacuolar function; 53 proteins that act downstream of TORC1 according to a rapamycin assay—including components of the HDAC Rpd3L, Elongator, and the INO80, CAF-1 and SWI/SNF chromatin remodeling complexes; over 100 proteins involved in signaling and metabolism; and 17 proteins that directly interact with TORC1. These data provide an important resource for labs studying cell growth control and stress signaling, and demonstrate the utility of our new, and easily adaptable, method for mapping gene regulatory networks.

  15. MITF-independent pro-survival role of BRG1-containing SWI/SNF complex in melanoma cells.

    Directory of Open Access Journals (Sweden)

    Lubica Ondrušová

    Full Text Available Metastasized malignant melanoma has a poor prognosis because of its intrinsic resistance to chemotherapy and radiotherapy. The central role in the melanoma transcriptional network has the transcription factor MITF (microphthalmia-associated transcription factor. It has been shown recently that the expression of MITF and some of its target genes require the SWI/SNF chromatin remodeling complex. Here we demonstrate that survival of melanoma cells requires functional SWI/SNF complex not only by supporting expression of MITF and its targets and but also by activating expression of prosurvival proteins not directly regulated by MITF. Microarray analysis revealed that besides the MITF-driven genes, expression of proteins like osteopontin, IGF1, TGFß2 and survivin, the factors known to be generally associated with progression of tumors and the antiapoptotic properties, were reduced in acute BRG1-depleted 501mel cells. Western blots and RT-PCR confirmed the microarray findings. These proteins have been verified to be expressed independently of MITF, because MITF depletion did not impair their expression. Because these genes are not regulated by MITF, the data suggests that loss of BRG1-based SWI/SNF complexes negatively affects survival pathways beyond the MITF cascade. Immunohistochemistry showed high expression of both BRM and BRG1 in primary melanomas. Exogenous CDK2, osteopontin, or IGF1 each alone partly relieved the block of proliferation imposed by BRG1 depletion, implicating that more factors, besides the MITF target genes, are involved in melanoma cell survival. Together these results demonstrate an essential role of SWI/SNF for the expression of MITF-dependent and MITF-independent prosurvival factors in melanoma cells and suggest that SWI/SNF may be a potential and effective target in melanoma therapy.

  16. Protein phosphatases and chromatin modifying complexes in the inflammatory cascade in acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Javier; Escobar; Javier; Pereda; Alessandro; Arduini; Juan; Sastre; Juan; Sandoval; Luis; Aparisi; Gerardo; López-Rodas; Luis; Sabater

    2010-01-01

    Acute pancreatitis is an inflammation of the pancreas that may lead to systemic inflammatory response syndrome and death due to multiple organ failure. Acinar cells, together with leukocytes, trigger the inflammatory cascade in response to local damage of the pancreas. Amplification of the inflammatory cascade requires up-regulation of proinflammatory cytokines and this process is mediated not only by nuclear factor κB but also by chromatinmodifying complexes and chromatin remodeling. Among the different families of histone acetyltransferases, the p300/CBP family seems to be particularly associated with the inflammatory process. cAMP activates gene expression via the cAMP-responsive element (CRE) and the transcription factor CRE-binding protein (CREB). CREB can be phosphorylated and activated by different kinases, such as protein kinase A and MAPK, and then it recruits the histone acetyltransferase co-activator CREB-binding protein (CBP) and its homologue p300. The recruitment of CBP/p300 and changes in the level of histone acetylation are required for transcription activation. Transcriptional repression is also a dynamic and essential mechanism of down-regulation of genes for resolution of inflammation, which seems to be mediated mainly by protein phosphatases (PP1, PP2A and MKP1) and histone deacetylases(HDACs) .Class HDACs are key transcriptional regulators whose activities are controlled via phosphorylationdependent nucleo/cytoplasmic shuttling. PP2A is responsible for dephosphorylation of class HDACs, triggeringnuclear localization and repression of target genes, whereas phosphorylation triggers cytoplasmic localization leading to activation of target genes. The potential benefit from treatment with phosphodiesterase inhibitors and histone deacetylase inhibitors is discussed.

  17. Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex.

    Science.gov (United States)

    Tramantano, Michael; Sun, Lu; Au, Christy; Labuz, Daniel; Liu, Zhimin; Chou, Mindy; Shen, Chen; Luk, Ed

    2016-07-20

    The assembly of the preinitiation complex (PIC) occurs upstream of the +1 nucleosome which, in yeast, obstructs the transcription start site and is frequently assembled with the histone variant H2A.Z. To understand the contribution of the transcription machinery in the disassembly of the +1 H2A.Z nucleosome, conditional mutants were used to block PIC assembly. A quantitative ChIP-seq approach, which allows detection of global occupancy change, was employed to measure H2A.Z occupancy. Blocking PIC assembly resulted in promoter-specific H2A.Z accumulation, indicating that the PIC is required to evict H2A.Z. By contrast, H2A.Z eviction was unaffected upon depletion of INO80, a remodeler previously reported to displace nucleosomal H2A.Z. Robust PIC-dependent H2A.Z eviction was observed at active and infrequently transcribed genes, indicating that constitutive H2A.Z turnover is a general phenomenon. Finally, sites with strong H2A.Z turnover precisely mark transcript starts, providing a new metric for identifying cryptic and alternative sites of initiation.

  18. Identification and characterization of FAM124B as a novel component of a CHD7 and CHD8 containing complex.

    Directory of Open Access Journals (Sweden)

    Tserendulam Batsukh

    Full Text Available BACKGROUND: Mutations in the chromodomain helicase DNA binding protein 7 gene (CHD7 lead to CHARGE syndrome, an autosomal dominant multiple malformation disorder. Proteins involved in chromatin remodeling typically act in multiprotein complexes. We previously demonstrated that a part of human CHD7 interacts with a part of human CHD8, another chromodomain helicase DNA binding protein presumably being involved in the pathogenesis of neurodevelopmental (NDD and autism spectrum disorders (ASD. Because identification of novel CHD7 and CHD8 interacting partners will provide further insights into the pathogenesis of CHARGE syndrome and ASD/NDD, we searched for additional associated polypeptides using the method of stable isotope labeling by amino acids in cell culture (SILAC in combination with mass spectrometry. PRINCIPLE FINDINGS: The hitherto uncharacterized FAM124B (Family with sequence similarity 124B was identified as a potential interaction partner of both CHD7 and CHD8. We confirmed the result by co-immunoprecipitation studies and showed a direct binding to the CHD8 part by direct yeast two hybrid experiments. Furthermore, we characterized FAM124B as a mainly nuclear localized protein with a widespread expression in embryonic and adult mouse tissues. CONCLUSION: Our results demonstrate that FAM124B is a potential interacting partner of a CHD7 and CHD8 containing complex. From the overlapping expression pattern between Chd7 and Fam124B at murine embryonic day E12.5 and the high expression of Fam124B in the developing mouse brain, we conclude that Fam124B is a novel protein possibly involved in the pathogenesis of CHARGE syndrome and neurodevelopmental disorders.

  19. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions.

    Directory of Open Access Journals (Sweden)

    Olga Østrup

    Full Text Available Fertilization is followed by complex changes in cytoplasmic composition and extensive chromatin reprogramming which results in the abundant activation of totipotent embryonic genome at embryonic genome activation (EGA. While chromatin reprogramming has been widely studied in several species, only a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv and in vitro produced (ivt porcine embryos before (2-cell stage and after (late 4-cell stage EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery, protein catabolism, and chromatin remodelling. Following EGA an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place before and after EGA (RNA splicing, protein catabolism, different metabolic pathways are involved. This strongly suggests that a complex metabolic switch accompanies EGA. In vitro conditions significantly altered RNA profiles before EGA, and the character of these changes indicates that they originate from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and

  20. Epigenetic Regulation of Hormone-dependent Plant Growth Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph Robert [The Salk Inst. for Biological Studies, La Jolla, CA (United States)

    2016-11-18

    Impact of EIN6, EEN and ethylene on the H3K27me3 dynamics in Arabidopsis: To assess the dynamic responsiveness of H3K27me3 levels to ethylene and how this might affect ethylene-induced gene expression, we plan to perform H3K27me3 ChIP-seq and RNA- seq experiments in parallel with etiolated seedlings in the absence and presence of ethylene. Further implementation of ein6, een and ein6een mutants will visualize how the H3K27me3 landscape (-/+ET) is altered when H3K27me3 demethylation and/or INO80-mediated chromatin remodeling is compromised. Additional ChIP-seq analyses with EIN6 will show if ethylene- induced H3K27me3 removal at certain genes is always accompanied by the presence of EIN6.

  1. Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes

    DEFF Research Database (Denmark)

    Acevedo, Nathalie; Reinius, Lovisa E; Vitezic, Morana;

    2015-01-01

    the dynamics of DNA methylation. Serial blood samples were collected at 3, 6, 12, 24, 36, 48 and 60 months after birth in ten healthy girls born in Finland and participating in the Type 1 Diabetes Prediction and Prevention Study. DNA methylation was measured using the HumanMethylation450 BeadChip. RESULTS......: After filtering for the presence of polymorphisms and cell-lineage-specific signatures, 794 CpG sites showed significant DNA methylation differences as a function of age in all children (41.6% age-methylated and 58.4% age-demethylated, Bonferroni-corrected P value ... performing DNA methylation studies in children....

  2. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow

    Directory of Open Access Journals (Sweden)

    Vinken Mathieu

    2007-04-01

    Full Text Available Abstract Background The capability of human mesenchymal stem cells (hMSC derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. Results Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4, hepatocyte growth factor (HGF, insulin-transferrin-sodium-selenite (ITS and dexamethasone] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone, however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK18 expression. Additional exposure of the cells to trichostatin A (TSA considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF-3β, alpha-fetoprotein (AFP, CK18, albumin (ALB, HNF1α, multidrug resistance-associated protein (MRP2 and CCAAT-enhancer binding protein (C/EBPα, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP-dependent activity. Conclusion hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells.

  3. Functional analyses of AtCHR12 and AtCHR23 : plant growth responses upon over-expression of chromatin remodeling ATPase genes

    NARCIS (Netherlands)

    Folta, A.

    2015-01-01

    Living organisms have to deal with changing environmental conditions during their whole life cycle. In contrast to animals, plants are sessile organisms. Therefore they have evolved multiple regulatory mechanisms that help them to cope with changing conditions. One of the first responses to stress c

  4. Meta-analysis of gene expression patterns in animal models of prenatal alcohol exposure suggests role for protein synthesis inhibition and chromatin remodeling

    Science.gov (United States)

    Rogic, Sanja; Wong, Albertina; Pavlidis, Paul

    2017-01-01

    Background Prenatal alcohol exposure (PAE) can result in an array of morphological, behavioural and neurobiological deficits that can range in their severity. Despite extensive research in the field and a significant progress made, especially in understanding the range of possible malformations and neurobehavioral abnormalities, the molecular mechanisms of alcohol responses in development are still not well understood. There have been multiple transcriptomic studies looking at the changes in gene expression after PAE in animal models, however there is a limited apparent consensus among the reported findings. In an effort to address this issue, we performed a comprehensive re-analysis and meta-analysis of all suitable, publically available expression data sets. Methods We assembled ten microarray data sets of gene expression after PAE in mouse and rat models consisting of samples from a total of 63 ethanol-exposed and 80 control animals. We re-analyzed each data set for differential expression and then used the results to perform meta-analyses considering all data sets together or grouping them by time or duration of exposure (pre- and post-natal, acute and chronic, respectively). We performed network and Gene Ontology enrichment analysis to further characterize the identified signatures. Results For each sub-analysis we identified signatures of differential expressed genes that show support from multiple studies. Overall, the changes in gene expression were more extensive after acute ethanol treatment during prenatal development than in other models. Considering the analysis of all the data together, we identified a robust core signature of 104 genes down-regulated after PAE, with no up-regulated genes. Functional analysis reveals over-representation of genes involved in protein synthesis, mRNA splicing and chromatin organization. Conclusions Our meta-analysis shows that existing studies, despite superficial dissimilarity in findings, share features that allow us to identify a common core signature set of transcriptome changes in PAE. This is an important step to identifying the biological processes that underlie the etiology of FASD. PMID:26996386

  5. Functional analyses of AtCHR12 and AtCHR23 : plant growth responses upon over-expression of chromatin remodeling ATPase genes

    OpenAIRE

    Folta, A.

    2015-01-01

    Living organisms have to deal with changing environmental conditions during their whole life cycle. In contrast to animals, plants are sessile organisms. Therefore they have evolved multiple regulatory mechanisms that help them to cope with changing conditions. One of the first responses to stress conditions is reduction or arrest of growth. Therefore regulation of growth and development is essential to successfully complete their life cycle. To correctly time their development, plants need t...

  6. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease.

    Science.gov (United States)

    Verlaan, Dominique J; Berlivet, Soizik; Hunninghake, Gary M; Madore, Anne-Marie; Larivière, Mathieu; Moussette, Sanny; Grundberg, Elin; Kwan, Tony; Ouimet, Manon; Ge, Bing; Hoberman, Rose; Swiatek, Marcin; Dias, Joana; Lam, Kevin C L; Koka, Vonda; Harmsen, Eef; Soto-Quiros, Manuel; Avila, Lydiana; Celedón, Juan C; Weiss, Scott T; Dewar, Ken; Sinnett, Daniel; Laprise, Catherine; Raby, Benjamin A; Pastinen, Tomi; Naumova, Anna K

    2009-09-01

    Common SNPs in the chromosome 17q12-q21 region alter the risk for asthma, type 1 diabetes, primary biliary cirrhosis, and Crohn disease. Previous reports by us and others have linked the disease-associated genetic variants with changes in expression of GSDMB and ORMDL3 transcripts in human lymphoblastoid cell lines (LCLs). The variants also alter regulation of other transcripts, and this domain-wide cis-regulatory effect suggests a mechanism involving long-range chromatin interactions. Here, we further dissect the disease-linked haplotype and identify putative causal DNA variants via a combination of genetic and functional analyses. First, high-throughput resequencing of the region and genotyping of potential candidate variants were performed. Next, additional mapping of allelic expression differences in Yoruba HapMap LCLs allowed us to fine-map the basis of the cis-regulatory differences to a handful of candidate functional variants. Functional assays identified allele-specific differences in nucleosome distribution, an allele-specific association with the insulator protein CTCF, as well as a weak promoter activity for rs12936231. Overall, this study shows a common disease allele linked to changes in CTCF binding and nucleosome occupancy leading to altered domain-wide cis-regulation. Finally, a strong association between asthma and cis-regulatory haplotypes was observed in three independent family-based cohorts (p = 1.78 x 10(-8)). This study demonstrates the requirement of multiple parallel allele-specific tools for the investigation of noncoding disease variants and functional fine-mapping of human disease-associated haplotypes.

  7. Effect of Chromatin-Remodeling Agents in Hepatic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Danna Ye

    2016-01-01

    Full Text Available Epigenetic events, including covalent histone modifications and DNA methylation, play fundamental roles in the determination of lineage-specific gene expression and cell fates. The aim of this study was to determine whether the DNA methyltransferase inhibitor (DNMTi 5-aza-2′-deoxycytidine (5-aza-dC and the histone deacetylase inhibitor (HDACi trichostatin A (TSA promote the hepatic differentiation of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs and their therapeutic effect on liver damage. 1 μM TSA and 20 μM 5-aza-dC were added to standard hepatogenic medium especially at differentiation and maturation steps and their potential function on hepatic differentiation in vitro and in vivo was determined. Exposure of rBM-MSCs to 1 μM TSA at both the differentiation and maturation steps considerably improved hepatic differentiation. TSA enhanced the development of the hepatocyte shape, promoted the chronological expression of hepatocyte-specific markers, and improved hepatic functions. In contrast, treatment of rBM-MSCs with 20 μM 5-aza-dC alone or in combination with TSA was ineffective in improving hepatic differentiation in vitro. TSA and/or 5-aza-dC derived hepatocytes-like cells failed to improve the therapeutic potential in liver damage. We conclude that HDACis enhance hepatic differentiation in a time-dependent manner, while DNMTis do not induce the hepatic differentiation of rBM-MSCs in vitro. Their in vivo function needs further investigation.

  8. Sequence Classification: 892441 [

    Lifescience Database Archive (English)

    Full Text Available Non-TMB Non-TMH Non-TMB Non-TMB Non-TMB TMB >gi|6323061|ref|NP_013133.1| Remodels t...he structure of chromatin complex 58KDa subunit; Chromatin Remodeling Complex subunit; Rsc58p || http://www.ncbi.nlm.nih.gov/protein/6323061 ...

  9. Structural characterization of human Uch37

    Energy Technology Data Exchange (ETDEWEB)

    Burgie, E. Sethe; Bingman, Craig A.; Soni, Ameet B.; Phillips, Jr., George N. (UW)

    2012-06-28

    Uch37 is a deubiquitylating enzyme (DUB) that is functionally linked with multiple protein complexes and signal transduction pathways. Uch37 associates with the 26S proteasome through Rpn13 where it serves to remove distal ubiquitin moeities from polyubiquitylated proteins. Uch37's proteasome associated activity was shown to liberate proteins from destruction. However, Uch37 may also specifically facilitate the destruction of inducible nitric oxide synthase and I{kappa}B-{alpha} at the proteasome. Wicks et al. established Uch37's potential to modulate the transforming growth factor-{beta}(TGF-{beta}) signaling cascade, through tis interaction with SMAD7. Yao et al. demonstrated that Uch37 also associates with the Ino80 chromatin-remodeling complex (Ino80 complex), which is involved in DNA repair and transcriptional regulation. Uch37's importance in metazoan development was underscored recently as Uch37 knockouts in mice result in prenatal lethality, where mutant embryos had severe defects in brain development. Protein ubiquitylation is an ATP-dependent post-translational modification that serves to signal a wide variety of cellular processes in eukaryotes. A protein cascade, generally comprising three enzymes, functions to activate, transport and specifically transfer ubiquitin to the targeted protein, culminating in an isopeptide linkage between the {epsilon}-amino group of a target protein's lysysl residue and the ubiquitin's terminal carboxylate. Monoubiquitination plays an important role in histone regulation, endocytosis, and viral budding. Further processing of the target protein may be accomplished by ubiquitylation of the protein on a different lysine, or through the formation of polyubiquitin chains, where the best-characterized outcome is destruction of the polyubiquitin-labeled protein in the proteasome. DUBs catalyze the removal of ubiquitin from proteins. This activity serves to reverse the effects of ubiquitination, permit

  10. Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control

    NARCIS (Netherlands)

    Y.M. Moshkin (Yuri); L. Mohrmann (Lisette); W.F.J. van IJcken (Wilfred); C.P. Verrijzer (Peter)

    2007-01-01

    textabstractDrosophila BAP and PBAP represent two evolutionarily conserved subclasses of SWI/SNF chromatin remodelers. The two complexes share the same core subunits, including the BRM ATPase, but differ in a few signature subunits: OSA defines BAP, whereas Polybromo (PB) and BAP170 specify PBAP. He

  11. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    Science.gov (United States)

    2013-10-01

    chromatin remodeling complexes that act as transcriptional repressors for epigenetic chromatin modification. BMI-1 encodes a zinc finger protein...Acad Sci USA 2000;97(15):8346–8351. 34. Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, Martin- Castillo B, Menendez JA. The anti- diabetic drug

  12. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus

    NARCIS (Netherlands)

    S.K. Kia; M.M. Gorski (Marcin); S. Giannakopoulos (Stavros); C.P. Verrijzer (Peter)

    2008-01-01

    textabstractStable silencing of the INK4b-ARF-INK4a tumor suppressor locus occurs in a variety of human cancers, including malignant rhabdoid tumors (MRTs). MRTs are extremely aggressive cancers caused by the loss of the hSNF5 subunit of the SWI/SNF chromatin-remodeling complex. We found previously

  13. SwissProt search result: AK066772 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066772 J013084I15 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 1e-16 ...

  14. SwissProt search result: AK068079 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068079 J013130J22 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 2e-25 ...

  15. SwissProt search result: AK071717 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071717 J023109O07 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 6e-57 ...

  16. SwissProt search result: AK109505 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109505 002-100-A02 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 1e-15 ...

  17. SwissProt search result: AK072159 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072159 J013132J03 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 2e-20 ...

  18. SwissProt search result: AK068790 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068790 J013163J20 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 1e-33 ...

  19. SwissProt search result: AK122151 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK122151 J033142K22 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 4e-21 ...

  20. SwissProt search result: AK100130 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100130 J023009O07 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 3e-16 ...

  1. SwissProt search result: AK111184 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111184 002-177-G09 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 7e-59 ...

  2. SwissProt search result: AK104850 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104850 001-043-A07 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 2e-16 ...

  3. SwissProt search result: AK110250 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110250 002-162-H03 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 4e-19 ...

  4. SwissProt search result: AK122019 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK122019 J033111M24 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 2e-15 ...

  5. SwissProt search result: AK067331 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067331 J013099F15 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 2e-45 ...

  6. SwissProt search result: AK068173 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068173 J013133N02 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 1e-125 ...

  7. SwissProt search result: AK066228 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066228 J013058B09 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 1e-91 ...

  8. SwissProt search result: AK242828 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242828 J090067I06 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 5e-48 ...

  9. SwissProt search result: AK241408 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241408 J065159I10 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 5e-21 ...

  10. SwissProt search result: AK102284 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102284 J033089H07 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 5e-15 ...

  11. SwissProt search result: AK102094 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102094 J033083D05 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 3e-21 ...

  12. SwissProt search result: AK066811 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066811 J013088E08 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 2e-24 ...

  13. SwissProt search result: AK070470 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070470 J023054E15 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 3e-16 ...

  14. SwissProt search result: AK069020 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069020 J013169J18 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 2e-30 ...

  15. SwissProt search result: AK072184 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072184 J013136H24 (Q96T23) Hepatitis B virus X associated protein (HBV pX associated protein 8) (Remodel...ing and spacing factor 1) (Rsf-1) (p325 subunit of RSF chromatin remodelling complex) HBXAP_HUMAN 2e-12 ...

  16. SwissProt search result: AK119665 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119665 002-144-D03 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 1e-12 ...

  17. SwissProt search result: AK063375 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063375 001-114-F01 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 2e-21 ...

  18. SwissProt search result: AK072085 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072085 J013119B08 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 5e-18 ...

  19. SwissProt search result: AK100332 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100332 J023080K24 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 4e-83 ...

  20. SwissProt search result: AK120785 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120785 J023010H23 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 4e-41 ...

  1. SwissProt search result: AK107344 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107344 002-126-G07 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 5e-11 ...

  2. SwissProt search result: AK105265 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105265 001-115-D05 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 0.0 ...

  3. SwissProt search result: AK100732 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100732 J023117L05 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 0.0 ...

  4. SwissProt search result: AK099822 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099822 J013101J07 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 5e-48 ...

  5. SwissProt search result: AK068327 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068327 J013136J21 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 3e-23 ...

  6. SwissProt search result: AK072094 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072094 J013116F16 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 5e-18 ...

  7. SwissProt search result: AK064456 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064456 002-110-F11 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 2e-67 ...

  8. SwissProt search result: AK073674 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073674 J033047B15 (Q24368) Chromatin remodelling complex ATPase chain Iswi (EC 3....6.1.-) (Imitation swi protein) (Nucleosome remodeling factor 140 kDa subunit) (NURF-140) (CHRAC 140 kDa subunit) ISWI_DROME 4e-21 ...

  9. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer

    NARCIS (Netherlands)

    Papadakis, Andreas I; Sun, Chong; Knijnenburg, Theo A; Xue, Yibo; Grernrum, Wipawadee; Hölzel, Michael; Nijkamp, Wouter; Wessels, Lodewyk F A; Beijersbergen, Roderick L; Bernards, Rene; Huang, Sidong

    2015-01-01

    Recurrent inactivating mutations in components of SWI/SNF chromatin-remodeling complexes have been identified across cancer types, supporting their roles as tumor suppressors in modulating oncogenic signaling pathways. We report here that SMARCE1 loss induces EGFR expression and confers resistance t

  10. Polycomb group proteins in cell cycle progression and cancer

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Helin, Kristian

    2004-01-01

    Epigenetic deregulation of gene expression is emerging as key mechanism in tumorigenesis. Deregulated activity of the chromatin remodeling Polycomb Repressive Complex 2 (PRC2) has recently been shown to be a frequent event in human tumors. Here we discuss these findings and speculate on the role ...

  11. Fragile Nucleosomes Influence Pol II Promoter Function.

    Science.gov (United States)

    Pradhan, Suman K; Xue, Yong; Carey, Michael F

    2015-11-05

    In this issue of Molecular Cell, Kubik et al. (2015) describe how the RSC chromatin remodeling complex collaborates with two DNA sequence motifs and sequence-specific general regulatory factors to assemble fragile nucleosomes at highly transcribed yeast Pol II promoters, and they distinguish these from promoters bearing stable nucleosomes.

  12. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression.

    Science.gov (United States)

    Cai, Hanyang; Zhao, Lihua; Wang, Lulu; Zhang, Man; Su, Zhenxia; Cheng, Yan; Zhao, Heming; Qin, Yuan

    2017-03-13

    Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue.

  13. SWI/SNF Complex-deficient Undifferentiated/Rhabdoid Carcinomas of the Gastrointestinal Tract: A Series of 13 Cases Highlighting Mutually Exclusive Loss of SMARCA4 and SMARCA2 and Frequent Co-inactivation of SMARCB1 and SMARCA2.

    Science.gov (United States)

    Agaimy, Abbas; Daum, Ondrej; Märkl, Bruno; Lichtmannegger, Ines; Michal, Michal; Hartmann, Arndt

    2016-04-01

    Undifferentiated gastrointestinal tract carcinomas are rare highly aggressive neoplasms with frequent but not obligatory rhabdoid features. Recent studies showed loss of SMARCB1 (INI1), a core subunit of the SWI/SNF chromatin remodeling complex, in 50% of tested cases. However, the molecular pathways underlying histologically similar but SMARCB1-intact cases are unknown. We herein analyzed 13 cases for expression of 4 SWI/SNF complex subunits SMARCB1, SMARCA2, SMARCA4, and ARID1A and the mismatch-repair proteins MLH1, MSH2, MSH6, and PMS2 by immunohistochemistry. Patients included 12 men and 1 woman aged 32 to 81 years (median, 57 y). Site of origin was colon (5), small bowel (2), stomach (3), small+large intestine (1), small intestine+ampulla of Vater (1), and esophagogastric junction (1). All tumors showed anaplastic large to medium-sized cells with variable rhabdoid features, pleomorphic giant cells, and, rarely, spindle cell foci. Abortive gland formation was seen in 3 cases and bona fide glandular component in 1 case. Most cases strongly expressed vimentin and variably pancytokeratin. In total, 12/13 cases (92%) showed loss of at least 1 SWI/SNF component. Loss of SMARCB1 (5/13), SMARCA2 (10/13), SMARCA4 (2/13), and ARID1A (2/13) was observed either in combination or isolated. SMARCA2 loss was isolated in 5 cases and coexisted with lost SMARCB1 in 5 cases (all 5 SMARCB1-deficient tumors showed loss of SMARCA2 as well). Co-inactivation of SMARCB1 and SMARCA4 or of SMARCA2 and SMARCA4 was not observed. Two mismatch-repair-deficient cases (MLH1/PMS2) showed concurrent loss of SMARCB1, SMARCA2, and (one of them) ARID1A. This study illustrates for the first time loss of different components of the SWI/SNF complex other than SMARCB1 in undifferentiated gastrointestinal carcinomas including novel SMARCA4-deficient and SMARCA2-deficient cases. Our results underline the close link between SWI/SNF deficiency and the aggressive rhabdoid phenotype. Frequent loss of SMARCA

  14. Carney Complex

    Science.gov (United States)

    ... Types of Cancer > Carney Complex Request Permissions Carney Complex Approved by the Cancer.Net Editorial Board , 11/2015 What is Carney complex? Carney complex is a hereditary condition associated with: ...

  15. Complex Beauty

    OpenAIRE

    Franceschet, Massimo

    2014-01-01

    Complex systems and their underlying convoluted networks are ubiquitous, all we need is an eye for them. They pose problems of organized complexity which cannot be approached with a reductionist method. Complexity science and its emergent sister network science both come to grips with the inherent complexity of complex systems with an holistic strategy. The relevance of complexity, however, transcends the sciences. Complex systems and networks are the focal point of a philosophical, cultural ...

  16. AcEST: DK957206 [AcEST

    Lifescience Database Archive (English)

    Full Text Available _USTMA Putative DNA helicase INO80 OS=Ustilago ma... 59 2e-08 sp|Q0CA78|INO80_ASPTN Putative DNA helicase ino80... OS=Coccidioide... 55 3e-07 sp|A2R9H9|INO80_ASPNC Putative DNA helicase ino80 OS=Aspergillus... 54 4e-07 sp|Q872I5|INO80... OS=Magnaporthe... 54 8e-07 sp|Q2UTQ9|INO80_ASPOR Putative DNA helicase ino80... OS=Aspergillus... 53 1e-06 sp|A1CZE5|INO80_NEOFI Putative DNA helicase ino80 OS=Neosartorya... 53 1e-06 sp|Q4WTV7|INO80..._ASPFU Putative DNA helicase ino80 OS=Aspergillus... 53 1e-06 sp|A1C9W6|INO80_ASPCL Putative DNA helicase ino8

  17. Bucolic Complexes

    CERN Document Server

    Brešar, Bostjan; Chepoi, Victor; Gologranc, Tanja; Osajda, Damian

    2012-01-01

    In this article, we introduce and investigate bucolic complexes, a common generalization of systolic complexes and of CAT(0) cubical complexes. This class of complexes is closed under Cartesian products and amalgamations over some convex subcomplexes. We study various approaches to bucolic complexes: from graph-theoretic and topological viewpoints, as well as from the point of view of geometric group theory. Bucolic complexes can be defined as locally-finite simply connected prism complexes satisfying some local combinatorial conditions. We show that bucolic complexes are contractible, and satisfy some nonpositive-curvature-like properties. In particular, we prove a version of the Cartan-Hadamard theorem, the fixed point theorem for finite group actions, and establish some results on groups acting geometrically on such complexes. We also characterize the 1-skeletons (which we call bucolic graphs) and the 2-skeletons of bucolic complexes. In particular, we prove that bucolic graphs are precisely retracts of Ca...

  18. Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts.

    Science.gov (United States)

    Magistri, Marco; Faghihi, Mohammad Ali; St Laurent, Georges; Wahlestedt, Claes

    2012-08-01

    In the decade following the publication of the Human Genome, noncoding RNAs (ncRNAs) have reshaped our understanding of the broad landscape of genome regulation. During this period, natural antisense transcripts (NATs), which are transcribed from the opposite strand of either protein or non-protein coding genes, have vaulted to prominence. Recent findings have shown that NATs can exert their regulatory functions by acting as epigenetic regulators of gene expression and chromatin remodeling. Here, we review recent work on the mechanisms of epigenetic modifications by NATs and their emerging role as master regulators of chromatin states. Unlike other long ncRNAs, antisense RNAs usually regulate their counterpart sense mRNA in cis by bridging epigenetic effectors and regulatory complexes at specific genomic loci. Understanding the broad range of effects of NATs will shed light on the complex mechanisms that regulate chromatin remodeling and gene expression in development and disease.

  19. Role of elongator subunit Elp3 in Drosophila melanogaster larval development and immunity

    DEFF Research Database (Denmark)

    Walker, Jane; Kwon, So Yeon; Badenhorst, Paul

    2011-01-01

    The Elongator complex has been implicated in several cellular processes, including gene expression and tRNA modification. We investigated the biological importance of the Elp3 gene in Drosophila melanogaster. Deletion of Elp3 results in larval lethality at the pupal stage. During early development...... demonstrate that Drosophila Elp3 is essential for viability, normal development, and hematopoiesis and suggest a functional overlap with the chromatin remodeler Domino....

  20. Yeast Interacting Proteins Database: YBL006C, YDR489W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available p, Rsc30p, Npl6p, and Htl1p to form a module important for a broad range of RSC functions Rows with this bai...e RSC chromatin remodeling complex; interacts with Rsc3p, Rsc30p, Npl6p, and Htl1p to form a module import...ant for a broad range of RSC functions Rows with this bait as bait Rows with this b

  1. BEND3 mediates transcriptional repression and heterochromatin organization.

    Science.gov (United States)

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.

  2. Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin

    OpenAIRE

    Kakarougkas, Andreas; Ismail, Amani; Chambers, Anna; Riballo, Queti; Herbert, Alex; Kunzel, Julia; Lobrich, Markus; Jeggo, Penny; Downs, Jessica

    2014-01-01

    Summary Actively transcribed regions of the genome are vulnerable to genomic instability. Recently, it was discovered that transcription is repressed in response to neighboring DNA double-strand breaks (DSBs). It is not known whether a failure to silence transcription flanking DSBs has any impact on DNA repair efficiency or whether chromatin remodelers contribute to the process. Here, we show that the PBAF remodeling complex is important for DSB-induced transcriptional silencing and promotes ...

  3. Chromatin Memory in the Development of Human Cancers

    OpenAIRE

    Yao, Yixin; Des Marais, Thomas L; Costa, Max

    2014-01-01

    Cancer is a complex disease with acquired genomic and epigenomic alterations that affect cell proliferation, viability and invasiveness. Almost all the epigenetic mechanisms including cytosine methylation and hydroxymethylation, chromatin remodeling and non-coding RNAs have been found associate with carcinogenesis and cancer specific expression profile. Altered histone modification as an epigenetic hallmark is frequently found in tumors. Understanding the epigenetic alterations induced by car...

  4. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    Science.gov (United States)

    2015-10-01

    identified BMI-1 as a member of the polycomb family of chromatin remodeling complexes that act as transcriptional repressors for epigenetic chromatin ...a combined immunophenotypic and time-of- adherence assay to identify human prostate TICs with increased BMI-1 expression. Our goal is to identify and...emerging. There is a dire need for therapies that are safe, efficacious, and cost- effective for treating CRPC, and can be used in early disease to

  5. AKNA: Another AT-hook transcription factor"hooking-up"with inflammation

    Institute of Scientific and Technical Information of China (English)

    Alison R Moliterno; Linda MS Resar

    2011-01-01

    Previous studies highlight a key role for AT-hook transcription factors as master regulators of fundamental cellular processes involved in development,immune function,cancer,diabetes and other human diseases [1,2].The high mobility group A (HMGA) proteins are an important family of AT-hook chromatin remodeling proteins that orchestrate transcriptional complexes to regulate gene expression [ 1 ].Recent studies have uncovered links between HMG AT-hook transcription factors and inflammation [1-8].

  6. Assaying chromatin structure and remodeling by restriction enzyme accessibility

    OpenAIRE

    Trotter, Kevin W.; Archer, Trevor K.

    2012-01-01

    The packaging of eukaryotic DNA into nucleosomes, the fundamental unit of chromatin, creates a barrier to nuclear processes, such as transcription, DNA replication, recombination, and repair(1). This obstructive nature of chromatin can be overcome by the enzymatic activity of chromatin remodeling complexes which creates a more favorable environment for the association of essential factors and regulators to sequences within target genes. Here we describe a detailed approach for analyzing chrom...

  7. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  8. Complexity Plots

    KAUST Repository

    Thiyagalingam, Jeyarajan

    2013-06-01

    In this paper, we present a novel visualization technique for assisting the observation and analysis of algorithmic complexity. In comparison with conventional line graphs, this new technique is not sensitive to the units of measurement, allowing multivariate data series of different physical qualities (e.g., time, space and energy) to be juxtaposed together conveniently and consistently. It supports multivariate visualization as well as uncertainty visualization. It enables users to focus on algorithm categorization by complexity classes, while reducing visual impact caused by constants and algorithmic components that are insignificant to complexity analysis. It provides an effective means for observing the algorithmic complexity of programs with a mixture of algorithms and black-box software through visualization. Through two case studies, we demonstrate the effectiveness of complexity plots in complexity analysis in research, education and application. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  9. SWI/SNF Protein Component BAF250a Regulates Cardiac Progenitor Cell Differentiation by Modulating Chromatin Accessibility during Second Heart Field Development*

    Science.gov (United States)

    Lei, Ienglam; Gao, Xiaolin; Sham, Mai Har; Wang, Zhong

    2012-01-01

    ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation. PMID:22621927

  10. SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development.

    Science.gov (United States)

    Lei, Ienglam; Gao, Xiaolin; Sham, Mai Har; Wang, Zhong

    2012-07-13

    ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation.

  11. Engaging complexity

    Directory of Open Access Journals (Sweden)

    Gys M. Loubser

    2014-01-01

    Full Text Available In this article, I discuss studies in complexity and its epistemological implications for systematic and practical theology. I argue that engagement with complexity does not necessarily assurea non-reductionist approach. However, if complexity is engaged transversally, it becomes possible to transcend reductionist approaches. Moreover, systematic and practical the ologians can draw on complexity in developing new ways of understanding and, therefore, new ways of describing the focus, epistemic scope and heuristic structures of systematic and practical theology. Firstly, Edgar Morin draws a distinction between restricted and general complexity based on the epistemology drawn upon in studies in complexity. Moving away from foundationalist approaches to epistemology, Morin argues for a paradigm of systems. Secondly,I discuss Kees van Kooten Niekerk�s distinction between epistemology, methodology andontology in studies in complexity and offer an example of a theological argument that drawson complexity. Thirdly, I argue for the importance of transversality in engaging complexity by drawing on the work of Wentzel van Huyssteen and Paul Cilliers. In conclusion, I argue that theologians have to be conscious of the epistemic foundations of each study in complexity, and these studies illuminate the heart of Reformed theology.Intradisciplinary and/or interdisciplinary implications: Therefore, this article has both intradisciplinary and interdisciplinary implications. When theologians engage studies incomplexity, the epistemological roots of these studies need to be considered seeing thatresearchers in complexity draw on different epistemologies. Drawing on transversality wouldenhance such considerations. Furthermore, Edgar Morin�s and Paul Cilliers� approach tocomplexity will inform practical and theoretical considerations in church polity and unity.

  12. Simplifying complexity

    NARCIS (Netherlands)

    Leemput, van de I.A.

    2016-01-01

    In this thesis I use mathematical models to explore the properties of complex systems ranging from microbial nitrogen pathways and coral reefs to the human state of mind. All are examples of complex systems, defined as systems composed of a number of interconnected parts, where the systemic behavior

  13. Complex odontoma.

    Science.gov (United States)

    Preetha, A; Balikai, Bharati S; Sujatha, D; Pai, Anuradha; Ganapathy, K S

    2010-01-01

    Odontomas are hamartomatous lesions or malformations composed of mature enamel, dentin, and pulp. They may be compound or complex, depending on the extent of morphodifferentiation or their resemblance to normal teeth. The etiology of odontoma is unknown, although several theories have been proposed. This article describes a case of a large infected complex odontoma in the residual mandibular ridge, resulting in considerable mandibular expansion.

  14. Complex narratives

    NARCIS (Netherlands)

    Simons, J.

    2008-01-01

    This paper brings together narratology, game theory, and complexity theory to untangle the intricate nature of complex narratives in contemporary cinema. It interrogates the different terms - forking-path narratives, mind-game films, modular narratives, multiple-draft films, database narratives, puz

  15. Computational Complexity

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2017-02-01

    Full Text Available Complex systems (CS involve many elements that interact at different scales in time and space. The challenges in modeling CS led to the development of novel computational tools with applications in a wide range of scientific areas. The computational problems posed by CS exhibit intrinsic difficulties that are a major concern in Computational Complexity Theory. [...

  16. Managing Complexity

    DEFF Research Database (Denmark)

    Maylath, Bruce; Vandepitte, Sonia; Minacori, Patricia

    2013-01-01

    This article discusses the largest and most complex international learning-by-doing project to date- a project involving translation from Danish and Dutch into English and editing into American English alongside a project involving writing, usability testing, and translation from English into Dut...... and into French. The complexity of the undertaking proved to be a central element in the students' learning, as the collaboration closely resembles the complexity of international documentation workplaces of language service providers. © Association of Teachers of Technical Writing....

  17. Complex variables

    CERN Document Server

    Fisher, Stephen D

    1999-01-01

    The most important topics in the theory and application of complex variables receive a thorough, coherent treatment in this introductory text. Intended for undergraduates or graduate students in science, mathematics, and engineering, this volume features hundreds of solved examples, exercises, and applications designed to foster a complete understanding of complex variables as well as an appreciation of their mathematical beauty and elegance. Prerequisites are minimal; a three-semester course in calculus will suffice to prepare students for discussions of these topics: the complex plane, basic

  18. FACT Assists Base Excision Repair by Boosting the Remodeling Activity of RSC.

    Science.gov (United States)

    Charles Richard, John Lalith; Shukla, Manu Shubhdarshan; Menoni, Hervé; Ouararhni, Khalid; Lone, Imtiaz Nisar; Roulland, Yohan; Papin, Christophe; Ben Simon, Elsa; Kundu, Tapas; Hamiche, Ali; Angelov, Dimitar; Dimitrov, Stefan

    2016-07-01

    FACT, in addition to its role in transcription, is likely implicated in both transcription-coupled nucleotide excision repair and DNA double strand break repair. Here, we present evidence that FACT could be directly involved in Base Excision Repair and elucidate the chromatin remodeling mechanisms of FACT during BER. We found that, upon oxidative stress, FACT is released from transcription related protein complexes to get associated with repair proteins and chromatin remodelers from the SWI/SNF family. We also showed the rapid recruitment of FACT to the site of damage, coincident with the glycosylase OGG1, upon the local generation of oxidized DNA. Interestingly, FACT facilitates uracil-DNA glycosylase in the removal of uracil from nucleosomal DNA thanks to an enhancement in the remodeling activity of RSC. This discloses a novel property of FACT wherein it has a co-remodeling activity and strongly enhances the remodeling capacity of the chromatin remodelers. Altogether, our data suggest that FACT may acts in concert with RSC to facilitate excision of DNA lesions during the initial step of BER.

  19. Integration of the Transcription Factor-Regulated and Epigenetic Mechanisms in the Control of Keratinocyte Differentiation

    Science.gov (United States)

    Botchkarev, Vladimir A.

    2016-01-01

    The epidermal differentiation program is regulated at several levels including signaling pathways, lineage-specific transcription factors, and epigenetic regulators that establish well-coordinated process of terminal differentiation resulting in formation of the epidermal barrier. The epigenetic regulatory machinery operates at several levels including modulation of covalent DNA/histone modifications, as well as through higher-order chromatin remodeling to establish long-range topological interactions between the genes and their enhancer elements. Epigenetic regulators exhibit both activating and repressive effects on chromatin in keratinocytes (KCs): whereas some of them promote terminal differentiation, the others stimulate proliferation of progenitor cells, as well as inhibit premature activation of terminal differentiation-associated genes. Transcription factor-regulated and epigenetic mechanisms are highly connected, and the p63 transcription factor has an important role in the higher-order chromatin remodeling of the KC-specific gene loci via direct control of the genome organizer Satb1 and ATP-dependent chromatin remodeler Brg1. However, additional efforts are required to fully understand the complexity of interactions between distinct transcription factors and epigenetic regulators in the control of KC differentiation. Further understanding of these interactions and their alterations in different pathological skin conditions will help to progress toward the development of novel approaches for the treatment of skin disorders by targeting epigenetic regulators and modulating chromatin organization in KCs. PMID:26551942

  20. Complex analysis

    CERN Document Server

    Freitag, Eberhard

    2005-01-01

    The guiding principle of this presentation of ``Classical Complex Analysis'' is to proceed as quickly as possible to the central results while using a small number of notions and concepts from other fields. Thus the prerequisites for understanding this book are minimal; only elementary facts of calculus and algebra are required. The first four chapters cover the essential core of complex analysis: - differentiation in C (including elementary facts about conformal mappings) - integration in C (including complex line integrals, Cauchy's Integral Theorem, and the Integral Formulas) - sequences and series of analytic functions, (isolated) singularities, Laurent series, calculus of residues - construction of analytic functions: the gamma function, Weierstrass' Factorization Theorem, Mittag-Leffler Partial Fraction Decomposition, and -as a particular highlight- the Riemann Mapping Theorem, which characterizes the simply connected domains in C. Further topics included are: - the theory of elliptic functions based on...

  1. Complex Networks

    CERN Document Server

    Evsukoff, Alexandre; González, Marta

    2013-01-01

    In the last decade we have seen the emergence of a new inter-disciplinary field focusing on the understanding of networks which are dynamic, large, open, and have a structure sometimes called random-biased. The field of Complex Networks is helping us better understand many complex phenomena such as the spread of  deseases, protein interactions, social relationships, to name but a few. Studies in Complex Networks are gaining attention due to some major scientific breakthroughs proposed by network scientists helping us understand and model interactions contained in large datasets. In fact, if we could point to one event leading to the widespread use of complex network analysis is the availability of online databases. Theories of Random Graphs from Erdös and Rényi from the late 1950s led us to believe that most networks had random characteristics. The work on large online datasets told us otherwise. Starting with the work of Barabási and Albert as well as Watts and Strogatz in the late 1990s, we now know th...

  2. Complex chemistry with complex compounds

    Directory of Open Access Journals (Sweden)

    Eichler Robert

    2016-01-01

    Full Text Available In recent years gas-phase chemical studies assisted by physical pre-separation allowed for the investigation of fragile single molecular species by gas-phase chromatography. The latest success with the heaviest group 6 transactinide seaborgium is highlighted. The formation of a very volatile hexacarbonyl compound Sg(CO6 was observed similarly to its lighter homologues molybdenum and tungsten. The interactions of these gaseous carbonyl complex compounds with quartz surfaces were investigated by thermochromatography. Second-generation experiments are under way to investigate the intramolecular bond between the central metal atom of the complexes and the ligands addressing the influence of relativistic effects in the heaviest compounds. Our contribution comprises some aspects of the ongoing challenging experiments as well as an outlook towards other interesting compounds related to volatile complex compounds in the gas phase.

  3. Managing Complexity

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Posse, Christian; Malard, Joel M.

    2004-08-01

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today’s most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically-based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This paper explores the state of the art in the use physical analogs for understanding the behavior of some econophysical systems and to deriving stable and robust control strategies for them. In particular we review and discussion applications of some analytic methods based on the thermodynamic metaphor according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood.

  4. Complex variables

    CERN Document Server

    Flanigan, Francis J

    2010-01-01

    A caution to mathematics professors: Complex Variables does not follow conventional outlines of course material. One reviewer noting its originality wrote: ""A standard text is often preferred [to a superior text like this] because the professor knows the order of topics and the problems, and doesn't really have to pay attention to the text. He can go to class without preparation."" Not so here-Dr. Flanigan treats this most important field of contemporary mathematics in a most unusual way. While all the material for an advanced undergraduate or first-year graduate course is covered, discussion

  5. Complex dynamics

    CERN Document Server

    Carleson, Lennart

    1993-01-01

    Complex dynamics is today very much a focus of interest. Though several fine expository articles were available, by P. Blanchard and by M. Yu. Lyubich in particular, until recently there was no single source where students could find the material with proofs. For anyone in our position, gathering and organizing the material required a great deal of work going through preprints and papers and in some cases even finding a proof. We hope that the results of our efforts will be of help to others who plan to learn about complex dynamics and perhaps even lecture. Meanwhile books in the field a. re beginning to appear. The Stony Brook course notes of J. Milnor were particularly welcome and useful. Still we hope that our special emphasis on the analytic side will satisfy a need. This book is a revised and expanded version of notes based on lectures of the first author at UCLA over several \\Vinter Quarters, particularly 1986 and 1990. We owe Chris Bishop a great deal of gratitude for supervising the production of cour...

  6. Cosmic Complexity

    Science.gov (United States)

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  7. Cosmic Complexity

    Science.gov (United States)

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  8. AcEST: DK946428 [AcEST

    Lifescience Database Archive (English)

    Full Text Available sp|P18480|SNF5_YEAST SWI/SNF chromatin-remodeling complex subuni... 30 2.9 sp|Q13018|PLA2R_HUMAN Secretory ...ACA Cytochrome b6-f complex subunit 7 OS=Cyanid... 29 8.3 sp|Q5R880|PLA2R_PONAB Secretory phospholipase A2 r...9 TNVQPTIGQLPQLPKLNLP 307 >sp|Q13018|PLA2R_HUMAN Secretory phospholipase A2 receptor OS=Homo sapiens GN=PLA2R

  9. AcEST: DK948881 [AcEST

    Lifescience Database Archive (English)

    Full Text Available chromatin-remodeling complex subuni... 30 2.9 sp|Q13018|PLA2R_HUMAN Secretory ph...... 29 6.3 sp|Q9TLR5|PETM_CYACA Cytochrome b6-f complex subunit 7 OS=Cyanid... 29 8.2 sp|Q5R880|PLA2R_PONAB ...: 289 TNVQPTIGQLPQLPKLNLP 307 >sp|Q13018|PLA2R_HUMAN Secretory phospholipase A2 receptor OS=Homo sapiens GN=PLA2R

  10. Ikaros: a key regulator of haematopoiesis.

    Science.gov (United States)

    Westman, Belinda J; Mackay, Joel P; Gell, David

    2002-10-01

    Ikaros is an essential transcription factor for normal lymphocyte development. Because of its interaction with a number of closely related factors, Ikaros is required for correct regulation of differentiation and cell proliferation in T- and B-cell lineages. Interestingly, Ikaros appears to function both as a transcriptional repressor and as an activator through its ability to bind a large number of nuclear factors, including components of both histone deacetylase and ATP-dependent chromatin remodelling complexes. In addition, nuclear localisation is important for Ikaros function--unlike most transcription factors, Ikaros is localised to discrete nuclear foci in lymphoid cells, suggesting it employs novel mechanisms to regulate transcription.

  11. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms. Association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Kjaerulff, Karen M; Pedersen, Hans C

    2002-01-01

    BTB/POZ (broad complex tramtrack bric-a-brac/poxvirus and zinc finger) zinc finger factors are a class of nuclear DNA-binding proteins involved in development, chromatin remodeling, and cancer. However, BTB/POZ domain zinc finger factors linked to development of the mammalian cerebral cortex......, cerebellum, and macroglia have not been described previously. We report here the isolation and characterization of two novel nuclear BTB/POZ domain zinc finger isoforms, designated HOF(L) and HOF(S), that are specifically expressed in early hippocampal neurons, cerebellar granule cells, and gliogenic...

  12. New insights into prion biology from the novel [SWI+] system

    OpenAIRE

    Crow, Emily; Du, Zhiqiang; Li, Liming

    2008-01-01

    Our laboratory recently reported a novel prion [SWI+], in the budding yeast Saccharomyces cerevisiae.1 [SWI+] is the prion form of Swi1, a component of the SWI/SNF chromatin-remodeling complex. Cells harboring [SWI+] exhibit a partial loss-of-function phenotype for SWI/SNF, which can be easily assayed by poor growth on some non-fermentable carbon sources such as raffinose. Swi1 is unique among yeast prion proteins for its nuclear localization and the fact that it comprises part of a large, mu...

  13. Histone displacement during nucleotide excision repair

    DEFF Research Database (Denmark)

    Dinant, C.; Bartek, J.; Bekker-Jensen, S.

    2012-01-01

    Nucleotide excision repair (NER) is an important DNA repair mechanism required for cellular resistance against UV light and toxic chemicals such as those found in tobacco smoke. In living cells, NER efficiently detects and removes DNA lesions within the large nuclear macromolecular complex called...... of histone variants and histone displacement (including nucleosome sliding). Here we review current knowledge, and speculate about current unknowns, regarding those chromatin remodeling activities that physically displace histones before, during and after NER. © 2012 by the authors; licensee MDPI, Basel...

  14. RSC1 and RSC2 Are Required for Expression of Mid-Late Sporulation-Specific Genes in Saccharomyces cerevisiae

    OpenAIRE

    Bungard, David; Reed, Michelle; Winter, Edward

    2004-01-01

    Rsc1 and Rsc2 are alternative bromodomain-containing subunits of the ATP-dependent RSC chromatin remodeling complex in Saccharomyces cerevisiae. Smk1 is a sporulation-specific mitogen-activated protein kinase homolog that is required for the postmeiotic events of spore formation. In this study we show that RSC1 and RSC2 are haploinsufficient for spore formation in a smk1 hypomorph. Moreover, diploids lacking Rsc1 or Rsc2 show a subset of smk1-like phenotypes. High-copy-number RSC1 plasmids do...

  15. Alpha thalassemia/mental retardation syndrome X-linked gene product ATRX is required for proper replication restart and cellular resistance to replication stress.

    Science.gov (United States)

    Leung, Justin Wai-Chung; Ghosal, Gargi; Wang, Wenqi; Shen, Xi; Wang, Jiadong; Li, Lei; Chen, Junjie

    2013-03-01

    Alpha thalassemia/mental retardation syndrome X-linked (ATRX) is a member of the SWI/SNF protein family of DNA-dependent ATPases. It functions as a chromatin remodeler and is classified as an SNF2-like helicase. Here, we showed somatic knock-out of ATRX displayed perturbed S-phase progression as well as hypersensitivity to replication stress. ATRX is recruited to sites of DNA damage, required for efficient checkpoint activation and faithful replication restart. In addition, we identified ATRX as a binding partner of MRE11-RAD50-NBS1 (MRN) complex. Together, these results suggest a non-canonical function of ATRX in guarding genomic stability.

  16. Hyper Space Complex Number

    OpenAIRE

    Tan, Shanguang

    2007-01-01

    A new kind of numbers called Hyper Space Complex Numbers and its algebras are defined and proved. It is with good properties as the classic Complex Numbers, such as expressed in coordinates, triangular and exponent forms and following the associative and commutative laws of addition and multiplication. So the classic Complex Number is developed from in complex plane with two dimensions to in complex space with N dimensions and the number system is enlarged also.

  17. Complex networks analysis of language complexity

    CERN Document Server

    Amancio, Diego R; Oliveira, Osvaldo N; Costa, Luciano da F; 10.1209/0295-5075/100/58002

    2013-01-01

    Methods from statistical physics, such as those involving complex networks, have been increasingly used in quantitative analysis of linguistic phenomena. In this paper, we represented pieces of text with different levels of simplification in co-occurrence networks and found that topological regularity correlated negatively with textual complexity. Furthermore, in less complex texts the distance between concepts, represented as nodes, tended to decrease. The complex networks metrics were treated with multivariate pattern recognition techniques, which allowed us to distinguish between original texts and their simplified versions. For each original text, two simplified versions were generated manually with increasing number of simplification operations. As expected, distinction was easier for the strongly simplified versions, where the most relevant metrics were node strength, shortest paths and diversity. Also, the discrimination of complex texts was improved with higher hierarchical network metrics, thus point...

  18. Mouse BAZ1A (ACF1 is dispensable for double-strand break repair but is essential for averting improper gene expression during spermatogenesis.

    Directory of Open Access Journals (Sweden)

    James A Dowdle

    2013-11-01

    Full Text Available ATP-dependent chromatin remodelers control DNA access for transcription, recombination, and other processes. Acf1 (also known as BAZ1A in mammals is a defining subunit of the conserved ISWI-family chromatin remodelers ACF and CHRAC, first purified over 15 years ago from Drosophila melanogaster embryos. Much is known about biochemical properties of ACF and CHRAC, which move nucleosomes in vitro and in vivo to establish ordered chromatin arrays. Genetic studies in yeast, flies and cultured human cells clearly implicate these complexes in transcriptional repression via control of chromatin structures. RNAi experiments in transformed mammalian cells in culture also implicate ACF and CHRAC in DNA damage checkpoints and double-strand break repair. However, their essential in vivo roles in mammals are unknown. Here, we show that Baz1a-knockout mice are viable and able to repair developmentally programmed DNA double-strand breaks in the immune system and germ line, I-SceI endonuclease-induced breaks in primary fibroblasts via homologous recombination, and DNA damage from mitomycin C exposure in vivo. However, Baz1a deficiency causes male-specific sterility in accord with its high expression in male germ cells, where it displays dynamic, stage-specific patterns of chromosomal localization. Sterility is caused by pronounced defects in sperm development, most likely a consequence of massively perturbed gene expression in spermatocytes and round spermatids in the absence of BAZ1A: the normal spermiogenic transcription program is largely intact but more than 900 other genes are mis-regulated, primarily reflecting inappropriate up-regulation. We propose that large-scale changes in chromatin composition that occur during spermatogenesis create a window of vulnerability to promiscuous transcription changes, with an essential function of ACF and/or CHRAC chromatin remodeling activities being to safeguard against these alterations.

  19. Irinotecan Lipid Complex Injection

    Science.gov (United States)

    Irinotecan lipid complex is used in combination with other medications to treat pancreatic cancer that has spread to other ... worsened after treatment with other chemotherapy medications. Irinotecan lipid complex is in a class of antineoplastic medications ...

  20. Doxorubicin Lipid Complex Injection

    Science.gov (United States)

    Doxorubicin lipid complex is used to treat ovarian cancer that has not improved or that has worsened after treatment with other medications. Doxorubicin lipid complex is also used to treat Kaposi's sarcoma ( ...

  1. Daunorubicin Lipid Complex Injection

    Science.gov (United States)

    Daunorubicin lipid complex is used to treat advanced Kaposi's sarcoma (a type of cancer that causes abnormal tissue to ... body) related to acquired immunodeficiency syndrome (AIDS). Daunorubicin lipid complex is in a class of medications called ...

  2. Vincristine Lipid Complex Injection

    Science.gov (United States)

    Vincristine lipid complex is used to treat a certain type of acute lymphoblastic leukemia (ALL; a type of cancer ... least two different treatments with other medications. Vincristine lipid complex is in a class of medications called ...

  3. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  4. Complexity Near Horizons

    CERN Document Server

    Halyo, Edi

    2015-01-01

    We generalize the concept of complexity near horizons to all nondegenerate black holes. For Schwarzschild black holes, we show that Rindler observers see a complexity change of $S$ during proper time $1/\\kappa$ which corresponds to the creation of a causal patch with proper length $1/\\kappa$ inside the horizon. We attempt to describe complexity in the horizon CFT and the Euclidean picture.

  5. Quaternionic versus complex maps

    Energy Technology Data Exchange (ETDEWEB)

    Asorey, M [Departamento de Fisica Teorica, Universidad de Zaragoza 50009 Zaragoza (Spain); Scolarici, G [Dipartimento di Fisica dell' Universita del Salento and INFN, Sezione di Lecce, I-73100 Lecce (Italy); Solombrino, L [Dipartimento di Fisica dell' Universita del Salento and INFN, Sezione di Lecce, I-73100 Lecce (Italy)

    2007-11-15

    We discuss the relation between completely positive quaternionic maps and the corresponding complex maps obtained via projection operation. In order to illustrate this formalism, we reobtain the (complex) qubit subdynamics of maximally entangled Bell states, as complex projection of unitary dynamics between quaternionic pure states.

  6. Complexity, Systems, and Software

    Science.gov (United States)

    2014-08-14

    complex ( Hidden issues; dumbs down operator) 11 Complexity, Systems, and Software Sarah Sheard August 14, 2014 © 2014 Carnegie...August 14, 2014 © 2014 Carnegie Mellon University Addressing Complexity in SoSs Source: SEBOK Wiki System Con truer Strateglc Context

  7. SYSTEMS WITH COMPLEXITY

    Institute of Scientific and Technical Information of China (English)

    WANG Chenghong; ZHANG Lijun

    2004-01-01

    Science of Complexity is a newly emerging branch of natural scienceAlthoughwe still haven't a precise definition, there are some principles for justifying whether a systemis a complex systemThe purpose of this article is to reveal some of such principlesOnthe basis of them, the concept of a system with complexity is proposedThey may helpus to distinguish a real complex system from complicated objects in common senseThenwe propose some fundamental problems faced by the study of systems with complexity.

  8. Complex variables I essentials

    CERN Document Server

    Solomon, Alan D

    2013-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Complex Variables I includes functions of a complex variable, elementary complex functions, integrals of complex functions in the complex plane, sequences and series, and poles and r

  9. BRG1/SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization.

    Science.gov (United States)

    Orvis, Tess; Hepperla, Austin; Walter, Vonn; Song, Shujie; Simon, Jeremy; Parker, Joel; Wilkerson, Matthew D; Desai, Nisarg; Major, Michael B; Hayes, D Neil; Davis, Ian J; Weissman, Bernard

    2014-11-15

    SWI/SNF chromatin remodeling complexes regulate critical cellular processes, including cell-cycle control, programmed cell death, differentiation, genomic instability, and DNA repair. Inactivation of this class of chromatin remodeling complex has been associated with a variety of malignancies, including lung, ovarian, renal, liver, and pediatric cancers. In particular, approximately 10% of primary human lung non-small cell lung cancers (NSCLC) display attenuations in the BRG1 ATPase, a core factor in SWI/SNF complexes. To evaluate the role of BRG1 attenuation in NSCLC development, we examined the effect of BRG1 silencing in primary and established human NSCLC cells. BRG1 loss altered cellular morphology and increased tumorigenic potential. Gene expression analyses showed reduced expression of genes known to be associated with progression of human NSCLC. We demonstrated that BRG1 losses in NSCLC cells were associated with variations in chromatin structure, including differences in nucleosome positioning and occupancy surrounding transcriptional start sites of disease-relevant genes. Our results offer direct evidence that BRG1 attenuation contributes to NSCLC aggressiveness by altering nucleosome positioning at a wide range of genes, including key cancer-associated genes.

  10. New roles of flavoproteins in molecular cell biology: histone demethylase LSD1 and chromatin.

    Science.gov (United States)

    Forneris, Federico; Battaglioli, Elena; Mattevi, Andrea; Binda, Claudia

    2009-08-01

    Lysine-specific demethylase 1 (LSD1) is an enzyme that removes methyl groups from mono- and dimethylated Lys4 of histone H3, a post-translational modification associated with gene activation. Human LSD1 was the first histone demethylase to be discovered and this enzymatic activity is conserved among eukaryotes. LSD1 has been identified in a number of chromatin-remodeling complexes that control gene transcription and its demethylase activity has also been linked to pathological processes including tumorigenesis. The 852-residue sequence of LSD1 comprises an amine oxidase domain which identifies a family of enzymes that catalyze the FAD-dependent oxidation of amine substrates ranging from amino acids to aromatic neurotransmitters. Among these proteins, LSD1 is peculiar in that it acts on a protein substrate in the nuclear environment of chromatin-remodeling complexes. This functional divergence occurred during evolution from the eubacteria to eukaryotes by acquisition of additional domains such as the SWIRM domain. The N-terminal part of LSD1, predicted to be disordered, contains linear motifs that might represent functional sites responsible for the association of this enzyme with a variety of transcriptional protein complexes. LSD1 shares structural features with other flavin amine oxidases, including the overall fold of the amine oxidase domain region and details in the active site that are relevant for amine substrate oxidation.

  11. Complexity Through Nonextensivity

    CERN Document Server

    Bialek, W; Tishby, N; Bialek, William; Nemenman, Ilya; Tishby, Naftali

    2001-01-01

    The problem of defining and studying complexity of a time series has interested people for years. In the context of dynamical systems, Grassberger has suggested that a slow approach of the entropy to its extensive asymptotic limit is a sign of complexity. We investigate this idea further by information theoretic and statistical mechanics techniques and show that these arguments can be made precise, and that they generalize many previous approaches to complexity, in particular unifying ideas from the physics literature with ideas from learning and coding theory; there are even connections of this statistical approach to algorithmic or Kolmogorov complexity. Moreover, a set of simple axioms similar to those used by Shannon in his development of information theory allows us to prove that the divergent part of the subextensive component of the entropy is a unique complexity measure. We classify time series by their complexities and demonstrate that beyond the `logarithmic' complexity classes widely anticipated in...

  12. Photocytotoxic lanthanide complexes

    Indian Academy of Sciences (India)

    Akhtar Hussain; Akhil R Chakravarty

    2012-11-01

    Lanthanide complexes have recently received considerable attention in the field of therapeutic and diagnostic medicines. Among many applications of lanthanides, gadolinium complexes are used as magnetic resonance imaging (MRI) contrast agents in clinical radiology and luminescent lanthanides for bioanalysis, imaging and sensing. The chemistry of photoactive lanthanide complexes showing biological applications is of recent origin. Photodynamic therapy (PDT) is a non-invasive treatment modality of cancer using a photosensitizer drug and light. This review primarily focuses on different aspects of the chemistry of lanthanide complexes showing photoactivated DNA cleavage activity and cytotoxicity in cancer cells. Macrocyclic texaphyrin-lanthanide complexes are known to show photocytotoxicity with the PDT effect in near-IR light. Very recently, non-macrocyclic lanthanide complexes are reported to show photocytotoxicity in cancer cells. Attempts have been made in this perspective article to review and highlight the photocytotoxic behaviour of various lanthanide complexes for their potential photochemotherapeutic applications.

  13. On Complex Random Variables

    Directory of Open Access Journals (Sweden)

    Anwer Khurshid

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE In this paper, it is shown that a complex multivariate random variable  is a complex multivariate normal random variable of dimensionality if and only if all nondegenerate complex linear combinations of  have a complex univariate normal distribution. The characteristic function of  has been derived, and simpler forms of some theorems have been given using this characterization theorem without assuming that the variance-covariance matrix of the vector  is Hermitian positive definite. Marginal distributions of  have been given. In addition, a complex multivariate t-distribution has been defined and the density derived. A characterization of the complex multivariate t-distribution is given. A few possible uses of this distribution have been suggested.

  14. Measuring static complexity

    Directory of Open Access Journals (Sweden)

    Ben Goertzel

    1992-01-01

    Full Text Available The concept of “pattern” is introduced, formally defined, and used to analyze various measures of the complexity of finite binary sequences and other objects. The standard Kolmogoroff-Chaitin-Solomonoff complexity measure is considered, along with Bennett's ‘logical depth’, Koppel's ‘sophistication'’, and Chaitin's analysis of the complexity of geometric objects. The pattern-theoretic point of view illuminates the shortcomings of these measures and leads to specific improvements, it gives rise to two novel mathematical concepts--“orders” of complexity and “levels” of pattern, and it yields a new measure of complexity, the “structural complexity”, which measures the total amount of structure an entity possesses.

  15. Simplicial complexes of graphs

    CERN Document Server

    Jonsson, Jakob

    2008-01-01

    A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.

  16. Complex networks and computing

    Institute of Scientific and Technical Information of China (English)

    Shuigeng ZHOU; Zhongzhi ZHANG

    2009-01-01

    @@ Nowadays complex networks are pervasive in various areas of science and technology. Popular examples of complex networks include the Internet, social networks of collaboration, citations and co-authoring, as well as biological networks such as gene and protein interactions and others. Complex networks research spans across mathematics, computer science, engineering, biology and the social sciences. Even in computer science area, increasing problems are either found to be related to complex networks or studied from the perspective of complex networks, such as searching on Web and P2P networks, routing in sensor networks, language processing, software engineering etc. The interaction and mergence of complex networks and computing is inspiring new chances and challenges in computer science.

  17. Recognizing dualizing complexes

    OpenAIRE

    Jorgensen, Peter

    2003-01-01

    Let A be a noetherian local commutative ring and let M be a suitable complex of A-modules. This paper proves that M is a dualizing complex for A if and only if the trivial extension A \\ltimes M is a Gorenstein Differential Graded Algebra. As a corollary follows that A has a dualizing complex if and only if it is a quotient of a Gorenstein local Differential Graded Algebra.

  18. Complex Systems and Dependability

    CERN Document Server

    Zamojski, Wojciech; Sugier, Jaroslaw

    2012-01-01

    Typical contemporary complex system is a multifaceted amalgamation of technical, information, organization, software and human (users, administrators and management) resources. Complexity of such a system comes not only from its involved technical and organizational structure but mainly from complexity of information processes that must be implemented in the operational environment (data processing, monitoring, management, etc.). In such case traditional methods of reliability analysis focused mainly on technical level are usually insufficient in performance evaluation and more innovative meth

  19. Genetics of complex diseases.

    Science.gov (United States)

    Motulsky, Arno G

    2006-02-01

    Approaches to the study of the genetic basis of common complex diseases and their clinical applications are considered. Monogenic Mendelian inheritance in such conditions is infrequent but its elucidation may help to detect pathogenic mechanisms in the more common variety of complex diseases. Involvement by multiple genes in complex diseases usually occurs but the isolation and identification of specific genes so far has been exceptional. The role of common polymorphisms as indicators of disease risk in various studies is discussed.

  20. Determinants of Sir2-Mediated, Silent Chromatin Cohesion.

    Science.gov (United States)

    Chen, Yu-Fan; Chou, Chia-Ching; Gartenberg, Marc R

    2016-08-01

    Cohesin associates with distinct sites on chromosomes to mediate sister chromatid cohesion. Single cohesin complexes are thought to bind by encircling both sister chromatids in a topological embrace. Transcriptionally repressed chromosomal domains in the yeast Saccharomyces cerevisiae represent specialized sites of cohesion where cohesin binds silent chromatin in a Sir2-dependent fashion. In this study, we investigated the molecular basis for Sir2-mediated cohesion. We identified a cluster of charged surface residues of Sir2, collectively termed the EKDK motif, that are required for cohesin function. In addition, we demonstrated that Esc8, a Sir2-interacting factor, is also required for silent chromatin cohesion. Esc8 was previously shown to associate with Isw1, the enzymatic core of ISW1 chromatin remodelers, to form a variant of the ISW1a chromatin remodeling complex. When ESC8 was deleted or the EKDK motif was mutated, cohesin binding at silenced chromatin domains persisted but cohesion of the domains was abolished. The data are not consistent with cohesin embracing both sister chromatids within silent chromatin domains. Transcriptional silencing remains largely intact in strains lacking ESC8 or bearing EKDK mutations, indicating that silencing and cohesion are separable functions of Sir2 and silent chromatin.

  1. Interconnection between flowering time control and activation of systemic acquired resistance.

    Science.gov (United States)

    Banday, Zeeshan Z; Nandi, Ashis K

    2015-01-01

    The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.

  2. The actin family protein ARP6 contributes to the structure and the function of the nucleolus.

    Science.gov (United States)

    Kitamura, Hiroshi; Matsumori, Haruka; Kalendova, Alzbeta; Hozak, Pavel; Goldberg, Ilya G; Nakao, Mitsuyoshi; Saitoh, Noriko; Harata, Masahiko

    2015-08-21

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis.

  3. The BAH domain of BAF180 is required for PCNA ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Niimi, Atsuko [Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Hopkins, Suzanna R; Downs, Jessica A [Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ (United Kingdom); Masutani, Chikahide, E-mail: masutani@riem.nagoya-u.ac.jp [Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2015-09-15

    Highlights: • The expression of BAF180 promotes UV-induced PCNA ubiquitination during S phase. • The BAH domains of BAF180 alone are sufficient to promote PCNA ubiquitination. • The BAH domains are not assembled into the PBAF in the absence of the C-terminus. - Abstract: Monoubiquitination of proliferating cell nuclear antigen (PCNA) is a critical regulator of post replication repair (PRR). The depletion of BAF180, a unique subunit of the PBAF chromatin remodeling complex in human cells results in reduced PCNA ubiquitination leading to less efficient fork progression following DNA damage, but little is known about the mechanism. Here, we report that the expression of exogenous BAF180 in cells promotes PCNA ubiquitination during S-phase after UV irradiation and it persists for many hours. No correlation was observed between the protein level of ubiquitin-specific protease 1 (USP1) and ubiquitinated PCNA in BAF180 expressing cells. Analysis of cells expressing BAF180 deletion mutants showed that the bromo-adjacent homology (BAH) domains are responsible for this effect. Surprisingly, a deletion construct encoding only the BAH domain region is able to increase the level of ubiquitinated PCNA, even though it is unable to be assembled into the PBAF complex. These results suggest that the ATPase-dependent chromatin remodeling activity of PBAF is not necessary, but instead the BAH domains are sufficient to promote PCNA ubiquitination.

  4. Asymmetric nucleosomes flank promoters in the budding yeast genome.

    Science.gov (United States)

    Ramachandran, Srinivas; Zentner, Gabriel E; Henikoff, Steven

    2015-03-01

    Nucleosomes in active chromatin are dynamic, but whether they have distinct structural conformations is unknown. To identify nucleosomes with alternative structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that 5% of budding yeast (Saccharomyces cerevisiae) nucleosome positions have asymmetric histone-DNA interactions. These asymmetric interactions are enriched at nucleosome positions that flank promoters. Micrococcal nuclease (MNase) sequence-based profiles of asymmetric nucleosome positions revealed a corresponding asymmetry in MNase protection near the dyad axis, suggesting that the loss of DNA contacts around H4S47 is accompanied by protection of the DNA from MNase. Chromatin immunoprecipitation mapping of selected nucleosome remodelers indicated that asymmetric nucleosomes are bound by the RSC chromatin remodeling complex, which is required for maintaining nucleosomes at asymmetric positions. These results imply that the asymmetric nucleosome-RSC complex is a metastable intermediate representing partial unwrapping and protection of nucleosomal DNA on one side of the dyad axis during chromatin remodeling.

  5. The actin family protein ARP6 contributes to the structure and the function of the nucleolus

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Hiroshi [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoka-ku, Sendai 981-8555 (Japan); Matsumori, Haruka [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Kalendova, Alzbeta; Hozak, Pavel [Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague (Czech Republic); Goldberg, Ilya G. [Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224 (United States); Nakao, Mitsuyoshi [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Saitoh, Noriko [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Harata, Masahiko, E-mail: mharata@biochem.tohoku.ac.jp [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoka-ku, Sendai 981-8555 (Japan)

    2015-08-21

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis. - Highlights: • ARP6, an actin related protein, is important for nucleolar function and structure. • A population of ARP6 is localized in the center of nucleolus. • Depletion of ARP6 resulted in aberrant shape of the nucleolus. • ARP6 maintains the active rDNA transcription under high glucose. • ARP6 is required for the repression of rDNA transcription under starvation.

  6. Abscisic Acid-mediated Epigenetic Processes in Plant Development and Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Viswanathan Chinnusamy; Zhizhong Gong; Jian-Kang Zhu

    2008-01-01

    Abscisic acid (ABA) regulates diverse plant processes, growth and development under non-stress conditions and plays a pivotal role in abiotic stress tolerance. Although ABA-regulated genetic processes are well known, recent discoveries reveal that epigenetic processes are an integral part of ABA-regulated processes. Epigenetic mechanisms, namely, histone modifications and cytosine DNA methylation-induced modification of genome give rise to epigenomes, which add diversity and complexity to the genome of organisms. Histone monoubiquitination appears to regulate ABA levels in developing seeds through histone H2B monoubiquitination. ABA and H2B ubiquitination dependent chromatin remodeling regulate seed dormancy. Transcription factor networks necessary for seed maturation are repressed by histone deacetylases (HDACs)-dependent and PICKLE chromatin remodeling complexes (CRCs), whereas ABA induces the expression of these genes directly or through repression of HDACs. Abiotic stress-induced ABA regulates stomatal response and stress-responsive gene expression through HDACs and HOS15-dependent histone deacetylation, as well as through the ATP-dependent SWITCH/SUCROSE NONFERMENTING CRC. ABA also probably regulates the abiotic stress response through DNA methylation and short interfering RNA pathways. Further studies on ABA-regulated spigenome will be of immense use to understand the plant development, stress adaptation and stress memory.

  7. Berger Engineering Complex

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Engineering laboratory The Berger Lab Complex is a multi-purpose building with professional office, 100 seat auditorium, general purpose labs,...

  8. Higher Koszul complexes

    Institute of Scientific and Technical Information of China (English)

    叶郁; 张璞

    2003-01-01

    In this paper we generalize the Koszul complexes and Koszul algebras, and introduce the higherKoszul (t-Koszul) complexes and higher Koszul algebras, where t ≥ 2 is an integer. We prove that an algebra ist-Koszul if and only if its t-Koszul complex is augmented, i.e. the higher degree (≥ 1) homologies vanish. Forarbitrary t-Koszul algebra , we also give a description of the structure of the cohomology algebra Ext ( 0, 0)by using the t-Koszul complexes, where the 0 is the direct sum of the simples.

  9. Introductory complex analysis

    CERN Document Server

    Silverman, Richard A

    1984-01-01

    A shorter version of A. I. Markushevich's masterly three-volume Theory of Functions of a Complex Variable, this edition is appropriate for advanced undergraduate and graduate courses in complex analysis. Numerous worked-out examples and more than 300 problems, some with hints and answers, make it suitable for independent study. 1967 edition.

  10. Complexity, Robustness, and Performance

    NARCIS (Netherlands)

    B. Visser (Bauke)

    2002-01-01

    textabstractThis paper analyses the relationship between organizational complexity ( the degree of detail of information necessary to correctly assign agents to positions), robustness (the relative loss of performance due to mis-allocated agents), and performance. More complex structures are not nec

  11. The visibility complex

    NARCIS (Netherlands)

    Pocchiola, M; Vegter, G

    1996-01-01

    We introduce the visibility complex (rr 2-dimensional regular cell complex) of a collection of n pairwise disjoint convex obstacles in the plane. It can be considered as a subdivision of the set of free rays (i.e., rays whose origins lie in free space, the complement of the obstacles). Its cells cor

  12. Complexity and Relations

    Science.gov (United States)

    Lancaster, Jeanette Elizabeth

    2013-01-01

    A central feature of complexity is that it is based on non-linear, recursive relations. However, in most current accounts of complexity such relations, while non-linear, are based on the reductive relations of a Newtonian onto-epistemological framework. This means that the systems that are emergent from the workings of such relations are a…

  13. Schools and Complexity

    Science.gov (United States)

    Trombly, Christopher E.

    2014-01-01

    As schools, districts, and the overall education system are complex entities, both the approaches taken to improve them and the methods used to study them must be similarly complex. Simple solutions imposed with no regard for schools' or districts' unique contexts hold little promise, while seemingly insignificant differences between those…

  14. Visual Complexity: A Review

    Science.gov (United States)

    Donderi, Don C.

    2006-01-01

    The idea of visual complexity, the history of its measurement, and its implications for behavior are reviewed, starting with structuralism and Gestalt psychology at the beginning of the 20th century and ending with visual complexity theory, perceptual learning theory, and neural circuit theory at the beginning of the 21st. Evidence is drawn from…

  15. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.;

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  16. Comments on Holographic Complexity

    CERN Document Server

    Carmi, Dean; Rath, Pratik

    2016-01-01

    We study two recent conjectures for holographic complexity: the complexity=action conjecture and the complexity=volume conjecture. In particular, we examine the structure of the UV divergences appearing in these quantities, and show that the coefficients can be written as local integrals of geometric quantities in the boundary. We also consider extending these conjectures to evaluate the complexity of the mixed state produced by reducing the pure global state to a specific subregion of the boundary time slice. The UV divergences in this subregion complexity have a similar geometric structure, but there are also new divergences associated with the geometry of the surface enclosing the boundary region of interest. We discuss possible implications arising from the geometric nature of these UV divergences.

  17. Supporting complex search tasks

    DEFF Research Database (Denmark)

    Gäde, Maria; Hall, Mark; Huurdeman, Hugo

    2015-01-01

    There is broad consensus in the field of IR that search is complex in many use cases and applications, both on the Web and in domain specific collections, and both professionally and in our daily life. Yet our understanding of complex search tasks, in comparison to simple look up tasks, is fragme......There is broad consensus in the field of IR that search is complex in many use cases and applications, both on the Web and in domain specific collections, and both professionally and in our daily life. Yet our understanding of complex search tasks, in comparison to simple look up tasks......, and recommendations, and supporting exploratory search to sensemaking and analytics, UI and UX design pose an overconstrained challenge. How do we know that our approach is any good? Supporting complex search task requires new collaborations across the whole field of IR, and the proposed workshop will bring together...

  18. Leading healthcare in complexity.

    Science.gov (United States)

    Cohn, Jeffrey

    2014-12-01

    Healthcare institutions and providers are in complexity. Networks of interconnections from relationships and technology create conditions in which interdependencies and non-linear dynamics lead to surprising, unpredictable outcomes. Previous effective approaches to leadership, focusing on top-down bureaucratic methods, are no longer effective. Leading in complexity requires leaders to accept the complexity, create an adaptive space in which innovation and creativity can flourish and then integrate the successful practices that emerge into the formal organizational structure. Several methods for doing adaptive space work will be discussed. Readers will be able to contrast traditional leadership approaches with leading in complexity. They will learn new behaviours that are required of complexity leaders, along with challenges they will face, often from other leaders within the organization.

  19. Controllability of Complex Systems

    Science.gov (United States)

    Slotine, Jean-Jacques

    2013-03-01

    We review recent work on controllability of complex systems. We also discuss the interplay of our results with questions of synchronization, and point out key directions of future research. Work done in collaboration with Yang-Yu Liu, Center for Complex Network Research and Departments of Physics, Computer Science and Biology, Northeastern University and Center for Cancer Systems Biology, Dana-Farber Cancer Institute; and Albert-László Barabási, Center for Complex Network Research and Departments of Physics, Computer Science and Biology, Northeastern University; Center for Cancer Systems Biology, Dana-Farber Cancer Institute; and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School.

  20. Functional roles of nucleosome stability and dynamics.

    Science.gov (United States)

    Chereji, Răzvan V; Morozov, Alexandre V

    2015-01-01

    Nucleosome is a histone-DNA complex known as the fundamental repeating unit of chromatin. Up to 90% of eukaryotic DNA is wrapped around consecutive octamers made of the core histones H2A, H2B, H3 and H4. Nucleosome positioning affects numerous cellular processes that require robust and timely access to genomic DNA, which is packaged into the tight confines of the cell nucleus. In living cells, nucleosome positions are determined by intrinsic histone-DNA sequence preferences, competition between histones and other DNA-binding proteins for genomic sequence, and ATP-dependent chromatin remodelers. We discuss the major energetic contributions to nucleosome formation and remodeling, focusing especially on partial DNA unwrapping off the histone octamer surface. DNA unwrapping enables efficient access to nucleosome-buried binding sites and mediates rapid nucleosome removal through concerted action of two or more DNA-binding factors. High-resolution, genome-scale maps of distances between neighboring nucleosomes have shown that DNA unwrapping and nucleosome crowding (mutual invasion of nucleosome territories) are much more common than previously thought. Ultimately, constraints imposed by nucleosome energetics on the rates of ATP-dependent and spontaneous chromatin remodeling determine nucleosome occupancy genome-wide, and shape pathways of cellular response to environmental stresses.

  1. RSC facilitates Rad59-dependent homologous recombination between sister chromatids by promoting cohesin loading at DNA double-strand breaks.

    Science.gov (United States)

    Oum, Ji-Hyun; Seong, Changhyun; Kwon, Youngho; Ji, Jae-Hoon; Sid, Amy; Ramakrishnan, Sreejith; Ira, Grzegorz; Malkova, Anna; Sung, Patrick; Lee, Sang Eun; Shim, Eun Yong

    2011-10-01

    Homologous recombination repairs DNA double-strand breaks by searching for, invading, and copying information from a homologous template, typically the homologous chromosome or sister chromatid. Tight wrapping of DNA around histone octamers, however, impedes access of repair proteins to DNA damage. To facilitate DNA repair, modifications of histones and energy-dependent remodeling of chromatin are required, but the precise mechanisms by which chromatin modification and remodeling enzymes contribute to homologous DNA repair are unknown. Here we have systematically assessed the role of budding yeast RSC (remodel structure of chromatin), an abundant, ATP-dependent chromatin-remodeling complex, in the cellular response to spontaneous and induced DNA damage. RSC physically interacts with the recombination protein Rad59 and functions in homologous recombination. Multiple recombination assays revealed that RSC is uniquely required for recombination between sister chromatids by virtue of its ability to recruit cohesin at DNA breaks and thereby promoting sister chromatid cohesion. This study provides molecular insights into how chromatin remodeling contributes to DNA repair and maintenance of chromatin fidelity in the face of DNA damage.

  2. Allosteric interactions of DNA and nucleotides with S. cerevisiae RSC.

    Science.gov (United States)

    Malik, Shuja Shafi; Rich, Evan; Viswanathan, Ramya; Cairns, Bradley R; Fischer, Christopher J

    2011-09-20

    RSC (remodel the structure of chromatin) is an essential chromatin remodeler of Saccharomyces cerevisiae that has been shown to have DNA translocase properties. We studied the DNA binding properties of a "trimeric minimal RSC" (RSCt) of the RSC chromatin remodeling complex and the effect of nucleotides on this interaction using fluorescence anisotropy. RSCt binds to 20 bp fluorescein-labeled double-stranded DNA with a K(d) of ∼100 nM. The affinity of RSCt for DNA is reduced in the presence of AMP-PNP and ADP in a concentration-dependent manner with the addition of AMP-PNP having more pronounced effect. These differences in the magnitude at which the binding of ADP and AMP-PNP affects the affinity of DNA binding by RSCt suggest that the physical movement of the enzyme along DNA begins between the binding of ATP and its subsequent hydrolysis. Furthermore, the fact that the highest affinity for DNA binding by RSCt occurs in the absence of bound nucleotide offers a mechanistic explanation for the apparent low processivity of DNA translocation by the enzyme.

  3. Low complexity MIMO receivers

    CERN Document Server

    Bai, Lin; Yu, Quan

    2014-01-01

    Multiple-input multiple-output (MIMO) systems can increase the spectral efficiency in wireless communications. However, the interference becomes the major drawback that leads to high computational complexity at both transmitter and receiver. In particular, the complexity of MIMO receivers can be prohibitively high. As an efficient mathematical tool to devise low complexity approaches that mitigate the interference in MIMO systems, lattice reduction (LR) has been widely studied and employed over the last decade. The co-authors of this book are world's leading experts on MIMO receivers, and here they share the key findings of their research over years. They detail a range of key techniques for receiver design as multiple transmitted and received signals are available. The authors first introduce the principle of signal detection and the LR in mathematical aspects. They then move on to discuss the use of LR in low complexity MIMO receiver design with respect to different aspects, including uncoded MIMO detection...

  4. Complex Regional Pain Syndrome

    Science.gov (United States)

    Complex regional pain syndrome (CRPS) is a chronic pain condition. It causes intense pain, usually in the arms, hands, legs, or feet. ... in skin temperature, color, or texture Intense burning pain Extreme skin sensitivity Swelling and stiffness in affected ...

  5. Supporting complex search tasks

    DEFF Research Database (Denmark)

    Gäde, Maria; Hall, Mark; Huurdeman, Hugo;

    2015-01-01

    There is broad consensus in the field of IR that search is complex in many use cases and applications, both on the Web and in domain specific collections, and both professionally and in our daily life. Yet our understanding of complex search tasks, in comparison to simple look up tasks......, is fragmented at best. The workshop addressed the many open research questions: What are the obvious use cases and applications of complex search? What are essential features of work tasks and search tasks to take into account? And how do these evolve over time? With a multitude of information, varying from...... introductory to specialized, and from authoritative to speculative or opinionated, when to show what sources of information? How does the information seeking process evolve and what are relevant differences between different stages? With complex task and search process management, blending searching, browsing...

  6. A complex legacy

    Science.gov (United States)

    Moore, Cristopher

    2011-11-01

    In his tragically short life, Alan Turing helped define what computing machines are capable of, and where they reach inherent limits. His legacy is still felt every day, in areas ranging from computational complexity theory to cryptography and quantum computing.

  7. Physical Sciences Complex

    Data.gov (United States)

    Federal Laboratory Consortium — This 88,000 square foot complex is used to investigate basic physical science in support of missile technology development. It incorporates office space, dedicated...

  8. Management recommendations: Tewaukon Complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a review of land management practices at the Tewaukon Complex, by a land use specialist. Recommendations, time frame and additional comments are...

  9. Complex coacervate core micelles.

    Science.gov (United States)

    Voets, Ilja K; de Keizer, Arie; Cohen Stuart, Martien A

    2009-01-01

    In this review we present an overview of the literature on the co-assembly of neutral-ionic block, graft, and random copolymers with oppositely charged species in aqueous solution. Oppositely charged species include synthetic (co)polymers of various architectures, biopolymers - such as proteins, enzymes and DNA - multivalent ions, metallic nanoparticles, low molecular weight surfactants, polyelectrolyte block copolymer micelles, metallo-supramolecular polymers, equilibrium polymers, etcetera. The resultant structures are termed complex coacervate core/polyion complex/block ionomer complex/interpolyelectrolyte complex micelles (or vesicles); i.e., in short C3Ms (or C3Vs) and PIC, BIC or IPEC micelles (and vesicles). Formation, structure, dynamics, properties, and function will be discussed. We focus on experimental work; theory and modelling will not be discussed. Recent developments in applications and micelles with heterogeneous coronas are emphasized.

  10. Quantum Kolmogorov Complexity

    CERN Document Server

    Berthiaume, A; Laplante, S; Berthiaume, Andre; Dam, Wim van; Laplante, Sophie

    2000-01-01

    In this paper we give a definition for quantum Kolmogorov complexity. In the classical setting, the Kolmogorov complexity of a string is the length of the shortest program that can produce this string as its output. It is a measure of the amount of innate randomness (or information) contained in the string. We define the quantum Kolmogorov complexity of a qubit string as the length of the shortest quantum input to a universal quantum Turing machine that produces the initial qubit string with high fidelity. The definition of Vitanyi (Proceedings of the 15th IEEE Annual Conference on Computational Complexity, 2000) measures the amount of classical information, whereas we consider the amount of quantum information in a qubit string. We argue that our definition is natural and is an accurate representation of the amount of quantum information contained in a quantum state.

  11. Complexity for Artificial Substrates (

    NARCIS (Netherlands)

    Loke, L.H.L.; Jachowski, N.R.; Bouma, T.J.; Ladle, R.J.; Todd, P.A.

    2014-01-01

    Physical habitat complexity regulates the structure and function of biological communities, although the mechanisms underlying this relationship remain unclear. Urbanisation, pollution, unsustainable resource exploitation and climate change have resulted in the widespread simplification (and loss) o

  12. Complex Flow Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  13. On scattered subword complexity

    CERN Document Server

    Kása, Zoltán

    2011-01-01

    Special scattered subwords, in which the gaps are of length from a given set, are defined. The scattered subword complexity, which is the number of such scattered subwords, is computed for rainbow words.

  14. Complex and unpredictable Cardano

    Science.gov (United States)

    Ekert, Artur

    2008-08-01

    This purely recreational paper is about one of the most colorful characters of the Italian Renaissance, Girolamo Cardano, and the discovery of two basic ingredients of quantum theory, probability and complex numbers.

  15. Beyond complex Langevin equations

    CERN Document Server

    Wosiek, Jacek

    2016-01-01

    A simple integral relation between a complex weight and the corresponding positive distribution is derived by introducing a second complex variable. Together with the positivity and normalizability conditions, this sum rule allows to construct explicitly equivalent pairs of distributions in simple cases. In particular the well known solution for a complex gaussian distribution is generalized to an arbitrary complex slope. This opens a possibility of positive representation of Feynman path integrals directly in the Minkowski time. Such construction is then explicitly carried through in the second part of this presentation. The continuum limit of the new representation exists only if some of the additional couplings tend to infinity and are tuned in a specific way. The approach is then successfully applied to three quantum mechanical examples including a particle in a constant magnetic field -- a simplest prototype of a Wilson line. Further generalizations are shortly discussed and an amusing interpretation of ...

  16. Network Complexity of Foodwebs

    CERN Document Server

    Standish, Russell K

    2010-01-01

    In previous work, I have developed an information theoretic complexity measure of networks. When applied to several real world food webs, there is a distinct difference in complexity between the real food web, and randomised control networks obtained by shuffling the network links. One hypothesis is that this complexity surplus represents information captured by the evolutionary process that generated the network. In this paper, I test this idea by applying the same complexity measure to several well-known artificial life models that exhibit ecological networks: Tierra, EcoLab and Webworld. Contrary to what was found in real networks, the artificial life generated foodwebs had little information difference between itself and randomly shuffled versions.

  17. An erupted complex odontoma.

    Science.gov (United States)

    Tozoglu, Sinan; Yildirim, Umran; Buyukkurt, M Cemil

    2010-01-01

    Odontomas are benign tumors of odontogenic origin. The cause of the odontoma is unknown, but it is believed to be hereditary or due to a disturbance in tooth development triggered by trauma or infection. Odontomas may be either compound or complex. Although these tumors are seen frequently, erupted odontomas are rare. The purpose of this study is to present a rare case of complex odontoma that erupted into the oral cavity.

  18. Conversation, coupling and complexity

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Abney, Drew; Bahrami, Bahador;

    We investigate the linguistic co-construction of interpersonal synergies. By applying a measure of coupling between complex systems to an experimentally elicited corpus of joint decision dialogues, we show that interlocutors’ linguistic behavior displays increasing signature of multi-scale coupling......, known as complexity matching, over the course of interaction. Furthermore, we show that stronger coupling corresponds with more effective interaction, as measured by collective task performance....

  19. Complex/Symplectic Mirrors

    CERN Document Server

    Chuang, W; Tomasiello, A; Chuang, Wu-yen; Kachru, Shamit; Tomasiello, Alessandro

    2005-01-01

    We construct a class of symplectic non--Kaehler and complex non--Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten--dimensional supergravity and KK reduction on SU(3)--structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  20. Quantum Hamiltonian Complexity

    OpenAIRE

    2014-01-01

    Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via s...

  1. Electrospun complexes - functionalised nanofibres

    Science.gov (United States)

    Meyer, T.; Wolf, M.; Dreyer, B.; Unruh, D.; Krüger, C.; Menze, M.; Sindelar, R.; Klingelhöfer, G.; Renz, F.

    2016-12-01

    Here we present a new approach of using iron-complexes in electro-spun fibres. We modify poly(methyl methacrylate) (PMMA) by replacing the methoxy group with Diaminopropane or Ethylenediamine. The complex is bound covalently via an imine-bridge or an amide. The resulting polymer can be used in the electrospinning process without any further modifications in method either as pure reagent or mixed with small amounts of not functionalised polymer resulting in fibres of different qualities (Fig. 1).

  2. Complex variable HVPT

    Energy Technology Data Exchange (ETDEWEB)

    Killingbeck, John P [Mathematics Department, University of Hull, Hull HU6 7RX (United Kingdom); Grosjean, Alain [Laboratoire d' Astrophysique de l' Observatoire de Besancon (CNRS, UPRES-A 6091), 41 bis Avenue de l' Observatoire, BP 1615, 25010 Besancon Cedex (France); Jolicard, Georges [Laboratoire d' Astrophysique de l' Observatoire de Besancon (CNRS, UPRES-A 6091), 41 bis Avenue de l' Observatoire, BP 1615, 25010 Besancon Cedex (France)

    2004-08-13

    Complex variable hypervirial perturbation theory is applied to the case of oscillator and Coulomb potentials perturbed by a single term potential of the form Vx{sup n} or Vr{sup n}, respectively. The trial calculations reported show that this approach can produce accurate complex energies for resonant states via a simple and speedy calculation and can also be useful in studies of PT symmetry and tunnelling resonance effects. (addendum)

  3. Advances in network complexity

    CERN Document Server

    Dehmer, Matthias; Emmert-Streib, Frank

    2013-01-01

    A well-balanced overview of mathematical approaches to describe complex systems, ranging from chemical reactions to gene regulation networks, from ecological systems to examples from social sciences. Matthias Dehmer and Abbe Mowshowitz, a well-known pioneer in the field, co-edit this volume and are careful to include not only classical but also non-classical approaches so as to ensure topicality. Overall, a valuable addition to the literature and a must-have for anyone dealing with complex systems.

  4. MANAGEMENT OF SPORT COMPLEXES

    Directory of Open Access Journals (Sweden)

    Marian STAN

    2015-07-01

    Full Text Available The actuality of the investigated theme. Nowadays, human evolution, including his intellectual development, proves the fact that especially the creation manpower and the employment was the solution of all life’s ambitions in society. So, the fact is that in reality, man is the most important capital of the society. Also, in an individual’s life, the practice of sport plays a significant role and that’s why the initiation, the launch and the management of sports complexes activity reveal the existence of specific management features that we will identify and explain in the current study. The aim of the research refers to the elaboration of a theoretical base of the management of the sport complexes, to the pointing of the factors that influence the efficient existence and function of a sport complex in our country and to the determination of the responsibilities that have a manager who directs successfully the activity of the sport complexes. The investigation is based on theoretical methods, such as: scientific documentation, analysis, synthesis, comparison and on empirical research methods, like: study of researched literature and observation. The results of the research indicate the fact that the profitability of a sport complex must assure a particular structure to avoid the bankruptcy risk and also, that the administration of the sport complexes activity must keep in view the reliable functions of the contemporaneous management.

  5. Projectively related complex Finsler metrics

    CERN Document Server

    Aldea, Nicoleta

    2011-01-01

    In this paper we introduce in study the projectively related complex Finsler metrics. We prove the complex versions of the Rapcs\\'{a}k's theorem and characterize the weakly K\\"{a}hler and generalized Berwald projectively related complex Finsler metrics. The complex version of Hilbert's Fourth Problem is also pointed out. As an application, the projectiveness of a complex Randers metric is described.

  6. Complexity: The bigger picture

    CERN Document Server

    Vicsek, Tamás

    2010-01-01

    If a concept is not well defined, there are grounds for its abuse. This is particularly true of complexity, an inherently interdisciplinary concept that has penetrated very different fields of intellectual activity from physics to linguistics, but with no underlying, unified theory. Complexity has become a popular buzzword used in the hope of gaining attention or funding -- institutes and research networks associated with complex systems grow like mushrooms. Why and how did it happen that this vague notion has become a central motif in modern science? Is it only a fashion, a kind of sociological phenomenon, or is it a sign of a changing paradigm of our perception of the laws of nature and of the approaches required to understand them? Because virtually every real system is inherently extremely complicated, to say that a system is complex is almost an empty statement - couldn't an Institute of Complex Systems just as well be called an Institute for Almost Everything? Despite these valid concerns, the world is ...

  7. Algorithmic Relative Complexity

    Directory of Open Access Journals (Sweden)

    Daniele Cerra

    2011-04-01

    Full Text Available Information content and compression are tightly related concepts that can be addressed through both classical and algorithmic information theories, on the basis of Shannon entropy and Kolmogorov complexity, respectively. The definition of several entities in Kolmogorov’s framework relies upon ideas from classical information theory, and these two approaches share many common traits. In this work, we expand the relations between these two frameworks by introducing algorithmic cross-complexity and relative complexity, counterparts of the cross-entropy and relative entropy (or Kullback-Leibler divergence found in Shannon’s framework. We define the cross-complexity of an object x with respect to another object y as the amount of computational resources needed to specify x in terms of y, and the complexity of x related to y as the compression power which is lost when adopting such a description for x, compared to the shortest representation of x. Properties of analogous quantities in classical information theory hold for these new concepts. As these notions are incomputable, a suitable approximation based upon data compression is derived to enable the application to real data, yielding a divergence measure applicable to any pair of strings. Example applications are outlined, involving authorship attribution and satellite image classification, as well as a comparison to similar established techniques.

  8. Complexity and Dynamical Depth

    Directory of Open Access Journals (Sweden)

    Terrence Deacon

    2014-07-01

    Full Text Available We argue that a critical difference distinguishing machines from organisms and computers from brains is not complexity in a structural sense, but a difference in dynamical organization that is not well accounted for by current complexity measures. We propose a measure of the complexity of a system that is largely orthogonal to computational, information theoretic, or thermodynamic conceptions of structural complexity. What we call a system’s dynamical depth is a separate dimension of system complexity that measures the degree to which it exhibits discrete levels of nonlinear dynamical organization in which successive levels are distinguished by local entropy reduction and constraint generation. A system with greater dynamical depth than another consists of a greater number of such nested dynamical levels. Thus, a mechanical or linear thermodynamic system has less dynamical depth than an inorganic self-organized system, which has less dynamical depth than a living system. Including an assessment of dynamical depth can provide a more precise and systematic account of the fundamental difference between inorganic systems (low dynamical depth and living systems (high dynamical depth, irrespective of the number of their parts and the causal relations between them.

  9. Modeling Complex Time Limits

    Directory of Open Access Journals (Sweden)

    Oleg Svatos

    2013-01-01

    Full Text Available In this paper we analyze complexity of time limits we can find especially in regulated processes of public administration. First we review the most popular process modeling languages. There is defined an example scenario based on the current Czech legislature which is then captured in discussed process modeling languages. Analysis shows that the contemporary process modeling languages support capturing of the time limit only partially. This causes troubles to analysts and unnecessary complexity of the models. Upon unsatisfying results of the contemporary process modeling languages we analyze the complexity of the time limits in greater detail and outline lifecycles of a time limit using the multiple dynamic generalizations pattern. As an alternative to the popular process modeling languages there is presented PSD process modeling language, which supports the defined lifecycles of a time limit natively and therefore allows keeping the models simple and easy to understand.

  10. Philosophy of complex systems

    CERN Document Server

    2011-01-01

    The domain of nonlinear dynamical systems and its mathematical underpinnings has been developing exponentially for a century, the last 35 years seeing an outpouring of new ideas and applications and a concomitant confluence with ideas of complex systems and their applications from irreversible thermodynamics. A few examples are in meteorology, ecological dynamics, and social and economic dynamics. These new ideas have profound implications for our understanding and practice in domains involving complexity, predictability and determinism, equilibrium, control, planning, individuality, responsibility and so on. Our intention is to draw together in this volume, we believe for the first time, a comprehensive picture of the manifold philosophically interesting impacts of recent developments in understanding nonlinear systems and the unique aspects of their complexity. The book will focus specifically on the philosophical concepts, principles, judgments and problems distinctly raised by work in the domain of comple...

  11. Modeling Complex Systems

    CERN Document Server

    Boccara, Nino

    2010-01-01

    Modeling Complex Systems, 2nd Edition, explores the process of modeling complex systems, providing examples from such diverse fields as ecology, epidemiology, sociology, seismology, and economics. It illustrates how models of complex systems are built and provides indispensable mathematical tools for studying their dynamics. This vital introductory text is useful for advanced undergraduate students in various scientific disciplines, and serves as an important reference book for graduate students and young researchers. This enhanced second edition includes: . -recent research results and bibliographic references -extra footnotes which provide biographical information on cited scientists who have made significant contributions to the field -new and improved worked-out examples to aid a student’s comprehension of the content -exercises to challenge the reader and complement the material Nino Boccara is also the author of Essentials of Mathematica: With Applications to Mathematics and Physics (Springer, 2007).

  12. Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...... vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...... of parameter spaces into structurally stable domains, and a description of the bifurcations. For this reason, the talk will focus on these questions for complex polynomial vector fields....

  13. Complex Strategic Choices

    DEFF Research Database (Denmark)

    Leleur, Steen

    Effective decision making requires a clear methodology, particularly in a complex world of globalisation. Institutions and companies in all disciplines and sectors are faced with increasingly multi-faceted areas of uncertainty which cannot always be effectively handled by traditional strategies....... Complex Strategic Choices provides clear principles and methods which can guide and support strategic decision making to face the many current challenges. By considering ways in which planning practices can be renewed and exploring the possibilities for acquiring awareness and tools to add value...... to strategic decision making, Complex Strategic Choices presents a methodology which is further illustrated by a number of case studies and example applications. Dr. Techn. Steen Leleur has adapted previously established research based on feedback and input from various conferences, journals and students...

  14. Nonergodic complexity management

    Science.gov (United States)

    Piccinini, Nicola; Lambert, David; West, Bruce J.; Bologna, Mauro; Grigolini, Paolo

    2016-06-01

    Linear response theory, the backbone of nonequilibrium statistical physics, has recently been extended to explain how and why nonergodic renewal processes are insensitive to simple perturbations, such as in habituation. It was established that a permanent correlation results between an external stimulus and the response of a complex system generating nonergodic renewal processes, when the stimulus is a similar nonergodic process. This is the principle of complexity management, whose proof relies on ensemble distribution functions. Herein we extend the proof to the nonergodic case using time averages and a single time series, hence making it usable in real life situations where ensemble averages cannot be performed because of the very nature of the complex systems being studied.

  15. Emergent Complex Network Geometry

    CERN Document Server

    Wu, Zhihao; Rahmede, Christoph; Bianconi, Ginestra

    2014-01-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geo...

  16. Viral quasispecies complexity measures.

    Science.gov (United States)

    Gregori, Josep; Perales, Celia; Rodriguez-Frias, Francisco; Esteban, Juan I; Quer, Josep; Domingo, Esteban

    2016-06-01

    Mutant spectrum dynamics (changes in the related mutants that compose viral populations) has a decisive impact on virus behavior. The several platforms of next generation sequencing (NGS) to study viral quasispecies offer a magnifying glass to study viral quasispecies complexity. Several parameters are available to quantify the complexity of mutant spectra, but they have limitations. Here we critically evaluate the information provided by several population diversity indices, and we propose the introduction of some new ones used in ecology. In particular we make a distinction between incidence, abundance and function measures of viral quasispecies composition. We suggest a multidimensional approach (complementary information contributed by adequately chosen indices), propose some guidelines, and illustrate the use of indices with a simple example. We apply the indices to three clinical samples of hepatitis C virus that display different population heterogeneity. Areas of virus biology in which population complexity plays a role are discussed.

  17. The complex pendulum

    Science.gov (United States)

    Bender, Carl M.

    1999-07-01

    This talk proposes a generalization of conventional quantum mechanics. In conventional quantum mechanics one imposes the condition H †=H , where † represents complex conjugation and matrix transpose, to ensure that the Hamiltonian has a real spectrum. By replacing this mathematical condition with the weaker and more physical requirement H ‡=H , where ‡= PT represents combined parity reflection and time reversal, one obtains new infinite classes of complex Hamiltonians whose spectra are also real and positive. These PT-symmetric theories may be viewed as analytic continuations of conventional theories from real to complex-phase space. This talk describes the unusual classical and quantum properties of PT-symmetric quantum-mechanical and quantum-field-theoretic models.

  18. Emergy and ecosystem complexity

    Science.gov (United States)

    Ulgiati, Sergio; Brown, Mark T.

    2009-01-01

    The question "What drives complexity?" is addressed in this paper. To answer this question, we explore the way energy and material resources of different quality flow through ecosystems and support, directly and indirectly, ecosystems growth and development. Processes of resource transformation throughout the ecosystem build order, cycle materials, generate and sustain information. Energy drives all these processes and energetic principles explain much of what is observed, including energy degradation according to the laws of thermodynamics. Emergy, a quantitative measure of the global environmental work supporting ecosystem dynamics, is used here in order to provide a deeper understanding of complexity growth and decline in ecosystems. Ecosystem complexity is discussed in this paper in relation to changes in structure, organization and functional capacity, as explained by changes in emergy, empower, and transformity.

  19. Introduction to Complex Plasmas

    CERN Document Server

    Bonitz, Michael; Ludwig, Patrick

    2010-01-01

    Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates.

  20. Synchronization in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  1. Luminescent macrocyclic lanthanide complexes

    Science.gov (United States)

    Raymond, Kenneth N [Berkeley, CA; Corneillie, Todd M [Campbell, CA; Xu, Jide [Berkeley, CA

    2012-05-08

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  2. Complexity Equals Action

    CERN Document Server

    Brown, Adam R; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2015-01-01

    We conjecture that the quantum complexity of a holographic state is dual to the action of a certain spacetime region that we call a Wheeler-DeWitt patch. We illustrate and test the conjecture in the context of neutral, charged, and rotating black holes in AdS, as well as black holes perturbed with static shells and with shock waves. This conjecture evolved from a previous conjecture that complexity is dual to spatial volume, but appears to be a major improvement over the original. In light of our results, we discuss the hypothesis that black holes are the fastest computers in nature.

  3. Tuberous sclerosis complex.

    Science.gov (United States)

    DiMario, Francis J; Sahin, Mustafa; Ebrahimi-Fakhari, Darius

    2015-06-01

    Tuberous sclerosis complex is an autosomal-dominant, neurocutaneous, multisystem disorder characterized by cellular hyperplasia and tissue dysplasia. The genetic cause is mutations in the TSC1 gene, found on chromosome 9q34, and TSC2 gene, found on chromosome 16p13. The clinical phenotypes resulting from mutations in either of the 2 genes are variable in each individual. Herein, advances in the understanding of molecular mechanisms in tuberous sclerosis complex are reviewed, and current guidelines for diagnosis, treatment, follow-up, and management are summarized.

  4. Complex variables II essentials

    CERN Document Server

    Solomon, Alan D

    2013-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Complex Variables II includes elementary mappings and Mobius transformation, mappings by general functions, conformal mappings and harmonic functions, applying complex functions to a

  5. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  6. Resilience and Complexity

    DEFF Research Database (Denmark)

    Dahlberg, Rasmus

    2015-01-01

    This paper explores two key concepts: resilience and complexity. The first is understood as an emergent property of the latter, and their inter-relatedness is discussed using a three tier approach. First, by exploring the discourse of each concept, next, by analyzing underlying relationships and...... robust. Robustness is a property of simple or complicated systems characterized by predictable behavior, enabling the system to bounce back to its normal state following a perturbation. Resilience, however, is an emergent property of complex adaptive systems. It is suggested that this distinction...

  7. Complex/Symplectic Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Wu-yen; Kachru, Shamit; /Stanford U., ITP /SLAC; Tomasiello, Alessandro; /Stanford U., ITP

    2005-10-28

    We construct a class of symplectic non-Kaehler and complex non-Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten-dimensional supergravity and KK reduction on SU(3)-structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  8. Complex function theory

    CERN Document Server

    Sarason, Donald

    2007-01-01

    Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Co

  9. Applied complex variables

    CERN Document Server

    Dettman, John W

    1965-01-01

    Analytic function theory is a traditional subject going back to Cauchy and Riemann in the 19th century. Once the exclusive province of advanced mathematics students, its applications have proven vital to today's physicists and engineers. In this highly regarded work, Professor John W. Dettman offers a clear, well-organized overview of the subject and various applications - making the often-perplexing study of analytic functions of complex variables more accessible to a wider audience. The first half of Applied Complex Variables, designed for sequential study, is a step-by-step treatment of fun

  10. Introduction to complex analysis

    CERN Document Server

    Priestley, H A

    2003-01-01

    Complex analysis is a classic and central area of mathematics, which is studied and exploited in a range of important fields, from number theory to engineering. Introduction to Complex Analysis was first published in 1985, and for this much awaited second edition the text has been considerably expanded, while retaining the style of the original. More detailed presentation is given of elementary topics, to reflect the knowledge base of current students. Exercise sets have beensubstantially revised and enlarged, with carefully graded exercises at the end of each chapter.This is the latest additi

  11. Complex HVPT and hyperasymptotics

    Energy Technology Data Exchange (ETDEWEB)

    Killingbeck, John P [Mathematics Department, University of Hull, Hull HU6 7RX (United Kingdom); Grosjean, Alain [Laboratoire d' Astrophysique de l' Observatoire de Besancon(CNRS, UMR 6091), 41 bis Avenue de l' Observatoire, BP 1615, 25010 Besancon Cedex (France); Jolicard, Georges [Laboratoire d' Astrophysique de l' Observatoire de Besancon(CNRS, UMR 6091), 41 bis Avenue de l' Observatoire, BP 1615, 25010 Besancon Cedex (France)

    2006-08-25

    Complex hypervirial perturbation theory (HVPT) is applied to the problem of a harmonic oscillator with a perturbation gx{sup 3}exp(i{psi}), for which the traditional Rayleigh-Schodinger perturbation theory has to be supplemented by hyperasymptotics for obtaining accurate resonance energies in the negative {psi} region. Complex HVPT gives accurate results for positive {psi} and for negative {psi} up to about vertical bar {phi} vertical bar = {pi}/24. The case of a quartic perturbed oscillator is also treated. (letter to the editor)

  12. Theories of computational complexity

    CERN Document Server

    Calude, C

    1988-01-01

    This volume presents four machine-independent theories of computational complexity, which have been chosen for their intrinsic importance and practical relevance. The book includes a wealth of results - classical, recent, and others which have not been published before.In developing the mathematics underlying the size, dynamic and structural complexity measures, various connections with mathematical logic, constructive topology, probability and programming theories are established. The facts are presented in detail. Extensive examples are provided, to help clarify notions and constructions. The lists of exercises and problems include routine exercises, interesting results, as well as some open problems.

  13. Salen complexes with dianionic counterions

    Energy Technology Data Exchange (ETDEWEB)

    Job, Gabriel E.; Farmer, Jay J.; Cherian, Anna E.

    2016-08-02

    The present invention describes metal salen complexes having dianionic counterions. Such complexes can be readily precipitated and provide an economical method for the purification and isolation of the complexes, and are useful to prepare novel polymer compositions.

  14. Genetics Home Reference: Carney complex

    Science.gov (United States)

    ... Understand Genetics Home Health Conditions Carney complex Carney complex Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Carney complex is a disorder characterized by an increased risk ...

  15. Managing Complex Dynamical Systems

    Science.gov (United States)

    Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.

    2011-01-01

    Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.

  16. Resilience and Complexity

    DEFF Research Database (Denmark)

    Dahlberg, Rasmus

    2015-01-01

    This paper explores two key concepts: resilience and complexity. The first is understood as an emergent property of the latter, and their inter-relatedness is discussed using a three tier approach. First, by exploring the discourse of each concept, next, by analyzing underlying relationships and,...

  17. Light in complex dielectrics

    NARCIS (Netherlands)

    Schuurmans, F.J.P.

    1999-01-01

    In this thesis the properties of light in complex dielectrics are described, with the two general topics of "modification of spontaneous emission" and "Anderson localization of light". The first part focuses on the spontaneous emission rate of an excited atom in a dielectric host with variable refra

  18. Complex WS 2 nanostructures

    Science.gov (United States)

    Whitby, R. L. D.; Hsu, W. K.; Lee, T. H.; Boothroyd, C. B.; Kroto, H. W.; Walton, D. R. M.

    2002-06-01

    A range of elegant tubular and conical nanostructures has been created by template growth of (WS 2) n layers on the surfaces of single-walled carbon nanotube bundles. The structures exhibit remarkably perfect straight segments together with interesting complexities at the intersections, which are discussed here in detail in order to enhance understanding of the structural features governing tube growth.

  19. Automatic Complexity Analysis

    DEFF Research Database (Denmark)

    Rosendahl, Mads

    1989-01-01

    One way to analyse programs is to to derive expressions for their computational behaviour. A time bound function (or worst-case complexity) gives an upper bound for the computation time as a function of the size of input. We describe a system to derive such time bounds automatically using abstract...

  20. Tevatron's complex collider cousins

    CERN Multimedia

    Fischer, W

    2004-01-01

    Letter referring to Schwarzschild's story "Disappointing performance and tight budgets confront Fermilab with tough decisions" and contesting that the Tevatron is not the most complex accelerator operating. They use the examples of CERN's SPS collider, HERA at DESY and the RHIC at Brookhaven (1/4 page)

  1. The CERN accelerator complex

    CERN Multimedia

    De Melis, Cinzia

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  2. Transformations, Dynamics and Complexity

    CERN Document Server

    Glazunov, Nikolaj

    2011-01-01

    We review and investigate some new problems and results in the field of dynamical systems generated by iteration of maps, {\\beta}-transformations, partitions, group actions, bundle dynamical systems, Hasse-Kloosterman maps, and some aspects of complexity of the systems.

  3. Symmetry in Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.

  4. Electromeric rhodium radical complexes

    NARCIS (Netherlands)

    Puschmann, F.F.; Harmer, J.; Stein, D.; Rüegger, H.; de Bruin, B.; Grützmacher, H.

    2010-01-01

    Radical changes: One single P-Rh-P angle determines whether the odd electron in the paramagnetic complex [Rh(trop2PPh)(PPh3)] is delocalized over the whole molecule (see picture, blue) or is localized on the P—Rh unit (red). The two energetically almost degenerate electromers exist in a fast equilib

  5. Aquaporins in complex tissues

    DEFF Research Database (Denmark)

    Hamann, S; Zeuthen, T; La Cour, M

    1998-01-01

    Multiple physiological fluid movements are involved in vision. Here we define the cellular and subcellular sites of aquaporin (AQP) water transport proteins in human and rat eyes by immunoblotting, high-resolution immunocytochemistry, and immunoelectron microscopy. AQP3 is abundant in bulbar conj......, predicting specific roles for each in the complex network through which water movements occur in the eye....

  6. Complex Interfaces Under Change

    DEFF Research Database (Denmark)

    Rosbjerg, Dan

    and mechanical processes that develop within this structure. Water-related processes at the interfaces between the compartments are complex, depending both on the interface itself, and on the characteristics of the interfaced compartments. Various aspects of global change directly or indirectly impact...

  7. Macroevolution of complex retroviruses

    DEFF Research Database (Denmark)

    Katzourakis, Aris; Gifford, Robert J; Tristem, Michael

    2009-01-01

    Retroviruses can leave a "fossil record" in their hosts' genomes in the form of endogenous retroviruses. Foamy viruses, complex retroviruses that infect mammals, have been notably absent from this record. We have found an endogenous foamy virus within the genomes of sloths and show that foamy...

  8. Complex Digital Visual Systems

    Science.gov (United States)

    Sweeny, Robert W.

    2013-01-01

    This article identifies possibilities for data visualization as art educational research practice. The author presents an analysis of the relationship between works of art and digital visual culture, employing aspects of network analysis drawn from the work of Barabási, Newman, and Watts (2006) and Castells (1994). Describing complex network…

  9. Proteasomes: a complex story

    DEFF Research Database (Denmark)

    Hendil, Klavs B; Hartmann-Petersen, Rasmus

    2004-01-01

    Protein degradation in eukaryotic cells is important for regulation of metabolism, progression through the division cycle, in cell signalling pathways, and in mammals also for generation of antigen fragments for presentation on the major histocompatibility complex (MHC) class I. Most cell proteins...

  10. Energy momentum complex

    Energy Technology Data Exchange (ETDEWEB)

    Nashed, Gamal G.L. [Ain Shams University, Cairo (Egypt). Faculty of Science. Mathematics Dept.

    2010-09-15

    We show that the definition of the energy-momentum complex given by Moeller using Weitzenboeck spacetime in the calculations of gravitational energy gives results which are different from those obtained from other definitions given in the framework of general relativity. (author)

  11. Complex Planar Splines.

    Science.gov (United States)

    1981-05-01

    try todefine a complex planar spline by holomorphic elements like polynomials, then by the well known identity theorem (e.g. Diederich- Remmert [9, p...R. Remmert : Funktionentheorie I, Springer, Berlin, Heidelberg, New York, 1972, 246 p. 10 0. Lehto - K.I. Virtanen: Quasikonforme AbbildunQen, Springer

  12. Procuring complex performance

    DEFF Research Database (Denmark)

    Hartmann, A.; Roehrich, J.; Frederiksen, Lars

    2014-01-01

    Purpose – The paper analyses how public buyers transition from procuring single products and services to procuring complex performance (PCP). The aim is to examine the change in the interactions between buyer and supplier, the emergence of value co-creation and the capability development during t...

  13. The CERN accelerator complex

    CERN Multimedia

    Haffner, Julie

    2013-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  14. Psychopathology and complexity

    Directory of Open Access Journals (Sweden)

    Leonardo Y. Álvarez R

    2010-08-01

    Full Text Available The paradigm of complexity states that reality conveys a chaotic dynamics, ambiguous, blurred, and paradoxical, and that it does not fulfill the values of order, harmony nor perfection. However, such a chaos represents a specific way of organization and order. Human behavior explained by this paradigm vindicates on this way the outstanding role of contradiction and irregularity aside of what is linear and predictable. The purpose of this review has the primary aim to describe some concepts and assumptions that give support to the approach to complexity in behavior, especially concerning the psychopathological behavior of an individual. Some comparisons with concepts associated to complexity in scientific approaches to psychology (contextual and paradigmatical behaviorism and interbehaviorism from its own persepctive are stablished. All these elements are developed underlining the concepts of reciprocal multicausality, complex and hierarchical learning, historical and contextual factors in the comprehension of behavior, and trying to make some extrapolations on the psychopathological behavior. This approach is hence considered appropriate and necessary to understand gnosiological entities and to intervene them in their role of clinical challenges.

  15. Complexity driven photonics

    KAUST Repository

    Fratalocchi, Andrea

    2014-12-01

    Disorder and chaos are ubiquitous phenomena that are mostly unwanted in applications. On the contrary, they can be exploited to create a new technology. In this talk I will summarize my research in this field, discussing chaotic energy harvesting, nonlinear stochastic resonance and complex nanolasers.

  16. Statistical electromagnetics: Complex cavities

    NARCIS (Netherlands)

    Naus, H.W.L.

    2008-01-01

    A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased choic

  17. The Complexity of Metaphor

    Institute of Scientific and Technical Information of China (English)

    贾燕梅

    2007-01-01

    Being as one figurative form of language, metaphor plays the most complicated role to make language colorful and vivid.Demonstrating the types and the features of metaphor, this article will focus on the point that metaphor is a complex language phenomenon heavily loaded with the factor of culture.

  18. Launching Complex Tasks

    Science.gov (United States)

    Jackson, Kara J.; Shahan, Emily C.; Gibbons, Lynsey K.; Cobb, Paul A.

    2012-01-01

    Mathematics lessons can take a variety of formats. In this article, the authors discuss lessons organized around complex mathematical tasks. These lessons usually unfold in three phases. First, the task is introduced to students. Second, students work on solving the task. Third, the teacher "orchestrates" a concluding whole-class discussion in…

  19. The CERN accelerator complex

    CERN Multimedia

    Christiane Lefèvre

    2008-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  20. Debating complexity in modeling

    Science.gov (United States)

    Hunt, Randall J.; Zheng, Chunmiao

    1999-01-01

    Complexity in modeling would seem to be an issue of universal importance throughout the geosciences, perhaps throughout all science, if the debate last year among groundwater modelers is any indication. During the discussion the following questions and observations made up the heart of the debate.